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Abstract
We show that the algebra of cylinder functions in the Wasserstein Sobolev space
H1,q(Pp(X ,d), Wp,d,m) generated by a finite and positive Borel measure m on the (p,d)-
Wasserstein space (Pp(X ,d), Wp,d) on a complete and separable metric space (X ,d) is
dense in energy. As an application, we prove that, in case the underlying metric space is a
separable Banach space B, then the Wasserstein Sobolev space is reflexive (resp. uniformly
convex) if B is reflexive (resp. if the dual of B is uniformly convex). Finally, we also pro-
vide sufficient conditions for the validity of Clarkson’s type inequalities in the Wasserstein
Sobolev space.
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1 Introduction

The study of Sobolev spaces on metric measure spaces is a well established area of interest
in metric geometry, we refer to [18, 19, 22, 25] for a general treatment of the subject. It is
thus important to provide examples (as concrete as possible) of such Sobolev spaces built
on relevant metric spaces; the study carried out in [12] goes precisely in this direction: the
authors analyze the properties of the 2-Sobolev space on the 2-Wasserstein space [2, 24, 29,
30] of probability measures on a separable Hilbert space H.

Let us also mention that, besides being interesting from a purely theoretical point of
view, the study of Sobolev spaces on spaces of probability measures has also important
applications to functional analysis over spaces of probability measures. Indeed, problems
such as evolutionary games or Kolmogorov equations in nonlinear filtering have been treated
so far by classical notions of solutions, lacking weak formulations. In this regard, providing
a functional analytic framework in which to set those problems may be very relevant. We
refer to the introduction of [12] for a more detailed list of applications and references.

In this work we generalize the results in [12] considering a general complete and separable
metric space (X ,d), instead of a Hilbert space, and we treat general exponents p, q both in
the order of the Wasserstein distance and in the Sobolev space (instead of p = q = 2).
Before entering into the details of the present work, let us briefly recall the definition of
metric Sobolev space and the results of [12] that are the starting point for our analysis.

Among the possible approaches to Sobolev spaces on metric measure spaces (for example
the Newtonian one [5, 26]), here we focus on the approach, strictly related to the ideas of
Cheeger [7], that is contained in the work of Ambrosio, Gigli and Savaré [4] where they
define the following concept of q-relaxed (q ∈ (1,+∞)) gradient: given a metric measure
space (X ,d,m), we say that G ∈ Lq(X ,m) is a q-relaxed gradient of f ∈ L0(X ,m) if there
exist a sequence ( fn)n ⊂ Lipb(X ,d) and G̃ ∈ Lq(X ,m) such that

(1) fn → f in L0(X ,m) and lipd f ⇀G̃ in Lq(X ,m),
(2) G̃ ≤ G m-a.e. in X ,

where, for f ∈ Lipb(X ,d), the asymptotic Lipschitz constant of f is defined as

lipd f (x): = lim sup
y,z→x, y �=z

| f (y) − f (z)|
d(y, z)

, x ∈ X . (1.1)

The q-Cheeger energy of f ∈ L0(X ,m) is then defined as

CEq( f ): =
∫

X
|D f |q�,qdm,

where |D f |�,q is the minimal relaxed gradient of f i.e. the element of minimal norm in
the set of relaxed gradients of f . It is well known that the q-Cheeger energy can be also
characterized as the relaxation of the so called pre-q-Cheeger energy

pCEq( f ): =
∫

X
(lipd f )qdm, f ∈ Lipb(X ,d),

in the sense that

CEq( f ) = inf

{
lim inf
n→+∞ pCEq( fn) : ( fn)n ⊂ Lipb(X ,d), fn → f in L0(X ,m)

}
. (1.2)
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The Sobolev space á la Cheeger H1,q(X ,d,m) is thus the vector space of functions f ∈
Lq(X ,m) with finite Cheeger energy endowed with the norm

| f |q
H1,q (X ,d,m)

: =
∫

X
| f |qdm + CEq( f )

which makes it a Banach space. A remarkable result [4] is the so called strong approxi-
mation property by Lipschitz functions: if f ∈ H1,q(X ,d,m) then there exists a sequence
( fn)n ⊂ Lipb(X ,d) such that

fn → f , lipd fn → |D f |�,q in Lq(X ,m). (1.3)

In [12] the authors provide a general criterion for the validity of the same property where,
instead of the whole Lipb(X ,d), the approximating sequence can be taken from a suitable
subalgebra A ⊂ Lipb(X ,d) satisfying

1 ∈ A , for every x0, x1 ∈ X there exists f ∈ A : f (x0) �= f (x1),

where 1 : X → R is the constant function equal to 1. This is equivalent to say that A is
dense in energy in the Sobolev space. In particular (see Theorem 2.9 below or [12, Theorem
2.12] for the proof) it is proven that an equivalent condition is that for every y ∈ X it holds

|Ddy |�,q,A ≤ 1 m-a.e. in X , (1.4)

where dy(x): = d(x, y) and |D · |�,q,A is a suitably A -adapted notion of minimal relaxed
gradient (cf. Definition 2.1). The second part of [12] is devoted to apply the criterion in (1.4)
to the L2-Kantorovich-Rubinstein-Wasserstein (in brief, Wasserstein) space on a separable
Hilbert space H, denoted by (P2(H), W2), with the algebra C

(P(H),C1
b(H)

)
of cylinder

functions (cf. Definition 4.1), which is the algebra of functions of the form

F(μ) = ψ

(∫
H

φ1dμ, . . . ,

∫
H

φNdμ

)
, μ ∈ P(H), (1.5)

whereψ ∈ C1
b(R

N ) and φn ∈ C1
b(H) for n = 1, . . . , N ∈ N. The density ofC

(P(H),C1
b(H)

)
in H1,2(P2(H), W2,m) (here m is a finite and positive Borel measure on P2(H)) is particu-
larly interesting since cylinder functions come already with some structure; in particular to
any function F as in (1.5) we can associate a notion of gradient given by

DF(μ, x): =
N∑

n=1

∂nψ

(∫
H

φ1dμ, . . . ,

∫
H

φNdμ

)
∇φn(x), (μ, x) ∈ P(H) × H. (1.6)

It is proven in [12, Proposition 4.9] that, for every F ∈ C
(P(H),C1

b(H)
)
, we have

pCE2(F) =
∫
P2(H)×H

|DF(μ, x)|2dμ(x)dm(μ), (1.7)

so that the pre-Cheeger energy satisfies the parallelogram identity (cf. [12, Subsection 4.2])
and thus forces the Cheeger energy to be a quadratic form. This amounts to say that the
Sobolev space H1,2(P2(H), W2,m) is a Hilbert space, a crucial property in the theory of
metric Sobolev spaces [4, 14, 21, 27, 28].
The aim of this work is, following the approach of [12], to study the properties of the
more general class of Wasserstein Sobolev spaces H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m) (p, q ∈
(1,+∞)), where (B, ‖·‖) is a separableBanach space, (Pp(B,d‖·‖), Wp,d‖·‖) is the (p,d‖·‖)-
Wasserstein space on it and m is positive and finite Borel measure on Pp(B,d‖·‖). First of
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all, in Proposition 4.7 we provide a generalization of the representation in (1.7): if F is a
cylinder function in P(B) as in (1.5), then

pCEq(F) =
∫
Pp(B,d‖·‖)

(∫
B

‖DF(μ, x)‖p′
∗ dμ(x)

)q/p′

dm(μ), (1.8)

where p′ = p/(p − 1) is the conjugate exponent of p, ‖ · ‖∗ is the dual norm in B
∗ and

DF is adapted from (1.6) in the obvious way. Notice that, differently from the representation
(1.7), the right hand side of (1.8) doesn’t coincide with the q-th power of a Lq norm on a
suitable space but it is rather the q-th power of the norm in the Lq -direct integral of a family
of Banach spaces (see Sect. 5 for more details).

Approaching first the case in which B = R
d and ‖ · ‖ is a sufficiently regular norm on

R
d (cf.(3.3)), we are able to prove the density of C

(P(Rd),C1
b(R

d)
)
in the corresponding

Sobolev space (first part of Theorem 4.15) adapting the techniques of [12] (in particular
using (1.4) and the representation in (1.8)) to this more general situation: this requires more
sophisticated results (which may be interesting by themselves) in terms of the properties of
Kantorovich potentials which are no longer convex if p �= 2 (see Sect. 3.1).

The density of cylinder functions is then extended to the Sobolev-Wasserstien space corre-
sponding to an arbitrary norm on Rd by an approximation procedure and then to an arbitrary
separable Banach space (B, ‖ · ‖) via a standard embedding technique in �∞(N) and finite
dimensional projections (second part of Theorem 4.15 and Corollary 4.19, respectively). The
precise statement of the result is the following.

Theorem 1.1 Let (B, ‖·‖)be a separable Banach space; then the algebra of cylinder functions
C
(P(B), C1

b(B)
)

is dense in q-energy in the Sobolev space H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m).

Let us also mention that we are able to extend the density result (Theorem 4.18) to an
arbitrary complete and separable metric space (X ,d) where, instead of using C1

b functions
(which of course are not available) to generate cylinder functions on P(X), we consider a
sequence (φk)k ⊂ Lipb(X ,d) such that

d(x, y) = sup
k

|φk(x) − φk(y)|, for every x, y ∈ X ,

and we use the smallest unital algebra containing (φk)k .
In the same spirit of the Hilbertianity result in [12], we are led to study which properties

of the Banach space B are transferred to the Sobolev space, thanks to the density of cylinder
functions provided by the above Theorem 1.1. This is the case of uniform convexity and the
validity of some Clarkson’s type inequalities. The argument we adopt for such properties is
similar: since the pre-Cheeger energy of a cylinder function as in (1.8) corresponds to the
q-th power of a norm in a suitable Banach space, it is sufficient to prove that such norm
enjoys the uniform convexity (resp. the validity of Clarkson’s type inequalities) to obtain
that the pre-Cheeger satisfies the same property; thanks to the density of cylinder functions
such a property is extended to the Cheeger energy and thus to the whole Sobolev norm
(Theorems 5.4 and 5.10). For what concerns reflexivity the argument is somehow standard:
again using the representation of the pre-Cheeger energy in (1.8), we can isometrically
embed the Sobolev space into a reflexive Banach space (Theorem 5.2). The precise statement
regarding reflexivity and uniform convexity is reported below (we refer to Sect. 5.1 for the
results related to Clarkson’s type inequalities).

Theorem 1.2 Let (B, ‖ · ‖) be a separable Banach space. If B is reflexive (resp. its dual
is uniformly convex), then the Sobolev space H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m) is reflexive
(resp. uniformly convex).

123



The general class of Wasserstein Sobolev spaces: density of cylinder... Page 5 of 41   212 

Plan of the paper In Sect. 2 we summarize the construction of metric Sobolev spaces
depending on a subalgebra of Lipschitz and bounded functionsA and we report a few results
of [12] concerning the density in energy ofA . The beginning of Sect. 3 contains the general
framework for Wasserstein spaces we are going to work with and Sect. 3.1 presents some
compactness results for Kantorovich potentials in a specific geometric situation: these results
combine the ideas of [11, 13] to provide useful Lipschitz estimates on the potentials. Section 4
contains the core of our density results: after stating the definition of cylinder functions in the
framework of a metric space (X ,d), in Sect. 4.1, we study the asymptotic Lipschitz constant
of a cylinder function (Proposition 4.7); in Sect. 4.2 we prove the density result when the base
space is Rd endowed with an arbitrary norm (Theorem 4.15); in Sect. 4.3 we generalize this
result to a complete and separable metric space (X ,d) (Theorem 4.18). Finally, in Sect. 5 we
prove that relevant properties of the underlying Banach space pass to the Sobolev space: first
we treat reflexivity and uniform convexity (Theorems 5.2, 5.4) and then we study Clarkson’s
type inequalities in Sect. 5.1 (see in particular Theorem 5.10).

2 Metric Sobolev spaces and density of subalgebras

In this section we describe the general metric setting and we list a few results of [12] which
are the starting point of our analysis. For this whole section, we fix a separable metric space
(X ,d), a finite and positive Borel measurem on (X ,d) (the triple (X ,d,m) is called a Polish
metric-measure space), an exponent q ∈ (1,+∞) and a unital and separating subalgebra
A ⊂ Lipb(X ,d) i.e. satisfying

1 ∈ A , for every x0, x1 ∈ X there exists f ∈ A : f (x0) �= f (x1), (2.1)

where Lipb(X ,d) is the space of real valued and bounded d-Lipschitz functions on X and
1 : X → R is the constant function equal to 1.
If (Y ,dY ) is another complete and separablemetric space and f : X → Y is a Borel function,
we define the finite (with the same total mass of m) and Borel measure f�m on (Y ,dY ) as

f�m(B) = m( f −1(B)) for every Borel set B ⊂ Y . (2.2)

We define the d-asymptotic Lipschitz constant of f ∈ Lipb(X ,d) as

lipd f (x): = lim
r↓0 Lip( f ,Bd(x, r),d) = lim sup

y,z→x, y �=z

| f (y) − f (z)|
d(y, z)

, x ∈ X , (2.3)

where Bd(x, r) ⊂ X denotes the d-open ball centered at x with radius r > 0 and, for A ⊂ X ,
the quantity Lip( f , A,d) is defined as

Lip( f , A,d): = sup
x,y∈A, x �=y

| f (x) − f (y)|
d(x, y)

.

We denote by L0(X ,m) the space of real valued and Borel measurable functions on X ,
identified up to equality m-a.e. and, analogously, by Lr (X ,m) the usual Lebesgue spaces of
real valued, r -summable and Borel measurable functions, identified up to equality m-a.e.,
r ∈ [1,+∞].We endow L0(X ,m)with the topology of the convergence inm-measure, while
Lr (X ,m) is endowedwith the usual norm, r ∈ [1,+∞]. When dealing with vector-valued or
extended real-valued functions we also specify the codomain in the notation for Lr -spaces,
i.e. we write Lr (X , μ; Y ), where Y is a (subset of a) Banach space. The following is the
definition of relaxed gradient we adopt [3, 4, 25] (see also [5, 26] for a different approach).
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Definition 2.1 ((q,A )-relaxed gradient) We say that G ∈ Lq(X ,m) is a (q,A )-relaxed
gradient of f ∈ L0(X ,m) if there exist a sequence ( fn)n∈N ∈ A and G̃ ∈ Lq(X ,m) such
that:

(1) fn → f in m-measure and lipd fn → G̃ weakly in Lq(X ,m);
(2) G̃ ≤ G m-a.e. in X .

The next result is a simple but important property of relaxed gradients [3, 4, 25].

Theorem 2.2 If f ∈ L0(X ,m) has a (q,A )-relaxed gradient then there exists a unique
element of minimal Lq(X ,m)-norm in

S( f ): =
{

G ∈ Lq(X ,m) : G is a (q,A )-relaxed gradient of f
}
.

Thanks to Theorem 2.2 the next definition is well posed.

Definition 2.3 (Minimal relaxed gradient) Let f ∈ L0(X ,m) be such that f has a (q,A )-
relaxed gradient. Its relaxed gradient with minimal Lq(X ,m)-norm is denoted by |D f |�,q,A

and called minimal (q,A )-relaxed gradient of f .

Definition 2.4 (Cheeger energy and Sobolev space) We call D1,q(X ,d,m;A ) the set of
functions in L0(X ,m) with a (q,A )-relaxed gradient and we define the (q,A )-Cheeger
energy as

CEq,A ( f ): =
∫

X
|D f |q�,q,A (x) dm(x) for every f ∈ D1,q(X ,d,m;A ), (2.4)

with CEq,A ( f ): = +∞ if f ∈ L0(X ,m)\D1,q(X ,d,m;A ). The Sobolev space
H1,q(X ,d,m;A ) is defined as Lq(X ,m) ∩ D1,q(X ,d,m;A ). The Sobolev norm of
f ∈ H1,q(X ,d,m;A ) is defined as

‖ f ‖q
H1,q (X ,d,m;A )

: = ‖ f ‖q
Lq (X ,m) + CEq,A ( f ).

In the next theorem we collect a few properties of relaxed gradients and Sobolev spaces
that will be useful (for a more comprehensive list and references to the proofs, see [12]).

Theorem 2.5 (1) The set

S: =
{
( f , G) ∈ L0(X ,m) × Lq(X ,m) : G is a (q,A ) -relaxed gradient of f

}

is convex and it is closed with respect to to the product topology of the convergence in m-
measure and the weak convergence in Lq(X ,m). In particular, the restriction Sr : = S ∩
Lr (X ,m)× Lq(X ,m) is weakly closed in Lr (X ,m)× Lq(X ,m) for every r ∈ (1,+∞).

(2) (Strong approximation) If f ∈ D1,q(X ,d,m;A ) takes values in a closed (possibly
unbounded) interval I ⊂ R then there exists a sequence fn ∈ A with values in I such
that

fn → f m -a.e. in X , lipd fn → |D f |�,q,A strongly in Lq(X ,m). (2.5)

If moreover f ∈ Lr (X ,m) for some r ∈ [1,+∞) then we can also find a sequence as in
(2.5) converging strongly to f in Lr (X ,m).

(3) (Pointwise minimality) If G is a (q,A )-relaxed gradient of f ∈ L0(X ,m) then
|D f |�,q,A ≤ G m-a.e. in X.
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(4) (Truncations) If f j ∈ D1,q(X ,d,m;A ), j = 1, · · · , J , then also the functions f+: =
max( f1, · · · , f J ) and f−: = min( f1, · · · , f J ) have (q,A )-relaxed gradient and

|D f+|�,q,A = |D f j |�,q,A m -a.e. on {x ∈ X : f+ = f j }, (2.6)

|D f−|�,q,A = |D f j |�,q,A m -a.e. on {x ∈ X : f− = f j }. (2.7)

(5) (Sobolev norm) (H1,q(X ,d,m;A ), ‖ · ‖H1,q (X ,d,m;A )) is a Banach space.

Notice that, if A = Lipb(X ,d), we will simply use the notations |D · |�,q , D1,q(X ,d,m),
CEq(·), H1,q(X ,d,m) and ‖ · ‖H1,q (X ,d,m) omitting the dependence on A .

Remark 2.6 (Pre-Cheeger energy and its relaxation) It is well known (see e.g. [25, Corollary
3.1.7]) that for every r ∈ {0} ∪ [1,+∞) it holds that

CEq,A ( f ) = inf

{
lim inf
n→+∞ pCEq( fn) : fn ∈ A , fn → f in Lr (X ,m)

}
, f ∈ Lr (X ,m),

(2.8)

where the pre-Cheeger energy pCEq : Lipb(X ,d) → [0,+∞) is defined as

pCEq( f ): =
∫

X
(lipd f )q dm, f ∈ Lipb(X ,d). (2.9)

The main property we are interested in investigating is the density of the subalgebraA in
the metric Sobolev space.

Definition 2.7 (Density in energy of a subalgebra of Lipschitz functions) We say that A ⊂
Lipb(X ,d) is dense in q-energy in D1,q(X ,d,m) if for every f ∈ D1,q(X ,d,m) there exists
a sequence ( fn)n∈N satisfying

fn ∈ A , fn → f m -a.e. in X , lipd fn → |D f |�,q strongly in Lq(X ,m). (2.10)

Remark 2.8 It is not difficult to see that Definition 2.7 is equivalent to the equality
D1,q(X ,d,m;A ) = D1,q(X ,d,m) with equal minimal relaxed gradients, the equality of
the Sobolev spaces H1,q(X ,d,m;A ) = H1,q(X ,d,m) with equal norms and the following
strong approximation property: for every f ∈ H1,q(X ,d,m) there exists a sequence ( fn)n∈N
satisfying

fn ∈ A , fn → f in Lq(X ,m), lipd fn → |D f |�,q strongly in Lq(X ,m). (2.11)

The following characterization of the density of a subalgebra of Lipschitz and bounded
functions is proven in [12].

Theorem 2.9 Let Y ⊂ X be a dense subset. Then

for every y ∈ Y it holds dy ∈ D1,q(X ,d,m;A ),
∣∣Ddy

∣∣
�,q,A

≤ 1 (2.12)

if and only if A is dense in q-energy according to Definition 2.7, where the function dy :
X → [0,+∞) is defined as

dy(x): = d(x, y), x ∈ X .
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3 Wasserstein spaces

We devote the first part of this section to a few general properties of Wasserstein spaces (see
[2, 24, 29, 30] for a general review of Optimal Transport). The second part of the section
will treat properties of Kantorovich potentials in particular geometric situations. We fix an
exponent p ∈ (1,+∞) (recall that p′: = p/(p − 1)) and we remark that all vector spaces
(and thus all Banach spaces) are real vector spaces.
If (X ,d) is a metric space, we denote by P(X) the space of Borel probability measures on
X and by Pp(X ,d) the set

Pp(X ,d): =
{
μ ∈ P(X) :

∫
X
dp(x, x0)dμ(x) < +∞ for some (and hence for all) x0 ∈ X

}
.

Given μ, ν ∈ P(X) the set of transport plans between μ and ν is denoted by 
(μ, ν) and
defined as


(μ, ν) := {
γ ∈ P(X × X) : π1

� γ = μ, π2
� γ = ν

}
,

where π i (x1, x2) = xi for every (x1, x2) ∈ X × X and � denotes the push forward operator
as in (2.2). The (p,d)-Wasserstein distance Wp,d between μ, ν ∈ Pp(X ,d) is defined as

W p
p,d(μ, ν): = inf

{∫
X×X

dp dγ : γ ∈ 
(μ, ν)

}
.

It is well known that the infimum above is attained in a non-empty and convex set

o,p,d(μ, ν) ⊂ 
(μ, ν) and that the (p,d)-Wasserstein space (Pp(X ,d), Wp,d) is com-
plete and separable, if (X ,d) is complete and separable. The Kantorovich duality for the
Wasserstein distance states that

1

p
W p

p,d(μ, ν) = sup

{∫
X

ϕ dμ +
∫

X
ψ dν : (ϕ, ψ) ∈ Admdp/p(X)

}

for every μ, ν ∈ Pp(X ,d), (3.1)

where Admdp/p(X) is the set of pairs (ϕ, ψ) ∈ Cb(X) × Cb(X) such that

ϕ(x) + ψ(y) ≤ 1

p
dp(x, y) for every x, y ∈ X .

It is easy to check that for every f ∈ Lip(X ,d) and μ, ν ∈ Pp(X ,d) we have
∫

X
f d(μ − ν) ≤ Lip( f , X)Wp,d(μ, ν); (3.2)

in fact, choosing γ ∈ 
o,p,d(μ, ν) and setting L: = Lip( f , X), we have
∫

X
f d(μ − ν) =

∫
( f (x) − f (y)) dγ (x, y) ≤ L

∫
d dγ ≤ L

( ∫
dp dγ

)1/p = LWp(μ, ν).

3.1 Estimates for Kantorovich potentials in (Rd, ‖ · ‖)

In this subsection we study some stability properties for Kantorovich potentials in finite
dimensional real Banach spaces for the cost induced by the p-th power of the norm. We thus
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fix a dimension d ∈ N and a norm ‖ · ‖ on R
d such that

the unit ‖ · ‖ -ball B‖·‖(0, 1): = {x ∈ R
d : ‖x‖ < 1} is strictly convex and has C1,1 boundary.

(3.3)

We consider the map h : Rd → [0,+∞) defined as

h(x): = 1

p
‖x‖p, x ∈ R

d ,

and its Legendre transform h∗ : Rd → [0,+∞) which is given by

h∗(v): = 1

p′ ‖v‖p′
∗ , v ∈ R

d ,

where ‖ · ‖∗ is the dual norm of ‖ · ‖. Since h is strictly convex, h∗ is differentiable and we
denote by jp′ the gradient1 of h∗ which satisfies the equality

〈 jp′(v), v〉 = ‖v‖p′
∗ = ‖ jp′(v)‖p, for every v ∈ R

d , (3.4)

where 〈·, ·〉 is the standard scalar product on R
d . The reason for restricting our analysis to

norms satisfying condition (3.3) is that the cost function c(x, y) induced by h through the
formula

c(x, y): = h(x − y), x, y ∈ R
d (3.5)

is compatible with the frameworks studied in [11, 13] whose results we will often use. More
specifically, the function h as above, satisfies hypotheses (H1), (H2) and (H3) in [13]: while
(H1) and (H3) are obvious, let us just mention that the smoothness of the unit ‖ · ‖-sphere
gives that the unit ‖ · ‖-ball satisfies the so called ε-ball condition for some ε > 0 (see e.g.
[9, Definition 1.1, Theorem 1.9]) which in turn implies (H2). Also notice that, being the unit
‖ · ‖-sphere smooth, h ∈ C1(Rd) [20, Proposition 13.14].

We consider the complete and separablemetric space (Rd ,d‖·‖), where d‖·‖ is the distance
induced by ‖·‖, and the corresponding (p,d‖·‖)-Wasserstein space. To simplify the notation,
in this subsection, we will simply write Pp(R

d), Wp and 
o,p , omitting the dependence on
d‖·‖. Moreover we denote by Pr

p(R
d) the subset of Pp(R

d) of probability measures that are

absolutely continuous w.r.t. the d-dimensional Lebesgue measure Ld and we set

mp
p(μ): =

∫
Rd

‖x‖p dμ(x) = W p
p (μ, δ0), μ ∈ Pp(R

d). (3.6)

Finally let us set

B‖·‖(x, R): =
{

y ∈ R
d : ‖x − y‖ < R

}
, x ∈ R

d , R > 0.

The next theorem uses the results of Gangbo and McCann [13, Sections 3 and 4] and
Figalli and Gigli [11] to collect various useful properties of the optimal potentials realizing
the supremum in (3.1) when the support of one of the measures is a closed ball. This result
plays the same role of [12, Theorem 3.2] for the case p = q = 2 and ‖ · ‖ equal to the
Euclidean norm.

1 Notice that in case ‖ · ‖ coincides with the Euclidean norm | · |, jp′ is simply given by

jp′ (v) = |v|p′−2v, v ∈ R
d .
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Theorem 3.1 Let μ, ν ∈ Pr
p(R

d) with suppν = B‖·‖(0, R) for some R > 0. Any pair of

locally Lipschitz2 functions φ ∈ L1(B‖·‖(0, R), ν) and ψ ∈ L1(Rd , μ) such that

(i) φ(x) + ψ(y) ≤ 1

p
‖x − y‖p for every (x, y) ∈ B‖·‖(0, R) × R

d ,

(ii)
∫
B(0,R)

φ dν +
∫
Rd

ψ dμ = 1

p
W p

p (μ, ν),

satisfies also

W p
p (μ, ν) =

∫
B‖·‖(0,R)

‖∇φ‖p′
∗ dν =

∫
Rd

‖∇ψ‖p′
∗ dμ. (3.7)

There exists a unique pair as above satisfying conditions (i), (ii) and the additional conditions

(iii)

φ(x) = inf
y∈Rd

{
1

p
‖x − y‖p − ψ(y)

}
for every x ∈ B‖·‖(0, R), (3.8)

ψ(y) = inf
x∈B‖·‖(0,R)

{
1

p
‖x − y‖p − φ(x)

}
for every y ∈ R

d , (3.9)

(iv) ψ(0) = 0.

Such a unique pair is denoted by (�(ν, μ),�∗(ν, μ)). Finally, the function ψ : = �∗(ν, μ)

satisfies the following estimates: there exists a constant K p,R, depending only on p and R,
such that
∣∣ψ(y′) − ψ(y′′)

∣∣ ≤ ‖y′ − y′′‖2p−1(2R p−1 + ‖y′‖p−1 + ‖y′′‖p−1) for every y′, y′′ ∈ R
d ,

(3.10)

|ψ(y)| ≤ K p,R(1 + ‖y‖p) for every y ∈ R
d ,

(3.11)

‖∇ψ(y)‖∗ ≤ K p,R(1 + ‖y‖p−1) for Ld -a.e. y ∈ R
d ,

(3.12)

ψ(y) ≥ 1

2p
‖y‖p − K p,R for every y ∈ R

d .

(3.13)

Proof Let γ ∈ 
o,p(ν, μ) be fixed and let c be as in (3.5). We divide the proof in several
steps.

Claim 1 Let φ ∈ L1(B‖·‖(0, R), ν) and ψ ∈ L1(Rd , μ) be locally Lipschitz functions satis-
fying (i) and (ii). Then the maps t, s defined as

t(x): = x − ( jp′ ◦ ∇φ)(x), ν -a.e. x ∈ B‖·‖(0, R),

s(y): = y − ( jp′ ◦ ∇ψ)(y), μ -a.e. y ∈ R
d ,

are Optimal Transport maps from ν to μ and from μ to ν, respectively. In particular φ and
ψ satisfy (3.7).

2 Lipschitzianity is meant w.r.t. any (equivalent) norm on R
d .
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Proof of claim 1 The proof of this statement is classical and thus omitted (see e.g. [30, The-
orem 2.12], [24, Theorem 1.17] or [2, Theorem 6.2.4]).

By the proof of [2, Theorem 6.14] and [2, Theorem 6.15], we have that there exists a
c-concave function u ∈ L1(Rd , ν; [−∞,+∞)) such that u is finite on π1(suppγ ), uc is
finite on π2(suppγ ), uc ∈ L1(Rd , μ; [−∞,+∞)) and

∫
Rd

udν +
∫
Rd

ucdμ = 1

p
W p

p (μ, ν),

where uc is the c-transform of u defined as

uc(y): = inf
x∈Rd

{c(x, y) − u(x)} , y ∈ R
d ,

andπ i : Rd ×R
d → R

d is the projectionπ i (x1, x2) = xi for i = 1, 2.Recall that c-concavity
of u means that there exists some proper v : Rd → [−∞,+∞) such that

u(x) = inf
z∈Rd

{c(x, z) − v(z)} , x ∈ R
d .

Claim 2 If we define ψ̃ as

ψ̃(y): = inf
x∈B‖·‖(0,R)

{c(x, y) − u(x)} , y ∈ R
d ,

then ψ is real valued and locally Lipschitz, it is finite on π2(suppγ ), ψ̃ ∈ L1(Rd , μ) and
∫
Rd

udν +
∫
Rd

ψ̃dμ = 1

p
W p

p (ν, μ). (3.14)

Proof of claim 2 Since u(x) + uc(y) = c(x, y) for every (x, y) ∈ suppγ , then for μ-a.e. y ∈
R

d there exists some x ∈ B‖·‖(0, R) such that u(x) + uc(y) = c(x, y). This gives that
uc = ψ̃ μ-a.e. in Rd and proves that ψ̃ ∈ L1(Rd , μ) and (3.14). Since ψ̃ ≥ uc everywhere,
we also have that ψ̃ is finite in π2(suppγ ). Let us prove that ψ̃ is real valued. Since v is
proper, there exists some z0 ∈ R

d such that v(z0) ∈ R. Then

u(x) ≤ c(x, z0) − v(z0) for every x ∈ R
d

so that

ψ̃(y) ≥ inf
x∈B‖·‖(0,R)

{c(x, y) − c(x, z0)} + v(z0) > −∞

since the map x �→ c(x, y)−c(x, z0) is bounded below in B‖·‖(0, R) for every fixed y ∈ R
d .

To prove that ψ̃ is locally Lipschitz, it is enough to observe that, for every M > 0 and every
y′, y′′ ∈ B‖·‖(0, M), we have

∣∣∣ψ̃(y′) − ψ̃(y′′)
∣∣∣ ≤ inf

x∈B‖·‖(0,R)

∣∣c(x, y′) − c(x, y′′)
∣∣ ≤ ωc(R, M)‖y′ − y′′‖,

whereωc(R, M) is the uniform‖·‖-modulus of continuity of c on the compact setB‖·‖(0, R)×
B‖·‖(0, M).

Claim 3 If we define ϕ̃ as the restriction of u to B‖·‖(0, R), then we have that ϕ̃ is real valued
and locally Lipschitz.
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Proof of claim 3 Let us denote the effective domain of u by

D(u): = {x ∈ R
d : u(x) > −∞}

and its interior by �. Since u is c-concave, by [11, Step 2 in the proof of Theorem 1], we
know that for every point x ∈ D(u) \ � there exists some vx ∈ R

d\{0} and �x > 0 such that
the interior of the set

Cx : =
{

y ∈ R
d : there exists t ∈ [0, �x ] s.t. ‖x + tvx − y‖ ≤ t/2

}

does not intersect D(u). Thus we have that int(D(u)) ⊂ �. Moreover u is locally Lipschitz
in� by [11, Step 3 in the proof of Theorem 1]. It is then enough to prove that B‖·‖(0, R) ⊂ �.
Since π1(suppγ ) ⊂ suppν is dense in suppν and u is finite on π1(suppγ ), then

B‖·‖(0, R) = suppν ⊂ π1(suppγ ) ⊂ D(u).

Finally

� ⊃ int(D(u)) ⊃ B‖·‖(0, R),

so that B‖·‖(0, R) ⊂ �.

Claim 4 If we define ϕ : B‖·‖(0, R) → R and ϕ∗ : Rd → R as

ϕ(x): = ϕ̃(x) + ψ̃(0), x ∈ B‖·‖(0, R),

ϕ∗(y): = ψ̃(y) − ψ̃(0), y ∈ R
d ,

then they are locally Lipschitz, ϕ ∈ L1(B‖·‖(0, R)), ν), ϕ∗ ∈ L1(Rd , μ) and they satisfy
points (i), (ii), (iii), (iv) of the statement.

Proof of claim 4 The only nontrivial fact to be checked is (3.8). Let us define the modified
cost function c̃ : Rd → [0,+∞] as

c̃(x, y): =
{

c(x, y) if (x, y) ∈ B‖·‖(0, R) × R
d ,

+∞ else

and the function w : Rd → [−∞,+∞) as

w(z): = v(z) − ψ̃(0), z ∈ R
d .

It is thus clear that

wc̃(x) = inf
z∈Rd

{c̃(x, z) − w(z)} =
{

ϕ(x) if x ∈ B‖·‖(0, R),

+∞ else,

wc̃c̃(y) = inf
x∈Rd

{
c̃(x, y) − wc̃(y)

}
= inf

x∈B‖·‖(0,R)
{c(x, y) − ϕ(x)} = ϕ∗(y), y ∈ R

d ,

wc̃c̃c̃(x) = inf
y∈Rd

{
c̃(x, y) − wc̃c̃(y)

}
= inf

y∈Rd

{
c̃(x, y) − ϕ∗(y)

}
, x ∈ R

d .

By [30, Prop. 5.8], we have that wc̃ = wc̃c̃c̃ that reduces precisely to (3.8) in case x ∈
B‖·‖(0, R).

Claim 5 The pair (ϕ, ϕ∗) is unique.
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Proof of claim 5 Suppose that (ϕ0, ϕ
∗
0 ) is another pair of locally Lipschitz functions ϕ0 ∈

L1(B‖·‖(0, R), ν), ϕ∗
0 ∈ L1(Rd , μ) satisfying points (i), (ii), (iii) and (iv). By claim 1. the

maps t, t0 defined as

t(x): = x − ( jp′ ◦ ∇ϕ)(x), ν -a.e. x ∈ B‖·‖(0, R),

t0(x): = x − ( jp′ ◦ ∇ϕ0)(x), ν -a.e. x ∈ B‖·‖(0, R),

are Optimal Transport maps from ν to μ. Since ϕ and ϕ0 are (restrictions of) c-concave
functions and both t and t0 push ν to μ, by [13, Theorem 4.4] we get that t = t0 ν-a.e. in
B‖·‖(0, R) and this gives in particular (recall that h is everywhere differentiable) that ∇ϕ0 =
∇ϕ Ld -a.e. in B‖·‖(0, R). From this and point (iii) we get uniqueness.

Claim 6 Let ψ : = �∗(ν, μ). Then there exists a constant K p,R depending only on p and R
such that (3.10), (3.11), (3.12) and (3.13) hold.

Proof of claim 6 (3.10) is a consequence of the elementary inequality

|a p − bp| ≤ p|a − b|(a p−1 + bp−1), a, b ≥ 0,

and of the fact that

|ψ(y′) − ψ(y′′)| ≤ 1

p
sup

x∈B‖·‖(0,R)

∣∣‖x − y′‖p − ‖x − y′′‖p
∣∣ .

(3.11), (3.12) directly follow by (3.10). Finally, (3.13) follows by the inequality

‖x − y‖p ≥ 1

2
‖y‖p − K p‖x‖p, x, y ∈ R

d , (3.15)

that holds for a suitable constant K p > 0 that depends solely on p. In fact, using (iii), we
have that

ϕ(x) ≤ 1

p
‖x‖p for every x ∈ R

d

so that

ψ(y) ≥ inf
x∈B‖·‖(0,R)

{
1

p
‖x − y‖p − 1

p
‖x‖p

}
≥ 1

2p
‖y‖p − 1

p
(K p + 1)R p for every y ∈ R

d .

��
Remark 3.2 There exists a constant Dp,R , depending only on p and R such that, ifψ : Rd →
R is a function satisfying (3.10), then∫
Rd

ψd(μ′ − μ′′) ≤ Dp,R Wp(μ
′, μ′′)(1 + mp(μ

′) + mp(μ
′′)) for every μ′, μ′′ ∈ Pp(R

d).

(3.16)

In fact, by (3.10), if we take any γ ∈ 
o,p(μ
′, μ′′), we have∫

Rd
ψd(μ′ − μ′′) =

∫
Rd×Rd

(
ψ(y′) − ψ(y′′)

)
dγ (y′, y′′)

≤ 2p−1
(∫

Rd×Rd
‖y′ − y′′‖pdγ (y′, y′′)

)1/p

(∫
Rd×Rd

(
2R p−1 + ‖y′‖p−1 + ‖y′′‖p−1)p′

dγ (y′, y′′)
)1/p′

so that (3.16) follows.
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In the following results we collect some properties of sequences of pairs of potentials as
in Theorem 3.1. The aim is to prove that, under suitable conditions, such sequences converge
to optimal potentials.

In the next Propositions we use the notation

dist(A, B): = inf{‖x − y‖ : x ∈ A, y ∈ B}, A, B ⊂ R
d .

Proposition 3.3 Let R, I > 0 and let (ϕn)n, (ψn)n be sequences of functions such that

ϕn(x) = inf
y∈Rd

{
1

p
‖x − y‖p − ψn(y)

}
, ψn(y) = inf

x∈B‖·‖(0,R)

{
1

p
‖x − y‖p − ϕn(y)

}
,

ψn(0) = 0,
∫
B‖·‖(0,R)

ϕn dLd ≥ −I

for every x ∈ B‖·‖(0, R), every y ∈ R
d and every n ∈ N. Then ϕn is locally (w.r.t. x ∈

B‖·‖(0, R)) uniformly (w.r.t. n ∈ N) bounded and Lipschitz.

Proof The proof is strongly based on [11] (see also the similar approach in [13, Proposition
C.3]) and it is divided in two claims. For the whole proof, we extend ϕn toRd simply setting

ϕn(x) = inf
y∈Rd

{
1

p
‖x − y‖p − ψn(y)

}
for every x ∈ R

d .

Claim 1 The sequence ϕn is locally (w.r.t. x ∈ B‖·‖(0, R)) uniformly (w.r.t. n ∈ N) bounded.

Proof of claim 1 Since ϕn(x) ≤ 1
p ‖x‖p for every x ∈ R

d , it is enough to prove that ϕn is
locally uniformly bounded from below in B‖·‖(0, R). Let us suppose by contradiction that
there exist some x̄ ∈ B‖·‖(0, R) and a sequence (xn)n ⊂ B‖·‖(0, R) such that xn → x̄ and
ϕn(xn) → −∞. For every n ∈ N we can choose some yn ∈ R

d such that

ϕn(xn) + 1 ≥ 1

p
‖xn − yn‖p − ψn(yn) ≥ −ψn(yn)

implying that ψn(yn) → +∞. Thus, since ϕn(x̄) ∈ R and

ϕn(x̄) ≤ 1

p
‖x̄ − yn‖p − ψ(yn),

we get that ‖x̄ − yn‖ → +∞ which in particular gives that ‖xn − yn‖ → +∞. Let us define
now the curves γn : [0, ‖xn − yn‖] → R

d as

γn(t) =
(
1 − t

‖xn − yn‖
)

xn + t

‖xn − yn‖ yn, t ∈ [0, ‖xn − yn‖].

Since ‖xn − yn‖ → +∞, we can assume that ‖xn − yn‖ ≥ 1 for every n ∈ N and define

Cn : =
{

x ∈ R
d : there exists t ∈ [0, 1] such that ‖x − γn(t)‖ ≤ t

2

}
, n ∈ N.

123



The general class of Wasserstein Sobolev spaces: density of cylinder... Page 15 of 41   212 

We claim that supCn
ϕn → −∞ as n → +∞. Indeed if x ∈ R

d and t ∈ [0, 1] is such that
‖x − γn(t)‖ ≤ t/2, we have

ϕn(x) ≤ 1

p
‖x − y‖p − ψn(yn)

≤ 1

p
(‖x − γn(t)‖ + ‖γn(t) − yn‖)p − ψn(yn)

≤ 1

p
(t/2 + ‖γn(t) − yn‖)p − ψn(yn)

= 1

p
|‖xn − yn‖ − t/2|p − ψn(yn)

≤ 1

p
‖xn − yn‖p − t

2
‖xn − yn‖p−1 − ψn(yn)

≤ ϕn(xn) + 1

n
− t

2
‖xn − yn‖p−1

≤ ϕn(xn) + 1,

(3.17)

where we have used the elementary inequality

(a − b)p ≤ a p − pa p−1bp for every 0 ≤ a ≤ b.

Letting n → +∞, we obtain the claim. Up to passing to a (unrelabeled) subsequence, we
can thus assume that

ϕn(x) ≤ −n for every x ∈ Cn, n ∈ N.

Since x̄ ∈ B‖·‖(0, R) there exists some ε > 0 such that B‖·‖(x̄, ε) ⊂ B‖·‖(0, R). Let N ∈ N

be such that ‖xn − x̄‖ < ε/2 for every n ≥ N and let δ: = ε
3 ; it is not difficult to check that

the truncated sets

Cδ
n : =

{
x ∈ R

d : there exists t ∈ [0, δ] such that ‖x − γn(t)‖ ≤ t

2

}
⊂ Cn, n ∈ N

are such that Cδ
n ⊂ B‖·‖(x̄, ε) ⊂ B‖·‖(0, R) for every n ≥ N . Then for every n ≥ N we have

−I − 1

p
mp

p(Ld B‖·‖(0, R)) ≤
∫
B‖·‖(0,R)

(
ϕn(x) − 1

p
‖x‖p

)
dLd(x)

≤
∫

Cδ
n

(
ϕn(x) − 1

p
‖x‖p

)
dLd(x)

≤
∫

Cδ
n

(
−n − 1

p
‖x‖p

)
dLd(x)

≤ −nLd(Cδ
n)

= − nωd−1δ
d

d2d−1ηd−1 ,

where ωd−1 is the Ld−1-measure of the Euclidean (d − 1)-dimensional unit ball and η > 0
is a constant such that

‖x‖ ≤ η|x | for every x ∈ R
d ,

where | · | is the Euclidean norm on Rd . Passing to the limit as n → +∞ gives that I = ∞,
a contradiction.
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Claim 2 For every K ⊂⊂ B‖·‖(0, R) there exists MK > 0 such that

ϕn(x) = inf
y∈B‖·‖(0,MK )

{
1

p
‖x − y‖p − ψn(y)

}
for every x ∈ K and for every n ∈ N,

so that the sequence ϕn is locally (w.r.t. x ∈ B‖·‖(0, R)) uniformly (w.r.t. n ∈ N) Lipschitz.

Proof of claim 2 Let K ⊂⊂ B‖·‖(0, R) be fixed; we claim that there exists CK > 0 such that,
if (x, y, n) ∈ K × R

d × N are such that

ϕn(x) + 1 ≥ 1

p
‖x − y‖p − ψn(y),

then y ∈ B‖·‖(x, CK ). Let us define

CK : = max

{
1,

(
2

�

(
SK�

− IK�
+ 1

)) 1
p−1

}
,

where 0 < � < dist(K ,Bc‖·‖(0, R)) and

K�: =
{

x ∈ R
d : dist(x, K ) ≤ �

}
⊂ B‖·‖(0, R),

SK�
: = sup {ϕn(x) : (x, n) ∈ K� × N} < +∞,

IK�
: = inf {ϕn(x) : (x, n) ∈ K� × N} > −∞,

where we have used claim 1 to ensure that the supremum and the infimum are finite. Let us
consider (x, y, n) ∈ K × R

d × N as above. To prove that CK is the sought constant, it is
enough to consider the case in which ‖x − y‖ ≥ 1. If we define γ : [0, ‖x − y‖] → R

d as
the curve given by

γ (t): =
(
1 − t

‖x − y‖
)

x + t

‖x − y‖ y, t ∈ [0, ‖x − y‖],

we have, arguing as in (3.17), that

ϕn(γ (�)) ≤ ϕn(x) + 1 − �

2
‖x − y‖p−1

so that ‖x − y‖ ≤ CK . We thus set

MK : = sup
{‖y‖ : y ∈ K + B‖·‖(0, CK )

}
.

If x ∈ K and n ∈ N are fixed, we can find a minimizing sequence (yk)k ⊂ R
d , in the sense

that

ϕn(x) + 1 ≥ ϕn(xk) + 1

k
≥ 1

p
‖x − yk‖p − ψn(yk) for every k ∈ N

so that, by the result we have just proven, (yk)k is bounded and thus converges, up to a
(unrelabeled) subsequence to some ȳ ∈ B‖·‖(x, CK ). Passing the above inequality to the
limit as k → +∞, we get that

ϕn(x) ≥ 1

p
‖x − ȳ‖p − ψn(ȳ).

This proves that ȳ is a minimizer and, since it belongs to B‖·‖(0, MK ), we get the second
claim. ��
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Proposition 3.4 Let R, I > 0 and let (ϕn)n, (ψn)n be sequences of functions such that

ϕn(x) = inf
y∈Rd

{
1

p
‖x − y‖p − ψn(y)

}
, ψn(y) = inf

x∈B‖·‖(0,R)

{
1

p
‖x − y‖p − ϕn(y)

}
,

ψn(0) = 0,
∫
B‖·‖(0,R)

ϕn dLd ≥ −I

for every x ∈ B‖·‖(0, R), every y ∈ R
d and every n ∈ N. Then there exist a subsequence

j �→ n( j) and two locally Lipschitz functions ϕ : B‖·‖(0, R) → R and ψ : Rd → R such
that ϕn( j) → ϕ locally uniformly in B‖·‖(0, R), ψn( j) → ψ locally uniformly in R

d and

∂cψ(y) �= ∅, lim
j
sup

{
dist(x, ∂cψ(y)) : x ∈ ∂cψn( j)(y)

} = 0 for every y ∈ R
d ,

(3.18)

∇ψn( j) → ∇ψ Ld -a.e. in R
d , (3.19)

where ∂cψ is the c-superdifferential operator of ψ , whose graph is given by

∂cψ : =
{
(y, x) ∈ R

d × R
d : ψ(z) ≤ ψ(y) + 1

p
‖z − x‖p − 1

p
‖y − x‖p for every z ∈ R

d
}

.

(3.20)

Proof The proof is divided in three claims, the first of which is adapted from [13, Proposition
C.4]. By Proposition 3.3 we have that the sequence ϕn is locally (w.r.t. x ∈ B‖·‖(0, R))
uniformly (w.r.t. n ∈ N) bounded and Lipschitz. Arguing as in Theorem 3.1 (see in partic-
ular (3.10) and (3.11)), we have that the sequence ψn is locally (w.r.t. y ∈ R

d ) uniformly
(w.r.t. n ∈ N) bounded and Lipschitz. Hence we can apply Ascoli-Arzelá theorem and obtain
the existence of a subsequence j �→ n( j) and two locally Lipschitz functions ϕ : B‖·‖(0, R)

and ψ : Rd → R such that ϕn( j) → ϕ locally uniformly in B‖·‖(0, R) and ψn( j) → ψ

locally uniformly in R
d .

Claim 1 For every K > 0 there exists a constant CK > 0 such that

∂cψn(B‖·‖(0, K )) ⊂ B‖·‖(0, CK ) × B‖·‖(0, CK ) for every n ∈ N,

where ∂cψn is the c-superdifferential operator of ψn (which is defined analogously to ∂cψ

adapting (3.20) in the obvious way). Moreover ∂cψn(y) �= ∅ for every y ∈ R
d and every

n ∈ N.

Proof of claim 1 Let us start from the last part of the claim; let y ∈ R
d and n ∈ N be fixed.

By hypothesis, we can find a sequence (x j ) j ⊂ B‖·‖(0, R) such that for every j ∈ N it holds

1

p
‖x j − y‖p − ϕn(x j ) − 1

j
≤ ψn(y),

ψn(z) ≤ 1

p
‖x j − z‖p − ϕn(x j ) for every z ∈ R

d .

This gives that

ψn(z) + 1

p
‖x j − y‖p − 1

j
≤ ψn(y) + 1

p
‖x j − z‖p for every (z, j) ∈ R

d × N.
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Up to a (unrelabeled) subsequence, there exists some x ∈ R
d such that x j → x and we get

passing to the limit the above inequality that

ψn(z) ≤ ψn(y) + 1

p
‖x − z‖p − 1

p
‖x − y‖p for every z ∈ R

d ,

meaning that x ∈ ∂cψn(y). Let us come to the first part of the claim. Let K > 0 be fixed and
observe that, arguing as in Theorem 3.1 (see in particular (3.11)), the sequence ψn is locally
(w.r.t. y ∈ R

d ) uniformly (w.r.t. n ∈ N) bounded, so that there exists some TK > 0 such that

sup
n∈N

sup
y∈B‖·‖(0,K+ 1

2 )

|ψn(y)| < TK . (3.21)

We claim that there exists a constant DK such that, whenever (x, λ, u, n) ∈ R
d × R ×

B‖·‖(0, K ) × N are such that

ψn(z) ≤ 1

p
‖z − x‖p + λ for every z ∈ R

d , (3.22)

1

p
‖u − x‖p + λ < TK , (3.23)

then ‖x‖ ≤ DK . Suppose by contradiction that we can find a sequence (xk, λk, uk, nk)k ⊂
R

d ×R×B‖·‖(0, K )×N satisfying (3.22) and (3.23) such that ‖xk‖ → +∞. Let vk : = uk−xk

for every k ∈ N. Since uk ∈ B‖·‖(0, K ), and ‖xk‖ → +∞, we may assume that ‖vk‖ > 1
for every k ∈ N. Let us also define ξk : = 1 − 1

2‖vk‖ so that ξk → 1 as k → +∞. Finally, let
zk : = uk + (ξk − 1)vk , k ∈ N and observe that (3.21) implies that |ψnk (zk)| < TK for every
k ∈ N since

‖zk‖ = ‖uk + (ξk − 1)vk‖ =
∥∥∥∥uk + vk

2‖vk‖
∥∥∥∥ ≤ K + 1

2
.

We can thus evaluate (3.22) and (3.23) written for (xk, λk, uk, nk)with z = zk obtaining that

ψnk (zk) ≤ 1

p
‖zk − xk‖p + λk,

1

p
‖uk − xk‖p + λk < TK for every k ∈ N.

We thus deduce that

1

p
‖vk‖p − 1

p
‖ξkvk‖p = 1

p
‖vk‖p − 1

p
‖zk − xk‖p ≤ 2TK for every k ∈ N. (3.24)

Let now wk be the unique element of the subdifferential of h at the point ξkvk so that

1

p
‖0‖p − 1

p
‖ξkvk‖p ≥ 〈wk, 0 − ξkvk〉 for every k ∈ N, (3.25)

1

p
‖vk‖p − 1

p
‖ξkvk‖p ≥ 〈wk, vk − ξkvk〉 for every k ∈ N. (3.26)
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Combining (3.24) with (3.26) we get

2TK ≥ 1

p
‖vk‖p − 1

p
‖ξkvk‖p

≥ 〈wk, vk − ξkvk〉
= 1

2‖vk‖〈wk, vk〉

≥ 1

2p
ξ

p−1
k ‖vk‖p−1 for every k ∈ N,

where for the last inequality we have used (3.25). Since ξk ≥ 1
2 and ‖vk‖ → +∞,

we get a contradiction, proving our first claim. We set CK : = max{K , DK } and we
prove that ∂cψn(B‖·‖(0, K )) ⊂ B‖·‖(0, CK ) × B‖·‖(0, CK ) for every n ∈ N. If (y, x) ∈
∂cψn(B‖·‖(0, K ) and we define λ: = ψn(y) − 1

p ‖x − y‖p , we have that (x, λ, y, n) ∈
R

d × R × B‖·‖(0, K ) × N and satisfies (3.22) and (3.23) by the very definition of ∂cψn so
that by the above claim we get that ‖x‖ ≤ DK ≤ CK and of course ‖y‖ ≤ K ≤ CK . This
concludes the proof of the claim.

Claim 2 We have that

∂cψ(y) �= ∅, lim
j
sup

{
dist(x, ∂cψ(y)) : x ∈ ∂cψn( j)(y)

} = 0 for every y ∈ R
d .

Proof of claim 2 Let y ∈ R
d be fixed; observe that, if (x j ) j is any sequence such that x j ∈

∂cψn( j)(y) for every j ∈ N (there exists at least one such a sequence by claim 1), then by
claim 1 ∂cψn( j)(y) are uniformly (w.r.t j ∈ N) bounded so that we can extract a subsequence
k �→ jk such that x jk → x for some x ∈ R

d . By the very definition of c-superdifferential,
we have that for every k ∈ N it holds

ψn( jk )(z) ≤ ψn( jk )(y) + 1

p
‖z − x jk ‖p − 1

p
‖y − x jk ‖p for every z ∈ R

d .

Passing to the limit as k → +∞, we get that x ∈ ∂cψ(y), so that ∂cψ(y) �= ∅. This proves
in particular that from any sequence of points (x j ) j such that x j ∈ ∂cψn( j)(y) for every
j ∈ N we can extract a subsequence converging to an element of ∂cψ(y). Let us come now
to the proof of the limit. We prove that from any (unrelabeled) subsequence of n( j) we can
extract a further subsequence such that we have the convergence above. For every j ∈ N we
can find some x j ∈ ∂cψn( j)(y) such that

dist(x j , ∂
cψ(y)) + 1

j
≥ sup

{
dist(x, ∂cψ(y)) : x ∈ ∂cψn( j)(y)

}
.

Reasoning as above, we find a subsequence k �→ jk such that x jk → x ∈ ∂cψ(y) as
k → +∞. Then we have

0 = dist(x, ∂cψ(y)) = lim
k

dist(x jk , ∂
cψ(y)) + 1

jk
≥ lim sup

k
sup

{
dist(x, ∂cψ(y)) : x ∈ ∂cψn( jk )(y)

}
.

This concludes the proof of the claim.

Claim 3 We have that ∇ψn( j) → ∇ψ Ld -a.e. in R
d .
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Proof of claim 3 Let A := {
y ∈ R

d : ψandψn( j)are differentiable atyfor every j ∈ N
}
;

notice that A has full Ld measure. Let y ∈ A; since ψ is differentiable at y we know by [13,

Lemma 3.1] that any x ∈ ∂cψ(y) will satisfy ‖∇ψ(y)‖p′
∗ = ‖∇h(x − y)‖p′

∗ = ‖x − y‖p so
that ∂cψ(y) is contained in B‖·‖(0, C) for some C > 0. On the other hand, claim 1 implies
that there exists some constant D > 0 such that ∂cψn( j)(y) ⊂ B‖·‖(0, D) for every j ∈ N.
Let us define M > 0 as the uniform modulus of continuity of the map x �→ ∇h(x − y) in
the compact set B‖·‖(0, C + D). By claim 2, for every ε > 0 we can find Jε ∈ N such that,
if j ≥ Jε, then

dist(x, ∂cψ(y)) ≤ sup
{
dist(x, ∂cψ(y)) : x ∈ ∂cψn( j)(y)

}
< ε/M for every x ∈ ∂cψn( j)(y).

This means that for every j ≥ Jε and every x j ∈ ∂cψn( j)(y) there exists some z j ∈ ∂cψ(y)

such that ‖x j − z j‖ < ε/M . Using again [13, Lemma 3.1] and the fact that both ψn( j) and
ψ are differentiable at y, we have that ∇ψn( j)(y) = ∇h(x j − y) and ∇ψ(y) = ∇h(z j − y)

for every j ≥ Jε. Then∣∣∇ψn( j)(y) − ∇ψ(y)
∣∣ = ∣∣∇h(x j − y) − ∇h(z j − y)

∣∣ ≤ M‖x j − z j‖ < ε

for every j ≥ Jε. This concludes the proof of the claim. ��

4 TheWasserstein Sobolev space H1,q(Pp(X,d),Wp,d,m)

The aim of this section is to study the q-Sobolev space on the (p,d)-Wasserstein space
on a separable and complete metric space (X ,d). In particular we will show at the end of
this section that the algebra of cylinder functions generated by a sufficiently rich algebra
of Lipschitz and bounded functions on (X ,d) is dense in q-energy in the Sobolev space
H1,q(Pp(X ,d), Wp,d,m). For the whole section p, q ∈ (1,+∞) are fixed exponents.

4.1 Cylinder functions on (X, d) and their differential in Banach spaces

Let (X ,d) be a complete and separable metric space. We extend the definition of cylinder
function in [12] to this more general setting. To every φ ∈ Lipb(X ,d) we can associate the
functional Lφ on P(X)

Lφ : μ →
∫

X
φ dμ (4.1)

which belongs to Lipb(Pp(X ,d), Wp,d) thanks to (3.2). If φ = (φ1, · · · , φN ) ∈(
Lipb(X ,d)

)N , we denote by Lφ : = (Lφ1 , · · · , LφN ) the corresponding map from P(X)

to R
N .

Definition 4.1 (E -cylinder functions) Let E ⊂ Lipb(X ,d) be an algebra of functions; we say
that a function F : P(X) → R is a E -cylinder function if there exist N ∈ N, ψ ∈ C1

b(R
N )

and φ = (φ1, . . . , φN ) ∈ E N such that

F(μ) = ψ(Lφ(μ)) = ψ
(
Lφ1(μ), · · · , LφN (μ)

)
for every μ ∈ P(X). (4.2)

We denote the set of such functions by C
(P(X), E

)
.
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Remark 4.2 Since for every φ ∈ E N the range of Lφ is always contained in the bounded set
[−M, M]N where M : = maxi=1,...,d ‖φi‖∞, also functions F = ψ ◦ Lφ with ψ ∈ C1(RN )

belong to C
(P(X), E

)
. Indeed it is enough to consider a function ψ̃ ∈ C1

b(R
N ) coinciding

with ψ on [−M, M]N and equal to 0 outside [−M − 1, M + 1]N so that F = ψ̃ ◦ Lφ . In
particular every function of the form Lφ , φ ∈ E , belongs to C

(P(X), E
)
.

We use the notation DX for the Borel set

DX : =
{
(μ, x) ∈ P(X) × X : x ∈ supp(μ)

}
. (4.3)

We introduce now the definition of differential of a cylinder function, still following [12], in
case (X ,d) = (B,d‖·‖), where (B, ‖ · ‖) is a Banach space and d‖·‖ is the distance induced
by ‖ · ‖. In this case we denote by C1

b(B) the space of bounded, continuously differentiable
and Lipschitz functions on B.

Definition 4.3 Let F ∈ C
(P(B),C1

b(B)
)
; then, given N ∈ N, ψ ∈ C1

b(R
N ) and φ ∈

(C1
b(B))N such that F = ψ ◦ Lφ , we define the Wasserstein differential of F conditioned to

(ψ,φ), DFψ,φ : DB → B
∗, as

DFψ,φ(μ, x) :=
N∑

n=1

∂nψ
(
Lφ(μ)

) ∇φn(x), (μ, x) ∈ DB. (4.4)

We will also denote by DFψ,φ[μ] the function x �→ DFψ,φ(μ, x) and we will set

‖DFψ,φ[μ]‖∗,p′,μ :=
(∫

B

‖DFψ,φ[μ](x)‖p′
∗ dμ(x)

)1/p′

, μ ∈ Pp(B,d‖·‖), (4.5)

where ‖ · ‖∗ is the dual norm to ‖ · ‖.
Remark 4.4 Letμ0, μ1 ∈ Pp(B,d‖·‖), letμ ∈ 
o,p,d‖·‖(μ0, μ1) and letu ∈ L p(B, μ0; (B, ‖·
‖)). We define the curves μ, ν : [0, 1] → Pp(B,d‖·‖) as

μt : = xt
�μ, t ∈ [0, 1], (4.6)

νt : = (iB + tu)�μ0, t ∈ [0, 1], (4.7)

where xt : B × B → B is the map defined as xt (x0, x1): = (1 − t)x0 + t x1, for every
(x0, x1) ∈ B × B and t ∈ [0, 1]. If F ∈ C

(P(B),C1
b(B)

)
, given N ∈ N, ψ ∈ C1

b(R
N ) and

φ ∈ (C1
b(B))N such that F = ψ ◦ Lφ , then

lim[0,1]�t→s

F(μt ) − F(μs)

t − s
=

∫
B×B

〈DFψ,φ(μs, xs(x0, x1)), x1 − x0〉dμ(x0, x1), (4.8)

lim[0,1]�t→s

F(νt ) − F(νs)

t − s
=

∫
B

〈DFψ,φ(νs, x), u(x)〉dνs(x), (4.9)

for every s ∈ [0, 1]. This is a simple consequence of the chain rule and the regularity of φ.

Remark 4.5 It is not difficult to check that

DFψ,φ is continuous in P(B) × B (4.10)

with respect to the natural product (narrow and norm) topology. In principle DFψ,φ may
depend on the choice of N ∈ N, ψ ∈ C1

b(R
N ) and φ ∈ (C1

b(B))N used to represent F . In
Proposition 4.7 we show that for every μ ∈ Pp(B,d‖·‖) the function DFψ,φ[μ] is uniquely

123



  212 Page 22 of 41 G. E. Sodini

characterized in supp(μ) so that DFψ,φ is uniquely characterized by F in Dp
B
: = DB ∩

(Pp(B,d‖·‖) × B). We will be then able to remove the subscript in DFψ,φ and denote it
simply by Dp F .

The following Lemma is proved in [12] and will be useful in the proof of Proposition 4.7.

Lemma 4.6 Let Y be a Polish space and let G : P(Y ) × Y → [0,+∞) be a bounded and
continuous function. If (μn)n∈N is a sequence in P(Y ) narrowly converging (i.e. converging
in duality with continuous and bounded functions on Y ) to μ as n → +∞, then

lim
n→∞

∫
Y

G(μn, y)dμn(y) =
∫

Y
G(μ, y)dμ(y).

The following proposition corresponds to [12, Proposition 4.9] and the proof is quite
similar but, because of a few differences, we still report it here.

Proposition 4.7 Let (B, ‖ · ‖) be a separable Banach space and let F ∈ C
(P(B), C1

b(B)
)
;

then, if N ∈ N, ψ ∈ C1
b(R

N ) and φ ∈ (C1
b(B))N are such that F = ψ ◦ Lφ , we have

‖DFψ,φ[μ]‖∗,p′,μ = lipWp,d‖·‖
F(μ) for every μ ∈ Pp(B,d‖·‖).

In particular, ‖DFψ,φ[μ]‖∗,p′,μ does not depend on the choice of the representation of F

and DFψ,φ just depends on F on Dp
B

(cf. Remark 4.5).

Proof Let μ ∈ Pp(B,d‖·‖) and let (μ′
n, μ′′

n) ∈ Pp(B,d‖·‖) × Pp(B,d‖·‖) with μ′
n �= μ′′

n be
such that (μ′

n, μ′′
n) → (μ,μ) in Wp,d‖·‖ and

lim
n

∣∣F(μ′
n) − F(μ′′

n)
∣∣

Wp,d‖·‖(μ
′
n, μ′′

n)
= lipWp,d‖·‖

F(μ).

Let (μt
n)t∈[0,1] be the curves defined as in (4.6) for plans μn ∈ 
o,p,d‖·‖(μ

′
n, μ′′

n); we have

∣∣F(μ′
n) − F(μ′′

n)
∣∣ =

∣∣∣∣
∫ 1

0

∫
B×B

〈DFψ,φ(μt
n, xt (x0, x1)), x1 − x0〉 dμn(x0, x1) dt

∣∣∣∣

≤
(∫ 1

0

∫
B

∥∥DFψ,φ(μt
n, x)

∥∥p′
∗ dμt

n(x) dt

) 1
p′

(∫ 1

0

∫
B

‖x1 − x0‖p dμn(x0, x1) dt

) 1
p

= Wp,d‖·‖(μ
′
n, μ′′

n)

(∫ 1

0

∫
B

∥∥DFψ,φ(μt
n, x)

∥∥p′
∗ dμt

n(x) dt

) 1
p′

,

where the first equality comes from (4.8). Dividing both sides by Wp,d‖·‖(μ
′
n, μ′′

n), we obtain

∣∣F(μ′
n) − F(μ′′

n)
∣∣

Wp,d‖·‖(μ
′
n, μ′′

n)
≤

(∫ 1

0

∫
B

∥∥DFψ,φ(μt
n, x)

∥∥p′
∗ dμt

n(x) dt

) 1
p′

.

Observe that μn → (iB, iB)�μ in P(B × B) so that μt
n → μ in P(B) for every t ∈ [0, 1].

We can pass to the limit as n → +∞ the above inequality using the dominated convergence
Theorem and Lemma 4.6 with

G(μ, x): = ∥∥DFψ,φ(μ, x)
∥∥p′

∗ , μ ∈ P(B), x ∈ B.

123



The general class of Wasserstein Sobolev spaces: density of cylinder... Page 23 of 41   212 

We hence get

lipWp,d‖·‖
F(μ) ≤

(∫ 1

0

∫
B×B

∥∥DFψ,φ(μ, x)
∥∥p′

∗ dμ(x) dt

) 1
p′

= ‖DFψ,φ[μ]‖∗,p′,μ.

To prove the other inequality we consider a countable dense subset E : = {xn}n of the unit
sphere in B and, for every ε > 0, the maps Nε : B∗ → N and jp′,ε : B∗ → B defined as

Nε(x∗) : = min
{
n ∈ N : 〈x∗, xn〉 ≥ ‖x∗‖∗ − ε

}
, x∗ ∈ B

∗,

jp′,ε(x∗) : = ‖x∗‖p′/pxNε(x∗), x∗ ∈ B
∗.

It is not difficult to check that jp′,ε is measurable: if we define the sets

An : = {
x∗ ∈ B

∗ : 〈x∗, xn〉 ≥ ‖x∗‖∗ − ε
}
, n ∈ N,

U1 : = A1,

Un : = An \ ∪n−1
i=1 Ai , n ∈ N, n > 1,

then {Un}n∈N is a countablemeasurable partition ofB∗ and jp′,ε can bewritten as jp′,ε(x∗) =
‖x∗‖p′/p∗ xn if x ∈ Un , so that jp′,ε is measurable. Moreover it is obvious that

‖ jp′,ε(x∗)‖p = ‖x∗‖p′
∗ , 〈 jp′,ε(x∗), x∗〉 ≥ ‖x∗‖p′

∗ − ε‖x∗‖p′/p∗ , for every x∗ ∈ B
∗.
(4.11)

Let us now consider the maps T , uε : B → B defined as

T (x) : = DFψ,φ[μ](x), uε(x): = jp′,ε(T (x)), x ∈ B,

and the curve (νε
t )t∈[0,1] defined as in (4.7) with uε as above (notice that uε ∈ L p(B, μ; (B, ‖·

‖)) since it is Borel measurable and ‖uε(x)‖p = ‖T (x)‖p′
∗ < C < +∞ for every x ∈ B).

By (4.9), we get that

lim
t↓0

F(νε
t ) − F(μ)

t
=

∫
B

〈DFψ,φ(μ, x), uε(x)〉 dμ(x) ≥ ‖T ‖p′
L p′

(B,μ;(B∗,‖·‖∗))
− C1/pε,

where we used (4.11). Moreover

Wp,d‖·‖(μ, νε
t )

t
≤ ‖uε‖L p(B,μ;(B,‖·‖)) = ‖T ‖p′/p

L p′
(B,μ;(B∗,‖·‖∗))

for every t ∈ (0, 1].
Thus

lipWp,d‖·‖
F(μ) ≥ lim sup

t↓0
F(νε

t ) − F(μ)

Wp,d‖·‖(μ, νε
t )

≥ ‖T ‖p′−p′/p

L p′
(B,μ;(B∗,‖·‖∗))

− C1/pε

‖T ‖p′/p

L p′
(B,μ;(B∗,‖·‖∗))

.

Passing to limε↓0 we obtain the sought inequality and this concludes the proof. ��
Remark 4.8 Note that the inequality

lipWp,d‖·‖
F(μ) ≤ ‖DFψ,φ[μ]‖∗,p′,μ for every μ ∈ Pp(B,d‖·‖)

holds even if the Banach space (B, ‖ · ‖|) is non-separable, since separability is not used in
the first part of the proof.

Thanks to Proposition 4.7 the following definition is well posed.
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Definition 4.9 Let (B, ‖ · ‖) be a separable Banach space. For every F ∈ C
(P(B),C1

b(B)
)
,

we define

Dp F(μ, x): = DFψ,φ(μ, x), (μ, x) ∈ Dp, (4.12)

‖Dp F[μ]‖∗,p′,μ: = ‖DFψ,φ[μ]‖μ,p′ , μ ∈ Pp(B,d‖·‖), (4.13)

where N ∈ N, ψ ∈ C1
b(R

N ) and φ ∈ (C1
b(B))N are such that F = ψ ◦ Lφ , and Dp is as in

Remark 4.5.

4.2 The density result in (Rd, ‖ · ‖) for any norm

In this whole subsection (apart from Theorem 4.15) we focus again on a finite dimensional
Banach space with a sufficiently regular norm. To this aim we fix a dimension d ∈ N

and a norm ‖ · ‖ on R
d satisfying (3.3). As we did in Sect. 3.1, we work on the complete

and separable metric space (Rd ,d‖·‖), where d‖·‖ is the distance induced by ‖ · ‖, and the
corresponding (p,d‖·‖)-Wasserstein space. To simplify the notation, as we did in Sect. 3.1,
in this subsection, we will simply write Pp(R

d), Wp and 
o,p , omitting the dependence on
d‖·‖. For the rest of this subsection m is a positive and finite Borel measure on Pp(R

d).
Recall that for a bounded Lipschitz function F : Pp(R

d) → R the pre-Cheeger energy
(cf. (2.9)) associated to m is defined by

pCEq(F) =
∫
Pp(Rd )

(
lipWp

F(μ)
)q dm(μ). (4.14)

Thanks to Proposition 4.7, if F is a cylinder function in C
(P(Rd),C1

b(R
d)

)
, we have a nice

equivalent expression

pCEq(F) =
∫
Pp(Rd )

‖Dp F[μ]‖q
∗,p′,μ dm(μ)

=
∫
Pp(Rd )

(∫
Rd

‖Dp F(μ, x)‖p′
∗ dμ(x)

)q/p′

dm(μ), (4.15)

where ‖ · ‖∗ is the dual norm induced by ‖ · ‖. Notice that (pCEq)1/q is not simply the Lq -

L p′
mixed norm of Dp F in a Bochner space, since the measures μ w.r.t. the inner norm is

computed varies, but rather the norm in the direct Lq(Pp(R
d),m)-integral of the Banach

spaces L p′
(B, μ; (B∗, ‖ · ‖∗)) (see e.g. [10, 17] or Sect. 5).

We adopt the notation A : = C
(P(Rd),C1

b(R
d)

)
and we devote this subsection to the

proof of Theorem 4.15. The following Lemmas are the obvious adaptation of [12, Lemma
4.14, Lemma 4.15] and their proofs are the same, and thus omitted.

Lemma 4.10 Let Fn be a sequence of functions in D1,q(Pp(R
d),Wp,m;A )∩L∞(Pp(R

d),m)

such that Fn and |DFn |�,q,A are uniformly bounded in every bounded set of Pp(R
d) and let

F, G be Borel functions in Lq(Pp(R
d),m), G nonnegative. If

lim
n→∞ Fn(μ) = F(μ), lim sup

n→∞
|DFn |�,q,A (μ) ≤ G(μ) m -a.e. in Pp(R

d), (4.16)

then F ∈ H1,q(Pp(R
d), Wp,m;A ) and |DF |�,q,A ≤ G.

Lemma 4.11 Let φ ∈ C1(Rd) be satisfying the growth conditions

φ(x) ≥ A‖x‖p − B, ‖∇φ(x)‖∗ ≤ C(‖x‖p−1 + 1) for every x ∈ R
d (4.17)
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for given positive constants A, B, C > 0 and let ζ : R → R be a C1 nondecreasing function
whose derivative has compact support. Then the function F(μ): = ζ ◦ Lφ is Lipschitz in
Pp(R

d), it belongs to H1,q(Pp(R
d), Wp,m;A ), and

|DF |�,q,A (μ) ≤ ζ ′(Lφ(μ))
( ∫

Rd
‖∇φ‖p′

∗ dμ
)1/p′

. (4.18)

Let κ ∈ C∞
c (Rd) be such that suppκ = B(0, 1) (here B(0, 1) is the unit d-dimensional

Euclidean ball), κ(x) ≥ 0 for every x ∈ R
d , κ(x) > 0 for every x ∈ B(0, 1),

∫
Rd κdLd = 1

and κ(−x) = κ(x) for every x ∈ R
d . Let us define, for every 0 < ε < 1, the standard

mollifiers

κε(x) : = 1

εd
κ(x/ε), x ∈ R

d .

Given σ ∈ Pp(R
d) and 0 < ε < 1, we define

σε : = σ ∗ κε.

Notice that σε ∈ Pr
p(R

d) and Wp(σε, σ ) → 0 as ε ↓ 0. Moreover, if σ, σ ′ ∈ Pp(R
d), we

have

Wp(σε, σ
′
ε) ≤ Wp(σ, σ ′) for every 0 < ε < 1 (4.19)

and it is easy to check that, if we set

Cε : = mp(κεLd), (4.20)

then we have

mp(με) ≤ mp(μ) + Cε for every 0 < ε < 1. (4.21)

Definition 4.12 Let 0 < ε < 1 and ν ∈ Pp(R
d). We define the continuous functions

Wν, W ε
ν , Fε

ν : Pp(R
d) → R as

Wν(μ) : = Wp(μ, ν), W ε
ν (μ) : = Wν(με), Fε

ν (μ) : = 1

p
(W ε

ν (μ))p, μ ∈ Pp(R
d).

The proof of the following proposition follows the one of [12, Proposition 4.17] but since
the exponent p may be different from 2, the estimates are more complicated and thus reported
in full.

Proposition 4.13 Let 0 < ε < 1, δ, R > 0, let ν ∈ Pr
p(R

d) be such that suppν = B‖·‖(0, R)

and ν B‖·‖(0, R) ≥ δLd B‖·‖(0, R), and let ζ : R → R be a C1 nondecreasing function
whose derivative has compact support. Then

|D(ζ ◦ Fε
ν )|�,q,A (μ) ≤ ζ ′(Fε

ν (μ))W p−1
p (ν, με) for m-a.e. μ ∈ Pp(R

d). (4.22)

Proof Let G: = {μh}h∈N be a dense and countable set in Pp(R
d) and let us set, for every

h ∈ N, ϕh : = �(ν,μh
ε ), ϕ

∗
h : = �∗(ν, μh

ε ) (see Theorem 3.1),

ah : =
∫
B‖·‖(0,R)

ϕhdν, uh : = ϕ∗
h + ah, Gk(μ): = max

1≤h≤k

∫
Rd

uhdμε, μ ∈ Pp(R
d), k ∈ N.

Notice that, by (3.11), uh ∈ L1(Rd , με) for every μ ∈ Pp(R
d).
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Claim 1 It holds

lim
k→+∞ Gk(μ) = Fε

ν (μ) for every μ ∈ Pp(R
d).

Proof of claim 1 Since Gk+1(μ) ≥ Gk(μ) for every μ ∈ Pp(R
d), we have that

lim
k→+∞ Gk(μ) = sup

k
Gk(μ) = sup

h

∫
Rd

uhdμε for every μ ∈ Pp(R
d).

By the definition of ϕh and ϕ∗
h we have, for every μ ∈ Pp(R

d) and h ∈ N, that
∫
Rd

uhdμε =
∫
Rd

ϕ∗
hdμε +

∫
B‖·‖(0,R)

ϕh(y)dν

≤ 1

p
W p

p (με, ν)

= Fε
ν (μ).

This proves that supk Gk(μ) ≤ Fε
ν (μ) for every μ ∈ Pp(R

d). Clearly, if μ ∈ G, this is
an equality. By (3.16) there exists a constant Dp,R such that, for every h ∈ N and μ,μ′ ∈
Pp(R

d), it holds
∫
Rd

uhdμε −
∫
Rd

uhdμ
′
ε =

∫
Rd

ϕ∗
hd(με − μ′

ε)

≤ Dp,R Wp(με, μ
′
ε)(1 + mp(με) + mp(μ

′
ε))

≤ Dp,R Wp(μ,μ′)(1 + 2Cε + mp(μ) + mp(μ
′)),

where we used (4.19) and (4.21). We hence deduce that for every k ∈ N

∣∣Gk(μ) − Gk(μ
′)
∣∣ ≤ Dp,R Wp(μ,μ′)(1 + 2Cε + mp(μ) + mp(μ

′))
for every μ,μ′ ∈ Pp(R

d). (4.23)

Choosing μ′ ∈ G and passing to the limit as k → +∞ we get from (4.23) that∣∣∣∣ lim
k→+∞ Gk(μ) − Fε

ν (μ′)
∣∣∣∣ ≤ Dp,R Wp(μ,μ′)(1 + 2Cε + mp(μ) + mp(μ

′))

for every μ ∈ Pp(R
d), μ′ ∈ G.

Using the density of G and the continuity of μ′ �→ Fε
ν (μ′) we deduce that

lim
k→+∞ Gk(μ) = Fε

ν (μ) for every μ ∈ Pp(R
d)

proving the first claim.

Claim 2 If Hk : = ζ ◦ Gk and uh,ε : = uh ∗ κε , it holds

|DHk |p′
�,q,A (μ) ≤ (

ζ ′(Gk(μ))
)p′ ∫

Rd

∥∥∇uh,ε

∥∥p′
∗ dμ = (

ζ ′(Gk(μ))
)p′

∫
Rd

∥∥∇(ϕ∗
h ∗ κε)

∥∥p′
∗ dμ,

for m-a.e. μ ∈ Bk
h , where Bk

h : = {μ ∈ Pp(R
d) : Gk(μ) = ∫

Rd uhdμε}, h ∈ {1, . . . , k}.
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Proof of claim 2 For every h ∈ N, (3.13) and (3.12) (also using (3.15)) yield

uh,ε(x) ≥ 1

4p
‖x‖p + ah − Ap,R,ε, ‖∇uh,ε(x)‖∗ ≤ Ap,R,ε(1 + ‖x‖p−1)

for every x ∈ R
d , (4.24)

where Ap,R,ε > 0 is a constant depending only on p, R, ε. Since the map �h : Pp(R
d) → R

defined as �h(μ): = ∫
Rd uhdμε satisfies

�h(μ) =
∫
Rd

(uh ∗ κε)dμ = Luh,ε
(μ), μ ∈ Pp(R

d),

Lemma 4.11 and the above estimates yield

|D(ζ ◦ �h)|�,q,A (μ) ≤ ζ ′(�h(μ))
( ∫

Rd

∥∥∇uh,ε

∥∥p′
∗ dμ

)1/p′
for m -a.e. μ ∈ Pp(R

d).

Since Hk can be written as

Hk(μ) = max
1≤h≤k

(ζ ◦ �h)(μ), μ ∈ Pp(R
d),

we can apply Theorem 2.5 (4) and conclude the proof of the second claim.

Claim 3 For every R > 0 there exists a constant C > 0 independent of h such that

( ∫
Rd

∥∥∇uh,ε

∥∥p′
∗ dμ

)1/p′
≤ C whenevermp(μ) ≤ R. (4.25)

Proof of Claim 3 It is sufficient to use (4.24).

Claim 4 Let (hn)n ⊂ N be an increasing sequence and letμ ∈ Pp(R
d). If limn

∫
Rd uhndμε =

Fε
ν (μ), then

lim sup
n

∫
Rd

∥∥∇(ϕ∗
hn

∗ κε)
∥∥p′

∗ dμ ≤ W p
p (ν, με).

Proof of claim 4 Since
∥∥∇(ϕ∗

hn
∗ κε)(x)

∥∥p′
∗ ≤

(∥∥∇ϕ∗
hn

∥∥p′
∗ ∗ κε

)
(x) for every x ∈ R

d ,

we get that
∫
Rd

∥∥∇(ϕ∗
hn

∗ κε)
∥∥p′

∗ dμ ≤
∫
Rd

(∥∥∇ϕ∗
hn

∥∥p′
∗ ∗ κε

)
dμ

=
∫
Rd

∥∥∇ϕ∗
hn

∥∥p′
∗ dμε.

It is then enough to prove that

lim sup
n

∫
Rd

∥∥∇ϕ∗
hn

∥∥p′
∗ dμε ≤ W p

p (ν, με). (4.26)

Let us set φn : = ϕhn and ψn : = ϕ∗
hn

and let us extract a (unrelabeled) subsequence such that

the lim sup in the statement of the claim is achieved as a limit. Since φn − 1
p ‖x‖p ≤ 0 for
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every x ∈ R
d and ν B‖·‖(0, R) ≥ δLd B‖·‖(0, R), we have

∫
B‖·‖(0,R)

φn dLd =
∫
B‖·‖(0,R)

(
φn(x) − 1

p
‖x‖p

)
dLd(x) + 1

p
mp

p(Ld B‖·‖(0, R))

≥ 1

δ

∫
B‖·‖(0,R)

φn dν − 1

p
mp

p(ν B‖·‖(0, R)) + 1

p
mp

p(Ld B‖·‖(0, R)).

(4.27)

By the convergence of
∫
Rd uhndμε to Fε

ν (μ), we can find N ∈ N such that
∫
B‖·‖(0,R)

φn dν ≥ −1 −
∫
Rd

ψn dμε ≥ −1 − K p,R
(
1 + mp

p(με)
)

for every n ≥ N ,

where the last inequality comes from (3.11). Combining the above inequality with (4.27) we
get that there exists some I > 0 such that

∫
B‖·‖(0,R)

φn dLd ≥ −I for every n ∈ N. (4.28)

We can thus apply Proposition 3.4 and obtain the existence of a subsequence j �→ n( j) and
two locally Lipschitz functions φ andψ such that φn( j) → φ locally uniformly in B‖·‖(0, R),
ψn( j) → ψ locally uniformly in R

d and (3.19) holds. Being the inequality

φn( j)(x) + ψn( j)(y) ≤ 1

p
‖x − y‖p for every (x, y) ∈ B‖·‖(0, R) × R

d

satisfied for every j ∈ N, we can pass to the limit and obtain point (i) in Theorem 3.1 for the
pair (φ, ψ). Since φn(x) ≤ 1

p ‖x‖p for every x ∈ R
d we get by Fatou’s lemma that

−I ≤ lim sup
j

∫
B‖·‖(0,R)

φn( j) dν ≤
∫
B‖·‖(0,R)

lim sup
j

φn( j)(x) dν(x)

=
∫
B‖·‖(0,R)

φ dν ≤ 1

p
mp

p(ν). (4.29)

This in particular gives thatφ ∈ L1(B‖·‖(0, R), ν). By (3.11)wehave that |ψ(y)| ≤ K p,R(1+
‖y‖p) so that ψ ∈ L1(Rd , μ) and we can also apply the dominated convergence theorem
and obtain that

lim
j

∫
Rd

ψn( j) dμε =
∫
Rd

ψ dμε. (4.30)

Combining (4.29) with (4.30) and using that limn
∫
Rd uhn dμε = Fε

ν (μ), we get point (ii) in
Theorem 3.1 for the pair (φ, ψ), so that, by the first part of Theorem 3.1, we conclude that

∫
Rd

‖∇ψ‖p′
∗ dμε = W p

p (ν, με).

Then, since by (3.12) there exists a constant K p,R > 0 such that

‖∇ψn( j)(y)‖p′
∗ ≤ K p′

p,R(1 + ‖y‖p−1)p′ ≤ 2p′
K p′

p,R(1 + ‖y‖p) ∈ L1(Rd , μ)

for Ld -a.e. y ∈ R
d ,
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and for every j ∈ N, we can use the dominated convergence theorem to conclude that

lim sup
n

∫
Rd

‖∇ψn‖p′
∗ dμε = lim

j

∫
Rd

‖∇ψn( j)‖p′
∗ dμε =

∫
Rd

‖∇ψ‖p′
∗ dμε = W p

p (ν, με).

This concludes the proof of the fourth claim.

Claim 5 It holds

lim sup
k

|DHk |�,q,A (μ) ≤ ζ ′(Fε
ν (μ))W p/p′

p (ν, με) for m -a.e. μ ∈ Pp(R
d).

Proof of claim 5 Let B ⊂ Pp(R
d) be defined as

B: =
⋂

k

k⋃
h=1

Ak
h,

where Ak
h is the full m-measure subset of Bk

h where claim 2 holds. Notice that B has full
m-measure. Let μ ∈ B be fixed and let us pick an increasing sequence k �→ hk such that

Gk(μ) =
∫
Rd

uhkdμε.

By claim 1 we know that Gn(μ) → Fε
ν (μ) so that we can apply claim 4 and conclude that

(ζ ′(Fε
ν (μ)))p′

W p
p (ν, με) ≥ lim sup

k
(ζ ′(Gk(μ)))p′

∫
Rd

∥∥∇(ϕ∗
hk

∗ κε)
∥∥p′

∗ dμ.

By claim 2, the right hand side is greater than lim supk |DHk |p′
�,q,A (μ); this concludes the

proof of the fifth claim.
Eventually, we observe that by Claim 1

(ζ ◦ Fε
ν )(μ) = lim

k→∞(ζ ◦ Gk)(μ) = lim
k→∞ Hk(μ) for every μ ∈ Pp(R

d). (4.31)

Moreover, it is clear that

(ζ ′(Fε
ν (μ)))p′

W p
p (ν, με)

is uniformly bounded. We can then combine the expression of Claim 2, the uniform estimate
of Claim 3, the limit of Claim 5 with Lemma 4.10 to get (4.22). ��

Precisely as in [12, Corollary 4.18] we get the following corollary (its proof can be easily
adapted and thus omitted).

Corollary 4.14 Let ν ∈ Pr
p(R

d) be such that suppν = B‖·‖(0, R) and ν B‖·‖(0, R) ≥
δLd B‖·‖(0, R) for some δ, R > 0. Then

|DWν |�,q,A (μ) ≤ 1 for m-a.e. μ ∈ Pp(R
d). (4.32)

The following theorem provides the main result of this subsection. Recall the notation for
Wasserstein spaces as in Sect. 3 and the definition of density in q-energy as in Definition 2.7.

Theorem 4.15 Let d ∈ N, let p, q ∈ (1,+∞) be (not necessarily conjugate) fixed exponents
and let ‖ · ‖ be any norm on R

d . Then the algebra C
(P(Rd), C1

b(R
d)

)
is dense in q-energy

in D1,p(Pp(R
d ,d‖·‖), Wp,d‖·‖ ,m), where d‖·‖ is the distance induced by the norm ‖ · ‖.
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Proof Let us first suppose that ‖ · ‖ is a norm as in (3.3). Then the density result follows by
Corollary 4.14 and Theorem 2.9, since the set of ν ∈ Pr

p(R
d) such that there exist R, δ > 0

for which supp(ν) = B‖·‖(0, R) and ν B‖·‖(0, R) ≥ δL d B‖·‖(0, R) is dense inPp(R
d).

This can be seen defining for every ε ∈ (0, 1) the measures

ν̂ε: = νε B‖·‖(0, 1/ε) + εd+p+1Ld B‖·‖(0, 1/ε)
νε(B‖·‖(0, 1/ε)) + εd+p+1Ld(B‖·‖(0, 1/ε))

,

so that ν̂ε → ν inPp(R
d), supp(ν) = B‖·‖(0, 1/ε) and ν̂ε B‖·‖(0, 1/ε) ≥ εd+p+1

1+εd+p+1ωε,d
L d

B‖·‖(0, 1/ε), where ωε,d is the Ld -measure of B‖·‖(0, 1/ε).
Let us suppose now that ‖ · ‖ is any norm on R

d . We can construct a sequence of norms
(‖ · ‖k)k on Rd satisfying (3.3) and such that

‖x‖k ↑ ‖x‖ for every x ∈ R
d .

For example we can take as ‖ · ‖k the norm whose unit ball is given by the set

Ck : =
{

x ∈ R
d : ‖x‖ + |x |2/k

1 + η2/k

}
+ B‖·‖(0, 1/k),

where | · | is the Euclidean norm on R
d and η > 0 is a constant such that |x | ≤ η‖x‖ for

every x ∈ R
d . Notice that by construction Ck is strictly convex, it contains the ‖ · ‖-unit ball

and it satisfies the 1/k-ball condition so that its boundary is C1,1 (see [9, Definition 1.1 and
Theorem 1.8]). Also by construction we have that ‖ · ‖k ↑ ‖ · ‖ as k → +∞.

Let us denote by Wp,k the (p,d‖·‖k )-Wasserstein distance on Pp(R
d) = Pp(R

d ,d‖·‖) =
Pp(R

d ,d‖·‖k ). We have that

Wp,k(μ, ν) ↑ Wp,d‖·‖(μ, ν) for every μ, ν ∈ Pp(R
d)

and, being the norms ‖ · ‖ and ‖ · ‖k equivalent, then the distances Wp,k and Wp,d‖·‖ induce
the same topology onPp(R

d). Let F ∈ Lipb(Pp(R
d), Wp,d‖·‖); by [22, Proposition 3.3] (see

also [1, Theorem 9.1]), we can find a subsequence (kn)n such that, for every n ∈ N, there
exists Fn ∈ Lipb(Pp(R

d), Wp,kn ) such that3

‖F − Fn‖Lq (Pp(Rd ),m) < 1/n, pCEq,Wp,kn
(Fn) ≤ pCEq,Wp,d‖·‖

(F) + 1/n.

Since A = C
(P(Rd),C1

b(R
d)

)
is dense in q-energy in D1,p(Pp(R

d ,d‖·‖kn
), Wp,kn ,m) by

the first part of the proof, we have that

CEq,A ,Wp,d‖·‖ (Fn) ≤ CEq,A ,Wp,kn
(Fn) ≤ pCEq,Wp,kn

(Fn) ≤ pCEq,Wp,d‖·‖
(F)

+1/n for every n ∈ N.

Passing to the lim infn we get that

CEq,A ,Wp,d‖·‖ (F) ≤ pCEq,Wp,d‖·‖
(F),

which gives the desired density, since this entails equality of the Cheeger energies and thus
of the minimal relaxed gradients (see also Remark 2.8). ��

Arguing precisely as in [12, Proposition 4.19], it is not difficult to see that we can obtain
the density result also for smaller algebras of functions on Rd .

3 Here we are adding a subscript both in the notation for the Cheeger and the pre-Cheeger energy to specify
the distance w.r.t. which they are computed.
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Proposition 4.16 Let d ∈ N, p, q ∈ (1,+∞) and let ‖·‖ be any norm onRd . LetE ⊂ C1
b(R

d)

be an algebra of functions such that for every f ∈ C1
b(R

d) there exists a sequence ( fn)n ⊂ E
such that

sup
Rd

| fn | + |∇ fn | < +∞, lim
n→+∞

∫
Rd

(| fn − f | + |∇ fn − ∇ f |) dμ

= 0 for m -a.e. μ ∈ Pp(R
d ,d‖·‖).

Then the algebra C
(P(Rd), E

)
is dense in q-energy in D1,p(Pp(R

d ,d‖·‖), Wp,d‖·‖ ,m).

Remark 4.17 A possible choice for E in Proposition 4.16 is

Pd,C : =
{
ϕ ∈ C1

b(R
d) : ϕ

∣∣[−C,C]d is a polynomial
}

(4.33)

where C > 0 is any positive constant.

4.3 The density result in (X, d)

In this subsectionwe prove the density in energy of suitable cylinder functions for an arbitrary
separable metric space (X ,d). We consider on (X ,d) a sequence �: = (φk)k ⊂ Lipb(X ,d)

such that

d(x, y) = sup
φ∈�

|φ(x) − φ(y)| = sup
k

|φk(x) − φk(y)| for all x, y ∈ (X ,d), (4.34)

and we define

�(d): = max
1≤k≤d

‖φk‖∞, d ∈ N. (4.35)

We will have to embed (X ,d) into �∞(N) and, for this reason, we need to fix some related
notation.

We consider the family of maps E : = {ei }i∈N ⊂ (�∞(N))∗, where for every i ∈ N, ei is
defined as

ei : �∞(N) → R, ei ((xk)k) = xi for every (xk)k ∈ �∞(N).

We consider the collection of maps πd : �∞(N) → R
d , d ∈ N, given by

πd((xk)k): = (e1((xk)k), . . . , ed((xk)k) = (x1, . . . , xd), for every (xk)k ∈ �∞(N).(4.36)

The adjoint map πd∗ : Rd → (�∞(N))∗ is given by

πd∗(y1, · · · , yd): =
d∑

i=1

yi ei , for every (y1, . . . , yd) ∈ R
d . (4.37)

We say that a function φ : �∞(N) → R belongs to C1
b(�

∞(N), E,�) if it can be written as

φ: = ϕ ◦ πd for some d ∈ N, ϕ ∈ Pd,�(d), (4.38)

where Pd,�(d) is as in (4.33) and �(d) is as in (4.35). Clearly φ ∈ C1
b(�

∞(N)) and its
gradient ∇φ can be written as

∇φ = πd∗ ◦ ∇ϕ ◦ πd , ∇φ(x) =
d∑

i=1

∂iϕ(πd(x))ei , x ∈ �∞(N). (4.39)
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OnP(�∞(N)),we consider the algebra of cylinder functionsA ′: = C
(P(�∞(N)),C1

b(�
∞(N),

E,�)
)
(recall Definition 4.1). For every F ∈ A ′ we can find N ∈ N, a functionψ ∈ C1

b(R
N )

and functions φn ∈ C1
b(�

∞(N), E,�), n = 1, · · · , N , such that

F(μ) = (ψ ◦ Lφ)(μ) for every μ ∈ P(�∞(N)). (4.40)

It is also easy to check that a function F belongs to A ′ if and only if there exists d ∈ N and
F̃ ∈ C

(P(Rd),Pd,�(d)

)
such that

F(μ) = F̃(πd
� (μ)) for every μ ∈ P(�∞(N)), (4.41)

so that, by Proposition 4.7, we have

Dp F(μ, x) = πd∗(Dp F̃(πd
� μ, πd(x))

)
, (4.42)

‖Dp F[μ]‖∗,p′,μ = ‖Dp F̃[πd
� μ]‖∗,p′,πd

� μ = lipWp,d‖·‖d,∞
F̃(πd

� μ), (4.43)

where we are using ‖ · ‖∗,∞, the dual norm of ‖ · ‖∞ (the norm in �∞(N)), for Dp F[μ](x),
x ∈ �∞(N), and the norm ‖y‖∗,d : = ‖πd,∗(y)‖∗,∞ for Dp F̃[πd

� μ](y), y ∈ R
d . Notice

that ‖ · ‖∗,d is the 1-norm on R
d ; in particular, the dual norm ‖ · ‖d,∞ on R

d of ‖ · ‖∗,d

is the ∞-norm on R
d . The proof of the following theorem combines the finite dimensional

projections technique of [12, Theorem 6.4] with a standard embedding strategy.

Theorem 4.18 Let (X ,d) be a complete and separable metric space and let {φk}k∈N ⊂
Lipb(X ,d) be a countable set of functions such that

d(x, y) = sup
k∈N

|φk(x) − φk(y)|, for every x, y ∈ X ,

and let E ⊂ Lipb(X ,d) be the smallest unital subalgebra of functions on X containing
{φk}k∈N. Finally, let p, q ∈ (1,+∞) be (not necessarily conjugate) fixed exponents and let
m be a positive and finite Borel measure on Pp(X ,d); then the algebra of cylinder functions
generated by E , C

(P(X), E
)
, is dense in q-energy in D1,q(Pp(X ,d), Wp,d,m).

Proof Let us consider the map ι : X → �∞(N) defined as

ι(x) = (φk(x))k, x ∈ X .

Then ι is an isometry between the metric spaces (X ,d) and (ι(X), ‖ · ‖′), where ‖ · ‖′ is the
restriction to ι(X) of the norm ‖ · ‖∞ in �∞(N). This of course implies that J : Pp(X ,d) →
Pp(ι(X),d‖·‖′) defined as

J(μ) : = ι�μ, μ ∈ Pp(X ,d),

is an isometry between the metric spaces Pp(X ,d) and Pp(ι(X),d‖·‖′). If we set A : =
J∗(A ′) and m̃: = J�m, where

J∗F = F ◦ J, F ∈ A ′,

then the spaces H1,q(Pp(X ,d), Wp,d,m;A ) and H1,q(Pp(ι(X),d‖·‖′), Wp,d‖·‖′ , m̃;A ′)
are isomorphic (see [25,Theorem5.3.3]).Moreoverwe can see thatA ⊂ E so that it is enough
to prove that the algebra A ′ is dense in q-energy in D1,q(Pp(ι(X),d‖·‖′), Wp,d‖·‖′ , m̃). To
this aim, by Theorem 2.9, it suffices to fix ν ∈ Pp(ι(X),d‖·‖′) and prove that the function

F(μ): = Wp,d‖·‖′ (ν, μ) satisfies |DF |�,q,A ′ ≤ 1 m -a.e.. (4.44)
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We split the proof in two steps.
Step 1: it is sufficient to prove that, for everyh ∈ N, the function Fh : Pp(ι(X),d‖·‖′) → R

Fh(μ): = Wp,d‖·‖∞ (π̂h
� ν, π̂h

� μ) satisfies |DFh |�,q,A ′ ≤ 1 m -a.e., (4.45)

where π̂h : �∞(N) → �∞(N) is defined as

π̂h((xk)k): = (x1, . . . , xk, 0, . . . ), (xk)k ∈ �∞(N).

In fact, using the continuity property of the Wasserstein distance, it is clear that for every
μ ∈ Pp(ι(X),d‖·‖′)

lim
n→∞ Fh(μ) = F(μ), (4.46)

so that it is enough to apply Theorem 2.5(1)-(3) to obtain (4.44).
Step 2: Let h ∈ N be fixed and let us denote by Wp,h the Wasserstein distance on

Pp(R
h,d‖·‖h,∞), where ‖ · ‖h,∞ is the ∞ norm on R

h . It is easy to check that

Wp,h(πh
� μ0, π

h
� μ1) = Wp,d‖·‖∞ (π̂h

� μ0, π̂
h
� μ1) for every μ0, μ1 ∈ Pp(ι(X),d‖·‖′).

Thus, if we define the function F̃h : Pp(R
h,d‖·‖h,∞) → R as

F̃h(μ): = Wp,h(πh
� ν, μ)

we get that

Fh(μ) = F̃h(πh
� μ).

Wealso introduce themeasuremh which is the push-forwardofm through the (1-Lipschitz)
map Ph : Pp(ι(X),d‖·‖′) → Pp(R

h,d‖·‖h,∞) defined as Ph(μ): = πh
� μ. By Theorem 4.15

applied to H1,q(Pp(R
h,d‖·‖h,∞), Wp,d‖·‖h,∞ ,mh), we can find a sequence of cylinder func-

tions F̃h,n ∈ C
(P(Rh),Ph,�(h)

)
, n ∈ N, such that

F̃h,n → F̃h in mh -measure, (4.47)

lipWp,d‖·‖h,∞
F̃h,n → gh in Lq(Pp(R

h,d‖·‖h,∞),mh) with gh ≤ 1mh -a.e. (4.48)

We thus consider the functions Fh,n ∈ A ′ defined as in (4.41) by

Fh,n(μ) := F̃h,n(πh
� μ) = F̃h,n(Ph(μ)) for every μ ∈ P(ι(X)). (4.49)

Since for every ε > 0

m
({

μ : |Fh,n(μ) − Fh(μ)| > ε
}) = m

({
μ : |F̃h,n(Ph(μ)) − F̃h(Ph(μ))| > ε

})

= mh

({
μ : |F̃h,n(μ) − F̃h(μ)| > ε

})
,

(4.47) yields that Fh,n → Fh in m-measure as n → ∞.
On the other hand, (4.43) and Remark 4.8 yield

lipWp,d‖·‖′
Fh,n(μ) ≤ lipWp,h

F̃h,n(Ph(μ))

so that, up to a unrelabeled subsequence, we have

lipWp,d‖·‖′
Fh,n⇀Gh ≤ gh ◦ Ph in Lq(Pp(B,d‖·‖),m)
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and gh ◦ Ph ≤ 1 m-a.e. in Pp(ι(X),d‖·‖′). By Theorem 2.5(1)-(3), we obtain (4.45), con-
cluding the proof. ��
Corollary 4.19 Let (B, ‖ · ‖) be a separable Banach space and let m be a positive and finite
Borel measure on Pp(B,d‖·‖). Then the algebra C

(P(B), C1
b(B)

)
is dense in q-energy in

D1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m).

Proof It is enough to consider the functions of the form φk(x): = 〈x∗
k , x〉, x ∈ B, where

{x∗
k }k∈N is a subset of unit sphere inB∗ separating the points inB. Notice that each φk belongs

to C1
b(B). ��

Corollary 4.20 Let (M, g) be a complete Riemannian manifold and let m be a positive and
finite Borel measure on Pp(M,dg), where dg is the Riemannian distance induced by g. Then
the algebra C

(P(M), C∞
c (M)

)
is dense in q-energy in D1,q(Pp(M,dg), Wp,dg ,m).

Proof It is enough to consider a sequence of functions (φk)k ⊂ C∞
c (M) satisfying (4.34) for

dg . ��

5 Reflexivity, uniform convexity and Clarkson’s inequalities

The aim of this section is to study how some properties of a Banach space (or its dual) pass to
the Wasserstein Sobolev space built on it. In the whole section (B, ‖ · ‖) is a fixed separable
Banach space and m is a positive and finite Borel measure on Pp(B,d‖·‖).

To study the properties of the pre-Cheeger energy as in (4.15) we will use the concept of
Lq -direct integral of Banach spaces ( [10, 17]) (see also the related notion of Banach bundle
[23]), that we introduce here briefly in the form that it is best suited to our needs. Let V be
the vector space of functions

V : =
{

f : B → B
∗ : f is measurable and

∫
B

‖ f (x)‖p′
∗ dμ(x) < +∞ for m -a.e. μ ∈ Pp(B,d‖·‖)

}
.

It is not difficult to check that, for every f ∈ V , the map M f : Pp(B,d‖·‖) → R defined as

M f (μ): = ‖ f ‖L p′
(B,μ;(B∗,‖·‖∗)), μ ∈ Pp(B,d‖·‖),

is measurable. Let us denote by ‖·‖∗,p′,μ the L p′
(B, μ; (B∗, ‖ · ‖∗))-norm on the completion

of Vμ: = V / ∼μ, where ∼μ is the equivalence relation of the equality μ-a.e.. We say
that s : Pp(B,d‖·‖) → ⊔

μ Vμ (i.e. s(μ) ∈ Vμ for every μ ∈ Pp(B,d‖·‖)) is a simple

function if there exist a finite measurable partition of Pp(B,d‖·‖), {Ak}N
k=1, and values

{ fk}N
k=1 ⊂ V such that s(μ) = ∑N

k=1 χAk
(μ) fk for every μ ∈ Pp(B,d‖·‖). A function

G : Pp(B,d‖·‖) → ⊔
μ Vμ is said to be Bochner measurable if there exists a sequence of

simple functions (sk)k such that ‖G(μ) − sk(μ)‖∗,p′,μ → 0 for m-a.e. μ ∈ Pp(B,d‖·‖).
The direct integral of (Vμ)μ with respect to m is the vector space of Bochner measurable
functions G : Pp(B,d‖·‖) → ⊔

μ Vμ modulo equivalence m-a.e. and it is denoted by∫ ⊕
Pp(B,d‖·‖) Vμdm(μ). The Lq direct integral

(∫ ⊕
Pp(B,d‖·‖) Vμdm(μ)

)
Lq

of (Vμ)μ with respect

to m is the subspace of
∫ ⊕
Pp(B,d‖·‖) Vμdm(μ) consisting of those functions G such that the

(measurable) map μ �→ ‖G(μ)‖∗,p′,μ is in Lq(Pp(B,d‖·‖),m).
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Proposition 5.1 Let (B, ‖ · ‖) be a separable Banach space. Then
(∫ ⊕

Pp(B,d‖·‖) Vμdm(μ)
)

Lq

is a Banach space. If, in addition, (B, ‖ · ‖) is reflexive (resp. (B∗, ‖ · ‖∗) is uniformly

convex), then
(∫ ⊕

Pp(B,d‖·‖) Vμdm(μ)
)

Lq
is reflexive (resp. uniformly convex). Finally, if F ∈

C
(P(B), C1

b(B)
)
, then Dp F ∈

(∫ ⊕
Pp(B,d‖·‖) Vμdm(μ)

)
Lq

.

Proof The completeness property can be found in [10, Proposition 3.2] (see also [17] where
the notion of direct integral was introduced for the first time).

If (B∗, ‖ · ‖∗) is uniformly convex, then we can use [15, Theorem 2.2], together with the
fact that Lq(Pp(B,d‖·‖),m) is uniformly convex and that the modulus of convexity of Vμ

is larger than the one of L p′
(B, μ; (B∗, ‖ · ‖)), being Vμ just a subspace of the latter, and

the fact that the modulus of convexity of the Bochner space L p′
(B, μ; (B∗, ‖ · ‖)) does not

depend on μ but only on p′ and on the modulus of convexity of the uniformly convex space
(B∗, ‖ · ‖∗).

If B is reflexive, then also B
∗ and thus L p′

(B, μ; (B∗, ‖ · ‖∗)) is reflexive so that we can
apply [17, Theorem 6.19], also noting that, obviously, Lq(Pp(B,d‖·‖),m) is reflexive.
Let now F = ψ ◦ Lφ ∈ C

(P(B),C1
b(B)

)
, with ψ ∈ C1

b(R
N ) and φ ∈ (C1

b(B))N , for
some N ∈ N; notice that we are looking at Dp F as the map sending μ ∈ Pp(B,d‖·‖) to
Dp[μ] : B → B

∗. Of course Dp F[μ] ∈ Vμ for every μ ∈ Pp(B,d‖·‖) and it is uniformly
bounded. Moreover it is Bochner measurable since, in order to approximate it with simple
functions, it is enough to approximate every term of the form ∂ψn(

∫
B

φ1dμ, . . . ,
∫
B

φNdμ)

with R-valued simple function (sn
k )k on Pp(B,d‖·‖) (which is possible since this map is

measurable) so that

sk(μ): =
N∑

n=1

sn
k (μ)∇φn, μ ∈ Pp(B,d‖·‖),

is a sequence of simple functions approximating Dp F . ��

Theorem 5.2 Let (B, ‖ · ‖) be a separable reflexive Banach space, let p, q ∈ (1,+∞) be
(not necessarily conjugate) fixed exponents and let m be a positive and finite Borel measure
on Pp(B,d‖·‖). Then the Sobolev space H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m) is reflexive.

Proof It is sufficient to provide a linear isometry ι from H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m) into
a reflexive Banach space. For simplicity let us denote by

X : = Lq(Pp(B,d‖·‖),m), Y : =
(∫ ⊕

Pp(B,d‖·‖)
Vμdm(μ)

)

Lq

and let us defineG ⊂ X ×Y as the closure in X ×Y (endowed with the norm ‖(x, y)‖q
X×Y =

‖x‖q
X + ‖y‖q

Y ) of

{(F,Dp F) : F ∈ C
(P(B),C1

b(B)
)}.

Denoting by π X : X × Y → X the projection π X (x, y) = x for every x ∈ X , we define the
sections of G by

DmF : = {G ∈ Y : (F, G) ∈ G}, F ∈ π X (G).
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It is clear that G is closed and convex so that it is also weakly closed; let us show that
H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m) ⊂ π X (G): if F ∈ H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m), by Corol-
lary 4.19, we can find a sequence (Fn)n ⊂ C

(P(B),C1
b(B)

)
such that

Fn → F, lipWp,d‖·‖
Fn → |DF |�,q in X .

By Proposition 4.7, we have that ‖Dp Fn‖Y is uniformly bounded so that, by the reflexivity
of Y , we can find a subsequence of (Fnk )k such that

(Fnk ,Dp Fnk )⇀(F, G) in X × Y .

This gives that F ∈ π X (G) and that ‖G‖Y ≤ CE1/q
q (F). Moreover, if we con-

sider F ∈ H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m) and G ∈ DmF , then there exists (Fn)n ⊂
C
(P(B),C1

b(B)
)
such that (Fn,Dp F) → (F, G) in X ×Y so that ‖G‖Y = limn ‖Dp Fn‖Y =

limn pCE
1/q
q (Fn) ≥ CE1/q

q (F) so that

min
G∈DmF

‖G‖Y = CE1/q
q (F), F ∈ H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m).

We define G0: = G/({0} × Dm0) with the quotient norm ‖ · ‖Y ,0: elements of G0 are
equivalence classes [F] = {(F, G) : G ∈ DmF} and the quotient norm is simply given by

‖[F]‖Y ,0 = inf
G∈DmF

(‖F‖q
X + ‖G‖q

Y )
)1/q =

(
‖F‖q

X + min
G∈DmF

‖G‖q
Y )

)1/q

= ‖F‖H1,q (Pp(B,d‖·‖),Wp,d‖·‖ ,m).

The linear isometry is thus given by ι : H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m) → G0 defined as

ι(F) = [F], F ∈ H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m).

Since closed subspaces of reflexive spaces are reflexive and quotients of reflexive spaces are
reflexive, G0 is reflexive and this concludes the proof. ��

The next result [31, Lemma 2] provides a quantitative version of the uniform convexity
property that will pass from the pre-Cheeger energy to the Cheeger energy.

Proposition 5.3 Let (W , ‖ · ‖W ) be a Banach space. Then (W , ‖ · ‖W ) is uniformly convex if
and only if for every t ∈ (1,+∞) there exists a strictly increasing and continuous function
gt : [0, 2] → [0,+∞) such that

∥∥∥∥ x + y

2

∥∥∥∥
t

W

+ (‖x‖W ∨ ‖y‖W )t gt

( ‖x − y‖W
‖x‖W ∨ ‖y‖W )

)
≤ 1

2
‖x‖t

W + 1

2
‖y‖t

W

for every x, y ∈ W .

Theorem 5.4 Let (B, ‖ · ‖) be a separable Banach space such that (B∗, ‖ · ‖∗) is uni-
formly convex, let p, q ∈ (1,+∞) be (not necessarily conjugate) fixed exponents and
let m be a positive and finite Borel measure on Pp(B,d‖·‖). Then the Sobolev space
H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m) is uniformly convex.

Proof By the uniform convexity of
(∫ ⊕

Pp(B,d‖·‖) Vμdm(μ)
)

Lq
provided by Proposition 5.1

and using Proposition 5.3, we have that for every t ∈ (1,+∞) there exists a continuous and
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strictly increasing function gt : [0, 2] → [0,+∞) such that

pCEq

(
1

2
(F + G)

)t/q

+
(
pCE1/q

q (F) ∨ pCE1/q
q (G)

)t
gt

(
pCE1/q

q (F − G)

pCE1/q
q (F) ∨ pCE1/q

q (G)

)

≤ 1

2
pCEt/q

q (F) + 1

2
pCEt/q

q (G) for every F, G ∈ C
(P(B),C1

b(B)
)
,

(5.1)

where we are able to identify the norm in the direct integral and the q-th root of the pre-
Cheeger energy thanks to Proposition 4.7. If F, G ∈ H1,q(Pp(B,d‖·‖), Wp,d‖· ,m), thanks
to Corollary 4.19, we can find sequences (Fn)n, (Gn)n ⊂ C

(P(B),C1
b(B)

)
such that

Fn → F, Gn → G in Lq (Pp(B,d‖·‖),m), pCEq (Fn) → CEq(F), pCEq (Gn) → CEq (G).

By the lower semicontinuity of the Cheeger energy w.r.t. the Lq convergence and the con-
tinuity and monotonicity of gt , we obtain that (5.1) holds for CEq instead of pCEq . By

Proposition 5.3 we obtain that CE1/q
q is uniformly convex, in the sense that, for every ε > 0

there exists a δ(ε) > 0 such that, whenever F, G ∈ H1,q(Pp(B,d‖·‖), Wp,d‖·‖ ,m) are such

that CE1/q
q (F) = CE1/q

q (G) = 1 and CE1/q
q (F − G) ≥ ε, then CE1/q

q (F + G) < 2(1 − δ(ε)).
Since the Lq(Pp(B,d‖·‖,m)-norm is uniformly convex, the q-sum (i.e. the q-th root of the

sum of the q-powers) of it with CE1/q
q is uniformly convex (see e.g. [8, Theorem 1]). This

means that the Sobolev norm is uniformly convex and concludes the proof. ��
Given a separable Banach space (B, ‖ · ‖) and a positive and finite Borel measurem on B,

we can consider the measure D�m on P(B,d‖·‖), where D : B → P(B,d‖·‖) is defined as

D(x): = δx , x ∈ B.

It is immediate to check that, for every q ∈ (1,+∞), the Sobolev spaces H1,q(B,d‖·‖,m)

and H1,q(P2(B,d‖·‖), W2,d‖·‖ ,D�m) are isomorphic, see also [12, Section 5.2]. Notice that
the choice p = 2 is irrelevant, since D(B) ⊂ Pp(B,d‖·‖) for every p ∈ [1,+∞]. As a
consequence of this observation and Theorems 5.2 and 5.4 we obtain the following corollary.

Corollary 5.5 Let (B, ‖·‖) be a separable Banach space, let q ∈ (1,+∞) be a fixed exponent,
and letm be a positive and finite Borel measure onB. If (B, ‖·‖) is reflexive (resp. if (B∗, ‖·‖∗)
is uniformly convex), then H1,q(B,d‖·‖,m) is reflexive (resp. uniformly convex).

We remark that the statement regarding reflexivity in the above corollary was already
known (see e.g. [25, Corollary 5.3.11]) while the part concerning uniform convexity is new,
at least to our knowledge.

5.1 Clarkson’s type inequalities

In this subsection we show how one can deduce Clarkson’s type inequalities for the Sobolev
norm starting from analogous inequalities that are satisfied for the dual norm in the separable
Banach space B. The following inequality was introduced for the first time by [6] and it is a
generalization of the classical Clarkson’s inequalities [8].

Definition 5.6 Let V be a real vector space and let r , s ∈ (1,+∞). We say that a functional
J : V → [0,+∞) satisfies the (r , s)-Boas inequality ((r , s)-(BI)) in V if

(J(u + v)r + J(u − v)r )1/r ≤ 21/s′ (J(u)s + J(v)s)1/s for every u, v ∈ V .
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Lemma 5.7 Let V be a real vector space, let q ∈ (1,+∞) and let J1,J2 : V → [0,+∞) be
two functionals satisfying the (r , s)-(BI) in V for some r , s ∈ (1,+∞) such that s ≤ q ≤ r .
Then the functional J : V → [0,+∞) defined as

J(u): = (J1(u)q + J2(u)q)1/q
, u ∈ V ,

satisfies the (r , s)-(BI) in V as well.

Proof Let u, v ∈ V ; let us set

a0 := J1(u + v), b0 := J1(u − v), c0: = J2(u + v), d0 := J2(u − v),

a := J1(u), b := J1(v), c := J2(u), d := J2(v).

Since J1 and J2 satisfy the (r , s)-(BI) in V , we have
(
ar
0 + br

0

)1/r ≤ 21/s′ (
as + bs)1/s

, (5.2)(
cr
0 + dr

0

)1/r ≤ 21/s′ (
cs + ds)1/s

. (5.3)

Then

21/s′ (J(u)s + J(v)s)1/s = 21/s′ (
(aq + cq)s/q + (bq + dq)s/q)1/s

= 21/s′ (
((as)q/s + (cs)q/s)s/q + ((bs)q/s + (ds)q/s)s/q)1/s

≥ 21/s′ ((
as + bs)q/s + (

cs + ds)q/s
)1/q

≥
((

ar
0 + br

0

)q/r + (
cr
0 + dr

0

)q/r
)1/q

=
((

(aq
0 )r/q + (bq

0 )
r/q)q/r + (

(cq
0 )

r/q + (dq
0 )r/q)q/r

)1/q

≥ (
(aq

0 + cq
0 )

r/q + (bq
0 + dq

0 )r/q)1/r

= (J(u + v)r + J(u − v)r )1/r
,

where we have used the triangular inequality for the α-norm in R2 first with α = q/s (from
the second to the third line) and then with α = r/q (from the fifth to the sixth line), and the
inequalities (5.2) and (5.3) to pass from the third to the fourth line. ��
Proposition 5.8 Let (X ,d,m) be a Polish metric-measure space, letA be a separating unital
subalgebra of Lipb(X ,d) satisfying (2.12) and let q, r , s ∈ (1,+∞). If (pCEq)1/q satisfies
the (r , s)-(BI) in A , then (CEq)1/q satisfies the (r , s)-(BI) in H1,q(X ,d,m). If in addition
r ′ ≤ s ≤ q ≤ r , then the Sobolev norm in H1,q(X ,d,m) satisfies the (r , s)-(BI).

Proof The proof that (CEq)1/q satisfies the (r , s)-(BI) in H1,q(X ,d,m) is the same of [12,
Theorem 2.15] for the case r = s = q = 2. If in addition we know that r ′ ≤ s ≤ q ≤ r ,
then the Lq(X ,m)-norm satisfies the (r , s)-(BI) in H1,q(X ,d,m) [6, Theorem 1] so that
we can apply Lemma 5.7 and conclude that the Sobolev norm satisfies the (r , s)-(BI) in
H1,q(X ,d,m). ��

In the next Proposition 5.9 we show how to deduce the (r , s)-(BI) for the pre-Cheeger
energy from the same inequality for the L p′

(B, μ; (B∗, ‖ · ‖∗)) norm. Instead of stating our
hypothesis in terms of the validity of a Clarkson’s inequality in (B, ‖ · ‖), we state it directly
in terms of the (BI) in L p′

(B, μ; (B∗, ‖ · ‖∗)): the two notions are different in general, we
refer to [16] for the treatment of the relation between them.
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Proposition 5.9 Let (B, ‖ · ‖) be a separable Banach space and let m be a positive and
finite Borel measure on Pp(B,d‖·‖); suppose that there exists (r , s) with 1 < s ≤
q ≤ r such that the L p′

(B, μ; (B∗, ‖ · ‖∗))-norm satisfies the (r , s)-(BI) (cf. Defini-
tion 5.6) in L p′

(B, μ; (B∗, ‖ · ‖∗)) for m-a.e. μ ∈ Pp(B,d‖·‖). Then the functional
J : C(P(B), C1

b(B)
) → [0,+∞) defined as

J(F): = (pCEq(F))1/q , F ∈ C
(P(B), C1

b(B)
)
,

satisfies the (r , s)-(BI) in C
(P(B), C1

b(B)
)
.

Proof Let F, G ∈ C
(P(B),C1

b(B)
)
. We denote by ‖·‖∗,p′,μ the L p′

(B, μ; (B∗, ‖·‖∗))-norm
for μ ∈ Pp(B,d‖·‖) and we set

Uμ(x) : = Dp F(μ, x), Vμ(x) : = DpG(μ, x), (μ, x) ∈ Pp(B,d‖·‖) × B.

By hypothesis we have
(
‖Uμ + Vμ‖r

∗,p′,μ + ‖Uμ − Vμ‖r
∗,p′,μ

)1/r ≤ 21/s′ (‖Uμ‖s
∗,p′,μ + ‖Vμ‖s

∗,p′,μ

)1/s

for m-a.e. μ ∈ Pp(B,d‖·‖). Computing the Lq(Pp(B,d‖·‖),m)-norm on both sides and
applying Minkowski inequalities in Lq/r (Pp(B,d‖·‖),m) and in Lq/s(Pp(B,d‖·‖),m)

(notice that 0 < q/r ≤ 1 and q/s ≥ 1), we get
⎛
⎝

(∫
Pp(B,d‖·‖)

‖Uμ + Vμ‖q
∗,p′,μ dm(μ)

)r/q

+
(∫

Pp(B,d‖·‖)
‖Uμ − Vμ‖q

∗,p′,μ dm(μ)

)r/q
⎞
⎠

1/r

≤ 21/s′
⎛
⎝

(∫
Pp(B,d‖·‖)

‖Uμ‖q
∗,p′,μ dm(μ)

)s/q

+
(∫

Pp(B,d‖·‖)
‖Vμ‖q

∗,p′,μ dm(μ)

)s/q
⎞
⎠

1/s

i.e. (J(F + G)r + J(F − G)r )1/r ≤ 21/s′ (J(F)s + J(G)s)1/s
,

by Proposition 4.7. ��
Theorem 5.10 In the same hypotheses of Proposition 5.9, assume in addition that r ′ ≤ s.
Then the Sobolev norm in H1,q(Pp(B,d‖·‖), Wp,d· ,m) satisfies the (r , s)-(BI).

Proof This follows combining Proposition 5.8, Corollary 4.19 and Proposition 5.9. ��
Corollary 5.11 IfB = R

d for some d ∈ Nand |·| is the Euclidean norm, then the Sobolev norm
in H1,q(Pp(R

d , | · |), Wp,d|·| ,m) satisfies the (r , s)-(BI) for every 1 < r ′ ≤ s ≤ q, p′ ≤ r .

Proof This follows by the fact that the L p′
(Rd , μ; (Rd , | · |))-norm satisfies the (r , s)-(BI)

for every 1 < r ′ ≤ s ≤ p′ ≤ r and Theorem 5.10. ��
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