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Abstract

The thesis is on several minimization problems involving nonlocal perimeters. The nonlo-
cal perimeter is a nonlocal extension of the classical perimeter. The thesis is written on
my contributions with several collaborators and these contributions can be found in the
articles in [49, 96, 97, 99]. We have mainly investigated three problems: nonlocal minimal
surfaces, nonlocal denoising problems, and nonlocal liquid drop models.

After giving a brief introduction on the nonlocal perimeters and its motivation in
Chapter 1, we give the definition of nonlocal(fractional) perimeters in Chapter 2. More-
over, in Chapter 2, we collect several properties of the nonlocal(fractional) perimeters and
also give some of their proofs. We also mention the regularity of sets which are (almost)
minimizers of the nonlocal(fractional) perimeter.

In Chapter 3, we study the topology of nonlocal(fractional) minimal surfaces in a spe-
cific situation. The study of the nonlocal(fractional) minimal surfaces has been initiated
by L. Caffarelli, J.M. Roquejoffre, and O. Savin [22] and, since then, this topic has at-
tracted many authors. In particular, S. Dipierro, O. Savin, and E. Valdinoci [50, 51, 52]
discovered the “stickiness” property of the nonlocal minimal surfaces, which is not true
in the case of the classical minimal surfaces. Motivated by these works, we study how
the shape of the nonlocal minimal surfaces look like in a specific cylinder with an initial
data given by the complement of a slab perpendicular to the cylinder. In this setting, we
prove that, if the width of the slab is small enough, then the nonlocal minimal surfaces
coincide with the cylinder and, if the width is large enough, then the nonlocal minimal
surfaces tend to stick to the boundary of the cylinder. The first result implies that non-
local minimal surfaces cannot develop catenoids in some situation. This is not the case in
the classical minimal surfaces.

In Chapter 4, we consider a nonlocal extension of the denoising model which was
introduced by L. Rudin, S. Osher, and E. Fatemi [104]. Our denoising model is formulated
as the minimization problem of the energy consisting of the nonlocal(fractional) total
variation and L2-fidelity term. The denoising model can be applied to remove noises from
given images and recover the original images. In this thesis, we are particularly interested
in the regularity of the (unique) minimizer of the energy. We obtain that, in 2 dimension,
the minimizer is as regular as the given data (of class C0,α). This result can be regarded
as a nonlocal version of the result by V. Caselles, A. Chambolle, and M. Novaga [30].

In Chapter 5, we consider a nonlocal extension of the liquid drop model which was
introduced by G. Gamow [63] in 1930s. Our model is formulated as the minimization prob-
lem, with volume constraint, of the energy consisting of the nonlocal(fractional) perimeter
and generalized Riesz potential term. The classical model was studied in order to ex-
plain the behaviour of atomic nuclei and predict nuclear fission. Heuristically, one can see
that, if the volume is large, then the Riesz term dominates the perimeter term and, if the
volume is small, then the perimeter term dominates the Riesz term. The former implies
the nonexistence of minimizers (nuclear fission) and the latter implies the existence of
minimizers (stability of atomic nuclei). In the classical case, there are a lot of works on
the model [71, 72, 69, 83, 12, 100, 93] (not exhausted); however, the nonlocal case is not
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well-understood (see [56, 27] for small mass regime). In this thesis, we are interested in the
minimizers for large volumes. We obtain that, if the kernel of the Riesz term decays much
faster than that of the nonlocal perimeter, then there exists a minimizer for any volume.
On the other hand, if the kernel of the Riesz term is “properly” controlled by that of the
nonlocal perimeter, then there exists no minimizer for large volumes. Moreover, if the
Riesz term strongly dominates the perimeter term, then each minimizer converges to a
ball as the volume diverges.

In Appendix A and B, we give several properties of the nonlocal(fractional) perimeter.
In Appendix A, we state the compactness of sets of finite nonlocal perimeters with a
general kernel. The proof is based on the results by E. Di Nezza, G. Palatucci, and E.
Valdinoci [46]. In Appendix B, we show the Euler-Lagrange equations for minimizers of
our functional studied in Chapter 4. The proof is based on the results by M.C. Caputo
and N. Guillen [26].
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Notations

• R and N are the sets of real numbers and natural numbers including 0, respectively.

• R>0 := (0, +∞) ⊂ R and R≥0 := [0, +∞) ⊂ R.

• RN is the Euclidean space of N -dimension with N ∈ N.

• SN−1 is the (N − 1)-dimensional sphere in RN .

• R := R ∪ {+∞}.

• Br(x) is an open ball in RN of radius r > 0 centered at x ∈ RN . We often write Br

as the ball centered at the origin.

• We denote by LN the N -dimensional Lebesgue measure for any N ∈ N and use the
notation |E| := LN (E) for any set E ⊂ RN .

• We denote by HN the N -dimensional Hausdorff measure for any N ∈ N and use the
notation |∂B1(x)| := HN−1(∂B1(x)) for any x ∈ RN .

• All sets and functions appearing in the dissertation are basically assumed to be
Lebesgue measurable.

• For any a, b ∈ R, a ≲ b means that there exists a constant c > 0 such that a ≤ c b.
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Chapter 1

Introduction

The mathematical concept of perimeter, for instance, in two dimension goes back, at least,
to the ancient Greece, where mathematicians developed various geometric tools and ideas
to measure the area or length of a mathematical object. In this context, the perimeter
of a planar set was defined as the length of the curve enclosing a set. Nowadays, one has
several modern concepts of perimeter that extend this intuitive idea and make it applicable
to a wider class of sets. This modern point of view was developed by Renato Caccioppoli
and Ennio De Giorgi in the 1950s. The standard concept of perimeter denoted by P is
defined as

P (E) := sup

{∫
E
div g(x) dx | g ∈ C1

c (RN ;RN ), |g| ≤ 1

}
(1.0.1)

for any measurable set E ⊂ RN . A fundamental result by Ennio De Giorgi and Herbert
Federer shows that the perimeter defined in this way coincides with the (N−1)-dimensional
Hausdorff measure of a suitable subset of the topological boundary. This means that the
notion of the perimeter is consistent with the intuition of the measures such as areas and
lengths.

Nonlocal perimeter, on the other hand, is a much newer concept than the classical
perimeter and is defined by the double integral of some weight function over a set and
its complement. Although the definition of the nonlocal perimeter does not seem to be
relevant to the classical perimeter, one can actually observe that some of the nonlocal
perimeters are closely related to the classical perimeter as we will see later. The study of
the nonlocal perimeter has been initiated by L. Caffarelli, J.M. Roquejoffre, and O. Savin
[22], who considered the local minimizers of the nonlocal (s-fractional) perimeter. Since
then, enormous numbers of authors have been investigating various problems involving
the nonlocal perimeter, as an analogy of the classical perimeter.

The nonlocal perimeter associated with a kernel K : RN → R≥0 ∪ {+∞}, K 6≡ +∞ is
defined as the double integral of K over a set and its complement, namely,

PK(E) :=

∫
E

∫
Ec

K(x− y) dx dy (1.0.2)

for any set E ⊂ RN . Although the definition itself is simple and elementary, the nonlocal
perimeter enjoys plenty of fruitful properties. For instance, the nonlocal perimeter is
translation invariant. Precisely, one can observe that

PK(E + h) = PK(E)

for any set E ⊂ RN and h ∈ RN . In addition, if K satisfies the homogeneous property,
namely, K satisfies K(λx) = λαK(x) for any x ∈ RN and λ > 0 with some α ∈ R, then
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12 CHAPTER 1. INTRODUCTION

it is easy to see, by the change of variables, that

PK(λE) = λ2N+αPK(E)

for any set E ⊂ RN . We discuss more the details on the nonlocal perimeter in Chapter 2.
Our main interest in the present thesis is to minimize the nonlocal perimeter, or to

minimize the functional which is the sum of the nonlocal perimeter and another energy such
as the Riesz potential energy. The minimization problem of the nonlocal perimeter has
been studied by an enormous number of authors since the pioneering work by L. Caffarelli,
J.M. Roquejoffre, and O. Savin [22]. They treated the so-called s-fractional perimeter,
whose kernel in the nonlocal perimeter is given by the function x 7→ |x|−(N+s) with s ∈
(0, 1). They considered the sets that locally 1 minimizes the s-fractional perimeter. There
are also other versions of the minimization problem of nonlocal perimeters whose kernel
is given by an integrable function, and these kinds of problems have been considered, for
instance, by the group of J. Mazón [89, 90].

As we mentioned, the s-fractional perimeter is strongly related to the classical perime-
ter defined in (1.0.1) when s is close to 1. Noticing that a “localized” version of the
perimeter can be also defined in the same way as (1.0.1), one obtains that, up to multi-
plying by a constant,

lim
s↑1

(1− s)Ps(E; Ω) = P (E; Ω)

for a set E ⊂ RN and a given domain Ω ⊂ RN with a smooth boundary. Heuristically,
we can observe this phenomenon in the following way (see also [54, Appendix A]): we
assume that ∂E is smooth (at least C1,1). From the divergence theorem, the s-fractional
perimeter is described as

Ps(E) =
1

s(N + s− 2)

∫
∂E

∫
∂E

νE(x) · νE(y)
|x− y|N+s−2

dHN−1(x)dHN−1(y). (1.0.3)

where νE is the outer unit normal of ∂E. Fixing any point x ∈ ∂E, we see that, for small
δ > 0, νE(y) = νE(x) + g(δ) for any y ∈ ∂E ∩Bδ(x) where |g(δ)| → 0 as δ → 0. Then, by
multiplying by the factor 1 − s and taking the limit as s ↑ 1, we obtain

(1− s)Ps(E) =
1− s

s(N + s− 2)

∫
∂E

(1 + g(δ) · νE(x))
∫
∂E∩Bδ(x)

1

|x− y|N+s−2

+
1− s

s(N + s− 2)

∫
∂E

∫
∂E∩Bc

δ(x)

νE(x) · νE(y)
|x− y|N+s−2

=
1− s

s(N + s− 2)

∫
∂E

(1 + g(δ) · νE(x))
ωN−2δ

1−s

1− s
dHN−1(x)

+
1− s

s(N + s− 2)
O(δ−N−s+2)

−−→
s↑1

ωN−2

N − 1
HN−1(∂E) +

ωN−2

N − 1

∫
∂E
g(δ) · νE(x) dHN−1(x)

for sufficiently small δ > 0. See, for instance, [14, 39, 24, 4] for further discussions.
On the other hand, when s is close to 0, the s-fractional perimeter is also related to

the volume measure in RN . Indeed, one can obtain that, up to multiplying a constant,

lim
s↓0

sPs(E) = |E| (1.0.4)

1The nonlocal perimeter can also be conveniently “localized” in a given domain by taking into account
the interactions in which at least one point lies in the domain
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for a bounded set E ⊂ RN . If N ≥ 3, we can heuristically confirm this phenomenon by
using again the expression (1.0.3) and the fundamental solution Γ of Laplacian (see also
[54]). Indeed, up to constants, we have

lim
s↓0

sPs(E) =
1

N − 2

∫
∂E

∫
∂E

νE(x) · νE(y)
|x− y|N−2

dHN−1(x)dHN−1(y)

=
1

N − 2

∫
∂E

∫
∂E

(νE(x) · νE(y)) Γ(x− y) dHN−1(x)dHN−1(y).

Then, by applying the divergence theorem twice, we may obtain

lim
s↓0

sPs(E) ≈
∫
E

∫
E
∆Γ(x− y) dx dy = |E|.

See [91, 48] for the rigorous arguments.
Now, to capture a concrete intuition of the nonlocal perimeter, we give a practical

application of the nonlocal perimeter. A simple application that we present here is related
to image processing, which is one of the topics in the present thesis, and this topic is on
a nonlocal version of the denoising model (see Chapter 4 for the detail). This application
was also mentioned in [35].

Figure 1.1: The real picture Q and the displayed picture Q
ε
in a bitmap.

Let us consider the framework of BMP(bitmap) type images with square pixels of size
ε > 0 and suppose that

√
2ε−1 ∈ N for simplicity. Moreover, let us consider a picture of a

square of side 1, which is rotated by π/4 with respect to the origin, and let us compare the
real picture (the region enclosed by the red line) with the picture displayed on the screen
(the region enclosed by the blue line) as we show in Figure 1.1. In this configuration,
the classical perimeter may provide a less accurate tool to analyse pictures on the screen
than the nonlocal perimeter, no matter how the pixels are small (namely, ε is small). The
smallness of the pixels corresponds to the resolution of the screen. Indeed, let Q,Q

ε ⊂ R2

be the real picture and the displayed picture on the screen, respectively. The classical
perimeter of the real picture Q is equal to 4, while the perimeter of the displayed picture
Q

ε
is always 4

√
2. Hence the classical perimeter always produces an error (|P (Q)−P (Qε

)|)
by

√
2− 1, even though the resolution of the screen is of high quality. On the other hand,

the nonlocal perimeter with the kernel K(x) = |x|−(2+s) with s ∈ (0, 1) in two dimension
can be more sensitive to the resolution of the screen than the classical perimeter. Indeed,
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as shown in Figure 1.1, the displayed picture Q
ε
is composed of the real picture Q and the

disjoint 2
√
2ε−1 isosceles right triangles {T ε

i }
2
√
2ε−1

i=1 of short side ε. Then, by using some
basic properties of the nonlocal perimeter (see in Chapter 2), we have

Ps(Q
ε
) = Ps(Q) + Ps(∪M

i=1T
ε
i )− 2

∫
Q

∫
∪M
i=1T

ε
i

1

|x− y|2+s
dx dy (1.0.5)

where we set M := 2
√
2ε−1. By rescaling each triangle T ε

i for i and from the translation
invariance of the nonlocal perimeter, we may compute the quantity Ps(∪M

i=1T
ε
i ) as follows:

Ps(∪M
i=1T

ε
i ) ≤

M∑
i=1

ε2−sPs(T ) = 2
√
2Ps(T ) ε

1−s (1.0.6)

where T ⊂ R2 is a isosceles right triangle of short side 1, of which the nonlocal perimeter
is finite. Moreover, from the choice of {T ε

i }i, we have that

sup
ε>0

∫
Q

∫
∪M
i=1T

ε
i

dx dy

|x− y|2+s
≤
∫
Q

∫
Qc

dx dy

|x− y|2+s
<∞, χ∪M

i=1T
ε
i
−−−→
ε→0

0 a.e. in R2

and thus, from the dominated convergence theorem, we obtain∫
Q

∫
∪M
i=1T

ε
i

1

|x− y|2+s
dx dy −−−→

ε→0
0. (1.0.7)

Therefore, from (1.0.5), we can obtain the following estimate of the discrepancy:

|Ps(Q
ε
)− Ps(Q)| ≤ max

{
Ps(∪M

i=1T
ε
i ), 2

∫
Q

∫
∪M
i=1T

ε
i

1

|x− y|2+s
dx dy

}
. (1.0.8)

From (1.0.6) and (1.0.7), we conclude that the nonlocal perimeter of the displayed picture
is as close to that of the real picture as you want according to the size ε of the pixels.

Now let us state the main contributions of our works conducted during my doctoral
studies. All the results that we show in the present thesis are included in the following
list of papers.

• (Dis)connectedness of nonlocal minimal surfaces in a cylinder and a stickiness prop-
erty, with S. Dipierro and E. Valdinoci, [49].

• Local Hölder regularity of minimizers for nonlocal denoising problems, with M. No-
vaga, [96].

• Nonexistence of minimizers for a nonlocal perimeter functional with a Riesz and a
background potential, [99]

• Existence of minimizers for a generalized liquid drop model with fractional perimeter,
with M. Novaga, [97].

In the sequel, we will briefly explain three topics of our works, and give the main results
in each topic.

Shape of nonlocal minimal surfaces
A nonlocal minimal surface is defined as the boundary of a set which minimize the

nonlocal perimeter, and is firstly studied by L. Caffarelli, J.M. Roquejoffre, and O. Savin
[22]. The nonlocal minimal surfaces constitute one of the most fascinating, and challeng-
ing, research topics in the realm of fractional equations. The nonlocal minimal surfaces
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Figure 1.2: Stickiness phenomenon

constructed by this minimization procedure have relevant features in terms of differential
geometry and geometric measure theory, since their energy functional can be considered
as a nonlocal approximation of the classical perimeter functional and the nonlocal minimal
surfaces as a fractional variant of the classical minimal surfaces, see [13, 39, 101, 24, 4, 25].
Critical points of the nonlocal perimeter energy functional satisfy an integral relation that
can be seen as a vanishing nonlocal mean curvature prescription (see [22, 1, 41, 34]) and
accordingly the study of volume prescribed minimizers leads to the analysis of surfaces
with constant nonlocal mean curvature (see [40, 20, 21, 36]). Moreover, nonlocal minimal
surfaces arise as the large-scale limit of long-range phase coexistence models (see [105]), as
discrete iterations of fractional heat equations (see [23]) and as continuous approximations
of interfaces of long-range Ising models (see [38]).

Given the importance of nonlocal minimal surfaces from all these perspectives, it is
desirable to develop some intuition about their basic geometric features. For this, since it
is very rare to have explicit solutions and precise formulas which entirely describe nonlo-
cal minimal surfaces, it is often convenient to focus on some simplified cases in which the
reference domain and the external data possess some special characteristics which lead to
a deep understanding of at least some cardinal aspects of the object under investigation.
Before our works on the shape of the nonlocal (s-fractional) minimal surfaces, S. Dip-
ierro, O. Savin, and E. Valdinoci [50, 51, 52] have revealed several interesting properties;
for instance, they discovered so-called “stickiness property” of the nonlocal (s-fractional)
minimal surfaces. As shown in Figure 1, one may see the distinct properties from the
classical minimal surfaces. For the left figure in Figure 1, the nonlocal perimeter gets
minimized in the cylinder Ω with the given data colored in grey, which looks like a step.
The the boundary of the minimizer tends to stick to the boundary of the domain, while
the boundary of the minimizer of the classical perimeter does not. For the right figure
in Figure 1, the nonlocal perimeter gets minimized in the cylinder Ω with the given data
colored in grey, which is similar to the half space with small bumps.

Our topic in Chapter 3 follows precisely in this line of research, namely we consider a
very simple domain, that is a vertical cylinder in RN , and a very special external data,
that is the complement of a horizontal slab. In this setting, we detect how the minimizers
of the nonlocal (s-fractional) perimeter change when the width of the slab varies. On the
one hand, we obtain

Theorem (Theorem 3.1.1 in Chapter 3). If the width of the slab is sufficiently small,
then the minimizers become connected, more precisely, the minimizers coincide inside the
cylinder with the cylinder itself.
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This change of topology is in agreement with the classical case, since minimizers of
the classical perimeter constrained to two nearby parallel and co-axial circumferences are
connected necks of catenoids. Nonetheless, the specific geometry exhibited in this case by
nonlocal minimal surfaces is rather different from that of catenoids.

On the other hand, we obtain

Theorem (Theorem 3.1.2 in Chapter 3). If the width of the slab is sufficiently large,
then the minimizers in the domain are disconnected. Moreover, the minimizers contains
a half ball of small radius inside the cylinder, and if N = 2, the nonlocal minimal surfaces
sticks to the boundary of the domain (see Proposition 3.3.1 for the detail).

The first part of the claim is the nonlocal counterpart of the fact that the classical
perimeter gets minimized by far-away parallel and co-axial discs. However, the other part
of the claim is totally distinct from the properties of the classical minimal surfaces.

Regularity for “nonlocal” denoising problem
The classical denoising model has been studied by many authors since the celebrated

work by L. Rudin, S. Osher, and E. Fatemi [104], and plays an important role in image
denoising and restoration (see for instance [31, 18]). Recently, a nonlocal version of the
classical denoising model has attracted attentions to many authors in image processing.
Given s ∈ (0, 1) and f ∈ L2(R2), we define the functional Fs,f as

Fs,f (u) :=
1

2

∫
R2

∫
R2

|u(x)− u(y)|
|x− y|N+s

dx dy +
1

2

∫
R2

(u− f)2 dx (1.0.9)

for any u ∈W s,1(R2), and in this thesis we study the minimization problem

inf
{
Fs,f (u) | u ∈W s,1 ∩ L2(R2)

}
. (1.0.10)

In Chapter 4, we discuss Problem (1.0.10) in detail, and basically focus on the regularity
of the minimizer for Problem (1.0.10).

Our minimization problem is motivated by the classical minimization problem and the
classical problem in the denoising model is given as

inf
{
Ff (u) | u ∈ BV (RN ) ∩ L2(RN )

}
(1.0.11)

where Ff (u) is defined as

Ff (u) :=

∫
RN

|∇u|+ 1

2

∫
RN

|u− f |2 dx, (1.0.12)

where
∫
RN |∇u| is the total variation of u in RN .

In image processing, the data f in the functional Ff indicates an observed image and,
when the given image has poor quality, then the minimizers of Ff or solutions to the
Euler-Lagrange equation associated with Ff correspond to regularized images. It is easy
to show that the minimizer of (1.0.12) exists and is unique, as a result of strict convexity,
lower semicontinuity and coercivity of the functional. Moreover, the minimizer turns out
to be the solution, in a suitable sense, of the Euler-Lagrange equation

− div

(
∇u
|∇u|

)
+ u− f = 0 in RN . (1.0.13)

The regularity of minimizers of Ff have been studied by several authors. In particular,
the global and local regularity was investigated in a series of papers by V. Caselles, A.
Chambolle and M. Novaga (see [29, 30, 31]), who proved that the solution of (1.0.13)
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inherits the local Hölder or Lipschitz regularity of the data f , when N ≤ 7. In addition,
if f is globally Hölder or Lipschitz in a convex domain Ω ⊂ RN , the global regularity
also holds for the solution of (1.0.13) with homogeneous Neumann boundary condition.
In the recent papers [92, 102], some of these results were extended to general dimensions.
G. Mercier [92] has proved that the continuity of f implies the continuity of a solution u
and, in the case of convex domains, the modulus of continuity is also inherited globally
by the solution. Eventually, A. Porretta [102] was able to remove the condition that the
dimension of RN is less than or equal to 7 considered in [30].

For the variational problems associated with the nonlocal total variation, G. Aubert
and P. Kornprobst [7], and G. Gilboa and S. Osher [65] have proposed the methods
for approximating the solutions to (1.0.11) with a sequence of nonlocal total variations
associated with non-singular smooth kernels. Moreover, G. Gilboa and S. Osher [66]
considered a similar nonlocal model to the functional (1.0.9) and did some numerical
experiments. The authors showed some better functionality of the nonlocal model than
that of the classical model. For instance, their nonlocal model in [66] can recover the
original image from the inpainting image better than the classical model. However, as far
as we know, there are no results on the regularity of minimizers of the functional FK,f .

In this thesis, we study the local Hölder regularity of minimizers for Problem (1.0.10)
in two dimension as an analogy of the regularity results shown in [29, 30]. Precisely, we
prove

Theorem (Theorem 4.1.1 in Chapter 4). Let N = 2 and K(x) = |x|−(2+s). Assume

that f ∈ L2(R2) ∩ L∞(R2). If f ∈ C0,β
loc with β ∈ (1− s, 1], then the minimizer of FK,f is

of class C0,β
loc .

Remark that we are not able to show the regularity result in higher dimensions because
the singularities on the boundary of each superlevel sets of minimizers can appear and our
method depends on the pointwise computations. Meanwhile, two-dimension case is of a
particular interest for the application to image denoising.

On minimizers for “nonlocal” liquid drop model
The liquid drop model has been studied by many authors from a both physical and

mathematical point of view. In Chapter 5, we investigate some minimization problems
whose motivation comes from the classical liquid drop model by G. Gamow [63]. Let
m > 0 be any number. We study the following minimization problem.

EK,g,µ,β [m] := inf {EK,g,µ,β(E) | |E| = m} (1.0.14)

where we define the functional EK,g,µ,β as

EK,g,µ,β(E) := PK(E) + Vg(E)−Rµ,β(E) (1.0.15)

for any E ⊂ RN . We recall that PK is the nonlocal perimeter associated with the kernel
K and is given as

PK(E) :=

∫
E

∫
Ec

K(x− y) dx dy (1.0.16)

for any E ⊂ RN . Moreover, Vg is the Riesz potential associated with a general kernel g
defined as

Vg(E) :=

∫
E

∫
E
g(x− y) dx dy, (1.0.17)

and Rµ,β is the background potential with a parameter µ ∈ R defined as

Rµ,β(E) := µ

∫
E

1

|x|β
dx
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for any E ⊂ RN and β > 0. Notice that, if µ = 0, then Rµ,β is equal to zero no matter
what β is, and thus we write EK,g whenever µ = 0. From a physical point of view, the
background potential term −Rµ,β can behave as an attractive energy of electrons to a
background nucleus as a point charge with the electrical charge µ along the potential
function |x|−β .

The study of Problem (1.0.14) can be seen as a nonlocal generalization of a series
of the previous works [3, 12, 33, 58, 69, 71, 72, 74, 83, 84, 93, 98, 100] and the further
references are therein. In their works, the authors treated the classical perimeter instead
of the nonlocal perimeter. The classical minimization problem related to the liquid drop
model is described as

inf {Eg,µ,β(E) | |E| = m} (1.0.18)

where we define the functional Eg,µ,β as

Eg,µ,β(E) := P (E) + Vg(E)−Rµ,β(E) (1.0.19)

for any E ⊂ RN . Here P is the classical perimeter defined as

P (E) := sup

{∫
E
div g(x) dx | g ∈ C1

c (RN ;RN ), |g| ≤ 1

}
for any set E ⊂ RN . In physics, it is important to consider the problem (1.0.18) when
N = 3, g(x) = |x|−1, and µ ≡ 0. It is known as the liquid drop model, introduced by G.
Gamow [63] to model the stability of atomic nuclei and explain nuclear fission. See [33]
for the history of the Gamow’s model. This model was developed by C.F. von Weizsäcker
[108], N. Bohr [11], and so on. On the other hand, if µ 6= 0, then Problem (1.0.18) is
related to the ionization conjecture in quantum mechanics, which states that the number
of electrons that can be bound to an atomic nucleus of charge µ > 0 cannot exceed µ+ 1

Now we briefly review the previous works on the two problems; the classical problem
(1.0.18) and the nonlocal problem (1.0.14). The following three topics are basically of
much interest to us; the existence, the nonexistence, and the rigidity of minimizers. Here
the rigidity means that a sequence of minimizers converges to the unit ball by rescaling
properly as the volume converges to zero or diverges.

For the classical problem (1.0.18), H. Knüpfer and C.M. Muratov [71, 72] firstly proved
the following results: if N = 2, g(x) = |x|−α with α ∈ (0, 2), and µ = 0, the ball is the only
minimizer under the volume constraint |E| = m for sufficiently small m > 0. In addition,
for sufficiently large m > 0, there are no minimizers. Finally, in higher dimensions, if
3 ≤ N ≤ 7, α ∈ (0, N − 1), and µ = 0, then the ball is the only minimizer for sufficiently
small m > 0. Later, V. Julin [69] proved that, if N ≥ 3, g(x) = |x|−(N−2), and µ = 0,
the ball is the unique minimizer of (1.0.19) whenever m is sufficiently small. Also, M.
Bonacini and R. Cristoferi extended in [12] some of the results by H. Knüpfer and C.M.
Muratov when N ≥ 2, g(x) = |x|−(N−α) with α ∈ (0, N − 1), and µ = 0. The authors
showed that the ball is the unique minimizer for sufficiently small m > 0. Moreover,
for small α > 0, there exists a critical mass m1 > 0 such that for m ∈ (0, m1], the
ball is the unique minimizer under the constraint |E| = m, while for m > m1 a solution
to the minimization problem fails to exist. Regarding the nonexistence of minimizers of
(1.0.19), not only H. Knüpfer and C.M. Muratov but also J. Lu and F. Otto [83] showed
the following result: if N = 3, g(x) = |x|−1), µ 6≡ 0, and β = 1, then there exists a number
m0 > 0 such that for any m ≥ m0, Problem (1.0.18) has no solution. The authors in
[83] were motivated by the ionization conjecture as we see in the above. Moreover, J.
Lu and F. Otto [84] considered Thomas-Fermi-Dirac-von Weizsäcker model and showed
the nonexistence of minimizers of the model. The model (1.0.19) can be regarded as
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a “sharp interface” version of Thomas-Fermi-Dirac-von Weizsäcker model. In a similar
context to [83, 84], R.L. Frank, R. Killip, and P.T. Nam [58] showed the nonexistence of
minimizers for large volumes in the case that N = 3, g(x) = |x|−1, and µ = 0. Later,
R.L. Frank, P.T. Nam, and H. Van Den Bosch [61] studied the ionization conjecture in
Thomas-Fermi-Dirac-von Weizsäcker theory and showed that a nucleus of charge µ > 0
can bind at most µ + c for some universal constant. In contrast to these nonexistence
results, in the case that g(x) = |x|−α with α ∈ (0, N), µ 6≡ 0, and β ∈ (0, α), S. Alama,
L. Bronsard, R. Choksi, and I. Topaloglu [3] proved that the functional (1.0.19) admits
minimizers for any volumes, due to the effects from the background potential against the
Riesz potential. The authors also considered the asymptotic behaviour of the minimizers
when µ converges to zero. Even without the background potential, if the kernel g has a
compact support, S. Rigot [103] proved the existence of minimizers for any volumes in the
minimization problem (1.0.18) with µ = 0. Very recently, M. Novaga and A. Pratelli [98]
showed the existence of generalized minimizers for any volumes of the functional (1.0.19)
with a general kernel g and µ = 0. After this work, D. Carazzato, N. Fusco, and A. Pratelli
in [28] showed that the ball is the unique minimizer for small volumes in any dimensions
under general assumption on the kernel g. Concerning the behavior of the minimizers for
large volumes, M. Pegon in [100] showed that, if the kernel g decays sufficiently fast at
infinity and µ = 0, then the minimizers of (1.0.19) exist and converge to a ball, up to
rescaling, when the volume goes to infinity. Shortly after, B. Merlet and M. Pegon in [93]
proved that, in dimension two, minimizers are actually balls for large enough volumes.
Finally, we remark that F. Générau and E. Oudet [64] studied a similar problem to the
problem (1.0.18) in the context of numerical analysis.

For the nonlocal problem (1.0.14), A. Figalli, N. Fusco, F. Maggi, V. Millot, and
M. Morini [56] studied the isoperimetric problems in the case that K(x) = |x|−(N+s),
g(x) = |x|−(N−α) with α ∈ (0, N), and µ = 0. The authors [56] showed that, if the volume
m is sufficiently small, then the nonlocal minimization problem (1.0.14), up to multiplying
a constant, admits the ball with the volume m as the unique minimizer, up to translations.
Apart from the result in [56], there are almost no results on the problem (1.0.14).

Our works in this chapter closely follow this line of research on the nonlocal mini-
mization problems. Intuitively, we can observe that the existence and nonexistence of
minimizers for the nonlocal minimization problem (1.0.14) are valid if we use a dilation
argument in the following way: if we consider each term in (1.0.15) separately and if
K(x) = |x|−(N+s) with s ∈ (0, 1) and g(x) = |x|−(N−α) with α ∈ (0, N), then one can
easily observe that, by the isoperimetric inequality of the s-fractional perimeter (see, for
instance, [59]), a ball B ⊂ RN is the only minimizer for PK among the sets with the vol-
ume |B| and, by the Riesz rearrangement inequality (see, for instance, [78, Theorem 3.4
and Theorem 3.7]), a ball B ⊂ RN is the only maximizer for both Vα and Rµ,β among the
sets with the volume |B|. Here Vα is defined as Vg in the case that g(x) = |x|−(N−α) with
α ∈ (0, N). Thus the non-trivial competition among PK , Vα, and Rµ,β occurs. Letting
E ⊂ RN with |E| = |B1| and considering the dilated set λE, we observe

Es,α,µ,β(λE) = λN−s Ps(E) + λN+α Vα(E)− λN−β Rµ,β(E)

As λ gets large, then the Riesz potential term Vα is the dominating term, while Vα does
not admit minimizers. More precisely, we can see that it is more efficient for the minimizer
to split into small pieces and the minimizer does not exist. In contrast, as λ gets small,
then the dominating term is λN−s PK(E) or −λN−β Rµ,β(E). Recalling that both PK and
−Rµ,β admit a ball as the unique minimizer, we can expect that a ball is also the unique
minimizer of our functional (1.0.15) if the volume is sufficiently small.

Following these lines of research, in this thesis we study a nonlocal generalization of
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the classical liquid drop model. We first obtain the nonexistence of minimizers for large
volumes for Problem (1.0.14), namely, we obtain

Theorem (Theorem 5.1.2 in Chapter 5). Let µ 6≡ 0 and β = 1. Assume that the
kernel K behaves like |x|−(N+s) and the kernel g is given by |x|−1. Then, for sufficiently
large volume m > 0, Problem (1.0.14) admits no minimizers.

See Theorem 5.1.2 in Chapter 5 for the precise assumptions on K. The idea of the
proof is based on the arguments done in [58, 83, 84], and we can say that the essential point
is to find the proper competitor against minimizers by doing the “cutting and pasting”
procedure. Secondly, we obtain the existence of minimizers for any volumes under the fast
decay of the kernel g of the Riesz potential. Precisely, we prove

Theorem (Theorem 5.2.3 in Chapter 5). Let µ = 0. Assume that the kernel K(x) is
given by |x|−(N+s) and the kernel g decays faster than the kernel K. Then, for any volume
m > 0, Problem (1.0.14) admits minimizers.

See in Chapter 5 for the precise assumptions on g. The idea of the proof is inspired
by the “concentration compactness” lemma developed by P.L. Lions [79, 80]. Thirdly, we
prove the existence of generalized minimizers of a generalized functional Ẽs,g, which we
define later, under the assumption that the kernel g vanishes at infinity. For convenience,
we here give the definitions of the generalized functional and generalized minimizers. For
any m > 0, we define a generalized functional of Es,g over the family of sequences of the
sets {Ek}k∈N with

∑∞
k=1 |Ek| = m as

Ẽs,g
(
{Ek}k∈N

)
:=

∞∑
k=1

Es,g(Ek). (1.0.20)

Notice that in this functional the interaction between different components is excluded,
which corresponds to the idea that the different components are placed “at infinity” from
each other. Then we consider

inf

{
Ẽs,g

(
{Ek}k∈N

)
| Ek: measurable for any k,

∑
k

|Ek| = m

}
(1.0.21)

and prove

Theorem (Theorem 5.2.4 in Chapter 5). Let µ = 0. Assume that the kernel K(x)
is given by |x|−(N+s) and the kernel g vanishes at infinity. Then, for any volume m > 0,
Problem (1.0.21) admits minimizers.

We call such a minimizer of the functional (1.0.20) the generalized minimizer for Es,g.
The idea of the proof is also based on the “concentration compactness” lemma developed
by P.L. Lions [79, 80] and a sort of reduction to Problem (1.0.14) with K(x) = |x|−(N+s)

and µ = 0.
Finally, we investigate the asymptotic behavior of minimizers as the volume goes to

infinity, under the assumption that g decays faster at infinity than the kernel |x|−(N+s)

of the s-fractional perimeter Ps. Here we require the assumption on g which is stronger
than the one we assume in the existence result. To study the asymptotic behavior, we
consider an equivalent minimization problem. More precisely, one can have two problems
equivalent to Es,g[m] for m > 0 under some decay assumption on g. Indeed, since the
kernel g is integrable over RN under some proper assumptions, one can rewrite the Riesz
potential as ∫

E

∫
E
g(x− y) dx dy = |E| ‖g‖L1(RN ) −

∫
E

∫
Ec

g(x− y) dx dy
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for any measurable set E ⊂ RN with |E| < ∞. Hence, Problem (1.0.14) with K(x) =
|x|−(N+s) and µ = 0 becomes

Ês,g[m] := inf

{
Ps(E)−

∫
E

∫
Ec

g(x− y) dx dy | |E| = m

}
(1.0.22)

for any m > 0. Moreover, by rescaling, one can further modify Problem (1.0.22) into the
equivalent problem

Êλ
s,g[|B1|] := inf

{
Êλ
s,g(F ) | |F | = |B1|

}
(1.0.23)

for any λ > 0 where we define

Êλ
s,g(F ) := Ps(F )−

∫
F

∫
F c

λN+sg(λ(x− y)) dx dy.

Note that we will revisit the notations (1.0.22) and (1.0.23) more precisely in Section 5.2
of Chapter 5. With this notation, our last theorem is as follows.

Theorem (Theorem 5.2.6 in Chapter 5). Suppose that {Fn}n is any sequence of the
minimizers of Êλn

s,g such that λn → ∞ and |Fn| = |B1| for any n. Then we have that the
full sequence satisfies

|Fn∆B1| −−−→
n→∞

0

up to translations.

The idea of the proof is based on the two factors: the first one is the compactness
by Lions that we mention in the above, and the second one is the Γ-convergence of the
functional Êλ

s,g to the s-fractional perimeter Ps as λ ↑ ∞.





Chapter 2

Nonlocal Perimeters

In this chapter, we give some definitions and show some of the properties of the nonlocal
perimeter and nonlocal minimal sets that we need to prove our main results. The nonlocal
perimeter is defined by the double integral of either a “singular” or “non-singular” kernel
over a set and its complement. Here we mean by the “singular” kernel that the kernel of
the nonlocal perimeter is not integrable near the origin, and the “non-singular” kernel is
defined as a function which is integrable near the origin. In this thesis, we mainly focus
on the nonlocal perimeter associated with the “singular” kernel. In particular, we study
some minimization problems involving the so-called s-fractional perimeter with s ∈ (0, 1),
and this nonlocal perimeter is associated with the “singular” kernel x 7→ |x|−(N+s). We
remark that, for the fruitful topics on the “non-singular” kernel, J. M. Mazón, J. D. Rossi,
and J. Toledo [89, 90] intensively studied this sort of the nonlocal perimeter, curvature,
and minimal surfaces.

2.1 Nonlocal Perimeter

In this section, we give a rigorous notion of the nonlocal perimeter and its basic properties.
Intuitively, as the classical perimeter does, a functional called perimeter should generally
measure a sort of the boundary between a set and its complement. In the case of nonlocal
perimeter, this perspective may be attained by considering some interaction between all
the points in RN via a measurable function K : RN → [0, ∞] which can be singular at
the origin. Precisely, the nonlocal perimeter is defined in the following manner:

Definition 2.1.1 (Nonlocal Perimeter). The nonlocal perimeter PK(E) of a set E ∈
RN associated with K is defined by∫

E

∫
Ec

K(x− y) dx dy (2.1.1)

where Ec is the complement of E given by RN \ E.

The reason we call (2.1.1) “perimeter” is that the interaction between points in E and
Ec is measured with the function K that can be concentrated on the origin. Notice that
from the change of variables, we have∫

E

∫
(E+y)c

K(x) dx dy. (2.1.2)

Thus another interpretation on the nonlocal perimeter could be that, for each point y in a
set E, we first consider the interaction by means of K in the complement of the translated
set E + y and then we integrate all the effects in E.

23
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Next we give the notion of a “localized” nonlocal perimeter in a given domain. Let
Ω ⊂ RN be an open set and K : RN → [0, ∞] be a measurable function. Before giving
the definition, we define a map LK : En × En → [0, ∞] associated with K by

LK(E, F ) :=

∫
E

∫
F
K(x− y) dx dy

where we set En as the family of all LN -measurable sets. From the definition of LK , one
may easily observe the following properties: first, by definition, we can have that

LK(E, Ec) = PK(E)

for any E ∈ En. Second, from Fubini-Tonelli’s theorem and the non-negativity of K, one
has that LK is symmetric, i.e.,

LK(E, F ) = LK(F, E) =

∫ ∫
E×F

K(x− y) dx dy (2.1.3)

for any E, F ∈ En. One also observes that

LK(E1, F ) = LK(E2, F ) if LN (E1∆E2) = 0,

LK(E1 ∪ E2, F ) = LK(E1, F ) + LK(E2, F ) if LN (E1 ∩ E2) = 0.

for any E1, E2, F ∈ En.
We now define the “localized” nonlocal perimeter as follows:

Definition 2.1.2 (Localised Nonlocal Perimeter). A nonlocal perimeter in Ω of a set
E associated with K, denoted by PK(E; Ω), is defined by

LK(E ∩ Ω, Ec ∩ Ω) + LK(E ∩ Ω, Ec ∩ Ωc) + LK(E ∩ Ωc, Ec ∩ Ω). (2.1.4)

As shown in the definition, the “localized” nonlocal perimeter consists of the three
contributions, which are weighted with the kernel K, from the following regions: the first
is the one between a set E and its complement that exist only in a reference set Ω. The
second one is the one between E in Ω and Ec in Ωc, and this contribution can measure
the effect on ∂Ω of E coming from the inside of Ω. The last one is the one between E in
Ω and Ec in Ω, and this contribution can measure the effect on ∂Ω of E coming from the
outside of Ω.

Observe that the nonlocal perimeter of E ⊂ RN in Ω ⊂ RN also has the following
expression:

PK(E; Ω) =
1

2

∫
Ω

∫
Ω
K(x− y) |χE(x)− χE(y)| dx dy

+

∫
Ω

∫
Ωc

K(x− y) |χE(x)− χE(y)| dx dy. (2.1.5)

Now we state one of the most important properties of the nonlocal perimeter. This
sort of statement is also valid and somehow more intuitive in the case of the classical
perimeter.

Proposition 2.1.3. Let Ω ⊂ RN be any open set. Assume that the kernel K is non-
negative. Then, we have

PK(E ∪ F ; Ω) = PK(E; Ω) + PK(F ; Ω)− 2

∫
E∩Ω

∫
F∩Ω

K(x− y) dx dy

− 2

∫
E∩Ω

∫
F∩Ωc

K(x− y) dx dy − 2

∫
E∩Ωc

∫
F∩Ω

K(x− y) dx dy

for any E, F ⊂ RN with |E ∩ F | = 0.
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Proof. The proof is done by a handful of computations as follows. For simplicity, we will
not write the kernel K in the integral. First we have

PK(E ∪ F ; Ω) =
∫
E∩Ω∪F∩Ω

∫
Ec∩F c

+

∫
E\Ω∪F\Ω

∫
Ω∩Ec∩F c

=

∫
E∩Ω

∫
Ec∩F c

+

∫
F∩Ω

∫
Ec∩F c

+

∫
E\Ω

∫
Ω∩Ec∩F c

+

∫
F\Ω

∫
Ω∩Ec∩F c

=

∫
E∩Ω

∫
Ec

−
∫
E∩Ω

∫
Ec∩F

+

∫
F∩Ω

∫
F c

−
∫
F∩Ω

∫
E∩F c

+

∫
E\Ω

∫
Ω∩Ec

−
∫
E\Ω

∫
Ω∩Ec∩F

+

∫
F\Ω

∫
Ω∩F c

−
∫
F\Ω

∫
Ω∩E∩F c

. (2.1.6)

Notice that, since |E ∩ F | = 0, we have that Ec ∩ F = F and E ∩ F c = E in measure
sense. Thus, from (2.1.6) and the definition of the nonlocal perimeter, we obtain

PK(E ∪ F ; Ω) = PK(E; Ω) + PK(F ; Ω)−
∫
E∩Ω

∫
F∩Ω

−
∫
E∩Ω

∫
F∩Ωc

−
∫
F∩Ω

∫
E∩Ω

−
∫
F∩Ω

∫
E∩Ωc

−
∫
E\Ω

∫
Ω∩F

−
∫
F\Ω

∫
Ω∩E

= PK(E; Ω) + PK(F ; Ω)− 2

∫
E∩Ω

∫
F∩Ω

− 2

∫
E∩Ω

∫
F∩Ωc

−2

∫
F∩Ω

∫
E∩Ωc

as desired.

Note that, if Ω = RN , then we obtain another version of the equality

PK(E ∪ F ) = PK(E) + PK(F )− 2

∫
E

∫
F
K(x− y) dx dy.

Example 2.1.4. The best known example of the nonlocal perimeter is given when K(x) :=
|x|−(n+s) with s ∈ (0, 1). This nonlocal perimeter was called “s-fractional perimeter”, and
introduced by L. Caffarelli, J.M. Roquejoffre, and O. Savin [22]. The authors studied the
sets minimizing the s-fractional perimeter in some reference set, and their motivation for
the study comes from phase field models where long range interactions occur.

Remark 2.1.5. If the kernel K is given as |x|−(N+s) shown in Example 2.1.4, then the
nonlocal perimeter PK(E) of a set E ⊂ RN coincides with the s-fractional perimeter
Ps(E), and the s-fractional perimeter can be seen as the fractional Sobolev semi-norm
defined as

[χE ]W s,1(RN ) :=

∫
RN

∫
RN

|χE(x)− χE(y)|
|x− y|N+s

dx dy = 2Ps(E).

See for instance [46] for more details.

We remark that the nonlocal perimeter PK(E) of a set E ⊂ RN may not be convergent,
and the finiteness of PK(E) depends on the shape of the function K and the regularity of
the set E. If the kernel K is constant almost everywhere in RN \{0} and a set E coincides
wit the unit ball B1(0) ⊂ RN , then the nonlocal perimeter PK(E) is obviously infinite.

We collect several properties of the nonlocal perimeter under suitable assumptions on
the function K. The assumptions that we state here are natural as long as we discuss our
results in this thesis, as we may weaken these assumptions. Remark that these properties
are also valid in the case of the classical perimeter (see, for instance, [85, Chapter 12]).
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Proposition 2.1.6. Let Ω ⊂ RN be an open set. Assume that K satisfies the following
conditions:

(NK1) K is non-negative.

(NK2) K(x) = K(−x) for LN -a.e. x ∈ RN .

(NK3) ∫
RN

K(x) min{1, |x|} dx <∞.

Then, we have the following properties:

1. PK(U) <∞ for any bounded open set U ⊂ RN with a Lipschitz boundary.

2. PK(·; Ω) is lower semicontinuous with respect to the L1
loc-convergence, namely, if

χEi → χE in L1
loc(RN ) as i→ ∞, then

PK(E; Ω) ≤ lim inf
i→∞

PK(Ei; Ω).

3. PK(·; Ω) is sub-modular, namely, it holds that

PK(E ∪ F ; Ω) + PK(E ∩ F ; Ω) ≤ PK(E; Ω) + PK(F ; Ω) (2.1.7)

for any sets E, F ⊂ RN . Moreover, the equality holds if and only if either |E\F | = 0,
|F \ E| = 0, or |E∆F ∩ Ω| = 0 holds.

Proof. We can easily see that PK(U) is finite for any bounded open set U with a Lipschitz
boundary. Indeed, from the assumptions (NK1), (NK2), and (NK3), we have

PK(U) = LK(U, U c) =

∫
U

∫
Uc−y

K(−x) dx dy

=

∫
RN

K(x)|U ∩ (U − x)c| dx

≤ C

∫
Rn

K(x) min{1, |x|} dx <∞

for some constant C = C(U) > 0.
Secondly, the lower semicontinuity of PK(·; Ω) is proved by the expression (2.1.5) and

Fatou’s lemma because of (NK1). Note that this is true even though the assumptions
(NK2) and (NK3) are not assumed.

Finally, we prove the sub-modularity of PK(·; Ω). For any sets E, F ⊂ RN , we compute
the contributions LK(E ∩ F ∩ Ω, (Ec ∪ F c) ∩ Ω) and LK((E ∪ F ) ∩ Ω, Ec ∩ F c ∩ Ω) as
follows:

LK(E ∩ F ∩ Ω, (Ec ∪ F c) ∩ Ω)

= LK(E ∩ F ∩ Ω, Ec ∩ F ∩ Ω) + LK(E ∩ F ∩ Ω, Ec ∩ F c ∩ Ω)

+ LK(E ∩ F ∩ Ω, Ec ∩ F c ∩ Ω)

and

LK((E ∪ F ) ∩ Ω, Ec ∩ F c ∩ Ω)

= LK(E ∩ Ω, Ec ∩ Ω) + LK(F ∩ Ω, F c ∩ Ω)

− LK(E ∩ F ∩ Ω, Ec ∩ F c ∩ Ω)− LK(E ∩ F ∩ Ω, Ec ∩ F ∩ Ω)

− LK(E ∩ F c ∩ Ω, Ec ∩ F ∩ Ω)− LK(E ∩ F ∩ Ω, E ∩ F c ∩ Ω)

− LK(Ec ∩ F ∩ Ω, E ∩ F c ∩ Ω)− LK(Ec ∩ F ∩ Ω, Ec ∩ F c ∩ Ω).
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Thus, from the above two computations, we obtain

LK(E ∩ F ∩ Ω, (Ec ∪ F c) ∩ Ω) + LK((E ∪ F ) ∩ Ω, Ec ∩ F c ∩ Ω)

≤ LK(E ∩ Ω, Ec ∩ Ω) + LK(F ∩ Ω, F c ∩ Ω). (2.1.8)

For the rest of the contributions in PK(·; Ω), we may repeat the same computations, and
thus the inequality (2.1.7) is valid.

Now we show that the equality (2.1.7) holds if and only if either |E\F | = 0, |F \E| = 0,
or |E∆F ∩Ω| = 0 holds. Indeed, by using Proposition 2.1.3 several times, one obtains the
following identities:

PK(E; Ω) = PK(E ∩ F ; Ω) + PK(E \ F ; Ω)

− 2

∫
E∩F∩Ω

∫
E∩F c∩Ω

−2

∫
E∩F∩Ω

∫
E∩F c∩Ωc

−2

∫
E∩F∩Ωc

∫
E∩F c∩Ω

PK(F ; Ω) = PK(F ∩ E; Ω) + PK(F \ E; Ω)

− 2

∫
F∩E∩Ω

∫
F∩Ec∩Ω

−2

∫
F∩E∩Ω

∫
F∩Ec∩Ωc

−2

∫
F∩E∩Ωc

∫
F∩Ec∩Ω

PK(E ∪ F ; Ω) = PK(E ∩ F ; Ω) + PK(E∆F ; Ω)

− 2

∫
E∩F∩Ω

∫
E∆F∩Ω

−2

∫
E∩F∩Ω

∫
E∆F∩Ωc

−2

∫
E∩F∩Ωc

∫
E∆F∩Ω

PK(E∆F ; Ω) = PK(E \ F ; Ω) + PK(F \ E; Ω)

− 2

∫
E∩F c∩Ω

∫
Ec∩F∩Ω

−2

∫
E∩F c∩Ω

∫
Ec∩F∩Ωc

−2

∫
E∩F c∩Ωc

∫
Ec∩F∩Ω

.

Note that we omit the kernel K in the integrals for simplicity. From all of the above
computations, we have ∫

E∩F c

∫
Ec∩F∩Ω

+

∫
E∩F c∩Ω

∫
Ec∩F∩Ωc

= 0. (2.1.9)

Since K ≥ 0 and K does not identically vanish, we can obtain that the equality of (2.1.7)
holds if and only if either of the followings holds: |E ∩ F c ∩Ω| = 0 and |E ∩ F c ∩Ωc| = 0
hold, |E∩F c∩Ω| = 0 and |Ec∩F ∩Ω| = 0 hold, or |Ec∩F ∩Ω| = 0 and |Ec∩F ∩Ωc| = 0.
This actually implies the claim as we desired.

Finally in this section, we show the compactness of sets of finite nonlocal perimeters,
as an analogy of the compactness of sets of finite classical perimeters. To see this, we
introduce the space of functions with finite nonlocal bounded variations. Let Ω ⊂ RN be
an open set. Then we defined the space BVK(Ω) as

BVK(Ω) :=
{
u ∈ L1(Ω) | [u]K(Ω) <∞

}
(2.1.10)

where we set, for any measurable function u,

[u]K(Ω) :=

∫
Ω

∫
Ω
K(x− y) |u(x)− u(y)| dx dy. (2.1.11)

Then, setting ‖ · ‖K(Ω) as

‖u‖K(Ω) := ‖u‖L1(Ω) + [u]K(Ω)

for any u ∈ BVK(Ω), then we have that ‖ · ‖K is the norm of BVK and BVK is the Banach
space with respect to this norm. We observe that the space BVK(Ω) coincides with the
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fractional Sobolev space W s, 1(Ω) when the kernel K is given as K(x) = |x|−(N+s) with
s ∈ (0, 1) (see, for instance, [46]).

Recalling Definition 2.1.1 in Section 2.1, one readily sees that

[χE ]K(RN ) = 2PK(E)

for any set E ⊂ RN . Moreover, given a domain Ω ⊂ RN , we recall the definition of
a localized version of the nonlocal perimeter PK , and the localized nonlocal perimeter
PK(E; Ω) is given as

PK(E; Ω) =
1

2

(
[χE ]K(RN )− [χE ]K(Ωc)

)
(2.1.12)

for any set E ⊂ RN .
Before proving the compactness of the nonlocal perimeter, we show the compactness

of the space BVK(Ω) as follows:

Theorem 2.1.7. Let Ω ⊂ RN be a bounded open set with a Lipschitz boundary. Assume
that the kernel K is given in such way that BVK(Ω) is continuously embedded in BVK(RN )
as shown in Lemma A.0.1 in Appendix A. Then, for any bounded subset A ⊂ BVK(Ω), A
is relatively compact in L1(Ω).

Proof of Theorem 2.1.7. We show that A ⊂ BVK(Ω) is totally bounded in L1(Ω), namely,
for any ε > 0 there exist a finite number of functions v1, · · · , vM ∈ L1(Ω) such that for
any u ∈ A, there exists j ∈ {1, · · · , M} such that

‖u− vj‖L1(Ω) < ε. (2.1.13)

From Lemma A.0.1, we can choose a function ũ ∈ BVK(RN ) such that ‖ũ‖K(RN ) ≤
C ‖u‖K(Ω) for some constant C > 0. Thus, for any cube Q ⊂ RN containing Ω, we have

‖ũ‖K(Q) ≤ ‖ũ‖K(RN ) ≤ C ‖u‖K(Ω).

Now, for any ε ∈ (0, 1), we set

C0 := sup
u∈A

(
‖ũ‖L1(RN ) + [ũ]K(RN )

)
≤ sup

u∈A

(
‖u‖L1(Ω) + [u]K(Ω)

)
<∞, ρ := ε

1
t

where t > 0 is as in the assumption (A4) of Lemma A.0.1, and we can choose a collection

of disjoint cubes {Qi}M̃i=1 of side ρ > 0 such that

Ω ⊂
M̃⋃
i=1

Qi = Q.

For any x ∈ Ω, we can choose the unique integer i(x) ∈ N such that x ∈ Qi(x) (#). Thus,
we define the function P : A → L1(Ω) as

P (u)(x) :=
1

|Qi(x)|

∫
Qi(x)

ũ(y) dy

for any u ∈ A and x ∈ Ω. Notice that P is additive and constant in any Qi for i ∈
{1, · · · , M̃}. We denote this constant by qi(u). Hence, we can define the vector function

R : A → RM̃ as
R(u) := ρN (q1(u), · · · , qM̃ (u)) ∈ RM̃
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for any iu ∈ A, and it is easy to observe that the range R(A) ⊂ RM̃ is totally bounded

with respect to the `1-norm. Therefore there exist L ∈ N and b1, · · · , bL ∈ RM̃ such that

R(A) ⊂
L⋃
l=1

Bε/2(bl),

where the ball Bε/2 are taken in the `1-norm of RM̃ . Now, denoting the k-th coordinate

of the vector bl ∈ RM̃ by bkl for k = 1, · · · , M̃ and l = 1, · · · , L, we define functions

{vj}Mj=1 ⊂ L1(RN ) as vj(x) := ρ−N b
i(x)
j for any x ∈ Ω where i(x) is given in (#). By

definition, we have that, if x ∈ Qi, then

P (vj)(x) =
1

|Qi(x)|

∫
Qi(x)

ε−N b
i(x)
j dy = ε−N b

i(x)
j = vj(x)

and we obtain qi(vj) = ρ−N bij , which implies R(vj) = bj .
Furthermore, recalling the assumptions (A1) and (A4) on K in Lemma A.0.1, we have

that

‖u− P (u)‖L1(Ω) =

M̃∑
i=1

∫
Qi∩Ω

|u(x)− P (u)(x)| dx

≤
M̃∑
i=1

1

ρN

∫
Qi∩Ω

∫
Qi

|u(x)− ũ(y)| dy dx

≤
M̃∑
i=1

1

ρN k(
√
2ρ)

∫
Qi∩Ω

∫
Qi

K(|x− y|) |u(x)− ũ(y)| dy dx

≤ 1

ρN k(
√
2ρ)

∫
Q

∫
Q
K(|x− y|) |ũ(x)− ũ(y)| dy dx

≤ C ρt [ũ]K(Q) ≤ C C0 ε (2.1.14)

for any u ∈ A where C > 0 is a constant independent of u and ε.
As a consequence, from the definition of P and (2.1.14), we have

‖u− vj‖L1(Ω) ≤ ‖u− P (u)‖L1(Ω) + ‖P (vj)− vj‖L1(Ω) + ‖P (u− vj)‖L1(Ω)

≤ C C0 ε+ |R(u)−R(vj)|ℓ1(RM̃ )

for any j ∈ {1, · · · , L} where |a|
ℓ1(RM̃ )

:=
∑M̃

i=1 |ai| for any a ∈ RM̃ . Now given u ∈ A,

we can choose a number j ∈ {1, · · · , L} such that |R(u) − bj |ℓ1(RM̃ )
< ε. Then, recalling

that R(vj) = bj for a number j ∈ {1, · · · , L}, we obtain

‖u− vj‖L1(Ω) ≤ (C C0 + 1)ε.

This proves the totally boundedness of A, as desired.

Now we prove the compactness of sets finite nonlocal bounded variations, using the
compactness of the space BVK .

Theorem 2.1.8 (Compactness for PK). Let {En}n∈N be a sequence of sets satisfying

sup
n∈N

PK(En) <∞

for every open bounded set Ω ⊂ RN with a smooth boundary. Then, there exist a subse-
quence {Eni}i∈N and a set E∞ ⊂ RN such that

χEni
−−−→
i→∞

χE∞ in L1
loc, PK(E∞) <∞. (2.1.15)
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Proof. We take any bounded open set Ω ⊂ RN with a smooth boundary. From the
assumption of {En}n and the definition of [·]K(Ω), we obtain the uniform boundedness
saying that

sup
n

(
[χEn ]K(Ω) + ‖χEn‖L1(Ω)

)
≤ sup

n
(PK(En) + |En ∩ Ω|) <∞. (2.1.16)

This implies that the sequence {χEn}n is uniformly bounded in BVK(Ω). Thus, by Theo-
rem 2.1.7, we can extract a subsequence of {En} and choose a set E∞ such that

χEni
−−−→
i→∞

χE∞ in L1(Ω),

which proves the first part of the claim. From the lower semicontinuity of PK , we further
obtain

PK(E∞) ≤ lim inf
i→∞

PK(Eni) <∞.

This completes the proof.

2.2 s-Fractional Minimal Sets

In the sequel, we further investigate the nonlocal perimeter associated only with the kernel
K(x) = |x|−(N+s) with s ∈ (0, 1). We begin with the definition of s-fractional minimal
sets. As an analogy of the classical theory of finite perimeter, one can also consider the
sets that minimize the nonlocal perimeter PK in the following way.

Definition 2.2.1 (s-Fractional Minimal Sets). Let Ω ⊂ RN be an open set. A mea-
surable set E ⊂ RN is called an s-fractional minimal set in Ω if

Ps(E; Ω′) ≤ Ps(F ; Ω
′)

for any bounded open set Ω′ ⊂ Ω and any set F ⊂ RN with E \ Ω′ = F \ Ω′.

Taking into account the above definition, we can define the so-called s-fractional min-
imal surface as follows (see also [22]):

Definition 2.2.2 (s-Fractional Minimal Surfaces). Let Ω ⊂ RN be an open set. If
a measurable set E ⊂ RN is an s-fractional minimal set in Ω, then the boundary ∂E is
called the s-fractional minimal surface in Ω.

When one considers the existence of minimizers of some functional, a sort of continuity
of the functional with respect to a proper topology is necessary. The lower semicontinuity
is one reasonable continuity to obtain the existence.

Proposition 2.2.3 ([22]). If χEi → χE in L1
loc(RN ) as i→ ∞, then

Ps(E; Ω) ≤ lim inf
i→∞

Ps(Ei; Ω). (2.2.1)

The proof of the proposition follows simply from the definition of (2.1.4) and Fatou’s
lemma.

We now review the existence of a s-fractional minimal set in a bounded set Ω ⊂ RN

with Lipschitz boundary. This is shown by L. Caffarelli, J.M. Roquejoffre, and O. Savin
in [22, Theorem 3.2] in the following.

Theorem 2.2.4 ([22]). Let Ω be a bounded open set with Lipschitz boundary and E0 ⊂ Ωc

be a given set. Then there exists an s-fractional minimal set E with E \Ω = E0, namely,
it holds

Ps(E; Ω) = inf
F\Ω=E0

Ps(F ; Ω).
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Proof. The infimum is bounded from below since Ps(E0; Ω) < ∞. Let {Fn}n∈N be any
minimizing sequence such that Ps(Fn) → infF\Ω=E0

Ps(F ; Ω) as n → ∞. Then one can
show the boundedness of {χFn∩Ω}n∈N with respect to the fractional Sobolev norm ‖·‖W s/2,2 .
From the compactness of W s/2,2 (see [46, Theorem 7.1]), one can extract a subsequence
of {χFn∩Ω}n converging to χE∩Ω for some E ⊂ RN . Therefore, the claim follows from the
lower semicontinuity of s-fractional perimeter as in Proposition 2.2.3.

2.3 Euler-Lagrange Equation

The authors in [22] also established the Euler-Lagrange equation in the viscosity sense
associated to the s-fractional perimeter Ps in an open set Ω ⊂ RN .

Theorem 2.3.1 ([22]). Let E ⊂ RN be a s-fractional minimal set in an open set Ω ⊂ RN .
If x ∈ ∂E ∩ Ω and E ∩ Ω has an interior tangential ball at x, then

Hs
E(x) := P.V.

∫
RN

χEc(y)− χE(y)

|y − x|N+s
dy ≥ 0. (2.3.1)

where “P.V.” means the Cauchy principle value.

We remark that, in Theorem 2.3.1, if E ∩ Ω has an exterior tangential ball at x, then
we have

Hs
E(x) ≤ 0.

Indeed, if E ⊂ RN is a s-fractional minimal set in Ω, then Ec is also a s-fractional minimal
set in Ω.

Taking into account the above, we obtain that, if E ∩Ω has both interior and exterior
tangential balls at x, then the so-called fractional minimal surface equation Hs

E(x) = 0
holds.

Remark 2.3.2. From a geometrical point of view, the equation (2.3.1) is a nonlocal version
of the classical mean curvature equation, which is given as HE = 0 on ∂E of a set E
where HE is the mean curvature on ∂E. The reason we can call the quantity on the right-
hand side in (2.3.1) is as follows; when we compute the first variation of the s-fractional
perimeter of a smooth set E, we obtain

d

dt
bt=0Ps(Φt(E)) = −

∫
∂E

(∫
RN

χEc(y)− χE(y)

|y − x|N+s
dy

)
(X(x) · ν(x)) dHN−1(x)

where {Φt}|t|≪1 is the flow along a smooth vector field X and ν is the unit normal vector
on ∂E. Thus, the quantity Hs

E defined in (2.3.1) can be regarded as the “s-fractional
mean curvature”. We can say that, intuitively, the quantity defined in (2.3.1) measures
the balance between the contributions of a set E and its complement Ec from its boundary
∂E with a weight function singular at each point of ∂E.

Moreover, it may be interesting to notice that the equation (2.3.1) can be interpreted
as the s-fractional Laplace equation (−∆)s/2(χE − χEc) = 0 on ∂E.

Remark 2.3.3. If ∂E is of class C1,α with α > s, then the s-fractional mean curvature
defined in (2.3.1) is well-defined at every point of ∂E (see [1, 37]). Recall that the classical
mean curvature is well-defined at every point of a surface if the surface is of class C2.

Remark 2.3.4. The definition of the s-fractional mean curvature may not look natural at
a first glance. To make it clearer in another way, one can observe that the classical mean
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curvature of the boundary of a smooth set E ⊂ RN at a point x ∈ ∂E can be derived via
the averaging procedure

lim
r↓0

1

rN+1

∫
Br(x)

(χEc(y)− χE(y)) dy. (2.3.2)

Indeed, we assume that x is the origin and the neighborhood of x can be described as the
graph of some smooth function u : RN−1 → R with u(0) = 0 and ∇′u(0) = 0. In this
setting, E can be expressed as the super-graph of u in the neighborhood of x. Then we
have that

lim
r↓0

1

rN+1

∫
Br(x)

(χEc(y)− χE(y)) dy = lim
r↓0

1

rN+1

∫
{|y′|<r, |yN |<r}

(χEc(y)− χE(y)) dy

= lim
r↓0

2

rN+1

∫
{|y′|<r}

u(y′) dy′

= lim
r↓0

1

rN+1

∫
{|y′|<r}

(
∇2u(0) y′ · y′ + o(|y′|2)

)
dy′

= c∆u(0)

for some constant c > 0. This argument is also done in [54].

Remark 2.3.5. One may observe that a local minimizer E ⊂ RN with a C2-boundary in a
domain Ω ⊂ RN possesses zero s-fractional mean curvature, in the sense that∫

RN

χEc(y)− χE(y)

|y − q|N+s
= 0 for any q ∈ ∂E ∩ Ω. (2.3.3)

As we see in the previous remark, the s-fractional mean curvature Hs
E given in (2.3.1) is

defined in the Cauchy principle value, and the smoothness of E is exploited to employ
cancellations for removing singularities. Without knowing any regularity of a set E, the
Euler-Lagrange equation (2.3.3) is not understood in the pointwise sense, but must be
in the viscosity sense. As is shown in Theorem 2.3.1, the notion of the viscosity sense is
described by using the interior or exterior ball tangential to the boundary ∂E. This is
an interesting geometric information. In particular, we notice that the simple fact that
a ball is contained in E (respectively, in Ec) makes the quantity χEc − χE accordingly
small (respectively, large), regardless of the minimality of the set. The useful information
encoded in the above inequalities is that for local minimizers one is also provided with
a partial knowledge with respect to “the opposite sign”: specifically, in this case the
fact that a ball is contained contained in E (respectively, in Ec) makes the quantity
χEc−χE accordingly large (respectively, small) after averaging with respect to the singular
kernel. We observe that for smooth sets one can obtain this Euler-Lagrange equation (or
the corresponding Euler-Lagrange inequalities) simply by looking at energy perturbations
under domain variations (see for instance [54]), but without assuming any smoothness on
the set suitable cancellations need to be detected.

The proof of Theorem 2.3.1 is quite complicated, and we only explain some ideas of
the proof in the following. Since one has an interior tangential ball at x0 ∈ ∂E ∩ Ω,
one may construct a proper “perturbation” set A outside E in a small neighborhood of
x0 ∈ ∂E ∩ Ω. From the minimality of E, one can compare the energies Ps(E; Ω) and
Ps(E ∪ A; Ω). Then, considering the cancellation of the contribution between the sets E
and Ec ∩Ac, one obtains∫

A

∫
E

1

|y − x|N+s
dy dx ≤

∫
A

∫
Ec∩Ac

1

|y − x|N+s
dy dx,
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and thus
1

|A|

∫
A

(∫
RN

χE(y)− χEc(y)

|y − x|N+s
dy

)
dx ≤ 0. (2.3.4)

Choosing the “perturbation” set A in such a way that |A| ↓ 0 and x0 ∈ A, one may
formally obtain, from (2.3.4), that Hs

E(x0) ≤ 0.
The rigorous proof of Theorem 2.3.1 was conducted more carefully by L. Caffarelli,

J.M. Roquejoffre, and O. Savin [22] because of the singularity of the s-fractional mean
curvature Hs

E at x0 ∈ ∂E ∩ Ω and, in Theorem 5.1 of [22], the authors constructed a
delicate perturbation set A by using the interior tangential ball.

2.4 Regularity of (Almost) s-Fractional Minimal Sets

In this section, we review several results on the regularity of both s-fractional minimal
sets, and “almost” s-fractional minimal sets. Originally, the regularity of s-fractional
minimal sets was obtained by L. Caffarelli, J.M. Roquejoffre, and O. Savin [22, Theorem
2.4]. Precisely they proved

Theorem 2.4.1 ([22]). Let s ∈ (0, 1). If E ⊂ RN is a minimizer of s-fractional perimeter
Ps in a ball B1, then ∂E ∩ B1/2 is , to the possible exception of a closed set of Hausdorff
dimension N − 2, a C1,α-hypersurface around each of its points for any α ∈ (0, s).

Regarding the closed set of Hausdorff dimension N − 2, O. Savin and E. Valdinoci
[106] proved that the singular set of s-fractional minimal sets has Hausdorff dimension at
most N − 3.

Theorem 2.4.2 ([106]). Assume that E ⊂ R2 is a s-fractional minimal cone, namely, E
satisfies that E = t E for any t > 0. Then E is a half-plane.

In particular, by combining the blow-up and blow-down arguments in [22], one may
obtain that s-fractional minimal surfaces in R2 are fully C1,α-regular for any α ∈ (0, s).

Corollary 2.4.3 ([106]). If E is an s-fractional minimal set in Ω ⊂ R2, then ∂E ∩ Ω′ is
a C1,α-curve for any Ω′ ⋐ Ω.

Finally in higher dimensions, by using the dimension reduction argument performed
in [22], one may obtain the following corollary:

Corollary 2.4.4 ([106]). Let ∂E be a s-fractional minimal surface in Ω ⊂ RN and let
ΣE ⊂ ∂E ∩ Ω denote its singular set. Then Hd(ΣE) = 0 for any d > N − 3.

Now we study the regularity of “almost” s-fractional minimal sets. To see this, we
recall the following two results: one is the C1-regularity result of “almost” s-fractional
minimal sets shown by M.C. Caputo and N. Guillen [26], and the other is the C1,α-
regularity result shown by A. Figalli, N. Fusco, F. Maggi, V. Millot, and M. Morini [56].
Although there seems to be a conflict between the two results, the definition of “almost”
s-fractional minimal sets given by M.C. Caputo and N. Guillen [26] is in a more general
form than the one by A. Figalli, et al. [56]. To see the difference of the definitions, we
will refer to the two statements (Theorem 2.4.8 and 2.4.9) in this section. The regularity
of almost s-fractional minimal sets will be applied to show our main results in Chapter 4
and 5 of this thesis.

First of all, we give the definition of “almost” s-fractional minimal sets. After giving
the definition, we state the results on the regularity of “almost” s-fractional minimal sets
investigated in [26] and [56].
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Definition 2.4.5 (Almost s-Fractional Minimal Sets). Let s ∈ (0, 1) and Λ > 0. We
say that a set E ⊂ RN is an almost s-fractional minimal set with Λ > 0 if

Ps(E;BR) ≤ Ps(F ;BR) +
Λ

1− s
|E∆F |

for any set F ⊂ RN .

This definition is due to [56] and, in our thesis, we adopt Definition 2.4.5 in Chapter
4 and 5. we also review the definition and regularity of almost s-fractional minimal sets
shown by M.C. Caputo and N. Guillen [26, Theorem 1.1]. The definition of almost s-
fractional minimal sets given in [26] is as follows:

Definition 2.4.6 ([26]). Let s ∈ (0, 1) and δ > 0, and let Ω ⊂ RN be an bounded domain
with Lipschitz boundary. Assume that ρ : (0, δ) → R is a non-decreasing and bounded
function with some growth condition (for instance, ρ(t) = tα with α ∈ (0, s]). We say that
a set E ⊂ RN is a (Ps, ρ, δ, )-minimal set in Ω if

Ps(E;BR) ≤ Ps(F ;BR) + ρ(r) rN−s,

for any x0 ∈ ∂E, a set F ⊂ RN , and 0 < r < min{δ, dist (x0, ∂Ω)} with E 4 F ⊂ Br(x0).

Remark 2.4.7. One may choose, for instance, a function r 7→ C rβ with 0 < β ≤ s for some
constant C > 0 as the function ρ in Theorem 2.4.8. Moreover, one can see that an almost
s-fractional minimal set E in Definition 2.4.5 satisfies Definition 2.4.6 with ρ(r) = Λ

1−sr
s.

Now we state the C1-regularity of almost s-fractional minimal sets in the sense of
Definition 2.4.6 as follows:

Theorem 2.4.8 ([26]). Let s ∈ (0, 1), δ > 0, and ρ be as in Definition 2.4.6. Suppose
that a set E ⊂ RN is a (Ps, ρ, δ)-minimal set in B1 in the sense of Definition 2.4.6. Then
∂E is of class C1 in B 1

2
, except a closed set of Hausdorff dimension N − 2.

Compared with Theorem 2.4.8, if a set is an almost s-fractional minimal set in the
sense of Definition 2.4.5, then one may obtain the C1,α-regularity of the set. This result
was due to [56, Theorem 3.4]. Precisely, we have

Theorem 2.4.9 ([56]). Let N ≥ 2, Λ ≥ 0, and s0 ∈ (0, 1). Assume that E is an almost
s-fractional minimal set in B1 in the sense of Definition 2.4.5 for some s ∈ (s0, 1). Then
∂E ∩B 1

2
is of class C1,α except a closed set of Hausdorff dimension N − 2.

As we mentioned, the definition of almost s-fractional minimal sets given by M.C.
Caputo and N. Guillen [26] is more general than the one given by A. Figalli, et al. [56].

Remark 2.4.10. From the regularity of the minimal cone by O. Savin and E. Valdinoci [106]
in 2 dimension (see Theorem 2.4.2), one may obtain that the singular set of an almost
s-fractional minimal set in the sense of either Definition 2.4.6 or 2.4.5 has Hausdorff
dimension at most N − 3.

Finally, in this section, we briefly mention the density estimate for the almost s-
fractional minimal sets. Thanks to [56, Lemma 3.1], we have the following claim:

Lemma 2.4.11 (Density Estimates of Almost s-Fractional Minimal Sets). Let
s ∈ (0, 1), Λ > 0, and E be an almost s-fractional minimal sets with Λ in the sense of
Definition 2.4.5. Then we have

|B1|(1− c0) r
N ≥ |E ∩Br(x0)| ≥ |B1|c0 rN

for any r ∈ (0, r0) and x0 ∈ RN such that |E ∩Br(x0)| > 0 and |Ec ∩Br(x0)| > 0 for any
r > 0, where c0 and r0 are positive constants depending only on N , s, and Λ.

The proof is shown in [56] and we do not write it here.



Chapter 3

Topology of Nonlocal Minimal
Sets

In this chapter, we investigate several qualitative properties of s-fractional minimal sets.
Let s ∈ (0, 1) and Ω ⊂ RN be an open subset with a Lipschitz boundary. As is shown in
Definition 2.1.2 of Chapter 2, a localized version of the s-fractional perimeter Ps(E ; Ω) in
Ω for a set E ⊂ RN is defined as

Ps(E ; Ω) :=

∫
E∩Ω

∫
Ec

dx dy

|x− y|N+s
+

∫
E∩Ωc

∫
Ω∩Ec

dx dy

|x− y|N+s
,

where we denote by Ec the complement of a set E. Then we give the notion of nonlocal
minimal surface in unbounded open set Ω ⊂ RN in the following way:

Definition 3.0.1 (s-Fractional Minimal Surfaces in Unbounded Domain). Let
Ω ⊂ RN be an unbounded open set and let E ⊂ RN . Then we say that the topological
boundary of E is a nonlocal(s-fractional) minimal surface in Ω if E is an s-fractional
minimal set in Ω, namely, it holds that

Ps(E; Ω′) ≤ Ps(F ; Ω
′)

for any bounded and open set Ω′ contained in Ω and any set F ⊂ RN with F \Ω′ = E \Ω′.

We remark that the definition of the s-fractional minimal sets in Definition 2.2.1 of
Chapter 2 is slightly different because of the existence of the minimizers are not triv-
ial in unbounded domain (see [81]). Thus we slightly abuse the language of the notion
of s-fractional minimal sets in this chapter. See [81, 82] for the details regarding the
minimization procedure in bounded or unbounded domains.

3.1 Problem Setting and Main Results

We focus on the case that the reference domain Ω is given as the “cylindrical” domain of
the form

Ωc := {x = (x′, xN ) ∈ RN−1 × R | |x′| < 1}. (3.1.1)

We are interested in sets E whose exterior prescription outside Ωc is the complement of
a strip and which minimise the s-fractional perimeter in Ωc. Namely, given M > 0, we
define

E0 := {x = (x′, xN ) ∈ RN−1 × R | |xN | > M} (3.1.2)

and we consider s-fractional minimal sets in Ωc such that E \ Ωc = E0 \ Ωc. See, for
instance, [82, Theorem 0.2.5] for the existence results for this type of s-fractional minimal
sets.

35



36 CHAPTER 3. TOPOLOGY OF NONLOCAL MINIMAL SETS

Figure 3.1: Minimizers in Theorem 3.1.1 (left) and Theorem 3.1.2 (right).

Our main concern in this chapter is how the variation of the parameter M affects the
topological property of the s-fractional minimal surfaces and we will show that for small
values of M the s-minimizer is connected while for large values it is disconnected.

Furthermore, we will show that for small values of M the s-fractional minimal sets
in Ωc coincides with Ωc itself, and this is an interesting difference with respect to the
case of classical minimal sets, which means the sets minimising the classical perimeter.
Indeed, when N ≥ 3, classical minimal sets in a cylinder do not coincide with the cylinder
itself and, when connected, they develop a “neck” inside the cylinder, as exhibited by the
classical example of the catenoid (as a matter of fact, when N ≥ 3 the cylinder does not
have vanishing mean curvature, hence it cannot be a minimizer for the classical perimeter
functional).

Therefore, our construction of s-fractional minimal sets that coincide with the cylinder
in their free domain heavily relies on the nonlocal character of the problem taken into
consideration and can be seen as a new example of the stickiness theory for nonlocal
minimal surfaces which was introduced in [51] and developed in [50, 19, 52, 53]. See also
[54, 47] for surveys on s-fractional minimal surfaces (sets) discussing, among other topics,
the stickiness phenomenon (and, for instance [68] to appreciate the structural differences
with respect to the classical case).

In further detail, the precise result that we have concerning the connectedness of the
s-minimizer and its stickiness properties for small values of M goes as follows:

Theorem 3.1.1. Let Ωc be as in (3.1.1) and let E0 be defined by (3.1.2). Then, there
exists M0 ∈ (0, 1), depending only on n and s, such that, for any M ∈ (0, M0), the
minimizer EM in Ωc of Ps coincides with Ωc. In particular, EM is connected.

The minimizer described in Theorem 3.1.1 is depicted in Figure 3.1. As a counterpart
of Theorem 3.1.1, the disconnectedness result for large values of M is the following:

Theorem 3.1.2. Let Ωc be as in (3.1.1) and let E0 be defined by (3.1.2). Then, there
exists M0 > 1, depending only on n and s, such that, for any M > M0, the minimizer
EM in Ωc of Ps is disconnected.

To understand the situation intuitively, some sketch on how the minimizer in Theorem
3.1.2 could look like is given in Figure 3.1.

Interestingly, the situation described in Theorem 3.1.2 is similar, but structurally dif-
ferent from the one exhibited by classical minimal surfaces. Indeed, the analogy with the
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Figure 3.2: The situation in the proof of Theorem 3.1.1.

classical case is given by the disconnectedness of the minimizers. The difference in the
pattern is that classical minimal surfaces in the framework of Theorem 3.1.2 are just flat
disc, and this is not the case for their corresponding nonlocal counterpart (as we will make
precise in Proposition 3.3.1).

The forthcoming Sections 3.2.1 and 3.2.2 contain the proofs of Theorems 3.1.1 and
3.1.2 respectively. In Section 3.3 we will present further similarities and differences with
respect to the classical case in the framework of large M given by Theorem 3.1.2.

3.2 (Dis)connectedness of Nonlocal Minimal Surfaces

In this section, we give the proof of our main theorems (see Theorem 3.1.1 and Theorem
3.1.2 for the statements), which is related to the topology of s-fractional minimal sets.
Precisely, we prove the following two things: if the width M of the slab is sufficiently
large, then the the s-fractional minimal sets in Ω ⊂ RN are disconnected. On the other
hand, if M is sufficiently small, then the s-fractional minimal sets in Ω are connected, and
coincide with the reference set Ω itself.

3.2.1 Proof of Theorem 3.1.1

Let EM be the minimizer selected in Theorem 3.1.1, see Figure 3.2 (at this stage of the
proof, we do not really know how this minimizer looks like, so the one depicted in Figure
3.2 will not be the “real” minimizer after all).

By [22, Corollary 5.3], we know that

{xN > M} ∪ {xN < −M} ⊂ EM . (3.2.1)

Given t ∈ R and r ∈ (0, 1), we consider the ball of radius r with a center teN , where
eN = (0, . . . , 0, 1). By (3.2.1), we have that Br(teN ) ⊂ EM for every t > M + 1. Hence,
we can slide such a ball downwards till it touches ∂EM inside Ωc. The content of Theorem
3.1.1 is precisely that this touching does not occur, hence, by contradiction, we suppose
instead that there exist t0 ∈ R and r0 ∈ (0, 1) such that

Br0(teN ) ⊂ EM for all t > t0 (3.2.2)

with
∂Br0(t0eN ) ∩ ∂EM 6= ∅.
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Figure 3.3: The touching between the ball Br0(z) and the symmetric ball Br0(z) at the
point q.

Then, setting z := t0eN , we can choose a point q = (q′, qN ) ∈ ∂Br0(z) ∩ ∂EM .
Since EM is a local minimizer of Ps in Ωc, we obtain, by using the Euler-Lagrange

equation in the viscosity sense shown in Theorem 2.3.1 of Chapter 2 (see also [22, Theorem
5.1] and [19, Theorem B.9]), that∫

RN

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy ≥ 0. (3.2.3)

Our goal is now to produce a contradiction with (3.2.3) by showing that the left hand side
is strictly negative. To this end, we let

SM := RN−1 × [qN − 2M, qN + 2M ].

We remark that
Ec

M ⊂ SM \Br0(z). (3.2.4)

Indeed, by (3.2.1) we know that qN ∈ [−M,M ] and Ec
M ⊂ {xN ∈ [−M,M ]}, whence

Ec
M ⊂ SM . This and (3.2.2) give (3.2.4).
We also observe that SM ⊃ {|xN | ≤M}, and therefore, in light of (3.2.1),

Sc
M ⊂ EM . (3.2.5)

Moreover, using the change of variable y 7→ y + q,∫
Sc
M

dy

|y − q|N+s
=

∫
RN−1×((−∞,−2M)∪(2M,∞))

dy

|y|N+s

≥
∫
BM (3Men)

dy

|y|N+s
≥ cM−s, (3.2.6)

for a constant c > 0 depending only on N .
Now we set z := z + 2(q − z) and we consider the symmetric ball Br0(z) with respect

to q, see Figure 3.3. Moreover, we take a free parameter Λ ≥ 4, to be chosen conveniently
large in what follows and we observe that, by symmetry,∫

SM∩BΛM (q)∩Br0 (z)

dy

|y − q|N+s
=

∫
SM∩BΛM (q)∩Br0 (z)

dy

|y − q|N+s
.
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Also, by (3.2.4),

∫
SM∩BΛM (q)∩Br0 (z)

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy = −

∫
SM∩BΛM (q)∩Br0 (z)

dy

|y − q|N+s
,

and consequently

∫
SM∩BΛM (q)∩Br0 (z)

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy +

∫
SM∩BΛM (q)∩Br0 (z)

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

≤ −
∫
SM∩BΛM (q)∩Br0 (z)

dy

|y − q|N+s
+

∫
SM∩BΛM (q)∩Br0 (z)

dy

|y − q|N+s
= 0.

Therefore,

∫
SM∩BΛM (q)

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

=

∫
SM∩BΛM (q)∩Br0 (z)

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy +

∫
SM∩BΛM (q)∩Br0 (z)

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

+

∫
SM∩

(
BΛM (q)\

(
Br0 (z)∪Br0 (z)

)) χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

≤
∫
SM∩

(
BΛM (q)\

(
Br0 (z)∪Br0 (z)

)) χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

≤
∫
BΛM (q)\

(
Br0 (z)∪Br0 (z)

) dy

|y − q|N+s

≤ CΛ1−sM1−s, (3.2.7)

for some C > 0 depending only on N and s, where [50, Lemma 3.1] has been used in the
last inequality (here with R := 1 and λ := ΛM).

Furthermore,

∫
SM\BΛM (q)

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy ≤

∫
SM\BΛM (q)

dy

|y − q|N+s

=

∫
(RN−1×[−2M,2M ])\BΛM

dy

|y|N+s

≤
∫
(RN−1×[−2M,2M ])\BΛM

dy

|y′|N+s

≤
∫
{|y′|≥ΛM/2, |yN |≤2M}

dy

|y′|N+s

=
C0

Λ1+sM s
,

for some C0 > 0 depending only on N and s.

Hence, combining this information with (3.2.7),

∫
SM

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy ≤ CΛ1−sM1−s +

C0

Λ1+sM s
.
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This, (3.2.5) and (3.2.6) lead to

∫
RN

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

= −
∫
Sc
M

dy

|y − q|N+s
+

∫
SM

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

≤ −cM−s + CΛ1−sM1−s +
C0

Λ1+sM s

= −cM−s

(
1− CΛ1−sM

c
− C0

cΛ1+s

)
.

Now we choose Λ := max

{
4,
(
2C0
c

) 1
1+s

}
and we thus obtain that

∫
RN

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy ≤ −cM−s

(
1

2
− CΛ1−sM

c

)
.

Taking now M conveniently small, we conclude that

∫
RN

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy ≤ −cM

−s

4
< 0,

which produces the desired contradiction with (3.2.3).

3.2.2 Proof of Theorem 3.1.2

We letM > 1 to be chosen conveniently large. Given t ∈ R, we consider the ball B√
M (te1),

where e1 = (1, 0, . . . , 0), and we slide it from left to right till it touches ∂EM . Notice
indeed that B√

M (te1) ⊂ Ec
0 when t < −

√
M and, to prove Theorem 3.1.2, we suppose

by contradiction that there exists t0 ∈ R such that B√
M (te1) ⊂ Ec

M for all t < t0 with
∂B√

M (t0e1) ∩ ∂EM 6= ∅.

We set z := t0e1 and we pick a point q = (q′, qN ) ∈ ∂B√
M (z) ∩ ∂EM . By the Euler-

Lagrange equation in the viscosity sense in Theorem 2.3.1 of Chapter 2 (see also [22,
Theorem 5.1] and [19, Theorem B.9]), we know that

∫
RN

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy ≤ 0. (3.2.8)

We consider the symmetric ball with respect to q, by defining z := z+2(q− z) and taking
into account the ball B√

M (z), see Figure 3.4.

We define

S :=
{
x = (x′, xN ) ∈ RN−1 × R s.t. |x′ − q′| ≤ 3

}
.

By symmetry, ∫
S∩B√

M (z)

dy

|y − q|N+s
=

∫
S∩B√

M (z)

dy

|y − q|N+s
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Figure 3.4: The touching between the ball B√
M (z) and the symmetric ball B√

M (z) at
the point q.

and therefore∫
S

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

=

∫
S∩B√

M (z)

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy +

∫
S∩B√

M (z)

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

+

∫
S\(B√

M (z)∪B√
M (z))

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

≥
∫
S∩B√

M (z)

dy

|y − q|N+s
−
∫
S∩B√

M (z)

dy

|y − q|N+s

+

∫
S\(B√

M (z)∪B√
M (z))

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

≥ −
∫
S\
(
B√

M (z)∪B√
M (z)

) dy

|y − q|N+s
. (3.2.9)

Now, in view of [50, Lemma 3.1], used here with R :=
√
M and λ := 1/ 4

√
M , we know

that ∫
B 4√

M
(q)\
(
B√

M (z)∪B√
M (z)

) dy

|y − q|N+s
≤ CM− 1+s

4 ,

for some C > 0 depending only on N and s. As a result,∫
S\(B√

M (z)∪B√
M (z))

dy

|y − q|N+s

≤
∫
B 4√

M
(q)\(B√

M (z)∪B√
M (z))

dy

|y − q|N+s
+

∫
S\B 4√

M
(q)

dy

|y − q|N+s

≤ CM− 1+s
4 +

∫
RN\B 4√

M
(q)

dy

|y − q|N+s
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= CM− 1+s
4 + C1M

− s
4 ≤ C2M

− s
4

for some C1 > 0 depending only on N and s, with C2 := C + C1.
This and (3.2.9) lead to∫

RN

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

=

∫
S

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy +

∫
Sc

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

≥ −C2M
− s

4 +

∫
Sc

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

≥ −C2M
− s

4 −
∫
Sc∩{|yN |≥M}

dy

|y − q|N+s
+

∫
Sc∩{|yN |<M}

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy

≥ −C2M
− s

4 −
∫
{|y−q|≥M/2}

dy

|y − q|N+s
+

∫
Sc∩{|yN |<M}

dy

|y − q|N+s

= −C2M
− s

4 − C3M
−s +

∫
Sc∩{|yN |<M}

dy

|y − q|N+s
,

for some C3 > 0 depending only on N and s.
Thus, since Sc ∩ {|yN | < M} ⊃ B1(q + 5e1), letting C4 := C2 + C3 we have∫

RN

χEc
M
(y)− χEM

(y)

|y − q|N+s
dy ≥ −C4M

− s
4 +

∫
B1(q+5e1)

dy

|y − q|n+s

= −C4M
− s

4 +

∫
B1(5e1)

dy

|y|N+s
= −C4M

− s
4 + c,

for some c > 0 depending only on N and s. In particular, if M is sufficiently large, we
deduce that the left hand side of (3.2.8) is strictly positive, thus reaching a contradiction
with (3.2.8).

3.3 Stickiness of Nonlocal Minimal Surfaces

Finally in this section, we would like to point out that, on the one hand, the result shown
in Theorem 3.1.2 is related to the case of classical minimal surfaces, since both the classical
and the nonlocal regimes exhibit disconnected minimizers for large width M of the slabs.
On the other hand, there are some significant structural differences between the classical
and s-fractional minimal surfaces (sets).

More precisely, differently from the classical minimal surfaces, the s-fractional minimal
sets constructed in Theorem 3.1.2 exhibit the features listed below:

Proposition 3.3.1. Let M and EM be as in Theorem 3.1.2. Then,

EM % {xn > M} ∪ {xN < −M}. (3.3.1)

Moreover,
EM ⊃ BcM−s(0, . . . , 0,−M) ∪BcM−s(0, . . . , 0,M), (3.3.2)

for some c > 0 depending only on N and s.
In addition, if N = 2, given any ε0 > 0 there exists c⋆ > 0, depending only on s and

ε0, such that

EM ⊃
(
(−1, 1)×

(
−∞,−M + c⋆M

−γ
))

∪
(
(−1, 1)×

(
M − c⋆M

−γ ,∞
))

(3.3.3)

where γ := (2+ϵ0)s
1−s .
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Figure 3.5: A sketch of an argument in Proposition 3.3.1.

Remark that (3.3.2) and (3.3.3) are quantitative versions of (3.3.1) and a sketch of an
argument used in the proof of Proposition 3.3.1 is depicted in Figure 3.5. Though (3.3.2)
and (3.3.3) provide a stronger result than (3.3.1), we give an independent proof of (3.3.1)
based on a simple symmetry argument, while the proofs of (3.3.2) and (3.3.3) rely on finer
quantitative arguments based on the result in [51, Corollary 7.2]. We also point out that
(3.3.3) provides an explicit quantitative bound on the stickiness property in dimension 2.

Proof of Proposition 3.3.1. To prove (3.3.1), we need to show that the inclusion in (3.2.1)
is strict. For this, we argue by contradiction and suppose that EM = {xn > M} ∪ {xn <
−M}. Then we can use the Euler-Lagrange equation in the viscosity sense shown in
Theorem 2.3.1 in Chapter 2 (see also [22, Theorem 5.1]) at the point q := (0, . . . , 0,−M) ∈
∂EM , thus finding that

0 =

∫
RN

χEc
M
(y)− χEM

(y)

|y − q|n+s
dy

=

∫
{|yn|<M}

dy

|y − q|n+s
−
∫
{|yn|≥M}

dy

|y − q|n+s

=

∫
{zn∈(0,2M)}

dz

|z|n+s
−
∫
{zn∈(−∞,0]∪[2M,∞)}

dz

|z|n+s
. (3.3.4)

Also, by the transformation (z′, zn) 7→ (z′,−zn), we see that∫
{zn∈(0,2M)}

dz

|z|n+s
=

∫
{zn∈(−2M,0)}

dz

|z|n+s
,

and therefore (3.3.4) gives that

0 = −
∫
{zn∈(−∞,−2M ]∪[2M,∞)}

dz

|z|n+s
< 0.

This contradiction proves (3.3.1), and we now deal with the proof of (3.3.2). To this end,
we let φ ∈ C∞

0 (RN−1, [0, 1]) with φ(x′) = 1 if |x′| ≤ 1/2 and φ(x′) = 0 if |x′| ≥ 3/4. Given
η > 0, we define

F := {xN < ηφ(x′)}
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and we claim that, for every p ∈ ∂F ,∫
RN

χF c(y)− χF (y)

|y − p|N+s
dy ≤ C0η, (3.3.5)

for some C0 > 0 depending only on N , s and φ. To prove this, we let

Ψ(x′, xn) := (x′, xN + ηφ(x′)) and Φ(x) := Ψ(x)− x = (0, . . . , 0, ηφ(x′))

Notice that F = Ψ({xN < 0}) and the Jacobian of Φ is bounded by Cη, together with its
derivatives, for some C > 0 depending only on N and η. Furthermore, the inverse of Ψ is
given by

Ψ−1(x) = (x′, xN − ηφ(x′))

and, setting Ξ(x) := Ψ−1(x) − x = −(0, . . . , 0, ηφ(x′)), we find that also the Jacobian of
Ξ is bounded by Cη. Consequently, we are in the position of exploiting [37, Theorem 1.1]
and deduce that∫

RN

χF c(y)− χF (y)

|y − p|N+s
dy ≤

∫
RN

χ{yN>0}(y)− χ{yN<0}(y)

|y −Ψ−1(p)|n+s
dy + C0η = C0η,

for some C0 > 0 depending only on N , s and φ, thus completing the proof of (3.3.5).

Now we define

G := F ∪ {xN > 4M},

we point out that this union is disjoint for large M and small η, and we claim that there
exists c > 0, depending only on N , s and φ, such that if η ∈ (0, cM−s] then, for every
p ∈ ∂F , ∫

RN

χGc(y)− χG(y)

|y − p|N+s
dy < 0. (3.3.6)

Indeed, we have that χG = χF +χ{xN>4M}, whence χGc = 1−χG = 1−χF −χ{xN>4M} =
χF c − χ{xN>4M}. Accordingly, we have that χGc − χG = χF c − χF − 2χ{xN>4M} and
therefore, using (3.3.5),∫

RN

χGc(y)− χG(y)

|y − p|N+s
dy =

∫
RN

χF c(y)− χF (y)

|y − p|N+s
dy − 2

∫
{yN>4M}

dy

|y − p|N+s

≤ C0η − 2

∫
(−M,M)N−1×(4M,5M)

dy

|y − p|N+s

≤ C0η − c0M
−s,

for some c0 > 0 depending only on N and s, which plainly leads to (3.3.6).

By means of (3.3.6), we can thus use the set G as a sliding barrier from below with η :=
cM−s where c > 0 is such that C0cM

−s− c0M−s < 0. (starting the sliding from a vertical
translation of the set G equal to −2M) and find that EM ⊃ {xn < −M + cM−sφ(x′)}.
Indeed, we assume that there exits a touching point p ∈ ∂F ∩ ∂EM such that G ⊂ EM .
Then, from the minimality of EM , the following Euler-Lagrange equation holds:

0 ≤
∫
RN

χEc
M
(y)− χEM

(y)

|y − p|N+s
dy. (3.3.7)

On the other hand, from the inclusion that G ⊂ EM , we have

Hs
EM

(p) ≤ Hs
G(p). (3.3.8)
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Thus, from (3.3.6), (3.3.7), and (3.3.8), we obtain the contradiction. Therefore, we see

that EM ⊃
[
−1

2 ,
1
2

]N−1 × (−∞,−M + cM−s] ⊃ BcM−s(0, . . . , 0,−M).
Similarly, one proves that EM ⊃ BcM−s(0, . . . , 0,M), thus completing the proof of

(3.3.2).
Now we suppose that N = 2 and we establish (3.3.3). For this, we fix ε0 > 0, we

consider a suitably small δ > 0 and we exploit [51, Corollary 7.2] to construct a set
H ⊂ R2 such that

H ⊂ {x2 < δ},
H ∩ {x1 < −1} = (−∞,−1)× (−∞, 0),

H ∩ {x1 > 1} = (1,∞)× (−∞, 0),

H ⊃ (−1, 1)×
(
−∞, δ

2+ϵ0
1−s

)
,

and

∫
R2

χHc(y)− χH(y)

|y − p|2+s
dy ≤ C̄δ

for every p = (p1, p2) ∈ ∂H with |p1| < 1, where C̄ > 0 depends only on s and ε0. See
Corollary 3.3.3 for the detail of this construction.

We define
L := H ∪ {x2 > 4M},

and we see that χLc − χL = χHc − χH − 2χ{x2>4M} and thus∫
R2

χLc(y)− χL(y)

|y − p|2+s
dy ≤

∫
R2

χHc(y)− χH(y)

|y − p|2+s
dy − 2

∫
{y2>4M}

dy

|y − p|2+s

≤ C̄δ − 2

∫
(−M,M)×(4M,5M)

dy

|y − p|2+s
≤ C̄δ − c̄M−s < 0

for every p = (p1, p2) ∈ ∂H with |p1| < 1, where c̄ > 0 depends only on s, and δ := c̄M−s

2C̄
.

In this way, we can use L as sliding barrier from below (starting the sliding from a
vertical translation of the set L equal to −2M) and deduce that

EM ∩{|x1| < 1} ⊃ (−1, 1)×
(
−∞,−M + δ

2+ϵ0
1−s

)
= (−1, 1)×

(
−∞,−M + c⋆M

− (2+ϵ0)s
1−s

)
for some c⋆ > 0. Similarly, one finds that

EM ∩ {|x1| < 1} ⊃ (−1, 1)×
(
M − c⋆M

− (2+ϵ0)s
1−s ,∞

)
.

The proof of (3.3.3) is thereby complete.

As the last remark of this section, we recall the proposition and its corollary proved
in [51], which we have used in the above proof to show the property (3.3.3).

Proposition 3.3.2 ([51]). Let ε0 > 0 be a small number depending only on s ∈ (0, 1).
For sufficiently small number δ > 0, there exist constants aδ > 0, Lδ > Aδ > dδ > 1,
cδ ∈ R, C0 > 0, and a set Fδ ⊂ R2 such that ∂Fδ ∩ {x2 > 0} is of class C1,1 and the
following holds:

Fδ ∩ {x1 < 0} = (−∞, 0)× (−∞, 0),

Fδ ⊃ R× (−∞, 0),

Fδ ⊃ (0, Lδ + 1)× (−∞ aδ],

Fδ ⊂ {x2 ≤ C0δL
1
2
+s/2+ε0

δ },
and Fδ ∩ {dδ < x1 < Lδ} = {x2 < v1(x1), dδ < x1 < Lδ}
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Figure 3.6: The barrier constructed in Proposition 3.3.2

where v is given as v(x1) = γ−1 δ (x1 + cδ)
γ
+ with γ = 1/2 + s/2 + ε0.

Moreover, ∫
R2

χF c
δ
(y)− χFδ

(y)

|y − p|2+s
dy ≤ 0

for any p ∈ ∂Fδ ∩ {0 < x1 < Aδ} and∫
R2

χF c
δ
(y)− χFδ

(y)

|y − p|2+s
dy ≤ Cδs

L
1
2
+s/2+ε0

δ

for any p ∈ ∂Fδ ∩ {Aδ ≤ x1 ≤ Lδ + 1}.

This proposition says that one can construct a “good” barrier for the s-fractional mean
curvature equation Hs

E(p) ≤ 0 for p ∈ ∂E ⊂ R2, and this barrier is flat and horizontal
outside a vertical slab, and whose geometric properties inside the slab are under control.
See Figure 3.6 for a rough sketch of the barrier. The proof is quite technical and requires
us to construct a piecewise linear barrier near the vertical slab and refine it in such a way
that the barrier grows linearly with an almost horizontal slope. We here skip the proof of
the theorem and we refer to [51, Proposition 7.1]. As a corollary of this proposition, the
authors in [51] proved

Corollary 3.3.3 ([51]). Fix ε0 > 0 arbitrarily small. There exists an infinitesimal se-
quence of positive numbers {δi}i and sets {Hi}i in R2 such that Hi is symmetric with
respect to the axis {x1 = 0}, ∂Hi ∩ {x2 > 0} is of class C1,1, and satisfy the following
properties:

Hi ∩ {x1 < −1} = (−∞, −1)× (−∞, 0),

Hi ⊃ R× (−∞, 0),

Hi ⊃ (−1, 1)× (−∞ δ
2+ε0
1−s ],

and Hi ⊂ {x2 ≤ δi}.

Moreover, ∫
R2

χHc
i
(y)− χHi(y)

|y − p|2+s
dy ≤ δi

for any p ∈ ∂Hi ∩ {−1 + 1
100 ≤ x1 ≤ 0}.

The proof follows directly from Proposition 3.3.2 and is based on the proper choice of

δi := L
− 1

2
+ s

2
+ε0

δ where Lδ and ε0 are as in Proposition 3.3.2 and scaling of the sets.



Chapter 4

Nonlocal Denoising Problem

4.1 Problem Setting and Main Results

Let K : RN \ {0} → R be a given function and f : RN → R be a given data. We study

inf
{
FK,f (u) | u ∈ BVK(RN ) ∩ L2(RN )

}
(4.1.1)

where the functional FK,f is defined as

FK,f (u) :=
1

2

∫
RN

∫
RN

K(x− y) |u(x)− u(y)| dx dy + 1

2

∫
RN

(u(x)− f(x))2 dx (4.1.2)

for any function u : RN → R, and the space BVK(RN ) is a set of all functions such that
the first term of (4.1.2) is finite (see Section 4.2 in this chapter for the definition). Recall
that the function K is called a “singular” kernel, as we briefly explain in Chapter 2.

In this chapter, we mainly focus on the typical kernel K(x) = |x|−(N+s) of the nonlocal
perimeter, with s ∈ (0, 1), and we study the regularity of the minimizers of FK,f , under
some suitable conditions on the data f .

As discussed in the case of the denoising problem in [29, 30, 31], our regularity result
is based on the following observation: if u is a minimizer of the functional FK,f , then the
superlevel set {u > t} for each t ∈ R is also a minimizer of the functional associated with
the prescribed nonlocal mean curvature problem

inf
{
EK,f,t(E) | E ⊂ RN

}
where we define the functional EK,f,t by

EK,f,t(E) := PK(E) +

∫
E
(t− f(x)) dx

for any measurable set E ⊂ RN and t ∈ R. Recall that PK is the nonlocal perimeter
associated with the kernel K (see Section 2.1 in Chapter 2 for the precise definition). If
K satisfies “good” conditions, Et is a minimizer of EK,f,t for each t, f is locally Lipschitz,
and ∂Et is smooth (C2-regularity is sufficient), then we can obtain that the boundary ∂Et

satisfies the following prescribed nonlocal mean curvature equation

HK
Et
(x) + t− f(x) = 0 (4.1.3)

for any x ∈ ∂Et. One may easily obtain this equation by computing the first variation of
EK,f,t. Here H

K
Et

is the so-called nonlocal mean curvature defined by

HK
Et
(x) := P.V.

∫
RN

K(x− y)(χEt(x)− χEt(y)) dy (4.1.4)

47
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for any x ∈ RN where “P.V.” means the Cauchy principal value (see also Section 2.3 of
Chapter 2 for the notion of s-fractional mean curvature).

In the above setting, our main interest is on the regularity of the minimizer of FK,f

according to the one of the given data f . As we discussed in Chapter 1, it was proved
that, in the classical denoising model, the minimizer is as regular as the data f if f is
Hölder continuous. As an analogy of this result, we prove

Theorem 4.1.1. Let N = 2, s ∈ (0, 1), K(x) = |x|−(N+s) and f ∈ L2 ∩ L∞(R2). If f is
locally β-Hölder continuous with β ∈ (1− s, 1], then the minimizer of the functional FK,f

is also locally β-Hölder continuous in R2.

Our idea to show the local Hölder regularity of a minimizer is as follows: if we take
any minimizer u of FK,f , then the distance between the boundaries of the two superlevel
sets {u > t} and {u > t′} for t, t′ ∈ R with t 6= t′ should not be too close to each other. To
see this, we compare the two s-fractional mean curvatures of ∂{u > t} and ∂{u > t′} at
the points where the smallest distance between the boundaries ∂{u > t} and ∂{u > t′} is
attained. The comparison can be done thanks to the computations of the first variation of
the nonlocal mean curvature shown in [41, 70]. Thus, using the Euler-Lagrange equation
(4.1.3), we are able to derive some local estimate to assert the local Hölder regularity with
the assumption of the local Hölder regularity of f .

4.2 Notations

In this section, we give several definitions and properties of the space of functions with
finite nonlocal total variations. First of all, we recall the space BVK(Ω) of functions with
nonlocal bounded variations associated with the kernel K, which is defined in Chapter 2

Secondly, we give the definition of solutions to the so-called nonlocal 1-Laplacian equa-
tion associated with the kernel K.

Definition 4.2.1. Let F : RN ×R → R be a measurable function in L2(RN ×R). We say
that u ∈ BVK ∩ L2(RN ) is a solution to the nonlocal equation

−∆K
1 u(x) = F (x, u(x)) for a.e. x ∈ RN (4.2.1)

if there exists a function z : RN × RN → R with |z| ≤ 1 a.e. in RN × RN and z(x, y) =
−z(y, x) for a.e. (x, y) ∈ RN × RN such that

1

2

∫
RN

∫
RN

K(x− y) z(x, y)(v(x)− v(y)) dx dy =

∫
RN

F (x, u(x)) v(x) dx (4.2.2)

for every v ∈ C∞
c (RN ) with [v]K(RN ) <∞ and

z(x, y) ∈ sgn (u(y)− u(x)) for a.e. (x, y) ∈ RN × RN

where sgn (x) is a generalized sign function satisfying that

sgn (x) ∈ [−1, 1], sgn (x)x = |x| for any x ∈ R.

In particular, the case that F (x, u(x)) = u(x)− f(x) for a given data f is of our main
interest in this chapter. The concept of the definition is motivated by the Euler-Lagrange
equation of the functional

IK(u) :=
1

2

∫
RN

∫
RN

K(x− y)|u(x)− u(y)| dx dy.
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Indeed, when we assume that u is a minimizer of IK and consider the first variation of
the functional IK in a formal way, namely, the quantity d

dεbε=0IK(u+εφ) for any suitable
test function φ, we may obtain

1

2

∫
RN

∫
RN

K(x− y)
u(x)− u(y)

|u(x)− u(y)|
(φ(x)− φ(y)) dx dy = 0.

However, it is quite problematic for one to give a rigorous meaning to the ratio u(x)−u(y)
|u(x)−u(y)| .

To overcome this difficulty, we adopt Definition 4.2.1 and this can be one of the proper
treatments for this issue. Indeed, in Definition 4.2.1, we may consider the condition that
z(x, y)(u(y) − u(x)) = |u(y) − u(x)| for a.e. (x, y) ∈ RN × RN with u(x) 6= u(y) as a
natural requirement. Note that the framework of solutions in the sense of Definition 4.2.1
has been originally developed by, for instance, J.M. Mazón, J.D. Rossi, and J. Toledo in
[88] and one may see this framework as a nonlocal counterpart of the framework given in
[6] and [87].

Finally in this section, let us briefly mention the existence and uniqueness of the
minimizer of the functional (4.1.2) with a general kernel K. These properties are true
because of the general theory of functional analysis.

Existence of Minimizer in L2

We assume that the kernel K is non-negative and satisfies that PK(B) < ∞ for some
ball B ⊂ RN and moreover, the given data f is in L2(RN ). We show the existence of
the minimizer of the functional (4.1.2) in L2(RN ). This is a simple consequence of the
classical theory of functional analysis. Indeed, let {un}n∈N be a minimizing sequence in
L2(RN ), namely,

lim
n→∞

FK,f (un) = inf{FK,f (u) | u ∈ L2(RN )}. (4.2.3)

Notice that, since f ∈ L2(RN ) and χB ∈ L2(RN ) for some ball B ⊂ RN , we have

inf
u∈L2(RN )

FK,f (u) ≤ FK,f (χB) = PK(B) +

∫
Bc

|f |2

2
+

∫
B

(f − 1)2

2
<∞.

From the minimality of each un and by choosing tun as the competitor with t ∈ (0, 1), we
can observe

sup
n∈N

(
[un]K(RN ) +

∫
RN

|un|2 dx
)

≤ 1

1 + t

∫
RN

f2 dx <∞. (4.2.4)

From the weak compactness of L2, we can extract a subsequence (denoted by the same
indices) such that un → u weakly in L2(RN ) as n → ∞ for some u ∈ L2. One can see
that the functional FK,f is lower semi-continuous in the strong topology of L2 and convex.
Hence, by Mazur’s lemma, FK,f is also lower semi-continuous in the weak topology of L2.
Therefore, we obtain that u ∈ L2 is a minimizer of FK,f .

Uniqueness of Minimizer in L2

Due to the L2-fidelity term in (4.1.2), we can observe that the minimizer of the func-
tional (4.1.2) is actually unique, up to multiple constants. Assume that u1 and u2 are the
minimizers of (4.1.2), and K satisfies the conditions that the existence of the minimizer
holds. Then, from the inequality[

u1 + u2
2

]
K

(RN ) ≤ 1

2
[u1]K(RN ) +

1

2
[u2]K(RN )

and the convexity of the functional (4.1.2), we have

FK,f (
u1 + u2

2
) ≤ 1

2
FK,f (u1) +

1

2
FK,f (u2) (4.2.5)
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where the equality holds if and only if u1 = u2 a.e. in RN . On the other hand, from the
minimality of u1 and u2, the equality in (4.2.5) holds, and thus we obtain the uniqueness.

4.3 Preliminary Results

In this section, we collect a number of properties of the minimizer of the functional (4.1.2)
in order to prove the main theorem of this chapter.

4.3.1 Euler-Lagrange Equation for FK,f

In this subsection, we show the necessary and sufficient condition for the minimizers of the
functional FK,f in RN . Before stating the claim, we give some conditions on the kernel K
which we assume in the sequel.

(K1) K : RN \ {0} → R is a non-negative measurable function.

(K2) K is symmetric with respect to the origin, namely K(−x) = K(x) for any x ∈
RN \ {0}.

We observe that a typical example of the kernel K is given as K(x) = |x|−(N+s) with
s ∈ (0, 1) and this function satisfies all of the above assumptions.

In the following lemma, we show that the minimizer of FK,f satisfies a prescribed
nonlocal mean curvature equation. This equation can be regarded as the Euler-Lagrange
equation. Moreover, we show that the converse statement is also valid.

Lemma 4.3.1. Assume that the kernel K satisfies (K1) and (K2) and a given data f is
L2(R2). If u ∈ BVK ∩ L2(RN ) is a minimizer of the functional FK,f , then u satisfies the
equation

−∆K
1 u = u− f in RN (4.3.1)

in the sense of Definition 4.2.1. Conversely, if u ∈ BVK ∩ L2(RN ) is a solution of the
equation (4.3.1) in the sense of Definition 4.2.1, then u is a minimizer of FK,f .

Proof. First, we recall the definition of the functional IK and the non-negativity of K and
thus, find that IK is convex, lower semi-continuous, and positive homogeneous of degree
one. Then, by using the same argument as in [89, 90], we can show the characterization
of the sub-differential of IK(u) as follows:

∂IK(u)

=
{
v ∈ L2(RN ) | −∆K

1 u = v in the sense of Definition 4.2.1
}
. (4.3.2)

Here we recall the definition of the sub-differential ∂E(u) for u ∈ X of the functional
E : X → R ∪ {∞} where X is the Hilbert space with the inner product (·, ·)X . We say
that v ∈ X belongs to ∂E(u) for each u ∈ X if it holds that, for any w ∈ X,

E(w)− E(u) ≥ (w, v)X .

Note that u ∈ X is a minimizer of E if and only if 0 ∈ ∂E(u). Then, from the general
theory on the sub-differential, we can also show the identity

∂FK,f (u) = ∂IK(u) + u− f. (4.3.3)
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for any u ∈ L2. Indeed, if v ∈ ∂FK,f (u), then we can compute the functional of u as
follows; for any w ∈ L2(RN ),

IK(w)− IK(u) = FK,f (w)−FK,f (u) +
1

2

∫
RN

(u− f)2 dx− 1

2

∫
RN

(w − f)2

≥
∫
RN

v(w − u) dx− 1

2

∫
RN

(w − u)(w + u− 2f) dx

=

∫
RN

(v − u+ f)(w − u) dx+

∫
RN

(u− f)(w − u) dx

− 1

2

∫
RN

(w − u)(w + u− 2f) dx

=

∫
RN

(v − u+ f)(w − u) dx+
1

2

∫
RN

(w − u)2 dx

≥
∫
RN

(v − u+ f)(w − u) dx. (4.3.4)

Therefore we obtain v − u+ f ∈ ∂IK(u). On the other hand, if v ∈ ∂IK(u) + u− f , then
we can compute in the following manner; for any w ∈ L2(RN ), we have

FK,f (w)−FK,f (u) = IK(w)− IK(u) +
1

2

∫
RN

(w − f)2 dx− 1

2

∫
RN

(u− f)2 (4.3.5)

≥
∫
RN

(v − u+ f)(w − u) dx+
1

2

∫
RN

(w − u)(w + u− 2f) dx

=

∫
RN

v(w − u) dx+
1

2

∫
RN

(w − u)2 dx

≥
∫
RN

v(w − u) dx, (4.3.6)

and thus we have that v ∈ ∂FK,f (u). Therefore, from the computations (4.3.4) and (4.3.5),
we conclude that the first part of the claim is valid. Then from (4.3.3), we can easily obtain
the equity

∂FK,f (u)

=
{
v + u− f ∈ L2(RN ) | −∆K

1 u = v in the sense of Definition 4.2.1
}
. (4.3.7)

We can readily see that 0 ∈ ∂FK,f (u) whenever u is a minimizer of FK,f Therefore, we
conclude that, if u is a minimizer of FK,f , then u is a solution of the equation (4.3.1).

Conversely, if u is a solution of the equation (4.3.1), then from (4.3.7) we have that 0
belongs to the set in the right-hand side of (4.3.7), and thus we obtain 0 ∈ ∂FK,f (u).

4.3.2 Comparison between Minimizers

In this subsection, we prove a comparison principle for the minimizers of FK,f by using
the uniqueness of the minimizer in L2. We assume that K satisfies the assumptions (K1)
and (K2) shown in Subsection 4.3.1 and the data f1 and f2 satisfy that f1 ≤ f2. Then we
show that the minimizers u1 and u2 associated with f1 and f2, respectively, preserves the
inequality. Precisely, we prove the following result:

Lemma 4.3.2. Let fi be in L2(RN ) for each i ∈ {1, 2} and ui ∈ BVK ∩ L2(RN ) be a
minimizer of FK,fi for each i ∈ {1, 2}. Assume that the kernel K : RN \{0} → R satisfies
(K1) and (K2). If f1 ≤ f2 LN -a.e. in RN , then u1 ≤ u2 LN -a.e. in RN .
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Proof. Let u1, u2 ∈ BVK(RN ) be minimizers of FK,f associated with given data f1, f2 ∈
L2(RN ), respectively. First of all, we prove the following inequality:

[u+]K(RN ) + [u−]K(RN ) ≤ [u1]K(RN ) + [u2]K(RN ). (4.3.8)

Indeed, setting

u+(x) := max{u1(x), u2(x)}, u−(x) := min{u1(x), u2(x)} (4.3.9)

for any x ∈ RN and by the co-area formula, we have that

[ui]K(RN ) =

∫ ∞

−∞

1

2

∫
RN

∫
RN

K(x− y) |χ{ui>t}(x)− χ{ui>t}(y)| dx dy dt

=

∫ ∞

−∞
PK({ui > t}) dt (4.3.10)

for any i ∈ {1, 2, +, −}. From Proposition 2.1.6, we recall that the nonlocal perimeter
PK is sub-modular, namely, it holds that

PK(E ∪ F ) + PK(E ∩ F ) ≤ PK(E) + PK(F ) (4.3.11)

for any E, F ⊂ RN . Therefore from (4.3.11) and the definitions of u+ and u−, we obtain
the claim.

Now from the general theory of calculus of variations, the minimizer of FK,f is unique
in L2(RN ) and thus, it is sufficient to prove that

FK,f2(u+) ≤ FK,f2(u2)

where u+ is defined in (4.3.9) to obtain the lemma. From a simple computation, we can
easily see that the inequality

(u− − f1)
2 + (u+ − f2)

2 ≤ (u1 − f1)
2 + (u2 − f2)

2 (4.3.12)

in RN . From the minimality of ui for i ∈ {1, 2}, we have

FK,f1(u1) + FK,f2(u2) ≤ FK,f1(u−) + FK,f2(u+). (4.3.13)

On the other hand, from (4.3.8) and (4.3.12), we have

FK,f1(u−) + FK,f2(u+)

≤ [u−]K(RN ) +
1

2

∫
RN

(u− − f1)
2 dx+ [u+]K(RN ) +

1

2

∫
RN

(u+ − f2)
2 dx

= [u1]K(RN ) +
1

2

∫
RN

(u1 − f1)
2 dx+ [u2]K(RN ) +

1

2

∫
RN

(u2 − f2)
2 dx

+
1

2

∫
RN

(u− − f1)
2 dx− 1

2

∫
RN

(u1 − f1)
2 dx

+
1

2

∫
RN

(u+ − f2)
2 dx− 1

2

∫
RN

(u2 − f2)
2 dx

≤ FK,f1(u1) + FK,f2(u2). (4.3.14)

Thus from (4.3.13) and (4.3.14), we obtain

FK,f1(u1) + FK,f2(u2) = FK,f1(u−) + FK,f2(u+) (4.3.15)

Now suppose by contradiction that FK,f2(u+) > FK,f2(u2). Then from (4.3.15) we have

FK,f1(u1) > FK,f1(u−)

which contradicts the minimality of u1. Thus we obtain the inequality FK,f2(u+) ≤
FK,f2(u2). Therefore, by the uniqueness of the minimizer of FK,f , this implies that u+ =
u2 a.e. in RN , which implies that u2 ≥ u1 a.e. in RN .
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Corollary 4.3.3. Assume that the kernel K : RN \ {0} → R satisfies the assumptions
(K1) and (K2) in Subsection 4.3.1. If a data f ∈ L2(RN ) is non-negative a.e. in RN ,
then the minimizer u ∈ BVK ∩ L2(RN ) is also non-negative a.e. in RN .

Proof. Since it holds that
FK,0(0) = 0 ≤ FK,0(v)

for every v ∈ BVK ∩ L2(RN ), we have that the unique solution of the problem

inf{FK,0(v) | v ∈ BVK ∩ L2}

is v = 0. Hence, by applying Lemma 4.3.2 to the case that f1 = 0 and f2 = f , we obtain
that 0 ≤ u a.e. in RN .

Finally, we show a sort of comparison property of minimizers under the assumption
that a data f is bounded in RN . We do not derive the following proposition directly from
Lemma 4.3.2 but from a simple computation.

Proposition 4.3.4. Let u ∈ BVK ∩ L2(RN ) be a minimizer of FK,f with f ∈ L2(RN ).
Assume that the kernel K : RN \ {0} → R is non-negative measurable function. If there
exists a constant C > 0 such that |f(x)| ≤ C for a.e. x ∈ RN , then |u(x)| ≤ C for a.e.
x ∈ RN with the same constant C.

Proof. It is sufficient to show that, if f ≤ C a.e. in RN with some constant C > 0, then
u ≤ C a.e. in RN with the same constant C because we only repeat the same argument
as we show in this proof. We define v(x) := min{u(x), C} for x ∈ RN . It is sufficient
to show that u = v for a.e. in RN . From the definition, we can show the claim that
|v(x)−v(y)| ≤ |u(x)−u(y)| for x, y ∈ RN . Indeed, if u(x) ≤ C and u(y) ≤ C or u(x) > C
and u(y) > C, then we can readily obtain the claim. If u(x) ≤ C and u(y) > C, then we
have

|u(x)− u(y)|2 − |v(x)− v(y)|2 = u2(y)− C2 − 2u(x)u(y) + 2u(x)C

= (u(y)− C)(u(y) + C − 2u(x)) ≥ 0.

In the same way, we can prove the claim if u(x) > C and u(y) ≤ C. Moreover, we can
show that (v − f)2 ≤ (u − f)2 in RN . Therefore we compute the functional associated
with v as follows:

FK,f (v) =
1

2

∫
RN

∫
RN

K(x− y) |v(x)− v(y)| dx dy + 1

2

∫
RN

(v − f)2 dx

≤ 1

2

∫
RN

∫
RN

K(x− y) |u(x)− u(y)| dx dy + 1

2

∫
RN

(u− f)2 dx

= FK,f (u).

Thus, from the uniqueness of the minimizer of the functional FK,f , we obtain v = u a.e.
in RN and this concludes the proof.

4.3.3 Characterization of Minimizers for FK,f

In this section, we show the following claim which gives a relation between the minimizers
of FK,f and EK,f,t for t ∈ R. Recall that EK,f,t(E) as

EK,f,t(E) := PK(E) +

∫
E
(t− f(x)) dx (4.3.16)

for every measurable set E ⊂ RN where we assume that f ∈ L2(RN ) is a given data and
t ∈ R is any number.
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Lemma 4.3.5. Assume that the kernel K(x) = |x|−(N+s) for x ∈ RN \{0} with s ∈ (0, 1)
and a data f ∈ L2 ∩L∞(RN ). If u ∈ BVK ∩L2(RN ) be a minimizer of FK,f , then the set
{x ∈ RN | u(x) > t} is also a minimizer of EK,f,t(E) for every t ∈ R among measurable
sets E ⊂ RN .

Proof. Let F ⊂ RN be any measurable set. We may assume that PK(F ) < ∞; otherwise
this set cannot minimize the functional EK,f,t. Moreover, we may assume that ‖χF ‖L1 =
|F | < ∞ because of the nonlocal isoperimeteric inequality. Then it suffices to show that
the superlevel set {u > t} for each t ∈ R satisfies the inequality

PK({u > t}) +
∫
{u>t}

(t− f(x)) dx ≤ PK(F ) +

∫
F
(t− f(x)) dx. (4.3.17)

From Lemma 4.3.1 and the assumption that u is a minimizer of the functional FK,f , we
have that u is also a solution of the equation

−∆K
1 u = u− f in RN (4.3.18)

in the sense of Definition 4.2.1. Thus, by definition, there exists a function zu ∈ L∞(RN ×
RN ) with |zu| ≤ 1 and zu being antisymmetric such that

1

2

∫
RN

∫
RN

K(x− y) zu(x, y) (w(x)− w(y)) dx dy =

∫
RN

(u− f)w(x) dx (4.3.19)

for any w ∈ BVK ∩ L2(RN ) with a compact support and moreover

zu(x, y)(u(y)− u(x)) = |u(y)− u(x)| (4.3.20)

for a.e. x, y ∈ RN . From the co-area formula, we have the following two identities:

|u(x)− u(y)| =
∫ ∞

−∞
|χ{u>t}(x)− χ{u>t}(y)| dt (4.3.21)

and

(u(x)− u(y)) =

∫ ∞

−∞
(χ{u>t}(x)− χ{u>t}(y)) dt (4.3.22)

for any measurable u : RN → R and a.e. x, y ∈ RN . Thus from (4.3.20), (4.3.21), and
(4.3.22), we obtain

zu(x, y)(χ{u>t}(y)− χ{u>t}(x)) = |χ{u>t}(y)− χ{u>t}(x)| (4.3.23)

for a.e. t ∈ R. Now we fix t ∈ R such that (4.3.23) holds. From the specific choice of
K(x) = |x|−(N+s), the function space BVK(RN ) coincides with the fractional Sobolev space
W s,1(RN ). Recall that the space C∞

c (RN ) of smooth functions with compact supports is
dense in W s,1(RN ) (see [2] for the detail). Hence, from the fact that PK({u > t}) and
PK(F ) are finite, we can choose sequences {ηul }l∈N and {ηFl }l∈N in C∞

c (RN ) such that

ηul −−−→
l→∞

χ{u>t}, ηFl −−−→
l→∞

χF in W s,1(RN ). (4.3.24)

From the choice of the approximation, we notice that the difference function ηul −ηFl is also
in W s,1 ∩ L2(RN ) and has a compact support for each l ∈ N. Hence, from the definition
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of solutions to the equation (4.3.18), we obtain∫
RN

(u− f) (ηul − ηFl ) dx

= −1

2

∫
RN

∫
RN

K(x− y) zu(x, y) [(η
u
l − ηFl )(y)− (ηul − ηFl )(x)] dx dy

= −1

2

∫
RN

∫
RN

K(x− y) zu(x, y) (η
u
l (y)− ηul (x)) dx dy

+
1

2

∫
RN

∫
RN

K(x− y) zu(x, y) (η
F
l (y)− ηFl (x)) dx dy. (4.3.25)

By applying Proposition 4.3.4 and from the assumption that f ∈ L∞(RN ), we have that
the minimizer u is also in L∞(RN ) and thus∣∣∣∣∫

RN

(u− f)(ηul − ηFl ) dx−
∫
RN

(u− f)(χ{u>t} − χF ) dx

∣∣∣∣ −−−→l→∞
0. (4.3.26)

Hence by applying the dominated convergence theorem and from (4.3.24), (4.3.25), and
(4.3.26), we obtain that∫

RN

(u− f)(χ{u>t} − χF ) dx

= lim
l→∞

∫
RN

(u− f) (ηul − ηFl ) dx

= −1

2

∫
RN

∫
RN

K(x− y) zu(x, y) (χ{u>t}(y)− χ{u>t}(x)) dx dy

+
1

2

∫
RN

∫
RN

K(x− y) zu(x, y) (χF (y)− χF (x)) dx dy. (4.3.27)

From the definition of zu, we have

1

2

∫
RN

∫
RN

K(x− y) zu(x, y) (χF (x)− χF (y)) dx dy

≤ 1

2

∫
RN

∫
RN

K(x− y)|χF (x)− χF (y)| dx dy = PK(F ). (4.3.28)

Taking into account (4.3.23), (4.3.27), and (4.3.28), we obtain∫
RN

(u− f) (χ{u>t} − χF ) dx

≤ −1

2

∫
RN

∫
RN

K(x− y)|χ{u>t}(x)− χ{u>t}(y)| dx dy + PK(F ). (4.3.29)

Regarding the left-hand side of (4.3.29), we have∫
RN

(u− f) (χ{u>t} − χF ) dx =

∫
RN

(u− t+ t− f) (χ{u>t} − χF ) dx

≥
∫
{u>t}∩F c

(t− f) dx−
∫
{u≤t}∩F

(u− f) dx

≥
∫
{u>t}∩F c

(t− f) dx−
∫
{u≤t}∩F

(t− f) dx

=

∫
RN

(t− f) (χ{u>t} − χF ) dx (4.3.30)



56 CHAPTER 4. NONLOCAL DENOISING PROBLEM

for a.e. t ∈ R. Hence, from (4.3.29) and (4.3.30), we have

PK({u > t}) +
∫
RN

(t− f)χ{u>t} dx

=
1

2

∫
RN

∫
RN

K(x− y)|χ{u>t}(x)− χ{u>t}(y)| dx dy +
∫
RN

(t− f)χ{u>t} dx

≤ PK(F ) +

∫
RN

(t− f)χF dx (4.3.31)

for a.e. t ∈ R. Therefore we conclude that the inequality (4.3.17) holds for a.e. t ∈ R.
Notice that, for any t ∈ R such that (4.3.23) does not hold, we can choose a sequence
{tj}j∈N such that tj → t as j → ∞ and (4.3.23) holds for any tj ; otherwise we can choose
a constant δ > 0 such that Bδ(t) ⊂ {t ∈ R | (4.3.23) is not true}. Since the condition
(4.3.23) holds true for a.e. t ∈ R, we have that

0 < 2δ = |Bδ(t)| ≤ |{t ∈ R | (4.3.23) is not true}| = 0,

which is a contradiction. Thus from the lower semi-continuity of PK and the continuity
of the map t 7→ |{u > t}|, we conclude that (4.3.17) holds for every t ∈ R.

4.3.4 Boundedness of Superlevel Sets of Minimizers

Let u ∈ BVK ∩ L2(RN ) be a minimizer of FK,f with a data f ∈ Lp(RN ) with p ∈ (ns , ∞].
In this section, we show that the superlevel set {u > t} for each t ∈ R is bounded up to
negligible sets. Precisely, we prove

Lemma 4.3.6. Assume that the kernel K(x) = |x|−(N+s) for x ∈ RN \{0} with s ∈ (0, 1)
and f ∈ Lp(RN ) with p ∈ (ns , ∞]. If ET is a minimizer of EK,f,T among sets with finite
volumes for any T ∈ R, then there exists a constant RT > 0 such that |ET \BRT

| = 0.

Proof. We basically follow the proof shown in [32, Proposition 3.2]. Suppose by contra-
diction that |ET \Br| > 0 for any r > 0. By setting φT (r) := |ET \Br| for any r > 0, we
have

(φT )
′(r) = −HN−1(ET ∩ ∂Br)

for a.e. r > 0. We fix any R > 1. From the minimality of ET , we have

EK,f,T (ET ) ≤ EK,f,T (ET ∩Br). (4.3.32)

From Proposition 2.1.3 with Ω = RN , we have

PK(ET \Br) ≤ 2

∫
ET∩Br

∫
ET \Br

K(x− y) dx dy −
∫
ET \Br

(T − f(x)) dx. (4.3.33)

From the isoperimetric inequality of the nonlocal perimeter, we can have the following
lower bound of the term of the left-hand side in (4.3.33) (see for instance [56]):

PK(ET \Br) ≥
PK(B1)

|B1|
n−s
n

|ET \Br|
n−s
n = C(n, s)φ

n−s
n

T (r) (4.3.34)

for r ≥ R, where we set C(n, s) := |B1|−
n−s
n PK(B1). Secondly, from Fubini-Tonelli’s

theorem and the co-area formula, we can compute the first term of the right-hand side in
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(4.3.33) as follows:∫
ET∩Br

∫
ET \Br

K(x− y) dx dy ≤
∫
ET \Br

∫
B|y|−r(y)

1

|x− y|N+s
dx dy

=

∫
ET \Br

|SN−1|
∫ ∞

|y|−r

1

r1+s
dr dy

≤ |SN−1|
s

∫
ET \Br

(|y| − r)−s dy

=
|SN−1|
s

∫ ∞

r

HN−1(ET ∩ ∂Bσ)

(σ − r)s
dσ

= −|SN−1|
s

∫ ∞

r

(φT )
′(σ)

(σ − r)s
dσ (4.3.35)

for any r ≥ R. Finally, regarding the second term of the right-hand side in (4.3.33), from
the assumption of f and Cauchy-Schwartz inequality (if p 6= ∞), we have∫

ET \Br

(−T + f(x)) dx ≤ T |ET \Br|+ ‖f‖Lp(RN ) |ET \Br|
1
q

= T φT (r) + ‖f‖Lp(RN ) φ
1
q

T (r) <∞ (4.3.36)

for any r ≥ R > 1 where q ≥ 1 satisfies p−1+ q−1 = 1. By combining all the computations
(4.3.34), (4.3.35), and (4.3.36) with (4.3.33), we obtain

C(n, s)φ
n−s
n

T (r) ≤ −C1

∫ ∞

r

(φT )
′(σ)

(σ − r)s
dσ + T φT (r) + ‖f‖Lp(RN ) φ

1
q

T (r) (4.3.37)

for any r ≥ R where we set C1 := |SN−1|
s . Since φT (r) vanishes as r → ∞ and 1

q >
n−s
n ,

we can have that

2T φT (r) + 2‖f‖Lp(RN )φ
1
q

T (r) ≤ C(n, s)φ
n−s
n

T (r)

for sufficiently large r ≥ R. Hence, by integrating the both sides of (4.3.37) over r ∈
(R,∞), we obtain

C(n, s)

2

∫ ∞

R
φ

n−s
n

T (r) dr ≤ −C1

∫ ∞

R

∫ ∞

r

(φT )
′(σ)

(σ − r)s
dσ dr. (4.3.38)

By exchanging the order of the integration, we have∫ ∞

R

∫ ∞

r

(φT )
′(σ)

(σ − r)s
dσ dr =

∫ ∞

R

∫ σ

R

(φT )
′(σ)

(σ − r)s
dr dσ. (4.3.39)

Then by employing the similar computation shown in [32], we obtain∫ ∞

R

∫ σ

R

(φT )
′(σ)

(σ − r)s
dr dσ ≥ −φT (R)

1− s
−
∫ ∞

R+1

φT (r)

(σ −R)s
dσ.

Therefore, from (4.3.38), we have

C(n, s)

2

∫ ∞

R
φ

n−s
n

T (r) dr ≤ C1
φT (R)

1− s
+ C1

∫ ∞

R+1

φT (σ)

(σ −R)s
dσ

≤ C1
φT (R)

1− s
+ C1

∫ ∞

R+1
φT (σ) dσ.
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Again, by choosing R sufficiently large so that the inequality

C1

∫ ∞

R+1
φT (r) dr ≤

C(n, s)

4

∫ ∞

R
φ

n−s
n

T (r) dr

holds, we have ∫ ∞

R
φ

n−s
n

T (r) dr ≤ 4C1

C(n, s)(1− s)
φT (R).

Then by applying the method shown in, for instance, [45, 32], we obtain the contradiction
to the assumption that φT (r) > 0 for any r > 0. Therefore, we conclude the essential
boundedness of the set ET .

We assume that u ∈ BVK ∩ L2(RN ) is a minimizer of the functional FK,f and u is
bounded from below with the constant c ∈ R. Then, since the superlevel set {u > c} is
also a minimizer of EK,f,c, we may obtain from Lemma 4.3.6 that there exists a constant
Rc > 1 such that |{u > c} \ BRc | = 0. In addition to this, we have the inclusion of
the superlevel sets that {u > t′} ⊂ {u > t} for any t′ > t. Thus, we conclude that the
following corollary holds.

Corollary 4.3.7. Assume that the kernel K(x) = |x|−(N+s) for x ∈ RN \ {0} with s ∈
(0, 1). Let u ∈ BVK ∩L2(RN ) be a minimizer of FK,f . If f is in L∞(RN ) and u ≥ c a.e.
in RN for some c ∈ R, then the superlevel set {u > t} is uniformly bounded with respect
to t ≥ c. Namely, there exists Rc > 0, independent of t, such that {u > t} ⊂ BRc for any
t ≥ c.

4.4 Hölder Regularity of Minimizers

First of all, we prove that, if the boundary of {u > t} is regular, then u is continuous.
This claim will not be applied here to prove our main theorem; however the proof itself
contains some ideas for the proof of our main theorem.

Proposition 4.4.1. Assume that K(x) = |x|−(N+s) for any x ∈ RN \ {0} with s ∈ (0, 1)
and the data f is locally Lipschitz and in L∞(RN ). Let u ∈ BVK(RN ) ∩ L2(RN ) be a
minimizer of FK,f , and we assume that ∂{u > t} is of class C1,α with α ∈ (s, 1] for each
t ∈ R. Then u is continuous in RN .

Proof. From Lemma 4.3.5, we have that the set Et := {u > t} is a minimizer of EK,f,t for
each t ∈ R. Suppose by contradiction that u is not continuous in RN . Then there exist
a point x0 ∈ RN and −∞ < t′ < t < ∞ such that x0 ∈ ∂Et ∩ ∂Et′ . Indeed, if u is not
continuous at x0, then it holds that t+ := lim supx→x0

u(x) > lim infx→x0 u(x) =: t−. Note
that t+ ≥ u(x0) ≥ t− by definition. Setting δ := t+ − t− > 0 and the definition of t+, we
can choose a sequence {xn}n∈N such that xk → x0 and u(xk) > t+− δ

2k
for any k ∈ N with

k ≥ 1. If u(x0) = t+, then we have that xk ∈ {u > u(x0) − δ
2} for large k ∈ N and thus,

we obtain that x0 ∈ {u > u(x0)− δ
2}. However, from the definition of δ, x0 cannot be a

interior point of {u > u(x0)− δ
2}; otherwise we can choose a sequence {yk}k∈N such that

u(x0)−
δ

2
< u(yk) < t− +

δ

2k
(4.4.1)

for any large k. From the definition of δ and the fact that u(x0) = t+, we obtain a
contradiction. Therefore, we have x0 ∈ ∂{u > u(x0) − δ

2}. In the same way, we also

have x0 ∈ ∂{u > u(x0) − δ
4}. This implies the validity of the claim. Now we assume

that u(x0) < t+ and set δ̃ := t+ − u(x0) > 0. Then, since u(xk) > t+ − δ
2k

for any
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k ∈ N, we have that u(xk) > u(x0) +
1
2 δ̃ for any k ∈ N with k ≥ (2δ)−1δ̃ and that

xk ∈ {u > u(x0)+
1
2 δ̃} for large k ∈ N. Hence, recalling that xk → x0 as k → ∞, we obtain

that x0 ∈ ∂{u > u(x0)+
1
2 δ̃}. In the same way, we can show that x0 ∈ ∂{u > u(x0)+

3
4 δ̃}.

Therefore, we conclude that, if u is not continuous at x0, we can find distinct constants
t, t′ ∈ R such that x0 ∈ ∂{u > t} ∩ ∂{u > t′}.

Since Et and Et′ are the minimizers of EK,f,t and EK,f,t′ , respectively, and we assume
that the boundaries of Et and Et′ have the C1,α-regularity with α > s, we obtain the
Euler-Lagrange equations

Hs
Et
(x) + t− f(x) = 0 (4.4.2)

and

Hs
Et′

(x) + t′ − f(x) = 0 (4.4.3)

for each x ∈ ∂Et ∩ ∂Et′ where H
s
E is the s-fractional mean curvature of E (see Section 2.3

of Chapter 2 for the definition). Note that the s-fractional mean curvature is well-defined
on each point of the boundary if the boundary is at least of class C1,α with α > s (see, for
instance, [37, Corollary 3.5]). Moreover, the Euler-Lagrange equations can be derived by
directly computing the first variation of EK,f,t associated with the one-parameter family
of diffeomorphisms.

Now we can readily see that, if two sets E, F satisfy that E ⊂ F and ∂E ∩ ∂F 6= ∅,
then it holds that Hs

E ≥ Hs
F on ∂E ∩ ∂F . Indeed, by definition, we have

Hs
E(x)−Hs

F (x) = P.V.

∫
RN

χE(x)− χE(y)

|x− y|N+s
dy

− P.V.

∫
RN

χF (x)− χF (y)

|x− y|N+s
dy

= P.V.

∫
RN

χE(x)− χF (x)− χE(y) + χF (y)

|x− y|N+s
dy (4.4.4)

for any x ∈ ∂E ∩ ∂F . Since E ⊂ F , it holds χE ≤ χF in RN and χE(x) = χF (x) for any
x ∈ ∂E ∩ ∂F . Thus from (4.4.4) and the non-negativity of K, we obtain the claim.

Therefore, from (4.4.2), (4.4.3), and the fact that Hs
Et′

≥ Hs
Et
, we obtain

t′ − f(x0) ≥ t− f(x0)

and it turns out that t′ ≥ t. This contradicts the fact that t′ < t.

4.4.1 Regularity of Boundaries of Superlevel Sets of Minimizers

Now we show some regularity results of the boundary of the set {u > t} for each t
under suitable assumptions on the data f , where u is a minimizer of the functional FK,f

with K(x) = |x|−(N+s). From Proposition 4.3.4, we have that u ∈ L∞(RN ) whenever
f ∈ L∞(RN ). Since {u > t} = RN if t < −‖u‖L∞ and {u > t} = ∅ if t ≥ ‖u‖L∞ , we
focus on the set {u > t} only for t ∈ [−‖u‖L∞ , ‖u‖L∞) in the sequel. Note that, from
Corollary 4.3.7, the superlevel set {u > t} is bounded uniformly in t[−‖u‖L∞ , ‖u‖L∞) if
f ∈ L2 ∩ L∞(RN ).

To obtain our main result on the regularity of minimizers, we exploit the regularity
results proved by A. Figalli, N. Fusco, F. Maggi, V. Millot, and M. Morini [56], O. Savin
and E. Valdinoci [106], and B. Barrios, A. Figalli, and E. Valdinoci [9] (see also [26]). All
of the results by these authors are stated in Section 2.4 of Chapter 2.

First, we recall the following two results: one is on the regularity of almost s-fractional
minimal sets, which was shown by A. Figalli, N. Fusco, F. Maggi, V. Millot, and M. Morini
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[56], and the other is on the regularity of s-fractional minimal cones in 2 dimension, which
was shown by O. Savin and E. Valdinoci [106] (see Theorem 2.4.9 and Remark 2.4.10 in
Section 2.4 of Chapter 2). From these results, we can obtain the following result:

Lemma 4.4.2 (C1,α-regularity of Boundary of Superlevel Sets of Minimizers). Let f ∈
L2 ∩ L∞(RN ). Assume that K(x) = |x|−(N+s) for x ∈ RN \ {0} with s ∈ (0, 1) and
u ∈ BVK ∩ L2(RN ) is a minimizer of the functional FK,f . Then, for each t ∈ [0, ∞),
the boundary of the superlevel set {u > t} is of class C1,α with some 0 < α < 1, except a
closed set of Hausdorff dimension N − 3.

Proof. We fix t ∈ R. Let x0 ∈ ∂{u > t} and r > 0 be any number. First, from the
assumption on f , Proposition 4.3.4, and Corollary 4.3.7, there exists a constant R0 > 0
such that Et := {u > t} ⊂ BR0

2

for any t ≥ 0. In order to apply the regularity result to

our case, it is sufficient to show that the set Et is an almost s-fractional minimal sets in
BR0 in the sense of Definition 2.4.6 for some constant Λ > 0. Note that this also indicates
that E0 is a minimizer in the sense of Theorem 2.4.8. From Lemma 4.3.5, we know that
{u > t} is a solution to the problem

inf{EK,f,t(E) | |E| <∞}

for each t ∈ R. Hence, from the minimality and boundedness of Et, we have that

EK,f,t(Et) ≤ EK,f,t(F ) (4.4.5)

for any F ⊂ RN and Et4F ⊂ Br(x0). From the definition of Ps(· ;BR0) and the fact that
Et ⊂ BR0

2

, we have the identity that PK(Et;BR0) = PK(Et). Hence, from (4.4.5), we can

compute as follows: for any set F and r > 0 with Et 4 F ⊂ Br(x0) ⊂ BR0
2

, we have

PK(Et;BRt)− PK(F ;BRt) = EK,f,t(Et)−
∫
Et

(t− f(x)) dx

− EK,f,t(F ) +

∫
F
(t− f(x) dx

≤
∫
RN

|χEt − χF | |t− f(x)| dx

≤
∫
Br(x0)

|t− f(x)| dx. (4.4.6)

Since we assume that f ∈ L∞(RN ), we have∫
Br(x0)

|t− f(x)| dx ≤ (t+ ‖f‖L∞(RN )) |Et∆F |. (4.4.7)

Hence, from (4.4.6) and (4.4.7), we have

PK(Et;BR0) ≤ PK(F ;BR0) + (t+ ‖f‖L∞(RN )) |Et∆F |

or equivalently, since Et ∪ F ⊂ BR0
2

, we have

PK(Et) ≤ PK(F ) + (t+ ‖f‖L∞(RN )) |Et∆F |

for any F ⊂ RN with Et 4 F ⊂ Br(x0). Therefore, we apply the regularity of the
s-fractional minimal sets and s-fractional minimal cones in Theorem 2.4.9 and Remark
2.4.10 in Section 2.4 of Chapter 2 to conclude that the claim is valid.
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In the previous proof, we have shown that, if u ∈ BVK ∩ L2(RN ) is a minimizer of
FK,f , then each superlevel sets {u > t} is not only a minimizer of EK,f,t but also an almost
s-fractional minimal set in a ball. Hence, recalling Lemma 2.4.11 in Section 2.4 of Chapter
2, one can obtain the density estimate of each superlevel set {u > t} as follows:

Lemma 4.4.3 (Density Estimates of Each Superlevel Set). Let t > 0 and f ∈ L∞(RN ).
Assume that the kernel K(x) = |x|−(N+s) for x ∈ RN \ {0} with s ∈ (0, 1) and u ∈
BVK(RN ) ∩ L2(RN ) is a minimizer of FK,f . Then Et := {u > t} satisfies the following
condition: there exist constants c0 ∈ (0, 1) and r0 ∈ (0, 1), independent of t, such that we
have

|B1|(1− c0) r
N ≥ |Et ∩Br(x)| ≥ c0|B1| rN

for any r ∈ (0, r0) and x ∈ ∂Et such that |Et ∩Br(x)| > 0 and |(Et)
c ∩Br(x)| > 0 for any

r > 0.

The reason why the constants c0 and r0 are independent of t is that we have the
finiteness of ‖u‖L∞ from the assumption that f ∈ L∞(RN ).

We now exploit another result of the regularity of solutions to integro-differential equa-
tions via the bootstrap argument. This result is obtained by B. Barrios, A. Figalli, and
E. Valdinoci [9]. The authors proved the following regularity theorem on the solutions
to a certain integro-differential equation. For simplicity, we do not describe the whole
statement. See [9, Theorem 1.6] for the full statement.

Theorem 4.4.4 ([9]). Let v ∈ L∞(RN−1) be a solution (in the viscosity sense) to the
integro-differential equation∫

RN−1

Ar(x
′, y′)

(
v(x′ + y′) + v(x′ − y′)− 2v(x′)

)
dy′ = F (x′)

for any x′ ∈ B′
r(0) ⊂ RN−1 where Ar satisfies the following assumptions:

(A1) There exist constants a0, r0 > 0 and η ∈ (0, a04 ) such that

(1− s)(a0 − η)

|y′|N+s
≤ Ar(x

′, y′) ≤ (1− s)(a0 + η)

|y′|N+s

for any x′ ∈ B′
r(0) and y

′ ∈ B′
r0(0) \ {0}.

(A2) There exists a constant C0 > 0 such that

‖Ar(·, y′)‖C0,β(B′
1)

≤ C0

|y′|N+s

for any y′ ∈ B′
r0(0) \ {0}.

and F ∈ C0,β(B′
r(0)) with β ∈ (0, 1]. Then, we have that v ∈ C1,s+α(B′

r
2
(0)) for any

α < β.

Taking into account all the above arguments, we can obtain that the boundary of the
superlevel set of the minimizers of FK,f has the C2,s+β−1-regularity under the β-Hölder
regularity of a given data f with β ∈ (1− s, 1]. Precisely, we prove

Lemma 4.4.5. Let f ∈ L2 ∩ L∞(RN ). Assume that K(x) = |x|−(N+s) for x ∈ RN \ {0}
with s ∈ (0, 1) and u ∈ BVK ∩L2(RN ) is a minimizer of the functional FK,f . If a data f

is in C0,β
loc (R

N ) with β ∈ (1 − s, 1], then, for each t ∈ [−‖u‖L∞ , ‖u‖L∞), the boundary of
the superlevel set {u > t} is of class C2,s+δ−1 with some 1− s < δ < β except a closed set
of Hausdorff dimension N − 3.
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Proof. Recalling Proposition 4.3.4, we first observe that the assumption that f ∈ L∞(RN )
implies that u ∈ L∞(RN ). Since minimizers {Et = {u > t}}t are bounded uniformly in
t ≥ −‖u‖L∞ due to Corollary 4.3.7, we also observe that each Et is also an almost s-
fractional minimizer of Ps in BRc where Rc > 0 is the constant in Corollary 4.3.7.

Now by closely following the argument in [22, Theorem 5.1] and [26, Theorem 5.3] (see
Appendix B for the precise argument), we can obtain the Euler-Lagrange equation

Hs
Et

+ t− f = 0 on ∂Et (4.4.8)

in the viscosity sense. We note that the equation (4.4.8) holds in the viscosity sense if
(4.4.8) is valid at any x ∈ ∂Et where ∂Et has both interior and exterior tangential balls.
See also Chapter 2.

From Lemma 4.4.2 and the assumption that f ∈ L∞(RN ), the boundary of the super-
level set {u > t} of the minimizer u has the C1,γ-regularity with some γ ∈ (0, 1) except
a closed set Σ of Hausdorff dimension N − 3, and thus we can represent the boundary
{u > t} \ Σ locally as the graph of a C1,γ-function (denoted by vt).

Now, in the similar way to [9, Section 3], we show that the graph function vt of ∂Et

satisfies the following integro-differential equation in the viscosity sense:∫
RN−1

Ar(x
′, y′)

v(x′ + y′) + v(x′ − y′)− 2v(x′)

|y′ − x′|(n−1)+(1+s)
dy′ = F (x′, vt(x

′)) + t− f(x′, vt(x
′))

locally on ∂Et, where F and Ar are “suitable” functions. To see this, we first take any
boundary point p = (p′, pN ) ∈ ∂Et, and choose an open cylinder Cr(p) := B′

r(p
′)× (pN −

r, pN + r) ⊂ RN−1 × R with some r ∈ (0, 1) in such a way that, up to a coordinate,

∂Et ∩ Cr(p) = {(y′, yN ) | yN = vt(y
′), y′ ∈ B′

r(x
′)}, ∇′vt(p

′) = 0

where we mean by∇′ the gradient in RN−1. We may also assume that ‖∇′vt‖L∞(B′
r(p

′)) ≤ 1.
In terms of the graph function vt, we can rewrite the nonlocal mean curvature Hs

Et
in the

following manner: first we choose a smooth function ξr : [0, ∞) → [0, 1] such that

ξr ≡ 1 in
[
0,
r

8

)
, ξr ≡ 0 in

[r
4
, ∞

)
.

Then, for any x ∈ ∂Et ∩Cr(p), we have the following decomposition of the nonlocal mean
curvature.

Hs
Et
(x) =

∫
RN

ξr(|y′ − x′|) ξr(|yN − xN |)
χEc

t
(y)− χEt(y)

|y − x|N+s
dy

+

∫
RN

(1− ξr(|y′ − x′|) ξr(|yN − xN |))
χEc

t
(y)− χEt(y)

|y − x|N+s
dy

=: Sr(x) + Ψvt
r (x′) (4.4.9)

Notice that, due to the choice of the function ξ, we may easily observe that Ψvt
r ∈

C∞(B′
r(p

′)). Moreover, we have that

Sr(x) = 2

∫
RN−1

G

(
vt(x

′)− vt(x
′ − y′)

|y′|

)
ξr(|y′|)

|y′|N−1+s
dy′ (4.4.10)

for any x ∈ ∂Et ∩ Cr(p) where we set

G(t) :=

∫ t

0

1

(1 + τ2)
N+s
2

dτ.



4.4. HÖLDER REGULARITY OF MINIMIZERS 63

Indeed, we can prove this identity by doing the similar computation conducted in [9]. By
the change of variables, we have

Sr(x) = 2

∫
RN−1

G

(
vt(x

′)− vt(x
′ + y′)

|y′|

)
ξr(|y′|)

|y′|N−1+s
dy′. (4.4.11)

By combining (4.4.9), (4.4.10), and (4.4.11) with (4.4.8), we obtain that∫
RN−1

(
G

(
vt(x

′)− vt(x
′ − y′)

|y′|

)
+G

(
vt(x

′)− vt(x
′ + y′)

|y′|

))
ξr(|y′|)

|y′|N−1+s
dy′

= f(x′, vt(x
′))− t−Ψvt

r (x′, vt(x
′)) (4.4.12)

for any x ∈ ∂Et ∩ Cr(p). From the fundamental theorem of calculus and the fact that
G(−t) = −G(t) for t > 0, we have that

G

(
vt(x

′)− vt(x
′ − y′)

|y′|

)
−G

(
−vt(x

′)− vt(x
′ + y′)

|y′|

)
=

∫ 1

0
G′
(
λ
vt(x

′)− vt(x
′ − y′)

|y′|
+ (λ− 1)

vt(x
′)− vt(x

′ + y′)

|y′|

)
dλ

× 2vt(x
′)− vt(x

′ − y′)− vt(x
′ + y′)

|y′|
. (4.4.13)

Thus, from (4.4.12) and (4.4.13) and by setting Ar as

Ar(x
′, y′) :=

ξr(|y′|)
|y′|N+s

∫ 1

0
G′
(
λ
vt(x

′)− vt(x
′ − y′)

|y′|
+ (λ− 1)

vt(x
′)− vt(x

′ + y′)

|y′|

)
dλ

for any x′, y′ ∈ B′
r(p

′), we finally obtain the equation∫
RN−1

Ar(x
′, y′) (2vt(x

′)−vt(x′−y′)−vt(x′+y′)), dy′ = f(x′, vt(x
′))−t−Ψvt

r (x′) (4.4.14)

in the viscosity sense.
We now claim that |y′|N+sAr(·, y′) ∈ C0,γ(B′

r(p
′)) for any y′ ∈ B′

r(p
′) where γ is the

same Hölder exponent of the graph function vt. Indeed, by setting pvt(λ, x
′, y′) as

pvt(λ, x
′, y′) := λ

vt(x
′)− vt(x

′ − y′)

|y′|
+ (λ− 1)

vt(x
′)− vt(x

′ + y′)

|y′|
,

we have that

Ar(x
′, y′) =

ξr(|y′|)
|y′|N+s

∫ 1

0

1

(1 + pvt(λ, x
′, y′)2)

N+s
2

dλ. (4.4.15)

By using the assumption that vt ∈ C1,γ(B′
r(p

′)), we can derive the two estimates that

|pvt(λ, x′, y′)| ≤ 2‖∇′vt‖L∞(B′
r(p

′)) <∞,

and ∣∣∣∣(1 + pvt(λ, x
′, y′)2

)N+s
2 −

(
1 + pvt(λ, z

′, y′)2
)N+s

2

∣∣∣∣
≤ 2(N + s)(1 + 4‖∇′vt‖2L∞(B′

r(p
′)))

N−1+s
2 ‖∇′vt‖L∞(B′

r(p
′)) |x′ − z′|γ (4.4.16)

for any x′, y′, z′ ∈ B′
r(p

′) and λ ∈ [0, 1]. From the definition of Ar, the assumption that
‖∇′vt‖L∞(B′

r(p
′)) ≤ 1, (4.4.15), and (4.4.16), we have that

|Ar(x
′, y′)−Ar(z

′, y′)| ≤ C |x′ − z′|γ 1

|y′|N+s
(4.4.17)
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for any x′, y′, z′ ∈ B′
r(p

′) and some constant C > 0 depending only on N , s, and t.
Therefore, we obtain that Ar satisfies the condition (A2) with β := γ in Theorem 4.4.4.

Now we confirm that Ar also satisfies the condition (A1) in Theorem 4.4.4. Indeed,
from (4.4.15), we have that

1

|y′|N+s
≥ Ar(x

′, y′) ≥ 1

(1 + 4‖∇′vt‖2L∞(B′
r)
)
N+s
2

1

|y′|N+s
(4.4.18)

for any x′ ∈ B′
r/2(0) and y′ ∈ B′

r/8(0), and, by choosing r > 0 small if necessary, we

conclude that Ar satisfies (A1).
If γ ≥ β(> 1 − s), then we have that |y′|N+sAr(·, y′) ∈ C0,β(B′

r(p
′)) for y′ ∈ B′

r(p
′)

and thus, we apply the bootstrap argument in [9, Theorem 1.6] to obtain that vt is of
class C1+s+α for any α < β. Sine the Hölder exponent β is greater than 1− s, we further
obtain that vt is of class C

2,s+α−1 with 1− s < α < β.
If γ < β, then, from the fact that f ∈ C0,β

loc ⊂ C0,γ
loc , we can apply the bootstrap

argument in [9, Theorem 1.6] to obtain that vt is of class C1,s+α for any α < γ. If
s+γ ≥ β(> 1−s), then we further apply the bootstrap argument to obtain the C2,s+α−1-
regularity of the graph function vt with some 1−s < α < β; otherwise, we again apply the
bootstrap argument for f ∈ C0,s+α and |y′|N+sAr(·, y′) ∈ C0,s+α with any α < γ to obtain
that vt is of class C

1+s+α′
with α′ < s+γ. If 2s+γ ≥ β(1−s), then we are done; otherwise,

we repeat the above argument finite times until we obtain the C2,s+δ−1-regularity for some
1− s < δ < β.

Therefore, we conclude the proof.

4.4.2 Proof of Theorem 4.1.1

By using Lemma 4.4.5, we are now ready to prove the main result of this chapter.
Before proceeding with the proof, we briefly explain the strategy of the proof of The-

orem 3.1.1. Let t1, t2 ∈ [−‖u‖L∞ , ‖u‖L∞) with t1 < t2 and we set E1 := {u > t1} and
E2 := {u > t2}. We show that the boundaries of E1 and E2 are not too close. Precisely,
using the regularity of f ∈ C0,β , we show the inequality that

t2 − t1 ≲ (dist (∂E1, ∂E2))
β . (4.4.19)

To see this, we compare the nonlocal mean curvatures on the boundaries ∂E1 and ∂E2.
Notice that one cannot directly compare the curvatures unless the boundaries share some
point with each other. Thus, we slide ∂E1 (denoted by ∂Eν

1 ) along the outer unit normal ν
of ∂E1 until ∂Eν

1 touches ∂E2. At the touching point, we can now compare the curvatures
between ∂Eν

1 and ∂E2. Moreover, by employing the computation by J. Dávila, M. del
Pino, and J. Wei [41], we can also compare the curvatures between ∂E1 and ∂Eν

1 . Finally,
using (4.4.19), we seek for the estimate of |u(y1) − u(y2)| for yi ∈ ∂Ei with i ∈ {1, 2} to
conclude the proof of our main theorem.

Proof of Theorem 4.1.1. Let dt := dEt for t ∈ [0, ∞) be a signed distance function from
∂{u > t}, which is negative inside {u > t}. We set Et := {x | u(x) > t} for any t. Since
N = 2, from Lemma 4.4.5 it follows that the surface ∂Et is C

2,δ-regular for each t ∈ R
with some δ > 0. Hence, the signed distance function dt is of class C

2,δ in a neighborhood
of ∂Et with some δ > 0 (see, for instance, [107, 42, 43, 10] for the relation between the
distance function and regularity of surfaces).

We first recall that, from the assumption on f and Proposition 4.3.4, we have that
‖u‖L∞ ≤ ‖f‖L∞ < ∞. We now take any t1 ∈ [−‖u‖L∞ , ‖u‖L∞) and set E1 := Et1 .
Then we can choose a neighborhood U1 ⊂ R2 of the boundary ∂E1 such that d1 :=
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dt1 ∈ C2,s+α−1(U1). Moreover, we take any t2 ∈ (−‖u‖L∞ , ‖u‖L∞) with t2 > t1 and set
E2 := Et2 . Then, from Corollary 4.3.7, we obtain that there exists a constant Rc > 0
independent of t1 and t2 such that E2 ⊂ E1 ⊂ BRc . We can choose points x1 ∈ ∂E1 and
x2 ∈ ∂E2 such that

δ̃ := dist (∂E1, ∂E2) = |x1 − x2|.

Note that, since we study the local Hölder regularity of u, it is sufficient to consider the
case that x2 ∈ U1.

Step 1. We first show that the following inequality holds:

t2 − t1 ≤ ([f ]β + C δ̃1−β) δ̃β (4.4.20)

where C > 0 is a constant depending only on s and d1.

Without loss of generality, we may assume that δ̃ > 0. Indeed, if δ̃ = 0, then, from the
definition of δ̃, we can easily see that t2 = t1. This implies that the inequality (4.4.20) is
valid. Thus, in the sequel, we always assume that δ̃ > 0.

Now we define Eδ
1 as

Eδ
1 := {x ∈ E1 | dist (x, ∂E1) ≤ δ}

for any δ ∈ (0, δ̃]. Then, from the choice of t2 and the definition of δ̃, the boundary of
Eδ

1 can be described as ∂Eδ
1 = {x − δ∇d1(x) | x ∈ ∂E1} for any δ ∈ (0, δ̃] where ∇d1

is the outer unit normal vector of ∂E1. Note that we can readily see that E2 ⊂ Eδ
1 and

x2 ∈ ∂E2 ∩ ∂E δ̃
1 . From the definition of the nonlocal mean curvature, we can easily see

that the following comparison inequality holds:

HK

Eδ̃
1

(x2) ≤ HK
E2
(x2). (4.4.21)

From the choice of x1 and x2, we have x2 = x1 − δ∇d1(x1). Now we compare the two
nonlocal curvatures HK

Eδ
1
(x2) and H

K
E1
(x1). To do this, we employ the computation shown

by Dávila, del Pino, and Wei in [41] (see also [37, 70]). This computation is on the variation
of the s-fractional mean curvature. Precisely, we have that, for any set E ⊂ R2 with a
smooth boundary (at least C1,α with α > 1+s

2 ), it holds that

− d

dδ

∣∣∣∣
δ=0

HK
Eδh

(x− δh(x)∇dE(x))

= 2

∫
∂E

h(y)− h(x)

|y − x|2+s
dHN−1(y)

+ 2

∫
∂E

(∇dE(y)−∇dE(x)) · ∇dE(x)
|y − x|2+s

dHN−1(y) (4.4.22)

for x ∈ ∂E where h ∈ L∞(∂E) and h is as smooth as ∂E. Here we define Eδh in such a
way that its boundary is given by ∂Eδh := {x − δ h(x)∇dE(x) | x ∈ ∂E} for any δ > 0.
Then from (4.4.22) and by some computation, we have the estimate of the variation of the
nonlocal mean curvature Hs

Eδ
1
for small δ > 0. Precisely we can obtain that there exist

constants C > 0 and δ0 > 0, which depends on the dimension of RN N = 2, s, and the
L∞-norm of ∇2d1 (equivalently the second fundamental form of ∂E1), such that

− d

dδ
HK

Eδ
1
(Ψδ(x1)) ≤ C

∫
∂E1

|∇d1(y)−∇d1(x1)|2

|y − x1|2+s
dHN−1(y) (4.4.23)
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for any δ ∈ (0, δ0) where we set Ψδ(x1) := x − δ∇d1(x). Indeed, choosing any smooth
cut-off function ηε such that spt ηε ⊂ Bc

ε(0), ηε ≡ 1 in Bc
2ε(0), and 0 ≤ ηε ≤ 1, we can

write the nonlocal curvature as follows:

−Hs
Eδ

1
(Ψδ(x1))

=

∫
R2

χEδ
1
(y)− χ(Eδ

1)
c(y)

|y −Ψδ(x1)|2+s
ηε(y −Ψδ(x1)) dy

+

∫
R2

χEδ
1
(y)− χ(Eδ

1)
c(y)

|y −Ψδ(x1)|2+s
(1− ηε(y −Ψδ(x1))) dy

=: Aε(δ) +Bε(δ). (4.4.24)

Then we can compute the derivative of Aε(δ) in (4.4.24) for small δ > 0 in the following
manner: setting ỹδ := y −Ψδ(x1) for simplicity, we have

d

dδ

∫
R2

χEδ
1
(y)− χ(Eδ

1)
c(y)

|ỹδ|2+s
ηε(ỹδ) dy

=

∫
∂Eδ

1

ηε(ỹδ)

|ỹδ|2+s
dHN−1(y) +

∫
∂(Eδ

1)
c

ηε(ỹδ)

|ỹδ|2+s
dHN−1(y)

− (2 + s)

∫
R2

χEδ
1
(y)− χ(Eδ

1)
c(y)

|ỹδ|4+s
(y − x1 + δ∇d1(x1)) · ∇d1(x1) ηε(ỹδ) dy

+

∫
R2

χEδ
1
(y)− χ(Eδ

1)
c(y)

|ỹδ|2+s
∇ηε(ỹδ) · ∇d1(x1) dy (4.4.25)

for any δ ∈ (0, 1) with Ψδ(x1) ∈ U1. Then by using the Gauss-Green theorem, we have

− (2 + s)

∫
R2

χEδ
1
(y)− χ(Eδ

1)
c(y)

|ỹδ|4+s
(y − x1 + δ∇d1(x1)) · ∇d1(x1) ηε(ỹδ) dy

=

∫
R2

(χEδ
1
(y)− χ(Eδ

1)
c(y))∇y

(
1

|ỹδ|2+s

)
· ∇d1(x1) ηε(ỹδ) dy

=

∫
∂Eδ

1

∇d1(x1) · ∇dEδ
1
(y)

|ỹδ|2+s
ηε(ỹδ) dHN−1

−
∫
∂(Eδ

1)
c

∇d1(x1) · (−∇dEδ
1
(y))

|ỹδ|2+s
ηε(ỹδ) dHN−1

−
∫
R2

χEδ
1
(y)− χ(Eδ

1)
c(y)

|ỹδ|2+s
∇ηε(ỹδ) · ∇d1(x1) dy. (4.4.26)

Thus from (4.4.25) and (4.4.26), we obtain

d

dδ
Aε(δ) =

∫
∂Eδ

1

2− 2(∇d1(x1) · ∇dEδ
1
(y))

|ỹδ|2+s
ηε(ỹδ) dHN−1(y)

=

∫
∂Eδ

1

|∇d1(x1)−∇dEδ
1
(y)|2

|ỹδ|2+s
ηε(ỹδ) dHN−1(y)

for any small δ > 0 with Ψδ(x1) ∈ U1. Hence from the change of variables, we obtain

d

dδ
Aε(δ) =

∫
∂E1

|∇d1(x1)−∇d1(y)|2

|Ψδ(y)−Ψδ(x1)|2+s
ηε(Ψδ(y)−Ψδ(x1)) J∂E1Ψδ(y) dHN−1(y)
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where J∂E1Ψδ(y) is the tangential Jacobian of ∂E1 at y. As is shown in [41], we can have
that there exist constants c′ > 0 and δ′ > 0, depending on the dimension of RN with
N = 2 and s but independent of ε > 0, such that | ddδBε(δ)| ≤ c′ε1−s for any δ ∈ (0, δ′)
and ε ∈ (0, 1). Therefore, we conclude that

− d

dδ
Hs

Eδ
1
(Ψδ(x1)) = lim

ε↓0

(
d

dδ
Aε(δ) +

d

dδ
Bε(δ)

)
=

∫
∂E1

|∇d1(x1)−∇d1(y)|2

|Ψδ(y)−Ψδ(x1)|2+s
J∂E1Ψδ(y) dHN−1(y)

for any δ ∈ (0, δ′0) where δ′0 > 0 is a constant depending on the dimension of RN with
N = 2, s, and the L∞-norm of ∇2d1. From the definition of Ψδ, we have that there exists
a constant C0 > 0 depending on the dimension of RN with N = 2, s, and the L∞-norm
of ∇2d1, such that

J∂E1Ψδ(y)

|Ψδ(y)−Ψδ(x1)|2+s
≤ C0

|y − x1|2+s

for any y ∈ ∂E1 and δ ∈ (0, δ′0). Therefore we obtain that there exist constants C > 0
and δ0 > 0, depending on the dimension of RN N = 2, s, and the second derivative of d1
but independent of δ, such that the inequality (4.4.23) with the constant C holds for any
δ ∈ (0, δ0). Thus, from the fundamental theorem of calculus and (4.4.23), we obtain that

−HK
Eδ

1
(x− δ∇d1(x)) = −HK

E1
(x1)− δ

∫ 1

0

d

dδ
HK

Eδ
1
(x− λδ∇d1(x)) dλ

≤ −HK
E1
(x1) + C δ

∫
∂E1

|∇d1(y)−∇d1(x1)|2

|y − x1|2+s
dHN−1(y) (4.4.27)

for any δ ∈ (0, δ0). Now we show that the integral∫
∂E1

|∇d1(y)−∇d1(x1)|2

|y − x1|2+s
dHN−1(y)

is uniformly bounded for any x1 ∈ V and any open set V ( U1. Indeed, we define the
set U r

1 := {x ∈ U1 | dist (x, ∂U1) > r} for any r > 0 satisfying that B2r(x) ⊂ U1 for any
x ∈ U1. Then we can compute the integral as follows: for any x1 ∈ U r

1 , it holds that∫
∂E1

|∇d1(y)−∇d1(x1)|2

|y − x1|2+s
dHN−1(y)

=

∫
∂E1∩Br(x1)

|∇d1(y)−∇d1(x1)|2

|y − x1|2+s
dHN−1(y)

+

∫
∂E1∩Bc

r(x1)

|∇d1(y)−∇d1(x1)|2

|y − x1|2+s
dHN−1(y)

≤
∫
∂E1∩Br(x1)

|∇d1(y)−∇d1(x1)|2

|y − x1|2
1

|y − x1|n−2+s
dHN−1(y)

+

∫
∂E1∩Bc

r(x1)

4

|y − x1|2+s
dHN−1(y). (4.4.28)

From the fundamental theorem of calculus and the fact that Br(x1) ⊂ U1 for any x1 ∈ U r
1 ,

we have that
|∇d1(y)−∇d1(x1)|2

|y − x1|2
≤ ‖∇2d1‖2L∞(Br(x1))

(4.4.29)
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for any y ∈ Br(x1). Thus from (4.4.28) and (4.4.29) and noticing that x1 ∈ U r
1 and

Et ⊂ BRc holds uniformly in t ≥ c where c := −‖u‖L∞ > −∞, we obtain∫
∂E1

|∇d1(y)−∇d1(x1)|2

|y − x1|2+s
dHN−1(y) ≤ c1 ‖∇2d1‖3L∞(Br(x1))

r1−s

+
c2 ‖∇2d1‖L∞(U1)

rs
(4.4.30)

where c1 > 0 and c2 > 0 are constants depending on the dimension of RN with N = 2 and
s. Since we choose any r in such a way that Br(x1) ⊂ U1, we conclude the claim is valid.
Thus, from (4.4.27) and (4.4.30), we finally obtain the inequality

−HK
Eδ

1
(x1 − δ∇d1(x)) ≤ −HK

E1
(x1) + C(n, s,Rc) δ (4.4.31)

for any δ ∈ (0, δ0) where C(n, s,Rc) > 0 (N = 2 is the dimension of RN ) and δ0 > 0 are
some constants, which also depend on the L∞-norm of ∇2d1. Note that the constant δ0
can be bounded by the inverse of the L∞-norm of ∇2d1. Thus from (4.4.21) and (4.4.31),
we have that, for any δ ∈ (0, δ0),

−HK
E2
(x2) ≤ −HK

E1
(x1) + C(n, s,Rc) δ. (4.4.32)

Now we consider the following two cases:
Case 1: 0 < δ̃ < δ0. In this case, we simply substitute δ = δ̃ with (4.4.32) and obtain

−HK
E2
(x2) ≤ −HK

E1
(x1) + C(n, s,Rc) δ̃

where δ̃ = dist (∂E1, ∂E2).

Case 2: δ̃ ≥ δ0. In this case, there exists a number N ∈ N such that δ̃
N < ‖∇2d1‖−1

L∞(U1)
.

Then setting δ̃k := k
N δ̃ for each k ∈ {1, · · · , N} and taking into account all the above

arguments, we obtain the inequality that

−HK

E
δ̃k
1

(xδ̃k1 ) ≤ −HK

E
δ̃k−1
1

(x
δ̃k−1

1 ) + C(n, s,Rc)
δ̃

N
(4.4.33)

for each k ∈ {1, · · · , N} where we understand the notation xδ̃01 = x1 and E δ̃0
1 = E1. Thus

by summing the inequality (4.4.33) for all i ∈ {1, · · · , N}, we obtain

−HK

Eδ̃
1

(x2) = −HK

E
δ̃N
1

(xδ̃N1 )

≤ −HK

E
δ̃0
1

(xδ̃01 ) +N C(n, s,Rc)
δ̃

N
= −HK

E1
(x1) + C(n, s,Rc) δ̃

where δ̃ = dist (∂E1, ∂E2). In both cases, we finally obtain the inequality

−HK
E2
(x2) ≤ −HK

E1
(x1) + C(n, s,Rc) δ̃. (4.4.34)

Now we recall that, thanks to Lemma 4.4.5, the Euler-Lagrange equation

Hs
Et
(x) + t− f(x) = 0

holds for any x ∈ ∂Et and t ∈ [−‖u‖L∞ ‖u‖L∞). Then, since Ei is the minimizer of EK,f,ti

for i ∈ {1, 2} and from (4.4.34), we obtain

t2 − t1 ≤ f(x2)− f(x1) + C(n, s,Rc) δ̃.
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Recalling the definition of x2, the Hölder continuity of f , and the fact that Et ⊂ BRc for
any t ≥ c, we conclude that

t2 − t1 ≤ ([f ]β(BRc) + C(n, s,Rc) δ̃
1−β) δ̃β (4.4.35)

where [f ]β(BRc) is the Hölder constant of f in BRc given as

[f ]β(BRc) := sup
x, y∈BRc , x ̸=y

|f(x)− f(y)|
|x− y|β

and the constant δ̃ is defined as δ̃ := dist (∂E1, ∂E2). Note that the constant C(n, s,Rc) >
0 also depends on the L∞-norm of ∇2d1.

Step 2. We are now ready to prove the local Hölder continuity of u.
Let Br0(x0) ⊂ R2 be any open ball of radius r0 with x0 ∈ {u = t0} for a number

t0 ≥ c := −‖u‖L∞ . We take any points x, y ∈ Br0(x0) with x 6= y and set t1, t2 ∈ R as
t1 := u(x) and t2 := u(y). We may assume that t1 > t2 ≥ c because we only repeat the
same argument in the case of t1 < t2. In addition to this, we also assume that t1 > t0 > t2.
Indeed, in the case of t1 > t2 ≥ t0 or t0 ≥ t1 > t2, it is sufficient to take another point
x′0 ∈ Br0(x0) and t

′
0 ∈ R such that x′0 ∈ {u = t′0} and t1 > t′0 > t2, and do the argument

that we will show below. Moreover, since we only observe the local regularity of u, it is
sufficient to consider the case that Br0(x0) ⊂ U0 where U0 is a neighborhood of ∂{u > t0}
such that the signed distance function from ∂{u > t0} is of class C1,s+α(U0). Indeed, if
x ∈ Br0(x0) \ U0 and y ∈ Br0(x0), then, from the continuity of u, we can choose a point
z0 in Br0(x0) and close to x such that the estimate |u(x) − u(z0)| ≤ |x − y|β holds and
t1 = u(x) > u(z0) ≥ u(y) = t2. In the case of z0 ∈ U0, we just apply the argument that
we will show below with (4.4.35) for z0, x0, and y; otherwise we can repeat the above
argument until we have the point belonging to U0.

Now we choose sufficiently small ε > 0 such that t1 − ε > t0 and t0 − ε > t2 and then
we have that x ∈ {u > t1 − ε}, y ∈ {u > t2 − ε}, and x0 ∈ {u > t0 − ε}. Hence, from
(4.4.35) and the fact that x, y ∈ Br0(x0), we obtain the two inequalities

u(x)− u(x0) = t1 − ε− (t0 − ε) ≤ ([f ]β(BRc) + C(n, s,Rc) δ̃
1−β
1 ) δ̃β1

≤ ([f ]β(BRc) + C(n, s,Rc) r
1−β
0 ) δ̃β1 . (4.4.36)

and

u(x0)− u(y) = t0 − ε− (t2 − ε) ≤ ([f ]β(BRc) + C(n, s,Rc) δ̃
1−β
2 ) δ̃β2

≤ ([f ]β(BRc) + C(n, s,Rc) r
1−β
0 ) δ̃β2 (4.4.37)

where we set δ̃1 := dist (∂Et0 , ∂Et1) and δ̃2 := dist (∂Et0 , ∂Et2). Note that the constant
C(n, s,Rc) > 0 also depends on the L∞-norm of ∇2dt0 , which can be uniformly bounded
in Br0(x0). Notice that the inequality

δ̃1 + δ̃2 = dist (∂Et0 , ∂Et1) + dist (∂Et0 , ∂Et2) ≤ dist (∂Et1 , ∂Et2) ≤ |x− y|

holds because of the fact that Et1 ⊂ Et0 ⊂ Et2 . Therefore from (4.4.36) and (4.4.37), we
obtain that there exists a constant C = C(n, s, f, Rc, r0, x0) > 0 (we have assumed that
the dimension of RN is two) such that

|u(x)− u(y)| = |u(x)− u(x0) + u(x0)− u(y)|

≤ C (δ̃β1 + δ̃β2 ) ≤ C 21−β(δ̃1 + δ̃2)
β ≤ 21−βC |x− y|β .

Here, in the second inequality, we have used the fact that 21−β(x+ 1)β ≥ xβ + 1 for any
x ≥ 1 and β ∈ (0, 1) and applied this fact with x = δ̃1 δ̃

−1
2 if δ̃1 ≥ δ̃2 or x = δ̃2 δ̃

−1
1 if

δ̃1 < δ̃1.





Chapter 5

Nonlocal Liquid Drop Model

In this chapter, we investigate a nonlocal extension of the classical liquid drop model,
which was originally introduced by G. Gamow [63] to explain the behavior of atoms and
predict a nuclear fission. The liquid drop model consists of the following two energies: one
is an attractive term (classical or nonlocal perimeter) and the other is a repulsive term
(Riesz potential). Then, in this model, the non-trivial competition between these energies
occurs and the model has been studied by many authors.

In this thesis, we focus on a nonlocal version of the classical liquid drop model. To
discuss our problem, we mainly divide this chapter into two sections; one is on the nonex-
istence of minimizers for the model and the other is on the existence and asymptotic
behavior of minimizers for the model. Strictly speaking, in the first section, we study a
nonlocal version of the classical liquid drop model in a more general framework, and show
the nonexistence of minimizers for large volumes. Our model in the first section is also
closely related to the ionization conjecture in quantum mechanics. In the second section,
we consider a nonlocal version of the classical liquid drop model, and show the existence
of minimizers for any volume under suitable assumptions on the repulsive term.

5.1 Nonexistence of Minimizers

In this section, we first consider the nonexistence of minimizers of the functional EK,α,µ,β ,
which is defined in (1.0.15), for large volumes. We obtain the following two results; the
first one is that, if we assume that µ ≥ 0 and m > 0 and K satisfies several conditions
(see the first subsection in Section 5.1.1 for the detail), then every minimizer of EK,α,µ,β

is bounded. The second one is as follows: we assume that K satisfies several conditions
which are weaker than the ones in the first result. Then there exists a constant m0 =
m0(N, s, ε, µ) > 0, which can be determined explicitly, such that inf{EK,α,µ,β(E) | |E| =
m} has no bounded solutions for any m > m0. According to these two results, we can say
that, if K satisfies the assumptions as in the first result, it holds that inf{EK,α,µ,β(E) |
|E| = m} has no solutions. We emphasize that our result in this section is a partial
extension of the results shown in [56]. Indeed, if we set K(x) = |x|−(N+s) with s ∈ (0, 1),
α = N − 1, and µ = 0, then we prove the nonexistence of minimizers of the functional
Ps(E)+Vα(E) for large volume |E| = m. Meanwhile, the authors [56] showed the existence
of minimizers for the functional Ps(E)+Vα(E) with α ∈ (0, N) for small volume |E| = m.

Our idea for proving the boundedness of minimizers is based on [32]. First, we will
show that the functional (1.0.15) is continuous under some sufficiently small and smooth
perturbation near a point in the measure-theoretic boundary of a minimizer (see Lemma
5.1.4). This continuity is what we call “Almgren’s lemma”. Secondly, if we suppose that
a minimizer is not bounded, this continuity and the minimality give us some inequality

71
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for the volume of a minimizer outside of some ball, which leads to a contradiction. On
the other hand, the strategy for proving the main theorem, namely, the nonexistence of
minimizers is based on [58, 69, 71, 72, 73, 84]. Precisely, we take the following strategy:
first, we separate RN into two parts by a hyperplane which is parametrized by a directional
parameter ν ∈ SN−1 and a translating parameter l ∈ R. Then, taking any minimizer of
(1.0.15) and considering the intersection of the minimizer by each separated part (either
of them can be an empty set), we compare the sum of the functional for each intersection
with that of the original set. Integrating the resulting inequality with respect to l and
then ν, we are able to obtain the inequality for the volume of a minimizer to find that it
actually shows the upper bound of that volume.

5.1.1 Statement of Main Results

In this subsection, we first state some assumptions on the kernel K and then show the
main results of Section 5.1. Note that we apply the following assumptions on K only to
this section. We suppose that K satisfies

(K1) K is non-negative and symmetry with respect to the origin, namely, K(−x) = K(x)
for any x ∈ RN .

(K2) K ∈ L1(Bc
1(0)).

(K3) There exists a constant γ0 > 0 such that

K(w) ≤
(
1 +

|z − w|
|w|

)γ0

K(z)

for any z, w ∈ RN with |z − w| ≤ 1
2 |w|.

(K4) There exists constants 0 < s < 1, ε > 0, and λ > 1 such that

|x|−(N+s) ≤ K(x) ≤ λ|x|−(N+s) for any 0 < |x| < 1 + ε,

|x|−(N+s−1) ≤ |x|K(x) ≤ (1 + ε)−(N+s−1) for any |x| ≥ 1 + ε.

We can say that (K3) would correspond to the control of the gradient of the kernel K in
the neighborhood of some point. This assumption can allow us to control the difference
|PK(Φt(E))−PK(E)| of a set E ⊂ RN where {Φt}|t|<1 is a one-parameter diffeomorphism
(see Lemma 5.1.4 in Subsection 5.1.2 for the detail). We use this control of the perturbation
for PK in order to obtain the boundedness of minimizers of (1.0.15), and one may weaken
(K3) if one could find another method to prove the boundedness of the minimizers.

If we consider the nonexistence of bounded minimizers of the functional (1.0.15), then
we impose (K5), which is weaker than (K4), in the following way:

(K5) There exists constants 0 < s < 1, ε > 0, and λ > 1 such that

K(x) ≤ λ |x|−(N+s) for any 0 < |x| < 1 + ε,

|x|K(x) ≤ (1 + ε)−(N+s−1) for any |x| ≥ 1 + ε.

In the following figures (Figure 5.1 and 5.2), we illustrate a rough shape of the kernel
K with the above assumptions.
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Figure 5.1: Graph of K with (K4) Figure 5.2: Graph of K with (K5)

Remark that the function |x|−(N+s), denoted by K1, is a typical example of the kernel
K satisfying all the above assumptions. Indeed, one easily see that K1 satisfies (K1), (K2),
(K4), and (K5). Moreover, we can observe that K1 satisfies (K3) in the following manner:
taking any z, w ∈ RN , we have from the triangle inequality

|z|N+s

|w|N+s
≤
(
|z − w|+ |w|

|w|

)N+s

≤
(
1 +

|z − w|
|w|

)N+s

.

Thus we obtain that, for any z, w ∈ RN ,

K1(w) =
1

|w|N+s
≤
(
1 +

|z − w|
|w|

)N+s 1

|z|N+s
=

(
1 +

|z − w|
|w|

)N+s

K1(z)

and we can conclude that K1 satisfies (K3) with γ0 = N + s.
Another non-trivial example of the kernel K is given by

K2(x) :=


−|x|−(N+s−1) log |x| if |x| ≤ 1

e
1

e
|x|−(N+s) if |x| > 1

e

where e is the Napier’s number. We can observe that this K2 satisfies (K1), (K2), (K3),
and (K5). Note that this function does not satisfy (K4) and is not homogeneous while
the function |x|−(N+s) is. Indeed, it is easy to see that K2 satisfies (K1) and (K2) by
definition. From the fact that th function −r log r is increasing in (0, e−1], one can see
that, for any |x| ≤ 1

e (< 1 + ε),

K2(x) = |x|−(N+s)(−|x| log |x|) ≤ 1

e
|x|−(N+s).

On the other hand, we can easily observe that K2(x) ≤ |x|−(N+s) or K2(x) ≤ (1 +
ε)−(N+s−1) |x|−1 holds for any |x| ≥ 1

e . Therefore K2 satisfies (K5). Finally, we show that
K2 satisfies (K3). Actually, if |z| ≤ |w|, then K2 is a decreasing function and thus we can
conclude that

K2(w) ≤ K2(z) ≤
(
1 +

|z − w|
|w|

)γ0

K2(z)

holds for any γ0 > 0. If |z| > |w|, then we consider the following three cases; 1
e > |z| > |w|,

|z| ≥ 1
e > |w|, and |z| > |w| ≥ 1

e . First, in the case of 1
e > |z| > |w|, from the fact that

the function r 7→ −r log r is increasing in (0, 1
e ), we have that −|z| log |z| > −|w| log |w|.

Thus we obtain

K2(w)

K2(z)
=

|z|N+s

|w|N+s

−|w| log |w|
−|z| log |z|

<

(
1 +

|z − w|
|w|

)N+s
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and this indicates (K3). Secondly, in the case of |z| ≥ 1
e > |w|, from the definition of K2

and by the same reason in the first case, we have that

K2(w)

K2(z)
=
e |z|N+s

|w|N+s
− |w| log |w| <

(
1 +

|z − w|
|w|

)N+s

.

Lastly, in the case of |z| > |w| ≥ 1
e , from the definition of K2, we can easily see that K2

satisfies (K3). Therefore we may conclude that K2 satisfies (K3).
Assuming that the kernel g(x) = |x|−1 and β = 1, we now give our main results in this

section. The first one is the boundedness of minimizers, the second one is the nonexistence
of bounded minimizers, and the last one is the corollary of the second result.

Proposition 5.1.1. Let N ≥ 2, µ ≥ 0, and m ∈ (0, ∞). Assume that K satisfies (K1),
(K2), (K3), and (K4). Then every minimizer E of (1.0.15) is essentially bounded, namely
there exists R > 0 such that |E \BR(0)| = 0.

Theorem 5.1.2. Let N ≥ 2 and µ ≥ 0. Assume that K satisfies (K1), (K2), and (K5).
Then, there exists a constant mc > 0 given by

mc :=

(
1− 1

(1 + ε)N+s−1

)−1(ωN−1 λ

1− s
(1 + ε)1−s + µ

)
(5.1.1)

such that for any m > mc,

inf{EK,α,µ,β(E) | E ⊂ RN , |E| = m} (5.1.2)

has no bounded solutions.

Since (K5) is weaker than (K4), then from Proposition 5.1.1 and Theorem 5.1.2 we
may obtain

Corollary 5.1.3. Assume that K satisfies (K1), (K2), (K3), and (K4) and let µ ≥ 0.
Then for any m > mc where mc is as in Theorem 5.1.2, (5.1.2) has no solutions.

Remark that we cannot say that the mass mc given in (5.1.1) is optimal since we just
show the necessary condition for the existence of the minimizers.

5.1.2 Boundedness of Minimizers

In this subsection, we prove Proposition (5.1.1), namely, the boundedness of minimizers
for the functional (1.0.15) under some conditions on a kernel K. First of all, we start to
show a generalized version of so-called Almgren’s lemma (see [94] for the classical results,
[57] in the case of an anisotropic perimeter, or [32] in the case of a nonlocal s-perimeter).

Lemma 5.1.4. Suppose that K satisfies (K1), (K2), and (K3). Let E ⊂ RN be a mea-
surable set with PK(E) + VN−1(E) + Rµ(E) < ∞. Let x0 ∈ RN and r0 > 0 be such
that

|Br0(x0) ∩ E| > 0, |Br0(x0) ∩ Ec| > 0.

Then, there exist k0, C > 0 such that, for any k ∈ (−k0, k0), there exists a measurable set
Fk ⊂ RN such that PK(Fk) + VN−1(Fk) +Rµ(Fk) <∞ and the following properties hold:

1. E∆Fk ⊂⊂ Br0(x0)

2. |Fk| − |E| = k

3. |EK,α,µ,β(Fk)− EK,α,µ,β(E)| < C |k|.
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Proof. From the density assumption, we have that there exists a function T ∈ C1
c (Br0(x0); RN )

such that

M :=

∫
E
div T (x) dx > 0.

If this fails, then we have that, for any T ∈ C1
c (Br0(x0); RN ),

∫
E div T (x) dx = 0. Then,

by the definition of the classical perimeter (see, for instance, [55] for the definition), it
holds that P (E, Br0(x0)) = 0. However, by the classical isoperimetric inequality (see also
[55]), we have |E ∩Br0(x0)| = 0, which contradicts the assumption of E.

For any t ∈ (−1, 1), we define the maps Ψt(x) := x + t T (x) for all x ∈ RN . Then,
we may easily see that there exists δ0 ∈ (0, 1) such that the maps Ψt are diffeomorphisms
from Br0(x0) onto itself for any t ∈ (−δ0, δ0). Moreover, we have that det(∇Ψt(x)) =
1+tdiv T (x)+o(t) for any t ∈ (−δ0, δ0). By the definition of Ψt, we also have E∆Ψt(E) ⊂⊂
RN and thus, applying the change of variables,

|Ψt(E)| =
∫
E
| det∇Ψt(x)| dx

=

∫
E
(1 + tdiv T (x) + o(t)) dx = |E|+ tM + o(t), (5.1.3)

for sufficiently small t ∈ (−δ0, δ0). Therefore, there exists a constant k0 > 0 such that, if
we set Fk := Ψt(k)(E), where t(k) := k/M + o(k), for any k ∈ (−k0, k0), Fk satisfies the
first and second properties in Lemma 5.1.4.

Now we derive the upper bound of the difference between PK(Ψt(E)) and PK(E).
Take any x, y ∈ RN with x 6= y. If we set z = Ψt(x)−Ψt(y) and w = x− y, then we have
that

|z − w| = |t| |T (x)− T (y)|

= |t| |x− y| |T (x)− T (y)|
|x− y|

≤ |w| |t| ‖T‖C1 ≤ 1

2
|w| (5.1.4)

for any |t| < 1
2‖T‖

−1
C1 . Thus, from the assumption (K3), there exists γ0 > 0 such that

K(x− y) = K(w) ≤
(
1 +

|t| |T (x)− T (y)|
|x− y|

)γ0

K(z)

≤ (1 + ‖T‖C1 |t|)γ0 K(Ψt(x)−Ψt(y)). (5.1.5)

By taking t sufficiently small, we have

K(Ψt(x)−Ψt(y)) ≥ (1 + ‖T‖C1 |t|)−γ0 K(x− y)

≥ (1− 2γ0 ‖T‖C1 |t|)K(x− y). (5.1.6)

where we have used the Taylor expansion of (1 + x)−γ0 for small x at the last inequality
in (5.1.6). On the other hand, if we set z = x − y and w = Ψt(x) − Ψt(y), then we have
that, if T (x) 6= T (y),

1

2
|w| = 1

2
|Ψt(x)−Ψt(y)|

≥ 1

2
|t||T (x)− T (y)|

(
|x− y|

|t| |T (x)− T (y)|
− 1

)
≥ |z − w| 1

2

(
1

|t| ‖T‖C1

− 1

)
≥ |z − w| (5.1.7)
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for any 0 < |t| < 1
3‖∇T‖

−1
C1 . If T (x) = T (y) or t = 0, then we have |z−w| = 0 by definition

and thus (5.1.7) also holds. Hence, from (K3) we obtain that

K(Ψt(x)−Ψt(y)) = K(w)

≤
(
1 +

|t| |T (x)− T (y)|
|Ψt(x)−Ψt(y)|

)γ0

K(z)

≤

1 +
|t| |T (x)− T (y)|

|x− y|
(
1− |t| |T (x)−T (y)|

|x−y|

)
γ0

K(x− y)

≤
(
1 +

‖T‖C1 |t|
1− ‖T‖C1 |t|

)γ0

K(x− y)

= (1− ‖T‖C1 |t|)−γ0 K(x− y)

≤ (1 + 2γ0 ‖T‖C1 |t|)K(x− y) (5.1.8)

for sufficiently small t. Here we also have used the Taylor expansion of (1−x)−γ0 for small
x at the last inequality in (5.1.8). Therefore from (5.1.6) and (5.1.8) we obtain

|K(Ψt(x)−Ψt(y))−K(x− y)| ≤ 2γ0 ‖T‖C1 |t|K(x− y) (5.1.9)

for sufficiently small t and x, y ∈ R with x 6= y. Since we can easily see that x = y if and
only if Ψt(x) = Ψt(y) for any 0 < |t| ≤ 1

2∥∇T∥L∞ , then the estimate (5.1.9) is also valid

when x = y. Then, we may compute |PK(Ψt(E)) − PK(E)| as follows: first, we can see
from (5.1.9) that∣∣∣K(Ψt(x)−Ψt(y)) | det∇Ψt(x)| | det∇Ψt(y)| −K(x− y)

∣∣∣
=
∣∣∣K(Ψt(x)−Ψt(y)) (1 + t div (T (x) + T (y)) + o(|t|))−K(x− y)

∣∣∣
≤ C0(T, d0) |t|K(x− y) (5.1.10)

for any x, y ∈ RN with x 6= y and sufficiently small |t| where

C0(T, γ0) := 2‖T‖C1(γ0 + 1 + 2γ0 ‖T‖C1). (5.1.11)

Hence setting JΨt := | det∇Ψt|, we conclude from (5.1.10) that

|PK(Ψt(E))− PK(E)|

≤
∫
E

∫
Ec

|K(Ψt(x)−Ψt(y)) JΨt(x) JΨt(y)−K(x− y)| dx dy

≤ |t|C0(T, d0)

∫
E

∫
Ec

K(x− y) dx dy = |t|C0(T, d0)PK(E) <∞. (5.1.12)

Secondly, we also have that

|VN−1(Ψt(E))− VN−1(E)|

≤
∫
E

∫
E

∣∣∣∣ | det∇Ψt(x)| | det∇Ψt(y)|
|Ψt(x)−Ψt(y)|

− 1

|x− y|

∣∣∣∣ dx dy
=

∫
E

∫
E

∣∣∣∣1 + t(div T (x) + div T (y)) + o(t)

|x− y + t(T (x)− T (y))|
− 1

|x− y|

∣∣∣∣ dx dy
≤
∫
E

∫
E

(
C1(T )|t|
|x− y|

+
o(t)

|x− y|

)
dx dy

≤ |t|C2(T )VN−1(E) <∞, (5.1.13)
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where C1(T ), C2(T ) are positive constants independent of t. Finally, we estimate the
difference of the potentials Rµ(Ψt(E)) and Rµ(E). Since t is sufficiently small, there
exists a constant c0(T ) > 0 such that |x|(1 − c0(T ) |t|) ≤ |x + t T (x)| ≤ |x|(1 + c0(T ) |t|).
Hence, we obtain

|Rµ(Ψt(E))−Rµ(E)| ≤ µ

∫
E

∣∣∣∣1 + t div T (x) + o(t)

|x+ t T (x)|
− 1

|x|

∣∣∣∣ dx
≤ µ

∫
E

(
C3(T )|t|

|x|
+
o(t)

|x|

)
dx

≤ |t|C4(T )Rµ(E) <∞ (5.1.14)

where C3(T ), C4(T ) are positive constants independent of t. Therefore, (5.1.12), (5.1.13),
and (5.1.14) imply that the set Fk satisfies the third property in Lemma 5.1.4 and this
completes the proof.

Before starting to prove Proposition 5.1.1, we need the following isoperimetric inequal-
ity of the nonlocal perimeter PK for sets with small volumes if K satisfies the conditions
(K1) and (K4).

Lemma 5.1.5. Suppose that K satisfies (K1), (K2), and (K4) and let ε > 0 and λ ≥ 1
be the constants given in (K4). Then, there exists a constant C = C(N, s, λ) > 0 such
that, for any measurable set F ⊂ RN with 0 < |F | ≤ ωN (1 + ε)N , we have

C |F |
N−s
N ≤ PK(F ).

Proof. If PK(F ) = ∞, then the lemma is proved. Thus, we can assume that PK(F ) is

finite. Setting ρ := ω
−1/N
N |F |1/N ∈ (0, 1 + ε], we may compute the nonlocal perimeter

PK(F ) as follows:

∫
F

∫
F c

K(x− y) dx dy =

∫
F

∫
F c∩Bρ(y)

K(x− y) dx dy

+

∫
F

∫
F c∩Bc

ρ(y)
K(x− y) dx dy

≥ 1

ρN+s

∫
F
|F c ∩Bρ(y)| dy

+

∫
F

∫
F c∩Bc

ρ(y)
K(x− y) dx dy. (5.1.15)

Here, by the assumption of F , we have |F | = ωNρ
N = |Bρ(y)| for any y. Thus, it holds

that

|F c ∩Bρ(y)| = |Bρ(y)| − |F ∩Bρ(y)|
= |F | − |F ∩Bρ(y)| = |F ∩Bc

ρ(y)| (5.1.16)

for any y ∈ F . Thus, from (5.1.15) and (5.1.16) and recalling the assumption of K and
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the fact that λ > 1 and ρ < 1 + ε, we obtain the following inequality:∫
F

∫
F c

K(x− y) dx dy

≥ 1

ρN+s

∫
F
|F ∩Bc

ρ(y)| dy +
∫
F

∫
F c∩Bc

ρ(y)
K(x− y) dx dy

≥ 1

λ

∫
F

∫
F∩Bc

ρ(y)
K(x− y) dx dy +

∫
F

∫
F c∩Bc

ρ(y)
K(x− y) dx dy

≥ 1

λ

∫
F

∫
Bc

ρ(y)
K(x− y) dx dy

≥ 1

λ

∫
F

∫
Bc

ρ(y)

1

|x− y|N+s
dx dy. (5.1.17)

Moreover, by applying the change of variables, we can further calculate the last term in
(5.1.17) in the following manner:∫

F

∫
Bc

ρ(y)

1

|x− y|N+s
dx dy = |F |ωN−1

∫ ∞

ρ

1

r1+s
dr

= |F |ωN−1

s
ρ−s =

ωN−1ω
s
N
N

s
|F |

N−s
N . (5.1.18)

Therefore, from (5.1.17) and (5.1.18)we obtain

PK(F ) ≥
ωN−1ω

s
N
N

λ s
|F |

N−s
N

which is a required inequality.

Now we are ready to prove Proposition 5.1.1 as we stated in Subsection 5.1.1 by
applying the above two claims. The proof is based on the strategy shown in [32] for
instance.

Proof of Proposition 5.1.1. Suppose that K satisfies (K1), (K2), (K3), and (K4) and let
E ⊂ RN be a minimizer of inf |E|=m EK,α,µ,β(E). In the following, we use the notation Br as
the open ball Br(0) with radius r centred at 0. For any r > 0, we define f(r) := |E \Br|.
Then, by the continuity of measure and |E| = m, f is a non-increasing function and
converges to zero as r → ∞. Moreover, the coarea formula implies

f ′(r) = −HN−1(E ∩ ∂Br).

We now show that there exists R > 0 such that f(r) = 0 for all r > R. This implies
the boundedness of minimizers because EK,α,µ,β(E) coincides with EK,α,µ,β(E

′) if E \ E′

is a set of Lebesgue measure zero and thus we can identify E with E′. Suppose by
contradiction that f(r) > 0 for any r > 0. Without loss of generality, we can assume that
|E ∩B1(0)| > 0 and |CE ∩B1(0)| > 0. Choosing k0 as in Lemma 5.1.4, we may fix R0 > 0
such that f(r) < k0 for any r ≥ R0. Then, by Lemma 5.1.4, for any r ≥ R0, there exists
Fr ⊂ RN such that the followings are true:

1. E∆Fr ⊂⊂ B1(0) ⊂ Br.

2. |Fr| = |E|+ f(r).

3. |EK,α,µ,β(E)− EK,α,µ,β(Fr)| < C f(r) for a constant C > 0 independent of r.
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Now, letting Gr := Fr ∩Br and recalling the first and second properties of Lemma 5.1.4,
we have that |Gr| = |E|. Here we recall the following identity:

VN−1(U ∪W ) = VN−1(U) + VN−1(W ) + 2

∫
U

∫
W

1

|x− y|
dx dy. (5.1.19)

for any measurable U, W ⊂ RN such that |U ∩W | = 0. Therefore, by the minimality of
E and using Proposition 2.1.3 with Ω = RN and (5.1.19), we obtain

EK,α,µ,β(E) ≤ EK,α,µ,β(Gr) = PK(Gr) + VN−1(Gr)−Rµ(Gr)

≤ PK(Fr)− PK(Fr \Br)

+ VN−1(Fr)− VN−1(Fr \Br)

−Rµ(Fr) +Rµ(Fr \Br)

+ 2

∫
Fr\Br

∫
Fr∩Br

K(x− y) dx dy

≤ EK,α,µ,β(E) + C f(r)

− PK(Fr \Br) + µ

∫
Fr\Br

1

|x|
dx

+ 2

∫
Fr\Br

∫
Fr∩Br

K(x− y) dx dy. (5.1.20)

Note that we also used the third property of Lemma 5.1.4 in the last inequality of (5.1.20).
Since E \Br = Fr \Br, it holds that∫

Fr\Br

1

|x|
dx =

∫
E\Br

1

|x|
dx ≤ 1

r
|E \Br| =

f(r)

r
.

From the assumption of K, we have that∫
Fr\Br

∫
Fr∩Br

K(x− y) dx dy =

∫
E\Br

∫
Fr∩Br∩B1+ε(y)

K(x− y) dx dy

+

∫
E\Br

∫
Fr∩Br∩Bc

1+ε(y)
K(x− y) dx dy

≤
∫
E\Br

∫
Br∩B1+ε(y)

K(x− y) dx dy

+

∫
E\Br

∫
Fr∩Bc

1+ε(y)
K(x− y) dx dy. (5.1.21)

From the assumption on K, we have that K(x − y) ≤ λ |x − y|−N−s for |x − y| < 1 + ε.
Moreover, for any y ∈ E \Br, it holds that Br ⊂ Bc

|y|−r(y). By using the coarea formula,

we can continue the calculations in (5.1.21) as follows:∫
Fr\Br

∫
Fr∩Br

K(x− y) dx dy ≤ λ

∫
E\Br

∫
Bc

|y|−r
(y)

1

|x− y|N+s
dx dy

+
1

(1 + ε)N+s

∫
E\Br

|Fr| dy

≤ λωN−1

s

∫
E\Br

1

(|y| − r)s
dy +

f(r) |E|
(1 + ε)N+s

≤ λωN−1

s

∫ ∞

r

HN−1(E ∩ ∂Bt)

(t− r)s
dt+

mf(r)

(1 + ε)N+s

= −λωN−1

s

∫ ∞

r

f ′(t)

(t− r)s
dt+

mf(r)

(1 + ε)N+s
. (5.1.22)
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Substituting (5.1.22) in (5.1.20), we obtain

PK(E \Br) ≤ C5 f(r)−
λωN−1

s

∫ ∞

r

1

(t− r)s
f ′(t) dt (5.1.23)

for some positive constant C5 independent of r > 0. For sufficiently large r > 0, we can
assume that |E \ Br| < ωN (1 + ε)N and thus, by the isoperimetric inequality stated in
Lemma 5.1.5, it holds that

C6 |E \Br|
N−s
N ≤ PK(E \Br), (5.1.24)

where C6 is a positive constant independent of r. Thus, combining (5.1.23) with (5.1.24),
we have

C6 f(r)
N−s
N ≤ C5 f(r)−

λωN−1

s

∫ ∞

r

1

(t− r)s
f ′(t) dt.

Recalling the fact that f(r) → 0 as r → ∞, we can choose R1 > R0 such that

C5 f(r) ≤
C6

2
f(r)

N−s
N

for any r ≥ R1. Therefore, for all r ≥ R1, we obtain

sC6

λωN−1
f(r)

N−s
N ≤ −

∫ ∞

r

1

(t− r)s
f ′(t) dt.

We integrate over (R, ∞) where R ≥ R1 and then we exchange the order of integration
to obtain

sC6

λ1ωN−1

∫ ∞

R
f(r)

N−s
N dr ≤ −

∫ ∞

R

∫ ∞

r

1

(t− r)s
f ′(t) dt dr

= −
∫ ∞

R

∫ t

R

1

(t− r)s
f ′(t) dr dt

= − 1

1− s

∫ ∞

R
f ′(t)(t−R)1−s dt. (5.1.25)

Moreover, recalling f(r) → 0 as r → ∞, we have that

−
∫ ∞

R
f ′(t)(t−R)1−s dt = −

∫ R+1

R
f ′(t)(t−R)1−s dt

−
∫ ∞

R+1
f ′(t)(t−R)1−s dt

≤ f(R)− f(R+ 1)−
∫ ∞

R+1
f ′(t)(t−R)1−s dt

≤ f(R) +

∫ ∞

R+1
f ′(t)(1− (t−R)1−s) dt

≤ f(R) + (1− s)

∫ ∞

R+1
f(t)(t−R)−s dt

≤ f(R) +

∫ ∞

R
f(t) dt. (5.1.26)

Thus, substituting (5.1.26) with (5.1.25), we obtain

sC6

λωN−1

∫ ∞

R
f(r)

N−s
N dr ≤ f(R) +

∫ ∞

R
f(r) dr.
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Since f(r) is small for sufficiently large R > R1, we may assume

2

∫ ∞

R
f(r) dr ≤ sC6

λωN−1

∫ ∞

R
f(r)

N−s
N dr

for any R > R2 and some R2 > R1. Therefore, we conclude that, for any R > R2,

C7

∫ ∞

R
f(r)

N−s
N dr ≤ f(R), (5.1.27)

where C7 = C7(N, s, λ) :=
sC6

2λωN−1
> 0.

Let R > R2 be fixed such that w0 = |E \ BR(0)| > 0 is sufficiently small. For any
k ∈ Z with k ≥ 0, we set α := N−s

N , Rk := R + 1 − 2−k, and wk := f(Rk). Then, from
(5.1.27), we have that Rk → R∞ := R+ 1 as k → ∞ and

C10 2
−(k+1)wα

k+1 ≤ wk

for any k. Then, by iterating this estimate and recalling that w0 can be chosen sufficiently
small, we obtain that wk → 0 as k → ∞. However, by the assumption, we also have that
limk→∞wk = f(R+ 1) = |E \BR+1(0)| > 0, which is a contradiction.

5.1.3 Proof of Theorem 5.1.2

Now we are ready to show the proof of Theorem 5.1.2. First of all, given α ∈ (0, N),
µ ≥ 0, and β > 0, we define the quantity

EK,α,µ,β [m] := inf{EK,α,µ,β(E) | |E| = m, E : bounded} (5.1.28)

for any m ∈ (0, ∞). Because of the last term of the functional (1.0.15), we cannot expect
the subadditivity of the functional EK,α,µ,β . Indeed, if we decompose a set E ⊂ RN

into two parts E1 and E2, then the Riesz potential VN−1(E) could be larger than the
sum of VN−1(E1) and VN−1(E2), while the opposite happens in the case of the nonlocal
perimeter PK . This may imply that the subadditivity of (1.0.15) is not necessarily true.
However, since we can move the two bounded sets far away from each other to decrease
the extra potential energy arising from the decomposition, we may have a weak version of
the subadditivity in terms of the quantity (5.1.28) as follows:

Lemma 5.1.6. Let α ∈ (0, N), µ ≥ 0, and β > 0. Assume that K satisfies (K1) and
(K2). Let m1, m2 > 0. Then, it holds that

EK,α,µ,β [m1 +m2] ≤ EK,α,µ,β [m1] + EK,α,0[m2].

Proof of Lemma 5.1.6. The proof can be done in a similar way with in [84], and thus, we
basically follow their strategy. Let η > 0 be arbitrary. Then, by the definition of (5.1.28),
there exist bounded subsets E1, E2 ⊂ RN with the volume constraints |E1| = m1 and
|E2| = m2 such that

EK,α,µ,β(E1) + EK,α,0(E2) ≤ EK,α,µ,β [m1] + EK,α,0[m2] + η.

Since E1, E2 are bounded, we can find a sufficiently large number d = d(η) > 0 such that
dist (E1, (E2 + d e1)) ≥ d/2. Then, from Proposition 2.1.3 with Ω = RN and (5.1.19), we
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have

EK,α,µ,β(E1 ∪ (E2 + d e1)) = PK(E1 ∪ (E2 + d e1)) + VN−1(E1 ∪ (E2 + d e1))

−Rµ(E1 ∪ (E2 + d e1)

≤ PK(E1) + PK(E2 + d e1)

+ VN−1(E1) + VN−1(E2 + d e1)

+ 2

∫
E1

∫
E2+d e1

1

|x− y|
dx dy −Rµ(E1)

≤ EK,α,µ,β(E1) + EK,α,0(E2) +
2m1m2

d
. (5.1.29)

Note that PK and VN−1 is invariant under translations and |x− y| ≥ d/2 for any x ∈ E1

and y ∈ E2 + d e1. Hence, by the definition of (5.1.28), we obtain

EK,α,µ,β [m1 +m2] ≤ EK,α,µ,β [m1] + EK,α,0[m2] + η +
2m1m2

d
.

Letting d→ ∞, and then η → 0, we conclude that the lemma holds.

Proof of Theorem 5.1.2 and Corollary 5.1.3. First of all, we prove Theorem 5.1.2. To do
this, we assume that K satisfies (K1), (K2), and (K5) and suppose that there exists a
bounded minimizer E ⊂ RN with |E| = m of (5.1.28) for given m. Then we will show
that m actually satisfies the opposite inequality to (5.1.1). As we stated in Introduction,
our strategy is to divide a minimizer into two parts and obtain the differential inequality
which implies the upper bound of the volume of the minimizer. In order to divide a
minimizer, we define the hyperplane Hν, l by Hν, l := {x ∈ RN | x · ν = l} for any
parameters ν ∈ SN−1 and l ∈ R. Moreover, we set

H+
ν, l := {x ∈ R | x · ν ≥ l}, H−

ν, l := RN \H+
ν, l.

and
E+

ν, l := E ∩H+
ν, l, E−

ν, l := E ∩H−
ν, l

for any set E ⊂ RN for any ν ∈ SN−1 and l ∈ R. Next, we want to compare the sum
of the functionals of E+

ν, l and E−
ν, l with the functional for E. To do this, we apply the

Lemma 5.1.6 and use the minimality of E and then we have

EK,α,µ,β(E) = EK,α,µ,β [m] ≤ EK,α,µ,β [|E+
ν, l|] + EK,α,0[|E−

ν, l|]
≤ EK,α,µ,β(E

+
ν, l) + F(K, 0)(E

−
ν, l), (5.1.30)

Thus, it can be rewritten as

PK(E) + VN−1(E)−Rµ(E)

≤ PK(E+
ν, l) + VN−1(E

+
ν, l)−Rµ(E

+
ν, l) + PK(E−

ν, l) + VN−1(E
−
ν, l). (5.1.31)

Therefore, from Proposition 2.1.3 with Ω = RN and (5.1.19), we obtain

2

∫
E+

ν, l

∫
E−

ν, l

1

|x− y|
dx dy ≤ 2

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy + µ

∫
E−

ν, l

1

|x|
dx. (5.1.32)

Integrating the inequality (5.1.32) with respect to l from −∞ to 0 and substituting (5.1.36)
for (5.1.32), we have

2

∫ 0

−∞

∫
E+

ν, l

∫
E−

ν, l

1

|x− y|
dx dy dl

≤ 2

∫ 0

−∞

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy dl + µ

∫ 0

−∞

∫
E−

ν, 0

1

|x|
dx dl. (5.1.33)
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By interchanging the role of E+
ν, l and E

−
ν, l in the above calculations, we obtain

2

∫ ∞

0

∫
E+

ν, l

∫
E−

ν, l

1

|x− y|
dx dy dl

≤ 2

∫ ∞

0

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy dl + µ

∫ ∞

0

∫
E+

ν, 0

1

|x|
dx dl. (5.1.34)

Thus, summing up (5.1.33) and (5.1.34), we have that

2

∫ ∞

−∞

∫
E+

ν, l

∫
E−

ν, l

1

|x− y|
dx dy dl

≤ 2

∫ ∞

−∞

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy dl

+ µ

∫ ∞

0

∫
E+

ν, l

1

|x|
dx dl + µ

∫ 0

−∞

∫
E−

ν, l

1

|x|
dx dl (5.1.35)

for any ν ∈ SN−1 and l ∈ R. Considering the third term of the right-hand side in (5.1.35),
by the layer cake formula and Fubini’s theorem (see, for instance, [78] for the statements),
we may obtain the following result:∫ 0

−∞

∫
E−

ν, l

1

|x|
dx dl =

∫ 0

−∞

∫
E−

ν, 0

χ{x·ν<l}(x)

|x|
dx dl

=

∫
E−

ν, 0

∫ 0

−∞

χ(x·ν, 0)(l)

|x|
dl dx =

∫
E−

ν, 0

−x · ν
|x|

dx (5.1.36)

where χA is the characteristic function on a set A ⊂ RN . The similar result to (5.1.36) can
be obtained if we consider the second term of the right-hand side in (5.1.35). Therefore,
from (5.1.35) we obtain

2

∫ ∞

−∞

∫
E+

ν, l

∫
E−

ν, l

1

|x− y|
dx dy dl

≤ 2

∫ ∞

−∞

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy dl

+ µ

∫ ∞

0

∫
E+

ν, l

1

|x|
dx dl + µ

∫ 0

−∞

∫
E−

ν, l

1

|x|
dx dl (5.1.37)

Now, considering the left-hand side in (5.1.37) and using the layer cake formula and
Fubini’s theorem again, we have that∫ ∞

−∞

∫
E+

ν, l

∫
E−

ν, l

1

|x− y|
dx dy dl

=

∫
E

∫
E

∫ ∞

−∞

χ{x·ν<l}(x)χ{y·ν≥l}(y)

|x− y|
dl dx dy

=

∫
E

∫
E

∫ ∞

−∞

χ{x·ν<l<y·ν}(l)

|x− y|
dl dx dy

=

∫
E

∫
E

((y − x) · ν)+
|x− y|

dx dy. (5.1.38)
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Similarly, regarding to the first term of the right-hand side in (5.1.37), we also have that∫ ∞

−∞

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy dl =

∫
E

∫
E
((y − x) · ν)+K(x− y) dx dy. (5.1.39)

For any fixed x ∈ RN , by the spherical polar coordinates with x located on the xN -axis,
we obtain∫

SN−1

(x · ν)+ dHN−1(ν) =

∫
SN−2

∫ π
2

0
|x| cos θ dθ dHN−2 = ωN−2 |x|. (5.1.40)

Since ν ∈ SN−1 is any element, we integrate the left-hand side of (5.1.38) over ν ∈ SN−1

and, by (5.1.40) and by using Fubini’s theorem again we have∫
SN−1

∫
E

∫
E

((y − x) · ν)+
|x− y|

dx dy dHN−1(ν)

=

∫
E

∫
E

∫
SN−1

((y − x) · ν)+
|x− y|

dHN−1(ν) dx dy

= ωN−2 |E|2. (5.1.41)

Moreover, by Fubini’s theorem and (5.1.40), we also obtain∫
SN−1

∫
E

|x · ν|
|x|

dx dHN−1(ν) = 2ωN−2 |E|. (5.1.42)

With respect to the first term in (5.1.37), by (K5), (5.1.39), (5.1.38), and by using Fubini’s
theorem, we may compute as follows:∫

SN−1

∫ ∞

−∞

∫
E+

ν, l

∫
E−

ν, l

K(x− y) dx dy dl dHN−1(ν)

=

∫
E

∫
E

∫
SN−1

((y − x) · ν)+K(x− y) dHN−1(ν)dx dy

= ωN−2

∫
E

∫
E
|x− y|K(x− y) dx dy.

≤ ωN−2

∫
E

∫
B1+ε(y)

|x− y|K(x− y) dx dy

+ ωN−2

∫
E

∫
E∩Bc

1+ε(y)
|x− y|K(x− y) dx dy

≤ ωN−2 λ

∫
E

∫
B1+ε(y)

dx dy

|x− y|N+s−1
+ ωN−2

∫
E

∫
E

1

(1 + ε)N+s−1
dx dy

= ωN−2 λ

∫
SN−1

∫ 1+ε

0

1

rs
dr dHN−1 +

ωN−2

(1 + ε)N+s−1
|E|2

=
ωN−2 ωN−1 λ

1− s
(1 + ε)1−s|E|+ ωN−2

(1 + ε)N+s−1
|E|2. (5.1.43)

Therefore, integrating both sides in (5.1.37) with respect to ν in SN−1 and substituting
(5.1.41), (5.1.42), and (5.1.43), we obtain

2ωN−2 |E|2 ≤ 2ωN−2 ωN−1 λ

1− s
(1 + ε)1−s|E|+ 2ωN−2

(1 + ε)N+s−1
|E|2 + 2µωN−2 |E|.

Hence, recalling that ε > 0 and |E| = m, we obtain(
1− 1

(1 + ε)N+s−1

)
m ≤ ωN−1 λ (1 + ε)1−s

1− s
+ µ.
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This completes the proof of Theorem 5.1.2.
Finally, Corollary 5.1.3 can be readily obtained in the following manner: If we assume

thatK satisfies (K1), (K2), (K3), and (K4), then every minimizer of the functional EK,α,µ,β

under the volume constraint is bounded, thanks to Proposition 5.1.1. Therefore, applying
the same argument shown in the proof of Theorem 5.1.2, we may conclude that the claim
of Corollary 5.1.3 is valid and this completes the proof.

5.2 Existence and Asymptotic Behaviour of Minimizers

In the previous section, we studied a generalization of the liquid drop model in which the
background potential term −Rµ,β of (1.0.15) exists. On the other hand, in this section,
we focus on Problem (1.0.14) without any background potential, namely, the case that
µ = 0. Moreover, we restrict ourselves to consider the case that K(x) := |x|−(N+s), while
in general we assume that g decays fast at infinity. In this case, Problem (1.0.14) can be
regarded as a nonlocal extension of the classical liquid drop model of Gamow type.

5.2.1 Problem Setting and Main Results

Let s ∈ (0, 1) and m > 0. We study Problem (1.0.14) in the case that K(x) = |x|−(N+s)

and µ = 0, namely, the problem

Es,g[m] := inf
{
Es,g(E) | E ⊂ RN : measurable, |E| = m

}
(5.2.1)

for any m > 0, where we define Es,g as

Es,g(E) := Ps(E) + Vg(E) (5.2.2)

for any measurable set E ⊂ RN . Note that the first term Ps of (5.2.2) is the s-fractional
perimeter with s ∈ (0, 1) (see also Chapter 2), and the second term Vg of (5.2.2) is
the Riesz potential defined in (1.0.17), where g : RN \ {0} → R is a non-negative and
measurable function.

Now we give several assumptions on the kernel g of the Riesz potential in the functional
Es,g. Throughout this section, we assume that s ∈ (0, 1) and g : RN \ {0} → R is in
L1
loc(RN ) and not identically equal to zero. We basically assume that g satisfies

(g1) g is non-negative and radially non-increasing, namely,

g(λx) ≤ g(x) for x ∈ RN \ {0} and λ ≥ 1.

(g2) g is symmetric with respect to the origin, namely, g(−x) = g(x) for any x ∈ RN \{0}.

When we prove the existence of minimizers of Es,g in Section 5.2.6, we further assume the
following condition on g:

(g3) There exist constants R0 > 1 and β ∈ (0, 1) such that

g(x) ≤ β

|x|N+s
for any |x| ≥ R0.

(g decays faster than the kernel of Ps far away from the origin.)

On the other hand, when we prove the existence of generalized minimizers of Ẽs,g in
Subsection 5.2.5, we assume the following condition, weaker than (g3):

(g4) g vanishes at infinity, namely, g(x) → 0 as |x| → ∞.
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Note that (g4) is weaker than (g3). Moreover, when we study the asymptotic behavior of
rescaled minimizers with large volumes in Section 5.2.6, we further impose the following
assumption on g:

(g5) There exists a constant γ ∈ (0, 1) such that

g(x) ≤ γ

|x|N+s
for any x ∈ RN \ {0}, g(x) = o

(
1

|x|N+s

)
as |x| → ∞.

Note that (g5) is stronger than (g3). Thus, we have the following implication of the
conditions on g:

(g5) ⇒ (g3) ⇒ (g4)

where p⇒ q means that p implies q.

Remark 5.2.1. From the assumption that g ∈ L1
loc(RN ), we can easily show that Vg(B) <

∞ for any ball B ⊂ RN . Indeed, one may compute

Vg(B) ≤
∫
B

∫
2B(y)

g(x− y) dx dy = |B|
∫
2B(0)

g(x) dx <∞.

Moreover, if g satisfies (g3), we have that g is integrable in RN . Indeed, if g ∈ L1
loc(RN ),

we have that ‖g‖L1(BR0
) < ∞. On the other hand, from (g3) and the integrability of

|x|−(N+s) in Bc
R0

, we also have that ‖g‖L1(Bc
R0

) <∞. Hence, the claim holds true.

Remark 5.2.2. A condition ensuring assumption (g5) is the existence of constants R0 > 1,
γ ∈ (0, 1), and t > s such that

g(x) ≤


γ

|x|N+s
if 0 < |x| < R0

1

|x|N+t
if |x| ≥ R0.

(5.2.3)

One can readily observe that (5.2.3) is stronger than (g3).

Now we state our main results of this chapter. For the first result, we show the existence
of minimizers of Es,g for any volume under the assumption that g decays faster than the
kernel of Ps at infinity (precisely (g3)).

Theorem 5.2.3. Assume that the kernel g : RN \{0} → R satisfies the assumptions (g1),
(g2), and (g3). Then, there exists a minimizer of Es,g with the volume m for any m > 0.

Moreover, the boundary of every minimizer has the regularity of class C1,α with α ∈
(0, 1) except a closed set of Hausdorff dimension N − 3.

The strategy of the proof is inspired by the “concentration-compactness” lemma by
P.L. Lions [79, 80] and has been adapted by many authors (see, for instance, [67, 45, 32]
for topics closely related to ours). We will give some intuitive explanation of the strategy
before proving the claim in Section 5.2.6.

For the second theorem, we show the existence of generalized minimizer of Ẽs,g for any
volume, under the assumption that g vanishes at infinity (precisely (g4)).

Theorem 5.2.4. Assume that the kernel g : RN \{0} → R satisfies the assumptions (g1),
(g2), and (g4). Then, there exists a generalized minimizer of Ẽs,g for any m > 0, namely,
there exist a number M ∈ N and a sequence of sets {Ek}k∈N such that

M∑
k=1

Es,g(Ek) = inf

{
Ẽs,g({Ek}k) |

M∑
k=1

|Ek| = m

}
,

and Ek is also a minimizer of Es,g among sets of volume |Ek| for every k ∈ N.
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The idea of the proof is to show the identity

inf {Es,g(E) | |E| = m} = inf

{
Ẽs,g({Ek}k) |

∞∑
k=1

|Ek| = m

}

for any m > 0 and to apply the “concentration-compactness” method that we use in the
proof of our first result, namely Theorem 5.2.3.

Finally, we study the asymptotic behavior of minimizers of Es,g when the volume goes
to infinity, under the assumption that g decays much faster than the kernel |x|−(N+s) of
Ps at infinity.

In order to study the behavior of the minimizers of Problem Es,g[m] for any m > 0, it
is convenient to lift the volume constraint onto the functional itself and work with fixed
volume |B1|. To see this, we first define the rescaled kernel gλ by

gλ(x) := λN+s g(λx) (5.2.4)

for any x 6= 0 and λ > 0. Then we show the equivalence of the rescaled problem in the
following proposition.

Proposition 5.2.5 (Equivalent Problem). Let m > 0. Assume that the kernel g : RN \
{0} → R is in L1

loc(RN ). Then, setting λN := m |B1|−1, we have that the problem Es,g[m]
is equivalent to

Eλ
s,g(B1) := inf

{
Ps(F ) + Vgλ(F ) | F ⊂ RN : measurable, |F | = |B1|

}
where gλ is given in (5.2.4).

Moreover, if g is integrable in RN , Problem Es,g[m] is also equivalent to Problem
(1.0.23).

Proof. Given any E with |E| = m and setting F := λ−1E where λN = m |B1|−1, we have
that |F | = |B1| and

Es,g(E) = λN−s Ps(F ) + λ2N
∫
F

∫
F
g(λ(x− y)) dx dy

= λN−s

(
Ps(F ) +

∫
F

∫
F
λN+sg(λ(x− y)) dx dy

)
= λN−s (Ps(F ) + Vgλ(F )) (5.2.5)

where gλ(x) := λN+s g(λx) as in (5.2.4). For the latter part of the claim, we first recall
the equivalent minimization problem

Ês,g[m] := inf

{
Ps(E)−

∫
E

∫
Ec

g(x− y) dx dy

}
,

which is equivalent to the problem Es,g[m] for any m > 0. Thus, from (5.2.5), we obtain
that

Es,g(E) = λN−s

(
Ps(F )−

∫
F

∫
F c

gλ(x− y) dx dy +m ‖g‖L1(RN )

)
.

Hence, we conclude that the claim is valid.

Now we are ready to state the last theorem of this chapter.
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Theorem 5.2.6. Let s ∈ (0, 1) and {λn}n∈N ⊂ (1, ∞) with λn → ∞ as n → ∞. Let
{Fn}n∈N be a sequence of minimizers for Êλn

s,g with |Fn| = |B1| for each n ∈ N. Assume

that the kernel g : RN \ {0} → R satisfies the assumptions (g1), (g2), and (g5). Then,
the sequence {Fn}n∈N converges to the unit ball B1, up to translations, in the sense of
L1-topology, namely,

|Fn∆B1| −−−→
n→∞

0.

The idea of the proof is based on the same argument of Theorem 5.2.3, and we will give
the precise description of the proof in Section 5.2.6. Moreover, we show the Γ-convergence
of the functional Êλ

s,g as λ → ∞. For the detail, we refer to Proposition 5.2.16 in Section
5.2.6.

Remark 5.2.7. A remarkable feature of our main results is that, if the kernel g of the Riesz
potential decays faster than that of the s-fractional perimeter (and is not necessarily
compactly supported), then there always exists a minimizer of Es,g in Problem (5.2.1) for
any volumes. This phenomena is not well-understood in the classical case. Indeed, S.
Rigot [103] proved the existence of minimizers of Eg for any volumes if the kernel g has
a compact support. For the case that the kernel g does not have a compact support,
M. Pegon [100] recently showed the existence of minimizers of Eg only for sufficiently
large volumes whenever g decays sufficiently fast. In contrast, we reveal that, even if the
kernel g does not necessarily have a compact support, there exists a minimizer of the
energy Es,g for any volumes whenever g decays sufficiently fast. Thus, we can say that,
unlike the classical cases studied in [103] and [100], the s-fractional perimeter, which can
be understood as an interpolation between the classical perimeter and volume measure,
would play an important role of ensuring the existence of minimizers for any volumes.

5.2.2 Preliminary Results on Minimizers of Es,g
In this subsection, we collect several properties for minimizers of Es,g under suitable as-
sumptions on g described in Subsection 5.2.1.

First of all, we recall one important property on the s-fractional perimeter Ps with
0 < s < 1.

Proposition 5.2.8. For any s ∈ (0, 1) and measurable set E ⊂ RN with |E| < ∞, it
follows that Ps(E ∩K) ≤ Ps(E) for every convex set K ⊂ RN .

The proof can be found in [56, Lemma B.1] and we do not give a proof of this proposi-
tion here. We also refer to [22, Corollary 5.3] and [4] for related properties to Proposition
5.2.8.

The assumption that g is radially non-increasing enables us to show the scaling prop-
erty of Es,g by simple computations.

Lemma 5.2.9 (Scaling lemma). Let E ⊂ RN be a measurable set with |E| <∞. Assume
that the kernel g : RN\ → R satisfies (g1) and (g2). Then, for any λ ≥ 1, it follows that

Es,g(λE) ≤ λ2NEs,g(E).

Proof. From the change of variables and the choice of λ > 1, we have

Ps(λE) =

∫
λE

∫
λEc

dx dy

|x− y|N+s
= λN−s

∫
E

∫
Ec

dx dy

|x− y|N+s
= λN−sPs(E) ≤ λ2NPs(E)

(5.2.6)
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for any E ⊂ RN and λ > 1. From the assumptions on g and the change of variables again,
we can compute the Riesz potential as follows:

Vg(λE) = λ2N
∫
E

∫
E
g(λ(x− y)) dx dy ≤ λ2N

∫
E

∫
E
g(x− y) dx dy = λ2NVg(E) (5.2.7)

for any E ⊂ RN with |E| <∞ and λ > 1. Therefore, from (5.2.6) and (5.2.7), we obtain

Es,g(λE) ≤ λ2N (Ps(E) + Vg(E)) ≤ λ2NEs,g(E)

and this completes the proof.

We next prove the boundedness of minimizers of Es,g among sets of volume m.

Lemma 5.2.10 (Boundedness of minimizers). Let m > 0. Assume that the kernel g
satisfies (g1) and (g2). If E ⊂ RN is a minimizer of Es,g with |E| = m, then E is
essentially bounded, namely, there exists a constant R̂ > 0 such that |E \BR̂(0)| = 0.

Proof. Let E be a minimizer of Es,g with |E| = m. By setting φ(r) := |E \Br(0)| for any
r > 0, we have that φ′(r) = −HN−1(E ∩ ∂Br(0)) for a.e. r > 0. In order to prove the
claim, we suppose by contradiction that φ(r) > 0 for any r > 0. Setting Er := E ∩ Br(0)
for any r > 0 and λr := m

m−ϕ(r) for any r > 0, then we choose λrEr as the competitor of

E if φ(r) < m and thus, we have that

Es,g(E) ≤ Es,g(λrEr) ≤ (λr)
N−sPs(Er) + (λr)

2NVgλr (Er)

≤ Es,g(Er) +
(
(λr)

N−s − 1
)
Ps(Er) +

(
(λr)

2N − 1
)
Vg(Er). (5.2.8)

Since φ(r) → 0 as r → ∞, we can choose a constant R0 > 0 such that φ(r) ≤ m/2 for any
r ≥ R0 and thus, we may assume that

(λr)
N−s − 1 ≤ c0 φ(r), (λr)

2N − 1 ≤ c′0 φ(r) (5.2.9)

for any r ≥ R0 where c0 and c′0 are some positive constants depending only on N , s, and
m. Then, by using the decomposition property of Ps and Vg and combining (5.2.9) with
(5.2.8), we have that

Ps(E \Br(0)) ≤ Ps(E \Br(0)) + Vg(E \Br(0))

≤ 2

∫
E∩Br(0)

∫
E\Br(0)

dx dy

|x− y|N+s
+ c0 φ(r)Ps(Er) + c′0 φ(r)Vg(Er)

(5.2.10)

for any r ≥ R0. From Proposition 5.2.8 and the definition of Vg, we have that, for any
r > 0,

Ps(Er) + Vg(Er) ≤ Ps(E) + Vg(E) = Es,g[m].

Thus, from (5.2.10), we obtain that

Ps(E \Br(0)) ≤ 2

∫
E∩Br(0)

∫
E\Br(0)

dx dy

|x− y|N+s
+ (c0 + c′0)Es,g[m]φ(r)
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for any r ≥ R0. Now using the isoperimetric inequality of Ps and the fact that E∩Br(0) ⊂
Bc

|y|−r(y) for any y ∈ E \Br(0), we obtain

Ps(B1)

|B1|
N−s
N

φ(r)
N−s
N ≤ 2

∫
E\Br(0)

∫
Bc

r−|y|(y)

dx dy

|x− y|N+s
+ (c0 + c′0)Es,g[m]φ(r)

=
2|∂B1|
s

∫
E\Br(0)

∫ ∞

|y|−r

1

t1+s
dt dy + (c0 + c′0)Es,g[m]φ(r)

=
2|∂B1|
s

∫
E\Br(0)

1

(|y| − r)s
dy + (c0 + c′0)Es,g[m]φ(r)

=
2|∂B1|
s

∫ ∞

r

−φ′(σ)
(σ − r)s

dσ + (c0 + c′0)Es,g[m]φ(r) (5.2.11)

for any r > 0. Here we have used the co-area formula in the last equality. Since φ is
non-increasing, there exists a constant R′

0 = R′
0(N, s,m) > 0 such that

(c0 + c′0)Es,g[m]φ(r) ≤ Ps(B1)

2|B1|
N−s
N

φ(r)
N−s
N (5.2.12)

for any r ≥ max{R0, R
′
0}. From (5.2.11) and (5.2.12), we obtain

c1 φ(r)
N−s
N ≤ c2

∫ ∞

r

−φ′(σ)
(σ − r)s

dσ (5.2.13)

for any r ≥ max{R0, R
′
0} where we set c1 := (2|B1|

N−s
N )−1 Ps(B1) and c2 := 2s−1|∂B1|.

By integrating the both sides in (5.2.13) over r ∈ [R, ∞) for any fixed constant R ≥
max{R0, R

′
0} and changing the order of the integration, we obtain

c1

∫ ∞

R
φ(r)

N−s
N dr ≤ c2

∫ ∞

R

∫ ∞

r

−φ′(σ)
(σ − r)s

dσ dr = c2

∫ ∞

R

∫ σ

R

−φ′(σ)
(σ − r)s

dr dσ

= − c2
1− s

∫ ∞

R
φ′(σ) (σ −R)1−s dσ.

(5.2.14)

Hence, by employing the same argument shown in [45, Lemma 4.1] and [32, Proposition
3.2] together with (5.2.14), we obtain that φ(R) = 0, which contradicts the assumption
that φ(r) > 0 for any r > 0. Therefore, we conclude the existence of the constant R̂ > 0
such that |E \BR̂| = 0.

Next, by using assumption (g4), we show the sub-additivity result of the function
m 7→ Es,g[m]. We recall that Es,g[m] is defined by

inf
{
Es,g(E) | E ⊂ RN : measurable, |E| = m

}
.

for any m > 0.

Lemma 5.2.11 (Sub-additivity of Es,g). Let m > 0 be any number. Assume that the
kernel g : RN \ {0} → R satisfies (g1), (g2), and (g4). Then, for any m1 ∈ (0, m], it holds

Es,g[m] ≤ Es,g[m1] + Es,g[m−m1].

Proof. The idea is in the same spirit as the one shown in [84, Lemma 3] (see also [99]).
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Let m > 0 be any constant and we take any m1 ∈ (0, m). By definition, for any
η > 0, there exist measurable sets E1, E2 ⊂ RN with the volume constraints |E1| = m1

and |E2| = m−m1 such that

Es,g(E1) + Es,g(E2) ≤ Es,g[m1] + Es,g[m2] + η. (5.2.15)

Now we may assume that E1 and E2 are bounded. Indeed, we can observe that the
minimum of Es,g among unbounded sets of volume m is not smaller than the minimum
of Es,g among bounded sets of volume m. To see this, for any unbounded set E with
|E| = m, we can choose sufficiently large R > 1 in such a way that |E \BR(0)| is as small
as possible. Then, setting Ê := λ(R) (E ∩ BR(0)) where λ(R)N := m

m−|E\BR(0)| ≥ 1, we
obtain, from Lemma 5.2.9, that

|Ê| = λ(R)N (m− |E \BR(0)|) = m

and

Es,g(Ê) ≤ λ(R)2NEs,g(E ∩BR(0))

≤ λ(R)2NEs,g(E)− Ps(E \BR(0)) + 2

∫
E∩BR(0)

∫
E\BR(0)

dx dy

|x− y|N+s
. (5.2.16)

Here we have used the following identity of the s-fractional perimeter:

Ps(E ∪ F ) = Ps(E) + Ps(F )− 2

∫
E

∫
F

1

|x− y|N+s
dx dy

for any disjoint sets E, F ⊂ RN . From the isoperimetric inequality and the computation
in (5.2.11) in Lemma 5.2.10, we have that

Es,g(Ê) ≤ λ(R)2NEs,g(E)− C1 |E \BR(0)|
N−s
N + C2

∫ ∞

R

HN−1(E ∩ ∂Bσ(0))

(σ −R)s
dσ (5.2.17)

where we set C1 := Ps(B1) |B1|−
N−s
N and C2 := 2s−1|∂B1|. Since E is unbounded, we have

that the function R 7→ |E \BR(0)| is non-increasing and not equal to zero for any R > 0.
Thus, by applying the same argument in Lemma 5.2.10, we can find that there exists a
sequence {Ri}i∈N such that Ri → ∞ as i→ ∞ and

− C1 |E \BRi(0)|
N−s
N + C2

∫ ∞

Ri

HN−1(E ∩ ∂Bσ(0))

(σ −Ri)s
dσ < 0 (5.2.18)

for any i ∈ N. Hence, from (5.2.17) and (5.2.18), it follows that

inf{Es,g(E) | E: bounded, |E| = m} ≤ Es,g(Ê) < λ(Ri)
2NEs,g(E)

for any i ∈ N. From the fact that λ(Ri) → 1 as i → ∞, the arbitrariness of E and by
letting i→ ∞, we finally obtain that

inf{Es,g(E) | E: bounded, |E| = m} ≤ inf{Es,g(E) | E: unbounded, |E| = m},

as we desired.
Now we focus on the case that both E1 and E2 are bounded. Since E1, E2 are bounded,

we can find a vector e ∈ SN−1 such that it follows that

dist (E1, (E2 + d e)) −−−→
d→∞

∞.



92 CHAPTER 5. NONLOCAL LIQUID DROP MODEL

Then, computing Es,g(E1 ∪ (E2 + de)), we have the following:

Es,g(E1 ∪ (E2 + d e)) = Ps(E1 ∪ (E2 + d e)) + Vg(E1 ∪ (E2 + d e))

≤ Ps(E1) + Ps(E2 + d e)

+ Vg(E1) + Vg(E2 + d e) + 2

∫
E1

∫
E2+d e

g(x− y) dx dy

≤ Es,g(E1) + Es,g(E2) + 2

∫
E1

∫
E2+d e

g(x− y) dx dy.

Here we have used the translation invariance of Ps and Vg. From assumption (g4), which
says that g vanishes at infinity, we can show that∫

E1

∫
E2+d e

g(x− y) dx dy −−−→
d→∞

0.

Since |E1 ∪ (E2 + d e)| = |E1|+ |E2| = m for sufficiently large d > 0 and from (5.2.15), we
obtain

Es,g[m1 +m−m1] ≤ Es,g[m1] + Es,g[m−m1] + η + o(1).

Letting d→ ∞ and then η → 0, we conclude that the lemma is valid.

Finally in this subsection, we prove the density estimate of minimizers of Es,g for any
m ≥ 1.

Lemma 5.2.12 (Density Estimates for Minimizers of Es,g). Let m ≥ 1. We assume
that the kernel g : RN \ {0} → R is integrable in RN and satisfies the assumptions (g1)
and (g2). Then there exist constants c0 > 0, c1 > 0, and r0 > 0, depending only on N , s,
and g, such that, if E is a minimizer of Es,g with |E| = m, then it holds that

|E ∩Br(x0)| ≥ c0 r
N , |Ec ∩Br(x0)| ≥ c1 r

N

for any 0 < r < min{r0, ( m
|B1|)

1/N} and x ∈ RN with |E∩Br(x0)| > 0 and |Ec∩Br(x0)| > 0
for any r > 0.

Proof. Let E be a minimizer of Es,g with |E| = m and x0 ∈ E be any point such that
|E ∩ Br(x0)| > 0 for any r > 0. We set λNr := m

m−|E∩Br(x0)| ≥ 1 for any r > 0. We may

assume that |E ∩ Br(x0)| < m for any 0 < r < ( m
|B1|)

1/N . Then, from the minimality of
E, we have the inequality

Es,g(E) ≤ Es,g (λr(E \Br(x0)))

for any r > 0. Then, from Proposition 2.1.3 with Ω = RN and K(x) = |x|−(N+s), Lemma
5.2.9, (5.2.17), and the fact that Vg(E \Br(x0)) ≤ Vg(E), we have that

Es,g(E)

≤ Es,g(E \Br(x0)) + (λ2Nr − 1) Es,g(E \Br(x0))

≤ Es,g(E \Br(x0))

+ (λ2Nr − 1)
(
Es,g(E)− Ps(E ∩Br(x0)) +

∫
E∩Br(x0)

∫
E\Br(x0)

2 dx dy

|x− y|N+s

)
(5.2.19)

for 0 < r < ( m
|B1|)

1/N . Similarly to (5.2.17), we also have the following identity on the
Riesz potential:

Vg(E ∪ F ) = Vg(E) + Vg(F ) + 2

∫
E

∫
F
g(x− y) dx dy (5.2.20)
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for any measurable sets E, F ⊂ RN with E ∩ F = ∅. Thus, from (5.2.17), (5.2.19), and
(5.2.20), we further have that

λ2Nr Ps(E ∩Br(x0)) ≤ λ2Nr

∫
E∩Br(x0)

∫
E\Br(x0)

2 dx dy

|x− y|N+s
+ (λ2Nr − 1)Es,g[m] (5.2.21)

for any 0 < r < ( m
|B1|)

1/N . Recalling the definition of λr, we have that

λ2Nr =
m2

(m− |E ∩Br|)2
, λ2Nr − 1 =

|E ∩Br|
m− |E ∩Br|

(
2 +

|E ∩Br|
m− |E ∩Br|

)
(5.2.22)

for any 0 < r < ( m
|B1|)

1/N . From (5.2.21) and (5.2.22), we finally obtain

Ps(E ∩Br(x0)) ≤
∫
E∩Br(x0)

∫
E\Br(x0)

2 dx dy

|x− y|N+s
+

2Es,g[m]

m
|E ∩Br(x0)|

for any 0 < r < ( m
|B1|)

1/N . Hence, from the nonlocal isoperimetric inequality, we have that

Ps(B1)

|B1|
N−s
N

|E ∩Br(x0)|
N−s
N

≤ Ps(E ∩Br(x0)) + Vg(E ∩Br(x0)) + 2

∫
E∩Br(x0)

∫
E\Br(x0)

g(x− y) dx dy

≤ 2

∫
E∩Br(x0)

∫
E\Br(x0)

1

|x− y|N+s
dx dy +

2Es,g[m]

m
|E ∩Br(x0)| (5.2.23)

for any small r > 0. Noticing that E \Br(x0) ⊂ Bc
r−|y−x0|(y) for any y ∈ E ∩Br(x0) and

from the co-area formula, we have the following estimate:∫
E∩Br(x0)

∫
E\Br(x0)

1

|x− y|N+s
dx dy ≤

∫
E∩Br(x0)

∫
Bc

r−|y−x0|
(y)

1

|x− y|N+s
dx dy

≤ |∂B1|
s

∫
E∩Br(x0)

1

(r − |y − x0|)s
dy

=
|∂B1|
s

∫ r

0

HN−1(E ∩ ∂Bσ)

(r − σ)s
dσ. (5.2.24)

Now we set a function φ(r) := |E ∩Br(x0)| for any r > 0 and we have that, for a.e. r > 0,
φ′(r) = HN−1(E ∩ ∂Br). Thus we obtain from (5.2.23) and (5.2.24), that

C(N, s)φ(r)
N−s
N ≤ 2|∂B1|

s

∫ r

0

φ′(σ)

(r − σ)s
dσ +

2Es,g[m]

m
φ(r) (5.2.25)

for any small r > 0 where C(N, s) := |B1|−
N−s
N Ps(B1). Now we show that m−1Es,g[m]

is bounded by the constant independent of m ≥ 1. Indeed, from the definition of Es,g[m]
and by changing the variable x 7→ rm x, we first have that

Es,g[m] ≤ Es,g(Brm)

= Ps(Brm) + Vg(Brm)

≤
(
m

|B1|

)N−s
N

Ps(B1) +

(
m

|B1|

)2

2

∫
B1

∫
B1

g(rm(x− y)) dx dy, (5.2.26)
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where rm > 0 is the constant with |Brm | = m. Moreover, from the assumptions on g and
by changing the variable again, we have that∫

B1

∫
B1

g(rm(x− y)) dx dy ≤
∫
B1(0)

sup
y∈RN

∫
B1(0)

g(rm (x− y)) dx dy

= |B1| r−N
m

∫
Brm (0)

g(x) dx ≤ |B1|2‖g‖L1(RN )m
−1. (5.2.27)

Thus, from (5.2.26), (5.2.27) and the assumption that m ≥ 1, we obtain

m−1Es,g[m] ≤ Ps(B1)

|B1|
N−s
N

m− s
N + 2‖g‖L1(RN ) ≤

Ps(B1)

|B1|
N−s
N

+ 2‖g‖L1(RN ) =: C̃(N, s, g)

and this completes the proof of the claim. Since φ is non-decreasing and φ(r) ≤ |B1| rN
for any r > 0, we have that

4 C̃(N, s, g)φ(r) ≤ C(N, s)φ(r)
N−s
N

for any r ∈ (0, r0] where r0 is defined by

r0 :=

(
Ps(B1)

4C̃(N, s, g)|B1|

) 1
s

.

Then integrating the both side of (5.2.25) over r ∈ [0, r′] for any r′ ∈ (0, r1) where we set
r1 := min{r0, ( m

|B1|)
1/N}, we obtain that

C(N, s)

2

∫ r′

0
φ(r)

N−s
N dr ≤ 2|∂B1|

s

∫ r′

0

∫ r

0

φ′(σ)

(r − σ)s
dσ dr.

By changing the order of the integral, we have that

C ′(N, s)

∫ r′

0
φ(r)

N−s
N dr ≤

∫ r′

0

∫ r′

σ

φ′(σ)

(r − σ)s
dr dσ

=
1

1− s

∫ r′

0
φ′(r) (r′ − r)1−s dr

≤ (r′)1−s

1− s
φ(r′)

for any r′ ∈ (0, r1) where we set C ′(N, s) := 4−1 |∂B1|−1 sC(N, s). Now in order to prove
the uniform density estimate, we suppose by contradiction that there exists a constant
r2 ∈ (0, r1) such that

|E ∩Br2(x0)| ≤ c
−N

s
0 rN2 , c0 :=

s(1− s)Ps(B1)

16|∂B1| |B1|
N−s
N

.

Then by applying the same argument in [56, Lemma 3.1], we can obtain |E∩B r2
2
(x0)| = 0,

which is a contradiction to the choice of x0. Notice that the constants c0 and r0 are
independent of E, x0, and r.
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5.2.3 Existence of Minimizers for Es,g
In this subsection, we prove Theorem 5.2.3, namely, the existence of minimizers of the
functional Es,g for any volume m > 0 under the assumption that the kernel g of the Riesz
potential decays faster than the kernel |x|−(N+s) of the s-fractional perimeter Ps.

The idea to prove the existence is based on the argument by Di Castro, M. Novaga, B.
Ruffini, and E. Valdinoci [45] (see also [67, 32]). As we mentioned in the introduction, the
idea was originally inspired by the so-called “concentration-compactness” principle intro-
duced by P.L. Lions in [79, 80]. When one studies the variational problems in unbounded
domain, the possible loss of compactness may occur from the vanishing or splitting into
many pieces of minimizing sequences, so that one cannot naively apply the direct method
of calculus of variations to these problems.

Although the proof of this method may be technical, we briefly explain the strategy
of it in the following; when we obtain the existence of minimizers of the minimization
problems of isoperimetric type, we usually apply the direct method in the calculus of
variations. More precisely, we first take any minimizing sequence; then we try to construct
another sequence from the minimizing sequence in such a way that the new elements are
uniformly bounded and the functional of the new sequence is smaller than that of the
original sequence (one may often refer to this procedure as “truncation”); thus, by some
compactness, we can extract a convergent subsequence in proper topology; finally, we may
conclude that, by lower semi-continuity, the limit of the subsequence should be a minimizer
as desired.

Unfortunately, in our problem, we might not be able to easily construct another se-
quence, which satisfies “good” properties we want, from the original minimizing sequence.
One possible reason is as follows; as is well-known, the s-fractional perimeter Ps behaves
like an attracting term, while the Riesz potential associated with the kernel g could disag-
gregate minimizers into many different components. Moreover, in general, as the volume
of a minimizer gets larger, the effect that separates minimizers into pieces from the Riesz
potential may get stronger. However it is not obvious whether or not the nonlocal perime-
ter term can overcome such an effect from the Riesz potential because we cannot easily
capture the precise behavior of a general kernel g. Therefore, we select the following
strategy to handle the problems: first, taking any minimizing sequence {En}n of Es,g with
|En| = m > 0, we decompose each element En into many pieces with the cubes {Qi

n}i in
such a way that each piece has non-negligible volumes. Then we “properly” collect all the
components {En∩Qi

n}i of En such that dist (Qi
n, Q

j
n) → cij <∞ as n→ ∞ for i 6= j (the

case that cij = ∞ for i 6= j is called the “dichotomy” in the sense of Lions’). Thanks to
the uniformly boundedness of {Ps(En)}n and the isoperimetric inequality of Ps, we can
obtain a sequence of the limit sets {Gi}i of the components of En that we have “properly”
collected such that {Gi}i is the collection with cij = ∞ for any i 6= j. Now we need to
show that the amount of the volume of {Gi}i is equal to m (this means that we exclude the
“vanishing phenomena” in the sense of Lions’). Once we have shown that

∑
i |Gi| = m,

the faster decay of the kernel g in the Riesz potential enables us to prove that the only
one element in {Gi}i must be the true minimizer of Es,g among sets of volume m.

Proof of Theorem 5.2.3. Let m > 0 be any number and let {En}n∈N be any minimizing
sequence for the energy Es,g with |En| = m.

Step1. We first show that, under (g1) and (g2), there exist sets {Gj}j such that∑
j

Es,g(Gj) ≤ lim inf
n→∞

Es,g(En),
∑
j

|Gj | = m.

We first decompose RN into infinitely many disjoint cubes of side 1 (denoted by
{Qi}∞i=1). Thanks to Lemma 5.2.10, we may assume that each En is bounded. Then,
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we can choose a number In ∈ N in such a way that |En ∩Qi| > 0 for any i ∈ {1, · · · , In}
and |En ∩Qi| = 0 for any i > In. We set xin := |En ∩Qi| and we have that

In∑
i=1

xin = |En| = m (5.2.28)

for any n ∈ N. Since En is a minimizer with |En| = m for any n, we can choose a ball
with the volume m as a competitor and then, from the local integrability of g, have

sup
n∈N

Ps(En) ≤ Ps(Bm) + Vg(Bm) ≤
(
m

|B1|

)N−s
N

Ps(B1) +m ‖g‖L1(2Bm) <∞ (5.2.29)

where Bm is the open ball with the volume m for each m > 0. From (5.2.29) and the
isoperimetric inequality shown in [45, Lemma 2.5], we obtain

∞∑
i=1

(xin)
N−s
N ≤ C

∞∑
i=1

Ps(En;Q
i) ≤ 2CPs(En) ≤ C1 <∞ (5.2.30)

for any n ∈ N, where C > 0 and C1 > 0 are the constants independent of n. Here we
recall that Ps(E;Q) is the localized s-fractional perimeter of E in Q defined by

Ps(E;Q) :=

∫
E∩Q

∫
Ec

dx dy

|x− y|N+s
+

∫
E∩Qc

∫
Ec∩Q

dx dy

|x− y|N+s
.

Up to reordering the cubes {Qi}i, we may assume that {xin}i is a non-increasing sequence
for any n ∈ N. Thus, applying the technical result shown in [67, Lemma 4.2] or [45,
Lemma 7.4] with (5.2.28) and (5.2.30), we obtain that

∞∑
i=k+1

xin ≤ C1m
s
N

(k + 1)
s
N

(5.2.31)

for any k ∈ N. Indeed, since we may assume that {xin}i is a non-increasing sequence, we
have that, for K ∈ N,

∞∑
i=K+1

xin =
∞∑

i=K+1

(xin)
s
N (xin)

N−s
N ≤ (xnK+1)

s
N

∞∑
i=K+1

(xin)
N−s
N ≤ (xnK+1)

s
N C1 <∞.

(5.2.32)
On the other hand, we also have that, for K ∈ N,

m ≥
K+1∑
i=1

xin ≥ (K + 1)xnK+1. (5.2.33)

From (5.2.32) and (5.2.33), we finally obtain

∞∑
i=K+1

xin ≤ (xnK+1)
s
N C1 ≤

C1m
s
N

(k + 1)
s
N

.

Hence, by using the diagonal argument, we have that, up to extracting a subsequence,
xin → αi ∈ [0, m] as n→ ∞ for every i ∈ N. From (5.2.28) and (5.2.31), we obtain that

M∑
i=1

αi = lim
n→∞

M∑
i=1

xin = lim
n→∞

( ∞∑
i=1

xin −
∞∑

i=M+1

xin

)
= m− lim

n→∞

∞∑
i=M+1

xin
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for any M ∈ N and thus, letting M → ∞, we have

∞∑
i=1

αi = m. (5.2.34)

Now we choose a point zin ∈ En ∩ Qi for each i and n. Up to extracting a further
subsequence, we may assume that |zin − zjn| → cij ∈ [0, ∞] as n → ∞ for each i, j ∈ N
and, since we have, from (5.2.29), the uniform bound of the sequence {Ps(En − zin)}n∈N
and its upper-bound is independent of i, there exists a measurable set Gi ⊂ RN such that,
up to a subsequence,

χEn−zin
−−−→
n→∞

χGi in L1
loc-topology.

We define the relation i ∼ j for every i, j ∈ N as cij < ∞ and we denote by [i] the
equivalent class of i. Moreover, we define the set of the equivalent class by I. Then, in
the following, we show a sort of lower semi-continuity, More precisely,∑

[i]∈I

Ps(G
[i]) ≤ lim inf

n→∞
Ps(En),

∑
[i]∈I

Vg(G
[i]) ≤ lim inf

n→∞
Vg(En). (5.2.35)

Indeed, we first fix M ∈ N and R > 0 and we take the equivalent classes i1, · · · , iM .
Notice that, if p 6= q, then |zipn − z

iq
n | → ∞ as n→ ∞ and thus we have that {zipn +QR}p

are disjoint sets for large n and∫
z
ip
n +QR

∫
z
iq
n +QR

1

|x− y|N+s
dx dy −−−→

n→∞
0

where QR is the cube of side R. We recall the inequality of the s-fractional perimeter as
follows:

Ps(E;A) + Ps(E;B) ≤ Ps(E;A ∪B) + 2

∫
A

∫
B

dx dy

|x− y|N+s
(5.2.36)

for any measurable disjoint sets A, B ⊂ RN . Here Ps(E;A) is as in As a consequence,
from the lower semi-continuity of Ps, we obtain

M∑
p=1

Ps(G
ip ;QR) ≤ lim inf

n→∞

M∑
p=1

Ps(En − z
ip
n ;QR)

= lim inf
n→∞

M∑
p=1

Ps(En; z
ip
n +QR)

≤ lim inf
n→∞

Ps

En;
⋃
p=1

(
z
ip
n +QR

)
+ lim inf

n→∞
2
∑
p ̸=q

∫
z
ip
n +QR

∫
z
iq
n +QR

dx dy

|x− y|N+s

≤ lim inf
n→∞

Ps(En).

Letting R → ∞ and then M → ∞, we obtain the first claim of (5.2.35). For the second
claim, we again take any M ∈ N and R > 0. We recall the identity

Vg(A) + Vg(B) = Vg(A ∪B)− 2

∫
A

∫
B
g(x− y) dx dy
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for any measurable disjoint set A, B ⊂ RN . Then, in the same way as we have observed
in the first claim, we have, from Fatou’s lemma and the non-negativity of g, that

M∑
p=1

Vg(G
ip ∩QR) ≤ lim inf

n→∞

M∑
p=1

Vg

((
En − z

ip
n

)
∩QR

)

= lim inf
n→∞

M∑
p=1

Vg

(
En ∩

(
z
ip
n +QR

))

≤ lim inf
n→∞

Vg

En ∩
M⋃
p=1

(
z
ip
n +QR

)
≤ lim inf

n→∞
Vg(En).

Here we have used the fact that the sets {zipn +QR}Mp=1 are disjoint if n is sufficiently large

from the choice of the points {zipn }Mp=1. Thus, letting R→ ∞ and thenM → ∞, we obtain
the second claim.

Now we show that ∑
[i]∈I

|G[i]| = m.

Indeed, from the L1
loc-convergence of {χEn−zin

}n∈N for any i, we have that, for any R > 0
sufficiently large,

|Gi| ≥ |Gi ∩QR| = lim
n→∞

|(En − zin) ∩QR|. (5.2.37)

If j ∈ N is such that j ∼ i and cij < R
100 , then we have that Qj − zin ⊂ QR for large R > 0

and all n. Thus, from (5.2.37), it follows

|(En − zin) ∩QR| =
∑
j∈[i]

|(En − zin) ∩QR ∩
(
Qj − zin

)
|

≥
∑

j: cij< R
100

|(En − zin) ∩QR ∩
(
Qj − zin

)
|

=
∑

j: cij< R
100

|En ∩Qj | (5.2.38)

for all n and large R > 0. Therefore, combining (5.2.38) with (5.2.37), we obtain

|Gi| ≥
∑

j: cij< R
100

αj

and, letting R→ ∞, we have

|Gi| ≥
∑

j: cij<∞

αj =
∑
j∈[i]

αj .

Hence, recalling (5.2.34), we have∑
[i]∈I

|G[i]| ≥
∑
[i]∈I

∑
j∈[i]

αj = m. (5.2.39)

For the other inequality, we can easily obtain from the choice of {Gi}i in the following
manner; for any M ∈ N and R > 0, we take the equivalent classes i1, · · · , iM and then
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have that

M∑
p=1

|Gip ∩QR| = lim
n→∞

M∑
p=1

∣∣∣(En − z
ip
n

)
∩QR

∣∣∣
= lim

n→∞

M∑
p=1

∣∣∣En ∩
(
z
ip
n +QR

)∣∣∣ . (5.2.40)

Recalling the condition that |zipn − z
iq
n | → ∞ as n → ∞ if p 6= q, we have that, for

sufficiently large n ∈ N,
(
z
ip
n +QR

)
∩
(
z
iq
n +QR

)
= ∅ for any p 6= q. From (5.2.40), we

have that
M∑
p=1

|Gip ∩QR| = lim
n→∞

∣∣∣∣∣∣En ∩
M⋃
p=1

(
z
ip
n +QR

)∣∣∣∣∣∣ ≤ m

and thus, letting R→ ∞ and then M → ∞, we obtain that∑
[i]∈I

|G[i]| =
∞∑
p=1

|Gip | ≤ m.

This completes the proof of the claim. Taking into account all the above arguments, we
obtain the existence of sets {G[i]}[i]∈I satisfying the properties that∑

[i]∈I

Es,g(G[i]) ≤ lim inf
n→∞

Es,g(En),
∑
[i]∈I

|G[i]| = m. (5.2.41)

Step 2. We now claim that, under (g1), (g2), and (g3), each particle Gi for [i] ∈ I is
a minimizer of Es,g among sets with volume |Gi|. Moreover, we show that Gi is bounded
for each [i] ∈ I.

Indeed, we first recall the definition of Es,g, which says that

Es,g[m] := inf {Es,g(E) | |E| = m}

for any m > 0, and the sub-additivity result of the function m 7→ Es,g[m] as is shown in
Lemma 5.2.11. Notice that, in this theorem, we impose assumption (g3) as we show in
Subsection 5.2.2, which is stronger than (g4). Thus, we can apply Lemma 5.2.11 to the
case in the present proof. Then, from (5.2.41), we have that

M∑
p=1

(
Es,g(Gip)− Es,g[|Gip |]

)
≤ Es,g[m]−

M∑
p=1

Es,g[|Gip |]

≤ Es,g

 ∞∑
p=M+1

|Gip |

+ Es,g

 M∑
p=1

|Gip |

−
M∑
p=1

Es,g[|Gip |]

≤ Es,g

 ∞∑
p=M+1

|Gip |

 (5.2.42)

for any M ∈ N. We can observe that Es,g[m] → Es,g[0] = 0 as m→ 0 because Es,g[m] can

be bounded by the quantity C1m
N−s
N + C2m for small m > 0, where C1 and C2 are the

constants depending only on N , s, and g. Hence, letting M → ∞ in (5.2.42), we obtain
that ∑

[i]∈I

(
Es,g(Gip)− Es,g[|Gip |]

)
=

∞∑
p=1

(
Es,g(Gip)− Es,g[|Gip |]

)
≤ 0
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and, from the fact that each term of the series is non-negative, we conclude that each term
of the series is equal to zero. This implies that, for every [i] ∈ I, Gi is a minimizer of Es,g
among sets with the volume |Gi|. To see the boundedness of {Gi}[i]∈I , it is sufficient to
apply Lemma 5.2.10 to Gi for each [i] ∈ I. This completes the proof of Step 2.

Step 3. We now show that, under (g1) and (g2), there exist a number H ∈ N and a
family of bounded sets {G̃p}Hp=1 such that

H∑
p=1

Es,g(G̃p) ≤
∑
[i]∈I

Es,g(G[i]) ≤ lim inf
n→∞

Es,g(En),

H∑
p=1

|G̃p| = m. (5.2.43)

Indeed, letting {Gip}∞p=1 be as in Step 2, we first set mp := |Gip | for any p ∈ N and,
since

∑∞
p=1m

p = m, we can observe that mp → 0 as p → ∞ and, moreover, µℓ :=∑∞
p=ℓ+1m

p → 0 as ` → ∞. Then, we can choose p̃ ∈ N such that mp̃ ≥ m
2p̃+1 . Now using

the sets {Gip}∞p=1, we construct a new family of sets {G̃p}Hp=1 for some H ∈ N, depending
only on N , s, and m, in the following manner; we choose H ∈ N so large that H ≥ p̃ and

set G̃p := Gip for any p ∈ {1, · · · , H} with p 6= p̃ and G̃p̃ := λGip̃ where λN := mp̃+µH

mp̃ .
Then, we have the volume identity that

H∑
p=1

∣∣∣G̃p
∣∣∣ = H∑

p=1, p ̸=p̃

∣∣Gip
∣∣+ λN |Gip̃ | =

H∑
p=1, p ̸=p̃

mp +mp̃ + µH = m. (5.2.44)

Now we compute the functional for {G̃p}Hp=1 as follows to show that the total energy of

each elements of {G̃p}Hp=1 is more efficient than that of {Gip}∞p=1; from the definition of
λ ≥ 1 and Lemma 5.2.9, we have that

H∑
p=1

Es,g(G̃p) ≤
H∑

p=1, p ̸=p̃

Es,g(Gip) + λ2N Es,g(Gip̃)

=
∞∑
p=1

Es,g(Gip) +
(
λ2N − 1

)
Es,g(Gip̃)−

∞∑
p=H+1

Es,g(Gip)

≤
∑
[i]∈I

Es,g(G[i]) +
2p̃+1Es,g[m]

m
µH −

∞∑
p=H+1

Ps(G
ip). (5.2.45)

Here, in the last inequality, we have also used (5.2.41). From the isoperimetric inequality
of Ps and (5.2.45), we further obtain that

H∑
p=1

Es,g(G̃p) ≤
∑
[i]∈I

Es,g(G[i]) +
2p̃+1Es,g[m]

m
µH − C

∞∑
p=H+1

(mp)
N−s
N

≤
∑
[i]∈I

Es,g(G[i]) +
2p̃+1Es,g[m]

m
µH − C

 ∞∑
p=H+1

mp

N−s
N

=
∑
[i]∈I

Es,g(G[i]) +
2p̃+1Es,g[m]

m
µH − C (µH)

N−s
N .

Taking the number H so large that H ≥ p̃ and

2p̃+1Es,g[m]

m
µH − C (µH)

N−s
N ≤ 0,
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then we finally obtain (5.2.43) and this completes the proof of Step 3.

Step 4. We finally show that, under (g1), (g2), and (g3), there exists p′ ∈ {1, 2, · · · , H}
such that

Es,g(G̃p′) ≤ lim inf
n→∞

Es,g(En) = Es,g[m], |G̃p′ | = m

where H ∈ N and {G̃p}Hp=1 are given in the previous step.

From (5.2.39), there exists at least p′ ∈ {1, 2, · · · , H} such that |Gip′ | > 0. Moreover,
since the sets {G̃p}Hp=1 are bounded, we can choose the points {zp}Hp=1, p ̸=p′ such that each

set G̃p+Rzp is disjoint with another for large R > 1. We can thus compute the functional
as follows; from the translation invariance of Es,g, it holds that

H∑
p=1

Es,g(G̃p) =

H∑
p=1 p ̸=p′,q

Es,g(G̃p) + Es,g(G̃p′) + Es,g(G̃q)

=
H∑

p=1 p ̸=p′,q

Es,g(G̃p) + Es,g(G̃p′) + Es,g(G̃q +Rziq)

=

H∑
p=1 p≠p′,q

Es,g(G̃p) + Es,g(G̃p′ ∪ (G̃q +Rziq))

+ 2

∫
G̃p′

∫
G̃q+Rziq

dx dy

|x− y|N+s
− 2

∫
G̃p′

∫
G̃q+Rziq

g(x− y) dx dy

for any q ∈ {1, · · · , H} with q 6= p′ and sufficiently large R > 1. Recalling the assumption
(g3) that g(x) ≤ β|x|−(N+s) for any |x| ≥ R0 and some β ∈ (0, 1), and choosing R > 1 in
such a way that the set G̃q +Rziq has the distance of more than R0 from G̃p′ , we obtain
that

H∑
p=1

Es,g(G̃p) ≥
H∑

p=1, p ̸=p′, q

Es,g(G̃p) + Es,g(G̃p′ ∪ (G̃q +Rziq))

+ 2(1− β)

∫
G̃p′

∫
G̃q+Rziq

dx dy

|x− y|N+s
. (5.2.46)

By repeating the same argument finite times for the rest of the sets {G̃p}Hp=1, p ̸=p′,q with
sufficiently large R > 1, we obtain the similar inequalities to (5.2.46) and, finally, we can
derive the inequality that

H∑
p=1

Es,g(G̃p) ≥ Es,g

G̃p′ ∪
H⋃

p=1, p ̸=p′

(
G̃p +Rzp

)
+ 2(1− β)

H∑
p=1, p ̸=p′

∫
G̃p′

∫
G̃p+Rzp

dx dy

|x− y|N+s
. (5.2.47)

Since G̃p′ ∪
⋃H

p=1, p ̸=p′

(
G̃p +Rzp

)
are the union of disjoint sets, we have, from (5.2.44),

that ∣∣∣∣∣∣G̃p′ ∪
H⋃

p=1, p ̸=p′

(
G̃p +Rzp

)∣∣∣∣∣∣ =
H∑
p=1

|G̃ip | = m.
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Thus, from (5.2.47), we obtain

2(1− β)
H∑

p=1, p ̸=p′

∫
G̃p′

∫
G̃p+Rzp

dx dy

|x− y|N+s
+ Es,g[m]

≤
H∑

p=1, p ̸=p′

∫
G̃p′

∫
G̃p+Rzp

dx dy

|x− y|N+s
+ Es,g

G̃p′ ∪
H⋃

p=1, p ̸=p′

(
G̃p +Rzp

)
≤

H∑
p=1

Es,g(G̃p) ≤ Es,g[m]

and it follows that

2(1− β)

H∑
p=1, p ̸=p′

∫
G̃p′

∫
G̃p+Rzp

dx dy

|x− y|N+s
≤ 0

for large R > 1. Since each term of the sum is non-negative, β < 1, and |G̃p′ | > 0, we
conclude that |G̃p| = 0 for all p 6= p′. Therefore, the final claim is valid and this completes
the proof of Theorem 5.2.3.

5.2.4 Regularity of Boundaries of Minimizers

In this subsection, we study the regularity of the boundary of minimizers of Es,g under
suitable assumptions on the kernel g. To see this, we employ the regularity results of the
so-called almost s-fractional minimal sets shown in Section 2.4 of Chapter 2.

As a consequence of these regularity results, we obtain the regularity of minimizers
of Es,g. To do this, we reduce Problem Es,g[m] for any m > 0 to another minimization
problem. More precisely, we show that any solutions of Problem Es,g[m] are also the
solutions of the unconstrained minimization problem

inf
{
Es,g,µ0(E) | E ⊂ RN : measurable

}
for some constant µ0 > 0 and any m > 0, where we define Es,g,µ0 as

Es,g,µ(F ) := Es,g(F ) + µ ||F | −m|

for any F ⊂ RN and µ > 0.

Proposition 5.2.13 (Reduction to Unconstrained Problem). Let m > 0. Assume
that the kernel g satisfies the conditions (g1) and (g2). Then there exists a constant
µ0 = µ0(N, s, g,m) > 0 such that, if E is a minimizer of Es,g with |E| = m, then E is also
a minimizer of Es,g,µ among sets in RN for any µ ≥ µ0.

Proof. Suppose by contradiction that, for any n ∈ N, there exist a minimizer En of Es,g
with |En| = m and a constant µ(n) ≥ n such that En is not a minimizer of Es,g,µ(n). Then,
by assumption, we can choose a sequence {Fn}n∈N such that

Es,g,µ(n)(Fn) < Es,g,µ(n)(En) (5.2.48)

for any n ∈ N. First of all, we show that |Fn| −−−→
n→∞

m. Indeed, we set Bm as a open ball

in RN whose volume is equal to m. Then from (5.2.48) and the minimality of En with
|En| = m for any n ∈ N, we have that

Es,g,µ(n)(Fn) < Es,g,µ(n)(En) = Es,g(En) = Es,g[m]. (5.2.49)
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Thus, denoting rm by the radius of the ball Bm and using the change of variables, we
obtain

µ(n) ||Fn| −m| < Es,g[m] <∞ (5.2.50)

for any n ∈ N. From the definition of rm, the right-hand side in (5.2.50) is finite and
independent of n. Hence, letting n → ∞ in (5.2.50), we obtain the claim that |Fn| → m
as n→ ∞. Finally, we derive a contradiction in the following manner. We first define F̃n

as F̃n := λn Fn where λNn := m |Fn|−1 and, by definition, we can observe that |F̃n| = m.
In the sequel, we may assume that, up to extracting a subsequence, |Fn| ≤ m for n ∈ N.
Indeed, we suppose by contradiction that, for any subsequence {Fnk

}k∈N of {Fn}n∈N, we
always have that |Fnk

| > m for any k ∈ N. From the continuity of the Lebesgue measure,
for each k ∈ N, there exists a constant Rk > 0 such that |Fnk

∩ BRnk
(0)| = m for every

k ∈ N. Thus, from the minimality of En for any n ∈ N and Proposition 5.2.8, we have the
estimate that

Es,g,µ(n)(Enk
) = Es,g(Enk

) ≤ Es,g(Fnk
∩BRnk

(0)) ≤ Ps(Fnk
) + Vg(Fnk

) = Es,g(Fnk
)

for any k ∈ N, which contradicts the estimate (5.2.48) since Es,g(Fnk
) ≤ Es,g,µ(n)(Fnk

) for
any k ∈ N. Hence, from (5.2.48), the minimality of En, the assumption that λn ≥ 1 for
any n ∈ N, and Lemma 5.2.9, we have

Es,g,µ(n)(Fn) < Es,g(En) ≤ Es,g(F̃n) ≤ λ2Nn Es,g(Fn). (5.2.51)

From the definition, we notice that ||Fn| −m| = |λ−N
n m −m| = mλ−N

n |λNn − 1| for any
n. Hence, from (5.2.51) and dividing the both side of (5.2.51) by ||Fn| −m|, we obtain

µ(n) ≤ m−1 λNn
|λ2Nn − 1|
|λNn − 1|

Ps(Fn) +m−1 λNn
|λ2Nn − 1|
|λNn − 1|

Vg(Fn) (5.2.52)

for any n ∈ N. Recalling (5.2.48) and (5.2.49), we have that Ps(Fn)+ Vg(Fn) < Es,g[m] <

∞. Moreover, we observe that |λ2N
n −1|

|λN
n −1| ≤ 2 for sufficiently large n ∈ N. Therefore, from

(5.2.52), we obtain
µ(n) ≤ 6m−1Es,g[m] (5.2.53)

for sufficiently large n ∈ N and thus obtain a contradiction.

Now we are ready to show the regularity of minimizers for Es,g
Lemma 5.2.14 (Regularity of Minimizers of Es,g). Let s ∈ (0, 1) and let m > 0.
Assume that the kernel g : RN \ {0} → R satisfies (g1), (g2), and (g3). If E ⊂ RN is a
minimizer of Es,g among sets of volume m, then ∂E is of class C1,α with some 0 < α < 1,
except a closed set of Hausdorff dimension N − 3.

Proof. First of all, from Lemma 5.2.10, we have the essential boundedness of the minimizer
E ⊂ RN , namely, E ⊂ BR1(0) up to negligible sets for some R1 > 0. Without loss
of generality, we may assume that R1 ≥ R0 where R0 is given in assumption (g3) in
Subsection 5.2.2. In order to apply the regularity result of Theorem 2.4.9 to our case,
it is sufficient to show that the set E is almost s-fractional minimal set in the sense of
Definition 2.4.6 for some constant Λ > 0 independent of E. From Proposition 5.2.13, we
know that E with |E| = m is also a solution to

inf{Es,g,µ0(E) | E ⊂ RN}.

where µ0 > 0 is as in Proposition 5.2.13 and is independent of E. Hence, from the
minimality of E, we have that

Es,g,µ0(E) ≤ Es,g,µ0(F ) (5.2.54)
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for any bounded measurable set F ⊂ RN . We may assume that F is finite with respect to
the s-fractional perimeter; otherwise the inequality (5.2.54) is obviously valid. Then from
the fact that |E| = m, we have

Ps(E) ≤ Ps(F ) + Vg(F )− Vg(E) + µ0 ||F | − |E||
≤ Ps(F ) + Vg(F )− Vg(E) + µ0 |F∆E|. (5.2.55)

Regarding the Riesz potential, we can compute the difference Vg(F )− Vg(E) as follows:

|Vg(F )− Vg(E)| ≤
∣∣∣∣∫

F

∫
F∪E

g(x− y) dx dy −
∫
E

∫
F∪E

g(x− y) dx dy

∣∣∣∣
≤ 2

∫
F∆E

∫
F∪E

g(x− y) dx dy

≤ 2|F∆E|
∫
RN

g(x) dx. (5.2.56)

Note that, from the local integrability of g and assumption (g3), the kernel g is integrable
in RN and thus, the right-hand side in (5.2.56) is finite. Hence, by combining (5.2.56)
with (5.2.55), we obtain that

Ps(E) ≤ Ps(F ) +
(
2‖g‖L1(RN ) + µ0

)
|F∆E|

for any measurable set F ⊂ RN . Therefore, by employing Theorem 2.4.9 in Section 2.4 of
Chapter 2, we can conclude that the claim is valid.

5.2.5 Existence of Generalized Minimizers for Ẽs,g
In this subsection, we prove Theorem 5.2.4, namely, the existence of generalized minimizers
for the generalized functional Ẽs,g given as (1.0.20) for any volumes. To see this, we
impose slightly more general assumptions on g than we do to prove the existence of
minimizers of Es,g for any volumes in Section 5.2.6. More precisely, we assume that the
kernel g ∈ L1

loc(RN ) satisfies the assumptions (g1), (g2), and (g4) in Subsection 5.2.2.
Before proving the main theorem, we show one lemma, saying that one can modify

a “generalized” minimizing sequence for the generalized functional Ẽs,g into a “usual”
minimizing sequence for the functional Es,g. More precisely, we prove

Lemma 5.2.15. Let s ∈ (0, 1). Assume that the kernel g : RN \ {0} → R satisfies the
assumptions (g1), (g2), and (g4). Then, for any m > 0, it follows that

inf {Es,g(E) | |E| = m} = inf

{
Ẽs,g({Ek}k) |

∞∑
k=1

|Ek| = m

}
.

Proof. The proof of this lemma proceeds in a similar manner to the method in the proof
of Theorem 5.2.3; however, it seems a little technical and thus we do not omit the detail.

First of all, we can readily observe that the inequality

inf {Es,g(E) | |E| = m} ≥ inf

{
Ẽs,g({Ek}k) |

∞∑
k=1

|Ek| = m

}
holds true. Hence, it remains for us to prove the other inequality. To see this, we take any
minimizing sequence {{Ek

n}k}n for the generalized functional Ẽs,g. Then it follows that,
for any ε > 0, there exists a number n0 ∈ N such that

∞∑
k=1

Es,g(Ek
n) = Ẽs,g({Ek

n}k) ≤ Ẽs,g[m] + ε,

∞∑
k=1

|Ek
n| = m (5.2.57)
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for any n ≥ n0. Since the minimum is attained with a minimizing sequence of which each
element is bounded, we may assume that Ek

n is bounded for each k, n ∈ N. In the sequel,
we fix one n ∈ N with n ≥ n0 until we give another remark.

Step 1. We first show that, under (g1) and (g2), there exist a number Kn ∈ N and a
sequence {Ẽk

n}
Kn
k=1, constructed from {Ek

n}k, such that

Kn∑
k=1

Es,g(Ẽk
n) ≤

∞∑
k=1

Es,g(Ek
n),

Kn∑
k=1

|Ẽk
n| = m. (5.2.58)

The proof of this claim is the same as Step 3 in the proof of Theorem 5.2.3 of Section
5.2.3, since we assume that the kernel g only satisfies (g1) and (g2). Thus we do not repeat
the proof here.

Step 2. We now prove Lemma 5.2.15 under (g4), which says that g vanishes at infinity.
Let {Ẽk

n}
Kn
k=1 be as in the previous step. Since we have that

∑Kn
k=1 |Ek

n| = m, we can

choose one k′ ∈ N with |Ek′
n | > 0. Since we have assumed that the sets {Ek

n}
Kn
k=1 are

bounded, we can choose the points {zkn}
Kn
k=1, k ̸=k′ such that each set Ek

n +Rzkn is far away
from the others for sufficiently large R > 1. We can thus compute the functional as follows;
from the translation invariance of Es,g, it holds that

Kn∑
k=1

Es,g(Ek
n) =

Kn∑
k=1, k ̸=k′,ℓ

Es,g(Ek
n) + Es,g(Ek′

n ) + Es,g(Eℓ
n)

=

Kn∑
k=1, k ̸=k′,ℓ

Es,g(Ek
n) + Es,g(Ek′

n ) + Es,g(Eℓ
n +Rzℓn)

=

Kn∑
k=1, k ̸=k′,ℓ

Es,g(Ek
n) + Es,g(Ek′

n ∪ (Eℓ
n +Rzℓn))

+ 2

∫
Ek′

n

∫
Eℓ

n+Rzℓn

dx dy

|x− y|N+s
− 2

∫
Ek′

n

∫
Eℓ

n+Rzℓn

g(x− y) dx dy

for any ` ∈ {1, · · · , Kn} with ` 6= k′ and sufficiently large R > 1. Thus, we obtain that

Kn∑
k=1, k ̸=k′,ℓ

Es,g(Ek
n) + Es,g(Ek′

n ∪ (Eℓ
n +Rzℓn))

≤
Kn∑
k=1

Es,g(Ek
n) + 2

∫
Ek′

n

∫
Eℓ

n+Rzℓn

g(x− y) dx dy (5.2.59)

for any ` ∈ {1, · · · , Kn} with ` 6= k′ and sufficiently large R > 1. By repeating the same
argument finite times for the rest of the sets {Ek

n}
Kn
k=1, k ̸=k′,ℓ with sufficiently large R > 1

and from the translation invariance of Es,g, we can derive the inequality

Es,g

Ek′
n ∪

Kn⋃
k=1, k ̸=k′

(
Ek

n +Rzkn

)
≤

Kn∑
k=1

Es,g(Ek
n) + 2

Kn−1∑
k=1

Kn∑
ℓ=k+1

∫
Fk
n (R)

∫
F ℓ
n(R)

g(x− y) dx dy (5.2.60)

where we define the sets {F k
n (R)}Kn

k=1 in such a way that F k
n (R) := Ek

n+Rz
k
n if k 6= k′ and

F k′
n (R) := Ek′

n . Note that the sets {F k
n (R)}Kn

k=1 satisfy

dist (F k
n (R), F

ℓ
n(R)) −−−−→

R→∞
∞ (5.2.61)
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for any k, ` ∈ {1, · · · , Kn} with k 6= `. Since
∑Kn

k=1 |Ek
n| = m and Ek′

n ∪
⋃Kn

k=1, k ̸=k′
(
Ek

n +Rzpn
)

are the union of disjoint sets, we have that∣∣∣∣∣∣Ek′
n ∪

Kn⋃
k=1, k ̸=k′

(
Ek

n +Rzpn

)∣∣∣∣∣∣ =
Kn∑
k=1

|Ek
n| = m.

Thus, from (5.2.57) and (5.2.60), we obtain

Es,g[m] ≤ Es,g

Ek′
n ∪

Kn⋃
k=1, k ̸=k′

(
Ek

n +Rzkn

)
≤

Kn∑
k=1

Es,g(Ek
n)

+ 2
∑

1≤k ̸=ℓ≤Kn

∫
Fk
n (R)

∫
F ℓ
n(R)

g(x− y) dx dy

≤ Ẽs,g[m] + ε

+ 2
∑

1≤k ̸=ℓ≤Kn

∫
Fk
n (R)

∫
F ℓ
n(R)

g(x− y) dx dy (5.2.62)

Hence, if we show that the last term of the right-hand side in (5.2.62) converges to zero
as R→ ∞ for each n ≥ n0, then we conclude that the inequality

inf {Es,g(E) | |E| = m} = Es,g[m] ≤ Ẽs,g[m] = inf

{
Ẽs,g({Ek}k) |

∞∑
k=1

|Ek| = m

}

holds and this completes the proof of the lemma. To conclude the proof of the lemma, it
is sufficient to show that, under assumption (g4), the convergence∑

1≤k ̸=ℓ≤Kn

∫
Fk
n (R)

∫
F ℓ
n(R)

g(x− y) dx dy −−−−→
R→∞

0

holds for each n ≥ n0. We fix n ≥ n0. From assumption (g4), we have that, for any ε > 0,
there exists a constant R(ε) > 0 such that g(z) < ε for any |z| ≥ R(ε). On the other
hand, from (5.2.61), we can also choose a constant R′(ε) > 0 such that |x− y| ≥ R(ε) for
any R > R′(ε), x ∈ F k

n (R), y ∈ F ℓ
n(R), and k, ` ∈ {1, · · · , Kn} with k 6= `. Thus, taking

these into account, we obtain that, for any R > R′(ε),

∑
1≤k ̸=ℓ≤Kn

∫
Fk
n (R)

∫
F ℓ
n(R)

g(x− y) dx dy < ε

Kn∑
k=1

|F k
n (R)|

Kn∑
ℓ=1

|F ℓ
n(R)|.

Recalling the definition of the sets {F k
n (R)}k, we have that

∑Kn
k=1 |F k

n (R)| ≤ m. Therefore,
we obtain that ∑

1≤k ̸=ℓ≤Kn

∫
Fk
n (R)

∫
F ℓ
n(R)

g(x− y) dx dy < m2 ε

for any R > R′(ε) and this completes the proof of Lemma 5.2.15.

Now we prove Theorem 5.2.4, namely, the existence of generalized minimizers of Ẽs,g
under the assumptions (g1), (g2), and (g4) in Subsection 5.2.2.
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Proof of Theorem 5.2.4. Let m > 0. Thanks to Lemma 5.2.15, it is sufficient to take any
sequence {En}n∈N such that |En| = m for any n ∈ N and

lim
n→∞

Es,g(En) = Ẽs,g[m] (5.2.63)

instead of taking a minimizing sequence for Ẽs,g[m].

We now apply the same argument as we conducted in Step 1, 2, and 3 in the proof of
Theorem 5.2.3 because we only need the assumptions (g1), (g2), and (g4) in order for the
arguments in Step 1, 2, and 3 to work. Thus, we can choose a finite number of measurable
sets {Gi}Hi=1 with H ∈ N such that

H∑
i=1

Es,g(Gi) ≤ lim inf
n→∞

Es,g(En),
H∑
i=1

|Gi| = m. (5.2.64)

Moreover, each Gi is a minimizer of Es,g among sets with the volume |Gi|. Therefore, from
(5.2.63) and (5.2.64), we conclude that the sequence {Gi}Hi=1 is a generalized minimizer of

Ẽs,g with
∑H

i=1 |Gi| = m as we desired.

5.2.6 Asymptotic Behavior of Minimizers for Large Volumes

In this subsection, we study the asymptotic behavior of minimizers of Es,g for large volumes
under the assumption that the kernel g decays sufficiently fast. We first show the Γ-
convergence result in L1-topology of the functional associated with Problem (1.0.23) to
the s-fractional perimeter Ps as the volume m goes to infinity.

Γ-convergence of Êλ
s,g to s-Fractional Perimeter as λ→ ∞

We recall the definition of the s-fractional Sobolev semi-norm [f ]W s,1(RN ) as follows:

[f ]W s,1(RN ) =
1

2

∫
RN

∫
RN

|f(x)− f(y)|
|x− y|N+s

dx dy

for f ∈ L1. Note that [χE ]W s,1(RN ) = Ps(E) for any measurable set E ⊂ RN . As is
shown in [15, Proposition 4.2 and Corollary 4.4], it follows that any integrable function of
bounded variation is also finite with respect to the fractional semi-norm [·]W s,1 . Secondly,
in order to study the Γ-convergence of the sequence {Êλ

s,g}λ>1 given in Proposition 5.2.5,

we define the functional F̂λn
s,g as

F̂λ
s,g(f) :=



[f ]W s,1(RN )− 1

2

∫
RN

∫
RN

|f(x)− f(y)| gλ(x− y) dx dy

if f = χF for some bounded set F ⊂ RN with Ps(F ) <∞,

∞ otherwise.

(5.2.65)

Note that the functional F̂λ
s,g(f) for any λ > 0 is well-defined. Moreover, if f = χE for

some bounded set E with Ps(E) <∞, then we can easily see that F̂λ
s,g(f) = Êλ

s,g(E).

Now we prove the Γ-convergence of the functional F̂λn
s,g to F̂∞

s (we give the definition

of F̂∞
s in the following proposition) as n→ ∞ in the L1-topology.
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Proposition 5.2.16 (Γ-convergence to s-Fractional Semi-norm). Let {λn}n∈N be
any sequence of positive real numbers going to infinity as n→ ∞. Assume that the kernel
g : RN \ {0} → R satisfies the assumptions (g1), (g2), and (g5) in Subsection 5.2.1. Then
the sequence {F̂λn

s,g}n∈N Γ-converges, with respect to L1-topology, to the functional F̂∞
s

defined by

F̂∞
s (f) :=


[f ]W s,1(RN ) if f = χF for some bounded F ⊂ RN with Ps(F ) <∞,

∞ otherwise.

Proof. We recall the definition of the Γ-convergence. We say that {F̂λn
s,g}n∈N Γ-converges

to F̂∞
s with respect to L1-topology if the two estimates hold

ΓL1− lim sup
n→∞

F̂λn
s,g (f) ≤ F̂∞

s (f), F̂∞
s (f) ≤ ΓL1− lim inf

n→∞
F̂λn
s,g (f)

for any f ∈ L1(RN ), where we set

ΓL1− lim sup
n→∞

F̂λn
s,g (f) := min

{
lim sup
n→∞

F̂λn
s,g (fn) | fn −−−→

n→∞
f in L1(RN )

}
(5.2.66)

and

ΓL1− lim inf
n→∞

F̂λn
s,g (f) := min

{
lim inf
n→∞

F̂λn
s,g (fn) | fn −−−→

n→∞
f in L1(RN )

}
. (5.2.67)

Note that the minimum in (5.2.66) and (5.2.67) is attained by the diagonal argument.
First of all, we prove that ΓL1− lim supn→∞ F̂λn

s,g (f) ≤ F̂∞
s (f) for any f ∈ L1(RN ). In

the case that f is not a characteristic function of some bounded set with a finite nonlocal
perimeter, we obviously have that F̂∞

s (f) = ∞ and the inequality holds. Thus, we may
assume that f = χF for a bounded set F ⊂ RN with Ps(F ) < ∞. Setting a sequence
{fn}n∈N as fn = f = χF for any n ∈ N, we obtain, from the non-negativity of g, that

F̂λn
s,g (fn) ≤ F̂∞

s (f)

for any n ∈ N and thus, it follows that ΓL1− lim supn→∞ F̂λn
s,g (f) ≤ F̂∞

s (f).

Next we prove that F̂∞
s (f) ≤ ΓL1− lim infn→∞ F̂λn

s,g (f) for any f ∈ L1(RN ). We take

any sequence {fn}n∈N ⊂ L1(RN ) such that fn → f in L1 as n → ∞. In the case that f
is not a characteristic function of some bounded set with a finite nonlocal perimeter, we
claim that there exists a number n0 ∈ N such that fn is also not a characteristic function
of a measurable set for any n ≥ n0. Indeed, we suppose by contradiction that there exists
a subsequence {fnk

}k∈N such that fnk
= χFnk

for some measurable set Fnk
⊂ RN for any

k ∈ N. Since fnk
→ f in L1 as k → ∞ and fnk

∈ {0, 1} for any k ∈ N, we obtain that
f ∈ {0, 1} a.e. in RN and f can be written as f = χF for some measurable F ⊂ RN . This
contradicts the assumption that f is not a characteristic function. Hence, we conclude
that, for large n ∈ N, F̂λn

s,g (fn) = ∞ and the claim holds true. Thus, in the sequel, we

may assume that f = χF for some bounded set F ⊂ RN . Moreover, we may assume that
Ps(F ) < ∞ due to the lower semi-continuity of the fractional Sobolev semi-norm [·]W s,1

and (g5). Indeed, from (g5), we have that

F̂λn
s (fn) ≥

1− γ

2

∫
RN

∫
RN

|fn(x)− fn(y)|
|x− y|N+s

dx dy = (1− γ)[fn]W s,1

for any n ∈ N where γ ∈ (0, 1) is given in (g5). Then, if Ps(F ) = ∞, from the convergence
fn → f in L1 as n→ ∞ and the lower semi-continuity of [·]W s,1 , we obtain

lim inf
n→∞

F̂λn
s (fn) ≥ (1− γ) lim inf

n→∞
[fn]W s,1 ≥ (1− γ)[f ]W s,1 = (1− γ)Ps(F ) = ∞.
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Under the above assumption, we first compute the second term of the functional F̂λn
s,g

in (5.2.65). Let ε ∈ (0, 1). From (g5), we can choose a constant Rε > 1 such that
g(x) ≤ ε

|x|N+s for |x| ≥ Rε. Then, from the definition of gλn for any n ∈ N, we have that∫
RN

∫
RN

|fn(x)− fn(y)| gλn(x− y) dx dy

=

∫∫
{(x, y)|λn|x−y|<Rε}

|fn(x)− fn(y)| gλn(x− y) dx dy

+

∫∫
{(x, y)|λn|x−y|≥Rε}

|fn(x)− fn(y)| gλn(x− y) dx dy

≤
∫∫

{(x, y)|λn|x−y|<Rε}

|fn(x)− fn(y)|
|x− y|N+s

dx dy

+ ε

∫∫
{(x, y)|λn|x−y|≥Rε}

|fn(x)− fn(y)|
|x− y|N+s

dx dy (5.2.68)

for any n ∈ N. Thus, from the definition of Êλn
s,g and (5.2.68), we obtain

F̂λn
s,g (fn) ≥ [fn]W s,1(RN )− 1

2

∫∫
{(x, y)|λn|x−y|<Rε}

|fn(x)− fn(y)|
|x− y|N+s

dx dy

− ε

2

∫∫
{(x, y)|λn|x−y|≥Rε}

|fn(x)− fn(y)|
|x− y|N+s

dx dy

≥ 1− ε

2

∫∫
{(x, y)|λn|x−y|≥Rε}

|fn(x)− fn(y)|
|x− y|N+s

dx dy (5.2.69)

for any ε ∈ (0, 1) and n ∈ N, where γ ∈ (0, 1) is given in (g5). Thus, letting first n→ ∞
and then ε → 0 with Fatou’s lemma and the monotone convergence theorem, we finally
obtain

lim inf
n→∞

F̂λn
s,g (fn) ≥ lim sup

ε→0

1− ε

2

∫∫
RN×RN

|f(x)− f(y)|
|x− y|N+s

dx dy

=
1

2

∫
RN

∫
RN

|f(x)− f(y)|
|x− y|N+s

dx dy = [f ]W s,1(RN ).

Therefore, from the above arguments, we complete the proof.

Convergence of Minimizers of Êλ
s,g to Ball as λ→ ∞

Now we prove Theorem 5.2.6, which is the last main theorem in this chapter. In this
theorem, the control of the kernel g by the one of the s-fractional perimeter, namely the
assumption (g5), is crucial because . To see the convergence, we consider the modified
minimization problem (Problem 1.0.23) and finally we take the limit λ → ∞ instead of
Problem 5.2.1 with the limit m→ ∞.

Our idea for the proof is to apply the “concentration-compactness” lemma by P.L. Lions
as we did in the proof of the existence of minimizers. Precisely, we proceed in the following
way; we first take any sequence {Fn}n of the minimizers for Êλn

s,g with |Fn| = |B1|. Then
we apply so-called “concentration-compactness” lemma that we use to show the existence
of minimizers in Subsection 5.2.3 and 5.2.5. As a consequence of the lemma, we can choose
a sequence of sets {Gi}i and points {zin}i,n such that, up to extracting a subsequence,∑

i

Ps(G
i) ≤ lim inf

n→∞
Êλn
s,g(Fn), Fn − zin −−−→

n→∞
Gi in L1

loc,
∑
i

|Gi| = |B1| (5.2.70)
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thanks to the assumptions on g. Then, from the isoperimetric inequality of Ps and the
minimality of Fn, we can actually obtain that each Gi coincides with the Euclidean ball, up
to translations and negligible sets, whenever |Gi| > 0. Finally, from (5.2.70), we can show
that the only one element in {Gi}i has a positive volume and its volume is equal to |B1|.
From Brezis-Lieb lemma, the convergence in (5.2.70) is improved to the L1-convergence.
Combining the Γ-convergence result, we conclude the proof.

Proof of Theorem 5.2.6. Let {λn}n∈N be any sequence going to infinity as n ∈ N and we
take any sequence {Fn}n∈N of the minimizers for Êλn

s,g with |Fn| = |B1| for any n ∈ N. From
the assumption (g5), we can choose a constant γ ∈ (0, 1) such that gλn(x) ≤ γ|x|−(N+s)

for any |x| 6= 0. From the minimality of Fn for each n ∈ N, we have that

Ps(Fn) ≤ Ps(B1) + Pgλn
(Fn) = Ps(B1) + γ Ps(Fn)

for any n ∈ N and thus, we obtain that {Ps(Fn)}n is uniformly bounded with respect to n,
namely, supn∈N Ps(Fn) ≤ (1− γ)−1Ps(B1) < ∞. As a consequence of the uniform bound
of {Ps(Fn)}n, we can now apply the same method as in the proof of Theorem 5.2.3 (see
also [45]) to the sequence {Fn}n. Although we discuss in the proof of Theorem 5.2.3, we
rewrite the argument in the sequel for convenience.

Step 1. We first show that, under (g1), (g2), and (g5), there exist sets {Gj}j such
that ∑

j

Ps(G
j) ≤ lim inf

n→∞
Êλn
s,g(Fn),

∑
j

|Gj | = |B1|. (5.2.71)

Indeed, we decompose RN into the unit cubes and denote by {Qi}∞i=1. We set xin :=
|Fn ∩Qi| and have that

∞∑
i=1

xin = |Fn| = |B1| (5.2.72)

for any n ∈ N. Moreover, from the isoperimetric inequality shown in [45, Lemma 2.5], we
obtain

∞∑
i=1

(xin)
N−s
N ≤ C

∞∑
i=1

Ps(Fn;Q
i) ≤ 2CPs(Fn) ≤ C1 <∞ (5.2.73)

for any n ∈ N, where C and C1 are the positive constants independent of n. Up to
reordering the cubes {Qi}i, we may assume that {xin}i is a non-increasing sequence for
any n ∈ N. Thus, applying the technical result shown in [67, Lemma 4.2] or [45, Lemma
7.4] with (5.2.72) and (5.2.73), we obtain that

∞∑
i=k+1

xin ≤ C2

k
s
N

(5.2.74)

for any k ∈ N where C2 is the positive constant independent of n and k. Hence, by using
the diagonal argument, we have that, up to extracting a subsequence, xin → αi ∈ [0, |B1|]
as n→ ∞ for every i ∈ N and, from (5.2.72) and (5.2.74),

∞∑
i=1

αi = |B1|. (5.2.75)

Now we fix the centre of the cube zin ∈ Qi for each i and n. Up to extracting a further
subsequence, we may assume that |zin− zij | → cij ∈ [0, ∞] as n→ ∞ for each i, j ∈ N. As
already seen in the above, we have the uniform bound of the sequence {Ps(Fn − zin)}n∈N
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and its upper-bound is independent of i and thus, from the compactness, there exists a
measurable set Gi ⊂ RN such that, up to extracting a further subsequence,

χFn−zin
−−−→
n→∞

χGi in L1
loc-topology.

We define the relation i ∼ j for every i, j ∈ N as cij < ∞ and we denote by [i] the
equivalent class of i. Moreover, we define the set of the equivalent class by I. Then, by
applying the same argument as in the proof of Theorem 5.2.3, it is easy to show that∑

[i]∈I

|G[i]| = |B1|.

The last thing we need to show is the following inequality;∑
[i]∈I

Ps(G
[i]) ≤ lim inf

n→∞
Êλn
s,g(Fn) = lim inf

n→∞

(
Ps(Fn)− Pgλn

(Fn)
)
. (5.2.76)

Indeed, we first fix M ∈ N and R > 0 and we take the equivalent classes i1, · · · , iM .
Notice that, if p 6= q, then |zipn − z

iq
n | → ∞ as n→ ∞ and thus we have that {zipn +QR}p

are disjoint sets for large n and∫
z
ip
n +QR

∫
z
iq
n +QR

1

|x− y|N+s
dx dy −−−→

n→∞
0 (5.2.77)

where QR is the cube of side R. Then, by using the similar argument to the one shown
in the proof of the Γ-liminf inequality in Proposition 5.2.16 with (5.2.77), we have the
following computation: let ε ∈ (0, 1) and, from (g5), we can choose a constant Rε > 1
such that g(x) ≤ ε

|x|N+s for any |x| ≥ Rε. Then it holds that

lim inf
n→∞

(
Ps(Fn)− Pgλn

(Fn)
)

≥ (1− ε) lim inf
n→∞

(∫
Fn∩AM,R

n

∫
F c
n

χ{|x−y|≥rεn}(x, y)

|x− y|N+s
dx dy

)

+ (1− ε) lim inf
n→∞

(∫
Fn\AM,R

n

∫
AM,R

n \Fn

χ{|x−y|≥rεn}(x, y)

|x− y|N+s
dx dy

)

+ (1− ε) lim inf
n→∞

2
∑
p ̸=q

∫
z
ip
n +QR

∫
z
iq
n +QR

χ{|x−y|≥rεn}(x, y)

|x− y|N+s
dx dy (5.2.78)

for any ε ∈ (0, 1) where we set rεn := λ−1
n Rε for each n and AM,R

n := ∪M
p=1(z

ip
n + QR).

Hence, from (5.2.78), (5.2.36), and the lower semi-continuity of Ps in L1
loc-topology with

Fatou’s lemma, we obtain

lim inf
n→∞

(
Ps(Fn)− Pgλn

(Fn)
)

≥ (1− ε) lim inf
n→∞

M∑
p=1

(∫
Fn∩(z

ip
n +QR)

∫
F c
n

χ{|x−y|≥rεn}(x, y)

|x− y|N+s
dx dy

+

∫
Fn\(z

ip
n +QR)

∫
(z

ip
n +QR)\Fn

χ{|x−y|≥rεn}(x, y)

|x− y|N+s
dx dy

)

≥ (1− ε)
M∑
p=1

Ps(G
ip ;QR)
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for any ε ∈ (0, 1). Letting R → ∞, M → ∞, and ε → 0, we finally conclude that the
inequality (5.2.76) holds true. Taking into account all of the above arguments, we obtain
the existence of sets {G[i]}[i]∈I satisfying (5.2.71).

Step 2 We next show that each Gi actually coincides, up to translations and negligible
sets, with the Euclidean ball with volume |Gi|, whenever |Gi| > 0.

Indeed, we first set B[i] as the ball of radius r[i] := |B1|−1/N |G[i]|1/N for each [i] ∈ I.
Then, from (5.2.71) and the minimality of Fn, we have that∑

[i]∈I

(
Ps(G

[i])− Ps(B[i])
)
≤ lim inf

n→∞
Êλn
s,g(Fn)−

∑
[i]∈I

Ps(B[i])

≤ Ps(B1)−
∑
[i]∈I

(
|G[i]|
|B1|

)N−s
N

Ps(B1)

≤ Ps(B1)− Ps(B1)

∑
[i]∈I

|G[i]|
|B1|

N−s
N

= 0. (5.2.79)

From the isoperimetric inequality of Ps, we know that Ps(B[i]) ≤ Ps(G
[i]) for any [i] ∈ I

and the equality holds if and only if G[i] = B[i] up to translation and negligible sets. Hence,
from (5.2.79), we conclude that the claim holds true.

Step 3. We finally show that, under (g1), (g2), and (g5), there exist a number i0 such
that |G[i]| = 0 for any [i] ∈ I with i 6= i0.

Indeed, from the isoperimetric inequality of the fractional perimeter Ps and (5.2.71),
we obtain the following:

lim inf
n→∞

Êλn
s,g(Fn) ≥

∑
[i]∈I

Ps(G
[i])

≥
∑
[i]∈I

Ps(B1)

|B1|
N−s
N

|G[i]|
N−s
N

≥ Ps(B1)

|B1|
N−s
N

∑
[i]∈I

|G[i]|

N−s
N

= Ps(B1) (5.2.80)

where, in the last inequality of (5.2.80), we have used the inequality that

∑
i

aαi ≥

(∑
i

ai

)α

(5.2.81)

for any i ∈ N, ai ∈ [0, 1], and α ∈ (0, 1) with
∑

i ai < ∞. Note that the equality in
(5.2.81) holds if and only if a1 =

∑
i ai and ai = 0 for any i > 1 up to reordering. In

addition, from the definition of Êλn
s,g and the minimality of each Fn, we have that

Êλn
s,g(Fn) ≤ Ps(B1) (5.2.82)

for any n ∈ N. Thus, from (5.2.80) and (5.2.82), we obtain

|B1|
N−s
N =

∑
[i]∈I

|G[i]|
N−s
N =

∑
[i]∈I

|G[i]|

N−s
N

,
∑
[i]∈I

|G[i]| = |B1|. (5.2.83)
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Then, from (5.2.81), (5.2.83), and Step 2, we obtain that there exists i0 such that |G[i]| = 0
for any [i] ∈ I with i 6= i0 and Gi0 = B1 up to translations and negligible sets. This
completes Step 4.

Finally, taking into account all of the above arguments, we may conclude that there
exist points {z′n}n∈N ⊂ RN such that, up to extracting a subsequence, we have

χFn−z′n −−−→
n→∞

χB1 in L1
loc.

From Brezis-Lieb lemma in [16] and the fact that |Fn − z′n| = |B1| for any n ∈ N, we
obtain that the convergence

χFn−z′n −−−→
n→∞

χG′ in L1
loc

holds in L1 sense. Finally, we may repeat the above argument for any subsequence of
{Fn}n∈N and therefore, we conclude that Theorem 5.2.6 is valid.





Appendix A

Extension Result of Functions
with Nonlocal Bounded Variations

In this section, we show the extension of the function space BVK(Ω) into BVK(RN) for
each bounded open set Ω ⊂ RN with a smooth boundary (in other words, we show the
embedding BVK(Ω) ↪→ BVK(RN )). This extension result is required when we consider
the compact embedding of BVK into L1 with a general kernel K as is shown in Section
2.1 of Chapter 2, where the definition of BVK is also given. Note that one may have the
compact embedding of the fractional Sobolev space W s,1 into L1 (with the kernel K given
as |x|−(N+s) for s ∈ (0, 1)) thanks to the work by, for instance, [46, Theorem 7.1]. The
extension property of BVK(Ω) into BVK(RN ) as follows:

Lemma A.0.1. Let Ω ⊂ RN be an open set with a bounded Lipschitz boundary. Assume
that the kernel K satisfies the following conditions:

(A1) K is non-negative and radially symmetric, namely, K(x) = k(|x|) for some measur-
able function k : (0, ∞) → [0, ∞).

(A2) K is radially non-increasing, namely, K(x) ≤ K(y) for any |x| ≥ |y| > 0.

(A3) K satisfies ∫
RN

K(x) min{1, |x|} dx <∞

.

(A4) There exists a constant t > 0 such that |x|NK(x) = O(|x|−t) as |x| → 0.

Then BVK(Ω) is continuously embedded in BVK(RN ), namely for any u ∈ BVK(Ω) there
exists ũ ∈ BVK(RN ) such that

ũbΩ≡ u, ‖ũ‖K(RN ) ≤ C‖u‖K(Ω) (A.0.1)

for some constant C = C(N,K,Ω) > 0

Proof of Lemma A.0.1. The proof is conducted in the same way as in the proof of [46,
Theorem 5.4] because of the assumptions on K.

Since ∂Ω is closed and bounded, we can find a finite number of balls {Bj}Mj=1 such

that ∂Ω ⊂ ∪M
j=1Bj , and thus we write RN = ∪M

j=1Bj ∪ (RN \ ∂Ω). With this covering,

we can further find a finite number of smooth functions {ψj}M+1
j=1 such that 0 ≤ ψj ≤ 1

115



116 APPENDIX A. EXTENSION OF BVK

for any j ∈ {1, · · · , M}, sptψj ⊂ Bj for any j ∈ {1, · · · , M}, sptψM+1 ⊂ RN \ ∂Ω, and∑M+1
j=1 ψj ≡ 1. Then, one can easily see that

M+1∑
j=1

ψj u = u in RN .

By simple computations, we can show that ψM+1u belongs to BVK(Ω) (see also [46,
Lemma 5.3]). Since ψM+1u ≡ 0 in a neighborhood of ∂Ω, we can extend the domain of
ψM+1u to the whole of RN by setting

ψ̃M+1u(x) :=

{
ψM+1(x)u(x) for x ∈ Ω,

0 in x ∈ RN \ Ω

and we have ψ̃M+1u ∈ BVK(RN ) with the estimate

‖ψ̃M+1u‖K(RN ) ≤ ‖ψM+1u‖K(Ω) ≤ C ‖u‖K(Ω)

where C = C(N,K,Ω) > 0 is a constant.
Since ∂Ω is of class C0,1, we can construct a finite number of the bi-Lipschitz isomor-

phisms {Tj : Q→ Bj}Mj=1 such that

‖Tj‖C0,1 + ‖T−1
j ‖C0,1 ≤ C0, Tj(Q+) = Bj ∩ Ω, Tj(Q0) = Bj ∩ ∂Ω,

where C0 > 0 is a constant independent of j, and we set

Q := {(x′, xN ) | |x′| < 1, |xN | < 1},
Q+ := {(x′, xN ) | |x′| < 1, 0 < xN < 1},

and Q0 := {(x′, xN ) | xN = 0}.

Now for any j ∈ {1, · · · , M}, we consider the restricted function ubBj∩Ω and set

wj(y) := u (Tj(y)) for y ∈ Q+.

Then we prove that wj ∈ BVK(Q+). Indeed, by using the change of variables, we have∫
Q+

∫
Q+

K(p− q) |wj(p)− wj(q)| dp dq

=

∫
Q+

∫
Q+

K(p− q) |u(Tj(p))− u(Tj(q))| dp dq

=

∫
Bj∩Ω

∫
Bj∩Ω

K
(
T−1
j (x)− T−1

j (y)
)
|u(x)− u(y)| JT−1

j (x) JT−1
j (y) dx dy

where JT−1
j (x) is the Jacobian of the bi-Lipschitz function T−1

j at x ∈ Bj ∩ Ω for j ∈
{1, · · · , M}. Recalling the bi-Lipschitz regularity of Tj for all j ∈ {1, · · · , M} and using
the assumption (A2), we obtain∫

Q+

∫
Q+

K(p− q) |wj(p)− wj(q)| dp dq ≲
∫
Bj∩Ω

∫
Bj∩Ω

K (x− y) |u(x)− u(y)| dx dy

= [u]K(Bj ∩ Ω) <∞. (A.0.2)

By using the reflection argument, we can extend the domain of wj to all Q so that the
extension w̃j belongs to BVK(Q) and

‖w̃j‖K(Q) ≤ 4‖wj‖K(Q+). (A.0.3)



117

We now set zj(x) := w̃j(T
−1
j (x)) for any x ∈ Bj and j ∈ {1, · · · , M}. From the bi-

Lipschitz continuity of Tj , we have zj ∈ BVK(Bj). Notice that zj(x) ≡ u(x) for any
x ∈ Bj ∩ Ω, and by definition, ψj zj has a compact support in Bj for all j ∈ {1, · · · , M}.
As we see the extension of ψM+1 u, we can consider the extension ψ̃j zj in such a way that

ψ̃j zj ∈ BVK(RN ). Thus, from (A.0.2) and (A.0.3), we may observe that

‖ψ̃j zj‖K(RN ) ≲ ‖ψj zj‖K(Bj)

≲ ‖zj‖K(Bj)

≲ ‖w̃j‖K(Q)

≤ 4‖wj‖K(Q+) ≲ ‖u‖K(Bj∩Ω). (A.0.4)

Finally, defining the function ũ in RN as

ũ :=

M∑
j=1

ψ̃j zj + ψ̃M+1 u, (A.0.5)

we can see, by definition, that ũbΩ≡ u and, from (A.0.4) and (A.0.5), we obtain

‖ũ‖K(RN ) ≤
M∑
j=1

‖ψ̃j zj‖K(RN ) + ‖ψ̃M+1 u‖K(RN )

≤
M∑
j=1

‖u‖K(Bj∩Ω) + C‖u‖K(Ω)

≤ (1 + C)‖u‖K(Ω) (A.0.6)

for some constant C > 0 independent of u.





Appendix B

Euler-Lagrange Equation in the
Viscosity Sense

In this appendix, we will show that each superlevel set {u > t} of the minimizer u of the
functional FK,f satisfies the Euler-Lagrange equation in the viscosity sense. Recall that
each set {u > t} is also a minimizer of the functional EK,f,t.

First of all, by following the same line of the argument by L. Caffarelli, J.M. Roquejof-
fre, and O. Savin [22] and M.C. Caputo and N. Guillen [26], we can obtain the following
theorem:

Theorem B.0.1 (Euler-Lagrange Inequalities). Let E be a set satisfying the condition
that ∫

A

∫
E

1

|x− y|N+s
dx dy −

∫
A

∫
Ec∩Ac

1

|x− y|N+s
dx dy ≤

∫
A
(t− f(x)) dx (B.0.1)

for any A ⊂ Ec∩Br(x0) and any x0 ∈ ∂E with some r > 0 where s ∈ (0, 1), f ∈ C0(RN ),
and t ∈ R. Suppose that 0 ∈ ∂E and that E ∩ Ω contains the ball B2R(−2ReN ), R ≥ 1.
Then there exist constants C0 = C0(N, s, t, f) > 0 and r0 = r0(N, s, t, f) > 0 such that the
following holds: for any 0 < ε� δ < r0, one can choose ε/2 < ε∗ < ε such that∫

Aε∗

∫
E\Bδ(x0)

1

|x− y|N+s
dx dy −

∫
Aε∗

∫
Ec\Bδ(x0)

1

|x− y|N+s
dx dy

≤ C0

(∫
Aε∗

(t− f(x)) dx+R−1δ
1−s
2 |A−

ε∗ |
)
, (B.0.2)

where Aε∗ and A−
ε∗ are sets contained in Ec, which are defined with the perturbation con-

structed in [26] (see also [22]).

Since the essential point of the proof is the same as in [22, Theorem 5.1] and [26,
Theorem 5.3], we can prove Theorem B.0.1 in the same manner, and thus we omit the
proof here (see also [15, Lemma 6.6] for a similar argument). Roughly speaking, the idea
of the proof is to construct some proper perturbation sets A−

ε∗ and Aε∗ outside E around
some boundary point x0 ∈ ∂E. These perturbation sets can be constructed by some
reflection with respect to a slightly deviated ball from the ball tangential to ∂E at x0.
Then, we test the condition (B.0.1) of E against the set of the union of E and Aε∗ ⊂ Ec.
Note that the last term of the right-hand side in (B.0.2) can be obtained by deriving the
upper bound of the double integrals

−
∫
Aε∗

∫
E∩Bδ(x0)

dx dy

|x− y|N+s
+

∫
Aε∗

∫
Ec∩Ac∩Bδ(x0)

dx dy

|x− y|N+s
.
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The reason we decompose the integral into two parts by using the ball Bδ(x0) is that the
s-fractional mean curvature Hs

E at x0 ∈ ∂E is defined by the singular integral at x0. Thus
we must avoid computing the integral inside Bδ(x0).

We remark that the term
∫
Aε
(t−f(x)) dx does not appear in the original claim in [26];

however, this extra term may not affect the essential point of the proof in [26] because the
set E is not involved in the term.

Notice that, if E is a minimizer of Es,f,t defined in (4.3.16), then one can show that E
satisfies the condition (B.0.1). Indeed, let A ⊂ RN be in Ec ∩B for some ball B centered
at a point on ∂E. Then, if we choose a set E ∪ A as a competitor against the minimizer
E, then we have

Ps(E) ≤ Ps(E ∪A) +
∫
E∪A

(t− f(x)) dx−
∫
E
(t− f(x)) dx

≤ Ps(E) + Ps(A) +

∫
A
(t− f(x)) dx− 2

∫
E

∫
A

1

|x− y|N+s
dx dy. (B.0.3)

Here we have used the fact that A ⊂ Ec and Proposition 2.1.3 with Ω = RN and K(x) =
|x|−(N+s) in Chapter 2. Then, by a handful of computations and from (B.0.3), we finally
obtain ∫

A

∫
E

1

|x− y|N+s
dx dy −

∫
A

∫
Ec∩Ac

1

|x− y|N+s
dx dy ≤

∫
A
(t− f(x)) dx.

Now we are ready to state the main claim in this appendix, and this can be obtained
as a corollary of Theorem B.0.1 (see also [15, Theorem 6.7] for a similar statement).

Corollary B.0.2 (Euler-Lagrange Equations). Let E be a minimizer of the functional

Es,f,t with s ∈ (0, 1), f ∈ C0,β
loc (R

N ), and t ∈ R as is defined in (4.3.16). Then, whenever
E has both interior and exterior tangential balls at a point x0, we have

Hs
E(x0) + t− f(x0) =

∫
RN

χEc(y)− χE(y)

|y − x0|N+s
dy + t− f(x0) = 0. (B.0.4)

Proof. Without loss of generality, we may assume that x0 = 0. Let ε∗ and δ be given as
in Theorem B.0.1, and we observe that∣∣∣∣∣ 1

|Aε∗ |

(∫
Aε∗

∫
E\Bδ

1

|x− y|N+s
dx dy −

∫
Aε∗

∫
Ec\Bδ

1

|x− y|N+s
dx dy

)

−
∫
Bc

δ

χE(y)− χEc(y)

|y|N+s
dy

∣∣∣∣∣
≤
∫
Bc

δ(0)

C ε∗

|y|N+s
dy ≤ Cε∗δ−s (B.0.5)

for some constant C > 0. By testing the minimality of E against the set E ∪ A where
A ⊂ Ec∩Br(x) for any x ∈ ∂E and some r > 0, we obtain that the condition (B.0.1) holds.
Thus, from Theorem B.0.1 and (B.0.5) and by following the argument in [26, Corollary
5.4], we obtain∫

Bc
δ

χE(y)− χEc(y)

|y|N+s
dy ≤ Cε∗δ−s + C0

(
1

|Aε∗ |

∫
Aε∗

(t− f(x)) dx+R−1δ
1−s
2

)
(B.0.6)

where x0 = 0 ∈ ∂E is the point where ∂E has an interior tangential ball B2R(−2ReN ).
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Now we claim the following: let x ∈ RN and {Cε}ε>0 be a sequence of measurable sets
such that x ∈ Cε, |Cε| > 0, and Cε ⊂ Br(ε) for any ε > 0 and some increasing function

r : (0, ∞) → (0,∞). Then, for any F ∈ C0(RN ), we have

lim
ε↓0

1

|Cε|

∫
Cε

F (y) dy = F (x). (B.0.7)

Indeed, let η > 0 and, from the continuity of F , we choose a constant δ > 0 such that
|F (y) − F (x)| < η for any y ∈ RN with |y − x| < δ. In addition, from the assumptions
that x ∈ Cε and Cε ⊂ Br(ε), we can choose a constant ε0 > 0 such that |z−x| < r(ε0) < δ

for any z ∈ Aε0 . Thus, setting ε̃0 :=
1
2 min{ε0, δ, r(ε0)}, we obtain

y ∈ Cε ⇒ |F (y)− F (x)| < η

for any ε ∈ (0, ε̃0). Thus, we have that∣∣∣∣ 1

|Cε|

∫
Cε

F (y) dy − F (x)

∣∣∣∣ ≤ 1

|Cε|

∫
Cε

|F (y)− F (x)| dy < η,

and this concludes the proof of (B.0.7).
Now, from the construction of Aε shown in [26], the sets {Aε}ε satisfy the conditions

that
x0 ∈ Aε, |Aε| > 0, Aε ⊂ Bε

for any small ε > 0. Therefore, from (B.0.6), the assumption of f , and the above claim
and by letting ε ↓ 0, we have that∫

Bc
δ

χE(y)− χEc(y)

|y|N+s
dy ≤ t− f(x0) +R−1δ

1−s
2 ,

and thus, by letting δ ↓ 0, we conclude that

−Hs
E(x0) ≤ t− f(x0), (B.0.8)

for any x0 ∈ ∂E where ∂E has an interior tangential ball.
On the other hand, if ∂E has an exterior tangential ball, then, by testing the minimality

of E against the set E \A where A ⊂ E∩Br(x) for any x ∈ ∂E and some r > 0, we obtain∫
A

∫
Ec

1

|x− y|N+s
dx dy −

∫
A

∫
E∩Ac

1

|x− y|N+s
dx dy ≤

∫
A
−(t− f(x)) dx.

This inequality means that Ec also satisfies the condition (B.0.1) by replacing t − f(x)
with −(t − f(x)) in the integral of the right-hand side in (B.0.1), and by hypothesis Ec

contains a tangential ball at x0. Then, by applying again Theorem B.0.1 to the set Ec,
we obtain ∫

Aε∗

∫
Ec\Bδ

1

|x− y|N+s
dx dy −

∫
Aε∗

∫
E\Bδ

1

|x− y|N+s
dx dy

≤ C0

(
−
∫
Aε∗

(t− f(x)) dx+R−1δ
1−s
2 |A−

ε∗ |
)

for small ε∗ > 0 where Aε∗ and A−
ε∗ are as in Theorem B.0.1. Therefore, by following the

same argument that we showed in the above, we conclude that

Hs
E(x0) ≤ −(t− f(x0)) (B.0.9)

for any x0 ∈ ∂E where ∂E has an exterior tangential ball.
From (B.0.8) and (B.0.9), we finally obtain the equality

Hs
E(x0) + t− f(x0) = 0

for any x0 ∈ ∂E where ∂E has both interior and exterior tangential balls.
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[21] X. Cabré, M. M. Fall, and T. Weth, Delaunay hypersurfaces with constant
nonlocal mean curvature, J. Math. Pures Appl., (9) 110 (2018), 32–70.

[22] L. Caffarelli, J.M. Roquejoffre, and O. Savin, Nonlocal minimal surfaces,
Comm. Pure Appl. Math., 63 (2010), no. 9, 1111–1144.

[23] L. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynam-
ics approximations to front propagation, Arch. Ration. Mech. Anal., 195 (2010), no.
1, 1–23.

[24] L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for
nonlocal minimal surfaces, Calc. Var. Partial Differential Equations, 41 (2011), no.
1-2, 203–240.

[25] L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal sur-
faces via limiting arguments, Adv. Math., 248 (2013), 843–871.

[26] M. C. Caputo and N. Guillen, Regularity for non-local almost minimal bound-
aries and applications, Preprint, arXiv:1003.2470.

[27] D. Carazzato, A note on some non-local variational problems, Preprint,
arXiv:2107.11848.

[28] D. Carazzato, N. Fusco, and A. Pratelli, Minimality of balls in the small
volume regime for a general Gamow type functional, Preprint, arXiv:2009.03599.

[29] V. Caselles, A. Chambolle, and M. Novaga, The discontinuity set of solu-
tions of the TV denoising problem and some extensions, Multiscale Modeling and
Simulation, 6 (2007), 879–894.

[30] V. Caselles, A. Chambolle, and M. Novaga, Regularity for solutions of the
total variation denoising problem, Rev. Mat. Iberoamericana, 27 (2011), 233–252.



BIBLIOGRAPHY 125

[31] V. Caselles, A. Chambolle, and M. Novaga, Total variation in imaging,
Handbook of Mathematical Methods in Imaging, Springer, 2011.

[32] A. Cesaroni and M. Novaga, Volume constrained minimizers of the fractional
perimeter with a potential energy, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017),
715–727.

[33] R. Choksi, C. B. Muratov, and I. Topaloglu, An old problem resurfaces
nonlocally: Gamow’s liquid drops inspire today’s research and applications, Notices
Amer. Math. Soc., 64 (2017), no. 11, 1275–1283.

[34] E. Cinti, J. Dávila, and M. del Pino, Solutions of the fractional Allen-Cahn
equation which are invariant under screw motion, J. Lond. Math. Soc. (2), 94 (2016),
no. 1, 295–313.

[35] E. Cinti, J. Serra, and E. Valdinoci, Quantitative flatness results and BV-
estimates for stable nonlocal minimal surfaces, J. Differential Geom., 112 (2019),
no. 3, 447–504.

[36] G. Ciraolo, A. Figalli, F. Maggi, and M. Novaga, Rigidity and sharp sta-
bility estimates for hypersurfaces with constant and almost-constant nonlocal mean
curvature, J. Reine Angew. Math., 741 (2018), 275–294.

[37] M. Cozzi, On the variation of the fractional mean curvature under the effect of C1,α

perturbations, Discrete Contin. Dyn. Syst., 35 (2015), no. 12, 5769–5786.

[38] M. Cozzi, S. Dipierro, and E. Valdinoci, Planelike interfaces in long-range
Ising models and connections with nonlocal minimal surfaces, J. Stat. Phys., 167
(2017), no. 6, 1401–1451.

[39] J. Dávila, On an open question about functions of bounded variation, Calc. Var.
Partial Differential Equations, 15 (2002), no. 4, 519–527.

[40] J. Dávila, M. del Pino, S. Dipierro, and E. Valdinoci, Nonlocal Delaunay
surfaces, Nonlinear Anal., 137 (2016), 357–380.

[41] J. Dávila, M. del Pino, and J. Wei, Nonlocal s-minimal surfaces and Lawson
cones, J. Differential Geom., 109 (2018), 111–175.

[42] M. C. Delfour and J. P. Zolésio, Shape analysis via oriented distance function,
J. Funct. Anal., 123 (1994), 129–201.

[43] M. C. Delfour and J. P. Zolésio, Intrinsic Differential Geometry and Theory
of Thin Shells, Notes of the Lectures given at the Scuola Normale Superiore di Pisa,
Scuola Normale Superiore Pisa, 1996.

[44] M. D’Elia, J. C. De los Reyes, and A. Miniguano-Trujillo, Bilevel pa-
rameter learning for nonlocal image denoising models, J. Math. Imaging Vision, 63
(2021), no. 6, 753–775.

[45] A. Di Castro, M. Novaga, B. Ruffni, and E. Valdinoci, Nonlocal quantitative
isoperimetric inequalities, Calc. Var. Partial Differential Equations, 54 (2015), 2421–
2464.

[46] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the frac-
tional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573.



126 BIBLIOGRAPHY

[47] S. Dipierro, A. Dzhugan, N. Forcillo, and E. Valdinoci, Enhanced boundary
regularity of planar nonlocal minimal graphs and a butterfly effect, to appear in
Bruno Pini Math. Anal. Semin.

[48] S. Dipierro, A. Figalli, G. Palatucci, and E. Valdinoci, Asymptotics of the
s-perimeter as s ↓ 0, Discrete Contin. Dyn. Syst., 33 (2013), no. 7, 2777–2790.

[49] S. Dipierro, F. Onoue, and E. Valdinoci, (Dis)connectedness of nonlocal mini-
mal surfaces in a cylinder and a stickiness property, to appear in Proc. Amer. Math.
Soc., (2022)

[50] S. Dipierro, O. Savin, and E. Valdinoci, Graph properties for nonlocal minimal
surfaces, Calc. Var. Partial Differential Equations, 55 (2016), no.4, pp. 25.

[51] S. Dipierro, O. Savin, and E. Valdinoci, Boundary behaviour of nonlocal min-
imal surfaces, J. Funct. Anal., 272 (2017), no.5, 1791–1851.

[52] S. Dipierro, O. Savin, and E. Valdinoci, Nonlocal minimal graphs in the plane
are generically sticky, Comm. Math. Phys., 376 (2020), no. 3, 2005–2063.

[53] S. Dipierro, O. Savin, and E. Valdinoci, Boundary properties of fractional
objects: Flexibility of linear equations and rigidity of minimal graphs, to appear in
J. Reine Angew. Math., DOI: 10.1515/crelle-2019-0045.

[54] S. Dipierro and E. Valdinoci, Nonlocal minimal surfaces: interior regularity,
quantitative estimates and boundary stickiness, Recent developments in nonlocal
theory, pp. 165–209, De Gruyter, Berlin, 2018.

[55] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions,
Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015.

[56] A. Figalli, N. Fusco, F. Maggi, V. Millot, and M. Morini, Isoperimetry and
stability properties of balls with respect to nonlocal energies, Comm. Math. Phys.,
336 (2015), 441–507.

[57] A. Figalli and F. Maggi, On the shape of liquid drops and crystals in the small
mass regime, Arch. Ration. Mech. Anal., 201 (2011), 143–207.

[58] R. L. Frank, R. Killip, and P. T. Nam, Nonexistence of large nuclei in the
liquid drop model, Lett. Math. Phys., 106 (2016), 1033–1036.

[59] R. L. Frank, E. H. Lieb, and R. Seiringer, Hardy-Lieb-Thirring inequalities
for fractional Schrödinger operators, J. Am. Math. Soc., 21 (2008), 925–950.

[60] R. L. Frank and P. T. Nam, Existence and nonexistence in the liquid drop model,
Calc. Var. Partial Differential Equations, 60 (2021), no. 6, Paper No. 223, pp. 12.

[61] R. L. Frank, P. T. Nam, and H. Van Den Bosch, The ionization conjecture in
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[72] H. Knüpfer and C. B. Muratov, On an isoperimetric problem with a competing
nonlocal term II: The general case, Comm. Pure Appl. Math., 67 (2014), no. 12,
1974–1994.

[73] D. A. La Manna, A short proof of a nonexistence result, Preprint, 2018.

[74] D. A. La Manna, An isoperimetric problem with a Coulombic repulsive and at-
tractive term, ESAIM Control Optim. Calc. Var., 25 (2019), pp. 23.

[75] G. Leoni and D. Spector, Characterization of Sobolev and BV spaces, J. Funct.
Anal., (10) 261 (2011), 2926–2958.

[76] G. Leoni and D. Spector, Corrigendum to “Characterization of Sobolev and
BV spaces” [J. Funct. Anal. 261(10) (2011) 2926–2958], J. Funct. Anal., (2) 266
(2014), 1106–1114.

[77] E. H. Lieb, Sharp constants in the Hardy ‒ Littlewood ‒ Sobolev and related in-
equalities, Ann. of Math., (2) 118 (1983), 349–374.

[78] E. H. Lieb and M. Loss, Analysis, Second edition, Graduate Studies in Mathe-
matics 14. American Mathematical Society, Providence, RI, 2001.

[79] P. L. Lions, The concentration-compactness principle in the calculus of variations.
The limit case. I, Rev. Mat. Iberoamericana, 1 (1985), no. 1, 145–201

[80] P. L. Lions, The concentration-compactness principle in the calculus of variations.
The limit case. II, Rev. Mat. Iberoamericana, 1 (1985), no. 2, 45–121.



128 BIBLIOGRAPHY

[81] L. Lombardini, Approximation of sets of finite fractional perimeter by smooth sets
and comparison of local and global s-minimal surfaces, Interfaces Free Bound., 20
(2018), no. 2, 261–296.

[82] L. Lombardini, Minimization problems involving nonlocal functionals: nonlocal
minimal surfaces and a free boundary, PhD Thesis, Università di Milano, 2018.
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