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1. Introduction

The problem of rounding more and more a given set Ω ⊂ Rd, keeping fixed its
measure and asymptotically reaching a ball of the same measure, enters in a number
of problems and has been widely considered in the literature. More precisely, given
a bounded open set Ω ⊂ Rd, the goal is to construct a family of domains (Ωt), with
t ∈ [0, 1], such that Ω0 = Ω, Ω1 = Ω∗ where Ω∗ is a ball of the same measure as Ω,
and |Ωt| = |Ω| for all t ∈ [0, 1], where by | · | we denote the Lebesgue measure.

In addition, we require that the mapping t 7→ Ωt be continuous with respect to
some suitable topology, and that the family (Ωt) satisfy some monotonicity property
that will be specified later.

We notice that, without the last monotonicity requirement, a very simple con-
struction would provide a solution. Take indeed a set Ω and a point x0 far enough
from Ω; denoting by B(x0, r) the ball of center x0 and radius r and by ωd the
Lebesgue measure of the unit ball in Rd, the family

Ωt = (1− t)1/dΩ ∪B(x0, rt) with rt =

(
t|Ω|
ωd

)1/d

satisfies the measure constraint |Ωt| = |Ω|, is such that Ω0 = Ω and Ω1 = Ω∗,
and is continuous in several useful topologies. An example of such a family (Ωt) is
illustrated in Figure 1.

The additional monotonicity conditions that we impose consists in the require-
ment that a suitable shape functional F is monotone. For instance we could con-
sider:

- F (Ω) = P (Ω), the perimeter in the sense of De Giorgi, and we require P (Ω)
is nonincreasing;

- F (Ω) = Hd−1(Ω), the Hausdorff d− 1 dimensional measure, and we require
Hd−1(Ω) is nonincreasing;
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Figure 1. The sets Ω0, Ω1/2, Ω1 when Ω is the rectangle ]0, 2[×]0, 1[.

- F (Ω) = T (Ω), the torsional rigidity defined below, and we require T (Ω) is
nondecreasing;

- F (Ω) = λ(Ω), the first eigenvalue of the Dirichlet Laplacian defined below,
and we require λ(Ω) is nonincreasing;

- F (Ω) = h(Ω), the Cheeger constant, and we require h(Ω) is nonincreasing.

In this paper we focus the attention mostly on the first eigenvalue λ(Ω) and on the
torsional rigidity T (Ω).

More precisely, λ(Ω) is the first eigenvalue of the Laplace operator −∆ with
Dirichlet conditions on ∂Ω, that is the minimal value λ such that the PDE{

−∆u = λu in Ω ,

u ∈ H1
0 (Ω),

has a nonzero solution. Equivalently, by the min-max principle (see for instance
[11]) λ(Ω) can be defined through the minimization of the Rayleigh quotient, as

λ(Ω) = min

{[∫
Ω

|∇u|2 dx
][ ∫

Ω

u2 dx
]−1

: u ∈ H1
0 (Ω), u 6= 0

}
.

An important bound for λ(Ω) is the Faber-Krahn inequality (see for instance [11],
[12])

λ(Ω∗) ≤ λ(Ω) ,

which can be stated in a scaling free form as

|Ω|2/dλ(Ω) ≥ |B|2/dλ(B),

where B is any ball in Rd.
The torsional rigidity T (Ω) is defined as

∫
Ω
uΩ dx, where uΩ is the unique solution

of the PDE {
−∆u = 1 in Ω ,

u ∈ H1
0 (Ω) ,

or equivalently through the maximization problem

T (Ω) = max

{[∫
Ω

u dx
]2[ ∫

Ω

|∇u|2 dx
]−1

: u ∈ H1
0 (Ω), u 6= 0

}
,

where the maximum is reached by uΩ itself. Also for T (Ω) an important inequality
holds, the Saint-Venant inequality

T (Ω) ≤ T (Ω∗) ,
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which can be stated in a scaling free form as

|Ω|−(d+2)/dT (Ω) ≤ |B|−(d+2)/dT (B)

where B is any ball in Rd.
The monotonicity properties we require to the family (Ωt) are then:

- the mapping t 7→ λ(Ωt) is nonincreasing;
- the mapping t 7→ T (Ωt) is nondecreasing.

Concerning the continuity of the map t 7→ Ωt our requirement is that the solutions
ut of the PDEs {

−∆ut = f in Ωt ,

ut ∈ H1
0 (Ωt) ,

vary continuously in t with respect to the strong H1(Rd) convergence, for every
right-hand side f ∈ L2(Rd). This is the γ-convergence, that we describe more
precisely in Section 2.

When instead of a continuous family (Ωt) we consider the discrete case of a
sequence (Ωn) such that

(i) Ω0 = Ω, |Ωn| = |Ω| for every n, Ωn → Ω∗ in the γ-convergence,
(ii) λ(Ωn+1) ≤ λ(Ωn) and T (Ωn+1) ≥ T (Ωn) for every n,

we have the problem that was first considered by Steiner, who proposed to use
successive symmetrizations through different hyperplanes. More precisely, given a
domain Ω ⊂ Rd and a direction ν, the Steiner symmetrization of Ω with respect to
ν is defined as

Ω∗ν =

{
x ∈ Rd : |x · ν| <

ϕ
(
π(x)

)
2

}
.

Here π(x) = x − ν(x · ν) is the projection of a point x ∈ Rd on the hyperplane
orthogonal to ν and, for each y in this hyperplane,

ϕ(y) = H1
(
Ω ∩ π−1(y)

)
is the length of the y-section of Ω, where by H1 we denote the 1-dimensional Haus-
dorff measure.

Note that the set Ω∗ν has the same volume of Ω and is symmetric with respect to
the hyperplane orthogonal to ν. In addition, it is well-known (see for instance [1])
that the Steiner symmetrization decreases the first eigenvalue and increases the
torsional rigidity, that is

λ(Ω∗ν) ≤ λ(Ω) and T (Ω∗ν) ≥ T (Ω) .

By repeating this symmetrization procedure for a dense sequence of directions ν,
one obtains a sequence Ωn of sets, all with the same measure, which γ-converge as
n→∞ to the ball Ω∗.

The question is now to pass from the discrete Steiner symmetrization to a contin-
uous one. Since successive Steiner symmetrizations allow to pass from a generic set
to a ball, it is enough to construct a continuous family Ωt of sets which transforms
a set Ω into its Steiner symmetrization Ω∗ν for a fixed direction ν. An explicit con-
struction of a family Ωt was proposed by Brock in [4] (see also [5]) and was called
Continuous Steiner Symmetrization. We shortly recall the Brock’s construction in
Section 3.



4 G. BUTTAZZO

Unfortunately, the Brock’s construction provides the γ-continuity of the family Ωt

only in very particular situations, as for instance when the initial domain Ω is con-
vex, while in general discontinuities may occur, due to irregularities of the domains
Ωt. On the other hand, the γ-continuity would be very useful in several situations,
as for instance in the study of some Blaschke-Santaló diagrams, as illustrated in [8].

In the present paper we show that a modification of Brock’s construction could
be enough to provide the required γ-continuity of the family Ωt, at least for a larger
class of domains Ω. In [8] a similar construction was made for polyhedral domains
Ω. Even if the arguments are not complete, we believe it could help to better
understand the difficulties behind the Continuous Steiner Symmetrization.

In the last section we consider a possible alternative approach based on the De
Giorgi theory of minimizing movements.

2. The γ-convergence

In this section we recall the definition and the main properties of γ-convergence;
for all details, proofs, and generalization to the class of capacitary measures, we
refer the interested reader to [6]. For simplicity, we make the assumption that all
the domains we consider are included in a given bounded open subset D of Rd,
which is satisfied for the domains we consider later. In the following, for every
domain Ω, a function in H1

0 (Ω) is considered extended by zero on Rd \ Ω.

Definition 2.1. A sequence (Ωn) of domains ia said to γ-converge to a domain Ω
if for every f ∈ L2(Rd) the solutions un,f of the PDEs{

−∆u = f in Ωn

u ∈ H1
0 (Ωn)

converge weakly in H1(Rd) to the solution uf of the PDE{
−∆u = f in Ω

u ∈ H1
0 (Ω) .

We summarize here below the main properties of the γ-convergence. We refer to
[6] for all the details, properties, and proofs.

• The weak H1(Rd) convergence of un,f to uf is equivalent to the strong
H1(Rd) convergence. Indeed, integrating by parts we obtain∫

|∇un,f |2dx =

∫
un,ff dx→

∫
uff dx =

∫
|∇uf |2dx.

• In the definition above it is not difficult to show that it is equivalent to
require the weak H1(Rd) convergence of un,f to uf for every f ∈ L2(Rd) or
for every f ∈ H−1(Rd). Indeed, if f ∈ H−1(Rd) it is enough to approximate
f by a sequence fk ∈ L2(Rd), in the H−1 norm, to obtain for every test
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function φ∣∣∣∣∫ ∇un,f∇φ dx− ∫ ∇uf∇φ dx∣∣∣∣ =
∣∣∣〈f, φ〉H1

0 (Ωn) − 〈f, φ〉H1
0 (Ω)

∣∣∣
≤
∣∣∣〈fk, φ〉H1

0 (Ωn) − 〈fk, φ〉H1
0 (Ω)

∣∣∣+ εk‖φ‖

=

∣∣∣∣∫ ∇un,fk∇φ dx− ∫ ∇ufk∇φ dx∣∣∣∣+ εk‖φ‖.

where εk → 0. Passing to the limit first as n→∞ and then as k →∞ gives
what claimed.
• The γ-convergence can be defined in a similar way for quasi-open sets Ω ⊂ D

or more generally for capacitary measures µ confined into D (that is µ = +∞
outside D). Quasi-open sets are sets of positivity {u > 0} of functions u ∈
H1(Rd), while capacitary measures are regular nonnegative Borel measures
µ on D, possibly +∞ valued, such that µ(E) = 0 for every Borel set E ⊂ D
with cap(E) = 0. For all details on quasi-open sets and capacitary measures
we refer the interested reader to the book [6]. Here we only recall that for a
capacitary measure µ the corresponding PDE is formally written as{

−∆u+ µu = f in D

u ∈ H1
0 (D) ∩ L2

µ(D)

and has to be intended in the weak sense, that is, u ∈ H1
0 (D) ∩ L2

µ(D) and∫
D

∇u∇φ dx+

∫
D

uφ dµ = 〈f, φ〉

for all φ ∈ H1
0 (D) ∩ L2

µ(D). We notice that open sets or more generally
quasi-open sets can be seen as capacitary measures: for a given domain Ω
the capacitary measure representing it is the measure ∞Ωc defined as

∞Ωc(E) =

{
0 if cap(E ∩ Ω) = 0

+∞ otherwise.

• In Definition 2.1 it is possible to show (see Remark 4.3.10 of [6]) that re-
quiring the convergence of the solutions un to u for every right-hand side
f is equivalent to require the convergence un → u only for f ≡ 1 and in
the L2(D) sense. In particular, calling uµ the unique solution of the PDE
−∆u+ µu = 1 in H1

0 (D) ∩ L2
µ(D), the quantity

dγ(µ1, µ2) = ‖uµ1 − uµ2‖L2(D) (2.1)

is a distance on the spaceM of capacitary measures, which is equivalent to
γ-convergence, and soM endowed with the distance dγ above is a compact
metric space. Since the solutions uµ are all equi-bounded (for instance they
are all below by the solution w of the Dirichlet problem −∆w = 1 on H1

0 (D),
which is a bounded function) the L2 norm in (2.1) can be replaced by any
Lp norm, with 1 ≤ p < +∞. In particular, if p = 1 and Ω1 ⊂ Ω2 we have

‖uΩ1 − uΩ2‖L1 =

∫
uΩ2dx−

∫
uΩ1dx = T (Ω2)− T (Ω1),
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and the γ-convergence is then reduced to the convergence of the correspond-
ing torsional rigidities.
• The first eigenvalue λ(Ω) (as well as all the other eigenvalues λk(Ω)) and the

torsional rigidity T (Ω) are continuous with respect to the γ-convergence.
• The Lebesgue measure |Ω|, or more generally integral functionals as

∫
Ω
f(x) dx

with f ≥ 0 and measurable, are lower semicontinuous with respect to the
γ-convergence on the domains Ω.
• As stated above, the space M of capacitary measures, endowed with the
γ-convergence, is a compact metric space. On the contrary, the family of
open sets (or also quasi-open sets) is not compact in M; it is actually a
dense subset of M. The first example of a sequence of open sets Ωn which
γ-converges to a capacitary measure which is not a domain (actually to the
Lebesgue measure) was given in [9].
• Several subclasses of M are dense with respect to the γ-convergence (see

Proposition 4.3.7 and Remark 4.3.8 of [6]). For instance:
- the class of measures a(x) dx with a ≥ 0 and smooth;
- the class of smooth domains Ω ⊂ D.
- the class of polyhedral domains Ω ⊂ D;
- the class of measures of the form a(x) dHd−1 with a ≥ 0 and smooth,

where Hd−1 is the d− 1 dimensional Hausdorff measure;
- the class of measures of the form Hd−1bS, where S ⊂ D is a smooth
d− 1 manifold.

3. The Brock’s construction

We summarize rapidly here the construction by Brock (see [4], [5]) of the continu-
ous Steiner symmetrization, together with the properties important for our purpose.
The first construction is for the unidimensional case; here taking the variable t in
[0,+∞] or in [0, 1] does not make any real difference.

• If I is the interval ]a, b[, then the continuous Steiner symmetrization I t is
the interval ]at, bt[, where

at =
(
a− b+ e−t(a+ b)

)
/2, bt =

(
b− a+ e−t(a+ b)

)
/2.

• If A is an open subset of R we consider the properties:
(i) A(0) = A;
(ii) if I is an interval with I ⊂ A(s), then I t ⊂ A(s+ t) for every t ≥ 0.

We define then the continuous Steiner symmetrization At as

At =
⋂{

A(t) : A(t) satisfies (i) and (ii)
}
.

In [4] Brock proves that if A is open then At are open sets; in addition the
monotonicity property

A ⊂ B =⇒ At ⊂ Bt for every t

holds.
• Finally, if A ⊂ R is only measurable, we have

A =
⋂
n

An \N
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with An open sets and N Lebesgue negligible. We then define the continuous
Steiner symmetrization At of A as

At =
⋂
n

Atn.

This definition is unique up to a nullset, and we still call continuous Steiner
symmetrization a family At such that |At4(

⋂
nA

t
n)| = 0.

We can now pass to define the continuous Steiner symmetrization for subsets of
Rd, with respect to a hyperplane that, with no loss of generality, we can suppose to
be Rd−1. For a general set A we define the projection of A on Rd−1 as

A′ =
{
x′ ∈ Rd−1 : (x′, y) ∈ A for some y ∈ R

}
,

and for x′ ∈ A′ the intersection of A with (x′,R) as

A(x′) =
{
y ∈ R : (x′, y) ∈ A

}
.

Note that A(x′) is a one-dimensional set. When A is an open subset of Rd we define
its continuous Steiner symmetrization At by

At =
{
x = (x′, y) : x′ ∈ A′, y ∈ (A(x′))t

}
. (3.1)

If A ⊂ Rd is only measurable, we define its continuous Steiner symmetrization by
the same formula as (3.1), but up to Lebesgue negligible sets.

We stress that, for a bounded quasi-open set A, the previous construction only
provides a measurable set defined up to a set of zero Lebesgue measure. In order to
obtain that the symmetrized sets be still quasi-open and defined quasi-everywhere,
it is convenient, for a bounded quasi-open set A, to define (by an abuse of notation)
the symmetrized set At in the following way: consider a decreasing sequence of
bounded open sets (An) with cap(An \ A) → 0 and A ⊂ An. For any t ∈ [0, 1] the
set Atn is well defined, and by monotonicity we may define Atn ⊃ Atn+1. Then (Atn)
is γ-convergent and we define

At = γ − lim
n→∞

Atn.

In this way, the set At is quasi-open. More details on this issue can be found in [6];
in particular, the proofs that the construction above is independent of the sequence
An and that the Lebesgue measure is preserved, are still missing.

The continuous Steiner symmetrization can be defined for any positive measur-
able function u by symmetrizing its level sets:

∀s > 0 {ut > s} := {u > s}t.
The main properties of the Brock’s construction are summarized here below,

where λk(Ω) denotes the k-th eigenvalue of the Dirichlet Laplacian in Ω.

Proposition 3.1. For every bounded quasi-open set Ω ⊂ Rd and every positive
integer k the mapping t 7→ λk(Ω

t), is lower semicontinuous on the left and upper
semicontinuous on the right.

When the starting set Ω is convex, or more generally when the one-dimensional
sections Ω(x′) above are intervals, the γ-continuity actually occurs. However, this
is not always the case, as the example of Figure 2 shows. Up to the moment when
the internal fracture appears the γ-continuity is verified; on the other hand, the
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Brock’s construction removes the fracture instantaneously, and the γ-continuity is
lost.

−→ −→

Figure 2. A set Ω such that t 7→ λ(Ωt) is discontinuous.

Since the torsional rigidity T (Ωt) is increasing along the family (Ωt), it has only
countably many discontinuity points. Let t0 be one of these points and assume that
at t0 we have two domains Ω−,Ω+ such that Ω− ⊂ Ω+ and{

T (Ωt)→ T (Ω−) as t→ t0 from the left

T (Ωt)→ T (Ω+) as t→ t0 from the right
(3.2)

In other words Ω− is the domain with fractures, while Ω+ is the domain where the
fractures have been removed.

Remark 3.2. In the one-dimensional case the existence of a γ-continuous family
(Ωt) cannot be obtained in general, since starting by Ω0 made of two segments and
ending by Ω1 made of a single segment will necessarily produce a discontinuity of
T (Ωt) at some point t0, independently of the construction of the family (Ωt).

In the case d ≥ 2 on the contrary, we can fill the discontinuity between Ω− and
Ω+ by constructing a γ-continuous family (Ωt), with Ωt increasing with respect to
the set inclusion, and Ω0 = Ω−, Ω1 = Ω+.

Theorem 3.3. Let d ≥ 2 and let Ω0 ⊂ Ω1 be two bounded open sets. Then there
exists a γ-continuous family Ωt of open sets (t ∈ [0, 1]) such that

Ωs ⊂ Ωt for every s < t. (3.3)

Proof. Let us denote by C a large cube containing Ω1 and by Γ(t) a Peano curve from
[0, 1] onto C, that is a continuous mapping Γ : [0, 1]→ Rd such that Γ([0, 1]) = C;
we also choose Γ(0) ∈ Ω0. We define

Ωt =
(
Ω1 \ Γ([0, 1− t])

)
∪ Ω0 for every t ∈ [0, 1].

Note that Ωt are open subsets of Rd and that for t = 0 we obtain Ω0, while for
t = 1 we obtain Ω1. The family Ωt above clearly satisfies the monotonicity property
(3.3).

In order to show that the family Ωt is γ-continuous, it is enough to prove that

cap(Ωtn4Ωt)→ 0 whenever tn → t.

This comes from the fact that the mapping Γ(t) is uniformly continuous, so that

|Γ(t)− Γ(tn)| ≤ ω(|t− tn|)
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for a suitable modulus of continuity ω. Therefore Ωt and Ωtn differ by a set which
has a diameter less than 2ω(|t−tn|), hence of capacity which vanishes as tn → t. �

Remark 3.4. Since the proof of Theorem 3.3 is only based on capacitary argu-
ments, the same statement is valid in the more general case when Ω0 and Ω1 are
quasi-open sets.

Remark 3.5. When working with polyhedral domains (i.e. whose boundary is
made of a finite number of subsets of hyperplanes) we are in the situation above.
In fact, if Ω is a polyhedral domain, the Brock’s construction provides a family Ωt

made of polyhedral domains, and we have a finite number of discontinuity points
t1, t2, . . . tN . In addition, for every discontinuity point tk, the fracture S is a d− 1
dimensional polyhedral set, Ω− = Ωtk while Ω+ = Ωtk \ S, and then Theorem 3.3
applies.

In several situations (see for instance [8]), thanks to the γ-density of polyhedral
domains in the class of all domains, Remark 3.5 is sufficient to achieve the required
goals. However, the question of existence of γ-continuous paths (Ωt), with monotone
λ(Ωt) and T (Ωt), between a general domain Ω0 and the ball B with the same
Lebesgue measure, remains.

Similar questions arise if, instead of the quantities λ(Ωt) and T (Ωt), one considers
for instance the perimeter P (Ωt), requiring the continuity of the map t 7→ P (Ωt)
and its decreasing monotonicity.

The procedure of removing fractures mentioned after (3.2) needs to be more
rigorous. This can be made through the following result.

Proposition 3.6. Let Ω0 be a given quasi open set and let m ≥ |Ω0|. Then there

exists a quasi open set Ω̂ solving the shape optimization problem

min
{
λ(Ω) : Ω0 ⊂ Ω, |Ω| ≤ m

}
.

Proof. The proof can be obtained directly by applying the existence result of [7]. �

In an analogous way we can obtain a solution for the shape optimization problem

max
{
T (Ω) : Ω0 ⊂ Ω, |Ω| ≤ m

}
.

In particular, the case m = |Ω0| is interesting; this allows to obtain, for every given

Ω0, an optimal domain Ω̂ containing Ω0 and with the same measure as Ω0, which
solves simultaneously the two shape optimization problems{

min
{
λ(Ω) : Ω0 ⊂ Ω, |Ω| = |Ω0|

}
,

max
{
T (Ω) : Ω0 ⊂ Ω, |Ω| = |Ω0|

}
.

Indeed, if Ω1 is an optimal domain for the eigenvalue optimization problem and
Ω2 an optimal domain for the torsion optimization problem, it is enough to take
Ω̂ = Ω1 ∪ Ω2.

In other words, if Ω0 is a Lipschitz domain, we have Ω̂ = Ω0 while, in the case
the set Ω0 presents some internal fractures, the set Ω̂ removes them.
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4. The minimizing movement approach

An alternative approach to the Brock’s construction of the family Ωt through
the Continuous Steiner Simmetrization could be the use of the De Giorgi mini-
mizing movement theory, introduced in [10] (see for instance [2], [3] for a detailed
presentation and further developments).

In our framework of shape functionals, the metric space X could be the one of
all measurable subsets Ω of the Euclidean space Rd with a prescribed Lebesgue
measure, say |Ω| = 1, endowed with the L1 distance

d(Ω1,Ω2) = |Ω14Ω2|.
Given a shape functional F defined on X one can consider the so-called implicit
Euler scheme of time step ε and initial condition Ω0, which provides a discrete
family Ωn,ε constructed recursively in the following way:

Ω0,ε = Ω0, Ωn+1,ε ∈ argminΩ∈X

{
F (Ω) +

1

2ε
|Ω4Ωn,ε|2

}
.

We may then set Ωt,ε = Ω[t/ε],ε, where [·] stands for the integer part function, and
say that Ωt is a family of sets constructed by the minimizing movement procedure
associated to the shape functional F if for every t ∈ [0, T ] we have

|Ωt4Ω[t/ε],ε| → 0 as ε→ 0.

If the limit above occurs only for a sequence (εn) (independent of t), we say that
Ωt is a generalized minimizing movement.

It is easy to see that the discrete sequence Ωn,ε is such that F (Ωn,ε) decreases.
It would be interesting to show, at least in the particular cases when the shape
functional F (Ω) is the first eigenvalue λ(Ω), the opposite −T (Ω) of the torsional
rigidity, or the perimeter P (Ω), or some convex combination of them, that the map
t 7→ F (Ωt) is continuous and decreasing.

We do not know if the map t 7→ F (Ωt) above is continuous and decreasing, and
the cases in which, as t → ∞, the limit domain is a ball. Some results in this
direction, in the case F (Ω) = P (Ω) can be found in [14], while some partial results
in the case of spectral functionals can be found in [13].
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ian Ministry of Research and University. The author is member of the Gruppo
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