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Abstract. This note addresses the question of convergence of critical points of the Ambrosio-Tortorelli

functional in the one-dimensional case under pure Dirichlet boundary conditions. An asymptotic anal-
ysis argument shows the convergence to two possible limits points: either a globally affine function or

a step function with a single jump at the middle point of the space interval, which are both critical

points of the one-dimensional Mumford-Shah functional under a Dirichlet boundary condition. As a
byproduct, non minimizing critical points of the Ambrosio-Tortorelli functional satisfying the energy

convergence assumption as in [2] are proved to exist.

1. Introduction

This note can be seen as a companion to our paper [2] in which we address the convergence of critical
points of the Ambrosio-Tortorelli functional. We refer to [2] and references therein for motivation on this
topic related to image segmentation [6] or fracture mechanics [3]. We focus here on the one-dimensional
case where the Ambrosio-Tortorelli functional is defined by

ATε(u, v) :=

ˆ L

0

(ηε + v2)|u′|2 dx+

ˆ L

0

(
ε|v′|2 +

(v − 1)2

4ε

)
dx for all (u, v) ∈ [H1(0, L)]2, (1.1)

where L > 0 and ε → 0, ηε → 0 are infinitesimal parameter satisfying 0 < ηε � ε. This functional,
originally introduced in [1] can be interpreted as a phase-field regularization of the Mumford-Shah
functional (see [6])

(u, v) 7→


MS(u) :=

ˆ L

0

|u′|2 dx+ #(Ju) if

{
u ∈ SBV 2(0, L) ,

v = 1 in (0, L) ,

+∞ otherwise .

(1.2)

More precisely, it has been proved in [1] that ATε Γ-converges in the [L2(0, L)]2-topology as ε → 0 to
the Mumford-Shah functional. As a consequence, the fundamental theorem of Γ-convergence ensures
the convergence of global minimizers (uε, vε) of ATε (under suitable boundary conditions) to (u, 1) as
ε→ 0 where u ∈ SBV 2(0, L) is a global minimizer of MS.

In the present work we address the asymptotic analysis of critical points of the Ambrosio-Tortorelli
functional, i.e. is a solution (uε, vε) of the ordinary differential equation

[
(ηε + v2

ε)u′ε
]′

= 0 in (0, L) ,

−εv′′ε + vε|u′ε|2 +
vε − 1

4ε
= 0 in (0, L) ,

uε(0) = 0 , uε(L) = a ,

vε(0) = vε(L) = 1 .

(1.3)

If global minimizers always define critical points, the converse might fail due to the non convexity of
ATε. Note also that, in contrast with [4, 5], we consider a pure Dirichlet problem. As in [4] there is a
selection phenomenon of possible accumulation points of (uε, vε).
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According to [2, Remark 1.1], in this setting, a function u ∈ SBV 2(0, L) is a critical point of the
Mumford-Shah functional in SBV 2(0, L) if and only if either u(x) = ax

L for x ∈ [0, L] or u is piecewise

constant with a finite number of jumps Ĵu = {x1, . . . , xm} with xi ∈ [0, L] for all i = 1, . . . ,m. In the
first case the energy of u is

MS(u) =

ˆ L

0

∣∣∣ a
L

∣∣∣2 dx =
a2

L
,

while in the second case
MS(u) = #(Ĵu ∩ [0, L]) = m.

Thus, if a2 < L then u(x) = ax/L is the global minimizer whereas if a2 > L then a constant function
with exactly one jump anywhere in the closed interval [0, L] is a global minimizer (if a2 = L then all
previous functions are global minimizers). In particular, we have

min
SBV 2(0,L)

MS = min

{
a2

L
, 1

}
. (1.4)

We now consider a family of critical points of ATε, i.e., a family {(uε, vε)}ε>0 in [H1(0, L)]2 satisfying
(1.3) together with the uniform energy bound

ATε(uε, vε) =

ˆ L

0

(ηε + v2
ε)|u′ε|2 dx+

ˆ L

0

(
ε|v′ε|2 +

(vε − 1)2

4ε

)
dx ≤ C . (1.5)

The following result extends [4, Theorem 2.2] to the case of Dirichlet boundary conditions for
the phase-field variable v. It states that only two critical points of the Mumford-Shah functional are
attainable through this asymptotic analysis procedure: either the affine solution (with no jumps) or the
step function with a single jump at the middle point of the interval (0, L). It also improves [2, Theorem
1.2] in the one-dimensional case since the energy convergence assumption is no longer required.

Theorem 1.1. Let {(uε, vε)}ε>0 ⊂ [H1(0, L)]2 be a family satisfying (1.3) and (1.5). Then, up to a
subsequence ε→ 0,

(i) (uε, vε)→ (u∗, 1) in [L2(0, L)]2 where u∗ ∈ {ujump, uaff} with

ujump = a1[L/2,L] , uaff(x) =
ax

L
for all x ∈ [0, L] . (1.6)

(ii) (ηε + v2
ε)|u′ε|2L1 (0, L)

∗
⇀ |u′∗|2L1 (0, L) weakly* in M([0, L]),

(iii)
∣∣∣ε|v′ε|2 − (1− vε)2

4ε

∣∣∣→ 0 strongly in L1(0, L),

(iv) ε|v′ε|2L1 (0, L)
∗
⇀ αδL

2
weakly* in M([0, L]), with α = 0 or α = 1/2. Moreover, if u∗ = ujump,

then α = 1/2.

Remark 1.1. We emphasize that we must have α = 1/2 for u∗ = ujump. However, α = 0 does not
necessarily implies that u∗ = uaff . Indeed α = 1/2 provided vε has a v-jump at L/2 in the terminology
of [4], i.e., as soon as vε(L/2) ≤

√
C∗ε for some constant C∗ > 0. However it could happen that this

v-jump disappears in the limit and does not create a discontinuity for u∗.

As in [4] we are in presence of a selection phenomenon since critical points of ATε cannot approximate
any critical points of MS but only specific ones. Here the selection phenomenon is much stronger than
in [4] in the sense that only two critical points ujump and uaff of MS can be reached as limits of critical
points of ATε.

We also show the existence of a family of critical points of ATε approximating ujump.

Theorem 1.2. There exists a family {(uε, vε)}ε>0 ⊂ [H1(0, L)]2 satisfying (1.3) and (1.5) such that

(uε, vε)→ (ujump, 1) strongly in [L2(0, L)]2 as ε→ 0 .
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Remark 1.2. According to Theorem 1.1, we obtain that the family in Theorem 1.2 satisfies the energy
convergence ATε(uε, vε)→MS(ujump). Furthermore, if a2 < L, then (1.4) ensures that ujump is not a
global minimizer of MS. This shows the existence of non minimizing critical points of ATε satisfying
the assumption of convergence of energy in [2, Theorem 1.2].

2. Preliminary estimates

We start by using the first equation in (1.3) to find a constant cε ∈ R such that

(ηε + v2
ε)u′ε = cε , (2.1)

which implies that u′ε has a constant sign. Since we assume uε(0) = 0 and uε(L) = a > 0, we deduce
that u′ε ≥ 0 and cε ≥ 0. Then the second equation in (1.3) can be rewritten as

−εv′′ε +
c2εvε

(ηε + v2
ε)2

+
vε − 1

4ε
= 0 . (2.2)

We observe that, thanks to the energy bound (1.5),

acε =

ˆ L

0

u′εcε dx =

ˆ L

0

(ηε + v2
ε)|u′ε|2 dx ≤ ATε(uε, vε) ≤ C ,

hence {cε}ε>0 is bounded and, up to a subsequence, we can assume that

cε → c0 . (2.3)

As in [4, Lemma 3.2] (and using [2, Proposition 4.1]), we have the following result.

Lemma 2.1. Let {(uε, vε)}ε>0 ⊂ [H1(0, L)]2 satisfying (1.3) and (1.5). Then, up to a subsequence,
(uε, vε) → (u∗, 1) strongly in [L2(0, L)]2 with u∗ ∈ SBV 2(0, L). Furthermore, u′ε → c0 a.e. in (0, L),
|Du∗|((0, L)) ≤ a and c0 ≤ a/L.

In the one-dimensional setting, the Noether type conservation law of [2, Proposition 4.2] reads as(
(1− vε)2

4ε
− ε|v′ε|2 − (ηε + v2

ε)|u′ε|2
)′

= 0 in (0, L) ,

and it implies the existence of a constant dε ∈ R, sometimes called discrepancy, such that

(1− vε)2

4ε
− ε|v′ε|2 − (ηε + v2

ε)|u′ε|2 = dε . (2.4)

Thanks to the energy bound (1.5), it is easy to see that {dε}ε>0 is a bounded sequence, and thus (up
to a further subsequence)

dε → d0 . (2.5)

It also ensures the following uniform bounds (see [4, Lemma 3.4]).

Lemma 2.2. For ε > 0 small enough,

‖u′ε‖L∞(0,L) ≤
2
√
εηε

, ‖v′ε‖L∞(0,L) ≤
2

ε
.

Moreover, if c0 > 0, then the following refined estimates hold

‖u′ε‖L∞(0,L) ≤
2

c0ε
, min

[0,L]
vε ≥

c0
√
ε

2
.

We next show the following strong maximum principle.

Lemma 2.3. Let (uε, vε) ∈ [H1(0, L)]2 satisfying (1.3), then 0 < vε < 1 in (0, L).
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Proof. Let x0 be a minimum point of vε in [0, L]. If vε(x0) = 1, using that 0 ≤ vε ≤ 1, we deduce that
vε ≡ 1 in [0, L]. Inserting into the second equation of (1.3), we find that uε is a constant function in
[0, L] which is in contradiction with uε(0) = 0 and uε(L) = a > 0. As a consequence of the Dirichlet
boundary condition for vε, we have x0 ∈ (0, L) and thus v′′ε (x0) ≥ 0. If vε(x0) = 0, using again
the second equation in (1.3) we find that −εv′′ε (x0) = 1

4ε > 0 which is a contradiction. Therefore,
vε ≥ vε(x0) > 0 in (0, L).

Likewise, let x1 be a maximum point of vε in [0, L]. If x1 ∈ (0, L) and vε(x1) = 1, then we use that
v′′ε (x1) ≤ 0 together with (2.2) to obtain that cε = 0. This implies by (2.1) that u′ε = 0 which is a
contradiction since uε(0) = 0 and uε(L) = a > 0. It shows again that vε < 1 in (0, L). �

The selection phenomenon already observed in [4] is due to the following symmetry property which
is similar to [4, Lemma 4.1].

Proposition 2.1. Let {(uε, vε)}ε>0 be a family in [H1(0, L)]2 satisfying (1.3) and (1.5). Then vε
possesses a unique critical point in (0, L) located at L/2, which is a minimum of vε on [0, L]. Moreover,
vε is decreasing in (0, L/2), increasing in (L/2, L) and the graph of vε is symmetric with respect to the
vertical line x = L/2.

Proof. From Lemma 2.3, vε cannot be identically constant equal to 1. Thus by Rolle’s theorem, vε
admits critical points in (0, L).

Let x0 ∈ (0, L) be an arbitrary critical point of vε in (0, L). If x0 ∈ (0, L/2) then the function

ṽε(x) =

{
vε(x) if x ∈ (0, x0]

vε(2x0 − x) if x ∈ (x0, 2x0)

is a solution of (2.2) in the interval (0, 2x0). In particular, vε and ṽε are two solutions of an ODE
of the form v′′ε = fε(x, vε) in (x0, 2x0) for some function fε of class C 2 with vε(x0) = ṽε(x0) and
v′ε(x0) = ṽ′ε(x0) = 0. Cauchy-Lipschitz Theorem yields in turn that vε = ṽε in (x0, 2x0). In particular,
vε(2x0) = vε(0) = 1 which contradicts Lemma 2.3 since 2x0 ∈ (0, L). Thus x0 ∈ [L/2, L) and a
symmetric argument shows that x0 ∈ (0, L/2]. Finally, the only possibility left is x0 = L/2.

In particular, vε admits a unique critical point in (0, L) at the point L/2, which must be a minimum
of vε on [0, L]. Moreover, the graph of vε is symmetric with respect to the vertical line {x = L/2}.
Since vε is a smooth function satisfying vε(0) = 1, vε(L/2) < 1 and v′ε 6= 0 in (0, L/2), we deduce that
vε is decreasing in (0, L/2). By symmetry vε is increasing in (L/2, L). �

A crucial step in the proof of Theorem 1.1 is the following characterization of possible limiting slopes
c0 in (2.3), which strongly rests on the symmetry property of vε. We refer to [4, Lemma 4.4] for the
proof.

Lemma 2.4. The limiting slope c0 in (2.3) satisfies that either c0 = 0 or c0 = a/L.

Using that u′ε = cε
ηε+v2ε

in (2.4), we find that

(1− vε)2

4ε
− ε|v′ε|2 −

c2ε
ηε + v2

ε

= dε .

Thus, since vε ≤ 1 and cε and dε are bounded, we obtain that, for some constant C∗ > 0 independent
of ε,

v2
ε(L/2)

(
1− vε(L/2)

)2

≤
(
ηε + v2

ε(L/2)
)(

1− vε(L/2)
)2

≤ C∗ε .

This implies, thanks to the study of the function X 7→ X2(1−X)2 on [0, 1], that

either vε

(
L

2

)
≥ 1−

√
C∗ε or vε

(
L

2

)
≤
√
C∗ε .
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In the latter case, L/2 corresponds to a so-called v-jump according to the terminology of [4]. The
previous dichotomy implies that either vε converges uniformly to 1 or there exists exactly one v-jump
which is a minimum of vε located at L/2.

3. Proof of Theorem 1.1

We are now ready to prove items i) and ii) of Theorem 1.1, i.e., the selection principle for limit of
critical points of ATε and the convergence of the bulk energy.

Proof of i) and ii) in Theorem 1.1. Step 1. Assume first that vε(L/2) ≥ 1−
√
C∗ε. Then we have that

0 ≤ 1− vε ≤
√
C∗ε→ 0 uniformly in [0, L]. For ε small enough we also have that vε ≥ 1/2 so that the

energy bound (1.5) yields

1

2

ˆ L

0

|u′ε|2 dx ≤
ˆ L

0

(ηε + v2
ε)|u′ε|2 dx ≤ C .

Since {uε}ε>0 is bounded in H1(0, L) up to a subsequence we have that uε ⇀ u∗ weakly in H1(0, L)
with u∗ ∈ H1(0, L). We can pass to the limit in the first equation of (2.1) using (2.3) to obtain that
u′∗ = c0 in (0, L). Since u∗(0) = 0 and u∗(L) = a we find that u∗ = uaff and c0 = a/L. Moreover,
thanks to the uniform convergence of vε,

lim
ε→0

ˆ L

0

|u′ε|2 dx = lim
ε→0

ˆ L

0

(ηε + v2
ε)|u′ε|2 dx = lim

ε→0
cε

ˆ L

0

u′ε dx = c0

ˆ L

0

u′aff dx =

ˆ L

0

|u′aff |2 dx .

It yields uε → uaff strongly in H1(0, L) and, in particular (ηε + v2
ε)|u′ε|2 → |u′aff |2 strongly in L1(0, L),

hence also weakly* in M([0, L]).

Step 2. Assume now that vε
(
L
2

)
<
√
C∗ε. We first notice that uε(L/2) = a/2. Indeed, thanks to

the symmetry property of vε and a change of variables, we find that

a =

ˆ L

0

u′ε dx =

ˆ L

0

cε
ηε + v2

ε

dx = 2

ˆ L/2

0

cε
ηε + v2

ε

dx = 2uε

(
L

2

)
. (3.1)

We next claim that for each 0 < δ < L/2, the function vε → 1 uniformly on [0, δ]. To this purpose,
define Aε := {x ∈ (0, L) : vε(x) ≤ 1 − ε1/4}. By the monotonicity properties of vε, the set Aε is a
closed interval centered in L/2. Thanks to the energy bound (1.5),

C ≥
ˆ L

0

(1− vε)2

ε
dx ≥ L

1(Aε)

ε1/2
,

which implies that

diam(Aε) ≤ Cε1/2 <
L

2
− δ

for ε small enough. Hence Aε ∩ [0, δ] = ∅ for ε small. In particular vε → 1 uniformly on [0, δ], and then
u′ε = cε

ηε+v2ε
→ c0 uniformly on [0, δ]. We deduce that

uε(x) =

ˆ x

0

u′ε(t) dt→ c0x uniformly with respect to x ∈ [0, δ] .

Thus uε(x)→ c0x for a.e. x ∈ (0, L2 ), and we prove in the same way that uε(x)→ a− c0(L−x) for a.e.

x ∈ (L2 , L). Since c0 = 0 or c0 = a/L by Lemma 2.4, then we find that either u∗ = ujump or u∗ = uaff

(see (1.6)). Observe that the case u∗ = ujump only occurs in the case vε(L/2) ≤
√
C∗ε.

We finally show the convergence of the bulk energy. From the first equation in (1.3) we can write
that (ηε + v2

ε)|u′ε|2 = cεu
′
ε. Thus, for all ϕ ∈ C∞c (R),ˆ L

0

(ηε + v2
ε)|u′ε|2ϕdx = cε

ˆ L

0

u′εϕdx = −cε
ˆ L

0

uεϕ
′ dx+ cεaϕ(L)→ −c0

ˆ L

0

u∗ϕ
′ dx+ c0aϕ(L) .
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If c0 = 0, then u∗ = ujump and u′jump = 0. We thus get in that case,

−c0
ˆ L

0

ujumpϕ
′ dx+ c0aϕ(L) = 0 =

ˆ L

0

|u′jump|2ϕdx .

If c0 = a/L, then u∗ = uaff and thus

−c0
ˆ L

0

uaffϕ
′ dx+ c0aϕ(L) =

a

L

ˆ L

0

u′affϕdx =

ˆ L

0

|u′aff |2ϕdx .

In any case, we obtain ˆ L

0

(ηε + v2
ε)|u′ε|2ϕdx→

ˆ L

0

|u′∗|2ϕdx ,

which proves the announced items i) and ii). �

From now on, the function u stands for either uaff or ujump. The argument in the previous proof
actually shows that u = uaff if c0 = a/L, while u = ujump if c0 = 0.

At this stage, it remains to show the equipartition of energy and the convergence of the diffuse
surface energy (points iii) and iv) in Theorem 1.1). The key argument is the following result stating
that there is very few diffuse surface energy far way from L/2, the only possible limit jump point. The
proof is an adaptation of [4, Lemma 6.1].

Lemma 3.1. For every compact set K ⊂ [0, L] \ {L/2}, there exists a constant CK > 0 such that
ˆ
K

(
ε|v′ε|2 +

(1− vε)2

4ε

)
dx ≤ CKε1/4 .

Proof. We already know that the set Aε := {x ∈ (0, L) : vε(x) ≤ 1−ε1/4} is a closed interval centred at
L/2 with diam(Aε) ≤ C

√
ε. Let δ < 1

2dist(L/2,K). If ε > 0 is small enough then Aε ⊂ [L/2−δ, L/2+δ],
hence K ∩Aε = ∅. Since K ⊂ Vδ := [0, L] \ [L/2− δ, L/2 + δ], it suffices to show that

ˆ
Vδ

(
ε|v′ε|2 +

(1− vε)2

4ε

)
dx ≤ CKε1/4 .

We multiply the second equation in (1.3) by vε − 1 ∈ H1
0 (0, L) and we integrate by parts to obtain

ˆ
Vδ

(
ε|v′ε|2 +

(vε − 1)2

4ε

)
dx = εv′ε(L/2− δ)(vε(L/2− δ)− 1)

− εv′ε(L/2 + δ)(vε(L/2 + δ)− 1) +

ˆ
Vδ

c2εvε(1− vε)
(ηε + v2

ε)2
dx .

By definition of Aε and Vδ, we have |1 − vε| ≤ ε1/4 on Vδ. Using further the gradient bound for vε in
Lemma 2.2, we find that ˆ

Vδ

(
ε|v′ε|2 +

(vε − 1)2

4ε

)
dx ≤ CKε1/4 ,

which completes the proof of the lemma. �

Arguing as in [4, Lemma 6.3], we also have the following result which relates the limit slope c0 to
the limit d0 (respectively defined in (2.3) and (2.5)).

Lemma 3.2. The real numbers c0 and d0 satisfy d0 + c20 = 0.

We are now in position to complete the proof of Theorem 1.1.



A NOTE ON THE ONE-DIMENSIONAL CRITICAL POINTS OF THE AMBROSIO-TORTORELLI FUNCTIONAL 7

Proof of iii) and iv) in Theorem 1.1. Step 1. Let us consider the function

fε :=
(vε − 1)2

4ε
− ε|v′ε|2 = dε + (ηε + v2

ε)|u′ε|2 = dε + cεu
′
ε = dε +

c2ε
ηε + v2

ε

.

If u∗ = ujump, then ˆ L

0

(ηε + v2
ε)|u′ε|2 dx→ 0 ,

hence cεa = cε
´ L

0
u′ε dx =

´ L
0

(ηε + v2
ε)|u′ε|2 dx → 0. It shows that c0 = 0 and thus d0 = 0 owing to

Lemma 3.2. We thus infer that ˆ L

0

∣∣∣∣ (vε − 1)2

4ε
− ε|v′ε|2

∣∣∣∣ dx→ 0 .

Assume next that u∗ = uaff . In that case, we haveˆ L

0

(ηε + v2
ε)|u′ε|2 dx 6→ 0 ,

and the same argument as before shows that c0 6= 0. Then d0 6= 0 by Lemma 3.2. In particular dε 6= 0
for ε > 0 small enough. The function fε reaches its maximum when vε is minimal, i.e., at the point
L/2. Since L/2 is a critical point of vε, we have

max
[0,L]

fε = fε(L/2) =
(vε(L/2)− 1)2

4ε
≥ 0 .

Similarly, fε reaches its minimum when vε attains its maximum. Since vε is maximal on the boundary
with vε(0) = vε(L) = 1 we find that

min
[0,L]

fε = fε(0) = −ε|v′ε(0)|2 ≤ 0 .

As a consequence, there exists sε ∈ (0, L/2) such that fε(sε) = 0. From Lemma 3.2, it follows that

v2
ε(sε) = −ηε −

c2ε
dε
→ − c

2
0

d0
= 1 .

Up to a subsequence, there exists s0 ∈ [0, L/2] such that sε → s0. By monotonicity of vε, we get that
vε1[0,sε] → 1[0,s0] for a.e. s ∈ (0, L/2). Hence using again Lemma 3.2,

dεsε + cεuε(sε) =

ˆ sε

0

(
dε +

c2ε
ηε + v2

ε

)
dx→

ˆ s0

0

(d0 + c20) dx = 0 . (3.2)

Using the symmetry of vε, (3.1) and (3.2), we computeˆ L

0

∣∣∣∣ (vε − 1)2

4ε
− ε|v′ε|2

∣∣∣∣ dx =

ˆ L

0

|fε|dx = 2

ˆ L/2

0

|fε|dx

= −2

ˆ sε

0

fε dx+ 2

ˆ L/2

sε

fε dx

= 2dε

(
L

2
− 2sε

)
+ 2cε

(
uε

(
L

2

)
− 2uε(sε)

)
→ Ld0 + c0a = 0 .

It completes the proof of the equipartition of energy.

Step 2. We finally show the convergence of the diffuse surface energy. According to Lemma 3.1, we
have (

ε|v′ε|2 +
(vε − 1)2

4ε

)
L1 (0, L)

∗
⇀ µ weakly* in M([0, L]) ,
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for some nonnegative measure µ ∈M([0, L]) supported on {L/2}, and thus of the form µ = cδL/2 with
c ≥ 0. On the one hand, since µ is concentrated at L/2, we have

c = µ((0, L)) = lim
ε→0

ˆ L

0

(
ε|v′ε|2 +

(vε − 1)2

4ε

)
dx .

On the other hand, the equipartition of energy ensures that

ˆ L

0

(
ε|v′ε|2 +

(vε − 1)2

4ε
− |v′ε|(1− vε)

)
dx =

ˆ L

0

(√
ε|v′ε| −

1− vε
2
√
ε

)2

dx

≤
ˆ L

0

∣∣∣∣ε|v′ε|2 − |1− vε|24ε

∣∣∣∣ dx→ 0 .

Since v′ε ≤ 0 on (0, L/2) and v′ε ≥ 0 on (L/2, L), by symmetry of vε with respect to the vertical axis
{x = L/2}, we have

ˆ L

0

|v′ε|(1− vε) dx = −2

ˆ L/2

0

v′ε(1− vε) dx = (1− vε(L/2))2 .

If vε(L/2) ≤
√
C∗ε, then c = 1 and µ = δL/2, while if vε(L/2) ≥ 1 −

√
C∗ε, then c = 0 and µ = 0.

Using again the equipartition of energy, we infer that

ε|v′ε|2L1 (0, L)
∗
⇀

c

2
δL/2 weakly* in M([0, L]) ,

so that the desired convergence holds with α = c
2 ∈ {0,

1
2}. If u∗ = ujump, then we must have

vε(L/2) ≤
√
C∗ε, and it follows that α = 1/2 in that case. �

4. Proof of Theorem 1.2

This section is devoted to prove Theorem 1.2, following again arguments similar to those of [4,
Section 5]. By the symmetry properties of Theorem 1.1 it suffices to construct a critical point (uε, vε)
of ATε in (0, L/2) such that vε(0) = 1, v′ε(L/2) = 0, uε(0) = 0 and uε(L/2) = a/2.

To this aim, let α ∈ (0, 1) independent of ε, and set

V :=

{
v ∈ H1(0, L/2) : v(0) = 1, v

(
L

2

)
≤ α

}
,

B :=

{
(u, v) ∈ H1(0, L/2)× V : u(0) = 0, u

(
L

2

)
=
a

2

}
.

For (u, v) ∈ B and 0 ≤ r ≤ s ≤ L/2, we define the localized bulk and diffuse surface energies by

Eε(u, v; r, s) =

ˆ s

r

(ηε + v2)|u′|2 dx, Fε(v; r, s) :=

ˆ s

r

(
ε|v′|2 +

(1− v)2

4ε

)
dx ,

and the Ambrosio-Tortorelli energy localized on (0, L/2) by

ÃT ε(u, v) := Eε(u, v; 0, L/2) + Fε(v; 0, L/2) .

The following result has been established in [4, Section 5].

Lemma 4.1. For all x1, x2 and x3 ∈ (0, L/2) we have

Fε(v;x1, x3) ≥
∣∣Φ(v(x1)) + Φ((v(x3))− 2Φ(v(x2))

∣∣ ,
with Φ(t) = t− t2/2.
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Using the monotone increasing character of Φ on [0, 1] and choosing x1 = x2 = 0 and x3 = L/2, we
get for all v ∈ V

Fε
(
v; 0,

L

2

)
≥ Φ(1)− Φ

(
v

(
L

2

))
≥ 1

2
− Φ(α) . (4.1)

Moreover, arguing as in [4, Section 5], we can show the existence of a minimizer (uε, vε) over B of ÃT ε
such that

lim sup
ε→0

ÃT ε(uε, vε) ≤
1

2
. (4.2)

We will show that, for a convenient choice of α ∈ (0, 1), such a minimizer is a critical point of

ÃT ε with the desired boundary conditions. The proof of the following result is similar to that of [4,
Lemma 5.1 & Proposition 5.2].

Lemma 4.2. There exists α ∈ (0, 1) independent of ε > 0 such that if (uε, vε) is a minimizer over B
of ÃT ε, then it is a critical point of ÃT ε with v′ε(L/2) = 0 for ε small enough.

Proof. It is sufficient to show the existence of α ∈ (0, 1), independent of ε, such that if (uε, vε) is a

minimizer over B of ÃT ε, then vε(L/2) < α. Indeed, in that case the minimizer (uε, vε) belongs to the
interior of B and variations of the form (uε + tφ, vε + tψ) with φ ∈ C∞c ((0, L/2)) and ψ ∈ C∞c ((0, L/2])
are allowed. Let α ∈ (0, 1) small enough so that

a2

L
− 2Φ(α) > 0 . (4.3)

Assume by contradiction that there exists εj → 0 such that vεj (L/2) = α for all j ∈ N. Then consider
the sequence

α∗j := min
x∈[0,L/2]

vεj (x) ≤ α .

Applying Lemma 4.1 with x1 = 0, x3 = L/2 and x2 = yj where vεj (yj) = α∗j leads to

ÃT εj (uεj , vεj ) ≥
1

2
+ Φ(α)− 2Φ(α∗j ) .

We claim that for all j ∈ N,

Φ(α)− 2Φ(α∗j ) ≥
Φ(α)

2
> 0 . (4.4)

Provided the claim is proved, we infer from (4.2) that

1

2
≥ lim sup

j→∞
ÃT εj (uεj , vεj ) ≥

1

2
+

Φ(α)

2
,

which is a contradiction since Φ(α) > 0. We are now reduced to show (4.4).

Proof of the Claim. Let α1 ∈ (0, α) be such that Φ(α) ≥ 4Φ(α1) and assume by contradiction
that vεj (x) ≥ α1 for all x ∈ [0, L/2]. Using variations with compact support in (0, L/2), we get that
(uεj , vεj ) solves 

(
ηεj + v2

εj )u
′
εj

)′
= 0 in (0, L/2),

−εjv′′εj + vεj |u′εj |
2 +

vεj − 1

εj
= 0 in (0, L/2) .

From the first equation we obtain that u′εj (ηεj + v2
εj ) = cj a.e. in (0, L/2), for some constant cj ∈ R.

The upper bound (4.2) shows that vεj → 1 in L2(0, L/2) and

ÃT εj (uεj , vεj ) ≥
ˆ L/2

0

(ηεj + v2
εj )|u

′
εj |

2 dx =

ˆ L/2

0

cju
′
εj dx =

acj
2
.
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It implies that {cj}j∈N is bounded so that, up to a subsequence, cj → c0 for some c0 ∈ R. Since
vεj ≥ α1, we deduce that {u′εj}j∈N is bounded in L∞(0, L/2). Then Lebesgue’s dominated convergence
yields

a

2
=

ˆ L/2

0

u′εj dx =

ˆ L/2

0

cj
ηεj + v2

εj

dx→
ˆ L/2

0

c0 dx ,

so that c0 = a/L. Now,

lim inf
j→∞

ˆ L/2

0

(ηεj + v2
εj )|u

′
εj |

2 dx = lim inf
j→∞

ˆ L/2

0

cju
′
εj dx = c0a =

a2

L
,

and thus, by (4.1) and (4.2),

1

2
≥ lim sup

j→∞
ÃT εj (uεj , vεj ) ≥

a2

L
+

1

2
− Φ(α) ,

which is in contradiction with (4.3).
We have thus proved by contradiction that min[0,L/2] vεj = α∗j ≤ α1. Since we assumed that

Φ(α) ≥ 4Φ(α1) ≥ 4Φ(α∗j ), we infer that (4.4) is satisfied. �

We can now conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. Let (uε, vε) ∈ B and α ∈ (0, 1) given by Lemma 4.2 (see (4.3)) so that (uε, vε)
satisfies 

(
(ηε + v2

ε)u′ε

)′
= 0 in (0, L/2) ,

−εv′′ε + vε|u′ε|2 +
vε − 1

4ε
= 0 in (0, L/2) ,

uε(0) = 0 , uε(L/2) = a/2 ,

vε(0) = 0 , v′ε(L/2) = 0 .

By the first equation, there exists cε ∈ R such that u′ε = cε
ηε+v2ε

. Extending vε to (0, L) by symmetry

with respect to the vertical axis {x = L/2}, we obtain a function (still denoted by vε) which belongs
to H1(0, L) with vε(0) = vε(L) = 1 (this reflexion argument is possible since v′ε(L/2) = 0). Note that
the boundary conditions satisfied by uε implies

cε =
a

2

(ˆ L/2

0

dx

ηε + v2
ε

)−1

= a

(ˆ L

0

dx

ηε + v2
ε

)−1

,

where the last equality holds because vε is symmetric with respect to the vertical axis {x = L/2}. The
function uε is extended to (0, L) (into a function still denoted by uε) by setting

uε(x) =

ˆ x

0

cε
ηε + v2

ε(t)
dt .

By construction, (uε, vε) solves

(
(ηε + v2

ε)u′ε

)′
= 0 in (0, L) ,

−εv′′ε + vε|u′ε|2 +
vε − 1

4ε
= 0 in (0, L) ,

uε(0) = 0 , uε(L) = a ,

vε(0) = vε(L) = 0 .

Moreover, the symmetry properties of uε and vε together with a change of variable yield

lim sup
ε→0

ATε(uε, vε) = 2 lim sup
ε→0

ÃT ε(uε, vε) ≤ 1 . (4.5)
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By Theorem 1.1, up to a subsequence, (uε, vε)→ (u∗, 1) in [L2(0, L)]2 where u∗ ∈ {ujump, uaff}. Assume
by contraction that u∗ = uaff . According to [2, Proposition 4.1], we have

a2

L
≤ lim inf

ε→0

ˆ L

0

(ηε + v2
ε)|u′ε|2 dx . (4.6)

By (4.1) together with a change of variable and the symmetry property of vε, we obtain

lim inf
ε→0

ˆ L

0

(
ε|v′ε|2 +

(1− vε)2

4ε

)
dx = 2 lim inf

ε→0
Fε
(
vε; 0,

L

2

)
≥ 1− 2Φ(α) . (4.7)

Combining (4.5), (4.6) and (4.7) leads to a2/L−Φ(α) ≤ 0, which is in contradiction with our choice of
α in (4.3). Therefore u∗ = ujump, and the proof is complete. �
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