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1. INTRODUCTION

This paper is focused on the approximation of brittle fracture energies for linearly elastic ma-
terials, by means of non-local functionals defined on Sobolev spaces. The asymptotic behavior of
these functionals will simultaneously show the emergence both of effective energies for the elastic
deformation (which may be, e.g., the output of homogenization), and of Griffith-type surface en-
ergies accounting for crack formation. In turn, this result can be further generalized to the setting
of stochastic homogenization with fracture.

Precisely our results will extend the range of application of the recent papers [I8, 23] while
also providing some relevant technical improvement. We briefly comment on these previous con-
tributions, in order to introduce our results. There, an approach originally devised by Braides
and Dal Maso [7] for the approximation of the Mumford-Shah functional has been generalized to
the linearly elastic setting. Namely, it was shown that, for a given bounded increasing function
f: RT — RT the energies

gi f(skW(e(u)) * pk(ac)) dz, (1.1)
kJU

I-converge, in the L!(U)-topology, to the functional

a/ We(u)dz + 8 [ ¢p(vy)dH" ", (1.2)
U Ju

with a = f/(0) and 8 = lim; 1o f(t). Above, pj are rescaled convolution kernels with unit mass
and compact convex symmetrical support S, ¢, is (twice) the support function of S (see for
its precise definition), W(e(u)) is a convex elastic energy with superlinear p growth depending on
the symmetrized gradient e(u) of a vector-valued displacement u, whose jump set is denoted by J,,.
Notice that the effective domains of the approximations and of the limit are different. Actually
is finite on the Sobolev space W1P(U;R"), while the energy space of is the one of
generalized functions with bounded deformation GSBDP(U), introduced in [I4].
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We stress that the above results allowed one for a general (convex) bulk energy. The proof
strategy cannot rely, at least when estimating the bulk part, on any slicing procedure. The latter
is instead successful in the particular case W (&) = |€|P, considered for instance in [2I]. We also
remark that the results of [18] 23] were obtained under an additional structural assumption on the
kernels pg, which have to be radial with respect to the norm induced by S. In the particular case
considered in [21], this restriction was instead not needed.

A natural extension of the aforementioned models allows one to include an explicit dependence
on k and on the space variable of the energy density. This amounts to consider functionals of the
form )

=/ f(aka(-, e(u)) * pk(x)) dzx, (1.3)
whose limit behaviour is the object of the present paper. Functionals of the form can be
used to approximate with some gain in the ease of minimization, for a proper choice of Wy.
Actually, this more general setting is also suitable for further applications, if one thinks about the
mechanical counterpart of the model. Indeed energy densities of type Wi (y, M), where y is the
position in the reference configuration, are customary when dealing with heterogeneous material
with some microstructures. The prototypical example is the case of homogenisation, that is, when
Wi(y, M) = W (3, M) with 65 \, 0. Taking this point of view amounts to regard as a nonlo-
cal linearly elastic model, with a truncated potential i f(er+) accounting for the cost of breaking
the elastic bonds on regions of size ;. In such a case, one is interested in deriving an effective

asymptotic model for (|1.3).

The main result of our paper is contained in Theorem There we show that the functionals
in (1.3) I-converge to a limit energy of the form

a/ W(z,e(u))dz+ B | ¢p(vy)dH" L. (1.4)
U Ju

Above, the limit bulk density W can be characterised in terms of cell formula (see (2.7)-(2.8)).
Remarkably, that coincides exactly with the asymptotic formula that one would obtain by con-
sidering the limit behaviour of the local energies [;, Wi (z, e(u)) dz in the Sobolev space WP(U).
Hence, a decoupling effect between bulk and surface contribution occurs, since the volume energy
only depends on f through its derivative at the origin. A similar effect has been observed in [11]
where the analogue of for energies depending on the full deformation gradient was taken into
account. On the one hand, the possibility of using smooth truncations (a tool which is not avail-
able in GSBD) allowed the author there to replace f by a sequence fj and to derive more general
surface energies in the limit. On the other hand, the precise characterisation of the volume energy
density was obtained at the expense of an additional technical condition on the Wy’s (the so-called
stable ~-convergence). It actually turns out, as an output of our proof strategy, that this extra
assumption can be dropped (see Appendix. Thus, our results also permit some improvement in
the previous literature about non-local approximation of free-discontinuity problems.

We now come to the description of our proof technique. The most difficult point is the lower
bound for the bulk contribution. This is done in Proposition by means of a localisation and
blow-up procedure which contains some elements of novelty in the non-local setting. More precisely
we consider the blow-up of sequences with equi-bounded energies at a Lebesgue point for the limit
energy. A crucial task is to gain a uniform control on the LP norm of the symmetrized gradients
of the blow-up functions up to sets with vanishing perimeter. This allows us to apply [19, Lemma
5.1] (which relies on the Korn-type inequality of [§]): we can substitute, with almost no change in
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the energy, the above mentioned sequence with a more regular one bounded in WP, Exploiting
the properties of f we are then reconducted to analyse the limit behaviour on small squares of a
local energy in WP, which can be estimated from below via a cell formula.

An optimal estimate from below for the surface term can be obtained by means of a slicing
procedure (Proposition . As for the I'-limsup inequality it can be achieved by a direct con-
struction for a class of competitors with regular jump set, which are dense in energy. Here we use
the classical approximation result of [9] [12].

We underline that even in the case of (i.e., with W not depending on k) we have some
technical improvement in comparison with the result of [I8] 23]. First of all we do not need any-
more to assume the kernels p; to be radially symmetric. Secondly our I'-convergence argument
is carried out with respect to the convergence in measure instead of the L' convergence. This is
(almost) the natural one for sequences with equibounded energy (see Theorem [2.1}(é)). It can be
indeed shown that such sequences are compact in the measure convergence up to an exceptional
set U, where their modulus diverges. However, this set can be easily made empty by adding a
penalisation term in the energy (see the statement of Theorem [3.5 and Remark [2.2).

Eventually we complement our analysis with a stochastic homogenisation result Theorem
Namely we consider functionals of type (|1.3)) with stationary random integrands

Wi (w, , M) :W(w,%,M), (1.5)
where w belongs to the sample space € of a probability space (2,7, P) and d; N\, 0. Following
the approach proposed by [15] (which relies on the Subadditive Ergodic Theorem in [1]) we show
that, almost surely, such functionals I'-converge to a free-discontinuity functional of the form
where the bulk energy density is independent of the space variable. A similar result was obtained
in [3] in the context of elliptic approximation of free-discontinuity functionals.

Plan of the paper. The paper is structured as follows. After fixing the notation, in Section 2] we
introduce the problem, discuss the assumptions and state our main results. Section [3]is devoted to
recalling preliminary results which are useful for the analysis. The proof of Theorem [2.1]is carried
out through the Sections [4{f] dealing with compactness, lower, and upper bound, respectively. In
Section [7] we prove a stochastic homogenisation result Theorem [7.4] Eventually in the Appendix
we briefly comment on the result of [I1, Theorem 3.2], highlighting that the assumptions made

there can actually be weakened. A complete statement is given for the readers’ convenience in
Theorem [AT]

2. SETTING OF THE PROBLEM AND MAIN RESULTS

2.1. Notation. We start by collecting the notation adopted throughout the paper.

(a) n > 2is a fixed integer and p > 1 is a fixed real number;

(b) M™*™ denotes the space of n x n real matrices; MZ P and M0 denote the spaces of
symmetric and skew-symmetric matrices respectively;

(c) for a subset A C R™ 9* A denotes the essential boundary of A4;

(d) £™ and and H"~! denote the Lebesgue measure and the (n — 1)-dimensional Hausdorff
measure on R", respectively;

(e) for every A C R™ let x4 denote the characteristic function of the set A;

(f) U denotes an open bounded subset of R with Lipschitz boundary;
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(g) we denote by A(U) and A the collection of all open and bounded subsets of U and R
respectively;
(h) If A, B € A(U) (or A) by A CC B we mean that A is relatively compact in B;
(i) Q and Q' denote the open unit cube in R™ and R"~! respectively with sides parallel to
the coordinate axis, centred at the origin; for z € R™ (respectively z € R*~!) and r > 0
we set Qr(z) := rQ + x (respectively Q..(z) :=rQ’ + z);
(j) for every £ € S"~! let R¢ denote an orthogonal (n x n)-matrix such that Ree,, = &;
(k) for z € R™, 7 > 0, and £ € S"~1, we define Q5 () := ReQ, (7).
(1) for a given topological space X, B(X) denotes the Borel o- algebra on X. If X = R? with
d €N, d > 1 we simply write B in place of B(R?). For d = 1 we write B;
(m) we denote by L°(U;R™) the space of measurable functions;
(n) for a,b € R™ the symbol a ® b denotes the tensor product between a and b, while a ® b :=
La®b+b®a).

Throughout the paper C denotes a strictly positive constant which may vary from line to line
and within the same expression.

2.2. (G)SBYV and (G)SBD functions. We will work with the functional spaces (G)SBVP(U;R"™)
and (G)SBDP(U) for which we will recall the main properties and refer the reader to [2, [14] for
a complete exposition of the subject. We say that u € L'(U;R"™) belongs to the space of special
functions with bounded variation, i.e., u € SBV(U;R™), if its distributional gradient is a finite
M"™*"_valued Radon measure without Cantor part, that is,

Du=Vul" + [u] @ v, H" 'L J,,

where Vu is the approximate gradient, .J,, is the approximate jump set, [u] = v+t —u~ the jump
opening and v, the unit normal to J,. A function u € L°(U;R™) belongs to the space of generalised
special functions with bounded variation, i.e., u € GSBV (U;R"), if for any ¢ € C'(R";R") with
support of Vo compact it holds ¢ o u € SBVjo.(U; R™).

We say that u € L'(U;R™) belongs to the space of special functions with bounded deformation,
and we write u € SBD(U), if its symmetrized distributional gradient is a finite M '-valued
Radon measure without Cantor part, that is,

_ Du+ (Du)”
=0

where e(u) is the approximate symmetric gradient with respect to the Lebesgue measure. On the
contrary the space of generalised special functions with bounded deformation, GSBD(U), cannot
be defined analogously to the space GSBV (U;R") as if w € SBD(U) and ¢ is as above, then in
general pou ¢ SBD(U). To overcome this issue, Dal Maso in [14] proposed a definition of this
space by relying on a slicing argument which we describe in the following.

For £ € R™\ {0} we let TI¢ := {y € R™: (¢, y) = 0}; for any y € I1¢ and A € B(U) we set

Ay ={teR:y+1t{ € A}.
Given u: U — R" we define u*¥: U, — R by

ut¥(t) = (uly + t€),€)

FEu =e(u)L™ + [u] © v, H" L J,,

If utv € SBV (U ,; R) we set

Jusw = {t € Jyew: |[us]()] > 1}
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We then say that u € L°(U;R™) belongs to the space of generalised special functions with bounded
deformation, and we write u € GSBD(U), if there exists a bounded Radon measure A on U such
that us¥ € SBVioc(Us ) for all v € S*~1! and all y € II¢ and

/Hg (|Du5’y

for all A € B(U). Eventually we set
GSBVP(U) := {u € (G)SBV(U;R"™): Vu € LP(U; M™*") and H" " *(J,) < +o0};

(Agy \ Jhew) + HO(Aey N TLen) ) dHP7H(E) < A(A),

and
GSBDP!(U) :={u € (G)SBD(U): e(u) € LP(U; M2%") and H""*(J,) < +oo},

Sym

where Vu and e(u) are well defined also in GSBV (U;R"™) and GSBD(U) respectively.

2.3. Setting of the problem. Let 1 < p < 4o00; let ¢1, co be given positive constants such that
0<c <co < +oo. Let W= W(p,c1,c2) be the collection of all functions W: R® x M™*"™ — R
satisfying the following conditions:

(W1) W is a Carathéodory function on R™ x M"™*™;

(W2) W(z,0) =0 for every z € R™;

(W3) for every x € R", M € M™*"™ and S € M/, ;"

W, M+ 8) = W(a, M);
(W4) for every x € R"™ and every M € M™*"
ci|M 4+ MTP <W(x, M) < co(|]M +MTP+1).

Let f: [0, 4+00) — [0,400) be a Concaveﬂ increasing function such that there exist «, § > 0 with

N | -
t1_1>%1+ I a, t_1}+moof(t) =p. (2.1)

Note that for such f it holds
f(t) <at Va> o (2.2)

moreover by [23] Lemma 2.10] there exist (c)ien, (Bi)ien sequences of positive numbers with
sup; a; = «, sup; B; = [ such that
f(t) > fi(t) =t N\ ﬁi Vi € N, t e R. (23)
Let p € L>°(R";[0,400)) be a lower semi-continuous convolution kernel with [, pdz = 1 and
S := {p > 0} bounded, convex, symmetrical and with 0 € S. We denote by |- |s the norm induced
by S, namely,
|z]s :=1inf{\ > 0: x € AS}.
Under the above assumptions, |- |s is a norm and S = {|z|s < 1}. Then for any bounded set
K CR" and x € R™ we let
d K) := inf |z — .
s(z, K) yng lz —yls

For any Borel set E and any r > 0 we denote by E, and E_, respectively the sets
E. :={zeR": dg(z,E)<r}, E_,:={xecR": dg(z,E°) >r}.
Finally we let ¢,: R"™ — [0, 400) be given by
¢p(v) :==2suply - v|. (2.4)
yeS

Lthe need for this assumption is in deriving (2.2) which is used for the proof of Proposition If W is not
depending on k, as in [23], it can be weakened to mere lower semi-continuity.
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For § > 0 we set ps(z) := 5 p(%), Ss(x) ==z + 4S.

For k € N let (Wx) C W, let (g;) be a decreasing sequence of strictly positive real num-
bers converging to zero, as k — +oo and let py := p;,. We consider the family of functionals
Fy: L°(U;R™) — [0, +00] defined as

! 1 1,p . RN
Fi(u) = Q/Uf(€ka(~7e(u)) *pk(z)) dz ifue WhHP(U;R"),

400 otherwise .

(2.5)

Here and henceforth, it remains understood that each u € W1P(U;R") is extended to a fixed
neighborhood of U to have a well-defined functional. The I'-limit, as we will see, is independent
of the considered extension. Let z € R, M € M"*" A € A and u € W1P(A4;R") be fixed. Set
up(y) := My. We then define the minimisation problem

my,(ups, A) := inf {/ Wi(z,e(v))da: v € WHP(A;R™), v = uyps near BA} , (2.6)
A
and the cell formulas
W' (z, M) := lim sup lim inf my(uar, Qr(2) , (2.7)
,,‘\"0+ k——+o00 Tn
W' (x, M) := lim sup lim sup . (tar, @r(7) . (2.8)

N0+ k—too rr

Notice that W' and W depend on the given sequence of k and are to be modified accordingly if
one takes subsequences. This will be highlighted in the statement of our main result.

2.4. Main Results. In this Section we state our main results. The first one is a ['-convergence
theorem for the energies Fy.

Theorem 2.1 (T-convergence of Fy). Let Fy, be as in (2.5)). Then the following hold:

(i) There exists a subsequence, not relabelled, such that for every x € U and every M € M™*"™,
and for W', W' as in (2.7) and (2.8)) (calculated for the given subsequence), one has

W'z, M) =W"(x,M):=W(z,M). (2.9)

and it holds W(z, M) = W(x,sym(M)). Moreover, Fy, T'-converges with respect to the
convergence in measure to the functional F: L°(U;R™) — [0, +o00] given by

Flu) = a/UW(w7e(U))dx+ﬁ/Ju bp(vu) AR if u € GSBDP(U),
+00 otherwise,

with ¢, as in ;

(ii) Let (ux) C LO(U;R™) be such that supy, Fi(ug) < +00. SetU® := {z € U: |ug(x)| = +00}.
Then there exists u € GSBDP(U) such that, up to subsequence, it holds ui, — w in measure
on U\ U>®. If in addition

(2.10)

sup/ U(|ug]) de < o0,
keNJuU

for some 1: [0,400) — [0,+00), continuous, increasing with lims_, ;o ¥ (s) = +oo, then
U™ =0, so that |u| is finite a.e., and ux — u in measure on U.
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Remark 2.2. The addition of a penalty term of the form f; 1 (Jul) dz to the energy enforces then
compactness in measure, while causing no troubles in the I'-convergence analysis. Indeed, such a
term is clearly lower semicontinuous, hence the corresponding lower bound follows immediately.
As for the upper bound, if one takes 1 as in Theorem the argument of Proposition can
be readily adapted also in presence of such an additional term. As this is not the core of the
argument, we will neglect lower order terms in our statements and proofs, directly assuming that
convergence in measure holds everywhere. The technical details left to prove the upper bound are
summarized in Remark [6.2] for the readers convenience.

The proof of Theorem [2.1] is divided into three main steps contained respectively in sections
and @ As a consequence of Theorem and the Urysohn property of I'-convergence [I3]
Proposition 8.3] we deduce the following corollary.

Corollary 2.3. Let (Wy) C W and let Fy, be the functionals as in (2.5)). Let W', W' be as in
(12.7) and (2.8), respectively. Assume that
W (x,M)=W"(x,M)=W(x,M), forae x¢cR" and for every M € M"™*™

for some Borel function W: R™ x M"*"™ — [0, +00). Let F defined as in (2.10) accordingly. Then
the functionals Fy, I'-converge with respect to the convergence in measure to F'. Moreover

W(z, M) =W(z,sym(M)) =W'(x, M) =W"(z, M),
for every x € U and every M € M"*™.

We now state a homogenisation theorem without assuming any spatial periodicity of the energy
densities W. We start by introducing some notation. We fix W € W and set

m(ups, A) := inf {/ W(z,e(v))de: v e WHP(A;R™), v = ups near aA} ) (2.11)
A
for all A € A and all M € M"™*"™ Let also (Wy) C W be given by
x
Wio(z, M) = W(E,M) , (2.12)

with 0 \, 0 when k& — +oo.

Theorem 2.4 (Deterministic homogenisation). Let Let W € W and let m(ups, Qi(tz)) be as in
(2.11) with A = Q4(tx). Assume that for every x € R™, M € M™*" the following limit

 m(u. Qy(ta)
t——+o00 tn

exists and is independent of x. Then the functionals Fy defined in (2.5) with Wy as in (2.12) T'-
converge with respect to the convergence in measure to the functional Fyom: L°(U;R™) — [0, +00]
given by

/Whom daz—i—ﬁ/ ¢p(v)dH™ ' ifue GSBDP(U),
Fhom =

otherwise,,
with ¢, as in (2.4). Moreover Whom (M) = Whom(sym(M)) for all M € M™*".

Proof. Let W', W" be respectively as in (2.7) and (2.8). By Corollary it is sufficient to show
that

=: Whom (M), (2.13)
(2.14)

Whom (M) = W' (z, M) = W' (x, M), (2.15)
for all x € R™ and M € M"™*"™. We fix x € R", M € M" "™ r > 0 and k£ € N. For any
u € WHP(Q,(x);R") with u = up near 9Q,(z) we let uy € Wl’p(Qi((si) R™) be given by
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ug(y) = iu(éky). Then clearly ug = ups near 86’2%& (5-). Moreover by performing the change of
variable §j = % we find

[oow(Lew)a=5 [  Wielw)d.
Qr(z) k Qr (3-)

5, Ok

Hence in particular

,,.TL
my (upr, Qr(2)) = dpm(unr, Q£ (57)) = tTm(UMyth (te ),
k
with tx := +. Eventually passing to the limit as £ — 400 by (2. we deduce
ith 5 B Iy passi he limit as & by (Z13) we ded
s mk(quQ’r‘(x)) o . m(UM7th (tk:%))
lim =227 —  lim
k~>+oo ’r” k~>+oo tz

= Whom(M).

3. SOME PRELIMINARY RESULTS

In this section we collect some useful results that will be employed throughout the paper. We
start by recalling a T'-convergence result for the bulk energies defined in (3.1)) (Theorem and
a I'-convergence result for one-dimensional non-local energies (Theorem |3.3]). To follow we recall
a density and a compactness result (cf., Theorem and Theorem [3.5)). We conclude this section
with a series of technical lemmas (cf. Lemmas 3.6} and Corollary [3.9).

We consider the family of functionals Ej: L°(R";R") x A — [0, +00] given by

/ Wi(z,e(u))der if ue WHP(A;R"),
(U,A) = A
+oo

otherwise .

(3.1)

Theorem 3.1 (I-convergence of Ey). Let Ey be as in (3.1). Then there exists a subsequence,
not relabelled, such that for every A € A the functionals Ey (-, A) I'-converge, with respect to the
convergence in measure, to the functional E(-, A) with E: L°(R™;R") x A — [0, +0o0] given by

W(z,e(u))dz if u € WHP(A;R™),
= [ [ W 32)
400 otherwise ,
where for every x € R™ and every M € M"™*"
W (z, M) =W(x,sym(M)) =W'(z, M) =W"(x,M), (3.3)

with W', W' as in (2.7) and (2.8) for the given subsequence. The same T'-convergence holds with

respect to the LY (R™;R™) convergence.

Observe that the above Theorem yields in particular a subsequence for which holds. From
now on, it remains understood that such a subsequence has been fixed, without relabelling. The
proof of Theorem is rather standard and follows by the localisation method (see e.g., [13]
Sections 18,19]) and by suitably adapting the integral representation result in [4, Theorem 2] to
our setting with the help of Korn-Poincaré inequality. For this reason we omit the proof here and
we refer the reader to [19, Proposition 3.13] for more details. We only highlight that the result
holds also for non regular open bounded subsets of R™. Since this may not be immediately clear
from the statement given in [19, Proposition 3.13], we discuss this point in the remark below.
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Remark 3.2. Let A be any open bounded subset of R™ and u € W1P(A4;R"™). We show that there
exists a sequence (ug) C WHP(A;R™) such that up, — w in LP(A;R™) and Ej(ug, A) — E(u, A).
With the use of Korn-Poincaré inequality, it is clear that this can be done if A is an extension
domain. In the general case, consider smooth relatively compact subsets A’ CC A” CC A, and fix
n > 0. We find a sequence (vy) C WHP(A”;R™) such that Ey(vg, A”) — E(u, A”). By the liminf
inequality, this also gives Ej,(vg, A” \ A') — E(u, A” \ A’). With we have

limsup/ le(vg)|P dz < e (1+ le(u)|?)dz

k—+4oo J A A C1 Jana

Then, considering a cut-off ¢ between A’ and A” we set uy := v + (1 — ¢)u. Clearly up — u in
LP(A;R™). Furthermore, by [(W4)| one has

lim sup Ey(ug, A) = limsup Ey(vg, A") + Ex(ug, A\ A")

k—4o00 k—+o00

< limsup Ey(vg, A”") + c2

k— 400

[ @l ds
A\ A/
+/ 1+ Voo (v —u)|P + |e(vk)|f’)da:]
A\ A/
< E(u, A”) + ¢ <1 + ) /4\A’(1 +le(uw)|P)dz < E(u, A) + 1,

C1

provided L£"(A\ A’) is sufficiently small. The limsup inequality, which is the only relevant one,
follows by a diagonal argument.

We recall now the following one-dimensional result for non-local energies given in [5, Theorem
3.30].

Theorem 3.3 (I'-convergence in 1d). Let I C R be a bounded interval. Let f: [0,400) + [0, +00)
be a lower semi-continuos function satisfying (2.1) for some «, > 0. Consider the family of
functionals Gy: L°(I) — [0, +00] defined by

Gty = [1(3 [ e as) ar,

—€k

if u € WHP(I) and +oo otherwise. Then Gy, T'-converge with respect to the convergence in measure,
to the functional G: L°(I) — [0, +o0] given by

Glw) = a/I [P dz + 284 ()

if we SBV(I) and 400 otherwise.

We next recall an approximation result [9, Theorem 1.1] and a compactness result in GSBD? in
[10] (which generalises [I4, Theorem 11.3]). To this aim we denote by Wy, (U;R™) C GSBDP(U)
the space of “piecewise smooth” SBV-functions, that is,

WS (U R™) = {u € GSBDP(U): u € SBV(U;R™) N W™>(U \ Ju; R™), ¥m € N,
H YT\ ) =0, J, =Ul_ K, ccU (3.4)
with K; connected (n-1)-rectifiable set,V1 < i < k‘}

Theorem 3.4 (Deunsity in GSBDP). Let ¢ be a norm on R™. Let u € GSBDP(U). Then there
exists a sequence (u;) C Wps (U;R™) such that
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(1) w; — u in measure on U ;
(1) e(u;) — e(u) in LP(U; M”X") ;

(#i1) limy oo [ G(r,) dH™! T = [, o(vu)dH" 1.
Moreover, if ]
[ ot s < +oc.
for some ¥: [0, +00) — [0, +00), continuous, increasing with
$(0) =0, (s +1) < CW(s) +9(1)), ¥(s) < C(L+s"), lim 1(s) = +oo;
then

tim [ (s -l do =
j—=+oo Ju

We notice that the approximating class considered above fulfils the additional requirement of
having a jump set compactly contained in U. This is possible, as shown in [16, Theorem C].

Theorem 3.5 (Compactness in GSBDP). Let (u;) C GSBDP(U) be a sequence satisfying

sup (Jle(y)llzo ) +H" " (u,)) < +o0.
jEN
Then there exist a subsequence, still denoted by (u;), and v € GSBDP(U) with the following
properties:
(1) the set U™ :={x € U: |uj| — +o0o} has finite perimeter;

uj — u in measure on U\ U™ and u=0 on U™ ;

(i)
i) e(uj) — e(u) in LP(U \ U®; M) ;
)

—~

sym

liminf H" ' (Jy,) = H* N (J.N(U\U>®)+H" " (UNOU>®) > 1" (J,UUNIU™)).

(v) 1
J—+oo

In the statement above, the last semicontinuity property is stated in a stronger form than in
the original paper, but is also proved there (see [10, Formula (3.25)]). In the rest of this section
we give some technical Lemmas.

Lemma 3.6. Let g;: R™ — [0,+00) be a sequence of equi-integrable functions. Let E; C R™ be
such that L"(E;) — 0 and let 6; \,0 as j — +o00. Then (g;xg,) * ps, = 0 strongly in L*(R™).

Proof. By properties of convolution it holds that
lgixe, * ps; L1 @ny < lgixe, L @n)-

By equi-integrability we have that for every € > 0 there is J € N such that for every j > J

95X E; |21 (mn) :/E gjdx < e,

)

from which the thesis follows. O

Lemma 3.7. Let A’ be an open bounded subset of R™. Let g;: A" — [0,400) be a sequence of
equi-integrable functions. Let 6; \ 0 as j — +oo. Then for every A CC A’ there holds

lim inf * dz > liminf cdx .
piaraes Agj Ps; g Ag]
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Proof. We consider the sequence of positive measures v; := g; * ps, L L A. Since A’ is bounded g
turn out to be equi-bounded in L*(A’), hence we get

14

j(A)Z/gj*péjdxé/ gide < C.
A A’

Therefore there exist a positive measure v € M, (A), a function g € L'(A’), and a not-relabelled

subsequence such that v; — v weakly * in M;(A) and g; — g weakly in L'(A’). It remains to
show that v = gL A, indeed this would imply

Mmint |, 93 * pe, dv = lmInfv;(4) 2 v(4) = /A gde=timinf | g;dz,

and we could conclude. Let ¢ € C°(A) and let A cC A” CcC A’ be fixed. By Fubini’s theorem
we have

/ pdv = lim pdy; = lim ©(gj * ps;) dz
A A A

j——+oo Jj—+o0
— tm [ (oeps)gdo= [ pgdo= [ pgd
Jj—+oo A A A
where ps, (x) := ps, (—x) and the last equality follows since g; — g weakly in L'(A’) and @xps, (z) —
@ strongly in L>(A’). Thus we deduce v = g£™ L A and the proof is concluded. O
Lemma 3.8. Let A C R"'. Let (u;) C L*(A) be a sequence converging to u in L'(A). Let

A CC A and let wy: A" x Q' — R be given by wi(z,y) := up(x + ery). Then wy converges to u
in LY (A" x Q).

Proof. By Frechet-Kolmogoroft’s Theorem, for every n > 0 there is h € N such that for all £ > h
and y € Q' there holds
[ Justa+ )~ uta)laz < .
AI

This together with Fubini’s theorem yield
[ ) - u@ldrdy< [ [ e+ e) - u) dedy <,
A/ XQI ’ ’

for all £ > h. Eventually by letting 7 — 0 we conclude. (|

Corollary 3.9. Let A C R"1. Let (uy) C LY(A) be a sequence converging to u in measure. Let
A" CC A and let wy: A" x Q' — R be given by wi(z,y) := up(x + ery). Then wy converges to u
m measure.

Proof. Since arctan(uy) converges to arctan(u) in L'(A) by Lemma we have that arctan(wy)
converges to arctan(u) in L*(A’ x Q'). Hence wy converges to u in measure. O

4. COMPACTNESS
In this section we prove point (i) of Theorem

Proposition 4.1 (Compactness). Let Fy, be as in [2.5). Let (ux) C L°(U;R™) be such that
supy, Fi(ur) < 4+oo. Then there exist u, € GSBVP(U;R™) and u € GSBDP(U) such that ay, —
ur — 0 in measure on U and, up to a subsequence, it holds

ur — u  in measure on U\ U™,

e(tg) = e(u) in LY Sy

loc
liminf H" "1 (Jg,) > H" 1 (J, U (0*U>NU)),

k——+oo
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where U :={x € U: |ug(z)| = +oo}. If in addition
sup/ Y(Jug|) de < 400,
keNJuU
for some 1: [0,4+00) — [0, +00), continuous, increasing with lim,_, o ¥(s) = +oo, then U = ),
and all implications hold on U.

Proof. The proof is inspired by that of [23] Proposition 4.1]. Let (uy) be as in the statement and
let U’ CcC U be fixed. We will prove the following claim: there exist (dy) C GSBVP?(U;R™) and
¢p > 0 (independent of k) such that

Uy, — ur, — 0 in measure on U, (4.1)
lim inf Fy (ug) > ¢ lim sup ( le(ax)|P da + H”_I(Jﬁk)) . (4.2)
k—+o00 k——+o00 U’

Now, if (4.2]) holds, we fix a sequence U; U and apply Theorem to each U;. With a diagonal
argument we deduce the existence of v € GSBD(U) with v = 0 on U such that, up to a
subsequence,

4, — w in measure on U \ U™,

e(ug) — e(u) in L S

loc

We remark that since the constant ¢q is independent of k, we indeed have u € GSBD(U) by the
very same argument of [I0, Formula (3.33)], with the minor difference that the Radon measure
A in the definition of GSBD is first defined as local weak*-limit, but turns eventually out to be
uniformly bounded by (£.2). We also get e(u) € LP(U), since ¢y is independent of k. Concerning
the remaining inequality, for fixed ¢ we set U>® := U* N U;, then by Theorem (iv) we have

liminf H" 1 (Jg,) > 1kim+inf H*H(Ja, NU;) > H T N (U \U®)) +HHU; N 0*U>) .
—4o00

k—4o00
(4.3)
Observing that Up® U™ by lower semicontinuity of the relative perimeter we have
liminf H"~H(U; N 9*U;>°) > H" 1 (U; N O*U™) Vi.
Jj—+oo
Letting ¢ — +00, by monotonicity we get
lim H" 1 (J, N (U \U®) =H""HJ,N(U\U>)), (4.4)

i—+400
and being H" 1 (U; N 9*U®) = H" ' (U; N §*Us®) for all j > i it holds
lim inf H"~H(U; N 9*U;°) > liminf lim inf H"~H(U; N 0*U;>°) > H* 1 (U NO*U™).  (4.5)

1—+00 i——+00 j—+o00

Eventually combining (4.3|) with (4.4) and (4.5
liminf H" 1 (Jg,) > H" (T, N (U \U®)) +H" "YU NI*U®)) >H" (], U@ TU>®NU)).

k—4oc0
This also gives u € GSBDP(U). As the remaining part of the statement follows directly from
Chebycheff inequality and Fatou’s lemma, we are only left to prove the claim.
For fixed ¢ € N let f;(t) = a;t A B; be as in ([2.3). Choose n > 0 such that Q2,(0) CC S and let

my = min p(x) >0 and f2(t) = fi(myn"t) = csmyn™t A B; . (4.6)
GCEQQT,(O)
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Then we have

Fy(ug)

%

i/Ufl (aka(~,e(uk)) * pk(l‘)> dx

1
S W) dy) do.
€k Ju Qe ()

A} =z eU: g Wi (y, e(ug)) dy > b — } ,
Quney (a) QM)

(4.7)

Y

We set

A = {x € U: dist(z, A}) < nsk} .
Note that

Bi
Al c A2 C .’L’EU:Ek][ Wiy, e(ug))dy > ————— 3. (4.8)
k k { ansk () ( ( )) azmn(zr))n

Indeed if z € A7 there is z € A} with Q,., (2) C Q2ye, (z) and therefore
Bi
&‘k][ Wiy, e(ug)) dy > 2% Wi(y, e(uy)) dy > —————.
Q2nek (x) 2 Qnsk (Z) O‘Zmn(?r])
By combining together (4.7]) and ( we find

Fi(ug) > @m A2). (4.9)

By the coarea formula (see e.g., [I7, Theorem 3.14]) and the mean value theorem there exists
tr, € (0,me) such that the set A3 := {dist(-, A}) < tx} C A7 satisfies

L7(A2) > neH L (0A3). (4.10)

0 ifze A3,
ﬂk(.l‘) ;:{ .k

Let now

ug ~ otherwise in U .

By construction 4 € GSBVP(U;R™). By (4.9) and the fact that A} C A% we have £"(A43}) — 0
as k — +oo from which - follows. On the other hand as Jy, C 8A . and - 4.10]) yield

Fy(ug) > nBH"  (Ja,) - (4.11)
We next show that there exists K (n) > 1 such that for every x € U

_ Bi
C1Ek ]énsk(x) le(ur(y))[P dy < Kaimnﬁ" (4.12)
By we have
Wi (z, e(ur(x))) > c1le(ur(x))|P > c1le(ug(z))P  for ae. x € U. (4.13)

Now if z € U \ A3, then z ¢ A} and

k][Q |e<ak<y>>|pdys€kf Wiy, e(un(v))) dy < —

nex (@) Quey, () a;man™

Assume instead that « € A. Observe that 4y = 0 in Q. (z) N A}, so that

/ e (y))? dy = / (@ (y))” dy
Qe (o) Qney, (®)\A3
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Furthemore, we can cover Qy., (z) N (Q\ A}) with a finite number K (n) > 1 of balls of radius ney,
and centres 1, ...,z € U\ A; (see e.g. [23, Remark 2.8]). Hence, we find

et le(m) |pdy<mz][ ()" dy
QT/E)C(I) nik(x

Bi

)
a;myn™

< skZ f elun(y) dy < K

ﬂsk (wz)

and (4.12)) follows. Finally by (4.7) (with 7 in place of 2n), the monotonicity of f', (4.13)) we infer

Fi(ue) > i/ P, alm@ray)d

am nex (#) (4.14)
"n /f e(ty(y)) P dydz,
Qnsk (:C)
where the last inequality follows from ([4.12)) and the fact that f(t) > = m”” t when t < K — n"a .

Moreover by using in order the change of variable y = © — ney 2, Fubini’s theorem, and the change
of variable & = x — negz (for k large enough), we find

/U][Q et dyde = [ [ et = nevepp azas

(4.15)
> [ le(an(@)lP da.
U/
Eventually gathering together (4.10)), (4.14]), and (4.15)), we deduce (4.2]) with
1 /cra;mq,n™ )
= — AN0; ).
€o 5 ( K nps
]

5. LOWER BOUND

In this section we prove the lower bound. To this purpose it is convenient to localise the
functionals F}, namely we set
1

Fy(u, A) :== Q/Af(ska(-,e(u)) *pk(w)> dz, forue W'P(U), ACU. (5.1)

Proposition 5.1 (Lower bound: bulk contribution). Let (ux) C L°(U;R"™) be a sequence that
converges in measure to u € LO(U;R™). Assume moreover that Fy,(uy) < C and that ([2.9) holds.

Then, for W as (2.9)
liminf Fy(ug, A) > a/ W(z,e(u))dz VAe AU),
A

k—+4o00

Proof. Let (ug) and u be as in the statement. By Proposition u € GSBDP(U). For every
k € N let py be the Radon measure on (U, B(U)) given by

ps(A) = Fy(ug, A), YA€ BU). (5.2)

As pui(A) < C, by [2] Theorem 1.59] we deduce the existence of a subsequence, not relabelled, and
of a Radon measure p on (A, B(A)) such that

pr —p and  liminf g (A) > p(A). (5.3)

k—4o00
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By Radon-Nikodym’s Theorem (in the version of [2, Theorem 1.28]) there exist two measures pu®, u*
with p® < £™ and p® L £", and a function h € L'(A) such that g = u®+ p* and p® = hL™. This
together with (5.3]) imply that
liminf Fy (ug, A) > / h(z)dzx.
A

k—+o00
Hence to conclude we need to show that
h(z) > aW(z,e(u(x))) forae zeU. (5.4)
with W as in For i € N fixed let f;(t) = a;t A B; be as in . Then it is enough to show
that
h(z) > a;W(z,e(u(x))) forae xzeU, (5.5)
We divide the proof of into four steps.

Step 1: In this step we show that for a.e. zg € U there exists a sequence (kj;,r;) — (4+00,0) as

€k
kj
.
Tj

J — +oo such that setting ¢; :=

ug(zo + 1v) — ug(x0)

up(v) == . and Wi(x, M) :=W(xo+re, M), (5.6)
there hold
1 "
o) 2 lim o [ F(ra W oelaf) s () o (57)
and
uy, = Vu(zo)(-) in measure on Q, (5.8)

together with

lim 2 (“V“m;j’ Q@) _ (g, eu(zo))) (5.9)
Jj—+oo ’rj

By Besicovitch differentiation theorem and [8, Corollary 5.2] we have that for a.e. zg € U the
following hold:

. (@, (w0))
h(zg) = lim —T—=,
(zo) = lm, |Qr(20)]
1 _ _ _
lim —£" <{y € Q) W) = u(@0) = Vulzo)(y = 20)| 5}) =0 ¥>0. (511
N0 T ly — 2o
We fix 29 € Q for which (5.10) and (5.11)) hold. By [2 Proposition 1.62] we have

1@, (w0)) > lim sup 1 (Q,.(w0)) ,

k—+o00

for every r > 0, which together with (5.10]) yield

(5.10)

h(zp) > lim sup lim sup 1(Qy (%0)) . (5.12)

N0t k—+oo |Qr (o)
Moreover from ([5.2) and the change of variable = xg + rz’ we get

@) = oo [ (Wi et ¢ puto)) de
= ~” 7f(€ka(~, e(ux)) * pr(zo + ra:)) dz.
Ek Q

(5.13)
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From (5.6) and the change of variable y = ry’ we may deduce that

Wi (-, e(ur)) * pr(wo +re) = Wi e(up)) * pex (x) .- (5.14)
Gathering together (5.12)), (5.13), (5.14) and using (2-3) we obtain
1r
h(zg) > lim sup lim sup —— fl( Wi, e(uy)) = pi(x)> dz. (5.15)

rNOT k—+oo T EK
Now, from (5.11)) and the fact that uj converges to u in measure we can deduce that
lim hm L" {veQ: |up(v) — Vu(zo)(v)| >d}) =0 V6 >0.

r—0k—+
If we fix a diagonal subsequence (k;,7;) — (+00,0) as j — 400 for which and hold,
from we also get for §; := Erﬁ (up to taking a further subsequence to have a limit in
place of a limsup). With this, the proof (J)f step 1 is concluded.
Step 2: In this step we show that for any 0 < ¢ < 1 and a.e. =z € U there exist (4;) C

GSBVP?(Q;R"™) and ¢g > 0 independent of j such that

lim £" = 0; 5.16

jJim {u; # uk '} = (5.16)

@; = Vu(zo)(-) in measure on Q; (5.17)

H N (Ja, N Q) — 0 (5.18)

/ le(@,)P da < co . (5.19)
Q1-¢(0)

By step 1 we have that u;; converges in measure to Vu(zg)(:) in @ as j — +oo and for j large

enough it satisfies
1 1
) <C. .
w5l Ji(rs Wi Coe(ui?)) + ps, () do < € (5.20)

Next we fix 7 > 0 such that an( ) CC S and let m,, and f;” be as in (4.6). Then we get

/in(rjajw,:;(-,e(u;;))*p(;j(z)) de/fon(rjcsj]é Wi (g eu)) dy) dz. (5.21)

216 (CE)
We define the sets
Tj T ﬁz
Al = 170, w,’ Ndy > ———
; {x €Q: 1 s, @ k, (s e(uy))dy > o
A? = {3: € Q: dist(z, A}) < r]éj} .
Then arguing as in the proof of Proposition [4.1] we find that
T Tj Bi
AtcA2clzreQ:ri; W7 (y,e(u,’))dy > ———— ». 5.22
’ ’ { o Q2776j(1v) ka( ( kj)) aimn(%)" ( )
(5.22) together with (5.20) and (5.21]) imply that (for j large enough)
c > b S L(AF) = 5%”(/12) (5.23)
7j0; €j

By the coarea formula and the mean value theorem we can find ¢; € (0,nd;) such that setting
A% = {dist(-, A]) < t;} C A3
ﬁ”(A?) > 775]-7-["*1(814?—). (5.24)
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We finally define
0 if A3
aj(x) = { e €4

u?] otherwise in Q.
Recall that, by definition, EJ — 0. With this, as a consequence of | and - we have that
both L"(A?) and H"‘l(aA?) H"1(Jg,) converge to 0 as j — +oc. Hence u; C GSBVP(Q;R™)
and 4; — u,Z’J — 0 in measure on () which comblned with (5.8)) yield @; — Vu(xo)(-) in measure on

Q. It remains to show (5.19). To this aim notice that arguing exactly as in the proof of Proposition
one can find K(n) > 1 such that for every z € @

Bi
c179; le(u;(y))|Pdy < K (5.25)
o Qnéj(x) O‘lmnn
Next from ([5.21)) (with n in place of 2n7) and the monotonicity of f;’ we infer
1 7 7 1 7 = p
5 | S WE G et sy )] do > = Rz (erse; le(it5(y) " dy) da
v | v @t (5.26)

Oé m"’]n / ][ uj )|p dy dx
Qns; (93)

where the last inequality follows from (5.25)) and fact that f7(t) > & m”" t when t < K f} -
Finally, for a fixed 0 < ¢ < 1, arguing exactly as for (4.15]) we get

/ ][Q y))|? dy dz > /Q o le(;(x))|P dz (5.27)

When j is sufficiently large. Eventually gathering together ([5.20) , , and -, we deduce
ith - __CK
Wl Co - croa;myn™

Step 3: In this step show that for a.e. xog € U there exists a sequence (w;) C WhP(Q;R") such

that:
(IVw;|?)  is equi-integrable; (5.28)
i oy~ Vateol Ol =0 (5:30
1 .
h(zo) > lim inf —— (76 W7 (-, ew; (2))dz VieN. 5.31
(o) 2 oo 150 Qlfc(o)f (T] Wi ( e(w]))*p(;J(a:)) v (5:31)

From step 2 we can apply [19, Lemma 5.1] to the sequence @; and get the existence of (w;) C

WhP(Q;R™) that satisfies (5.28)—(5.30). Moreover recalling and the equi-integrability of
(IVw;|?) we have that W,;J (x,e(w;)) is equi-integrable as well, while from the inclusion

By = {e(wy) # e(u)) } < {w; £ u} € {uy # a5} U {a; £ 0},
it follows that £" ({e(wj) # e(uﬁ)}) — 0. Thus, we can apply Lemma.w1th g; =W’ (ﬂc e(w;)),

and E; = {e(wj) # e(u%)}, and deduce that

/ (W) (- e(w))xs,) * ps, (z) dz — 0. (5.32)
Q1-¢(0)
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We also remark that by the definition of F; we have
Wi (o e(w;y)) * ps, = (Wi (o e(w)))x, ) = ps, + (Wi (- e(w)))xe,) = pe,

J

= W/:;(v 6(’[1,;;7])) * Péj + (W/:]](’ G(Wj))XEj) * p(;j

By monotonicity of f; and since f;(t) < a;t we obtain the following estimate

1 .
L (W Celwn) sy (@) d
TJ(SJ Qlic(o) (.7 J k; J )
1 T 5 T4
< [ (e e, @) de e [ (el s, () e
7595 JQi-¢(0) Q1-¢(0)

Passing to the limit as j — +o0 in the above inequality and using (5.7)) and (5.32)) we infer (5.31)).
Step 4: In this step we show that for a.e. zg € U

1 r; .
lim inf —— f; (rjajwkf(.,e(wj)) % s, (3:)) da > ;W (wo, e(u(zo))) Vi€ N.  (5.33)
Jj—+oo Tj(5j Qi1-¢(0) J
We define the following partition
T4 51
le = {,T S Qlfg(())! ’I“jéjij (~,e(wj)) * p(sj (LL') > OT 5 BJ2 = Q1,<(0) \le .

Since f;(t) = a;t when t < 2—7, and (I/V,:JJ(7 e(w]’))XBJ2) *ps; < 2—1 by definition of B} and standard
properties of the convolution, we have
1 . )

— fi (rjéjW,:; (-, e(wy))*ps, (m)) dz > ai/ (W,:; (- e(w;))xp2)*ps, (x) dz. (5.34)

7595 JQi_¢(0) Q1-¢(0) !
As for j large enough there holds E”(B]l) < Crjo; — 0, Lemma implies

/ (W7 (-, e(w;))xp1) * ps,; (x) dz — 0. (5.35)
Q1-¢(0) !

J

Now, taking the liminf as j — 400 in (5.34), and adding the vanishing term in (5.35) to the
right-hand side, we get

1 " . T
liminf — ilrid; W, 7 (-, ) % ps. dx >1 fay w7 (-, ) x ps. () dx .
I fo o BT e @) ez i [ W) 0
(5.36)

From this, applying Lemma with g; = W,;’ (x,e(w;)) we have

lim inf ai/ W7 (-, e(w;)) * ps,; (x) dz > a; lim inf/ Wi, (xo +rjz, e(w;))dz. (5.37)
imtee JQic 17120 JQ1-c(0)

Next we modify w; so that it coincides with Vu(zo)(-) on 0Q1—¢(0) without essentially increasing

the energy. This can be achieved by relying on the following Fundamental Estimate than can

be proved with standard arguments: for given v > 0, there exist C(y) and a sequence (W;) C

WLP(Q1_¢(0); RY) with w; = Vu(xo)(-) in a neighbourhood of dQ1_¢(0) such that

/ Wi, (zo +rjz, e(w;)) dz < (1 + 7)/ Wi, (zo +rjz, e(w;)) do
Q1-¢(0) Q1-¢(0)

+(1+7) / Wi, (zo + rjz, e(u(zo))) da (5.38)
Q1-¢(0)\Q1-¢—~(0)

+ Cllw; = Vul@o) Log, ) T7-
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By (5.30) we know that w; converges to Vu(zo)(-) in LP(Q), moreover from ((W4)|) there holds
/ ( )ij (o + rjz, e(u(wo))) dz < cale(u(xo))|” +1)L"(Q1-¢(0) \ Q1-¢—(0))
Qi1-¢(0

< ca(le(u(zo))|” + 1)ny.
This fact and (5.38) imply that

lim inf/ Wi, (w0 + iz, e(w;)) dz
Q1-¢(0)

j—+oo

(5.39)

> .
T 14y ot 1+~

We now set w;(z) := r;w;((z — x0)/7;), which is admissible for my (uyy (o), Q1—¢)r, (0)) in (2.6).
Hence, by a change of variable in ([5.39) we obtain

1iminf/ Wi, (20 + 32, ¢(®;)) dz — caJe(ulzo))| + 1ny — —1—
Q1-¢(0)

Jj—+oo Jj—+oo rj

lim inf ozi/ Wi, (wo +rjz,e(w;)) dz > lim inf o% / Wi, (z, e(w;)) da
Q1-¢(0) Qu-¢yr; (o)

> lim inf o T (49 utz0): Q=0 (70)) (5.40)
Jj—+oo ’I“j
= (1= QoW (xo, e(u(zo))) -
Gathering together (5.39) and (5.40), with (5.9) we deduce
1-9"

.. Y
hmmfai/ Wi (o + iz, e(w;)) de > ———a; W (xg, e(u(xg))) — C (V—i— > .
iminte [ Wi (ot e de 2SS o eu(an) T

With this, (5.36), and (5.37), we eventually deduce ([5.33)) by arbitrariness of ¢ and ~.
Conclusion: from step 3 and step 4 we deduce the validity of (5.5)) and the proof is concluded. O

Remark 5.2. We observe en passant that Proposition indeed holds also for a sequence of
functionals

Fy(u, A) := i/Afk ({-:ka(-,e(u)) * pk(x)> dz, forue W'P(U), ACU,

provided the functions fj satisfy an estimate of the form

fu(®) > apt A S

for all ¢ € [0, +00), where S is a uniform constant and o = limp_; 400 Q.

Proposition 5.3 (Lower bound: surface contribution). Let (uy) C L°(U;R™) be a sequence that
converges to in measure to u € L°(U;R™). Assume moreover that Fy(ux) < C. Then there holds

lim +inf Fi(ug, A) > S ¢p(v)dH" ™1 VA€ A(U).

k— oo JuﬂA

Proof. Let (uy) and u be as in the statement, so that by Proposition .1l u € GSBDP(U). Let
A € A(U) be fixed. We claim that it suffices to show that for any ¢ € S*~! fixed there holds

. . 13 > n—1
i int P, 4) > 5 [ el (5.41)

with
P d) 1= = [ facllem)é O «pue) de.
JSi={z € Jy: (uT(z) —u (2),6) #0} and pe:=H' ({zre€S:z=1t for t €R}).
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Indeed, assume for the moment (5.41]) holds true. Then ((W4)]) gives
Wi(z, e(ur)) > cile(ur)” = er|((e(ux))E, EIF -

Since f is nondecreasing, the above implies

lim inf Fy (ug, A) > liminf FS (uy,, A) > ﬁ/ pe (v, E) | dH ™ = 5/ e dH™ T,
k=00 JEnA JunA

k——+oo
with @¢: J, — [0, +00] given by
pel{vu(x), &) if x € J§,
or(z) ::{ el (vul@), 6)

0 otherwise .

Now let (&) C S"~! be a dense subset, in this way by [6, Proposition 1.16] it holds

liminf Fr(ug, A) > sup g, dH" .
h

k—4o00 JuﬁA

On the other hand by [2I) Lemma 4.5] we have

$p(v) = sup pel(v, &)l (5.42)
gesn—1

which in turn implies ¢, (v, (x)) = supy, e, (¢) and the thesis follows. It remains to show (5.41))
for which we will argue by slicing. As the set S is convex for ¢ € (0,1) fixed we can find r = (4, S)
such that the cylinder

CE% = Re(@1(0) x (= ped /2, ped/2)) CC S,
where Re € SO(n) is such that Ree, = § (see . Let now mg := min__zrs p(z) and
rete
Cg,i(x) = skCg’é +z.
Next for any # € A we denote by #¢ the projection of x onto I1¢ := {y € R": (y,£) = 0} and
Ig = {TGRZ ,’fig—l—TfEA}.

Then we have

R )z o [ (525 [ Hetmtene o as) an

Ek ep

i C1M¢ p ) n—1¢4
o o [ (GE o e g )it

where the last equality follows by Fubini’s Theorem. Noticing that f is concave and using the
change of variable z = Z¢ + s{ + g,z with

Y

(5.43)

J )
z/eQ’f ::RE(Q/X {0}) and s€ (T H§25k,T+M§2€k>7

together with Jensen’s inequality yield
cm
(s leweegras) 2 f
€k Cgp(Le+Te) Q
Mg‘ssk

~ T+—3 0 ) ,

Mg‘SEk
2

([T
F([ v Melustic +aurs’ + 5669 ds ) a

P
ds) dz’

(5.44)
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with f(t) == f(2281) and wep(ie, 2, s) := (ug(@e + exrz’ + 5€),€). Observe now that applying
Corollary and Fubini’s Theorem to the functions we i (Z¢, 2/, s) we have that, for a.e. (Z¢,2’) €
IT¢ x Q¢ the functions s — we x(Z¢, 2/, 5) converge to the section u®e(s) == (u(Z¢+s),€) in measure
on I.. Further, gathering together and , and exchanging the order of integration it

holds
1 S I
)z [ (2 H([n w epa)e)aae e, 6a)
I3 3 T —%

where the shortcut wfék’z (s) denotes the function s — we (&¢, 2’, s) for fixed (Z¢, 2"). By Theorem

B3] we get

M555k
1 ~ T+—3 - ’
. . L s Lgy2 P N
lklglig - /Ig f(/T_ s \wg’k (s)] ds> dr > Bope#(J, ac N 1Ie). (5.46)
Combining (5.45|) with (5.46)) we finally obtain
lim inf F (ug, A) > 5B/ pe#t(J oe N Ie) dH" ™ (de) = 6ﬁ/ pre (v, )| dH™ L.
k—+o0 T1é JinA

Eventually by the arbitrariness of § we deduce (5.41)). ]

With the help of Propositions [5.1] and we can now prove the following lower bound.

Proposition 5.4 (Lower-bound). Let Fj, and F be as in and respectively. Let (uy) C
LY(U;R™) and u be such that uy converges to u in measure. Then there exists a subsequence, not
relabelled, such that

lim inf Fy(ug) > F(u).

k—+4o00

Proof. The result can be obtained exactly as in [23] Proposition 5.4]. O

6. UPPER BOUND

In this section we prove the upper bound.

Proposition 6.1. Let Fj, and F be as in (2.5) and (2.10) respectively. Then for each u €
LY(U;R™) there is (u) C L°(U;R™) that converges in measure to u and such that

lim sup Fy(ug) < F(u).
k— o0

Proof. Without loss of generality we assume F'(u) < C so that u € GSBDP(U). Moreover, since
W has p-growth from above, by Theorem We can assume that u € ng;,(U; R™) and that J, is
an essentially closed connected (n — 1)-rectifiable set compactly contained in U, since the above
subspace is dense in energy. We fix U’ € A with U CcC U’ and consider an extension of u on U’,
not relabelled, such that u € W55 (U’;R™). Then by Theorem and Remark we can find

(vg) € WEP(U’\ J,; R™) such that vy, converges strongly to u in LP(U’\ J,; R"™) and

klim Ep(vk, U\ J,) = E(w,U \ J,) = | W(z,e(u))dz. (6.1)
— 00 U’
where the last equality clearly holds as J,, is a null set. For every h > 0 we set

(Ju)n :={x € U:dg(z,Jy,) < h},

so that for h small enough (J,), CC U. Fix now 0 < §; << ¢; and take ¢ € C°(U’) a cutoff
between (J,)s, and (J,)2s,. Next define (ux) C WHP(U’;R") as

ug = vi(1l — px) = u  strongly in LP(U"\ J,;R"),
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and in particular uy — u in measure on U’. Then using that uy = v in U’ \ (Jy)2s, we have

Fr(u) < Fi(ve, U\ 7o )+5%. (6.2)

Now invoking [20, Theorem 3.7] we have

lim Z{(Jw)2siber) :/ bp(vy) AL (6.3)
Ju

k— o0 Ek

Fix & > a. With (2.2)), the change of variable y = x — €x 2, Fubini’s theorem, and the change of
variable & = = — £,z we have

Fr(op, U\ Ju) < d/U\J Wiy, e(vn))pr(a — y) dy de
= / i Wk xfskz e(vi(z — eg- )))p(z) dz dz

:a/ / Wi (z — epz, e(vg(z — ep°))) dadz

IN

g Wi (z, e(vg)) dz = Ey (v, U’ \ Ju).

Hence passing to the limit in & in the above inequality and using (6.1) we get
limsup Fy, (v, U\ Ju) < &B(u, U\ J,) =a& | W(z,e(u))dr, (6.4)
k—o00 U’

for all & > «. Finally gathering together (6.2 — we obtain

lim sup Fj, (ug) <a/ Wz, e(u dx—i—ﬁ/ Gp(vy) dH™™ L

k—oc0

Eventually by the arbitrariness of U’ and & we conclude. ]

Remark 6.2. If a lower order term [,; 1(|u|) dz, is added to the energy, the density argument above
can still be applied if ¢ complies with the assumptions of Theorem [3.4 Also observe that within
the same assumptions, [;; 1(|Jux|)dz is equiintegrable whenever (ug) is converging in LP. For uy
and w as in the proof above, this entails the convergence [ ¢(|Jug|) dz — [, ¥(|ul) dz.

We are now in a position to prove Theorem [2:1}

Proof of Theorem[2.1 Theorem [3 - provides a bubsequence for which (2.9) holds. Point (i) follows
by combining Prop031t10ns H and [6.1], while (i¢) is a consequence of Proposition O

7. STOCHASTIC HOMOGENISATION

In this section we are concerned with the I'-convergence analysis of the functionals Fj, when W
are random integrands of type

Y

<0 M) ’

Ok

with w belonging to the sample space €2 of a complete probability space (2, T, P) and d; \, 0. In
order to do that we first give some definitions.

Wk(wayaM) = W(wa

Definition 7.1 (Group of P-preserving transformations). A group of P-preserving transformations
on (2,7, P) is a family (7,).ez» of mappings 7,: Q — Q satisfying the following:

(a) (measurability) 7, is T-measurable for every z € Z";

(b) (invariance) P(7.(F)) = P(E), for every E € T and every z € Z";
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(¢) (group property) 79 = idg and 7,4,» = 7, o T,» for every z, 2’ € Z".
If in addition, every (7),ez»-invariant set (that is, every E € T with 7,(E) = E for every z € Z")
has probability 0 or 1, then (7,).eczn» is called ergodic.

Let a := (a1,...,an), b := (b1,...,by) € Z™ with a; < b; for all i € {1,...,n}; we define the
n-dimensional interval

[a,b) :={x€Z": a; <wm;<bfori=1,...,n}
and we set
Z, =A{la,b): a,b € Z", a; < b fori=1,...,n}.
Definition 7.2 (Subadditive process). A discrete subadditive process with respect to a group

(12)2ezn of P-preserving transformations on (2, 7, P) is a function p: Q X Z,, — R satisfying the
following:

(a) (measurability) for every A € Z,, the function w — p(w, A) is T-measurable;

(b) (covariance) for every w € Q, A € Z,,, and z € Z" we have u(w, A + z) = p(r.(w), 4);

(¢) (subadditivity) for every A € Z,, and for every finite family (A;)ic; C Z, of pairwise
disjoint sets such that A = U;c1A;, we have

p(w, A) < Zu(w,Ai) for every w € Q;
iel
(d) (boundedness) there exists ¢ > 0 such that 0 < p(w, A) < c¢L™(A) for every w € 2 and
Aecl,.

Definition 7.3 (Stationarity). Let (7,).cz» be a group of P-preserving transformations on (2, 7, P).
We say that W: Q x R™ x M"*"™ — [0, +00) is stationary with respect to (7 ).ezn if
W(w,x + 2z, M) = W(r,(w),z, M)
for every w € Q, x € R", z € Z" and M € M"*"™. Moreover we say that a stationary random
integrand W is ergodic if (7,).ezn is ergodic.
For our purposes we consider random integrands W: Q x R™ x M"*"™ — [0, +00) satisfying the
following assumptions:

(wl) Wis (T ® B" ® B"*™)-measurable;
(w2) W(w,-,-) € W for every w € Q;
(w3) the map M — W (w,z, M) is lower semicontinuous for every w € Q and every = € R".

Let W be a random integrand satisfying |(w1)i(w3)| and 0 \, 0. We consider the family of
functionals Fy(w): LO(U;R™) — [0, +oc] defined as

Fip(w)(u) := 1/Uf<{—:kW(w, 6—'}6,6(11)> * pk(:r)) dx , (7.1)

€k

if u e WhP(U;R™), and extended to +o0o otherwise. Let also for w €  and A € A
m,(up, A) := inf {/ W(w,z,e(v))de: v € WHP(A;R™), v = uys near 8A} . (7.2)
A

We now state the main theorem of this section.

Theorem 7.4 (Stochastic homogenisation). Let W be a random integrand satisfying (w3)|
Assume moreover W is stationary with respect to a group (7,).ezn of P-preserving transformations
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on (Q,T,P). For every w € Q let Fi(w) be as in (7.1) and my, be as in (7.2)). Then there erists
Q e T, with P(Q) =1 such that for every w € Q', x € R™, M € M"*™ the limit

lim m,, (qu Qt(taj)) — lim m,, (qu Qt(o))
t—+o0 tm t—+o00 tn

=: Whom (w, M) (7.3)
exists and 1is independent of x. The function Whom: Q@ x M™*" — [0,+00) is (T ® B™*")-

measurable. Moreover, for every w € ' the functionals Fy(w) T-converge in measure to the
functional Fyom(w): LY(U;R™) — [0, +00] given by

a/ Whom(w,e(u))dz+ﬁ/ ¢p(vy)dH"™t  ifu € GSBDP(U),
= U Ju

+00 otherwise.

Fhom(w)(u)
If, in addition, W is ergodic, then Wyom is independent of w and

t——+oo tT

. 1
Whom(M) = lim —/ m,, (upr, Q:(0)) dP(w), (7.4)
Q
and thus Fyom 18 deterministic.

The proof of Theorem is quite standard and can be achieved as in [I5] (see also [22]). For
this reason here we only detail the main adaptations.

Proposition 7.5. Let W be a stationary random integrand satisfying and let m,, be
as in (7.2). Then for every M € M"™*™ the function uprr: Q X I, — R given by up(w, A) :=
m,, (upr, A) defines a subadditive process on (0, T, P). Moreover

0< pnr(w, A) < eo|[M + MTP + 1)L (A), (7.5)
for P-a.e. w € Q and for every A € L,,.

Proof. Let M € M"™*"™ be fixed. Then we need to show that i, satisfies properties The
proof of froperties|(b)H(d)| and of (7.5)) are standard and therefore we omit it here. It then remains
to prove [(a)] Let A € Z, be fixed. For N € N let

W (w,z, M) ::g Iivlﬂlf {W(w,z,8) + NI§ — M|}
e nxn

be the Moreau-Yosida regularisation of M +— W (w,x, M) which is N-Lipschitz. Let also
PN (@)s WHP(4) 5 [0, +00),
be defined as
FN(w)(u) == /AWN(w,x, e(u))dz.

Arguing as in the proof of [22, Lemma C.1.] it can be shown that (w,u) — FN(w)(u) is T ®
B(W'P(A))-measurable. By WN 2 W pointwise, and in particular FV (w)(u) converges
to [, W(w,z,e(u))dz pointwise. As a consequence (w,u) — [, W(w,z,e(u))dz is also T ®
B(WP(A))-measurable. Now we note that F(w)(ups) < +oo. This together with and [22]
Lemma C.2.] imply that w — par(upr, A) is T-measurable. O

The proof of Theorem follows by Proposition and the Subadditive Ergodic Theorem [,
Theorem 2.4] arguing as in [15].
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APPENDIX A. A REMARK ON THE NON-LOCAL APPROXIMATION OF FREE-DISCONTINUITY
PROBLEMS IN GSBV

This Appendix is devoted to the statement of a I'-convergence Theorem for non-local functionals
depending on the full deformation gradient Vu. The result we are going to state has actually been
proved in [II, Theorem 3.2], under an additional technical assumption, the so called stable ~-
convergence of the functionals

~ / Wi(z,Vu)dxr  if u € WHP(A;R™),
(u,A) == A
+00

otherwise .

(A1)

This assumption, stated in [I1] Definition 7.2] is stronger than simple I'-convergence, and introduces
a limitation to the class of functionals to which the theorem applies, although relevant examples
fulfilling this condition can be readily provided (see [I1, Examples 7.3-7.5]). Actually, the inspection
of the proof of Proposition 5.1 which can be clearly adapted to the GSBV setting, shows that it is
not needed. For the reader’s convenience we give a precise statement of the result, after recalling
the structural assumptions on the non-local approximation energies under which it is formulated.

The functions Wy, are assumed to satisfy [(1//1)] together with
(W4') for every x € R™ and every M € M™*™

a|M[P < Wi(z, M) < c2(|M[P +1).
We will denote with E the I-limit with respect to the convergence in measure of the functionals
Ey in (A.1), given by (see [I3] Theorem 20.4])
_ Wz, Vu)dz if ue WhP(A;R),
Flu, 4) = /A (x,Vu)dz ifu ( )
+00 otherwise .
where, for every x € u and every M € M"*"
W (z, M) = W' (z, M) = W"(z, M). (A.2)
Above, W/ and W are defined in (2.7), and (2.8)), respectively, provided that E} is replaced by

E).. We then consider the non-local functionals

1 ' )
ﬁk(u) = a/Ufk (Eka(-,VU) * pk(x)) dz  if ue Whe(U;R"),

+00 otherwise .

(A.3)

where pj, are as in Section while fi: [0,4+00) — [0, +00) are concave and satisfy
at ANby < fk(t) < by (A4)

for suitable uniform constants a1, b1, bo > 0. We then have the following theorem.
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Theorem A.1. Assume|(W1), |(W2), and|W4')| Consider a sequence of concave functions fi

as in (A.4)) and convolution kernels py as in Section . Let the functionals Fy, be given by (A.3).
Finally, assume that

agt Aby < fr(t) < by with  lim ax — f.(0) =0. (A.5)

k— 400

Then ﬁk I'-converge, with respect to the convergence in measure, to a functional of the form

a/UW(:c,VU)der/J (@, [u],v,) dH" !

u

where W is given by (A.2)), « = liminf f(0), and ¢ is a suitable Carathéodory integrand.

Proof. By [I1], Theorem 3.1] we have that the T'-limit of F}, is an integral functional of the form

/UWOO(QJ, Vu)dx + /I o(x, [u], vy) dH" L.

Ju

For W' and W” as in (2.7), and (2.8), respectively, one has only to show that W, < aW” and
Wy > aW’. The first inequality is actually already proved in [I1, Proposition 7.1]. As for the
second, notice under assumption and taking into account Remark it can be recovered by
exactly following the argument of Proposition[5.1] provided one is willing to replace each occurrence
of e(u) with Vu. O
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