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Abstract. In this paper we prove that if (u,K) is an almost-minimizer of the Griffith functional and

K is ε-close to a plane in some ball B ⊂ RN while separating the ball B in two big parts, then K is

C1,α in a slightly smaller ball. Our result contains and generalizes the 2 dimensional result of [4], with
a different and more sophisticate approach inspired by [24, 25], using also [21] in order to adapt a part

of the argument to Griffith minimizers.

Contents

1. Introduction 1
2. Preliminaries 4
3. The Extension Lemma 8
3.1. The Orientation Lemma 11
3.2. Proof of the Extension Lemma 13
4. Control of the flatness by the minimality defect 20
5. Stopping time and regularity estimates 24
5.1. Definition of the bad mass 24
5.2. Preparation of the Extension Lemma 25
5.3. Decay of the bad mass 27
5.4. Control of the minimality defect 31
5.5. Decay of the energy 33
6. Joint decay and conclusion 41
Acknowledgements 45
References 46

1. Introduction

The variational model of crack propagation introduced by Francfort and Marigo [20] is based upon
the idea of Griffith from the early 20th century, saying that the needed energy to produce a crack in an
elastic material, is proportional to the surface area of the crack. This is how one can hope to produce
mathematically, a crack set depending on time K(t), coming from the quasistatic limit of discrete sets
Kn := K(tn) which minimizes at each time the stationary Griffith energyˆ

Ω\K
Ce(u) · e(u) dx+HN−1(K),

where e(u) = (Du+DuT )/2 stands for the symmetric gradient of the elastic displacement u : Ω → RN ,
HN−1 is the Haudorff measure and C are elliptic coefficients.

Despite of the similarity with the classical Mumford-Shah functional, for which a huge literature gave
a thorough description of the minimizers from the 90s, the Griffith functional is more delicate due to
the configurations u with vector values, much different from the scalar case. Another difficulty is coming
from the fact that the energy with e(u) controls only the symmetric part of the gradient, and not the full
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gradient Du which implies, in absence of good Korn type inequalities in the non regular domain Ω \K,
some major technical problems. This is why the development of the tools to treat Griffith minimizers
appeared relatively recently only, comparing to the standard theory of free-discontinuity problems. To
mention a few, the weak existence in GSBD by Dal Maso in [9], the strong existence of a minimizer by
Chambolle and Crismale [7], in addition to the Ahlfors-regularity by Chambolle, Conti and Iurlano [6]
using also a previus work by Conti, Focardi and Iurlano [8].

The main question that we address in this paper concerns the C1 regularity of minimizers for the
Griffith functional, in any dimension. This question is related to the so called Mumford-Shah conjecture,
about the minimizers of the famous Mumford-Shah functionnalˆ

Ω\K
|∇u|2 dx+H1(K).

The question of Mumford and Shah (1989) which is still open, is to know whether the minimizers K of
the Mumford-Shah functional are formed by a finite number of C1 curves (see for instance the review
paper about this problem [26]). Bonnet in [5] showed that the answer is true if K is assumed to be a
connected set. Some precise C1 estimates have also been obtained by David [11], and a famous partial
C1 result in higher dimensions is given by Ambrosio, Fusco, Pallara in [3]. Later, an independent proof
and more precise in the special dimension 3 case appeared in [25]. See also [27, 18, 2, 12] for further
developments.

However, while trying to attack the Griffith functional with the standard Mumford-Shah tools, we
rapidly see that most of the arguments do not work on this variant with e(u). The energy controls only
the symmetric part of the gradient which does not control u in general. For instance, the monotonicity of
Bonnet does not apply in the vectorial context. Most of the extension technics do not work neither, and
the co-area formula cannot be used anymore. All the competitors obtained by truncation or composition
are forbidden, which makes the analysis highly difficult. For instance, the Euler-Lagrange formula is not
available, which prevents to derive a tilt-excess estimate, a starting point to apply the standard approach
of Amborsio, Fusco and Pallara [3].

Despite of theses difficulties, the second author together with Babadjian and Iurlano have recently
proved in [4] a partial C1 result on the singular set of a Griffith minimizer, in dimension 2, with the
additional assumption that K is connected. The proof does not extend to higher dimensions for several
reasons. Later in [22], the result has been exploited to improve the dimension of the singular set and
integrability of the symmetrized gradient in dimension 2.

In the present paper, we extend the results of [4] to any dimension N ≥ 2, by using a completely
different approach. Since connectedness of K has no powerful meaning in higher dimensions, we replace
it by a separating assumption: we say that K separates B(x, r) when, possibly after rotating, the north
pole and south pole lie in different connected components of B(x, r) \ K (see Definition 2.2 for a more
precise statement).

Our ε-regularity result uses a quantities that is usually called the bilateral flatness of K defined by

βK(x0, r0) := r−1 inf
P

max

{
sup

y∈K∩B(x0,r0)

dist(y, P ), sup
y∈P∩B(x0,r0)

dist(y,K)

}
,

where the infimum is over all hyperplanes P passing trough x0.
Now here is our main result (we refer to Definition 2.1 for the precise definition of an almost-minimizer

with gauge h and to Definition 2.2 for the separating condition).

Theorem 1.1. For each choice of α ∈ (0, 1), there exists constants ε0 ∈ (0, 1), γ ∈ (0, α) and c ∈ (0, 1)
(all depending on N , α) such that the following holds. Let (u,K) be a Griffith almost-minimizer with
gauge h(t) = h(1)tα in an open set Ω. Let x0 ∈ K, r0 > 0 be such that B(x0, r0) ⊂ Ω, K separates
B(x0, r0) and

βK(x0, r0) + h(r0) ≤ ε0.

Then K is a smooth C1,γ embedded surface in B(x0, cr0).



EPSILON-REGULARITY FOR GRIFFITH ALMOST-MINIMIZERS UNDER A SEPARATING CONDITION 3

Notice that without control on the flatness βK , the set K could be a triple junction (three curves
meeting with an angle 2π/3).

It is worth mentioning that in dimension 2 when K is connected, then the separating condition holds
H1-a.e. on K so that our result contains the one of [4] and generalizes it to almost-minimizers instead of
minimizers. As a matter of fact, we also extend the results of [22] to almost-minimizers as well.

Now in higher dimensions, it is not clear how to prove that, for an almost-minimizer (or even a true
minimizer), the separating condition holds almost everywhere. Therefore, our result does not directly
imply that the singular set of a Griffith minimizer in dimension N is C1,α HN−1-a.e. Proving that
the separating condition holds almost everywhere is a difficult open problem because of the lack of co-
area formula for the symmetrized gradient. However, we believe our result to be a step toward the full
regularity of minimizer in any dimension.

Next, let us say a few words about the proof. The strategy that we employ is to follow the approach
introduced in [24, 25] for the Mumford-Shah functional. The main idea, that was suggested by Guy David
to the second author during his thesis, is to use a stopping time argument on the flatness to identify a
region where K would be “good” (which means ε-flat at every scale) and another region where K would
be “bad” (i.e. stops being flat at some scale), which is performed in Section 5. The main point is then
to estimate the size of the bad region, denoted by m(r). This is done by use of a compactness argument
(Lemma 4.1) that says that if K stops being flat at some scale, then one can win quantitatively some
surface area in that scale, which is one of the key ingredients in the construction of a competitor. In this
compactness argument we had to use a different argument compared to the scalar scale [24, 25] to avoid
using the uniform concentration property, which is not known for our set K.

Furthermore, the general strategy works by use of another very important ingredient: an extension
tool for the function u. Since we control approximatively the geometry of K at every working scale thanks
to our stopping time function, we can extend u near K by replacing it with averages and use a partition
of unity in order to obtain a well defined function while K has been modified as a competitor. We have
written a general statement encoding this procedure in Lemma 3.1, that we use later several times for
each competitor that we create.

Gathering together the stopping time argument, the compactness lemma and the extension tool, we
are able to prove that the size of the bad set in a ball Br, denoted by m(r), has a decaying property
involving the normalized elastic energy ω(r) (see Proposition 5.1) defined by

ω(x0, r0) =
1

rN−1
0

ˆ
B(x0,r0)\K

|e(u)|2 dx .

Then we need to prove that the normalized elastic energy has itself a decaying property to bootstrap
the estimates. The decay of energy is proved by use of a compactness argument which is the purpose of
Proposition 5.3. In this proof we benefit from the separating property in order to use a jump-transfer
technic. But we also use the sophisticated extension tool (Lemma 3.1) in a subtile manner in order to
gain some closure property of a contradicting sequence. The proof is therefore totally different from the
two dimensional argument of [4], which uses the Airy function (available only in dimension 2).

At the end we prove that all the quantities ω(r) and m(r) are decaying like a power rα whereas β(r)
stays small, which implies that K is actually an almost-minimal set with gauge of order rα, which leads
to the conclusion.

As the strategy is similar to the one of [24, 25], it is quite probable that in dimension 3 an analogous
ε-regularity result near minimal cones of type Y and T would be available using a variant of our work.
But for sake of simplicity we have written here only the case of flat cone P (hyperplane).

Finally let us mention some main differences with the work in [24, 25]. Firstly let us say that our
paper is totally self-contained and no statement from [24, 25] has been directly used. Everything has
been re-written with full details, sometimes quite differently and simplified, and we hope that the tools
developed in here could be useful for other purposes. In addition, most of the time we had to adapt to
the Griffith functional in a nontrivial manner some of the arguments used in [24, 25].

For instance, in the scalar case it is known that the Mumford-Shah minimizers have the “uniform
concentration” property. Since the proof of that fact relies on the co-area formula, this is a difficult open
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question for Griffith minimizers, and prevents us to easily obtain semi-continuity behavior of the surface
area for a sequence of Griffith minimizers. Since this was one of the key ingredients in the compactness
argument in Lemma 4.1, we have used a different strategy following the results of the first author in [21].
Another difference comes in the proof of Proposition 5.3, where we proceed differently in order to avoid
competitors of the form χ(un), which are not admissible when dealing with the Griffith energy.

2. Preliminaries

Our working space is an open set Ω ⊂ RN , where N ≥ 2. We say that a constant is universal when it
depends only on N . We introduce a few definitions.

(Coral) pairs. We define an admissible pair as a pair (u,K) such that K is a relatively closed subset

of Ω and u ∈ W 1,2
loc (Ω \K;RN ). We say that the pair is coral if for all x ∈ K and for all r > 0,

HN−1(K ∩B(x, r)) > 0,

where HN−1 is the Hausdorff measure of dimension N − 1. For any open set V , we define LD(V ) as the

set of functions u ∈ W 1,2
loc (V ) such that

´
V
|e(u)|2 dx < +∞.

Competitors. Let (u,K) be an admissible pair. Let x ∈ Ω and r > 0 be such that B(x, r) ⊂ Ω. A
competitor of (u,K) in B(x, r) is an admissible pair (v, L) such that

L \B(x, r) = K \B(x, r) and v = u a.e. in Ω \ (K ∪B(x, r)) .

Local minimizers and almost-minimizers. In general, a gauge is a non-decreasing function h :
(0,+∞) → [0,+∞] such that limt→0+ h(t) = 0. Our main theorem applies only with gauges of the form
h(t) = h(1)tα, where α ∈ (0, 1), but it is only at the last section (Section 6) that this will be used.

Definition 2.1. A Griffith local almost-minimizer with gauge h in Ω is a coral admissible pair (u,K),
such that for all x ∈ Ω, for all r > 0 with B(x, r) ⊂ Ω and for all competitor (v, L) of (u,K) in B(x, r),
we haveˆ

B(x,r)\K
|e(u)|2 dx+HN−1(K ∩B(x, r)) ≤

ˆ
B(x,r)\L

|e(v)|2 dx+HN−1(L ∩B(x, r)) + h(r)rN−1,

where e(u) is the symmetrized gradient of u;

e(u) :=
Du+DuT

2
.

Note that the definition is local since we only work in balls away from the boundary ∂Ω. In the rest
of the paper however, we will omit the word ‘local’ for simplicity.

Remark 2.1. Notice that adding toK a negligible set does not affect the almost-minimality condition (2.1).
This explains why one needs to assume K to be a coral set, as we did in Definition 2.1, in order to expect
any kind of regularity result.

Remark 2.2 (Ahlfors-regularity). If (u,K) is a Griffith almost-minimizer in Ω, a standard comparison
argument using the minimality condition (2.1) shows that for all x ∈ Ω and r > 0 with B(x, r) ⊂ Ω and
h(r) ≤ 1, we have

(2.1)

ˆ
B(x,r)\K

|e(u)|2 dx+HN−1(K ∩B(x, r)) ≤ (σN + 1)rN−1,

where σN is the measure of the unit sphere. It also follows from a careful inspection of the proofs in
[6] (which are based on [8]), that there exists universal constants C ≥ 1 and εA ∈ (0, 1) such that the
following holds. If (u,K) is any Griffith almost-minimizer with any gauge h, then for all x ∈ K and r > 0
such that B(x, r) ⊂ Ω and h(r) ≤ εA, we have

HN−1(K ∩B(x, r)) ≥ C−1rN−1.
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In view of (2.1), we can assume εA smaller and C bigger so that for all x ∈ K and r > 0 such that
B(x, r) ⊂ Ω and h(r) ≤ εA, we have

(2.2) C−1rN−1 ≤ HN−1(K ∩B(x, r)) ≤ CrN−1.

We will frequently need to assume h(r) ≤ εA in our statements to make sure that we can use the
Ahlfors-regularity property (2.2).

Remark 2.3. As proved in [6], an example of Griffith minimizer is given by (u, Ju), where u a GSBD-
minimizer of the Griffith functional ˆ

Ω

|e(u)|2 dx+HN−1(Ju)

with prescribed Dirichlet boundary condition.

Remark 2.4. Contrary to what commonly follows from the standard Mumford-Shah theory, and due to
the absence of good L∞ estimates, it is not known whether Griffith minimizers of a functional with an
additional term of the form

´
Ω
|u− g|2 dx with g ∈ L∞ is an almost-minimizer. However, an example of

almost-minimizer if for instance a minimizer of a functional of the formˆ
Ω\K

|e(u) +A|2dx+HN−1(K)

as studied recently in [23], for which the result of the present paper in full generality in dimension 2, is
used.

Remark 2.5. Let (u,K) be a Griffith almost-minimizer with gauge h in B(x0, r0). The rescaled pair of
(u,K) in B(0, 1) is given by (v, L) such that

v(x) = r
− 1

2
0 u(x0 + r0x), L = r−1

0 (K − x0).

We observe that for all x ∈ B(0, 1) and r > 0 with B(x, r) ⊂ B(0, 1) and for all competitor (w,G) of
(v, L) in B(x, r), we haveˆ

B(x,r)\L
|e(v)|2 dx+H1(L ∩B(x, r)) ≤

ˆ
B(x,r)\G

|e(w)|2 dx+H1(G ∩B(x, r)) + h(rr0)r.

Thus, (v, L) an almost-minimizer with gauge h̃(t) := h(r0t) in B(0, 1).

We will introduce different quantities to study the Griffith almost-minimizers but all of them will be
invariant under scaling (the flatness β, the normalized elastic energy ω and the bad mass m).

The normalized elastic energy. Let (u,K) be an admissible pair. For any x0 ∈ Ω and r0 > 0 such
that B(x0, r0) ⊂ Ω, we define the normalized elastic energy of u in B(x0, r0) as

ωu(x0, r0) =
1

rN−1
0

ˆ
B(x0,r0)\K

|e(u)|2 dx .

When there is no ambiguity, we write simply ω(x0, r0) instead of ωu(x0, r0).

Remark 2.6. We see that for all ball B(x, r) ⊂ B(x0, r0), we have

ω(x, r) ≤
(r0
r

)N−1

ω(x0, r0).

The bilateral flatness. Let K be a relatively closed subset of Ω. For any x0 ∈ K and r0 > 0 such that
B(x0, r0) ⊂ Ω, we define the bilateral flatness of K in B(x0, r0) by

(2.3) βK(x0, r0) := r−1 inf
P

max

{
sup

y∈K∩B(x0,r0)

dist(y, P ), sup
y∈P∩B(x0,r0)

dist(y,K)

}
,
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where the infimum is taken over all hyperplanes P through x0. An equivalent definition is that βK(x0, r0)
is the infimum of all ε > 0 for which there exists an hyperplane P through x0 such that

(2.4)
K ∩B(x0, r0) ⊂ { y ∈ B(x0, r0) | dist(y, P ) ≤ εr0 }
P ∩B(x0, r0) ⊂ { y ∈ B(x0, r0) | dist(y,K) ≤ εr0 } .

It is easy to check that the infimum in (2.3) and (2.4) is always attained. When there is no ambiguity,
we write simply β(x0, r0) instead of βK(x0, r0).

Remark 2.7. We see that for all 0 < r ≤ r0,

(2.5) β(x0, r) ≤
r0
r
β(x0, r0)

and for all ball B(x, r) ⊂ B(x0, r0) centred on K, we also have

β(x, r) ≤ 2r0
r

β(x0, r0).

Let (Ki)i and K be relatively closed subsets of Ω containing x0 such that (Ki)i converges to K in local
Hausdorff distance1. Then for all 0 < r < r0 such that B(x0, 2r0) ⊂ Ω, we have

(2.6)

(
r

r0

)
lim sup

i
βKi(x0, r) ≤ βK(x0, r0) ≤ lim inf

i
βKi(x0, r0).

At the left-hand side of (2.6), we are forced to work with a radius r < r0 because certain parts of
Ki ∩ B(0, r0) could contribute to βKi

(x0, r0) while converging to ∂B(0, r0) (so βK(x0, r0) won’t see
them).

The separating condition. The separation in a ball will be fundamental in our analysis. We will
consider the situation where K ∩ B(x0, r0) is contained in a narrow strip of thickness εr0 for some
ε ∈]0, 1/2], i.e., there exists an hyperplane P passing through x0 such that

K ∩B(x0, r0) ⊂ {x ∈ B(x0, r0) | dist(x, P ) ≤ εr0 } .
We can then define two balls D+(x0, r0) and D−(x0, r0) of radius r0/4 and such that D±(x0, r0) ⊂
B(x0, r0) \K. Indeed, set x±

0 := x0 ± (3/4)r0ν, where ν is a normal unit vector to P . We can check that
D±(x0, r0) := B(x±

0 , r0/4) satisfy the above requirements.

Definition 2.2. Let K be a relatively closed subset of Ω, let x0 ∈ K and r0 > 0 be such that B(x0, r0) ⊂ Ω.
We say that K separates B(x0, r0) if there exists an hyperplane P through x0 satisfying

K ∩B(x0, r0) ⊂ {x ∈ B(x0, r0) | dist(x, P ) ≤ r0/2 }
and such that the corresponding balls D±(x0, r0) are contained in distincts connected components of
B(x0, r0) \K.

Remark 2.8 (The separating property does not depend on a particular hyperplane). If K separates
B(x0, r0) with respect to an hyperplane P passing through x0 and if Q is another hyperplane passing
through x0 satisfying

K ∩B(x0, r0) ⊂ {x ∈ B(x0, r0) | dist(x,Q) ≤ r0/2 } ,
then K also separates with respect to Q. For the proof, let νP and νQ be unit normal vectors to P and
Q respectively. We orient them in such a way that νP · νQ ≥ 0. The sets

{ y ∈ B(x0, r0) | (y − x0) · νP > r0/2 } ,
{ y ∈ B(x0, r0) | (y − x0) · νQ > r0/2 }

1It means that for all compact set B ⊂ Ω, for all ε > 0, there exists i0 such that for i ≥ i0, Ki ∩ B ⊂ { dist(·,K) ≤ ε }
and K ∩B ⊂ { dist(·,Ki) ≤ ε }. It is also equivalent to the two equalities

K = {x ∈ Ω | lim inf
i

dist(x,Ki) = 0 } = {x ∈ Ω | lim
i

dist(x,Ki) = 0 } .
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are connected, disjoint from K and they have a nonempty intersection because νP · νQ ≥ 0. Therefore,
their union U+ is a connected subset of B(x0, r0) \K. Similarly, the union of the sets

{ y ∈ B(x0, r0) | (y − x0) · νP < −r0/2 } ,
{ y ∈ B(x0, r0) | (y − x0) · νQ < −r0/2 } ,

denoted by U−, is a connected subset of B(x0, r0) \K. As K separates with respect to P , the sets U+

and U− must be contained in distincts connected components of B(x0, r0) \ K and we deduce that K
separates with respect to Q.

Remark 2.9 (Equivalence of unilateral flatness and bilateral flatness for separating sets). If B(x0, r) ⊂ Ω,
K separates B(x0, r0) and there exists 0 < ε ≤ 1/2 such that

K ∩B(x0, r0) ⊂ {x ∈ B(x0, r0) | dist(x, P ) ≤ εr0 } ,

then we necessarily have

P ∩B(x0, r0) ⊂ {x ∈ B(x0, r0) | dist(x,K) ≤ 2εr0 } .

Thus, for a separating set, the unilateral and bilateral flatness are equivalent by a factor 2. For the proof,
let ν be a unit vector ν to P . For all x ∈ P ∩B(x0, (1− ε)r0), the segment x+ [−εr0ν, εr0ν] is contained
in B(x0, r0) and it must meet K otherwise it can be used to connect D±(x0, r0) in B(x0, r0) \K. This
shows that dist(x,K) ≤ εr0. And for all others x ∈ P ∩ B(x0, r0), we can find y ∈ P ∩ B(x0, (1 − ε)r0)
such that |x− y| ≤ εr0 so dist(x,K) ≤ 2εr0.

The following lemma guarantees that when passing from a ball B(x0, r0) to a smaller one B(x, τr0),
the separation property is preserved if β(x0, r0) is small enough compared to τ . We will see later a variant
of this result, Lemma 3.2, where the separation property is preserved in B(x, r) if β(x, t) stays small at
all intermediate scales t ∈ [r, r0/4].

Lemma 2.1. Let K be a relatively closed subset of Ω, let x0 ∈ K and r0 > 0 be such that B(x0, r0) ⊂ Ω
and and K separates B(x0, r0). Then for all x ∈ K ∩ B(x0, r0), for all τ > 0 such that B(x, τr0) ⊂
B(x0, r0) and β(x0, r0) ≤ τ/4, the set K still separates B(x, r).

Proof. Let P0 be a hyperplane passing through x0 which achieves the minimum in the definition of
β(x0, r0), i.e.,

K ∩B(x0, r0) ⊂ {x ∈ B(x0, r0) | dist(x, P0) ≤ ε0r0 } ,
where ε0 := β(x0, r0). Let P be the hyperplan parallel to P0 and passing through x. Since x is at distance
≤ ε0r0 from P0, the hyperplane P0 is also at distance ≤ ε0r0 from P and it follows that

K ∩B(x, τr0) ⊂ { y ∈ B(x, τr0) | dist(y, P0) ≤ ε0r0 }
⊂ { y ∈ B(x, τr0) | dist(y, P ) ≤ ετr0 }

where ε = 2ε0/τ ≤ 1/2. The two connected components of B(x, r) \ { dist(·, P ) ≤ ετr0 } are contained in
respective connected components of B(x0, r0) \ {dist(·, P ) ≤ ε0r }. We deduce that K separates them as
well. □

Definition 2.3 (Hypothesis-H(ε0, x0, r0)). Let K be a relatively closed subset of Ω, let x0 ∈ K, r0 > 0
and ε0 ∈ [0, 1/2]. We say that K satisfies Hypothesis-H(ε0, x0, r0) if B(x0, r0) ⊂ Ω and if K satisfies the
two following assumptions:

i) K separates B(x0, r0) (as in Definition 2.2);
ii) β(x0, r0) ≤ ε0.

In this case we can define D±(x0, r0) as in Definition 2.2 and we can also define Ωh(x0, r0), for h = 1, 2
(or simply Ωh), the two connected components of B(x0, r0) \K that contains D±(x0, r0), respectively.

The set B(x0, r0) \K might have other connected components than Ω1 and Ω2 but they are contained
in a narrow strip of thickness ε0r passing through the center of the ball.
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Geometric functions. Geometric functions are Lipschitz functions δ : K ∩ B(x0, 3r0/4) → [0, r0/4]
that we will use to build a covering (B(xi, δ(xi))i of balls centred in K with good overlapping properties.
We will take advantage of them in Section 3 to build extensions via a partition of unity.

Definition 2.4 (Geometric function). Let K be a relatively closed subset of Ω, let x0 ∈ K, r0 > 0,
ε0 ∈ [0, 1/2] be such that K satisfies Hypothesis-H(ε0, x0, r0). Let ρ ∈ [r0/2, 3r0/4] and τ ∈ [8ε0, 1/2].
Then we say that a 100-Lipschitz function

δ : K ∩B(x0, ρ) → [0, r0/4]

is a geometric function with parameters (ρ, τ) if for all x ∈ K ∩B(x0, ρ) and for all r ∈ (δ(x), r0/4], we
have

(2.7) β(x, r) ≤ τ.

Let us make a few comments. We excluded the case r = δ(x) in (2.7) because the flatness β(x, δ(x))
would not be defined when δ(x) = 0. That being said, if δ(x) > 0, we have necessarily β(x, δ(x)) ≤ τ .
To justify it, we distinguish two cases. If 0 < δ(x) < r0/4, we use the fact that for all r ∈ (δ(x), r0/4),

β(x, δ(x)) ≤ r

δ(x)
β(x, r) ≤ r

δ(x)
τ.

If δ(x) = r0/4, we have β(x, δ(x)) ≤ τ as well because of the scaling property of β and because ε0 ≤ τ/8.
A simple example of geometric function is the constant function δ = 2τ−1β(x0, r0)r0 ≤ r0/4. We have

indeed by the scaling property of β,

β(x, δ) ≤ 2
(r0
δ

)
β(x0, r0) ≤ τ.

Remark 2.10 (The Lipschitz condition). The Lipschitz property of δ implies that two balls with nonempty
intersection have comparable radii. More precisely, let us fix 0 ≤ t ≤ 1/300 and let us consider x, y ∈
K ∩B(x0, ρ) such that B(x, tδ(x)) and B(y, tδ(y)) meet. Then we have

|δ(x)− δ(y)| ≤ 100|x− y| ≤ 100(tδ(x) + tδ(y)) ≤ 1
3 (δ(x) + δ(y))

whence

(2.8) 1
2δ(x) ≤ δ(y) ≤ 2δ(x) and |x− y| ≤ 3tδ(x).

In particular, for all y ∈ K ∩B(x0, ρ) ∩B(x, tδ(x)), we have (2.8) as well.

In Lemma 3.2 below, we will see that the condition 2.7 of geometric functions implies that in each ball
B(x, δ(x)), the set K still separates and the two main components of B(x, tδ(x)) \K are still subsets of
Ω1 and Ω2 respectively.

3. The Extension Lemma

We start by motivating this section and introducing one of the main techniques of the next sections.
We consider a Griffith minimizer (u,K) in Ω and x0 ∈ K, r0 > 0 such that B(x0, r0) ⊂ Ω and K separates
B(x0, r0). We let L = f(K) be a deformation of K such that L = K in Ω \ B(x0, r0). We would like
to use the minimality of (u,K) to compare HN−1(K ∩ B(x0, r0)) and HN−1(L ∩ B(x0, r0)). If K is a

smooth surface, it could be possible to build a function v ∈ W 1,2
loc (Ω \L) such that v = u in Ω \B(x0, r0)

and ˆ
B(x0,r0)\L

|e(v)|2 dx ≤ C

ˆ
B(x0,r0)\K

|e(u)|2 dx .

Then the energy comparison between (u,K) and (v, L) yield

(3.1) HN−1(K ∩ B(x0, r0)) ≤ HN−1(L ∩B(x0, r0)) + ω(x0, r0)r
N−1
0 .

Here, we see that the energy control the minimality of K under deformation. Once we will prove that ω
decays as a power, (3.1) will allow us to conclude that K has an almost-minimal area under deformation.
Then our ε-regularity theorem will follow from the regularity theory of almost-minimal sets. The goal of
this section is to build such a function v without assuming K smooth a priori. The lack of regularity of
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K will force us to add a certain “wall set” Z where the extension v does not connect well with u and
where we cannot estimate its elastic energy.

To simplify, let us say that K delimits two sides Ω1 and Ω2 in B(x0, r0). For some ρ ∈ (1/2, 3/4), we
partially cover K ∩ B(x0, ρ) by a sequence of balls (Bi)i = (B(xi, ri))i centred on K which are induced
by a geometric function (i.e., ri ∼ δ(xi) for some geometric function δ). Then for each h = 1, 2, we want
to build a Sobolev function vh on Ωh ∪

⋃
i 10Bi which is a kind of extension of u|Ωh

. Without loss of
generality, let us focus on v1. For an isolated ball Bi, we would define v1 in 10Bi ∪ Ω1 as follow. We set
v1 as a well-chosen rigid motion in 9Bi and then v1 = u in Ω1 \ 10Bi whereas the part Ω1 ∩ 10Bi \ 9Bi is
a transition area. However, the lack of Korn-Poincaré inequality prevent us from estimating the energy
of v1 in the part of the transition area that is near K. Therefore, we never consider isolated balls but
we build v1 via a partition of unity with respect to the family (Bi), taking advantage of the overlapping
properties induced by δ. Each of these balls is equipped with an orientation νi, which is a unit vector
pointing in the direction of Ω1. We will need that when two balls Bi and Bj meet, their radii are
comparable and their orientation are very close. We will also need that for all ball Bi, the part of the
transition area Ω1∩10Bi\9Bi at distance ≤ ri from K is covered by other balls 9Bj , with j ̸= i. Thus, v1
is an interpolation of ridig motion in the bad part the transition area near K and this allows to estimate
the elastic energy of v without the Korn-Poincaré inequality. However, we cannot estimate the energy
of v1 in the balls Bi which meet ∂B(x0, ρ) because we cannot find other balls 9Bj anymore to cover the
bad part of the transition area. This limitation will appear in item v) of Lemma 3.3. Therefore, our wall
set Z will be composed of all the balls Bi which meet ∂B(x0, ρ). As said above, this is where we don’t
estimate the energy of v and where v might not connect with u.

Let us mention that there could be other ways to extend v1 and that it is typical for extensions Lemma
to add a wall set Z near K∩∂B(x0, ρ), for some ρ ∈ (1/2, 3/4), where the extension does not connect with

the original function. The simplest example [4, Lemma 4.2] which adds a wall set of size β(x0, r0)r
N−1
0 ,

namely

{x ∈ ∂B(x0, ρ) | dist(x, P ) ≤ β(x0, r0)r0 } ,
where P is an hyperplane which achieves the infimum in the definition of β(x0, r0). The measure of the
wall set then appears as an error term in the estimates that involve the construction of a competitor by
extension. We cannot use [4, Lemma 4.2] however because an error term like β(x0, r0)r

N−1
0 would not

be good enough to bootstrap our joint decay Lemma 6.1. In our extension technique, the size of the wall
set Z is more finely controlled by the chosen geometric function δ inducing (Bi)i.

Taking δ ∼ β(x0, r0)r0 would yield a wall set of size β(x0, r0)r
N−1
0 similar to [4, Lemma 4.2]. But if K

is flat enough near ∂B(x0, ρ), we could rather consider a geometric function δ such that δ(x) → 0 when
x gets closer to ∂B(x0, ρ). The radius ri of the balls Bi would tend to 0 as xi → ∂B(x0, ρ) and possibly
fast enough so that that no balls Bi would meet ∂B(x0, ρ), resulting in an empty wall set Z. However,
we stress that the existence of this kind of geometric function is already a regularity property of K near
∂B(x0, r0).

In Section 5, we will build a certain geometric function δ for which the size of the wall set Z is controlled
by β(x0, r0)m(x0, r0), where m is a quantity called ‘bad mass’. More precisely, Z will be contained in an
open set O such that HN−1(∂O) ≤ Cβ(x0, r0)m(x0, r0). We will set v = 0 in O, add ∂O to the crack
and this will be penalized in the energy of v by an error term β(x0, r0)m(x0, r0). The bad mass can be
interpreted as a way of measuring how K differs from being Reifenberg-flat2. In the particular case where
K is Reifenberg-flat in B(x0, r0), we have m(x0, r0) = 0 and the geometric function δ of Section 5 does
not induce a wall set.

We are now ready to write our extension Lemma. Let K be a relatively closed subset of Ω. Let x0 ∈ K,
r0 > 0 and ε0 ∈ [0, 1/2] be such that K satisfies Hypothesis-H(ε0, x0, r0). We consider two parameters
ρ ∈ [r0/2, 3r0/4] and τ ∈ [8ε0, 1/2] and a geometric function δ with parameters (ρ, τ).

(3.2) We fix U := 105 and we assume in addition that τ ≤ 10−8.

2We say that a relatively closed subset K ⊂ B(x0, r0) is τ -Reifenberg flat in B(x0, r0) for some τ > 0 provided that for
all x ∈ K ∩B(x0, 9r0/10) and for all 0 < r ≤ r0/10, we have βK(x, r) ≤ τ .
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For x ∈ B(x0, ρ), we set

rx := δ(x)/U

and we define Bx as the open ball B(x, rx), which is possibly empty. We will work with balls like Bx,
10Bx, 50Bx and they are small enough to apply Remark 2.10 because 50 rx ≤ δ(x)/300. We define

W =
⋃

x∈K∩B(x0,ρ)

B(x, rx) and W10 =
⋃

x∈K∩B(x0,ρ)

B(x, 10rx)

They are open subsets of B(x0, r0) containing {x ∈ K ∩B(x0, ρ) | δ(x) > 0 } and by Remark 2.10, they
do not contain the points x ∈ K ∩B(x0, ρ) such that δ(x) = 0. We introduce the open set

Z :=
⋃

{B(x, 10rx) | x ∈ K ∩B(x0, ρ), 50B(x, rx) ∩ ∂B(x0, ρ) ̸= ∅ }

which will be our wall set. And finally, we define for h = 1, 2,

Vh := Ωh ∪W.

It is an open set of B(x0, r0) which extends Ωh by adding the nonempty balls Bx centered on K. We will
see later in Lemma 3.3 that W covers the connected components of B(x0, r0) \K that are not contained
in Ω1 or Ω2, i.e.,

B(0, ρ) \ (K ∪ Ω1 ∪ Ω2) ⊂ W.

The rest of this section is devoted to prove the following Lemma.

Lemma 3.1 (Extension Lemma). Under the notation above, for all function u ∈ LD(B(x0, r0) \K) and
for all h = 1, 2, there exists a function vh ∈ LDloc(Vh) and a relatively relatively subset Sh of Vh such
that

W ⊂ Sh ⊂ W10, vh = u in Vh \ Sh

and ˆ
Vh∩B(x0,ρ)\Z

|e(vh)|2 dx ≤ C

ˆ
B(x0,ρ)∩Ωh

|e(u)|2 dx ,

for some universal constant C ≥ 1.

Here one can think of Sh as being essentially equal to W10 but it will be more convenient to have
Sh being a relatively closed subset of Vh. The set Z plays the role of a domain around K ∩ ∂B(x0, ρ)
where we cannot estimate the energy of vh, neither make sure that vh connects with uh. In Section 5, we
will build a geometric function δ for which the size of Z is related to the ‘bad mass’, a quantity which
measures how much K differs from being Reifenberg-flat.

Remark 3.1. Using the inclusion Sh ⊂ W10 and the definition of Z, we see that

Sh \B(x0, ρ) ⊂ Z

and as vh = u in Vh \ Sh, we deduce that

vh = u in Vh \ (B(x0, ρ) ∪ Z) .

We can therefore also control the energy of v in the larger domain Vh \ Z;

ˆ
Vh\Z

|e(vh)|2 dx ≤ C

ˆ
B(x0,r0)

|e(u)|2 dx .
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3.1. The Orientation Lemma. In the next Lemma, we assume that K separates B(x0, r0) and that
K ∩ B(x0, 3r0/4) is covered by balls B(x, r) such that β(x, t) stays small at all intermediate scales
t ∈ [r, r0/4]. We then show that in these balls, K still separates and we can keep track of the Ω1 side
and the Ω2 side. In fact, they cover all the connected components of B(x0, 3r0/4) \K which are not Ω1

or Ω2. We show in addition that the approximation plane of K does not change too much when passing
from a ball B(y, s) to a smaller ball B(x, t) with comparable radius. This is related to the fact that when
the bilateral flatness is small, all the approximation planes must be close to each other.

Lemma 3.2 (Orientation Lemma). Let K be a relatively closed subset of Ω. Let x0 ∈ K, r0 > 0 and
ε0 ∈ [0, 1/2] be such that K satisfies Hypothesis-H(ε0, x0, r0). Let Ω1, Ω2 be the connected components of
B(x0, r0)\K introduced in Definition 2.3. We assume that there exists positive numbers ρ ∈ [r0/2, 3r0/4],
ε ∈ [8ε0, 10

−3] and a function

K ∩B(x0, ρ) −→ [0, r0/4]
x 7−→ rx

such that for all x ∈ K ∩B(x0, ρ), for all r ∈]rx, r0/4], we have

β(x, r) ≤ ε.

Then for all x ∈ K ∩B(x0, ρ) and for all r ∈]rx, r0/4], there exists a unit vector νx ∈ SN−1 such that

{ y ∈ B(x, r) | (y − x) · νx > εr } ⊂ Ω1

{ y ∈ B(x, r) | (y − x) · νx < −εr } ⊂ Ω2.

and in particular

K ∩B(x, r) ⊂ { y ∈ B(x, r) | |(y − x) · νx| ≤ εr }
In addition, whenever for some x, y ∈ K ∩ B(x0, ρ) and t ∈]rx, r0/4], s ∈]ry, r0/4], we have B(x, t) ⊂
B(y, s) and t ≥ s/10, then νx and νy are close to each other in the sense that

νx · νy ≥ 1− 100ε.

Finally, we have

(3.3) B(x0, ρ) \ (K ∪ Ω1 ∪ Ω2) ⊂
⋃

x∈K∩B(0,ρ)

B(x, rx).

Proof. We fix x ∈ K ∩ B(x0, ρ). We start by justifying that the property holds in the ball B(x, r0/4).
We proceed as in the usual proof of the inequality β(x, r0/4) ≤ 8β(x0, r0). According to Hypothesis-
H(ε0, x0, r0), there exists a unit vector ν0 such that

(3.4) K ∩B(x0, r0) ⊂ {x ∈ B(x0, r0) | |(x− x0) · ν0| ≤ ε0r0 } .

Moreover, we can orient ν0 in such a way that

{ y ∈ B(x0, r0) | (y − x0) · ν0 > ε0r0 } ⊂ Ω1

{ y ∈ B(x0, r0) | (y − x0) · ν0 < −ε0r0 } ⊂ Ω2.

Since x ∈ K ∩ B(x0, r0), we have |(x− x0) · ν0| ≤ ε0r0 by (3.4). For all y ∈ B(x, r0/4) such that
(y − x) · ν0 > ε(r0/4), we have (y − x) > 2ε0r0 because ε0 ≥ 8ε and we deduce that

(y − x0) · ν0 = (y − x) · ν0 + (x− x0) · ν0
> ε0r0,

whence y ∈ Ω1. One can deal similarly with the other side.
Next, we consider two points x, y ∈ K ∩ B(x0, ρ) and two radii t ∈]rx, r0/4], s ∈]ry, r0/4], such that

B(x, t) ⊂ B(y, s) and t ≥ s/10. We assume that B(y, s) satisfy the property and we are going to deduce
that B(x, t) satisfies it as well. Let νy be a unit vector such that

K ∩B(y, s) ⊂ { z ∈ B(y, s) | |(z − y) · νy| ≤ εs }
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and

A1(y, s) := { z ∈ B(y, s) | (z − y) · νy > εs } ⊂ Ω1

A2(y, s) := { z ∈ B(y, s) | (z − y) · νy < −εs } ⊂ Ω2.

Since β(x, t) ≤ ε, there also exists a unit vector νx such that

(3.5) K ∩B(x, t) ⊂ { z ∈ B(x, t) | |(z − x) · νx| ≤ εt } .

Without loss of generality, we orient νx so that νx · νy ≥ 0.
In this paragraph, we use repeateadly the fact that ε ≤ 10−3 without mention. As x ∈ B(y, s), we

know that |(x− y) · νy| ≤ εs. For u ∈ ν⊥y ∩B(0, (1− 20ε)t), the segment

(x+ u) + [−20εt, 20εt]νy

is contained in B(x, t) ⊂ B(y, s) and it connects A1(y, s) to A2(y, s) (here we use |(x− y) · νy| ≤ εs and
t ≥ s/10). The segment crosses K at some point z otherwise A1(y, s) and A2(y, s) would be connected in
B(x0, r0)\K. Equation (3.5) says that |(z − x) · νx| ≤ εt and it implies that |u · νx| ≤ 21εt. We conclude
by homogeneity of the hyperplane ν⊥y that for all u ∈ ν⊥y , we have

|u · νx| ≤
21ε

1− 20ε
|u| ≤ 100ε|u|.

Taking in particular u := νx − (νx · νy)νy (the orthogonal projection of νx on ν⊥y ), we obtain

1− (νx · νy)2 ≤ 100ε.

Since νx · νy ≥ 0, we have

1− (νx · νy)2 = (1− (νx · νy))(1 + (νx · νy)) ≥ 1− νx · νy,

whence the estimate on νx · νy. Next, we want to show that

A1(x, t) := { z ∈ B(x, t) | (z − x) · νx > εt } ⊂ Ω1

A2(x, t) := { z ∈ B(x, t) | (z − x) · νx < −εt } ⊂ Ω2.

The idea is that A1(x, t) and A1(y, s) are two connected subsets of B(x0, r0) \ K with a nonempty
intersection (try the point x + (t/2)νx with ε small enough). Therefore, the union A1(x, t) ∪ A1(y, s) is
also a connected subset of B(x0, r0) \K. The union A1(x, t) ∪ A1(y, s) meets Ω1 because A1(y, s) does
and since Ω1 is a connected component of B(x0, r0) \K, it is completely contained in Ω1.

Now we fix x ∈ B(x0, ρ) and we want to show that for all r ∈]rx, r0/4], the ball B(x, r) satisfies the
property. We can prove it by induction because it holds for r = r0/4 and if it holds for some r ∈]rx, r0/4],
then it also holds for all r′ ∈] max(rx, r/10), r] by the previous paragraph, and we can iterate until we
reach rx.

We come finally to the proof of the inclusion (3.3). It relies on the following intermediate result. Let
x ∈ K ∩B(x0, ρ), let r > 0 be such that B(x, r) ⊂ B(x0, r0) and let ν be a unit vector such that

{ y ∈ B(x, r) | (y − x) · ν > εr } ⊂ Ω1

{ y ∈ B(x, r) | (y − x) · ν < −εr } ⊂ Ω2.

Then, for all y ∈ B(x0, ρ) ∩B(x, 3r/4) \ (K ∪ Ω1 ∪ Ω2), there exists a point x′ ∈ K ∩B(x0, ρ) such that

|y − x′| ≤ 2εr.

The assumptions are satisfied for the ball B(x, r) = B(x0, r0) and all the balls B(x, r) with x ∈ K ∩
B(x0, ρ) and r ∈]rx, r0/4]. The proof of the intermediate result relies on a usual argument but we need
to make sure that x′ stays in B(x0, ρ). We consider z := y− εr(y− x0)/ρ, a small translation of y which
satisfies |z − y| ≤ εr and

(3.6) B(z, εr) ⊂ B(x0, ρ).
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If [y, z] meet K, then the proof is finished. Otherwise z stays in the same connected component of
B(x0, r0) \K as y so

z ∈ B(x, r) \ (K ∪ Ω1 ∪ Ω2) .

The path z+ [−εrν, εrν] is contained in B(x, r) and, depending whether (z−x) · ν ≥ 0 or (z−x) · ν ≤ 0,
it connects z to Ω1 or Ω2. Since z belongs to a connected component of B(x0, r0) \K distinct from Ω1

and Ω2, we deduce that the path must cross K. Hence, there exists x′ ∈ K such that |z − x′| ≤ εr and
thanks to (3.6), x′ ∈ B(x0, ρ). Then, we also have |x′ − y| ≤ 2εr as wanted.

Now, we are ready for the proof of (3.3). We consider y ∈ B(x0, ρ) \ (K ∪ Ω1 ∪ Ω2) and we want to
show that there exists x ∈ K ∩ B(x0, ρ) such that |x− y| < rx. We start by applying the intermediate
result in B(x, r) = B(x0, r0). There exists a point x1 ∈ K ∩B(x0, ρ) such that

|y − x1| ≤ 2εr0.

If 2εr0 < rx1
, then our claim is proved. Otherwise, the radius r1 := (4/3)2εr0 belongs to ]rx1

, r0/4] and
we can apply the intermediate result in the ball B(x1, r1); there exists x2 ∈ K ∩B(x0, ρ) such that

|y − x2| ≤ (4/3)(2ε)2r0.

If (4/3)(2ε)2r < rx2
, then our claim is proved. Otherwise, we iterate as before with the radius r2 :=

(4/3)2(2ε)2r0 which belongs to ]rx2
, r0/4]. If the process never stops, there exists a sequence (xk)k≥1 in

K such that

|y − xk| < (4/3)k−1(2ε)kr0

so y ∈ K. Contradiction. □

3.2. Proof of the Extension Lemma.

Proof. Throughout the proof, the letter C is a constant ≥ 1 that depends only on N and whose value
might change from one line to another. We recall that for x ∈ B(x0, ρ), we set rx = δ(x)/U . We consider
a maximal family (Wi)i∈I in

{B(x, rx) | x ∈ K ∩B(x0, ρ), δ(x) > 0 }

such that whenever i ̸= j,
1
10Wi ∩ 1

10Wj ̸= ∅.

We let xi ∈ K ∩ B(x0, ρ) denotes the center of Wi and ri > 0 its radius, so that Wi = B(xi, ri) with
ri = δ(xi)/U .

Lemma 3.3. Here we recall that K satisfies hypothesis-H(x0, r0, ε0), we recall the open sets Ω1, Ω2

introduced in Definiton 2.3 and we recall that U = 105 and 8ε0 ≤ τ ≤ 10−8.

i) For all x, y ∈ K ∩B(x0, ρ) such that y ∈ 50Bx, we have rx/2 ≤ ry ≤ 2rx.

ii) For all x, y ∈ K ∩ B(x0, ρ) such that 50Bx ∩ 50By ̸= ∅, we have rx/2 ≤ ry ≤ 2rx. Moreover, if
10Bx ∩ 10By ̸= ∅, then |x− y| ≤ 30rx and in particular, 10By ⊂ 50Bx.

iii) For all x ∈ K ∩ B(x0, ρ), for all r ∈]rx, r0/4], we have β(x, r) ≤ τU . In particular, there exists
a unit vector νx such that

K ∩B(x, r) ⊂ { y ∈ B(x, r) | |(y − x) · νx| ≤ τUr }

and

{ y ∈ B(x, r) | (y − x) · νx > τUr } ⊂ Ω1

{ y ∈ B(x, r) | (y − x) · νx < −τUr } ⊂ Ω2.

We have also

B(x0, ρ) \ (K ∪ Ω1 ∪ Ω2) ⊂ W.
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iv) We have

{ y ∈ K ∩B(x0, ρ) | δ(y) > 0 } = { y ∈ K ∩B(x0, ρ) | y ∈
⋃
i

Wi }

= { y ∈ K ∩B(x0, ρ) | ∃x ∈ K ∩B(x0, ρ), y ∈ 50Bx }
and for all t > 0, ⋃

y∈K∩B(x0,ρ)

B(y, trx) ⊂
⋃
i

(2t+ 1)Wi.

v) Let k be an index such that 50Wk ⊂ B(x0, ρ). Then for all x ∈ 10Wk such that dist(x,K) ≤ 2rk,
there exists an index i such that x ∈ 9Wi.

vi) There exists a universal constant C ≥ 1 such that for all x ∈ K ∩ B(x0, ρ) with δ(x) > 0, there
exists at most C balls 50Wi which meet 50Bx.

vii) The family (50Wi)i is locally finite in

B(x0, r0) \ {x ∈ K ∩B(x0, ρ) | δ(x) = 0 } .
viii) There exists a universal constant C ≥ 1 such that for all x ∈ B(x0, ρ), there at most C balls 50Wi

which contains x.

Proof.
Item i) and ii). They are immediate consequences of Remark 2.10.

Item iii). We check that for all x ∈ K ∩ B(x0, ρ) and for all r ∈]rx, r0/4], we have β(x, r) ≤ τU .
If r > δ(x), then it holds by definition of the geometric function. Otherwise rx < r ≤ δ(x) and since
rx = δ(x)/U , we get

β(x, r) ≤ δ(x)

rx
β(x, δ(x)) ≤ τU.

The properties stated in this item follows from an application of Lemma 3.2 with ε := τU ≤ 10−3.

Item iv). For y ∈ K ∩ B(x0, ρ) such that δ(y) > 0, there exists an index i such that the ball
1
10B(y, ry) meet 1

10Wi. As in Remark 2.10, |y − xi| ≤ 3ri/10 < ri so y belongs to Wi. Reciprocally, for

y ∈ K ∩B(x0, ρ) such that there exists x ∈ K ∩B(x0, ρ) with y ∈ 50Bx, we have δ(x) > 0 (because 50Bx

is non empty) so δ(y) > 0 by item i). Finally, for all y ∈ K ∩B(x0, ρ), we have either δ(y) = 0 and thus
B(y, try) = ∅ or there exists i such that |y − xi| < ri and ry ≤ 2ri so B(y, try) ⊂ (2t+ 1)Wi.

Item v). We fix k such that 50Wk ⊂ B(x0, ρ). For x ∈ 10Wk such that dist(x,K) ≤ 2rk, there exists
y ∈ K such that |x− y| ≤ 2rk and since y ∈ 50Wk ⊂ B(x0, ρ), we have rk ≤ 2ry. We apply iv) to
conclude that

x ∈ B(y, 2rk) ⊂ B(y, 4ry) ⊂
⋃
i

9Wi.

Item vi). We fix a point x ∈ K ∩ B(x0, ρ) such that δ(x) > 0. Whenever a ball 50Wi meet 50Bx, we
have ri/2 ≤ rx ≤ 2ri and |x− xi| ≤ 50ri + 50rx ≤ 150rx so Wi ⊂ 200Bx. Thus, the set

(3.7)
{

1
10Wi

∣∣ 50Wi ∩ 50Bx ̸= ∅
}

is composed of disjoint balls whose radii are bounded from below by rx/20 and which are contained in
200Bx. We deduce that the cardinal of (3.7) is bounded by a universal constant.

Item vii). We want to prove that for all

x ∈ B(x0, r0) \ {x ∈ K ∩B(x0, ρ) | δ(x) = 0 } ,
there exists a neighborhood of x which meet only a finite number of balls (50Wi)i. According to item
iv), we have

B(x0, r0) \ {x ∈ K ∩B(x0, ρ) | δ(x) = 0 }

=
⋃

{ 50By | y ∈ K ∩B(x0, ρ) } ∪B(x0, r0) \
[
K ∩B(x0, ρ)

]
.
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If there exists y ∈ K ∩ B(x0, ρ) such that x ∈ 50By, we must have in particular δ(y) > 0 and then the
previous item shows that 50By has the required property. We now focus on the points x ∈ B(x0, r0) \[
K ∩B(x0, ρ)

]
. We proceed by contradiction and assume that there is a sequence of distincts elements

(Wik)k∈N extracted from (Wi) such that dist(x, 50Wik) → 0 when k → +∞. The balls (1/10)Wik

are disjoint and contained in B(x0, r0) so their radii must go to 0 as k goes to +∞. We deduce that
dist(x, xik) → 0, where xik denotes the center of Wik . But since the points xik belong to K ∩ B(x0, ρ),
we must have x ∈ K ∩B(x0, ρ). Contradiction.

Item viii). In view of the two previous items, it suffices to focus on the points x ∈ K ∩ B(x0, ρ) such
that δ(x) = 0. But there are no ball 50Wi containing x (otherwise rx ≥ ri/2 > 0). □

Let us draw two consequences of Lemma 3.3. According to item iv), we have

(3.8) W ⊂
⋃
i

3Wi,

where we recall that W =
⋃
{Bx | x ∈ K ∩B(x0, ρ) }. Next, we observe that according to item vii), the

family (50Wi) is locally finite in each open set Vh = Ωh ∪W .
For every ball Wi, we consider a function φi ∈ C∞

c (RN ) with compact support on 10Wi, equal to 1
on 9Wi and such that 0 ≤ φi ≤ 1. We also choose φi so that its Lipschitz constant is ≤ 2r−1

i . Frow now
on, we fix h = 1, 2. Letting spt(φi) denote the compact support of φi in 10Wi, we define

(3.9) Sh := Vh ∩
⋃
i

spt(φi).

Since the family (10Wi)i is locally finite in Vh, the set Sh is a relatively closed subset of Vh. It is also
clear using (3.8) and spt(φi) ⊂ 10Wi that

W ⊂ Sh ⊂ W10.

We are going to complete the family (φi)i with a function φ0 to obtain a partition of unity in Vh.

Lemma 3.4. There is a function φ0 ∈ C∞(Vh) such that 0 ≤ φ0 ≤ 1,

φ0 = 1 in Vh \ Sh,

φ0 = 0 in
⋃
i

9Wi

and

(3.10) Vh ∩ {φ0 ̸= 0 } ⊂ Ωh \
⋃
i

9Wi.

We also have

φ0 +
∑
i≥1

φi ≥ 1 in Vh

and there is a universal constant C ≥ 1 such that for all k, for all x ∈ 10Wk,

|∇φ0(x)|+
∑
i∈I

|∇φi(x)| ≤ Cr−1
k .

Proof. The letter C denotes a constant ≥ 1 that depends only on N but whose value might change from
one line to another. We define

φ0(x) =
∏
i∈I

(1− φi).

Thanks to item vii) of Lemma 3.3, we know that every point x ∈ Vh admits a neighborhood which meets
a finite number of balls 10Wi. Therefore, φ0 is well defined and smooth. We can say more about the
Lipschitz constant of φ0 in a fixed set 10Wk. According to vi), there exists a universal constant C ≥ 1
such that at most C balls 10Wi meet 10Wk. Moreover, we have in this case rk/2 ≤ ri ≤ 2rk. So in the set
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10Wk, φ0 is a product of C functions which are Cr−1
k -Lipschitz and with range in [0, 1] so it itself Cr−1

k -

Lipschitz. By the same argument, the sum
∑

i∈I φ
j is Cr−1

k -Lipschitz in 10Wk. It is straightforward that
φ0 = 1 in Vh \ Sh. It is also clear that φ0 = 0 in

⋃
i 9Wi whence

Vh ∩ {φ0 ̸= 0 } ⊂ Vh \
⋃
i

9Wi.

But Vh = (Ωh ∪W ) and we have seen in (3.8) that W ⊂
⋃

i 9Wi so we have in fact

Vh ∩ {φ0 ̸= 0 } ⊂ Ωh \
⋃
i

9Wi.

The property (3.4) follows from the observation that for all sequence (tk)k∈N in [0, 1], we have∏
k

(1− tk) +
∑
k

tk ≥ 1.

It can be proved by induction because for all s, t ∈ [0, 1], s(1− t) + t ≥ s. □

We set for i ∈ I,

θi =
φi

φ0 +
∑

i∈I φi

and

θ0 =
φ0

φ0 +
∑

i∈I φi
.

Now we have a smooth partition of unity on Vh. The information that we have gathered imply easily
that for all k ∈ I, the function θi is Cr−1

k -Lipschitz in Vh ∩ 10Wk.
We are ready to build the functions vh. For each i, there exists an hyperplane Pi passing through xi

such that

K ∩ 10Wi ⊂ {x ∈ 10Wi | dist(x, Pi) ≤ 10τUri }
and a unit normal vector νi to Pi such that

A1(xi, 10ri) := { y ∈ 10Wi | (y − xi) · νi > τUri } ⊂ Ω1

A2(xi, 10ri) := { y ∈ 10Wi | (y − xi) · νi < −τUri } ⊂ Ω2.

Now, we define

ai1 = xi + 8riνi

ai2 = xi − 8riνi

and Di
h = B(aih, ri) for h = 1, 2. We also denote by Ri

h the averaged rigid displacement of u on Di
h;

Ri
h : x 7→

 
Di

h

u(y) dy +

( 
Di

h

∇u(y)−∇u(y)T

2
dy

)(
x−

 
Di

h

y dy

)
.

Finally, we define on Vh, the function

vh(x) := θ0(x)u(x) +
∑
i∈I

θi(x)R
i
h.

It is clear that vh ∈ LDloc(Vh) and that vh = u in Vh \ Sh, where Sh is the relatively closed subset of Vh

defined in (3.9) by

Sh = Vh ∩
⋃
i

spt(φi).

We are going to show that for all k such that 50Wk ⊂ B(x0, ρ), we have

(3.11)

ˆ
Vh∩10Wk

|e(vh)|2 dx ≤ C

ˆ
Ωh∩50Wk

|e(u)|2 dx .

We require 50Wk ⊂ B(x0, ρ) so that the right-hand side integral in (3.11) does not outreach B(x0, ρ) but
also because we will use crucially the item v) of Lemma 3.3. Let us explain how to conclude from (3.11).
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Thanks to item viii) of Lemma 3.3, the sum of indicators functions
∑

i 150Wi
is bounded by a constant

C so we can add up the local inequalities in (3.11) to obtain
ˆ
Vh∩A

|e(vh)|2 dx ≤ C

ˆ
B(x0,ρ)∩Ωh

|e(u)|2 dx ,

where A :=
⋃
{ 10 Wi | 50Wi ⊂ B(x0, ρ) }. As

Sh = Vh ∩
⋃
i

spt(φi) ⊂ Vh ∩
⋃
i

(10Wi),

we have Sh \ Z ⊂ Vh ∩A and thus

(3.12)

ˆ
Sh\Z

|e(vh)|2 dx ≤ C

ˆ
B(x0,ρ)∩Ωh

|e(vh)|2 dx

Finally, we use the fact that vh = uh in Vh \ Sh to conclude
ˆ
Vh∩B(x0,ρ)\Z

|e(vh)|2 dx ≤ C

ˆ
B(x0,ρ)∩Ωh

|e(vh)|2 dx .

From now on, we fix an index k such that 50Wk ⊂ B(x0, ρ) and we prove (3.11). We define Ik the set of
index i ∈ I such that 10Wi ∩ 10Wk ̸= ∅. In particular, we recall that for i ∈ Ik, we have rk/2 ≤ ri ≤ 2rk,
|xi − xk| ≤ 30rk and 10Wi ⊂ 50Wk. We want to show first that for all i ∈ Ik,

(3.13)

ˆ
10Wk

|Ri
h −Rk

h|
2
dx ≤ Cr2k

ˆ
Ωh∩50Wk

|e(u)|2 dx .

We cannot apply the Korn-Poincaré inequality in the whole ball 10Wk (because the structure of K is
a priori unknown) but we will apply it in a Lipschitz regular open subset set Dh of B(x0, ρ) ∩ Ωh of
diameter ≤ 100rk and which contains all the Di

h for i ∈ I. We consider an hyperplane P passing through
xk such that

K ∩ 50Wk ⊂ { y ∈ 50Wk | dist(y, P ) ≤ 50τUrk }

and a unit normal vector ν to P such that

A1(xk, 50rk) := { y ∈ 50Wk | (y − xk) · ν > 50τUrk } ⊂ Ω1

A2(xk, 50rk) := { y ∈ 50Wk | (y − xk) · ν < −50τUrk } ⊂ Ω2.

It will be useful to observe, as in Remark 2.9, that for all x ∈ P ∩ 50Wk, we have d(x,K) ≤ 100τUrk ≤
rk/2. Now, we introduce

D1 := { y ∈ 49Wk | (y − xk) · ν > (3/2)rk }(3.14a)

D2 := { y ∈ 49Wk | (y − xk) · ν < −(3/2)rk } .(3.14b)

It is clear that Dh ⊂ Ωh because Dh ⊂ Ah(xk, 50rk). We are going to justify that for all i ∈ Ik, the ball
Di

h = B(aih, ri) is contained in Dh. We fix i ∈ Ik and we recall that rk/2 ≤ ri ≤ 2rk and |xi − xk| ≤ 30rk.
By construction, we have Di

h ⊂ 9Wi so Di
h ⊂ 48Wk. Then, we show that (ai1 − xk) · ν > (7/2)rk and

(ai2 − xk) · ν < −(7/2)rk. We only detail the case h = 1. Since xi ∈ K ∩ 10Wi ⊂ K ∩ 50Wk, we have
|(xi − xk) · ν| ≤ 50τUrk. By Lemma 3.2, we also know that νi · ν ≥ 1 − 100τU . Using the formula
ai1 = xi + 8riνi, we have

(ai1 − xk) · ν = 8(νi · ν)ri + (xi − xk) · ν
≥ 8(1− 100τU)ri − 50τUrk

≥ 4(1− 100τU)rk − 50τUrk

≥ (7/2)rk,
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because τU ≤ 10−3. It follows that Di
h = B(aih, ri) ⊂ B(aih, 2rk) ⊂ Dh. Note also that the diameter of

Dh is bounded by 100rk and is comparable to radii of all the balls Di
h for i ∈ Ik. We estimate the L2

norm of Ri
h −Rk

h in Dk
h using the Korn-Poincaré inequality,ˆ
Dk

h

|Ri
h −Rk

h|
2
dx ≤

ˆ
Dh

|Ri
h −Rk

h|
2
dx

≤ 2

ˆ
Dh

|Ri
h − u| 2 dx+ 2

ˆ
Dh

|u−Rk
h|

2
dx

≤ Cr2k

ˆ
Dh

|e(u)| 2 dx .

As Ri
h −Rk

h is an affine function, we haveˆ
20Dk

h

|Ri
h −Rk

h|
2
dx ≤ C

ˆ
Dk

h

|Ri
h −Rk

h|
2
dx

and since 10Wk ⊂ 20Dk
h, the estimate (3.13) is now proved.

We come back to the estimation of
´
Vh∩10Wk

|e(vh)|2 dx. Using e(Ri
h) = 0, we compute

e(vh) = ∇θ0 ⊙ u+ θ0e(u) +
∑
i≥1

∇θi ⊙Ri
h,

where given two vectors v, w ∈ RN ,

v ⊙ w :=
vwT + wvT

2
=

(
viwj + vjwi

2

)
ij

∈ MN×N .

Since (θi)i is a partition of unity, we know that θ0 +
∑

i∈I θi = 1 hence we can substract Rk
h and obtain

e(vh) = ∇θ0 ⊙ (u−Rk
h) + θ0e(u) +

∑
i∈I

∇θi ⊙ (Ri
h −Rk

h).

so

|e(vh)| ≤ |∇θ0||u−Rk
h| + |θ0e(u)|+

∑
i∈I

|∇θi||Ri
h −Rk

h| .

To deal with the first term, we show that

(3.15) {x ∈ Vh ∩ 10Wk | ∇θ0 ̸= 0 } ⊂ Dh.

As we have seen in Lemma 3.4, we have ∇θ0 = θ0 = 0 in
⋃

9Wi, whence

{x ∈ Vh ∩ 10Wk | ∇θ0 ̸= 0 } ⊂ Vh ∩ 10Wk \
⋃
i

9Wi

= Ωh ∩ 10Wk \
⋃
i

9Wi.

Then we recall that 50Wk ⊂ B(x0, ρ), the item v) of Lemma 3.3 and the fact that for x ∈ P ∩ 50Wk, we
have dist(x,K) ≤ rk/2 to see that

Ωh ∩ 10Wk \
⋃
i

9Wi ⊂ {x ∈ Ωh ∩ 10Wk | dist(x,K) > 2rk }

⊂ {x ∈ Ωh ∩ 10Wk | dist(x, P ) > (3/2)rk } ,

which is contained in Dh. Then we use the Korn-Poincaré inequality in Dh to estimateˆ
Vh∩10Wk

|∇θ0|2|u−Rk
h|

2
dx ≤ Cr−2

k

ˆ
Dh

|u−Rk
h|

2
dx

≤ C

ˆ
Dh

|e(u)|2 dx .
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For the second term, there is nothing to do thanks to (3.10) and the fact that |θ0| ≤ 1 in Vh. For the last
term, remember that there are at most C indices in Ik and that for all i ∈ Ik, we have |∇θi| ≤ Cr−1

k in
Vh ∩ 10Wk. We apply (3.13) to deduce∑

i∈I

ˆ
Vh∩10Wk

|∇θi|2|Ri
h −Rk

h|
2
dx ≤ Cr−2

k

∑
i∈Ik

|Ri
h −Rk

h|
2
dx

≤ C

ˆ
Dh

|e(u)|2 dx .

□

Remark 3.2. A careful look at the proof reveals that we have actually proved that for all k such that
50Wk ⊂ B(x0, ρ),

(3.16)

ˆ
Vh∩10Wk

|e(vh)|2 dx ≤ C

ˆ
Dh

|e(u)|2 dx ,

where Dh is defined in (3.14a)-(3.14b) by

D1 := { y ∈ 49Wk | (y − xk) · ν > (3/2)rk } ⊂ Ω1

D2 := { y ∈ 49Wk | (y − xk) · ν < −(3/2)rk } ⊂ Ω2.

The fact that
K ∩ 50Wk ⊂ { y ∈ 50Wk | dist(y, P ) ≤ rk/2 } ,

implies that for y ∈ Dh, we have dist(y,K) ≥ rk. We conclude as we did near (3.12) thatˆ
Sh\Z

|e(vh)|2 dx ≤ C

ˆ
D

|e(u)|2 dx ,

where
D := B(x0, ρ) ∩

⋃
{ y ∈ 50B(x, rx) | x ∈ K ∩B(x0, ρ), dist(y,K) ≥ rx } ,

with Bx = B(x, rx) and rx = δ(x)/U . This estimation is a bit finer than the Lemma’s statement and
will be useful for Proposition 5.3.

Remark 3.3. We also control the L2 norm of the extension vh via the inequality

(3.17)

ˆ
Sh\Z

∣∣v2h∣∣dx ≤ C

ˆ
D

|u|2 dx+ Cr20

ˆ
D

|e(u)|2 dx ,

where as before

D := B(x0, ρ) ∩
⋃

{ y ∈ 50B(x, rx) | x ∈ K ∩B(x0, ρ), dist(y,K) ≥ rx } ,

with Bx = B(x, rx) and rx = δ(x)/U . The control of the L2 norm of vh will not be needed in this paper
but can be used to adapt our technique to a Griffith almost-minimizer with a fidelity term. Inequality
(3.17) follows from the fact that for all k with 50Wk ⊂ B(x0, ρ), we haveˆ

Vh∩10Wk

|vh|2 dx ≤ C

ˆ
Dh

|u|2 dx+ Cr2k

ˆ
Dh

|e(u)|2 dx ,

whose proof is similar to (3.16) stated just above for e(vh) but simpler. Indeed, we recall that for
x ∈ Vh ∩ 10Wk,

vh(x) = θ0(x)u(x) +
∑
i∈Ik

θi(x)R
i
h(x)

and that there are at most C indices in Ik soˆ
Vh∩10Wk

|vh|2 dx ≤ C

ˆ
Vh∩10Wk

|θ0u|2 dx+ C
∑
i∈Ik

ˆ
10Wk

∣∣Ri
h

∣∣2 dx .
Just like (3.15), we have

{x ∈ Vh ∩ 10Wk | θ0 ̸= 0 } ⊂ Dh.
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so we can bound the first term by ˆ
Vh∩10Wk

|θ0u|2 dx ≤
ˆ
Dh

|u|2 dx .

For i ∈ Ik, we use the fact that 10Wk ⊂ 20Dk
h and that Ri

h is an affine map, to see thatˆ
10Wk

∣∣Ri
h

∣∣2 dx ≤ C

ˆ
20Dk

h

∣∣Ri
h

∣∣2 dx ≤ C

ˆ
Dk

h

∣∣Ri
h

∣∣2 dx
and then we can bound ˆ

Dk
h

∣∣Ri
h

∣∣2 dx ≤ 2

ˆ
Dk

h

∣∣Ri
h − u

∣∣2 dx+

ˆ
Dk

h

|u|2 dx

≤ Cr2k

ˆ
Dh

|e(u)|2 dx+

ˆ
Dh

|u|2 dx .

4. Control of the flatness by the minimality defect

The goal of this section is to explain how a small minimality defect implies the decay of the flatness.
We start by introducing the notion of deformation competitor.

Definition 4.1. Let E be a relatively closed subset of Ω. A deformation of E in an open ball B ⊂ Ω
is a Lipschitz function f : E → Ω such that f(E ∩ B) ⊂ B and { f ̸= id } ⊂⊂ B. The image of E by a
deformation is called a deformation competitor of E in B.

Remark 4.1. Topological competitors preserve separation properties. Let us give more details. Let E be
a relatively closed subset of B(0, 1) and let p, q ∈ B(0, 1) \E be two points separated by E in B(0, 1). If
f is a deformation of E in B(0, 1) such that p, q /∈ [x, f(x)] for all x ∈ E, then p and q are still separated
by f(E). Indeed, the theory of Borsuk maps ([19, Chap. XVII, 4.3]) shows that if A is a compact set of
RN which separates two points p, q ∈ RN \A and if ϕ : A× [0, 1] → RN is a continuous map such that

ϕ(·, 0) = id and p, q /∈ ϕ(A× [0, 1]),

then p and q are still separated by ϕ(A, 1). In our case, we can extend f continuously on the compact
set A := E ∪ ∂B(0, 1) by setting f = id on ∂B(0, 1) and we can apply the previous statement with
ϕ(x, t) = (1− t)x+ tf(x).

We now introduce the notion of almost-minimal set and then we show that the flatness of minimal sets
decay as a power. We recall that a gauge is a non-decreasing function h : (0,+∞) → [0,+∞] such that
limt→0+ h(t) = 0. Our definition of almost-minimal sets is slightly different from [11, Definition 1.10,
p.5/841] and [21, Definition 1.6] but it does not matter.

Definition 4.2. Let E be a relatively closed subset of Ω with HN−1-locally finite measure. We say that
E is an almost-minimal set with gauge h in Ω if for all x ∈ E, for all r > 0 such that B(x, r) ⊂ Ω and
for all deformation f of E in B(x, r), we have

HN−1(E ∩B(x, r)) ≤ HN−1(f(E ∩B(x, r))) + h(r)rN−1.

Moreover, we say that E is coral if for all x ∈ E and all r > 0, HN−1(E ∩B(x, r)) > 0.

As usual, if E is almost-minimal with gauge h in a ball B(x0, r0), then the set r−1
0 (E − x0) is almost-

minimal in B(0, 1) with gauge h̃(t) := h(r0t). The next lemma should be standard but since we have
not found the statement in the litterature, we justify it by using the ideas of Allard’s regularity theorem.
The reader can skip the proof.

Theorem 4.1. For all γ ∈ (0, 1), there exists ε∗ ∈ (0, 1) and C∗ ≥ 1 (depending on N , γ) such that
the following property holds. Let r0 > 0, let E be a coral minimal set in B(0, r0) such that 0 ∈ E. If
β(0, r0) ≤ ε∗, then for all 0 < r ≤ r0,

β(0, r) ≤ C∗

(
r

r0

)γ

β(0, r0).
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Proof. We follow the reference [28, Theorem 23.1]. To reduce cumbersome notations, we replace B(0, r0)
by B(0, 2r0) in the assumptions, i.e., we assume that E is minimal in B(0, 2r0) and that β(0, 2r0) ≤ ε∗.

Our minimal set E induces a stationary n-rectifiable varifold V with multiplicity 1 in B(0, 2r0) (see
[28, §15–16]). In Simon’s notation, the letter H stands for the generalized mean curvature of V which is
0, the letter µ stands the weight measure of V which is Hn−1 E, the letter θ stands for the multiplicy
of V which is 1 and the symbol spt(V ) stands for spt(µ) which is the set E (because E is coral).

We let (e1, . . . , eN ) be the canonical basis of RN . We identify RN−1 with the hyperplane of RN

generated by the e1, . . . , eN−1. We decompose each vector x ∈ RN as x = x′ + xNeN , where x′ ∈ RN−1

and xN ∈ R. Without loss of generality, we assume that the hyperplane P = RN−1 achieves the minimum
in the definition of β(0, 2r0).

For x ∈ E ∩B(0, r0) and 0 < r ≤ r0, we introduce

d(x, r) :=
HN−1(E ∩B(x, r))

ωN−1rN−1
,

where ωN−1 is the measure of a (N − 1)-dimensional unit disk. We claim that there exists a universal
constant C ≥ 1 such that

(4.1) d(0, r0) ≤ 1 + Cβ(0, 2r0).

If β(0, 2r0) ≥ 1/4, this is trivial by Ahlfors-regularity of minimal sets ([10, Lemma 2.15]). We pass to the
case β(0, 2r0) ≤ 1/4. We start by introducing the tubular neighborhood

A := {x ∈ B(0, 2r0) | |xN | ≤ β(0, 2r0)r } ,

which, by definition of β(0, 2r0), contains E ∩B(0, 2r0). We also consider the set

F = (∂B(0, r0) ∩A) ∪ (P ∩B(0, r0)).

One can build a Lipschitz function f : RN → RN such that f(B(0, 2r0)) ⊂ B(0, 2r0), { f ̸= id } ⊂⊂
B(0, 2r0),

f(B(0, r0)) ⊂ F

and

f = id in (A \B(0, r0)) .

It is a deformation of E in B(0, 2r0) so

HN−1(E ∩B(0, 2r0)) ≤ HN−1(f(E ∩B(0, 2r0)))

but since f = id in E \B(0, r0), we deduce

HN−1(E ∩B(0, r0)) ≤ HN−1(f(E ∩B(0, r0)).

To conclude, we observe that f(E ∩B(0, r0)) ⊂ F and

HN−1(F ) ≤ ωN−1r
N−1
0 + Cβ(0, 2r0)r

N−1
0 .

Our claim is proved.
For x ∈ E ∩B(0, r0), 0 < r ≤ r0 and for any (linear) hyperplane T , we introduce the tilt-excess

E(x, r, T ) = r1−N

ˆ
E∩B(x,r)

∥pTx − pT ∥2 dHN−1 ,

where Tx is the (linear) approximate tangent plane of E at x, pTx and pT are the orthogonal projection
onto Tx and T respectively and ∥·∥ is the operator norm. If we let νx denote a unit normal vector to Tx

and ν a unit normal vector to T , one can compute that

∥pTx
− pT ∥ =

√
1− (νx · ν)2 = |sin(α)|,

where α is the angle between Tx and T .
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According to Caccioppoli inequality for minimal sets ([28, Lemma 22.2]), there exists a universal
constant C ≥ 1 such that for all (linear) hyperplane T in RN ,

E(0, r0, T ) ≤ Cr1−N
0

ˆ
E∩B(0,2r0)

(
dist(y − x, T )

r

)2

dHN−1 .

We have in particular for all T ,

E(0, r0, T ) ≤ C

(
r−1 sup

y∈E∩B(0,2r0)

dist(y, T )

)2

and thus for T = RN−1,

(4.2) E(0, r0,RN−1) ≤ Cβ(0, 2r0)
2.

From now on, we are going to review the proof of [28, Theorem 23.1] to prove the decay of the flatness.
Here, c ≥ 1 is a generic constant that depends only on N and γ, whose value might change without
mention. To be consistent with Simon’s notation, we define p := n/(1 − γ), where n := N − 1, so that
γ = 1− n/p. We consider a constant ε > 0 that will be chosen small enough depending on N and γ. In
view of (4.1) and (4.2), we can choose ε∗ small enough (depending on N and ε) so that f(0, r0) ≤ 3/2
and E(0, r0,Rn) ≤ ε. Now, provided that ε is small enough (depending on N and p), the assumptions of
[28, Theorem 23.1] are satisfied.

The proof of [28, Theorem 23.1], gives at [28, §22 (11)] that there exists an hyperplane S0 such that
for all 0 < r ≤ r0,

E(0, r, S0) ≤ c

(
r

r0

)2(1−n/p)

E(0, r0,Rn).

We also get at [28, §23 (14) and (19)] that there exists a constant a ∈ (0, 1) (depending on N and p) and
a C1,1−n/p function f : Rn → R such that f(0) = 0, f is (1/2)-Lipschitz,

E ∩B(0, ar0) = graph(f) ∩B(0, ar0)

and for all v ∈ Rn ∩B(0, ar0),

(4.3) |∇f(v)−∇f(0)| ≤ c

(
|v|
r0

)1−n/p

E(0, r0,Rn)
1
2 .

Since limr→0 E(0, r, S0) = 0 and E is a C1 surface in a neighborhood of 0, it is easy to see that T0 = S0,
where T0 is the tangent plane to E at 0. Thus, the vector

ν0 :=
−∇f(0) + eN√
1 + |∇f(0)|2

is a unit normal to S0. For all v ∈ Rn ∩B(0, ar0), we estimate

dist(v + f(v)eN , S0) = |(v + f(v)eN ) · ν0|

=

√
1 + |∇f(0)|2

−1

|f(v)−∇f(0) · v|
≤ |f(v)−∇f(0) · v|

and we deduce by the mean value inequality, (4.3) and (4.2) that

dist(v + f(v)eN , S0) ≤ c|v|
(
|v|
r0

)1−n/p

E(0, r0,Rn)
1
2

≤ c|v|
(
|v|
r0

)1−n/p

β(0, 2r0).
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It follows that for all x ∈ E ∩B(0, ar0),

dist(x, S0) ≤ c|x|
(
|x|
r0

)1−n/p

β(0, 2r0)

and thus for all 0 < r ≤ ar0,

r−1 sup
x∈E∩B(0,r)

dist(x, S0) ≤ c

(
r

r0

)1−n/p

β(0, 2r0).

This is enough to control the bilateral flatness β(0, r) by Remark 2.9 (the set E is a (1/2)-Lipschitz graph
passing through 0 so it separates B(0, r)). The case r ∈ [ar0, 2r0] is trivial because

β(0, r) ≤
(
2

a

)
β(0, 2r0)

and (r/r0)
1−n/p is bounded from below by a1−n/p which depends only on N and p. □

Here is a new proof of [25, Lemma 31] which avoids the “uniform concentration property” (not yet
available in Griffith setting) by exploiting the limiting properties of minimizing sequences (see [13], [15],
[16], [14] or [21]).

Lemma 4.1. Let ε∗ ∈ (0, 1) and C∗ ≥ 1 be the universal constants introduced in Theorem 4.1 for γ = 1/2.
Let E be a relatively closed subset of B(0, 1) such that 0 ∈ E. We assume that there exists C ≥ 1 such
that for all x ∈ E, for all r > 0 with B(x, r) ⊂ B(0, 1), we have

(4.4) HN−1(E ∩B(x, r)) ≥ C−1rN−1.

For all 0 < ε ≤ ε∗ and for all 0 < a ≤ 1/2, there exists a constant λ > 0 (depending on N , C, ε, a) such
that if βE(0, 1) ≤ ε and if for all deformation competitor F of E in B(0, 1), we have

HN−1(E) ≤ HN−1(F ) + λ,

then

βE(0, a) ≤ 4C∗
√
aε.

Proof. We proceed by contradiction. We assume that for all i ∈ N, there exists a relatively closed set Ei

of B(0, 1) which contains 0, which satisfies (4.4) with a uniform constant C and such that

βEi
(0, 1) ≤ ε

βEi
(0, a) ≥ 4C∗

√
aε

but for all deformation f in B(0, 1),

(4.5) HN−1(Ei) ≤ HN−1(f(Ei)) + 2−i.

We start by justifying that the sequence (Ei) has a locally uniformly bounded measure in B(0, 1). Let
us fix an index i, consider a point x0 ∈ B(0, 1) \ Ei (at least one exists because βEi

(0, 1) < 1) and an
open ball B0 such that x0 ∈ B0 ⊂⊂ B(0, 1). We let f : Ei ∩B0 → RN be the radial projection onto ∂B0

centered on x0 and we extend it by the identity map on Ei \ B0. This defines a deformation of Ei in
B(0, 1) that we can use in (4.5) to bound

HN−1(Ei ∩B0) ≤ Cdiam(B0)
N−1 + 1,

for some universal constant C ≥ 1.
Since the sequence of measures (HN−1 Ei)i is locally uniformly bounded in B(0, 1), a subsequence (not

relabeled) converges to a Radon measure µ in B(0, 1). According to [21, Corollary 4.1], the minimality
property (4.5) implies that µ = HN−1 E, where E is the support of µ in B(0, 1). Moreover, E is minimal
in the sense that for all deformation f of E in B(0, 1), one has

HN−1(E) ≤ HN−1(f(E)).
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We also mention [17, Theorem 1.7] as an alternative to [21]. It is itself the conclusion of a series of works
on limits of minimizing sequences [13], [15], [14]. We observe that since E is the support of µ = HN−1 E,
it is in particular a coral set.

Next, we justify that (Ei)i converges to E in local Hausdorff distance in B(0, 1), that is,

E = {x ∈ Ω | lim inf
i

dist(x,Ei) = 0 } = {x ∈ Ω | lim
i

dist(x,Ei) = 0 } .

For all x ∈ E, and for all r > 0 such that B(x, r) ⊂ B(0, 1), we have

0 < µ(B(x, r)) ≤ lim inf
i

Hd(Ei ∩B(x, r))

so for i big enough, Hd(Ei∩B(x, r)) > 0. This proves that lim supi dist(x,Ei) ≤ r but since r is arbitrary
small, we actually have limi dist(x,Ei) = 0. For x ∈ B(0, 1) such that lim infi dist(x,Ei) = 0, there exists
a subsequence (Ej)j and a sequence of points (xj)j such that xj ∈ Ej and xj → x. For all r > 0 small

enough we have B(x, r) ⊂ B(0, 1) and for j big enough, we have B(xj , r/2) ⊂ B(x, r) so using (4.4), we
get

µ(B(x, r)) ≥ lim sup
j

Hd(Ej ∩B(x, r))

≥ lim sup
j

Hd(Ej ∩B(xj , r/2))

≥ C−1(r/2)N−1.

This proves that x ∈ E. We have shown that (Ei)i converges to E in local Hausdorff distance in B(0, 1).
According to Remark 2.7, we have

βE (0, 1) ≤ lim inf
i

βEi(0, 1) ≤ ε

βE (0, 2a) ≥ 1
2 lim sup

i
βEi

(0, a) ≥ 2C∗
√
aε

The set E is a coral minimal in B(0, 1) and satisfies βE(0, 1) ≤ ε∗ so we can apply Theorem 4.1 with
γ = 1/2, r0 = 1, r = 2a to arrive at

βE(0, 2a) ≤ C∗
√
2aβE (0, 1) < 2C∗

√
aε.

Contradiction. □

5. Stopping time and regularity estimates

5.1. Definition of the bad mass. The bad mass is a quantity that measures how much K differs from
being τ -Reifenberg-flat3. According to the Reifenberg parametrization theorem, a 10−3-Reifenberg-flat
set is a Hölder surface.

Let ε∗ ∈ (0, 1) and C∗ ≥ 1 be the universal constants of Theorem 4.1 for γ = 1/2. We fix for the rest
of the paper the following universal constants:

(5.1) τ := min(ε∗, 10
−9), A0 := (4C∗)

2 ≥ 1 and A = UA0.

Here, U = 105 is the constant used in Section 3.
Let (u,K) be a Griffith almost-minimizer with gauge h in Ω. Let x0 ∈ K, r0 > 0 be such that

B(x0, r0) ⊂ Ω, K separates B(x0, r0), h(r0) ≤ εA and

(5.2) β(x0, r0) ≤ τ/(400A).

We recall that εA is the constant used in (2.2) to ensure the Ahlfors-regularity of K in B(x0, r0). We
don’t actually need the almost-minimality of (u,K) to define the bad mass but we will need fact that K
is Ahlfors-regular.

For x ∈ K ∩B(x0, 9r0/10), we define the stopping time function

d(x) := inf { r > 0 | β(x, t) ≤ τ for all t ∈ [r, r0/10] }

3We say that a relatively closed subset K ⊂ B(x0, r0) is τ -Reifenberg flat in B(x0, r0) for some τ > 0 provided that for
all x ∈ K ∩B(x0, 9r0/10) and for all 0 < r ≤ r0/10, we have βK(x, r) ≤ τ .
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and then we define the bad mass of K in B(x0, r0) by

mK(x0, r0) :=
1

rN−1
0

HN−1(K ∩R(x0, r0)),

where

R(x0, r0) :=
⋃{

B(x,Ad(x))
∣∣ x ∈ K ∩B (x0, 9r0/10) such that d(x) > 0

}
.

When there is no ambiguity, we write m(x0, r0) instead of mK(x0, r0). Note that we need the above
assumptions to consider the bad mass to be well-defined in B(x0, r0).

For all x ∈ B(x0, 9r0/10) and 0 < t ≤ r0/10, we have

β(x, t) ≤ (2r0/t)β(x0, r0)

so

(5.3) d(x) ≤ 2τ−1β(x0, r0)r0.

The condition (5.2) gives in particular d(x) ≤ r0/(200A) so 10B(x,Ad(x)) ⊂ B(x0, 99r0/100) and

m(x0, r0) ≤
1

rN−1
0

HN−1(K ∩B(x0, r0)).

Since K is Ahlfors-regular, the bad mass is bounded from above by the Ahlfors-regularity constant of K.
It is immediate from the definition of d that for all t ∈]d(x), r0/10], we have β(x, t) ≤ τ . But if

d(x) > 0, one can also use the usual scaling property (2.5) to see that

β(x, d(x)) = τ.

Remark 5.1. Just like ω(x, r) and β(x, r), the bad mass m(x, r) has scaling properties. Let x ∈ K ∩
B(x0, r0) and r > 0 be such that B(x, 9r/10) ⊂ B(x0, 9r0/10) and such that β(x, r) ≤ τ/(400 A).
This holds true for example if β(x0, r0) is small enough compared to r/r0. Then one can see that
R(x, r) ⊂ R(x0, r0) and

m(x, r) ≤
(r0
r

)N−1

m(x0, r0).

5.2. Preparation of the Extension Lemma. In the next sections, we will obtain three estimates
controlling respectively the bad mass, the minimality defect and the energy decay (Propositions 5.1, 5.2
and 5.3). We will need that β(x0, r0) ≤ ε0, where ε0 > 0 is a small constant such that

(5.4) ε0 is small enough (depending on N).

This means at least that we want (5.2) to hold so that the bad mass in B(x0, r0) is well-defined. But we
will also invoke (5.4) whenever we need ε0 to be less than a universal constant that we don’t try to make
explicit.

The competitors in Propositions 5.1, 5.2, 5.3 are built using the extension Lemma 3.1 with a suitable
geometric function. The stopping time function d introduced above looks very much like a geometric
function except that it is not Lipschitz. We will see in Lemma 5.1 how a Vitali covering of bad balls
(B(xi, d(xi))i induces a natural geometric function δ. When we will apply the extension Lemma with this
geometric function δ and a given radius ρ ∈ [r0/2, 3r0/4], we will check that the “wall set” Z is contained
in
⋃

i∈I(ρ) 10Bi, where

I(ρ) := { i ∈ I | 10Bi ∩ ∂B(x0, ρ) ̸= ∅ } .
The set Z is a domain around K ∩ ∂B(x0, ρ), where the extension v has an unknown elastic energy and
does not connect well with the original function u. Thus, we will force v = 0 in

⋃
i∈I(ρ) 10Bi and this

will add a crack of measure bounded by C
∑

i∈I(ρ) r
N−1
i .

Next, we will see in Lemma 5.2 that, in average, it is possible to choose ρ ∈ [r0/2, 3r0/4] such that this
contribution is bounded by β(x0, r0)m(x0, r0). This term will thus appears in the estimates and should
be thought of as an error term accounting for the wall set introduced in the extension Lemma. If we
knew that K was Reifenberg-flat set, there would be no wall set and no bad mass, making the proof of
our main theorem much more straightforward.



26 C. LABOURIE AND A. LEMENANT

Finally, let us note that the gauge will not play any meaningful role in the proof of Propositions 5.1,
5.2, 5.3 and even Lemma 6.1 in the last section of our article. We will just make sure to work in balls
where h(r) ≤ εA in order to have the Ahlfors-regularity of K. The constants in these propositions will
depend on N and the Ahlfors-regularity constant of K so they will be universals.

We now proceed to extract a Vitali covering of bad balls (Bi)i and deduce a geometric function. From
the family of open balls

{B(x,Ad(x)) | x ∈ K ∩B (x0, 9r0/10) such that d(x) > 0 } ,
the Vitali covering Lemma yields a countable disjoint subfamily (Bi)i∈I such that⋃

i

Bi ⊂ R(x0, r0) ⊂
⋃
i

4Bi.

We let xi ∈ B(x0, 9r0/10) and ri = Ad(xi) denote the center and the radius of Bi, that is, Bi = B(xi, ri).
By construction, we always have ri > 0. According to (5.3), we have

ri ≤ 2Aτ−1β(x0, r0)r0 ≤ Cε0r0,

where C ≥ 1 is a universal constant. The condition (5.4) gives in particular

ri ≤ r0/200 and 10Bi ⊂ B (x0, 99r0/100) .

We observe that by Ahlfors-regulary of K,

m(x0, r0) ≃
1

rN−1
0

∑
i∈I

rN−1
i .

We also have β(x0, r0/4) ≤ τ/(400) by (5.4) so one can see as in Remark 5.1 that R(x0, r0/4) ⊂ R(x0, r0)
and bound

(5.5) m(x0, r0/4) ≲
1

rN−1
0

∑
i∈I0

rN−1
i ,

where I0 = { i ∈ I | 4Bi ∩B(x0, r0/4) ̸= ∅ }. Finally, we consider the function δ : K ∩ B(x0, 3r0/4) →
[0,+∞) defined by

(5.6) δ(x) := inf
i∈I

{ |x− xi|+ ri } ∧ dist

(
x,Rn \

⋃
i

9Bi

)
,

where ∧ denotes the minimum.

Lemma 5.1. Let (u,K) be a Griffith almost-minimizer with gauge h in Ω. Let x0 ∈ K, r0 > 0, ε0 ≥ 0
be such that (5.4) holds, K satisfies Hypothesis-H(ε0, x0, r0) and h(r0) ≤ εA. Then the function δ defined
in (5.6) is 1-Lipschitz and

(1) for all k, δ(xk) = rk;
(2) for all x ∈ K ∩B(x0, 3r0/4), δ(x) ≤ maxk(10rk) ≤ r0/4;
(3) for all x ∈ K ∩B(x0, 3r0/4) and for all r ∈]δ(x), r0/4], we have β(x, r) ≤ 4τ .

Thus, δ is a geometric function with parameters (3r0/4, 4τ). The condition (3.2) in Section 3 is satisfied
with 4τ instead of τ and this will allow us to apply Lemma 3.1.

Proof. It is readily seen that δ is 1-Lipschitz and that δ(xk) ≤ rk. One can see that δ(xk) = rk using the
fact that the balls (Bi)i are disjoint, i.e., for all i ̸= k,

|xi − xk| ≥ ri + rk,

and that
dist(xk,RN \

⋃
i

9Bi) ≥ dist(xk,RN \ 9Bk) ≥ 9rk.

Next, we justify that for all x ∈ K ∩ B(x0, 3r0/4), we have δ(x) ≤ r0/4. If x /∈
⋃

i 9Bi, then δ(x) = 0.
Otherwise, there exists k such that x ∈ 9Bk and thus δ(xk) ≤ |x− xk| + rk ≤ 10rk ≤ r0/4. Finally, we
prove that for all x ∈ K ∩ B(x0, 3r0/4) and for all r ∈]δ(x), r0/4], we have β(x, r) ≤ 4τ . If d(x) = 0,
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this is trivial by definition of d(x). Otherwise, there exists k such that x ∈ 4Bk because (4Bi)i covers
R(x0, r0). In this case,

inf
i∈I

|x− xi|+ ri ≤ |x− xk|+ rk ≤ 5rk

whereas

dist(x,RN \ 9Bk) ≥ 5rk

so δ(x) = infi∈I |x− xi|+ ri. If r ∈]δ(x), r0/20], there exists i such that |x− xi|+ ri ≤ r so in particular,
B(x, r) ⊂ B(xi, 2r) and r ≥ ri > d(xi). As 2r ∈ (d(xi), r0/10), we have β(xi, 2r) ≤ τ and we deduce that

β(x, r) ≤ 4β(xi, 2r) ≤ 4τ.

If r ∈ [r0/20, r0/10], we use β(x0, r0) ≤ ε0 and ε0 ≤ τ/40 to get directly

β(x, r) ≤ 40β(x0, r0) ≤ τ.

□

Lemma 5.2 (Selection of good radii). Let (u,K) be a Griffith almost-minimizer with gauge h in Ω. Let
x0 ∈ K, r0 > 0, ε0 ≥ 0 be such that (5.4) holds, K satisfies Hypothesis-H(ε0, x0, r0) and h(r0) ≤ εA.
Then there exists ρ ∈ [r0/2, 3r0/4] such that∑

i∈I(ρ)

rN−1
i ≤ C0β(x0, r0)m(x0, r0)r

N−1
0 ,

where

I(ρ) := { i ∈ I | 10Bi ∩ ∂B(x0, ρ) ̸= ∅ } .
and C0 ≥ 1 is a universal constant.

Proof. Throughout the proof, the letter C is a universal constant ≥ 1 whose value might change from
one line to another. We select a radius ρ ∈ [r0/2, 3r0/4] such that the mass of the balls (10Bi)i that are
meeting ∂B(0, ρ) is less than average. More precisely, we choose ρ ∈ [r0/2, 3r0/4] such that

∑
i∈I(ρ)

rN−1
i ≤ 4

r0

ˆ 3r0/4

r0/2

 ∑
i∈I(t)

rN−1
i

dt ,

where

I(t) := { i ∈ I | 10Bi ∩ ∂B(0, t) ̸= ∅ } .
Then we use Fubini’s theorem and ri ≤ Cε0r0 to compute

ˆ 3r0/4

r0/2

∑
i∈I(t)

rN−1
i dt ≤

∑
i∈I

ˆ
{ t|i∈I(t) }

rN−1
i dt

≤ C
∑
i∈I

rNi

≤ Cε0m(x0, r0)r
N
0 .

We can apply the whole proof with ε0 = β(x0, r0). □

5.3. Decay of the bad mass. The crucial fact to estimate the quantity m(x0, r0) is that in each bad
ball, we can find a deformation competitor of K which has less measure in a quantified way. We will
use this observation in Proposition 5.1 to build a deformation L of K in B(x0, r0) such that L = K in
Ω \B(x0, r0) and

HN−1(L ∩B(x0, r0)) ≤ HN−1(K ∩B(x0, r0))− C−1m(x0, r0/4)r
N−1
0

We will then build an appropriate function v ∈ W 1,2
loc (Ω \ L) such that (v, L) is a competitor of (u,K) in

B(x0, r0) and compare their Griffith energies to bound m(x0, r0/4) from above.
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Lemma 5.3 (Win of bad mass). Let (u,K) be a Griffith almost-minimizer with gauge h in Ω. Let
x0 ∈ K, r0 > 0, ε0 ≥ 0 be such that (5.4) holds, K satisfies Hypothesis-H(ε0, x0, r0) and h(r0) ≤ εA. For
all i, there exists a deformation competitor L of K in Di := B(xi, A0d(xi)) such that

HN−1(K ∩Di)−HN−1(L ∩Di) ≥ C−1rN−1
i ,

for some universal constant C ≥ 1.

Proof. Let i be a fixed index. By definition of d(xi) and since A0d(xi) ∈]d(xi), r0/10], we have

β(xi, A0d(xi)) ≤ τ

β(xi, d(xi))) ≥ τ.

We recall that we have chosen τ and A0 in (5.1) in such a way that τ ≤ ε∗ and A0 ≥ (4C∗)
2. We apply

Lemma 4.1 in Di with ε = τ and a = A−1
0 and since

β(xi, A0d(xi)) ≤ ε

β(xi, d(xi))) ≥ 4C∗
√
aε,

there exists a universal constant λ > 0 and a deformation competitor L or K in B(x, r) such that

HN−1(K ∩Di)−HN−1(L ∩Di) ≥ λ(A0d(xi))
N−1.

□

Proposition 5.1 (Control of the bad mass). Let (u,K) be a Griffith almost-minimizer with gauge h
in Ω. Let x0 ∈ K, r0 > 0, ε0 ≥ 0 be such that (5.4) holds, K satisfies Hypothesis-H(ε0, x0, r0) and
h(r0) ≤ εA. Then we have

m(x0, r0/4) ≤ C [ω(x0, r0) + β(x0, r0)m(x0, r0) + h(r0)] ,

for some universal constant C ≥ 1.

Proof. Throughout the proof, the letter C is a universal constant ≥ 1 whose value might change from
one line to another. We recall that

m(x0, r0/4) ≤
C

rN−1
0

∑
i∈I0

rN−1
i ,

where I0 = { i ∈ I | 4Bi ∩B(x0, r0/4) ̸= ∅ }, see (5.5). Let us note that for i ∈ I0, we have Bi ⊂
B(x0, r0/2) (because ri < r0/200). We find more convenient to work with a finite number of balls so we
consider a finite subset J ⊂ I0 such that

(5.7) m(x0, r0/4) ≤
C

rN−1
0

∑
i∈J

rN−1
i .

For all i ∈ J , Lemma 5.3 yields a competitor Li of K in the ball Di = B(xi, A0d(xi)) ⊂ Bi such that

(5.8) HN−1(L ∩Di) ≤ HN−1(K ∩Di)− C−1rN−1
i .

We introduce

L :=

(
K \

⋃
i∈J

Di

)
∪
⋃
i∈J

(Li ∩Di) .

For each i ∈ J , there exists a deformation fi of K in Di such that Li = fi(K). The balls (Di)i∈J are
mutually disjoint and contained in B(x0, r0/2) so we can glue the deformation fi to obtain a deformation
f of K in B(x0, r0/2) such that L = f(K). Let us note that L coincides with K outside B(x0, r0/2). We
recall that there exists an hyperplane P0 (of unit vector ν0) passing through x0 such that K∩B(x0, r0) ⊂
{dist(·, P0) ≤ ε0 } and such that the sets

{x ∈ B(x0, r0) | (x− x0) · ν0 > ε0r0 }
{x ∈ B(x0, r0) | (x− x0) · ν0 < −ε0r0 }
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belong to different connected component of B(x0, r0)\K, denoted by Ω1 and Ω2. According to the theory
of Borsuk maps (see Remark 4.1), the sets

{x ∈ B(x0, r0) | (x− x0) · ν0 > r0/2 }
{x ∈ B(x0, r0) | (x− x0) · ν0 < −r0/2 }

also lie in different connected component of B(x0, r0) \ L, denoted by X1 and X2 respectively, and we
have for h = 1, 2,

(5.9) Xh ⊂ Ωh ∪
⋃
i∈J

Di.

Let us note that Xh \B(x0, r0/2) = Ωh \B(x0, r0/2). To conclude this paragraph, we use (5.8) and (5.7)
to estimate

HN−1(L ∩B(x0, r0)) ≤ HN−1(K ∩B(x0, r0))− C−1
∑
i∈J

rN−1
i

≤ HN−1(K ∩B(x0, r0))− C−1m(x0, r0/4)r
N−1
0 .(5.10)

We would like to build a function v ∈ LD(B(x0, r0) \ L) such that (v, L) is a competitor of (u,K) in
B(x0, 9r0/10) and the energy of v is under control, i.e.,ˆ

B(x0,r0)\L
|e(v)|2 dx ≤ C

ˆ
B(x0,r0)\K

|e(u)|2 dx .

For this purpose, we use the extension vh built in Lemma 3.1. However, there is a certain set Z where
we don’t control the energy of vh so we will force vh = 0 in an open set O containing Z and we will add
∂O to the crack.

We use Lemma 5.2 to select a radius ρ ∈ [r0/2, 3r0/4] such that

(5.11)
∑

i∈I(ρ)

rN−1
i ≤ Cε0m(x0, r0)r

N−1
0 ,

where

I(ρ) = { i ∈ I | 10Bi ∩ ∂B(x0, ρ) ̸= ∅ } .
Then we introduce

G := L ∪
⋃

i∈I(ρ)

∂(10Bi).

We observe that

G \B (x0, 9r0/10) = K \B (x0, 9r0/10)

because L coincides with K outside B(x0, r0/2) and for all i ∈ I(ρ), 10Bi ⊂ B(x0, 9r0/10). Next, we
are going to justify that G is relatively closed in Ω. The family of spheres (∂(10Bi))i∈I(ρ) might have
accumulation points but we are going to see that they can only be located on K ∩ ∂B(x0, ρ), which is a
subset of L and thus of G. For

x ∈
⋃

i∈I(ρ)

∂(10Bi) \
⋃

i∈I(ρ)

∂(10Bi),

we can extract a sequence of distincts elements (10Bik)k∈N from the family (10Bi)i∈I(ρ) such that

dist(x, 10Bik) → 0 when k → +∞. The balls (Bik)k are disjoint and contained in B(x0, r0) so their
radii must go to 0 as k goes to +∞. We deduce that dist(x, xik) → 0, where xik denotes the center of
Bik . But since the points xik belong to K and the balls 10Bik meet ∂B(x0, ρ) by definition of I(ρ), we
must have x ∈ K ∩ ∂B(x0, ρ) ⊂ L. This proves that we have in fact

G = L ∪
⋃

i∈I(ρ)

∂(10Bi).
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To conclude this paragraph, we use (5.11) and (5.10) to estimate

HN−1(G ∩B(x0, r0)) ≤ HN−1(L ∩B(x0, r0)) +
∑

i∈I(ρ)

HN−1(∂(10Bi))

≤ HN−1(K ∩B(x0, r0))− C−1m(x0, r0/4)r
N−1
0 + Cε0m(x0, r0)r

N−1
0 .(5.12)

Now, we build a function v ∈ LD(B(x0, r0) \ G) such that (v,G) is a competitor of (u,K) in
B(x0, 9r0/10) and the energy of v is under control, i.e.,

(5.13)

ˆ
B(x0,r0)\G

|e(v)|2 dx ≤ C

ˆ
B(x0,r0)\K

|e(u)|2 dx .

We apply Lemma 3.1 with respect to the geometric function δ defined in (5.6) and the radius ρ ∈
[r0/2, 3r0/4] selected above. We obtain functions vh ∈ LDloc(Vh) (for h = 1, 2) and a relatively closed
subset Sh of Vh = Ωh ∪W such that

W ⊂ Sh ⊂ W10, vh = u in Vh \ Sh

and ˆ
Vh∩B(x0,ρ)\Z

|e(vh)|2 dx ≤ C

ˆ
B(x0,ρ)∩Ωh

|e(u)|2 dx .

We recall that

W =
⋃

{B(x, δ(x)/U) | x ∈ K ∩B(x0, ρ) }

W10 =
⋃

{B(x, 10δ(x)/U) | x ∈ K ∩B(x0, ρ) }

and

Z :=
⋃

{B(x, 10δ(x)/U) | x ∈ K ∩B(x0, ρ), B(x, 50δ(x)/U) ∩ ∂B(x0, ρ) ̸= ∅ } .

We are going to justify that

(5.14) Xh ⊂ Vh

and

(5.15) Z ⊂
⋃

i∈I(ρ)

10Bi.

The inclusion (5.14) is a rather easy implication of (5.9) and the fact that, since δ(xi) = ri = Ad(xi) and
A = UA0, we have

Di = B(xi, A0d(xi)) = B(xi, δ(xi)/U).

Now, we consider x ∈ K∩B(x0, ρ) such that B(x, 50δ(x)/U)∩∂B(x0, ρ) ̸= ∅. As x belongs toK∩B(x0, ρ)
and is such that δ(x) > 0, then it follows from the definition of δ that there exists i such that x ∈ 9Bi so

δ(x) ≤ |x− xi|+ ri ≤ 10ri.

In addition, recall that U = 105 so B(x, 50δ(x)/U) ⊂ 10Bi. We have proved (5.15).
In this last paragraph, we are going to use repeatedly and without mention the fact that when V ⊂

B(x0, r0) is an open set that is disjoint from K ∩ ∂B(x0, ρ) (we think mainly of the case V ⊂ Xh), then
the set V \

⋃
i∈I(ρ) 10Bi is open. This is not straightforward because

⋃
i∈I(ρ) 10Bi may not be closed but

we have already seen this kind of argument: for the points

x ∈
⋃

i∈I(ρ)

10Bi \
⋃

i∈I(ρ)

10Bi,

we can show that x ∈ K ∩ ∂B(x0, ρ) so x /∈ V . This proves that

V \
⋃

i∈I(ρ)

10Bi = V \
⋃

i∈I(ρ)

10Bi.
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We are ready to define our function v. According to (5.14), we have Xh ⊂ Vh so vh ∈ LDloc(Xh). By
(5.15) and the comment just below Lemma 3.1, we actually have

v ∈ LD

Xh \
⋃

i∈I(ρ)

10Bi


and

vh = u in Xh \

B(x0, ρ) ∪
⋃

i∈I(ρ)

10Bi

 .

We finally define v ∈ LD(B(x0, r0) \G) by

v =


v1 in X1 \

⋃
i∈I(ρ) 10Bi

v2 in X2 \
⋃

i∈I(ρ) 10Bi

u in B(x0, r0) \
(
L ∪X1 ∪X2 ∪

⋃
i∈I(ρ) 10Bi

)
0 in

⋃
i∈I(ρ) 10Bi.

This is a well-defined function in LD(B(x0, r0) \ G) because the piecewise domains in the construction
are disjoint open sets which cover Ω \ G. We have v = u outside B(x0, 9r0/10) because B(x0, ρ) ⊂
B(x0, 9r0/10) and for all i ∈ I(ρ), 10Bi ⊂ B(x0, 9r0/10). The pair (v,G) is thus a competitor of (u,K)
in B(x0, 9r0/10) and we can compare their energies (with (5.12) and (5.13)) to obtain

ˆ
B(x0,r0)\K

|e(u)|2 dx+HN−1(K ∩B(x0, r0)) ≤ C

ˆ
B(x0,r0)\K

|e(u)|2 dx+HN−1(K ∩B(x0, r0))

− C−1m(x0, r0/4)r
N−1
0 + Cε0m(x0, r0)r

N−1
0 + h(r0)r

N−1
0 .

Of course, we can apply the whole proof with ε0 = β(x0, r0). □

5.4. Control of the minimality defect. The next proposition shows that the minimality defect is
bounded by the normalized elastic energy and the error terms βm and h. This control in turns the
flatness via Lemma 4.1.

Proposition 5.2 (Control of the minimality defect). Let (u,K) be a Griffith almost-minimizer with gauge
h in Ω. Let x0 ∈ K, r0 > 0 and ε0 ≥ 0 be such that (5.4) holds, K satisfies Hypothesis-H(ε0, x0, r0) and
h(r0) ≤ εA. Then for all deformation competitor L of K in B(x0, κr0), we have

(5.16)
[
HN−1(K ∩B(x0, κr0))−HN−1(L ∩B(x0, κr0))

]
≤ C [ω(x0, r0) + β(x0, r0)m(x0, r0) + h(r0)] r

N−1
0 ,

for some universal constant C ≥ 1 and κ = 10−6.

We don’t know apriori what is the competitor of K with minimal area in B(x0, κr0). In dimension
2, if K ∩ ∂B(x0, κr0) is composed of two points p, q, the best possible competitor consists in replacing
K by the segment [p, q]. In higher dimension, if K coincides with a Lipschitz graph on ∂B(x0, κr0), a
clever choice of competitor would be the harmonic graph spanning K∩∂B(x0, κr0). These are the typical
competitors used in the theory of almost-minimal sets.

Let us explain how Proposition 5.2 allows to control the flatness. Let ε∗ ∈ (0, 1) and C∗ ≥ 1 be
the universal constants introduced in Theorem 4.1 for γ = 1/2. Let us assume ε0 small enough so that
ε0 ≤ ε∗ and let us fix a universal parameter 0 < a ≤ 1/2 such that 4C∗

√
a ≤ 1. Since β(x0, r0) ≤ ε0,

Lemma 4.1 tells us that if the right-hand side of (5.16) is small enough compared to ε0, then β(x0, aκr0) ≤
4C∗

√
aε0 ≤ ε0. Hence we see that when ω, m and h are small, the flatness decays.

Proof. Throughout the proof, the letter C is a universal constant ≥ 1 whose value might change from
one line to another. The proof is very similar to the proof of Proposition 5.1 but instead of deforming K
in small balls Di, we will deform K is a single large ball at the center. This will force us to enlarge the
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geometric function δ at the center. Most of the technical details are the same as in the proof Proposition
5.1 so we will often skip them.

We will work with the geometric function δ1 : K ∩B(x0, 3r0/4) → [0, r0/4] defined by

(5.17) δ1(x) := max { r0/4− |x− x0|, δ(x) } .

It is still a 1-Lipschitz geometric function with parameters (3r0/4, 4τ) but now we have δ1(x0) = r0/4. We
recall that U = 105 and we observe that for κ = 1/(10U) = 10−6, we have B(x0, κr0) ⊂ B(x0, δ1(x0)/U).
This means that the domain of the extension in Lemma 3.1 will be large enough to contain B(x0, κr0).

We fix f be a deformation of K in B(x0, κr0) and we introduce L := f(K). We note that L coincides
with K outside B(x0, κr0) ⊂ B(x0, r0/2). We recall that there exists an hyperplane P0 (of unit vector
ν0) passing through x0 such that K ∩B(x0, r0) ⊂ {dist(·, P0) ≤ ε0 } and such that the sets

{x ∈ B(x0, r0) | (x− x0) · ν0 > ε0r0 }
{x ∈ B(x0, r0) | (x− x0) · ν0 < −ε0r0 }

belong to different connected component of B(x0, r0)\K, denoted by Ω1 and Ω2. According to the theory
of Borsuk maps (see Remark 4.1), the sets

{x ∈ B(x0, r0) | (x− x0) · ν0 > r0/2 }
{x ∈ B(x0, r0) | (x− x0) · ν0 < −r0/2 }

also lie in different connected component of B(x0, r0) \ L, denoted by X1 and X2 respectively, and we
have

(5.18) Xh ⊂ Ωh ∪B(x0, κr0).

We note that Xh \B(x0, r0/2) = Ω \B(x0, r0/2).
We use Lemma 5.2 to select a radius ρ ∈ [r0/2, 3r0/4] such that∑

i∈I(ρ)

rN−1
i ≤ Cε0m(x0, r0)r

N−1
0 ,

where

I(ρ) = { i ∈ I | 10Bi ∩ ∂B(x0, ρ) ̸= ∅ } .
Then we define

G := L ∪
⋃

i∈I(ρ)

∂(10Bi).

We observe that G is relatively closed in Ω and

G \B (x0, 9r0/10) = K \B (x0, 9r0/10) .

We apply Lemma 3.1 with respect to the geometric function δ1 defined in (5.17). We obtain functions
vh ∈ LDloc(Vh) (for h = 1, 2) and a relatively closed subsets Sh of Vh = Ωh ∪W such that

W ⊂ Sh ⊂ W10, vh = u in Vh \ Sh

and ˆ
Vh∩B(x0,ρ)\Z

|e(vh)|2 dx ≤ C

ˆ
B(x0,ρ)∩Ωh

|e(u)|2 dx .

We check that

(5.19) Xh ⊂ Vh

and

(5.20) Z ⊂
⋃

i∈I(ρ)

10Bi.

The proof of the similar inclusions in Proposition 5.1 does not apply directly because δ1 is larger than
δ. The inclusion (5.19) still works thanks to (5.18) and because we have chosen κ so that B(x0, κr0) ⊂
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B(x0, δ1(x0)/U). We pass to (5.20). For x ∈ K ∩ B(x0, ρ) such that B(x, 50δ1(x)/U) ∩ ∂B(x0, ρ) ̸= ∅,
we have

|x− x0| ≥ ρ− 50δ1(x)/U ≥ r0/2− 50r0/(4U) ≥ r0/4

so δ1(x) = δ(x) and from there, we can follow the proof of the similar inclusion in Proposition 5.1.
We can finally define v ∈ LD(B(x0, r0) \G) by

v =


v1 in X1 \

⋃
i∈I(ρ) 10Bi

v2 in X2 \
⋃

i∈I(ρ) 10Bi

u in B(x0, r0) \
(
L ∪X1 ∪X2 ∪

⋃
i∈I(ρ) 10Bi

)
0 in

⋃
i∈I(ρ) 10Bi.

It is clear that v = u outside B(x0, 9r0/10). The pair (v,G) is a competitor of (u,K) in B(x0, 9r0/10) so
we can compare their energies and obtainˆ

B(x0,r0)\K
|e(u)|2 dx+HN−1(K ∩B(x0, r0)) ≤ C

ˆ
B(x0,r0)\K

|e(u)|2 dx+HN−1(L ∩B(x0, r0))

+ Cε0m(x0, r0)r
N−1
0 + h(r0)r

N−1
0 .

□

5.5. Decay of the energy. Our last estimate deals with the decay of the normalized elastic energy.
The decay of ω as a power is normally an elliptic regularity property (when h = 0, u solves a elliptic
PDE with a Neumann boundary condition on each side of K) which requires K to be regular enough.
Since we don’t know the regularity of K a priori and we have a gauge h in the minimality condition, we
do not get ω(x, r) ≤ Crα at once. Instead, we show that ω decays when β is small enough and when the
error terms βm and h are small compared to ω.

Proposition 5.3 (Decay of the energy). Let (u,K) be a Griffith almost-minimizer with gauge h in Ω.
Let x0 ∈ K, let r0 > 0 be such that B(x0, r0) ⊂ Ω, h(r0) ≤ εA and K separates B(x0, r0). For all
0 < b ≤ 1, there exists εe > 0 (depending on N , b) such that if

β(x0, r0) ≤ εe and m(x0, r0)β(x0, r0) + h(r0) ≤ εeω(x0, r0),

then

ω(x0, br0) ≤ Cbω(x0, r0),

for some universal constant C ≥ 1.

Remark 5.2. Note that if β(x0, r0) ≤ εe, either m(x0, r0)β(x0, r0) + h(r0) ≤ εeω(x0, r0) holds and we
have

ω(x0, br0) ≤ Cbω(x0, r0),

either it does not hold and we have

ω(x0, r0) ≤ ε−1
e (m(x0, r0)β(x0, r0) + h(r0)).

In all cases, we have

(5.21) ω(x0, br0) ≤ Cbω(x0, r0) + Cb[m(x0, r0)β(x0, r0) + h(r0)],

where Cb ≥ 1 depends on N and b. We will always use Proposition 5.3 via (5.21) in the rest of the paper.

As usual, the term m(x0, r0)β(x0, r0) comes from the wall set of the extension Lemma 3.1. It would
be simpler to use an extension Lemma that adds a wall Z of measure ≤ Cβ(x0, r0)r

n−1
0 (as in [4, Lemma

4.2]) but the resulting estimate would be

ω(x0, br0) ≤ Cbω(x0, r0) + Cb[β(x0, r0) + h(r0)]

instead of (5.21) and this would not be good enough to conclude that ω decays a power. One of the
point of the bad mass is that once we know that β stays small at all scales and location (i.e. that K
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is Reifenberg-flat), then m disappears and (5.21) gives the decay of ω in a quite straightforward way
(provided that h decays as a power).

Proof. Throughout the proof, the letter C is a universal constant ≥ 1 whose value might change from
one line to another. The case 1/2 ≤ b ≤ 1 is trivial so we only focus on the case 0 < b < 1/2. By scaling,
it suffices to prove the result in B := B(0, 1). Then, the argument is by contradiction and compactness.
We fix a parameter b ∈ (0, 1/2) and a constant Ce ≥ 1. If the Lemma is false for this choice of constants,
then there exists a sequence of Griffith almost-minimizers (vn,Kn) with gauge hn in B such that 0 ∈ Kn,
hn(1) ≤ εA, the set Kn separates B(0, 1), βn(0, 1) → 0,

ωn(0, 1)
−1 [βn(0, 1)mn(0, 1) + hn(1)] → 0,

and

ωn(0, b) > Cebωn(0, 1),

where βn, ωn, mn are the flatness, the normalized elastic energy and the bad mass defined with respect
to (vn,Kn). Now, our goal is to find a contradiction for Ce big enough, but not depending on b. We
underline that the sets Kn are all Ahlfors-regular in B(0, 1) with the same constant because we have
hn(1) ≤ εA uniformly in n.

We let P0 be the vector subspace of RN generated by the first (N − 1) vectors of the canonic base.
Up to apply a sequence of rotations we may assume that P0 achieves the minimium in the definition of
βn(0, 1). We decompose RN = P0×P⊥

0 and we use the notation x = (x′, xN ), where x′ ∈ P0 and xN ∈ R,
for an element of RN . We normalize the energy by setting

un(x) :=
1

√
en

vn(x),

where

en :=

ˆ
B\Kn

|e(vn)|2 dx .

This is well defined because (5.5) directly implies en > 0. In summary, for all n, we have un ∈ LD(B\Kn)
and the following properties:

(5.22)

for all competitor (v, L) for (un,Kn) in B(0, 9/10) we haveˆ
B\Kn

|e(un)|2 dx+ e−1
n HN−1(Kn) ≤

ˆ
B\Kn

|e(v)|2 dx+ e−1
n HN−1(L) + e−1

n hn(1),

ˆ
B\Kn

|e(un)|2 dx = 1,

0 ∈ Kn and εn := max

{
sup

x∈Kn∩B(0,1)

dist(x, P0), sup
x∈P0∩B(0,1)

dist(x,Kn)

}
→ 0,

ˆ
B(0,b)\Kn

|e(un)|2 dx ≥ Ceb
N .

We also write mn := mn(0, 1) to simplify the notations and we recall that

e−1
n (εnmn + hn(1)) → 0.

The strategy of the proof is to be able, by some sort of Γ-convergence technique, to prove that un

admits a limit u which is a minimizer in B \ P0 with energy 1 and for which an inequality of the type
(5.5) is contradicted by elliptic regularity (if Ce is too big). To get a contradiction with that approach,
the main issue is to prove a strong convergence in L2 for e(un). This convergence is false in general, but
here it follows from the minimality property (5.22) of (un,Kn) and the fact that Kn separates.

At the beginning, our proof is similar to [3, Theorem 8.19] but our last step is different and relies on the
construction of an appropriate competitor inspired by [24, Theorem 9]. What makes the construction of a
competitor delicate is that the surface term is penalized in the energy comparison (5.22) by a coefficient
e−1
n which might go to +∞. For each n, we will build a competitor vn of un which adds a wall set
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of size βnmn to the crack and this contribution will disappear in the limit thanks to the assumption
e−1
n βnmn → 0.
In the sequel will shall need to extract several subsequences of un, that we will still denote by un, for

simplicity.

Step 1. Convergence locally in B \P0. We first extract a subsequence such that e(un) converges weakly in
L2 to some e ∈ L2(B;MN×N ), thanks to the energy bound in (5.5). We next show that e is the symmetric
gradient of some displacement. To this aim, we fix 0 < δ < 1/10 and we introduce the Lipschitz domain

Aδ := {x ∈ B | dist(x, P0) > δ } = A+
δ ∪A−

δ ,

where A±
δ are the connected components of Aδ. Note that for such δ, D± := B

(
(0,± 1

2 ),
1
4

)
⊂ A±

δ and
Kn ∩Aδ = ∅ for n large enough (depending on δ). Denoting by

R±
n (x) :=

1

|D±|

ˆ
D±

un(y) dy +

(
1

|D±|

ˆ
D±

∇un(y)−∇un(y)
T

2
dy

)(
x− 1

|D±|

ˆ
D±

y dy

)
,

the rigid motion associated to un in D±, by virtue of the Poincaré-Korn inequality [1, Theorem 5.2], we
get that

∥un −R±
n ∥H1(A±

δ ;RN ) ≤ c∥e(un)∥L2(A±
δ ;MN×N ),

for some constant c > 0 that does not depend on δ since 0 < δ < 1/10.
Thanks to a diagonalisation argument, for a further subsequence (not relabeled), we obtain a func-

tion u ∈ H1(B \ P0;RN ) such that (un − R±
n )n converges weakly to u in H1(A±

δ ;RN ) and strongly in

L2(A±
δ ;RN ), for any 0 < δ < 1/10. In particular, we must have e = e(u). This shows that

e(un) ⇀ e(u) weakly in L2(B;MN×N ),

and

(5.23)

ˆ
B\P0

|e(u)|2 dx ≤ lim inf
n→+∞

ˆ
B\Kn

|e(un)|2 dx = 1.

Step 2. The limit is a minimizer. At this stage, we are able to prove that the limit u is an energy
minimizer in B \ P0, thus is the weak solution of an elliptic system with Neumann boundary conditions
on P0. For that purpose, we will use a jump transfer argument, relying on the fact that Kn separates.
We consider a test function φ ∈ H1(B \ P0;RN ) such that φ = 0 on B \ B(0, 9/10). We denote by
C±

n the connected components of B \ Kn that contains the point (0,±1/2) and we define a function
φn ∈ H1(B \Kn;RN ) by

φn(x) :=


φ(x′, |xN |) in C+

n

φ(x′,−|xN |) in C−
n

0 otherwise.

Then, one can check that φn = 0 on B \B(0, 9/10) and that φn(x) = φ(x) for x ∈ B such that |y| ≥ εn.
By (5.5), εn → 0 so φn → φ strongly in L2(B;RN ) and e(φn) → e(φ) strongly in L2(B;MN×N ).
Therefore, using the minimality property (5.22) to compare (un,Kn) and (un + φn,Kn) and we obtain
that ˆ

B\Kn

|e(un)|2 dx ≤
ˆ
B\Kn

|e(un + φn)|2 dx+ e−1
n hn(1),

which implies, by expanding the squares, that

0 ≤ 2

ˆ
B\Kn

e(un) : e(φn) dx+

ˆ
B\Kn

|e(φn)|2 dx+ e−1
n hn(1).
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Using that e−1
n hn(1) → 0, that e(φn) → e(φ) strongly in L2(B;MN×N ) and e(un) ⇀ e(u) weakly in

L2(B;MN×N ), we can pass to the limit n → +∞ and deduce

0 ≤ 2

ˆ
B\P0

e(u) : e(φ) dx+

ˆ
B\P0

|e(φ)|2 dx ,

or still ˆ
B\P0

|e(u)|2 dx ≤
ˆ
B\P0

|e(u+ φ)|2 dx .

We conclude that u is a weak solution of div(e(u)) = 0 in B(0, 9/10) \ P0 with a Neumann condition on
P0. It follows by elliptic regularity and (5.23) that

(5.24)

ˆ
B(0,b)\P0

|e(u)|2 ≤ Cbn
ˆ
B\P0

|e(u)|2,

for some universal constant C ≥ 1.

Step 3. Convergence of the L2 norms and conclusion. To arrive at a contradiction between (5.24) and
(5.5), we show that

(5.25) lim
n→+∞

ˆ
B(0,b)\Kn

|e(un)|2 =

ˆ
B(0,b)\P0

|e(u)|2 dx .

For that purpose, we take any subsequence such that the left-hand side of (5.25) converges and we consider
the sequence of measures

µn := |e(un)|2LN .

By (5.5), we can bound uniformly µn(B) ≤ 1 and thus we can extract a subsequence such that µn
∗
⇀ µ

in B, for some measure µ. The rest of the proof is devoted to showing

µ = |e(u)|2LN in B(0, 1/2),

which implies (5.25).
We start by investigating the structure of µ away from P0. We claim that, up to use again a diagonal

subsequence, we can assume that (e(un))n converges to e(u) in L2
loc(B \ P0;MN×N ). Indeed, let us take

any ball B(x, r) ⊂ B \P0. As e(un)n ⇀ e(u) weakly in L2(B(x, r)), the strong convergence in L2(B(x, r))
will follow from the convergence of the L2 norms. More specifically, it will follow from the fact that

lim sup
n→+∞

ˆ
B(x,r)

|e(un)|2 dx ≤
ˆ
B(x,r)

|e(u)|2 dx ,

since the reverse inequality with a lim inf is already a consequence of the weak convergence.
We consider a small δ > 0 such that B(x, r + δ) ⊂ B \ P0 and a cut-off function φ ∈ C∞

c (B(x, r + δ))
such that 0 ≤ φ ≤ 1 and φ = 1 on B(x, r). We also work with n big enough so that B(x, r+ δ) ⊂ B \Kn.
We compare (un,Kn) with the competitor (vn,Kn), where

vn := φ(u+R±
n ) + (1− φ)un.

We estimate

|e(vn)| ≤ φ|e(u)|+ (1− φ)|e(un)|+ |∇φ|
∣∣un −R±

n − u
∣∣

and then using the elementary inequality

(a+ b)2 ≤ (1 + ε)a2 +
(
1 + ε−1

)
b2 for all ε > 0
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and the convexity of t 7→ t2, we haveˆ
B(x,r+δ)

|e(vn)|2 dx ≤ (1 + ε)

ˆ
B(x,r+δ)

(φ|e(u)|+ (1− φ)|e(un)|)2 dx

+
(
1 + ε−1

) ˆ
B(x,r+δ)

|∇φ|2
∣∣un −R±

n − u
∣∣2 dx

≤ (1 + ε)

ˆ
B(x,r+δ)

φ|e(u)|2 + (1− φ)|e(un)|2 dx

+
(
1 + ε−1

) ˆ
B(x,r+δ)

|∇φ|2
∣∣un −R±

n − u
∣∣2 dx .

We use almost-minimality property (5.22) of (un,Kn) to compare the energy of un and vn,ˆ
B(x,r+δ)

|e(un)|2 dx ≤
ˆ
B(x,r+δ)

|e(vn)|2 + e−1
n hn(1)

but using the previous estimate, this gives
ˆ
B(x,r+δ)

φ|e(un)|2 dx ≤ (1 + ε)

ˆ
B(x,r+δ)

φ|e(u)|2 dx+ ε

ˆ
B

|e(un)|2

+
(
1 + ε−1

)ˆ
B

|∇φ|2
∣∣un −R±

n − u
∣∣2 dx+ e−1

n hn(1)

and then by definition of φ,
ˆ
B(x,r)

|e(un)|2 ≤ (1 + ε)

ˆ
B(x,r+δ)

|e(u)|2 dx+ ε

ˆ
B

|e(un)|2 dx

+
(
1 + ε−1

) ˆ
B(x,r+δ)

|∇φ|2
∣∣un −R±

n − u
∣∣2 dx+ e−1

n hn(1).

We recall that
´
B
|e(un)|2 dx ≤ 1 and that un − R±

n → u strongly in L2(B(x, r + δ)) so passing to the
limit n → +∞ gives

lim sup
n→+∞

ˆ
B(x,r)

|e(un)|2 dx ≤ (1 + ε)

ˆ
B(x,r+δ)

|e(u)|2 dx+ ε

but since ε > 0 and δ > 0, are arbitrary, we conclude that

lim sup
n→+∞

ˆ
B(x,r)

|e(un)|2 dx ≤
ˆ
B(x,r)

|e(u)|2 dx ,

as claimed.
At this point, we have proved that (e(un))n converges e(u) in L2

loc(B \ P0) and therefore

µ (B \ P0) = |e(u)|2LN .

We now show that

µ
(
P0 ∩B

(
0, 1

2

))
= 0.

Some of the following quantities will depend over n but we will sometimes not specify this dependence
to lighten the notation. By use of Lemma 5.2, we select a radius ρn ∈ [1/2, 3/4] such that∑

i∈I(ρn)

rN−1
i ≤ C0εnmn

for some constant universal constant C0 ≥ 1 and where

I(ρn) = { i ∈ I | 10Bi ∩ ∂B(0, ρn) ̸= ∅ } .

We can extract a subsequence so that (ρn)n converges to some ρ∞ ∈ [1/2, 3/4]. We would also like that
µ(∂B(0, ρ∞)) = 0 but we cannot guarantee this property directly. We need to refine our procedure. Let
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us fix a small ε > 0 and let S be the finite set of radii ρ ∈ [1/2, 3/4] such that µ(∂B(0, ρ)) ≥ ε. According
to the proof of Lemma 5.2, there exists a universal constant C0 ≥ 1 such thatˆ 3/4

1/2

∑
i∈I(t)

rN−1
i dt ≤ C0εnmn

so for any C ≥ 1, the set

(5.26)

 t ∈
[
1
2 ,

3
4

] ∣∣∣∣∣∣
∑

i∈I(t)

rN−1
i dt ≥ Cεnmn


has L1 measure ≤ C−1C0. We take C big enough (depending on N) such that C−1C0 < 1/8. Since S is
finite, we can also consider a small radius r > 0 (which does not depend on n) such that the set

(5.27)
{
t ∈

[
1
2 ,

3
4

] ∣∣ dist(t, S) < r
}

has L1 measure < 1/8. In this way, it is clear that the two bad sets (5.26) and (5.27) cannot cover
[1/2, 3/4] so we can find ρn ∈ [1/2, 3/4] such that dist(ρn, S) ≥ r and

(5.28)
∑

i∈I(ρn)

rN−1
i dt ≤ Cεnmn.

We can extract a subsequence so that (ρn)n converges to some ρ∞ ∈ [1/2, 3/4] and we have moreover,
dist(ρ∞, S) ≥ r. In particular, ρ∞ /∈ S so

(5.29) µ(∂B(0, ρ∞)) ≤ ε.

It will suffice to make ε → 0 at the end of the proof.
Now we fix n and we write ρ = ρn, K = Kn to lighten the notation. We introduce

G := K ∪
⋃

i∈I(ρ)

∂(10Bi).

We observe that G is relatively closed in Ω and that

G \B (0, 9/10) = K \B (0, 9/10) .

We fix some 0 < a ≤ 1/10 and we consider the function f : [0,+∞[→ [0,+∞) defined by

f(t) =


a for t ≤ ρ− a

ρ− t for ρ− a ≤ t ≤ ρ

0 for t ≥ ρ.

We will work with the geometric function δ1 : K ∩B(0, 3/4) → [0, 1/4] defined by

(5.30) δ1(x) := max { f(|x|), δ(x) }.
We recall that according to Lemma 5.1, we have δ(x) ≤ maxk(10rk) ≤ 10Cεn, whereas f(|x|) ≤ a by
construction. We assume n big enough such that 10Cεn ≤ a and in particular, δ1(x) ≤ a, with equality
at points x ∈ K ∩B(0, ρ− a).

We denote by Ω1, Ω2 the two connected components of B(0, 1)\K that contains respective components
of

{ x ∈ B(0, 1) | dist(x, P0) > 1/2 } .
We apply Lemma 3.1 with respect to the geometric function δ1 defined in (5.30). We obtain functions
vh ∈ LDloc(Vh) (for h = 1, 2) and a relatively closed subset Sh of Vh = Ωh ∪W such that

W ⊂ Sh ⊂ W10, vh = u in Vh \ Sh

and, according to Remark 3.2,

(5.31)
∑
h=1,2

ˆ
Sh\Z

|e(vh)|2 dx ≤ C

ˆ
D

|e(un)|2 dx ,
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where

D := B(0, ρ) ∩
⋃

{ y ∈ B(x, 50δ1(x)/U) | x ∈ K ∩B(0, ρ), dist(y,K) ≥ δ1(x)/U } .

We also recall that U = 105, that

W =
⋃

{B(x, δ1(x)/U) | x ∈ K ∩B(0, ρ) }

W10 =
⋃

{B(x, 10δ1(x)/U) | x ∈ K ∩B(0, ρ) }

and

Z :=
⋃

{B(x, 10δ1(x)/U) | x ∈ K ∩B(0, ρ), B(x, 50δ1(x)/U) ∩ ∂B(0, ρ) ̸= ∅ } .
Using the inclusion Sh ⊂ W10 and the definition of Z, we see that

Sh \B(x0, ρ) ⊂ Z

Next, let us check that

Z ⊂
⋃

i∈I(ρ)

10Bi.

It is easy to see that for all 0 ≤ t ≤ ρ, we have t + f(t) ≤ ρ so for x ∈ K ∩ B(0, ρ), we have
B(x, 50f(|x|)/U) ⊂ B(0, ρ). In the case where B(x, 50δ1(x)/U) ∩ ∂B(0, ρ) ̸= ∅, we have necessarily
δ1(x) = δ(x) and from there, we can follow the proof of Proposition 5.1.

In order to use (5.31), we will to replace the sets Sh \ Z and D by simpler domains which do not
depend on n. We introduce

C(a) := { y ∈ RN | dist(y, P0 ∩B(0, ρ− 2a)) < a/(2U) }
and we justify that whenever n is big enough such that εn < a/(2U), we have

(5.32) C(a) ⊂ B(0, ρ) ∩W

and

(5.33) D ⊂ { y ∈ B(0, ρ) | dist(y, P0) ≤ a } \ C(a).

Let’s start with (5.32). It is already clear that C(a) ⊂ B(0, ρ). For y ∈ C(a), there exists x0 ∈
P0 ∩ B(0, ρ − 2a) such that |x0 − y| < a/(2U). Since εn < a/(2U), there also exists x ∈ K such that
|x0 − x| < a/(2U). Notice that x ∈ K ∩B(0, ρ−a) so δ1(x) = a. Then it follows by triangular inequality
that y ∈ B(x, δ1(x)/U) and thus y ∈ W . We pass to (5.33). For y ∈ D, there exists x ∈ K ∩B(0, ρ) such
that y ∈ B(x, 50δ1(x)/U) and dist(y,K) ≥ δ1(x)/U . As |y − x| ≤ 50a/U and dist(x, P0) ≤ εn, we have

dist(y, P0) ≤ 50a/U + εn ≤ a.

We check that y /∈ C(a) by contradiction. We assume that there exists x0 ∈ P0 ∩B(0, ρ− 2a) such that
|y − x0| < a/(2U). As dist(x0,K) ≤ εn, we have

dist(y,K) < a/(2U) + εn < a/U.

Recalling that |x− y| ≤ 50a/U , we also have x ∈ B(0, ρ − a) by the triangular inequality and thus
δ1(x) = a. But then, our initial assumption on y means dist(y,K) ≥ a/U . Contradiction !

We make a last observation before defining our competitor v. According to Lemma 3.3 (applied with
the geometric function δ1), we have

(5.34) B(0, ρ) \ (K ∪ Ω1 ∪ Ω2) ⊂ W

Here, observe that B(0, 1) \ (K ∪Ω1 ∪Ω2) is an open set which is the union of the connected component
of B(0, 1) \K that are neither Ω1, neither Ω2. The inclusion (5.34) says that W cover them in B(0, ρ)
and this is related to the fact seen in Lemma 5.1 that for all x ∈ K ∩ B(0, ρ), for all r ∈ (δ(x), 1/4], the
flatness βK(x, t) is very small (less than some universal constant).

It follows from (5.34) that

∂B(0, ρ) \ (K ∪ Ω1 ∪ Ω2) ⊂ Z ⊂
⋃

i∈I(ρ)

10Bi.
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The set

B(0, 1) \

K ∪ Ω1 ∪ Ω2 ∪
⋃

i∈I(ρ)

10Bi


is open because B(0, 1) \ (K ∪ Ω1 ∪ Ω2) is open and because the topological boundary of the union⋃

i∈I(ρ) 10Bi lies in K∩∂B(0, ρ), as we have seen in earlier proofs. And according to (5.34), its connected

components are either contained in B(0, ρ), or contained in B(0, 1) \B(0, ρ). We will set our competitor
to be v = 0 in the first case and v = un in the second case.

We finally define v ∈ LD(B(0, 1) \G) by

v =



v1 in Ω1 \
⋃

i∈I(ρ) 10Bi

v2 in Ω2 \
⋃

i∈I(ρ) 10Bi

un in B(0, 1) \
(
K ∪ Ω1 ∪ Ω2 ∪B(0, ρ) ∪

⋃
i∈I(ρ) 10Bi

)
0 in B(0, ρ) \

(
K ∪ Ω1 ∪ Ω2 ∪

⋃
i∈I(ρ) 10Bi

)
0 in

⋃
i∈I(ρ) 10Bi.

Note that each domain in the piecewise definition is open. The pair (v,G) is a competitor of (un,K)
in B(0, 9/10) so we can compare their energies using (5.22). We recall that by (5.28), the spheres⋃

i∈I(ρ) ∂(10Bi) add to the crack a contribution bounded by∑
i∈I(ρ)

ri ≤ Cεnmn

so

(5.35)

ˆ
B(0,1)

|e(un)|2 dx ≤
ˆ
B(0,1)

|e(v)|2 dx+ Ce−1
n (εnmn + hn(1)).

We observe that for x ∈ B(0, 1) \ (G ∪ S1 ∪ S2), we have either v = 0 or v = un in a neighborhood of
x (check this for each domain in the definition of v) and in both cases

(5.36) |e(v)| ≤ |e(un)|.

The inequality (5.36) also holds true for points x ∈ B(0, 1) \ (G ∪ B(0, ρ)) since either x /∈ S1 ∪ S2 and
we are back to the previous case, or x ∈ (S1 ∪ S2) \ B(0, ρ) ⊂ Z ⊂

⋃
i 10Bi, where v = 0. In summary,

(5.36) holds true for

x ∈ B(0, 1) \ [G ∪ (B(0, ρ) ∩ (S1 ∪ S2))]

so the energy comparison (5.35) simplifies toˆ
B(0,ρ)∩(S1∪S2)

|e(un)|2 ≤
ˆ
B(0,ρ)∩(S1∪S2)

|e(v)|2 + Ce−1
n (εnmn + hn(1)).

For the points x ∈ B(0, ρ) ∩ (S1 ∪ S2) \ G, we observe furthermore that either x ∈
⋃

i 10Bi, or x ∈
B(0, ρ) \ (K ∪ Ω1 ∪ Ω2 ∪

⋃
i 10Bi) or x ∈

⋃
h=1,2 Ωh ∩ Sh \

⋃
i 10Bi. Here, we have used the fact that

Ω1 ∩ Ω2 = ∅ and W ⊂ Sh ⊂ Ωh ∪W to deduce (S1 ∪ S2) ∩ Ω1 ⊂ S1 ∩ Ω1 (and the same with the indices
reversed). In the first two cases, we have v(x) = 0 in a neighborhood of x so we can also simplify the
right-hand side asˆ

B(0,ρ)∩(S1∪S2)

|e(un)|2 ≤
∑
h=1,2

ˆ
Ωh∩Sh\

⋃
10Bi

|e(vh)|2 + Ce−1
n (εnmn + hn(1)).

To simplify the notations in the integral sign, we have written
⋃
10Bi for

⋃
i∈I(ρ) 10Bi. We use the

inclusion Z ⊂
⋃

i∈I(ρ) 10Bi and (5.31) to bound∑
h=1,2

ˆ
Ωh∩Sh\

⋃
10Bi

|e(vh)|2 ≤
∑
h=1,2

ˆ
Sh\Z

|e(vh)|2 ≤ C

ˆ
D

|e(un)|2
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so we arrive at ˆ
B(0,ρ)∩(S1∪S2)

|e(un)|2 ≤ C

ˆ
D

|e(un)|2 + Ce−1
n (εnmn + hn(1)).

Then we come back to the notation ρ = ρn and we set

Cn(a) := { y ∈ RN | dist(y, P0 ∩B(0, ρn − 2a)) < a/(4U) }
C∞(a) := { y ∈ RN | dist(y, P0 ∩B(0, ρ∞ − 2a)) < a/(4U) } .

We rely on the inclusions (5.32) and (5.33) to simplify the domains of integration;ˆ
Cn(a)

|e(un)|2 dx ≤ C

ˆ
B(0,ρn)∩{ dist(·,P0)≤a }\Cn(a)

|e(un)|2 dx+ Ce−1
n (εnmn + hn(1)).

We let n → +∞ and get

µ (C∞(a)) ≤ Cµ
(
B(0, ρ∞) ∩ { dist(·, P0) ≤ a } \ C∞(a)

)
.

This yields in particular

µ (P0 ∩B(0, ρ∞ − 2a)) ≤ Cµ
(
B(0, ρ∞) ∩ { dist(·, P0) ≤ a } \ P0 ∩B(0, ρ∞ − 2a)

)
and we finally make a → 0 to get

µ (P0 ∩B(0, ρ∞)) ≤ Cµ (P0 ∩ ∂B(0, ρ∞)) .

According to the way we built ρ∞ (see (5.29)), this implies µ (P0 ∩B(0, ρ∞)) ≤ ε. Here, ρ∞ might
depend on ε but since ρ∞ ≥ 1/2 anyway, we conclude that

µ
(
P0 ∩B

(
0, 1

2

))
= 0.

□

6. Joint decay and conclusion

We show in Lemma 6.1 that when all the quantities are small, they stay small at smaller scales. We
deduce in Proposition 6.1 that the bad mass is actually zero and that K is an almost-minimal set with
a gauge of optimal exponent α. Then, our ε-regularity theorem will follow from the regularity theory of
almost-minimal sets.

Lemma 6.1. Let (u,K) be a Griffith almost-minimizer with gauge h in Ω. Let x0 ∈ K, r0 > 0 be such
that B(x0, r0) ⊂ Ω and K separates B(x0, r0). For all ε0 > 0, there exists ε ∈ (0, ε0) (that depends on
N , ε0) such that if

β(x0, r0) + ω(x0, r0) +m(x0, r0) + h(r0) ≤ ε,

then for all 0 < r ≤ r0, K separates B(x0, r) and

β(x0, r) + ω(x0, r0) +m(x0, r0) + h(r0) ≤ ε0.

Proof. We use the letter C as a generic constant ≥ 1 that depends on N . We let b ∈ (0, 1), this constant
will be fixed later and will depend only on N . We let ε0 ∈]0, 1/2] and ε1, ε2, ε3 ∈]0, ε0]. They will will
be chosen small enough depending on N and b but each εi will also depend on the εj for j < i.

Our goal is to prove that the conditions

(6.1)
K separates B(x0, r0) and

β(x0, r0) ≤ ε0, m(x0, r0) ≤ ε1, ω(x0, r0) ≤ ε2, h(r0) ≤ ε3

imply that for all 0 < r ≤ r0,

K separates B(x0, r) and

β(x0, r) ≤ Cε0, m(x0, r) ≤ Cε1, ω(x0, r) ≤ Cε2, h(r) ≤ ε3.

One can deduce the Lemma’s statement.
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We assume (6.1) and we start by showing that

K separates B(x0, br0) and

β(x0, br0) ≤ ε0, m(x0, br0) ≤ ε1, ω(x0, br0) ≤ ε2, h(br0) ≤ ε.

It is clear that h(br0) ≤ ε3 since h is non-decreasing. It is also readily seen with Lemma 2.1 that K
separates B(x0, br0) if ε0 is small enough. We assume that (5.4) holds so that Propositions 5.1, 5.2, and
5.3 can be applied. We also assume ε0 small enough so that m(x0, t) can be estimated by scaling (Remark
5.1) for t ∈ [br0, r0].

We deal with the decay of the bad mass. According to Proposition 5.1 and the scaling property of m,
there exists a universal constant C0 ≥ 1 such that

m(x0, br0) ≤ C0(ε2 + ε0ε1 + ε3).

We choose ε1 in such a way that
C0ε2 = ε1/4.

Then we choose ε0 small enough so that C0ε0 ≤ 1/4 and finally we just choose ε3 very small so that

m(x0, br0) ≤ ε1.

We pass to the energy. We assume ε0 less than the constant εe given by Proposition 5.3 for our choice
of b (which will be fixed at some point). According to Proposition 5.3, and more specifically Remark 5.2,
there exists a constant Cb ≥ 1 (depending on N , b) such that

ω(x0, br0) ≤ Cbε2 + Cb(ε0ε1 + ε3)

≤ Cbε2 + Cb(4C0ε0ε2 + ε3).

We take b small enough so that Cb ≤ 1/2. We then assume ε0 small enough so that 4CbC0ε0 ≤ 1/4 and
finally ε3 small enough so that ω(x0, br0) ≤ ε2.

We are left to deal with the flatness. We recall that ε∗ ∈ (0, 1) and C∗ ≥ 1 are the universal constants
of Theorem 4.1 for γ = 1/2. We recall that κ = 10−6 is the constant of Proposition 5.2. We apply Lemma
4.1 in the ball B(x0, κr0) with the constants

ε := κ−1ε0 and a := κ−1b.

Here, we need to assume ε0 small enough so that ε ≤ ε∗ and b small enough so that a ≤ 1/2. Since

β(x0, κr0) ≤ κ−1β(x0, r0) ≤ ε,

Lemma 4.1 gives a constant λ > 0 (depending on N , ε0) such that if for all deformation competitor L of
K in B(x0, κr0),

HN−1(K ∩B(x0, κr0))−HN−1(L ∩B(x0, κr0)) ≥ λ(κr0)
N−1,

then we have
β(x0, br0) = β(x0, aκr0) ≤ 4C∗

√
aλ.

Moreover, Proposition 5.2 estimates

HN−1(K ∩B(x0, κr0))−HN−1(L ∩B(x0, κr0)) ≤ C(ε0ε1 + ε2 + ε3)r
N−1
0

≤ 3Cε1r
N−1
0 .(6.2)

We assume ε1 small enough (depending on N , α, ε0) so that the left-hand side of (6.2) is ≤ λκN−1 and
this implies

β(x0, br0) ≤ 4C∗
√
aε.

Substituting ε = κ−1ε0 and a = κ−1b, we find

β(x0, br0) ≤ 4C∗κ
−3/2

√
bε0

and we can finally fix b small enough so that β(x0, br0) ≤ ε0.
We now iterate our intermediate result and we obtain that for all n ≥ 0, K separates B(x0, b

nr0) and

β(x0, b
nr0) ≤ ε0, m(x0, b

nr0) ≤ ε1, ω(x0, b
nr0) ≤ ε2, h(bnr0) ≤ ε3.
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We deduce that for all 0 < r ≤ r0, K separates B(x0, r) and

β(x0, r) ≤ Cε0, m(x0, r) ≤ Cε1, ω(x0, r) ≤ Cε2, h(r) ≤ ε3.

□

Proposition 6.1. There exists a universal c ∈ (0, 1) and for each choice of α ∈ (0, 1), ε0 ∈]0, 1/2],
there exists ε ∈ (0, ε0) (depending on N , α, ε0) such that the following holds. Let (u,K) be a Griffith
almost-minimizer with gauge h(t) = h(1)tα in Ω. Let x0 ∈ K, r0 > 0 be such that B(x0, r0) ⊂ Ω, K
separates B(x0, r0) and

β(x0, r0) + ω(x0, r0) +m(x0, r0) + h(r0) ≤ ε,

then for all x ∈ K ∩B(x0, cr0) and for all 0 < r ≤ cr0, we have

β(x, r) ≤ ε0, m(x, r) = 0, ω(x, r) ≤ ε0

(
r

r0

)α

and K is an almost-minimal set in B(x0, cr0) with gauge h̃(r) = ε0(r/r0)
α.

Proof. The letter C as a generic constant ≥ 1 that depends on N and α. Let ω0 > 0 be any constant. Let
ε0 > 0 (it will be chosen later, depending on N , α and ω0) and let ε1 ∈ (0, ε0) be the associated constant
in Lemma 6.1 (depending on N , α, ε0). According to the scaling properties of our different quantities,
there exists ε > 0 (which depends on N , α and ε0) such that if

(6.3) β(x0, r0) + ω(x0, r0) +m(x0, r0) + h(r0) ≤ ε,

then for all x ∈ B(x0, r0/2), we have

β(x, r0/2) + ω(x, r0/2) +m(x, r0/2) + h(r0/2) ≤ ε1

which implies in turn by Lemma 6.1 that for all x ∈ B(x0, r0/2) and all 0 < r ≤ r0/2,

(6.4) β(x, r) + ω(x, r) +m(x, r) + h(r) ≤ ε0.

We assume ε0 ≤ τ (where τ is the universal constant defined in (5.1). It then follows from the definition
of the bad mass, that for all x ∈ B(x0, r0/2) and 0 < r ≤ r0/2,

m(x, t) = 0.

Next, we prove that ω decays with exponent α. Let us fix x ∈ B(x0, r0/2) and r1 = r0/2. Let b ∈ (0, 1)
(which will be chosen small enough, depending on N , α). We assume ε0 small enough in (6.4) so that
Proposition 5.3 applies and give a constant Cb ≥ 1 (depending on N , α, b) such that for all 0 < r ≤ r1,

(6.5) ω(x, br) ≤ Cbω(x, r) + Cbh(r).

We fix b such that Cb ≤ bα/2. We assume ε0 small enough so that ω(x, r1) ≤ ω0 and Cbh(r1) ≤ ω0b
α/2.

Since h decays as a power α, we see that for all k ∈ N,
(6.6) Cbh(b

kr1) = Cbh(r1)b
kα ≤ ω0b

(k+1)α/2.

We are going to deduce by induction on (6.5) that for all k ∈ N,

(6.7) ω(x, bkr1) ≤ ω0b
kα.

The case k = 0 is straightforward and if (6.7) holds at rank k, it also holds at rank k+1 because by (6.5)
and (6.6),

ω(x, bk+1r1) ≤ bαω(x, bkr1)/2 + Cbh(b
kr1)

≤ bα
(
ω0b

kα
)
/2 + ω0b

(k+1)α/2

≤ ω0b
(k+1)α.

This proves our claim. We then deduce from (6.7) and the scaling property of ω that for all 0 < r ≤ r1,

ω(x, r) ≤ Cω0

(
r

r1

)α

.

Note that since h(r1) ≤ ω0, we also have h(r) = h(r1)(r/r1)
α ≤ ω0(r/r1)

α for 0 < r ≤ r1.
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We finally show that the set K is almost-minimal in B(x0, κr1). For all x ∈ K ∩ B(x0, r1) and
0 < r ≤ r1, we apply Proposition 5.2 in B(x, r) and we obtain that for all deformation competitor L in
B(x, κr), we have

HN−1(K ∩B(x, κr))−HN−1(L ∩B(x, κr)) ≤ C [ω(x, r) + h(r)] rN−1

≤ Cω0

(
κr

r0

)α

.

We conclude that K is almost-minimal in B(x0, κr1) with gauge h̃(t) = Cω0(t/r0)
α. One can choose ω0

arbitrary small by taking ε0 small enough and then ε accordingly small in (6.3). □

From the conclusion of Proposition 6.1, the set K is almost-minimal in B(x0, cr0) with a small flatness
and a small gauge. Then, according to the regularity theory of almost-minimal sets, K is a Hölder
differentiable surface in a smaller ball. The exact statement can be found in [11, Theorem 12.25] and
says that if a coral almost-minimal set E is close enough to “full lenght minimal cone X”, then E is a
C1,γ version of X. The theorem is written for two dimensional sets but it hold in higher dimensions as
well in the special case where X is an hyperplane. We state a simplified version for hyperplanes and we
justify below how it can be deduced from [11, Theorem 12.25].

Theorem 6.1. For each choice of α ∈ (0, 1), there exists constants ε0 > 0, and γ ∈ (0, α) (depending
on N , α) such that the following holds. Let E be a coral almost-minimal set with gauge h(t) = h(1)tα in
some open set Ω. Let x0 ∈ E, r0 > 0 be such that B(x0, 100r0) ⊂ Ω and

(6.8) βE(x0, 100r0) + h(100r0) ≤ ε0,

then there is a C1,γ diffeomorphism

ϕ : B(x0, 2r0) −→ ϕ(B(x0, 2r0))

such that ϕ(x0) = x0, Dϕ(x0) is the identity mapping, |ϕ(y)− y| ≤ 10−2r0 for all y ∈ B(x0, 2r0) and

E ∩B(x0, r0) = ϕ(P ∩B(x0, 2r0)) ∩B(x0, r0),

where P is a given hyperplane which achieves the minimum in the definition of βE(x0, 100).

Proof. David’s theorem [11, Theorem 12.25] requires that

(6.9) f(100r0) + dx0,100r0(E,X) + h(100r0) ≤ ε0,

where

(6.10) f(r) =
HN−1(E ∩B(x0, r))

ωN−1rN−1
− lim

s→0

(
HN−1(E ∩B(x0, s))

ωN−1sN−1

)
is the density excess, ωN−1 is the measure of a (N − 1)-dimensional unit disk and dx0,100r0(E,X) is the
normalized local Hausdorff distance between E and a “full lenght minimal cone X” centred at x0. The
right-hand side limit in (6.10) exists because for a coral almost-minimal set E containing x0, the density
s 7→ s1−NHN−1(E ∩B(x0, s)) is nearly non-decreasing ([10, Proposition 5.24]).

The goal of this proof is to justify that the condition (6.8) is a simplification of (6.9) in the special case
where X is an hyperplane passing through x0. First, the bilateral flatness βE(x0, 100r0) is nothing else
than the normalized local Hausdorff distance between E and an hyperplane passing through x0. Next,
we justify that f(100r0) is controlled by βE(x0, 100r0). We start by showing

(6.11) lim
s→0

HN−1(E ∩B(x0, s))

sN−1
≥ ωN−1.

Let θ denotes the value of the limit in (6.11). We have necessarily θ > 0 because almost-minimal sets
are Ahlfors-regular ([10, Lemma 2.15]). According to [10, Proposition 7.21], there exists a coral minimal
cone F centered at the origin (take any blow-up of E at x0 in local Hausdorff distance) such that
HN−1(F ∩B(0, 1)) = θ. The set F is a cone centred at the origin so for all r > 0,

HN−1(F ∩B(0, r)) = rN−1θ.
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The set F is also minimal in RN so for all x ∈ F , the fonction r 7→ r1−NHN−1(F ∩ B(x, r)) is non-
decreasing. One can deduce that for all x ∈ F and for all r > 0,

(6.12) HN−1(F ∩B(x, r)) ≤ θrN−1.

As a minimal set is rectifiable, we should have for HN−1-a.e. x ∈ F ,

(6.13) lim
r→0

HN−1(F ∩B(x, r))

ωN−1rN−1
= 1.

And since HN−1(F ) > 0, there exists a least one point such that (6.13) holds. In combination with
(6.12), this proves that θ ≥ ωN−1. With (6.11) at hand, we see that for 0 < r ≤ 100r0

f(r) ≤ HN−1(E ∩B(x0, r))

ωN−1rN−1
− 1

and we can see as in (4.1) that for 0 < r ≤ 50r0,

HN−1(E ∩B(x0, r))

ωN−1rN−1
− 1 ≤ Cβ(x0, 2r).

It is now clear that (6.8) implies (6.9) (at a smaller scale but it does not matter). □

It is left to improve the assumptions of Proposition 6.1 by initializing m and ω. Our main theorem is
proved by combining Lemma 6.2, Proposition 6.1 and Theorem 6.1.

Lemma 6.2. Let (u,K) be a Griffith almost-minimizer with gauge h in Ω. Let x0 ∈ K, r0 > 0 be such
that B(x0, r0) ⊂ Ω, K separates B(x0, r0) and h(r0) ≤ εA. For all ε0 > 0, there exists c ∈ (0, 1) and
ε ≤ ε0 (both depending on N , ε0) such that if

β(x0, r0) + h(r0) ≤ ε,

then
β(x0, cr0) + ω(x0, cr0) +m(x0, cr0) + h(cr0) ≤ ε0.

Proof. The letter C denotes a generic universal constant ≥ 1. We assume

β(x0, r0) + h(r0) ≤ ε

and we initialize ω to be less than some constant ε1 > 0 at a smaller scale. Let b ∈ (0, 1) (to be chosen
soon, depending on N , ε1) and let εe be the associated constant in Proposition 5.3. We assume ε ≤ εe
so that Proposition 5.3 applies and give us a constant Cb ≥ 1 (depending on N , b) such that

ω(x0, br0) ≤ Cbω(x0, br0) + Cb (β(x0, r0)m(x0, r0) + h(r0))

≤ Cb+ Cb(β(x0, r0) + h(r0)).

Now, we can choose b small enough so that Cb ≤ ε1 and then ε small enough so that ω(x0, br0) ≤ 2ε1.
We can also take ε small enough so that

(6.14) β(x0, br0) + ω(x0, br0) + h(br0) ≤ 3ε1

by the scaling property of β and the monotonicity of h,
Next, we start from (6.14) and we initialize m to be less than some constant ε0 > 0. We assume ε1

small enough so that Proposition 5.1 applies and we get,

m(x0, br0/4) ≤ C(ω(x0, br0) + β(x0, br0)m(x0, br0) + h(br0))

≤ C(ω(x0, br0) + β(x0, br0) + h(br0))

≤ Cε1

which is ≤ ε0 if ε1 is small enough. □
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