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Abstract. We consider the shape optimization problems for the quantities λ(Ω)T q(Ω),
where Ω varies among open sets of Rd with a prescribed Lebesgue measure. While the
characterization of the infimum is completely clear, the same does not happen for the max-
imization in the case q > 1. We prove that for q large enough a maximizing domain exists
among quasi-open sets and that the ball is optimal among nearly spherical domains.
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1. Introduction

In the present paper we consider two well-known quantities that occur in the study of
elliptic equations in the Euclidean space Rd, d ≥ 2. The first one is usually called torsional
rigidity and is defined, for every nonempty open set Ω ⊂ Rd with finite Lebesgue measure (in
the following a domain), as

T (Ω) =

∫
wΩ dx,

where wΩ is the unique solution of the PDE

−∆u = 1 in Ω, u ∈ H1
0 (Ω).

Equivalently, we may define T (Ω) as

T (Ω) = max

{[∫
u dx

]2[ ∫
|∇u|2 dx

]−1
: u ∈ H1

0 (Ω) \ {0}
}
.

In the integrals above and in the following we use the convention that integrals without the
indicated domain are intended over the entire space Rd. The quantity T (Ω) verifies the scaling
property

T (tΩ) = td+2T (Ω) for every t > 0;

in addition, the maximum of T (Ω) among domains with prescribed measure is reached by the
ball (Saint Venant inequality), which can be written in the scaling free formulation as

|Ω|−(d+2)/dT (Ω) ≥ |B|−(d+2)/dT (B),

for every domain Ω and for every ball B ⊂ Rd.
The second quantity is the first eigenvalue λ(Ω) of the Dirichlet Laplacian, defined as the

smallest λ such that the PDE

−∆u = λu in Ω, u ∈ H1
0 (Ω)

admits a nonzero solution. Equivalently, λ(Ω) can be defined through the minimization of the
Rayleigh quotient

λ(Ω) = min

{[∫
|∇u|2 dx

][ ∫
u dx

]−2
: u ∈ H1

0 (Ω) \ {0}
}
.

The quantity λ(Ω) verifies the scaling property

λ(tΩ) = t−2λ(Ω) for every t > 0;
1
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in addition, the minimum of λ(Ω) among domains with prescribed measure is reached by the
ball (Faber-Krahn inequality), which can be written in the scaling free formulation as

|Ω|2/dλ(Ω) ≥ |B|2/dλ(B),

for every domain Ω and for every ball B ⊂ Rd.
The study of relations between T (Ω) and λ(Ω) was performed in several papers (see for

instance [1], [2], [3], [4], [5], [12], [13], [18], [21], [22], [23]), where some important inequalities
were established. In particular:

- the Kohler-Jobin inequality

λ(Ω)T q(Ω) ≥ λ(B)T q(B),

valid for every q ∈ [0, 2/(d + 2)] and for every domain Ω, where B is any ball in Rd
with |B| = |Ω|;

- the Pólya inequality

0 <
λ(Ω)T (Ω)

|Ω|
< 1,

valid for every domain Ω of Rd.
In the present paper we consider the scaling free shape functional

Fq(Ω) =
λ(Ω)T q(Ω)

|Ω|αq
, with αq =

−2 + q(d+ 2)

d
,

and the two quantities {
mq = inf

{
Fq(Ω) : Ω domain

}
;

Mq = sup
{
Fq(Ω) : Ω domain

}
.

While the situation for mq is fully clear, and by Kohler-Jobin inequality, together with the
Saint Venant inequality, we have

mq =

{
Fq(B) if q ≤ 2/(d+ 2)

0 if q > 2/(d+ 2),

the characterization of Mq is not yet complete. The results available up to now are (see [1]
and [3]):

Mq =∞ for every q < 1;
Mq = 1 when q = 1, with the upper bound 1 not reached by any domain Ω;
Mq <∞ for every q > 1.

We investigate here this last case. The maximal expectation would be having the following
result (reverse Kohler-Jobin inequality):

- for every q > 1 the supremum Mq is reached on an optimal domain Ωq;
- there exists a threshold q∗ > 1 such that for every q ≥ q∗ the supremum Mq is reached

by a ball.

We are unable to prove the results in the strong form above, and we prove here the weaker
results below:

- for every q > 1 the supremum Mq is reached on a capacitary measure µq (Theorem
4.3);

- there exists a threshold q0 > 1 such that for every q ≥ q0 the supremum Mq is reached
by a domain Ωq (Theorem 5.3);

- there exists another threshold q1 such that for every q ≥ q1 the ball is a maximizer
for the shape functional Fq among nearly spherical domains (Theorem 6.2).

While finishing this paper we have been informed that similar problems are considered in
the work in progress [11].
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2. Capacitary measures

The concept of capacitary measure and the related properties is a very useful tool for our
purposes. When dealing with sequences of PDEs of the form

−∆u = f in Ωn, u ∈ H1
0 (Ωn),

a natural question is to establish if the sequence un,f of solutions, or a subsequence of it,
converges in L2 to some function uf and to determine in this case the PDE that the function
uf solves. Starting from the pioneering papers [15], [16] is now well understood that the right
framework to treat such a kind of questions is that of capacitary measures. Below we recall
the main results and definitions following [10] and [24]. For further information we refer the
reader to the monographs [8], [20] and references therein.

Definition 2.1. We say that a nonnegative Borel regular measure µ, possibly taking the value
∞, is a capacitary measure if

µ(E) = 0 whenever E is a Borel set with cap(E) = 0,

being cap(E) the capacity

cap(E) = inf
{∫

Rd
|∇u|2 + u2 dx : u ∈ H1

0 (Rd), u = 1 in a neighborhood of E
}
.

A property P (x) is said to hold quasi-everywhere (briefly q.e.) if the set where P (x) does
not hold has zero capacity. A Borel set Ω ⊂ Rd is said to be quasi-open if there exists
a function u ∈ H1(Rd) such that Ω = {u > 0} up to a set of capacity zero. A function
f : Rd → R is said to be quasi-continuous if there is a sequence of open sets ωn ⊂ Rd such
that limn→∞ cap(ωn) = 0 and f is continuous when restricted to Rd \ ωn. It is well known
(see for instance [19]) that every Sobolev function has a quasi-continuous representative, and
that two quasi-continuous representatives coincide quasi-everywhere. We then identify the
space H1(Rd) with the space of quasi-continuous representatives. We recall that a sequence
un ∈ H1(Rd) that converges in norm to some u ∈ H1(Rd), converges quasi-everywhere (up to
a subsequence) to u.

Given µ a capacitary measure we denote by H1
µ the following space

H1
µ = H1(Rd) ∩ L2

µ(Rd) =

{
u ∈ H1(Rd) :

∫
u2 dµ <∞

}
.

The space H1
µ is an Hilbert space when endowed with ‖u‖H1

µ
= ‖u‖H1(Rd) + ‖u‖L2

µ(Rd), where

the quantity ‖u‖L2
µ(Rd) is well defined, being Sobolev functions defined up to a set of zero

capacity. We always identify two capacitary measures µ, ν for which∫
u2dµ =

∫
u2dν, for every u ∈ H1(Rd). (2.1)

If instead (2.1) holds with “≤” we say that µ ≤ ν, and in this case we have H1
ν ⊆ H1

µ. We can

associate to any open set (or more generally to any quasi-open set) Ω ⊂ Rd the capacitary
measure IΩ defined as follows

IΩ(E) :=

{
0 if cap(E \ Ω) = 0,

∞ if cap(E \ Ω) > 0.

Notice that, if µ = IΩ for some open set Ω ⊂ Rd, then H1
µ = H1

0 (Ω).
To extend the notion of torsional rigidity to a capacitary measure µ we need to carefully deal

with the fact that the embedding H1
µ ↪→ L1(Rd) can be noncompact and even noncontinuous.

Nevertheless we can follow an approximation argument: for every R > 0, let wR be the
solution to the following minimization problem

min

{∫
|∇u|2 dx+

∫
u2 dµ−

∫
u dx : u ∈ H1

µ ∩H1
0 (BR)

}
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The torsion function wµ and the torsional rigidity T (µ) of the capacitary measure µ are defined
as:

wµ := sup
R>0

wR, T (µ) :=

∫
wµdx.

The Dirichlet eigenvalue of µ can be defined through the following Rayleigh-type quotient:

λ1(µ) = inf
u⊂H1

µ\{0}

∫
|∇u|2 dx+

∫
u2 dµ∫

u2 dx
.

Clearly, if µ = IΩ for some domain Ω ⊂ Rd, we have T (µ) = T (Ω) and λ(µ) = λ(Ω) (we adopt
this notation also if Ω is a quasi-open set). For a general capacitary measure µ, neither λ(µ)
is necessarily attained by some function u ∈ H1

µ nor T (µ) is necessarily finite. However, as
shown in [9], it holds the following:

wµ ∈ L1(Rd)⇐⇒ T (µ) <∞ =⇒ λ1(µ) is attained by some u ∈ H1
µ.

For every capacitary measure µ with T (µ) < ∞ we define the set of finiteness Aµ as the
quasi-open set

Aµ := {wµ > 0}.
In the case when µ = IΩ, for some domain Ω ⊂ Rd, we have Aµ = Ω. The set of capacitary
measures with finite torsion can be endowed with the following notion of distance.

Definition 2.2. Given two capacitary measures µ, ν such that wµ, wν ∈ L1(Rd) we define
the γ−distance between them as dγ(µ, ν) = ‖wµ − wν‖L1(Rd). We say that a sequence µn

γ−converges to µ if dγ(µn, µ)→ 0 as n→∞. When IΩn
γ→ µ we simply write Ωn

γ→ µ.

We summarize the main properties of the γ−distance below:

• The space ({µ : µ capacitary measure with wµ ∈ L1(Rd)}, dγ) is a complete metric

space and the set {IΩ : Ω ⊂ Rd open set with wΩ ∈ L1(Rd)} is a dense subset of it.
• The functionals µ 7→ λ(µ) and µ 7→ T (µ) are γ−continuous.
• The map µ 7→ |Aµ|, or more generally integral functionals as

∫
Aµ
f(x) dx with f ≥ 0

and measurable, are lower semicontinuous with respect to the γ-convergence.
• The γ-convergence of µn to µ implies the Γ-convergence in L2(Rd) of the functionals
‖ · ‖H1

µn
: L2(Rd)→ L2(Rd) defined by

‖u‖H1
µ

=

{
‖u‖H1(Rd) +

∫
u2 dµn if u ∈ H1

µn

∞ if u 6∈ H1

to the functional ‖ · ‖H1
µ

: L2(Rd)→ L2(Rd) ,

‖u‖H1
µ

=

{
‖u‖H1(Rd) +

∫
u2 dµ if u ∈ H1

µ

∞ if u 6∈ H1.

• For a given capacitary measures µ with finite torsion we call resolvent of µ the linear
compact and self-adjoint operator

Rµ : L2(Rd)→ L2(Rd), Rµ(f) = wµ,f ,

where wµ,f is the solution of the problem

wµ,f ∈ H1
µ, −∆wµ,f + wµ,fµ = f,

in the sense that

wµ,f ∈ H1
µ,

∫
∇wµ,f · ∇φdx+

∫
wµ,fφdµ =

∫
fφdx for every φ ∈ H1

µ.

The γ-convergence of µn to µ implies the norm convergence of Rµn to Rµ, i.e.

lim
n→∞

‖Rµn −Rµ‖L(L2(Rd),L2(Rd)) = 0.
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• If µn is a sequence of capacitary measures whose set of finiteness have uniformly
bounded measures |Aµn |, then

µn
γ→ µ⇐⇒ ‖Rµn −Rµ‖L(L2(Rd),L2(Rd)) → 0⇐⇒ ‖u‖H1

µn

Γ−→ ‖u‖H1
µ

on L2(Rd).

The classical concentration-compactness principle of P.L. Lions was extended to sequences
of open sets in [7]. Notably, the following result holds.

Theorem 2.3. Let Ωn be a sequence of open sets with uniformly bounded measures. Then
there exists a subsequence (still denoted with the same indices n) such that one of the following
situations occurs.

- Compactness: there exists a sequence xn ⊂ Rd such that the sequence of capacitary
measures IΩn(xn + ·) γ−converges.

- Vanishing: the sequence RIΩn converges in norm to 0. Moreover we have ‖wΩn‖L∞ →
0 and λ(Ωn)→∞, as n→∞.

- Dichotomy: there exist two sequences of quasi-open sets Ω1
n,Ω

2
n ⊂ Ωn such that

- dist(Ω1
n,Ω

2
n)→∞, as n→∞;

- dγ(IΩm , IΩ1
n∪Ω2

n
)→ 0, as n→∞;

- lim infn→∞ T (Ω1
n) > 0 and lim infn→∞ T (Ω2

n) > 0.

The proof of the theorem above can be deduced by combining Theorem 2.2 of [7] and
Theorem 3.5 of [10].

3. Relaxation of Fq

In this section we characterize the relaxation of the functional Fq to the set of capacitary
measures. We define the set Mad of admissible capacitary measures as

Mad = {µ : µ capacitary measure with 0 < |Aµ| <∞}.
For µ ∈Mad we define the relaxed form of our functional Fq as

Fq(µ) = sup
{

lim sup
n

Fq(Ωn) : Ωn ⊂ Rd open set such that Ωn
γ→ µ

}
,

so that

Mq = sup{Fq(µ) : µ ∈Mad}.

Lemma 3.1. Let µ ∈ Mad and Ωn a sequence of domains such that Ωn
γ→ µ. If |Aµ| < ∞

then Ωn ∩Aµ
γ→ µ.

Proof. Being the sequence Ωn ∩ Aµ of uniformly bounded measure, by the properties of γ-
convergence seen above we have to show that

‖u‖H1
µn

Γ−→ ‖u‖H1
µ

on L2(Rd),

where we set µn = IΩn∩Aµ .

The “Γ-liminf” inequality readily follows by the fact that H1
µn = H1

0 (Ωn ∩ Aµ) ⊆ H1
0 (Ωn)

and by the Γ convergence of ‖ · ‖H1
0 (Ωn) to ‖ · ‖H1

µ
in L2(Rd).

To prove the “Γ-limsup” inequality we can suppose without loss of generality that u ∈ H1
µ.

Since Ωn
γ→ µ, there exists a sequence un ∈ H1

0 (Ωn) such that

un −→ u strongly L2(Rd),

lim
n→∞

(∫
|∇un|2dx

)
=

∫
|∇u|2dx+

∫
|u|2dµ.

We denote respectively by u+
n and u−n the positive and negative part of un. Since we have∫

|∇(u+
n − u−n )|2dx =

∫
|∇u+

n |2dx+

∫
|∇u−n |2dx,
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and un = u+
n − u−n , by possibly passing to a subsequence (still indexed by n) we can suppose

that

lim sup
n→∞

(∫
|∇u+

n |2dx
)

+ lim sup
n→∞

(∫
|∇u−n |2dx

)
= lim

n→∞

(∫
|∇(u+

n − u−n )|2dx
)

=

∫
|∇u|2dx+

∫
u2dµ.

(3.1)

We define

v+
n = u+

n ∧ u+ ∈ H1(Rd), v−n = u−n ∧ u− ∈ H1(Rd).
Since u ∈ H1

µ and un ∈ H1
0 (Ωn) we have u = 0 q.e. on Acµ and un = 0 q.e. on Ωc

n. This implies

that both v+
n and v−n vanish q.e. on (Ωn ∩Aµ)c and consequently that v+

n , v
−
n ∈ H1

0 (Ωn ∩Aµ).
Moreover it is easy to show that

v+
n − v−n −→ u, strongly L2(Rd).

Therefore the thesis is achieved if we show that

lim sup
n→∞

(∫
|∇(v+

n − v−n )|2 dx
)
≤ lim

n→∞

(∫
|∇(u+

n − u−n )|2 dx
)
. (3.2)

We have ∫
|∇v+

n |2 dx =

∫
{u+
n≤u+}

|∇u+
n |2 dx+

∫
{u+
n>u+}

|∇u+|2 dx

=

∫
|∇u+

n |2 dx−
∫ (
|∇u+

n |2 − |∇u|2
)

1{u+
n>u+} dx.

(3.3)

By lower semicontinuity we have

lim inf
n

∫ (
|∇u+

n |2 − |∇u+|2
)

1{u+
n>u+} dx ≥ 0. (3.4)

Indeed, to show the inequality above, it is enough to write∫ (
|∇u+

n |2 − |∇u+|2
)

1{u+
n>u+} dx =

∫ (
|∇u+

n |2 − |∇u+|2
)

1{u+
n≥u+} dx

=

∫
|∇(u+

n ∨ u+)|2 − |∇u+|2 dx

and to notice that u+
n ⇀ u+ weakly in H1(Rd) implies u+

n ∨ u+ ⇀ u+ weakly in H1(Rd) and
so, by lower semicontinuity

lim inf
n

∫
|∇(u+

n ∨ u+)|2 − |∇u+|2 dx ≥ 0.

Combining (3.3) and (3.4) we deduce that

lim sup
n→∞

(∫
|∇v+

n |2
)
≤ lim sup

n→∞

(∫
|∇u+

n |2 dx
)
. (3.5)

Similarly we have

lim sup
n→∞

(∫
|∇v−n |2

)
≤ lim sup

n→∞

(∫
|∇u−n |2 dx

)
. (3.6)

Combining (3.1), (3.5) and (3.6) we finally deduce (3.2) and this concludes the lemma. �

Remark 3.2. By Lemma 3.1 for every measure µ ∈ Mad there exists a sequence of quasi-
open sets Ωn (that can be taken open by a standard approximation procedure) such that IΩn

γ−converges to µ and for which

|Ωn| → |Aµ| as n→∞.
This in turns implies that the set

{IΩ : Ω ⊂ Rd domain}
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is γ−dense in Mad. Furthermore, we can extend both Saint-Venant, Faber-Krahn and Pólya
inequalities to any capacitary measure. That is

|Aµ|−(d+2)/dT (µ) ≤ |B|−(d+2)/dT (B), |Aµ|2/dλ(µ) ≥ |B|2/dλ(B), (3.7)

and

0 < |Aµ|−1λ(µ)T (µ) < 1 (3.8)

for every measure µ ∈Mad and every ball B ⊂ Rd.

Proposition 3.3. Let µ ∈Mad. Then we have

|Aµ| = inf
{

lim inf
n
|Ωn| : Ωn domain, Ωn

γ→ µ
}
. (3.9)

The quantity |Aµ| is then the relaxation, in the γ-convergence, of the Lebesgue measure |Ω|.
As a consequence, we have

Fq(µ) =
λ(µ)T q(µ)

|Aµ|αq
. (3.10)

Proof. The inequality ≤ in (3.9) follows from the γ-lower semicontinuity of the map µ 7→ |Aµ|
seen above. The opposite inequality follows at once by Remark 3.2. Since T (µ) and λ(µ) are
γ-continuous, the proof of (3.10) is achieved by a similar argument. �

The scaling properties of the shape functionals |Ω|, λ(Ω), T (Ω) and Fq(Ω) extend to their
relaxations |Aµ|, λ(µ), T (µ) and Fq(µ) in Mad. More precisely, setting for t > 0

µt(E) = td−2µ(E/t),

we have

|Aµt | = td|Aµ|, λ(µt) = t−2λ(µ), T (µt) = td+2T (µ), Fq(µt) = Fq(µ).

4. Existence of an optimal measure for q > 1

In [3] it is proved that the supremum M1 = 1 is not attained in the class of domains. In
the next proposition we point out that the same occurs even in the class Mad.

Proposition 4.1 (Nonexistence for q = 1 of an optimal measure). Given a capacitary measure
µ ∈Mad the problem sup{F1(µ) : µ ∈Mad} does not have a maximizer.

Proof. The proof follows at once by exploiting Theorem 1.1. of [3] which asserts that there
exists a dimensional constant cd > 0 for which

F1(Ω) ≤ 1− cdT (Ω)

|Ω|1+ 2
d

, (4.1)

for every domain Ω. Then, for every µ ∈ Mad, by Remark 3.2 we can select a sequence

Ωn
γ→ Aµ for which

F1(Ωn)→ F (µ), T (Ωn)→ T (µ), |Ωn| ≤ |Aµ| as n→∞.

Thus, using (4.1) with Ω = Ωn and passing to the limit as n→∞, we get F1(µ) < 1 = M1. �

To prove the main result of this section we need the following elementary lemma.

Lemma 4.2. Let 0 < c1 < c2 < ∞, 1 < α1 < α2 < ∞. Then, there exists β < 1 such that,
for every a, b, c, d ∈ (c1, c2) it holds

(a+ b)α1

(c+ d)α2
≤ βmax

{
aα1

cα2
,
bα1

dα2

}
.
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Proof. Letting x = b/a and y = d/c, is enough to prove that

(1 + x)α1

(1 + y)α2
≤ βmax

{
1,
xα1

yα2

}
.

Suppose that x ≤ y. Since x ≥ c1
c2

, it holds

(1 + x)α1 = (1 + x)α2(1 + x)α1−α2 ≤ (1 + y)α2

(
1 +

c1

c2

)α1−α2

. (4.2)

Similarly, if x > y, since x ≤ c2
c1

, it holds(
1 +

1

x

)α1

≤
(

1 +
1

y

)α2
(

1 +
1

x

)α1−α2

≤
(

1 +
1

y

)α2
(

1 +
c2

c1

)α1−α2

. (4.3)

Eventually we achieve the thesis by letting

β =

(
1 +

c1

c2

)α1−α2

and combining (4.2) and (4.3). �

Theorem 4.3 (Existence for q > 1 of an optimal measure). For every q > 1 there exists a
measure µ? ∈Mad such that

Fq(µ
?) = sup {Fq(µ) : µ ∈Mad} .

Proof. We select a sequence µn ∈ Mad such that Fq(µn) → Mq, as n → ∞. By density, we
can suppose that µn = IΩn , for some sequence of open sets Ωn. Further, being Fq scaling free,
we can also assume |Ωn| = 1. Hence, we can apply Theorem 2.3.

If dichotomy occurs, then there exist two sequences of quasi-open sets Ω1
n,Ω

2
n ⊂ Ωn such

that

Ω1
n ∩ Ω2

n = ∅, dγ(IΩn , IΩ1
n∪Ω2

n
)→ 0 as n→∞.

Taking into account the Saint-Venant inequality and the fact that |Ωn| = 1, there exist
constants c1, c2 > 0, which depend only on the dimension, such that

c1 < inf
n
|T (Ωi

n)| ≤ sup
n
|T (Ωi

n)| < c2, c1 < inf
n
|Ωi
n| ≤ inf

n
|Ωi
n| < c2, for i = 1, 2.

Since λ1 is increasing with respect to set inclusion, we have

λ1(Ωn) ≤ min{λ1(Ω1
n), λ(Ω2

n)}. (4.4)

Lemma 4.2 together with (4.4) gives

λ(Ωn)
(
T (Ω1

n ∪ Ω2
n)
)q

|Ωn|αq
≤
λ(Ωn)

(
T (Ω1

n) + T (Ω2
n)
)q

(|Ω1
n|+ |Ω2

n|)αq
≤ βmax

i=1,2

λ(Ωi
n)T q(Ωi

n)

|Ωi
n|αq

< Fq(Ωn).

By taking the limit for n→∞ in the latter inequality we obtain the contradiction

sup
µ∈Mad

F (µ) < sup
µ∈Mad

F (µ),

and hence dichotomy cannot occur. Now, the maximality condition on the sequence Ωn

together with Pólya inequality gives that for n large enough

λ(B)T q(B)/|B|αq ≤ λ(Ωn)T q(Ωn) = λ(Ωn)T (Ωn) · T q−1(Ωn) ≤ T q−1(Ωn), (4.5)

where B is any ball of Rd. In particular it cannot be limn→∞ T (Ωn) = 0, and this rules out
the vanishing case.

Therefore compactness holds and there exists a capacitary measure µ? and a sequence
xn ∈ Rd such that Ixn+Ωn γ−converges to µ?.

By (4.5) we deduce that T (µ?) > 0 which by (3.7) implies |Aµ? | > 0 and hence that
µ? belongs to Mad. Clearly the measure µ? maximizes the functional Fq on Mad and this
concludes the proof. �
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5. Optimal measures are quasi-open sets for large q

We are now interested to prove that, when q is large enough, optimal measures µ coming
from Theorem 4.3 can be represented as quasi-open sets. We begin by recalling the following
result, see [17] and [24] Proposition 3.83.

Theorem 5.1. Let µ be a capacitary measure with finite torsion. Then the eigenfunctions
u ∈ L2(Rd) of the operator −∆ + µ with unitary L2 norm are in L∞(Rd) and satisfy

‖u‖∞ ≤ e1/(8π)λ(µ)d/4.

We also use the following lemma.

Lemma 5.2. For every q > 1 let µq ∈Mad be a maximal measure for the functional Fq, such
that |Aµq | = 1. Then

lim inf
q→∞

T (µq) > 0.

Proof. Let qn be a diverging sequence and B ⊂ Rd be a ball of unitary measure. By a standard
diagonal argument we can select a sequence Ωn ⊂ Rd of open sets such that |Ωn| = 1 for every
n and

|Fqn(Ωn)− Fqn(µqn)| = o(T qn(B)) as n→∞. (5.1)

Then we can apply Theorem 2.3 to the sequence Ωn. Dichotomy can be ruled out by the same
argument as in the proof of Theorem 4.3 once noticed that a combination of (3.7) and (3.8)
implies

F 1/qn
qn (µ) ≤ T (qn−1)/qn(B)→ T (B) as n→∞.

The vanishing case can be excluded too by following again the proof of Theorem 4.3. Indeed,
for n large enough, Pólya inequality and (5.1) imply

T qn−1(Ωn) ≥ Fqn(Ωn) ≥ Fqn(µqn)− |Fqn(Ωn)− Fqn(µqn)| ≥ Fqn(B) + o(T qn(B)).

Hence we deduce

lim inf
n→∞

T (1−1/qn)(Ωn) > 0,

which implies that it cannot be T (Ωn) → 0, as n → ∞. Therefore compactness holds true
and the sequence Ωn has a subsequence (still denoted by the same indices) that γ-converges
to some µ ∈Mad up to translations.

By the maximality of µqn it holds

F 1/qn
qn (B) ≤ F 1/qn

qn (µqn) = T (Ωn)(λ(Ωn) + o(1))1/qn

and we deduce, passing to the limit as n→∞

T (B) ≤ T (µ) = lim
n→∞

T (Ωn).

Since the sequence qn was arbitrary we obtain the conclusion. �

Theorem 5.3. Let µ ∈ Mad be an optimal measure for Fq with q > 1. There exists q0 > 1
such that for q > q0 we have µ = IAµ. In particular the optimal measure can be represented
by a quasi-open set.

Proof. Since Fq is scaling free, we can suppose that |Aµ| = 1. Let ε > 0 be a small parameter
and let µε be the capacitary measure defined by

µε(E) = (1− ε)µ(E).

Being Aµ = Aµε we have µε ∈ Mad. We assume by contradiction that µ 6= IAµ (notice that
this implies µε 6= µ). For the sake of brevity, we denote respectively by w and wε the torsion
functions of µ and µε. It is easy to verify that, as ε→ 0,

‖ · ‖H1
µε

Γ→ ‖ · ‖H1
µ
, on L2(Rd),
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and therefore we have µε
γ→ µ and wε → w in L1(Rd), as ε → 0. Let us denote by t(ε), l(ε)

and fq(ε) the real functions

ε 7→ t(ε) = T (µε), ε 7→ l(ε) = λ(µε), ε 7→ fq(ε) = Fq(µε),

and by t′+(0), l′+(0), (fq)
′
+(0) the limits for ε→ 0 of the respective different quotients.

By writing wε = w + εξε for some ξε ∈ L1(Rd) and using the fact that w,wε respectively
weakly solve the PDEs:

−∆w + wµ = 1,

−∆wε + wεµε = 1, (5.2)

we deduce that ξε weakly solves the PDE

−∆ξε + ξεµε = wµ. (5.3)

This allows us to compute the derivative

t′+(0) = lim
ε→0

(∫
ξε dx

)
= lim

ε→0

(∫
∇wε∇ξεdx+

∫
wεξεdµε

)
= lim

ε→0

(∫
wwεdµ

)
,

where we test (5.2) with ξε and we use (5.3) tested with wε. Since, as ε → 0, wε → w in
L1(Rd) we obtain

t′+(0) =

∫
w2 dµ. (5.4)

We can treat with a similar argument the eigenvalue. Let u, uε be the first eigenfunctions
(with unitary L2 norm) respectively of the operator −∆+µε and −∆+µ and let vε ∈ L2(Rd)
be such that uε = u+ εvε. Since

−∆u+ uµ = λ(µ)u, −∆uε + uεµε = λ(µε)uε

we have

−∆vε + vεµ− uµ− εvεµ =

(
λ(µε)− λ(µ)

ε

)
u+ λ(µε)vε.

By testing the PDE above with u ∈ H1
µ and since

∫
u2dx = 1, we obtain(

λ(µε)− λ(µ)

ε

)
=

∫
∇vε∇u dx+

∫
vεu dµ−

∫
u2 dµ− ε

∫
vεu dµ− λ(µε)

∫
vεu dx.

By taking the limit as ε→ 0 and exploiting the fact that uε → u weakly in H1
µ and λ(µε)→

λ(µ) we get

l′+(0) = −
∫
u2 dµ. (5.5)

By combining (5.4) and (5.5) we get

(fq)
′
+(0) = l′+(0)T q(µ) + qλ(µ)T q−1(µ)t′+(0) = Fq(µ)

∫ (
− u2

λ(µ)
+ q

w2

T (µ)

)
dµ.

Now, the optimality condition on µ implies (fq)
′(0) ≤ 0 and hence that∫ (

u2

λ(µ)
− q w2

T (µ)

)
dµ ≥ 0. (5.6)

We claim that
u2

λ(µ)
− q w2

T (µ)
< 0 q.e on Rd (5.7)

for q large enough. Indeed, by an application of Theorem 5.1 together with a comparison
principle, we have

u ≤ e1/(8π)λd/4+1(µ)w q.e on Rd,
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and so by the Pólya inequality

u2 ≤ e1/(4π)λd/2(µ)
λ(µ)

T (µ)
w2 q.e on Rd.

The latter implies that

u2

λ(µ)
− q w2

T (µ)
≤ w2

T (µ)

(
e1/(4π)λd/2(µ)− q

)
q.e. on Rd.

Therefore, for every q such that

sup
µ∈Mad

e1/(4π)λd/2(µ) < q,

(5.7) is verified. Notice that the supremum in the inequality above is finite as a consequence
of Lemma 5.2 combined again with Pólya inequality.

To conclude it is now enough to notice that (5.7) contradicts (5.6). �

6. Optimality for nearly spherical domains

In the following we consider the classes Sδ,γ of nearly spherical domains. Let B1 be the

unitary ball of Rd. A domain Ω such that

|Ω| = |B1|,
∫

Ω
xdx = 0,

belongs to the class Sδ,γ if there exists φ ∈ C2,γ(∂B1) with ‖φ‖L∞(∂B1) ≤ 1/2 and such that

∂Ω = {x ∈ Rd : x = (1 + φ(y))y, y ∈ ∂B1}, ‖φ‖C2,γ (∂B1) ≤ δ.

We recall the following result.

Theorem 6.1. Let γ ∈ (0, 1). There exists δ = δ(d, γ) > 0 such that if Ω ∈ Sδ,γ then

T (B1)− T (Ω) ≥ C1‖φ‖2H1/2(∂B1)

λ(Ω)− λ(B1) ≤ C2‖φ‖2H1/2(∂B1)

for suitable constants C1 and C2 depending only on the dimension d.

Proof. The inequality for the torsional rigidity follows from Theorem 3.3 in [6] while the
inequality for the eigenvalue follows by combining Theorem 1.2 and Lemma 2.8 of [14]. �

Theorem 6.2. Let γ ∈ (0, 1). There exists δ > 0 and q1 > 1 such that for every q ≥ q1 and
every Ω ∈ Sγ,δ it holds

λ(B1)T q(B1) ≥ λ(Ω)T q(Ω).

Proof. For every domain Ω we have

λ(B1)T q(B1)− λ(Ω)T q(Ω) = λ(B1)(T q(B1)− T q(Ω)) + T q(Ω)(λ(B1)− λ(Ω)),

which, by the elementary inequality

xq − yq ≥ qyq−1(y − x), for every x, y ≥ 0, q > 1,

implies

λ(B1)T q(B1)− λ(Ω)T q(Ω) ≥ T q−1(Ω)[q(T (B1)− T (Ω))− T (Ω)(λ(Ω)− λ(B1))]. (6.1)

Let δ the constant determined by Theorem 6.1 and assume Ω ∈ Sγ,δ. Since 2−1B1 ⊂ Ω ⊂
2B1, we get

2−(2+d)T (B1) ≤ T (Ω) ≤ 22+dT (B1).

Combining Theorem 6.1 and inequality (6.1) we get

λ(B1)T q(B1)− λ(Ω)T q(Ω) ≥ (2−(2+d)T (B1))q−1(qC1 − 22+dC2T (B1))‖φ‖2
H1/2(∂B1)

.
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Hence, if q is such that

q ≥ 2d+2C2

C1
T (B1),

we obtain
λ(B1)T q(B1) ≥ λ(Ω)T q(Ω)

and this concludes the proof. �

Remark 6.3. Although for large q we expect the ball to be optimal for the functional Fq, it
is easy to see that this does not occur when q approaches 1. Indeed, if the ball maximizes Fq
for every q > 1, passing to the limit as q → 1, this would happen also for q = 1, which is not
true, even in the class of convex domains. To see this it is enough to notice that

F1(B1) =
λ(B1)

d(d+ 2)
≤ d+ 4

2(d+ 2)
,

where the last inequality follows simply by taking u(x) = 1−|x|2 as a test function for λ(B1).
On the other hand, taking as Ωε the thin slab ]0, 1[d−1×]0, ε[, gives

lim
ε→0

F1(Ωε) =
π2

12

and
π2

12
>

d+ 4

2(d+ 2)
for every d ≥ 2.
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