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Preface.

Last year, for the first time, I worked six weeks in a mathematical laboratory.
This year I had the great oportunity to do it again. I have learnt a lot from this
new experience and especially thanks to my advisor Selim Esedoglu.

First of all, from the mathematical point of view, I discovered what investing
new ideas and new fields looked like, with its moments of excitement when every-
thing turns well, and its moments of frustration when things seem harder. Beside
that I have also learnt a lot, concerning matlab, xfig or the bibliographical work for
example. Thanks to this internship, I have been able to improve my english (oral by
talking with people and written by writing this report), discover a different society
and different people. For me it was the first oportunity to discover the United States
and its inhabitants. I also had the wonderful chance of experimenting the co-ops. I
lived these six weeks in a house with thirty people (mainly americans but not only)
who made me feel really at home by their openness and kindness. I have more than
appreciated this co-opers way of living.

I would like to thank Selim Esedoglu for having accepted to be my advisor during
this internship. I am very grateful to him for having introduced me to this very
interesting problem and showing me a new field of mathematics. I have more than
apreciated the regular occasions that we had to speak and exchange ideas. He was
always very enthusiastic and encouraging even when I was doubting. Every time I
saw him, he had a lot of new ideas which made the progress of this internship easier.
The topic treated in this report is mainly original and might lead me to publish an
article with my advisor.



1 Introduction.

In image analysis, one of the main problems is called the image segmentation prob-
lem. It consists of finding an effective way of extracting automatically, the contours
of the different objects in the image. The first thing one has to do before one solves
this problem is to model it.

We will represent an image as a function g of [0, 1]2 to [0, 1]. We will then sup-
pose that we are given a functional F , defined on a set of admissible sets E, which
evaluates the difference between the set of discontinuities of g and the boundary of
E. Hence minimizing F will give us the set of discontinuities of g, which represents
the edges of the objects of our image. In 1989 David Mumford and Jayant Shah
introduced in [8] one of these functionals. The complete study of the Mumford-
Shah functional is still not finished but see [1] for an introduction to its study. The
Mumford-Shah functional does not however utilise any prior shape information. In
order to avoid this problem, we can add to the functional a term which should take
into account some a priori knowledge about the image.

Let us suppose that we know that an object of shape represented by the set Ω
is contained in the image. However, we will also suppose that we do not know its
position and orientation. Hence, the term that we want to add should be invariant
under solid motion (rotation and translation) and be zero for Ω.

For µ ≥ 0 let FΩ(µ) be the ”amount” of lines that have an intersection with
Ω whose length is greater than µ. We will explain in the sequel what we mean by
”amount”. FΩ will be called the Signature Function of the shape Ω. We will show
that the signature function is invariant under solid motions and thus, adding the
term ||FE(µ)−FΩ(µ)||L2 to the Mumford-Shah functional will have the desired effect.

The natural question is whether Ω is uniquely determined by FΩ. We can observe
that such a results would imply that ||FE(µ) − FΩ(µ)||L2 is a distance on shapes.
Unfortunately we do not have a proof of such a result. We will however see that it is
likely to be true, at least for polygons. We will also study the function FΩ and show
that it yields a lot of information about Ω. We will finish this study by showing a
continuity result for FΩ, when Ω varies.

1.1 Point configurations and distribution of pairwise dis-
tances.

Before looking at our problem, let us consider a finite dimensional equivalent problem
studied by Mireille Boutin and Gregor Kemper few years ago (see [3] and [4]).

Let p1, ..., pn be n points of Rm. Let D be the set of all pairs (d, p) where d is
equal to ||pi − pj|| for some (i, j) and p is the number of occurrences of d.

Definition 1 D is called the distribution of distances of p1, ..., pn.

Example 1 for the unit square, D = {(1, 4); (
√

2, 2)}.
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Definition 2 We say that the n-point configuration p1, ..., pn is reconstructible if for
every q1, ..., qn having the same distribution of distances there exist a rigid motion
M and a permutation π of the labels {1..n} such that Mpi = qπ(i) for every i.

We then have this surprising theorem (see [3])

Theorem 1 Let n be a positive integer with n ≤ 3 or n ≥ m + 2. Then there exists
f , a non-zero polynomial of m × n variables such that every n-point configuration
p1, ..., pn with f(p1, ..., pn) 6= 0 is reconstructible.

Corollary 1 The set of reconstructible points of the plan is a dense open set whose
complementary is of measure zero.

Proof : The sequent lemma yields the proof :

Lemma 1 For every non-zero real polynomial P of n variables,
N = {x ∈ Rn/P (x) 6= 0} is a dense and open subset of Rn whose complementary is
of measure zero.

Proof : P is continuous so N = P−1(R\{0}) is open.

Let M = Rn\N . Let us prove by induction on n that Hn(M) = 0 where Hn is
the n-dimensional Hausdorff measure (i.e. the Lebesgue measure).

If n = 1, then P is a non-zero polynomial of one variable. Hence it has a finite
number of roots. M is thus a finite set and hence of measure 0.

Suppose that the property is true for n− 1.

Hn(M) =

∫

R

(∫

Rn−1

1M(x1, .., xn)dx1...dxn−1

)
dxn

We first show that V = {xn /Qxn(x1, ..xn−1) = P (x1, ..xn) is the zero polynomial}
is a finite set. Suppose that the contrary holds. Then with the multi-index notation
we have :

P =
∑

|α|≤N

aαxα

=
∑

|α1|+α2≤N

aα(x1..xn−1)
α1xα2

n

=
∑

|α1|≤N


 ∑

α2≤N−|α1|
aαxα2

n


 (x1..xn−1)

α1

=
∑

|α1|≤N

Rα1(xn)(x1..xn−1)
α1

and Rα1(l) = 0 for all l ∈ V and |α1| ≤ N . But Rα1 is a polynomial of one
variable so if V is infinite, Rα1 = 0 for all |α1| ≤ N so P = 0 which is absurd.
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Let Mxn = {x ∈ Rn−1/Qxn(x) = 0}. Then,

Hn(M) =

∫

R\V

(∫

Rn−1

1Mxn
(x1, ..xn−1)dx1...dxn−1

)
dxn

which is positive by the induction hypothesis.

If N were not dense, then its complement M would have non empty interior and
by the way, positive measure.

We see that this corollary answers the uniqueness question for the discrete case.

1.2 The Radon Transform.

Before starting the study of our problem, we need to have a better definition of FΩ.
Let D be a line of the plane which does not intersect the origin O. Let (r, θ)

be the polar coordinates of the orthogonal projection of O on this line (see Figure
1). This gives us a parametrization of the lines which are not passing through the
origin. We then have :

D = Dr,θ = {
(

t cos θ + r sin θ
−t sin θ + r cos θ

)
, t ∈ R}

This formula defines also Dr,θ when r is negative so that we have D−r,θ = Dr,π+θ.
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Definition 3 For f ∈ L1(R2) let the Radon transform of f be

(Rf)(r, θ) =

∫

R
f(t cos θ + r sin θ,−t sin θ + r cos θ)dt

=

∫

Dr,θ

f(x) dx

In the case f = 1Ω, we can observe that

R1Ω(r, θ) =

∫

Dr,θ

1Ω(r, θ) = |Dr,θ ∩ Ω| = H1(Dr,θ ∩ Ω)

If we denote by AΩ(µ) = {(r, θ) / |Dr,θ ∩ Ω| ≥ µ} = {(r, θ) /R1Ω(r, θ) ≥ µ} or
AΩ if there is no ambiguity, then :

FΩ(µ) =

∫ ∞

0

∫ 2π

0

1AΩ(µ)(r, θ)

=

∫

R

∫ π

0

1AΩ(µ)(r, θ)

=

∫

R

∫ π
2

−π
2

1AΩ(µ)(r, θ)

The Radon transform was first introduced by Radon in 1919. Since then, it has
proven to be very useful in many fields. In mathematics it is used in image analysis
(tomography) and in harmonic analysis. It finds applications in astronomy, optics,
physics, geophysics and in a lot of other fields. However, one of the most important
applications of the Radon Transform can be found in medicine.

It can be shown that when a body B of density b(x) is crossed by an X-ray of
initial intensity I0 and final intensity I then Rb = log( I0

I
). Hence, by using X-rays,

physicians are able to find the Radon transform of the density. The obvious question
for them is whether they can found from this, the density itself.

Radon showed that it is indeed possible, in the sense that the Radon transform
is invertible. There is also this stronger result :

Theorem 2 (Fourier Slice Theorem) for every f ∈ L1(R2)

∫

R
(Rf)(θ, τ)exp(iτ t)dτ = F(f)(t(cos θ, sin θ))

where F is the Fourier transform.

The definition of the Radon transform can be extended to more general classes
of functions, like distributions (see [10]), defined on more general sets, like manifolds
(see [6]).
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2 Behavior of the signature under transformations

of the shape.

Before starting to investigate the other properties of FΩ let us see how a rotation, a
translation, a reflection or an homothetic transformation of Ω affects it.

Proposition 1 (Invariance under solid motion.) For every measurable set Ω
and every solid motion T , FΩ = FT (Ω).

Proof : Every solid motion is a composition of a rotation by a translation. Let us
show first that FΩ is invariant under translations.

Let T be the translation of vs,φ = (s cos φ, s sin φ) and Σ = T (Ω) (see Figure 2).
For every line Dr,θ, H1(Dr,θ ∩ Ω) = H1((Dr,θ + vs,φ) ∩ (Ω + vs,φ)). But

Dr,θ + vs,φ = Dr+s cos(θ−φ),θ.

So if
Ψ(r, θ) = (r + l, θ) = (r + s cos(θ − φ), θ)

then Ψ is clearly bijective and from one side we have:
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AΣ ={(r, θ)/ |Dr,θ ∩ Σ| ≥ µ}
={Ψ ◦Ψ−1(r, θ)/ |DΨ−1(r,θ) ∩ Ω| ≥ µ}
=Ψ(AΩ)

From the other side :

DΨ =

(
1 −s sin(θ − φ)
0 1

)

So det DΨ = 1 and we have the invariance under translation.

If r is a rotation around the origin then clearly FΩ = Fr(Ω). If r is a rotation
of center Γ and angle α then if τ is the translation which sends Γ on the origin we
have r = τ−1r̃τ , where r̃ is the rotation of angle α around the origin. Hence, by the
preceding argument, FΩ is invariant under rotations.

By the same type of arguments, we can show that :

Proposition 2 FΩ is invariant under reflections.

We have also a result for the scaling transforms.

Proposition 3 For all a > 0 and Ω measurable, FaΩ(µ) = aFΩ(µ
a
)

Proof : for every line, aDr,θ = Dar,θ so

|Dr,θ ∩ aΩ| = a|D r
a
,θ ∩ Ω|

And hence,

|Dr,θ ∩ aΩ| ≥ µ ⇔ |D r
a
,θ ∩ Ω| ≥ µ

a

If we set Ψ(r, θ) = (ar, θ), whose jacobian is a, we have

AaΩ(µ) = Ψ(AΩ(
µ

a
))

So FaΩ(µ) = aFΩ(µ
a
)

3 Examples and uniqueness for convex polygons.

Before discussing the uniqueness, let us look at some examples.
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3.1 The rectangle.

By the Proposition 1, we can restrict ourselves to the situation of Figure 3, where
R ≥ r . By the symmetry of this problem we can restrict ourselves to π ∈ [0, π

2
].

Let h(θ, µ) = hµ(θ) =
∫
R |Dr,θ ∩ Ω|dr. When no confusion can be made, we will

also write h(θ, µ) = h(θ). Then the area A of the parallelogram MNPQ is equal
to µh(θ) and is also equal to the area of the rectangle minus the area B of the four
triangles.

We have cos θ = R−α
µ

so α = R − µ cos θ, and β =
√

µ2 − (R− α)2 = µ| sin θ|.
This calculation holds only if 0 ≤ α ≤ R and 0 ≤ β ≤ r Hence only if

R

µ
≥ cos θ and

r

µ
≥ | sin θ|

For these θ, B = (R− α)β + (r − β)α. Hence h(θ) = | sin θ|(R− 2µ cos θ) + r cos θ.
For the other θ, h(θ) = 0. So,

FΩ(µ) = 2

∫ π
2

0

h(θ, µ) =





2 (R + r − µ) if R
µ
≥ r

µ
≥ 1

2R
(
1−

√
1− r2

µ2

)
if R ≥ µ ≥ r

2
(
µ−R

√
1− r2

µ2 − r
√

1− R2

µ2

)
if
√

R2 + r2 ≥ µ ≥ R

0 either

The above calculations showed that :
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Theorem 3 Rectangles are uniquely determined by their signature.

We can observe that FΩ is linear between 0 and r, continuous on ]0, +∞], smooth
away from R, r and

√
R2 + r2. We can also see that FΩ tends to the perimeter of Ω

when µ tends to zero.

3.2 The right triangle.

A similar calculation (see Appendix A) for the right triangle T (see Figure 4) of
sides R and r gives :

a) for 0 ≤ µ ≤ Rr√
R2+r2 ,

FT (µ) =
√

R2 + r2 + R + r − µ
2
(3 + π

2
r2+R2

rR
+ r

R
α + R

r
(π

2
− α))

b) for Rr√
R2+r2 ≤ µ ≤ r,

FT (µ) =
√

R2 + r2 + R + r − µ
2
(3 + π

2
r2+R2

rR
+ r

R
α + R

r
(π

2
− α)) + µR2+r2

2rR
(π −

2 arcsin rR
µ
√

r2+R2 )−
√

r2 + R2
√

1− r2R2

µ2(r2+R2)

c) for r ≤ µ ≤ R,

FT (µ) =
√

R2 + r2+R− µ
2
(2+ R2+r2

rR
(arcsin rR√

R2+r2−α)− R2−r2

rR
α+R

√
1− r2

µ2 +
µR
r

arcsin r
µ
)

8



d) for R ≤ µ ≤ √
R2 + r2,

FT (µ) =
√

R2 + r2 − µ
2
(1 + r2−R2

rR
α + 2 arcsin r

µ
− 2 arccos R

µ
)− 1

2
(R

√
1− r2

µ2 +

r
√

1− R2

r2 )

d) for
√

R2 + r2 ≤ µ,
FT (µ) = 0

This computation showed again that :

Theorem 4 Right triangles are uniquely determined by their signature function.

We can again verify that FT is linear between 0 and r, continuous on ]0, +∞],
smooth away from R, r,

√
R2 + r2 and Rr√

R2+r2 . We can also see that when µ tends to

zero, FT tends to the perimeter of the triangle. The value H = rR√
R2+r2 corresponds

to the height descended from the right angle (see Figure 4).

3.3 Discussion about uniqueness.

From these two examples and some others (see Figure 5 to Figure 18) , we can make
a conjecture :

Conjecture : For every convex polygon Ω, FΩ is continuous, has a linear part
and is smooth away from the inter-vertex distances and away from the distances
between the vertices and the sides of Ω.

We will prove the first part of the conjecture (everything, including the continu-
ity, but the smoothness). We will also see that for all convex shapes, FΩ is continuous
and tends to the perimeter of Ω when µ tends to zero. We can hope that if we prove
the last part of the conjecture, regarding the location of the singularities, it will
gives us a result on uniqueness. In fact, it might be possible to link it to Theorem
1. Unfortunately, we don’t actually have such a proof. However, we can give an
incomplete idea of how the proof shall work.

For sake of simplicity, we will only deal here with the case of the triangle. The
reasoning can however be extended to general polygons. Let B be the set of all
inter-vertex distances and distances of all the vertices to all the sides of Ω. We want
to prove that FΩ is smooth away from B.

Let us call f(r, θ) = |Dr,θ ∩ Ω|. Suppose that µ ∈]µ∗, µ∗[, where µ∗ and µ∗ are
two consecutive values of B then, by the continuity of FΩ (that will be proven later
on (see Theorem 9)),

FΩ(µ) = H2({(r, θ)/f(r, θ) ∈ [µ∗, +∞[}) +H2({(r, θ)/f(r, θ) ∈]µ, µ∗[})

In order to continue we will need the co-area formula (see [1]). To state it we need
the notion of 2-rectifiable sets.
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Figure 5: Radon transform of a rectangle.
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Figure 6: Signature Function for the rectangle with r = 1 and R = 2.
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Figure 7: Radon transform of a right triangle.
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Figure 8: Signature Function for the right triangle with r = 1 and R =
√
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Figure 9: The derivative of the Signature function of the right triangle with r = 1
and R =

√
3.
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Figure 10: Radon transform of a random triangle.
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Figure 11: Signature Function for a random triangle.
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Figure 12: The derivative of the Signature function of a random triangle.
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Figure 13: Radon transform of a pentagon.
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Figure 14: Signature Function of a pentagon.
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Figure 15: The derivative of the Signature function of a pentagon.
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Figure 16: Radon transform of an ellipse.
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Figure 17: Signature Function of an ellipse.
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Figure 18: The derivative of the Signature function of an ellipse.
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Definition 4 (Rectifiability) We will say that a set E ⊂ R2 is 2-rectifiable if :

lim
ρ→0

∫

Ex,ρ

φ(y)dH2 =

∫

R2

φ(y)dH2 ∀φ ∈ Cc(R2) for H2 − a.e x ∈ E

Where Ex,ρ = E−x
ρ

.

Theorem 5 (Co-area Formula) Let f : R2 → R be a lipschitz function. and E a
2-rectifiable set then :

∫

E

|∇f |dH2 =

∫

R
H1(E ∩ f−1(t))dt

Observation : ∇f exists almost everywhere according to Rademacher’s theorem.

If we can then show that f is smooth away from B, which might come from
the characterization of the singularity set of the Radon transform (see [10]), then
E = f−1(]µ, µ∗[) will be open, hence 2-rectifiable. If we apply now the co-area
formula to f and E we get :

∫

E

|∇f | =
∫ µ∗

µ

H1(r, θ/|Dr,θ ∩ Ω = ν)dν

So if we can link
∫

E
|∇f | to H2(E) = H2({(r, θ)/ f(r, θ) ∈]µ, µ∗[}), we will then

have an expression of the type,

FΩ(µ) = C +

∫ µ∗

µ

H1(r, θ/ |Dr,θ ∩ Ω = ν)dν ∀µ ∈]µ∗, µ∗[

Now if we take a line Dr,θ which intersects Ω in two points x and y then
f(r, θ) = ||x− y||, which is smooth in (x, y) because x < y.

If x is one of the vertices, then y is not his projection on the opposite side, neither
an other vertex of the triangle (if it were, then ||x− y|| would have been one of the
sides length which is in B ). Hence locally, ||x − y||, as a function of y, is strictly
increasing or strictly decreasing. Its derivative according to y is then different from
zero.

If neither x or y are vertices, then, suppose x ∈ [AB] and y ∈ [BC] (see Figure
19). As (AB) and (BC) are not parallel, either x is not the orthogonal projection of
y on (AB) either y is not the orthogonal projection of x on (BC). Suppose that y is
not the orthogonal projection of x on (BC). Then as before, the partial derivative
of ||x− y|| according to y is not 0.

Suppose that we can show that (x, y) are depending by a diffeomorphism of (r, θ)
so that at least one of the two partial derivatives ∂f

∂r
or ∂f

∂θ
is non zero. For sake
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of simplicity, suppose that ∂f
∂θ

is always non zero. Hence we can apply the implicit
function theorem. :

For every (r0, θ0) there exists a neighborhood V ×W of (r0, θ0), a neighborhood
U of µ0 = f(r0, θ0) and a function φ ∈ C∞(V, U) such that :

f(r, θ) = µ ⇔ θ = φ(r, µ) ∀(r, θ, µ) ∈ V ×W × U

Suppose that in addition, we can do it globally, then

FΩ(µ) = C +

∫ µ∗

µ

H1(r, φ(r, ν))dν ∀µ ∈]µ∗, µ∗[

which is a C∞ expression of µ.

We can see that for the points of B, the smoothness of f will not be guarantied.
Even if this problem shall be removed, we see that for the x, y of the previous rea-
soning such that ||x − y|| = µ ∈ B, we may have ∂f

∂y
and ∂f

∂x
zero (as it is the case

when x is a vertex and y its projection on the opposite side).

Of course we made a large number of simplifications and assumptions that have
to be adapted or proved, in order to have a real proof. We can also note that even
if we prove this conjecture, it will only gives us the possible candidates for the sin-
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gularities. One has still to show that these points are indeed singularities.

Proposition 4 For every convex polygon Ω, let µ∗ = min{µ / µ ∈ B}. Then FΩ is
linear on ]0, µ∗[.

Proof : We will prove it for triangles, but the reasoning extends itself easily for
all convex polygons.
For Ω the triangle ABC (see Figure 20), let ε > 0 be such that 0 < µ + ε < µ∗.
Then, by the continuity of FΩ (see Theorem 9),

−δ = FΩ(µ + ε)− FΩ(µ) = −H2(r, θ / |Dr,θ ∩ Ω| ∈]µ, µ + ε[)

As µ + ε < µ∗, Dr,θ ∩ Ω = [a, b] where a and b are not vertices of Ω. Let

Σ1 ={r, θ/ a ∈ [AB] and b ∈ [BC]}
Σ2 ={r, θ/ a ∈ [AB] and b ∈ [AC]}
Σ3 ={r, θ/ a ∈ [AC] and b ∈ [BC]}.

We can hence write δ as δ1 + δ2 + δ3 where δi = H2(Ci) with

Ci = {r, θ/|Dr,θ ∩ Ω| ∈]µ, µ + ε[} ∩ Σi

For every i = 1..3, as for FΩ, δi is invariant under solid motion, so that we can
bring us back to the situation of Figure 20 and study only δ1.

Suppose that α < π
2
. We can introduce a new parametrization, given by the

angle φ of Dr,θ and [BC], and x, the orthogonal projection of a on [BC]. The two
parametrizations are linked by :

(r, θ) = (x(sin φ + tan α cos φ),
π

2
− φ) = Ψ(x, φ)

Ψ is a bijection from E =
(
]− π

2
,−α[∪]0, π

2
[
)×]0, +∞[ to Σ1 , whose jacobian is

equal to | sin φ+tan α cos φ|. So separately on ]0, π
2
[×]0, +∞[ and ]− π

2
,−α[×]0, +∞[

it is a diffeomorphism.
Let Dx,φ be the line whose parameters are x, φ and

B(µ) = {x, φ/ |Dx,φ ∩ Ω| ∈]µ, µ + ε[}. Then C1(µ) = Ψ(B(µ)) and :

δ1 =

∫

C1

1C1(r, θ)

=

∫

C1

1Ψ(B(µ))(Ψ ◦Ψ−1)(r, θ)

=

∫

B(µ)

| sin φ + tan α cos φ|1B(µ)(x, φ)

Let Ξη(x, φ) = (y, φ) = (x + η sin φ
tan α

, φ) then (see Figure 22) if 0 < µ + η < µ∗,

|Dx,φ ∩ Ω| = µ ⇔ |DΞη(x,φ) ∩ Ω| = µ + η
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For η = −µ we have thus,

B(µ) = {x, φ/ |DΞη(x,φ) ∩ Ω| ∈]0, ε[} = Ξ−1
η (B(0))

But |Jac(Ξη)| = 1 so

δ1 =

∫

B(0)

| sin φ + tan α cos φ|1B(0)(x, φ)

For every φ, let k(φ) =
∫
R 1B(0)(x, φ)dx (see Figure 21). If z < |BC| and u < |AB|

i.e. if sin(φ+α)
sin α

ε < |BC| and | sin φ|
sin α

ε < |AB| , which is the case for every φ if ε is

small enough, then k(φ) = ε | sin φ|
tan α

. Therefore :

δ1 =
ε

tan α

(∫ π
2

−α

sin2 φ + tan α sin φ cos φdφ +

∫ π
2

0

sin2 φ + tan α sin φ cos φdφ

)

So that we get after some computations,

δ1 = ε

(
1

2 tan α
(π − α +

sin 2α

2
) +

1

4
(1− cos 2α)

)

For α 6= π
2
, similar calculations give the same formula (for α = π

2
, we intend it

to be ε
2
).

For ε < 0, by noting ε′ = −ε and doing the same reasoning, we get that δ
ε

is
constant and hence that FΩ is linear on ]0, µ∗[.
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Corollary 2 For every convex polygon Ω, with angles α1..αn, FΩ is linear on ]0, µ∗[
with a slope equal to :

−
(

n∑
i=1

1

2 tan αi

(π − αi +
sin 2αi

2
) +

1

4
(1− cos 2αi)

)

We can observe that this result is coherent with the computations we made for
the rectangle and the right triangle.

Before looking at the properties of the function FΩ for general convex shapes, let
us give some properties of the convex sets.

4 Distances and convex bodies.

We will admit in this section most of the results. However, we will always give
references to find the proofs. If nothing is specified, they can be found in [2]. [5]
can also be consulted.

4.1 Convex bodies.

Definition 5 A convex body is a compact convex set with non empty interior and
piecewise C1 boundary.

This first property is a classical exercise on convex sets.

Proposition 5 For every convex body Ω,
◦
Ω = Ω = Ω. Furthermore we have

∂Ω = ∂
◦
Ω.

Definition 6 A support plan Π of a convex body Ω at a point x ∈ Ω, is a plan such
that x ∈ Π and Ω lies entirely (in the large sense) in one of the half spaces delimited
by Π.

Proposition 6 For every point x ∈ ∂Ω, there exists at least one support plan.

We can characterize the convex sets by a property of their boundary :

Proposition 7 Ω is convex if and only if ∂Ω is a close Jordan curve, such that its
intersection with every line is a segment.

The support function is very important in the study of convex sets.

Definition 7 For every convex body Ω, the support function of Ω is
HΩ(v) = supx∈Ω < x | v >.

Theorem 6 For two convex bodies Ω and Σ, if HΩ = HΣ then Ω = Σ.

Using the support function, we can prove this surprising theorem (see [9]) :

Theorem 7 For every convex body Ω,

H2(r, θ/ Dr,θ ∩ Ω 6= ∅) = Perimeter(Ω)

Observation : this theorem also holds for non-smooth, compact convex sets.
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4.2 Distances.

We want to have a notion of distance between two convex sets (and even between
two general sets) in order to show a property of continuity of FΩ when Ω varies. We
will discuss here two different distances. We will give some of their properties and
show relations between them.

The first distance that we will study is the Hausdorff distance :

Definition 8 Let B(Ω, ε) = {y ∈ R2/∃x ∈ Ω, ||x − y|| < ε}. Then the Hausdorff
distance between two sets Ω and Σ is equal to :

d(Ω, Σ) = inf (r/ Ω ⊂ B(Σ, r) and Σ ⊂ B(Ω, r))

Proposition 8 The Hausdorff distance is a distance on the non empty compact
sets.

For a proof see [7].
We also have this nice link between Hausdorff distance and support functions :

Proposition 9 For every convex bodies Ω and Σ, we have

d(Ω, Σ) = max
S(0,1)

|HΩ(v)−HΣ(v)|

where S(0, 1) is the unit sphere.

We also have a link between the Hausdorff distance of two sets and the Hausdorff
distance of their boundaries.

Proposition 10 For every convex bodies Ω and Σ, d(∂Ω, ∂Σ) ≤ d(Ω, Σ).

Proof : let r = d(Ω, Σ) and let us show that ∂Σ ⊂ B(∂Ω, r).

Let x ∈ ∂Σ. Suppose B(x, r) ∩ ∂Ω = ∅.
Let Πx be the support plan of Σ in x, and v be the orthogonal vector to Πx such

that x + tv 6∈ Σ for all t > 0.
As x ∈ B(Ω, r) and B(x, r)∩ ∂Ω = ∅, B(x, r) ⊂ Ω. Ω is closed hence x + rv ∈ Ω

but d(x + rv, Σ) = r which is absurd.

One of the most powerful theorems concerning the Hausdorff distance is called
the Blaschke selection theorem. It gives a property of compactness for convex bodies.

Theorem 8 (The Blaschke Selection Theorem.) Every infinite set of uniformly
bounded (for the Hausdorff distance) convex bodies is relatively compact for the Haus-
dorff distance.

We then get easily this corollary :

Corollary 3 For every convex body Ω there exists a sequence of convex polygons Qn

that converge to Ω for the Hausdorff distance and such that Ω is included in Qn for
every n.
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Let us now consider a second distance.

Definition 9 For Ω and Σ two sets, let δ(Ω, Σ) = H2(Ω∆Σ).

Even if δ is not a distance on compact sets, it can be shown that it is a distance
on convex bodies. We then have this relation between d and δ :

Proposition 11 d and δ are defining the same topology on the convex bodies.

Proof : a) Let us first show that if Ωn tends to Ω for the Hausdorff distance then it
also converges to Ω for the δ one :

We will first show that almost everywhere, 1Ωn tends to 1Ω.
If x 6∈ Ω then let ε = d(x, Ω).
There exists N ∈ N such that for every n ≥ N d(Ωn, Ω) < ε. Then for n ≥ N ,

x 6∈ Ωn so 1Ωn(x) = 0 = 1Ω(x).

If x ∈ ◦
Ω, then there exists r > 0 such that B(x, r) ⊂ ◦

Ω. Let ε = min
y∈B(x,r)

d(y, ∂Ω).

Then ε > 0 and if N is such that for every n ≥ N , d(Ωn, Ω) < ε
2
, we have that for

every n ≥ N , d(∂Ωn, ∂Ω) < ε
2

by Proposition 10. Therefore, for all y ∈ B(x, r),

d(y, ∂Ωn) = d(y, z) ≥ d(y, v)− d(v, z) ≥ ε− d(v, z) ≥ ε

2
.

Where z ∈ ∂Ωn and v ∈ ∂Ω. Hence B(x, r) ∩ ∂Ωn = ∅. But here exists y ∈
◦

Ωn with

||x−y|| < ε
2
. x and y are thus in the same connected compound of R2\∂Ω. So x ∈ ◦

Ω
and 1Ωn(x) = 1 = 1Ω(x).

Hence, for almost every x, |1Ωn(x)− 1Ω(x)| tends to zero. We can now conclude
by the Dominated Convergence Theorem that H2(Ωn∆Ω) tends to 0 when n tends
to infinity.

b) Let us now show that if (Ωn)n∈N is a sequence of convex bodies converging for
δ to a convex body Ω then it also converges to it for the Hausdorff distance.

Suppose that d(Ωn, Ω) does not tends to zero, let us show that δ(Ωn, Ω) does not
tends to zero either.

There exists ε > 0 such that for every N > 0 there exists n > N with
d(Ωn, Ω) > ε. Hence Ω 6⊂ B(Ωn, ε).

Therefore there exists x ∈ Ω with B(x, ε) ∩ Ωn = ∅. So

δ(Ωn, Ω) ≥ H2(B(x, ε) ∩ Ω).

Let us show that A = infx∈ΩH2(B(x, ε) ∩ Ω) is positive. We will first prove that
x → H2(B(x, ε) ∩ Ω) is continuous :

|H2(B(x, ε) ∩ Ω)−H2(B(z, ε) ∩ Ω)| = |
∫

Ω

1B(x,ε) − 1B(z,ε)|

≤
∫

R2

1B(x,ε)∆B(z,ε)

= H2(B(x, ε)∆B(z, ε))

22



Which tends to zero when z tends to x.

Hence Oµ = {x /H2(B(x, ε)∩Ω) > µ} is open for every µ > 0. By the convexity
of Ω and Proposition 5, for every x ∈ Ω :

H2(B(x, ε ∩ Ω) > 0

Hence,

Ω ⊂
⋃
µ>0

Oµ

By the compactness of Ω, we can extract from (Oµ)µ∈R+ a finite covering of Ω,
Oµ1 , .., Oµn . If µ = min µi, as Oµ is a decreasing family, we have

Ω ⊂ Oµ

and therefore A ≥ µ which shows that For every N > 0 there exists n > N such
that δ(Ωn, Ω) > A. So Ωn does not tends to Ω for the δ distance.

5 Properties of the Signature Function.

Now that we have all these definitions and properties about convex bodies, we are
able to prove some properties of the function FΩ. The main result of this part will
be the continuity of FΩ for all convex bodies. In addition, we will also show two
other results. First we will prove that the limit of FΩ when µ tends to zero is equal
to the perimeter of Ω. Then we will show that FΩ is positive for µ minor than the
diameter of Ω and zero for µ major than this diameter.

Proposition 12 FΩ is a non-increasing function.

Proof : clear.

Proposition 13 For every convex body Ω, the limit of FΩ(µ) when µ tends to zero
is equal to the perimeter of Ω.

Proof : First, let us show that lim
µ→0

FΩ(µ) = H2(r, θ / R1Ω(r, θ) > 0) = H2(B).

For every sequence (an)n∈N which tends to zero, B =
⋂

n≥1 A(an) with
FΩ(an) = H2(A(an)) and A(an) increasing sets. Hence by a classical result of inte-
gration theory,

lim
n→+∞

FΩ(an) = H2(B)

By Theorem 7, we now only have to show that

L = H2(r, θ/ |Dr,θ ∩ Ω| = 0 and Dr,θ ∩ Ω 6= ∅) = 0
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If Dr,θ ∩ Ω contains more than two points then it contains a whole segment by
the convexity of Ω and hence has positive length.

Let Dr,θ be a line which intersects Ω in exactly one point x, which has to be on
the boundary of Ω.

If the sets of non-smooth points of ∂Ω is {x1..xn}, then we can write L as
Lsmooth +

∑
i Li, where Lsmooth stands for the lines which intersect ∂Ω on a point of

smoothness and Li stands for the lines passing through xi.

If x is a point where the boundary is smooth, then Dr,θ has to be the tangent to
Ω in x (if it were not, then Dr,θ would cross Ω in more than one point). As ∂Ω is
C1 by parts, H2(∂Ω) = 0 and hence Lsmooth = 0.

For every i and every θ, there exists only one r, such that Dr,θ passes through xi

so

Li =

∫

θ

∫

r

1Dr,θ∩Ω=xi
(r, θ) = 0

Therefore, L = 0.

Proposition 14 Let Ω be a convex body, then if diam(Ω) = d = supx,y∈Ω||x− y||
then for µ < d, FΩ(µ) is positive and for µ > d, FΩ(µ) is equal to zero.

Proof : the second part of the proposition is clear by the fact that |Dr,θ ∩ Ω| ≤ d.
To prove the second part, as FΩ is non-increasing, it is sufficient to show that :

∀ε > 0 FΩ(d− ε) > 0

Ω is compact so there exist x, y ∈ ∂Ω such that d = ||x− y||. By Proposition 5,

x, y ∈ ∂
◦
Ω. Hence, there exist z1 ∈

◦
Ω ∩B(x, ε

2
) and z2 ∈

◦
Ω ∩B(y, ε

2
). We then have :

||z1 − z2|| ≥ ||x− y||+ ||z1 − x||+ ||z2 − y|| ≥ d− ε

As [z1, z2] ⊂
◦
Ω we can assume that ||z1 − z2|| = d− ε.

There exists α > 0 such that B(z1, α) ⊂ ◦
Ω and B(z2, α) ⊂ ◦

Ω.
If we call v the unit vector orthogonal to z1 − z2, then both y1 = z1 + α

2
v and

y2 = z2 + α
2
v are in Ω. By convexity, the rectangle R = z1z2y2y1 is also included in

Ω. By the computations of 3.1, FR(d − ε) > 0. Furthermore, we clearly have that
FΩ ≥ FR ; so that FΩ(d− ε) > 0.

We can now show the continuity of FΩ.

Theorem 9 For every convex body Ω, the function FΩ is continuous.

Proof : FΩ is discontinuous at µ if and only if H2(r, θ/ |Dr,θ ∩ Ω| = µ) > 0. which
means that ∫ π

0

∫

R
1|Dr,θ∩Ω|=µ(r, θ) > 0

Therefore there exists U ⊂ [0, π[, with H1(U) > 0 such that

∀θ ∈ U

∫

R
1|Dr,θ∩Ω|=µ(r, θ) = hµ(θ) > 0
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Lemma 2 For all θ ∈ [0, π[, there exist real numbers α ≤ A ≤ B ≤ β such that
|Dr,θ ∩ Ω| is :

a) zero on ]−∞, α[∩ ]β, +∞[.

b) increasing on [α,A].

c) constant on ]A,B[.

d) decreasing on [B, β].

Proof of the lemma : By a rotation we can restrict ourselves to the case of θ = 0

(see Figure 23). Let Mr = |Dr,0 ∩ Ω| and Dr,0 ∩ Ω = [

(
r
ar

)
,

(
r
br

)
] with br ≥ ar.

Let r1, r2 such that Mr1 = Mr2 = MR = max Mr. Then the parallelogram P = br1br2ar2ar1

is included in Ω. Thus for every r ∈ [r1, r2], Mr ≥ |P ∩D0,r| = MR. Hence,

Mr = MR ∀r ∈ [r1, r2]

So if A = inf{r / Mr = MR} and B = sup{r / Mr = MR}, for r ∈]A,B[,
Mr = MR, which shows the point c).

The same reasoning shows that if r1 < r2 with Mr1 > 0 and Mr2 > 0 then for all
r ∈ [r1, r2],Mr > 0 which shows a).

Let us now prove b) : we will prove that if α < r1 < r2 < A ≤ R1, with
MR1 = MR then Mr1 < Mr2 < MR.

As before, the parallelogram P = br1bR1aR1ar1 ⊂ Ω. Hence
Mr2 ≥ |P ∩Dr2,0| = ||u− v||. Where

u =
bR1 − br1

R1 − r1

(r2 − r1) + br1

and

v =
aR1 − ar1

R1 − r1

(r2 − r1) + ar1

So that ||u− v|| = r2−r1

R1−r1
(MR −Mr1) + Mr1 > Mr1 .

The same way we can show d).

Lemma 3 If hµ(θ) > 0 then there exist two parallel segments in ∂Ω.

Proof of the lemma : As in the previous lemma we can assume that θ = 0. We will
use here, the same notations as above.

hµ(0) > 0 means that there exists a set V ⊂ R of positive measure, with Mr = µ
for all r ∈ V .
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By the preceding lemma, that implies that MR = µ and A 6= B.
For A < R1 < R2 < B we therefore have that the parallelogram P = bR1bR2aR2aR1 ⊂ Ω.
But for all r ∈ [R1, R2], |P ∩Dr,0| = MR = |Ω∩Dr,0|, so by the convexity of P ∩

Dr,0 and Ω ∩ Dr,0, we have that P ∩ Dr,0 = Ω ∩ Dr,0 and hence

P ∩ (
⋃R2

r=R1
Dr,θ) = Ω ∩ (

⋃R2

r=R1
Dr,θ). Therefore,

[

(
R1

bR1

)
,

(
R2

bR2

)
] ∪ [

(
R1

aR1

)
,

(
R2

aR2

)
] ⊂ ∂Ω

Let O = {(a, b)/ [a, b] ⊂ ∂Ω} and ∼ be the equivalence relation, being parallel.
Let then Q = O/∼.

Lemma 4 If hµ(θ) and hµ(ϕ) are positive ( θ 6= ϕ ) then the points of Q associated
to θ and ϕ by lemma 3 are distinct.

Proof of the lemma : Let us prove it by absurd.
There exists ψ such that the two lines associated to θ are Dr1,ψ and Dr2,ψ with

r1 > r2. If the two points are equal, then the two lines associated to ϕ are Dr3,ψ and
Dr4,ψ with r3 > r4.

As these four lines have to be support planes of Ω we have :

r1 ≥ r3 > r4 ≥ r2

r3 ≥ r1 > r2 ≥ r4

Hence r3 = r1 and r4 = r2 which means that the lines are pairwise equals.
By invariance under rotation and translation, we can assume that ψ = π

2
and

r2 = 0 (see Figure 24). Then if r is such that

|Dr,θ ∩ Ω| = µ with Dr,θ ∩ Ω = [

(
x
0

)
,

(
y
r1

)
]

Then we must have µ = ||b− a|| =
√

r2
1 + (x− y)2. As (x− y)2 = µ2 cos2 θ, this

implies that µ2 sin2 θ = r2
1.

We must also have µ2 sin2 ϕ = r2
1 which is impossible if θ 6= ϕ (both of them are

supposed to be in [0, π[).

We can now finish the proof of the theorem : if FΩ is not continuous in µ, then
by Lemma 3, there must exist a non countable number of lines Dr,θ verifying :

Dr,θ ∩ ∂Ω = [A,B] with A 6= B.

By Lemma 4, for different couples (r, θ), the segments are different (and can only
intersect in their end points). Furthermore, as ]A,B[ contains points with rational
coordinates, we see that it is absurd.
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6 Signature functions and distances.

We will now see how FΩ changes when Ω changes. The main result of this part will
be that for any convex body, FΩ is continuous in Ω for the δ distance. However,
before discussing this result we will give a formula which links the measure of a set
to the norm of its signature function.

Theorem 10 For every measurable set Ω,

H2(Ω) =
1

π
||FΩ||L1

To prove this theorem, we will need the following theorem (see [11]) :

Theorem 11 For all (X, µ) measurable set and f positive measurable function,

∫

X

fdµ =

∫

R+

µ(f > t)dt (1)

Proof of the Theorem 10 : By Fubini’s theorem, for every θ :

H2(Ω) =

∫

R

(∫

Dr,θ

1Ω(x) dx

)
dt

Hence by (1) applied to f(r) =
∫

Dr,θ
1Ω(x) dx, we have :

H2(Ω) =

∫

R+

(∫

R
1R1Ω>t(r, θ) dr

)
dt

By integrating between 0 and π we get :

πH2(Ω) =

∫

R+

(∫ π

0

∫

R
1R1Ω>t(r, θ) dr dθ

)
dt

As FΩ is non-increasing, it has at most a numerable points of discontinuity and
hence there exists at most a numerable set of t such that H2(r, θ/ R1Ω(r, θ) = t) is
not zero. Furthermore, for almost every t ∈ R+ :

H2(r, θ/ R1Ω(r, θ) > t) = H2(r, θ/ R1Ω(r, θ) ≥ t)

and
πH2(Ω) = ||FΩ||L1

Observation : if we apply this theorem to Ω∆Σ, we get that δ(Ω, Σ) = 1
π
|||FΩ∆Σ||L1 .

Theorem 12 For every measurable sets Ω and Σ we have :

|FΩ(µ)− FΣ(µ)| ≤ 2π

ε
δ(Ω, Σ) + |FΣ(µ− ε)− FΣ(µ + ε)| ∀µ > 0, ε ∈]0, µ[ (2)

28



Proof : for every θ, let Sθ = {r /R1Ω(r,θ) ≥ µ and R1Σ(r, θ) ≤ µ − ε} and
Gθ

Ω(µ) = H2(r /R1Ω(r, θ) ≥ µ). So that
∫ π

0
Gθ

Ω(µ)dθ = FΩ(µ). We then have :

H2(Sθ) ≥ Gθ
Ω(µ)−Gθ

Σ(µ− ε)

If (r, θ) ∈ Sθ then

|(Ω∆Σ) ∩Dr,θ| = |Ω ∩Dr,θ|+ |Σ ∩Dr,θ| − 2|(Ω ∩ Σ) ∩Dr,θ|
≥ |Ω ∩Dr,θ| − |Σ ∩Dr,θ|
≥ ε

By Fubini’s Theorem, we then have :

H2(Ω∆Σ) =

∫

R

∫

Dr,θ

|1Ω(x)− 1Σ(x)| dx dr

≥
∫

Sθ

∫

Dr,θ

|1Ω(x)− 1Σ(x)| dx dr

≥εH2(Sθ)

≥ε [Gθ
Ω(µ)−Gθ

Σ(µ− ε)]

So by integrating the above inequality and repeating the argument inverting Ω
and Σ, we get :

π δ(Ω, Σ) ≥ε[FΩ(µ)− FΣ(µ− ε)]

π δ(Ω, Σ) ≥ε[FΣ(µ)− FΩ(µ− ε)]

By applying the second line to ν = µ + ε we have that :

FΣ(µ + ε)− π

ε
δ(Ω, Σ) ≤ FΩ(µ) ≤ FΣ(µ− ε) +

π

ε
δ(Ω, Σ)

As FΣ is non-increasing, FΣ(µ) is also in [FΣ(µ + ε) − π
ε
δ(Ω, Σ), FΣ(µ − ε) +

π
ε
δ(Ω, Σ)]. Hence :

|FΩ(µ)− FΣ(µ)| ≤ 2π

ε
δ(Ω, Σ) + |FΣ(µ− ε)− FΣ(µ + ε)|

Corollary 4 Let Ω be a measurable set with finite diameter, then for every sequence
Ωn tending to Ω for the δ norm, if d = supn diam(Ωn) < +∞ and
A = max(||FΩ||L∞ , supn ||FΩn ||L∞) < +∞, then FΩn tends to FΩ in L1.

Proof : let b = max(d, diam(Ω)) then for µ ≥ b, FΩn(µ) = FΩ(µ) = 0. So by (2)
we have :

||FΩ − FΩn ||L1 ≤
∫ ε

0

|FΩ(µ)− FΩn(µ)| dµ+
2πb

ε
δ(Ωn, Ω)

+

∫ b

ε

|FΩ(µ− ε)− FΩ(µ + ε)| dµ ∀ε > 0
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Let U =
∫ b

ε
|FΩ(µ − ε) − FΩ(µ + ε)| dµ ≤ ∫ b

0
|FΩ(µ) − FΩ(µ + 2ε)| dµ which by

the Dominated Convergence Theorem tends to zero when ε tends to zero (we need
here to use the fact that FΩ is continuous almost everywhere).

Let V =
∫ ε

0
|FΩ(µ)− FΩn(µ)|dµ ≤ 2εA.

For η > 0 let ε > 0 be such that U + V ≤ η
2
. There exists N ∈ N such that for

every n ≥ N , 2πb
ε

δ(Ωn, Ω) ≤ η
2
.

Then for every n ≥ N ,

||FΩ − FΩn||L1 ≤ U + V +
2πb

ε
δ(Ωn, Ω) ≤ η

For convex bodies we have a stronger result :

Corollary 5 Let Ω be a measurable set of finite diameter, for which FΩ is continuous
( Ω a convex body for example). Let ω be the modulus of continuity of FΩ. Then for
every measurable set Σ :

||FΩ − FΣ||L∞ ≤ 4π

ε
δ(Ω, Σ) + ω(ε) ∀ε > 0 (3)

In particular, for every sequence Ωn tending to Ω for δ, FΩn tends to FΩ in L∞.

Proof : If FΩ is continuous then it is uniformly continuous on [0, diam(Ω)] and
0 on [diam(Ω), +∞[. Hence it is uniformly continuous on R+.
|FΣ(µ− ε)− FΣ(µ + ε)| ≤ ω(2ε) so, by (2) we have the result.

Observation : When we say that FΩ is continuous, we mean that it is continuous
on ]0, +∞[ with a finite limit in zero. We then let FΩ(0) = lim

µ→0
FΩ(µ).

A Appendix A.

Let us now compute FΩ for a right triangle of sides R and r, with R ≥ r.
As for the rectangle, we will try to calculate h(θ) for θ ∈ [0, π]. We will split the

calculations in two parts, θ ∈ [0, π
2
] and θ ∈ [π

2
, π], so that FΩ is equal to F1 + F2.

A.1 θ ∈ [0, π
2 ].

We will calculate here F1. Two cases are to be distinguished.

A.1.1 θ ∈ [α, π
2
].

If θ ≥ α then we are in the situation of Figure 25 because δ = θ − α ≥ 0.

By the law of sines, the area A of the parallelogram of sides µ and b is equal to
µb sin θ. On the other side, it is also equal to µh(θ). Hence,

h(θ) = b sin θ
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Figure 25:

b = R− (a + c)

whenever a + c ≤ R and is zero elsewhere. By the law of sines,

a

sin δ
=

µ

sin α
and

c

sin(π
2
− θ)

= µ

So that we have

a =
µ sin(θ − α)

sin α
and c = µ cos θ

The condition on a + c is thus expressed by :

a + c ≤ R

sin(θ − α) + sin α cos θ ≤ R

µ
sin α

sin θ ≤ R

µ
tan α

=
r

µ

Which is always true if µ ≤ r. If µ ≥ r it is true only if θ ∈ [α, arcsin( r
µ
)]. In

this case we have :
h(θ) = R(1− µ

r
sin θ) sin θ
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A.1.2 θ ∈ [0, α].

For θ ≤ α we are in the situation of Figure 26 because δ = α− θ ≥ 0.

Applying the same argument as before, we have :

A = µh(θ) = µb cos θ

so that
h = b cos θ

b = r − (a + c)

whenever r ≥ a + c, and b = 0 in the other case. We then have :

a

sin θ
= µ and

c

sin(δ)
=

µ

sin β

Which gives us :

a = µ sin θ and c =
sin(α− θ)

cos α
µ

The condition on a + c is thus expressed by :

a + c ≤ r

cos θ ≤ r

µ tan α

=
R

µ
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Which is always true if µ ≤ r. If µ ≥ R it is true only if θ ∈ [arccos(R
µ
), α]. In

these case we have :
h(θ) = r(1− µ

R
cos θ) cos θ

A.1.3 F1.

Adding these two computations and integrating on [0, π
2
] we get :

a) for µ ∈ [0, r],
F1(µ) =

√
R2 + r2 − 1

2
[1 + r

R
α + (π

2
− α)R

r
]µ

b) for µ ∈ [r,R],

F1(µ) =
√

R2 + r2 − 1
2
[1 + r

R
α + R

r
(arcsin r

µ
− α)]µ− R

2

√
1− r2

µ2

c) for µ ∈ [R,
√

R2 + r2],

F1(µ) =
√

R2 + r2− 1
2
[1 + r

R
(α− arccos R

µ
) + R

r
(arcsin r

µ
−α)]µ− R

2

√
1− r2

µ2 −
r
2

√
1− R2

µ2

d) for µ ≥ √
R2 + r2,

F1(µ) = 0

A.2 θ ∈ [π2 , π].

We will now compute F2. We prefer to work with θ ∈ [0, π] so we can observe that
after reflection, the situation is the same as Figure 27.

Here we have that δ = π − (α + θ). And as before,

A = µh = µb sin δ = µb sin(α + θ)

b =
√

R2 + r2

whenever
√

R2 + r2 ≥ a + c, and b = 0 in the other case. We then have :

a

sin(π
2
− θ)

=
µ

β
and

c

sin(θ)
=

µ

sin α

Which gives us :

a = µ
cos θ

cos α
and c =

sin(θ)

sin α
µ

The condition on a + c is thus expressed by :

a + c ≤
√

R2 + r2

sin(θ + α) ≤
√

R2 + r2

2µ
sin(2α)

=
Rr√

R2 + r2µ

which means that :
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a) if µ ≤ Rr√
R2+r2 , it is always verified.

b) if µ ∈ [ Rr√
R2+r2 , r], it is verified for θ ∈ [0, arcsin( Rr

µ
√

R2+r2 ) − α] ∪ [π − α −
arcsin( Rr

µ
√

R2+r2 )].

c) if µ ∈ [r, R], it is verified for θ ∈ [0, arcsin( Rr
µ
√

R2+r2 )− α]

d) it is never verified if µ > R.

When this condition is fulfilled, we have :

h(θ) = (
√

R2 + r2 − 2µ
sin(θ + α)

sin(2α)
) sin(θ + α)

Integrating h(θ) between 0 and π
2

we get :

a) if µ ≤ Rr√
R2+r2 ,

F2(µ) = R + r − µ(1 + π
4

R2+r2

Rr
).

b) if µ ∈ [ Rr√
R2+r2 , r],

F2(µ) = (R + r) − µ(1 + π
4

R2+r2

Rr
) − √R2 + r2

√
1− ( Rr

µ
√

R2+r2 )
2 + µ

2
R2+r2

Rr
(π −

2 arcsin( Rr
µ
√

R2+r2 )).
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c) if µ ∈ [r, R],

F2(µ) = R−
√

R2+r2

2

√
1− ( Rr

µ
√

R2+r2 )
2 − µ

2
+ µ

2
R2+r2

Rr
(α− arcsin( Rr

µ
√

R2+r2 ))

d) F2(µ) is equal to zero if µ ≥ R.
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