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Abstract

We prove the stability of entropy solutions of nonlinear conservation laws with respect to
perturbations of the initial datum, the space-time dependent flux and the entropy inequalities.

Such a general stability theorem is motivated by the study of problems in which the flux
Plu)(t, z,u) depends possibly non-locally on the solution itself. For these problems we show
the conditional existence and uniqueness of entropy solutions.

Moreover, the relaxation of the entropy inequality allows to treat approximate solutions
arising from various numerical schemes. This can be used to derive the rate of convergence
of the recent particle method introduced in [RS21] to solve a one-dimensional model of
traffic with congestion, as well as recover already known rates for some other approximation
methods.
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1 Introduction

The study of conservation laws dyu + div, (P(t,z,u)) = 0 has been initiated by [Kru70], who
introduced the notion of entropy solutions as a selecting criterion among the more general
distributional solutions. This notion is encoded in the distributional inequalities

O|u — ¢| + divy [sign(u — ¢)(P(t,z,u) — P(t,x,¢))] + sign(u — ¢) div, P(t, z,¢) <0, Ve e R.

By means of his celebrated doubling of variables technique, in [Kru70] the author shows the
Li. . stability of L> entropy solutions with respect to perturbations of the initial datum.

The stability has been extended to allow the treatment of approximate solutions, for instance
arising from numerical methods. This notion of quasi-entropy solutions amounts to introducing
error terms in the right hand side of the entropy inequalities.

In [Kuz76] this flexibility is exploited to derive convergence rates for several numerical
methods in the particular case of a flux P(u) depending only on the density. Following this
research direction, [BP98] codified a more general notion of quasi-entropy solutions where the
error terms in the right hand side of the entropy inequalities are derivatives with respect to t
and z of measures. Their result is still restricted to the case of a flux of the form P(u), which is
a severe limitation in many applications.

An improvement in this direction, but limited to exact entropy solutions, is given by [KR03,
Theorem 1.3], where the authors show the stability of entropy solutions with respect to two
distinct fluxes, which are taken to be of product form P(z,u) = f(u)k(x). Dealing with two
distinct fluxes forces to consider BV solutions instead of merely L°°, as will be pointed out when
we discuss the strategy of our proof.

Table 1: Summary of previous stability theorems.

no. of fluxes type of flux type of solutions regularity in space
[Kru70] 1 P(t,z,u)  entropy L
[Kuz76] 1 P(u) quasi-entropy, numerical schemes L™
[BP98] 1 P(u) quasi-entropy, more general L
[KRO3] 2 f(u)k(xz)  entropy BV
Ours 2 P(t,z,u)  quasi-entropy BV

Goal of the article. Merging the various lines of improvement, we want to obtain a stability
result for quasi-entropy solutions with distinct fluxes depending also on t and x. The notion of
p-quasi-entropy solutions is a modification of the weak formulation of the entropy inequality in
which the right hand side is allowed to be an error of the form

T

[ (Lt ol ane@ + [ Vaptt.o)] dusta) ) a

0 R R”
when tested against ¢ € C2°((0,T) x R;[0,00)) for some non-negative measures fi ¢, (11,4, instead
of being zero.

The structure of the stability theorem that we obtain can be synthesized in the following

manner. This statement is of course imprecise and we refer the reader to Section 2 for the correct
definitions and formulations.



Theorem 1.1 (Informal version of Theorem 2.6). Given two fluxes P,Q satisfying suitable
reqularity assumptions, let u and v be a u-quasi-entropy solution and v-quasi-entropy solution of
the conservation laws

Ou + divy (P(t,z,u)) =0 and v + divg (Q(¢, z,v)) =0
respectively, with the bounds
U(t, : )7U(t7 ) < R(t)7 Hu(t7 ’ )HBVv ”U(t? ’ )HBV < B(t)7

for some increasing functions R, B : [0,T) — [1,00).
Then

/Rn\u(t,x) —o(t,z)|dz < /Rn\u(o,x) —v(0,z)|dx —|—/0 Cpo(s) /Rn|u(s,:1:) —v(s,x)|dzds
+ B(1) /0 1P(s) = Q(s)ll+ ds + Mo + cn My + B(t)Crq(t)yv/My

where
. t
My = /0 (k0,5 + v0,6) (R™) ds, M, :/0 (s +v1.5) (R7) ds,

1P(s) = Q(s)]l« = lldiva(P = Q)(s, 2, u)|[ L1 L + [[0u(P — Q)(s, %, u) || Lo Lo

and Cpgq is a function of the norms of some derivatives of P and @ which is bounded under the
assumptions.

The major simplification we introduced in this informal statement is that we integrate over
the whole space, whereas in Theorem 2.6 the estimate is localized with a suitable weight function.

The need for this article is motivated by some limitations in the available literature. The
possibility to work at the same time with distinct fluxes depending on (¢, z,u) and quasi-entropy
solutions has several primary benefits.

Firstly, it allows to study problems with fluxes P[u|(¢,x,u) which depend non-locally on
the solution wu itself, for which it is unavoidable to require the space-time dependence and to
consider two distinct fluxes. In this context, the term ||P — Q|| sometimes can be estimated
with [|u — v||z1 allowing to close a Gronwall type inequality (Proposition 2.9). Moreover, in the
situations where there is an estimate of the form ||P — Q||« < [Ju — v||1, we show in Section 3.1
and Section 3.2 the conditional existence and uniqueness of entropy solutions respectively.

Secondly, quasi-entropy solutions arise naturally in the study of numerical methods and the
stability theorem can be used to derive their rates of convergence (Section 3.3). In particular,
in Section 3.3.1 we obtain for the first time the rate of convergence of a deterministic particle
method presented in [RS21] (see also [FT22]) to solve a scalar conservation law in one dimension
inspired by a model of traffic with congestion ([DR15; DFR19; DS20]). For this application we
really need both improvements (two space-time fluxes, quasi-entropy solutions) with respect to
the present literature: indeed, the stability result of [KRO03] only treats entropy solutions whereas
the discrete approximations produced by the particle method are only shown to be quasi-entropy
solutions (Proposition 3.5). The approximation error with N particles that we obtain is of order
N~1/2 which is shown to be sharp in Section 3.3.1. The adopted technique also provides an
independent way to prove the existence of entropy-solutions which bypasses the compactness
argument used in [RS21].

In addition we recover the known rates of convergence of the vanishing viscosity method
(Section 3.3.2), extending its validity to the case of a flux P(t,x,u), and of the front tracking
method (Section 3.3.3).



Strategy of the proof of the stability theorem. Our approach is inspired by [Kru70;
KRO03], with some modifications.

From [Kru70] we adopt the general framework of doubling of variables. However, dealing
with two distinct fluxes has some important consequences: some algebraic symmetries exploited
in [Kru70] do not hold anymore and this causes the appearance of additional mixed terms which
have to be estimated, for instance

div, [sign(u — v)(P(t, z,u) — P(t,z,v) — Q(t,y,u) + Q(t,y,v))]

where u = u(t,z) and v = v(t,y).

The way we deal with this increased complexity shares a closer resemblance with the scheme
presented in [KR03, Theorem 1.3], which also treats two fluxes, albeit of product form; in
particular we decompose the entropy inequality into similar terms and to estimate the one
described above we apply the chain rule. In order to do this, we need to require v and v to be
BV instead of merely L* and at the beginning of the proof we also need to regularize the two
fluxes and the absolute value and sign functions.

The fact that we consider quasi-entropy solutions instead of exact entropy solutions excludes
the possibility of performing the full dedoubling of the space variables | —y| — 0. As in [Kuz76;
BP98], we collapse the space variables |x — y| < 8 at an optimal scale 5 which is determined
by the balance between the mass of the error terms and the modulus of continuity in L' of the
translations of the solutions.

1.1 Future perspectives

More general definition of quasi-entropy solutions. In Definition 2.3 of quasi-entropy
solutions we impose that the right hand side is estimated with measures whose disintegration
with respect to time is of the form du(x)d¢. A natural generalization is to extend it to arbitrary
measures du(t, z) whose projection on time is not necessarily absolutely continuous with respect
to the Lebesgue measure. This generalization goes in the direction of [BP98]. The usefulness
of this extensions comes from the possibility of studying the convergence rate of numerical
schemes which are discrete/discontinuous processes in time, for instance layering/smoothing,
finite difference/volume/elements such as Godunov, or higher order ones. With this more flexible
notion one can no longer expect quasi-solutions to be in C([0,T); L, .(R™)), so this makes it
more difficult to perform the dedoubling of the time variables.

Conservation laws with diffusion and source terms. An interesting and useful general-
ization of the present result that we intend to pursue consists in considering conservation laws of

the form
Ou+ divy (P(t,z,u)) = AA(u) + f(t, 2, u).

This research direction would improve upon the work of [VH69], which treats a single flux
and entropy solutions, and [KR03], which treats two time-independent fluxes of product type
and entropy solutions. Merging our approach with theirs we plan to extend the stability theorem
to two general fluxes and BV quasi-entropy solutions.

This is for example relevant for determining the rate of convergence of deterministic particle
schemes introduced in [FR18; DRR22b; DRR22a] for solving non-local conservation laws where
the flux is a convolution with the solutions itself and there is a linear/nonlinear mobility to
model congestion.



Non-conditional existence for non-local problems. In Section 3.1 we prove the conditional
existence of entropy solutions provided that one can construct an approximating sequence of
quasi-entropy solutions. It is natural to ask whether, under some general assumptions on the
fluxes, such a sequence can be constructed.

This approach could be especially beneficial to show the existence of entropy solutions to
non-local problems, for which to the best of our knowledge the results are rather sparse and
specific to some particular equations (for instance traffic, pedestrian, chemotaxis models).
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2 Stability

The aim of this section is to state and prove a precise formulation of the stability result that
was informally presented in Theorem 1.1. We begin by establishing the regularity assumptions
required for the fluxes.

Assumptions 2.1 (Regularity of the flux). We require P : [0,7) x R" x [0, 00) — R™ to be a
flux satisfying the following conditions:

(A1) (t,x) — P(t,z,0) € LL_([0,T) x R");
(A2) (t,x) — div, P(t,x,0) € LL_([0,T) x R");

(A3) u > P(t,z,u) € Lip,.(R) locally uniformly for z € R” with dependence L] ([0,T)) in

loc

time, i.e. for every R > 0 there is a function Cr € LL ([0, 7);[0,00)) such that

|P(t,x,u) — P(t,z,v)| < Cr(t)|lu—v| Yu,v € [0, R], ¥(t,x) € [0,T) x Br(0);

(A4) u s divy P(t,7,u) € Lip),.(R) locally uniformly for z € R" with dependence Li ([0,T))
in time, i.e. for every R > 0 there is a function Cr € L. ([0, T);[0,00)) such that

loc

|div, P(t,x,u) — divy P(t, z,v)| < Cr(t)|u — v| Vu,v € [0, R], ¥(t,x) € [0,T) x Bg(0);

(A5) (t,x) — div, P(t,z,u) and (t,z) — 9,P(t,z,u) € Li ([0, T); I/Vll)’coo(R”)) locally uniformly
for u € [0, 00), i.e. in particular for every R >0

IV, div, P(t,, )| ) IVa0.P( ) ) € Lie(10.7).

L (Br(0)x[0,R L>(BRr(0)x[0,R]

Notice in particular that under the previous assumptions P turns out to be a Carathéodory
function, therefore P(t, z, u(t,x)) is a well defined measurable function of (¢, z) when u(t, z) which
is itself measurable. Moreover, |P(t, z, u(t, x))| < |P(t,z,0)| + Cr(t)|u(t, z)| for some function
Cr(t) > 0 locally in z, hence P(t,z,u(t,z)) is LL.([0,T) x R") as soon as so is u. The same
considerations apply to (div, P)(¢,x,u(t,x)). This observation ensures that the formulations
(2.1) and (2.2) of the following definitions make sense.

The assumption (A5) is unnecessary to ensure the meaningfulness of the entropy inequality
and is required only to estimate the error arising in the stability of quasi-entropy solutions. When



working with entropy solutions (for instance in Remark 2.8, Theorem 3.3 and Theorem 3.4) this
assumption can be omitted.

For the reader’s convenience, we recall the classical definition of entropy solution in the sense
of [Kru70].

Definition 2.2 (Entropy solution). Let P : [0,7) x R" x [0,00) — R™ a flux satisfying
(A1)—(A4) of Assumptions 2.1. We say that a non-negative function u € C([0,T); LL .(R"™)) N

loc
2 ([0,T); BVioc(R™)) is an entropy solution of the scalar conservation law

Opu + divy (P(t, z,u)) =0

if the following entropy inequality

/OT/RH{W — c|Owp + sign(u — o) [(P(¢, z,u) — P(t,z,c)) - Vyp — divy P(t,x,¢)¢] } dzdt >0
(2.1)

holds for every constant ¢ € [0, 00) and non-negative test function ¢ € C°((0,T) x R; [0, 00)).!

As anticipated in the introduction, the purpose of the article is to extend the stability beyond
entropy solutions. We therefore introduce a notion of quasi-entropy solution that will be suitable
for our needs.

Definition 2.3 ((uo, u1)-quasi-entropy solution). Let pio.¢, i1+ € L ([0,T); 4+ (R™)) be locally-

loc

finite non-negative Borel measures and P : [0,7) x R x [0, 00) — R a flux satisfying (A1)—(A4) of

Assumptions 2.1. We say that a non-negative function u € C([0,7); L, .(R™))NL2. ([0, T'); BVioc(R™))

loc loc

is a (uo, u1)-quasi-entropy solutions of the scalar conservation law
Opu + divy(P(t,z,u)) =0

if the following entropy inequality
T
// {lu— c|dwp + sign(u — ) [(P(t,z,u) — P(t,x,¢)) - Vyp — divy P(t, z,¢)p] } dz dt
0Jrn

g T (2.2)
> [ et duosa)at— [ [ Vet o) dun o) de

holds for every constant ¢ € [0, 00) and non-negative test function ¢ € C°((0,T) x R™; [0, 00)).!

Notice that in comparison to Definition 2.2, the weaker notion of Definition 2.3 allows for
a controlled violation of (2.1). The measures that control this right hand side will then play a
crucial role in the stability estimates.

For the sake of keeping the terms appearing in both the statement of the main theorem and
its proof shorter and more readable, we introduce some notation.

First of all, to avoid possible confusion when differentiating composite functions, we denote
the partial derivatives of a function F : [0,7) x R™ x [0,00) — R with respect to its three
arguments as 01 F', VoF and 03 F respectively. Analogously, this convention extends to divy F' as
well.

Moreover, because of the local nature of Theorem 2.6 that we are going to state, we will need to
refer to various norms of the fluxes computed locally, as opposed to the whole [0,7") x R™ x [0, c0).
In the statement there will be two functions responsible for the localization: a time dependent
weight O localizing in space and a function R bounding the density on the support of ©. The
notation that we introduce is implicit with respect to ® and R, and has to be understood in the
context where these functions are fixed.

1Observe that it is equivalent to require the inequality for all ¢ € C} ((0, T) x R; [0, oo))



Notation 2.4. Given a functions R : [0,T) — [0, 00) and a function © € C1([0,T) x R™; [0, 00))
compactly supported in space for every time, we introduce the following notation to estimate
some norms of functions F'(t,z,u) only in the domain (x,u) € (supp O(t, -)), x [0, R(t)], where
with F, we denote the enlargement of radius r in space of the set E:

|F(t>$27u) — F(t>$17u)|

Lipy(F(t)) = sup{ w1, w2 € (supp O(L, - )),, u € [O,R(t)]},

|9 — 1]
Lips(F'(t)) = sup{ |F(t,:v,1|LjZ : 51(|t,:v,u1)| @ € (suppO(t, -)),, u1,uz € [(LR(t)]}.

Remark 2.5. With the notation introduced above, observe that (A1)—(A4) of Assumptions 2.1
ensures that Lipg(P(t)) and Lips(diva P(t)) are functions belonging to L ([0, T)), whereas (A5)
ensures that Lip,(dive P(t)) and Lipy(95P(t)) are L ([0, T)) too.

2.1 Main results

In this section we present our main results, which deal with non-negative quasi-entropy solutions
belonging to the space

F([0.7),R") = C([0,T); Lhe(R") N L% (10, T); L (R™)) 1 L% (10, T): BVioc (R)).  (2.3)

Theorem 2.6 (Stability). Let P,Q : [0,T) x R™ x [0, 00) — R™ be two fluzes satisfying Assump-
tions 2.1. Let u,v € .Z([0,T),R™) be non-negative quasi-entropy solutions of

Opu + divy (P(t,z,u)) =0 and O + divy (Q(t, z,v)) =0

in the sense of Definition 2.5, i.e. there are measures [io ¢, [b1,t, V0t V1t € Lloc([ T); M (R™))
such that the quasi-entropy inequalities

/()T/Rn{\u — ¢|Opp + sign(u — ) [(P(t, z,u) — P(t,z,¢)) - Vyp — divy P(t, z,¢)p] } dzdt

g T (2.4a)
> —/O/Rn\w(t,xﬂdﬂo,t(x) dt_/O/RHWxSD(t7$)|dM1,t($) at,

/OT/R {|lv = c|dpp +sign(v — ) [(Q(t, z,v) — Q(t,x,¢)) - Vo — divy Q(E, 2, ¢)p] } dr dt

// o (t, )| dvo,o(z) d — // Vao(t, )] dvy o (x) di

hold for every constant c € [0,00) and non-negative test function ¢ € CL((0,T) x R;[0,00)).

Let © € C([0,T) x R™;[0,00)) be a fived weight function compactly supported in space for
every time and let R,B : [0,T) — [0,00) be two increasing functions satisfying the following
properties: the estimates

(2.4b)

lu(t, ), < R(t), TVa, (u(t, -)) < B(t),
[o(t, )l Lee ) < R(?), TVa, (v(t, ) < B(1),
hold for every t € [0, T) where Q4 = (supp O(t, -)), CR", and
2:O(t,x) < —Lip3(Q(¢))|VLO(t, x)], V(t,z) € [0,T) x R™. (2.5)



Then for every 0 <ty < to <T the following inequality holds:

[/Rn\u(t,x) ~o(t,2)|0(t, 2) dx} z

< / "3 Lips(diva P(t)) + Lips(divs Q(¢))] / lu(t, z) — v(t, 2)|O(t, ) do dt
e

t1

to
# [ Idiva(P = Q)ft, . )z (omp O(t. o) dw
1

(2.6)
to
+2B(t2) [ [Lipg (P~ Q)(t, )O(t, ) o
1
to 1 to
+ H@Hoo/t (po,e +v0,) () dt + §Hvz@”oo/t (1 + v1,)(Q) dt
1 1
+ C(tl, tg) min{M(tl, t2)1/2, 1} + CnH@Hoo max{M(tl, t2)1/2, M(tl, tQ)} s
where .
2
M(tl, tg) = /t (,LLLt + Vl,t)(Qt) dt, (2.7&)
1

C(t1,t2) = [|O]|cc B(t2) (2 + /: [3 Lipz(divy P(t)) + Lips(diva Q(£)) + 2 Lipy(93Q(%))] dt)

to t2
+100zgery [ Libadive P(0) dt + (0] 1ip, Blta) | Libg (P~ Q) (1)) dt
1

1

1 t2 .
+ iHeﬂL;"’Lipx/t/Q [dive(P — Q)(t,x, - )| Lo (jo,r()) dz dt,
1 t
(2.7b)
and ¢, > 0 is a dimensional constant.

Remark 2.7 (Compact solutions). When the functions v and v are compactly supported in space
uniformly in time, we can take any function © € C*([0, 00) x R™;[0,00)) such that © = 1 in
(supp(u) U supp(v))l, without requiring (2.5). Indeed, inside the proof of Theorem 2.6 the slope
condition (2.5) is used only in the last inequality of (2.16), which remains valid for such a ©
because [010 + Lip3(Q*(t))|V20|]n.(u — v)wg is identically zero.

Remark 2.8 (Entropy solutions). The result of Theorem 2.6 can be simplified significantly
under the assumption that the functions v and v are exact entropy solutions of the scalar
conservations laws instead of merely quasi-entropy solutions. Indeed in such a case all four
measures fio ¢, {1+, Y0t V1+ vanish for every ¢, and the analogue of (2.6) that we obtain is

to

/Rn|u(t,:£) —v(t,z)|O(t,x) dx}

t1

< / 13 Lipy (diva P(£)) + Lips(diva Q(£))] / lu(t, ) — v(t, 2)|O(t, ) de dt
e

t1

to
+ [ ] Idiva(P = @)t )= oo O ) d
1

+ Blty) /:HLipg((P —Q)(t, ))O(t, -l dt.

Interestingly, in this case we can omit the assumption (A5) of Assumptions 2.1. Please refer to
Remark 2.10 for details on how to obtain this modified statement. This result extends [KRO03,
Theorem 1.3], which is limited to fluxes of product form P(t,z,u) = f(u)k(z).



If in addition P = @, then the estimate is independent of the total variation bound B(t).
This is consistent with the result by [Kru70] which holds for L* entropy solutions.

When the terms of the form P — @ in (2.6) can be estimated by some integral of |u — v|,
the whole inequality assumes a form suitable for the application of Gronwall theorem. More
precisely, we can state the following proposition.

Proposition 2.9 (Gronwall estimate). Let u,v, P,Q, pot, e Vot Ve, ©,%, R, B as in
Theorem 2.6. Assume in addition that the fluzes P and Q) are close together in the following
sense: there is a non-negative function h € Li ([0,T)) such that for a.e. t € [0,T)

[ diva(P = Q)(t,2. )l oy ©(t ) da < b®) [ Jult,a) = v(t,2)[O(t,7) dz,  (280)

ILip3 (P = @)(t, - )O(t, )l Loo(rny < h(t) /RHIU(R z) —o(t, 2)|O(t, z) dz. (2.8b)

Then for 0 < t1 < to < T we have the estimate

|u(ta, x) — v(te, z)|O(te, z) dz
R (2.9)

< (/Rn\u(tl,af) —v(t1,2)|O(t1, x) do + <I>(t1,t2)> exp( " f(t) dt) ,

t1

where
f(t) = [3Lips(dive P(t)) + Lips(diva Q(¢))] + [1 + 2B(T)]h(t),
to to
B(t1,12) = 0]l [ (o + 1) (@)t + 51928l [ (1 + 11 (0) e
t1 t1
+ Ot ta) min { M (t1,12)/2,1} + 0|0 oo max { M (11, £2)"/%, M (t1,12) }

and M (t1,t2) and C(t1,t2) are the same as in Theorem 2.6.

This proposition will be used in Section 3.1 and Section 3.2 to show the conditional existence
and the uniqueness of entropy solutions for the conservation law with non-local flux Plu](t, z,u).
Moreover, in Section 3.3.1 we show an application to a conservation law where the assumptions
(2.8) are satisfied.

2.2 Proofs

Proof of Theorem 2.6. For convenience of the reader we split the proof in several distinct steps
indicated by paragraphs.
We prove the statement for ¢t; > 0. The case t; = 0 is recovered by continuity.

Regularization of the fluxes. The first step consists in regularizing by convolution the fluxes
with respect to the space and density variables. This forces us to consider the fluxes evaluated at
negative densities too. Therefore, for convenience we extend the fluxes to P, @ : [0,7) x R" xR —
R™ by setting P(t,z,u) = P(t,z,—u) and Q(t,z,u) = Q(t,z,—u) for u < 0. The extended fluxes
enjoy the same regularity assumptions as the original ones.

Given « € (0, 1], we define the regularized fluxes P, Q% : [0,T) x R™ x R — R"™ obtained by
convolution in space and with respect to the density

P(t,x,u) = / / P(t, 7' v wa(z — 2") pa(u — u') du dz’,
n JR

Q(t,z,u) = /n /RQ(t,xl,u/)wa(az — 2" po(u —u') du da’,



where w and p are symmetric C¢° mollifiers in R"” and R respectively supported in the corre-
sponding unit balls, and w,(z) = o "w(a™12) and pa(u) = a~p(a~tu) are the rescalings that
preserve the L' norm. For every t and almost every z, the regularized fluxes enjoy the regularity
estimates

[Pt z, ) — Pz, Mzeeo,re))) < @llOsP(E, -5 )l Lo (Be,a) x[-auR(t)+a))
||diV2 Pa(t,.%, ) — diVQ P(t, T, - )HLOO([OJ{(U]) < 05”63 dng P(t, ty ot )HLOO(B(Z‘,OC)X[—Oc,R(t)-‘rOc])'

Adding and subtracting in the quasi-entropy inequalities (2.4) the corresponding regularized
terms with P* and Q“, we obtain

/OT/Rn{’u - C‘atSO + Sign(u — C) [(Pa(t’ T, u) . Pa(t, z, C)) . vx‘P _ diVm Poz(t7 z, c)gp} } dz dt
T T
> */O/Hw’@(t,xﬂdﬂo,t@) dt — /0/Rn|vxg0(t,x)|d#17t(x) dt — ae(P, ),
(2.10a)
/OT/Rn{U - C|at(,0 + sign(v — C) [(Qa(t, z, 1)) _ Qa(t, x, C)) . V$(p — div, Qa(t, z, C)QO} } da dt
T T
> =[] et dna)dt = [ [ [Dap(t.a)| dvna(e) dt - ae(@. ).
(2.10b)

where e(P, ¢) is defined as the right hand side of the following inequality used to estimate the
error introduced by the convolution:

T
L] {21052, - eyl Vool
+ ||83 divy P(t7 Ty T )||L°°(B(a;,a)><[—a,R(t)+a])|§0|} dx dt (211)

< /OT {2 Lips(P(£)) /Rn\vxsoy dz + Lipy (dive P()) /Rn|¢| dx} dt = e(P, ).

Regularization of the absolute value. We now introduce a second convolution in order to
regularize the absolute value function. Given the mollifier p. we define the regularized absolute
value

ne(w) = [ Islpetu—s)ds = [ [slp.(s) ds

and its translation 7. ,(u) = 7. (u — v).

The goal of this section is to show that convolving (2.10a) with %né’,v(c) = pe(c —v) has
the effect of replacing the functions 7y .(u) = |u — ¢|, sign(u — ¢)(P*(¢, z,u) — P*(t,z,¢)) and
sign(u — ¢) divy, P*(t, z, ¢) with 1. ,(u),

Pso‘(t,x,u,v):/ D3 P(t,x,s)n. ,(s)ds, and /divxPa(t,m,s)ngv(s)ds

1. n

respectively. Similarly, convolving (2.10b) with 5717 ,(c) = p:(c — u) has the effect of replacing
the functions 7o .(v) = v —¢], sign(v —¢)(Q*(t, z,v) — Q*(t,z, ¢)) and sign(v — ¢) div, Q*(¢, z, ¢)
with 7. 4 (v),

Q2 (o, uv) = [ 4@ (L)l (s) s, and [ div, Q° (b )l (s) ds

10



3
although we write them in the same order as arguments.

With regard to (2.10a), with the mentioned convolution we obtain

Llu=clpete=v)de= [ ju=clp.((u=v) = (=) de = n.(u—0v) + [ |slp.(s) ds

moreover

respectively. Notice that in the definitions of P& and Q¢ the role of u and v is interchanged,

/ sign(u — ¢)(P“(t, z,u) — P*(t, x, c))%ng’v(c) de
R
— [ (Pt - P o) gl de = [T (P t0) - Pt o) il (o) de

- / (POt 2 u) — PO (1, ¢!y (c) de

[ Pt - Po‘(t,x,c))%ngv(c) de= [T (P(t,0) - P (1,0);
= [(P*(t,2,u) = P(t, 2, )., (¢) +/ B3P (t, 2, eyl (c) de

+ /R sign(v — &) (P (1,2, u) — P°(t,,)) g1, (c) de

1
= P2(twu,) — [ sign(v — P (t,¢) 3l () do
R 2

Nt ,(c)de

because in the last step the boundary terms vanish and sign(v — ¢) P*(t, x, u)n’(

¢ —v) is an odd
function of ¢ — v, and finally

1
/ sign(u — ¢) divy P*(t, x, C)i

1 o0 1
/ div, P*(t,z,c)= 77” )dc+/ div, P“(t,x,c)ingv(c) de
/ div, P(t,z,c)n’ ,(c) de

1 o0 . o 1 1
/ div, P%(t,z,c)= nEU )dc+/ div, P (t,x,c)§ns7v(c) de

1
/ div, P*(t,z, c)n. ,(c) de — / sign(v — ¢) div, P*(t, x, c)ingﬂj(c) de.
R

e ,(c)de

Inserting these computations in the left hand side of (2.10a) we get

/R/OT/RH{W — c|Owp + sign(u — ) [(P*(t, x,u) — P*(t,x,c)) - Vyp — divy P*(t,z,c) ” n(c) dz dt de
— /T/ {na,v(u)ﬁtswr PO (t,2,u,v) - Vap — w/u divy PO (t, 2, )1, (s) ds} de dt
+// &:so/\s\pg dsdxdt—/ //nmgn (v—rc) dle(Po‘(t,:c,c)go)%ngm(c)dxdtdc
:/O/R {7751;( )Orp + P2 (t, x,u,v) - Vyp — @/ div, P*(t,x S)Ué/,v(s)dS}dxdt
because [ dypdt = 0 and [p, dive (PY(t, 2, ¢)p) dz = 0.

The right hand side of (2.10a) remains unaltered because it does not depend on ¢ and the
convolution kernel 17 ',(¢) = p(c —v) is a probability measure.

11



Applying the same argument to (2.10b), the new pair of inequalities then becomes

T U
L L {meatwne Pt 00) Vap = [ dive Pt sl (5) s ot
0JR" v '

. . (2.12a)
> =[] lettalduos@dr— [ | Vol o) dpri(a) dt - ae(P.p)

[ A neatiee + @2t - Vap— o [ aive @t st a5 | ara -
> —

// lo(t, )| drg «( )dt—// |Vaeo(t,x)| dvy (z) dt — ae(Q, ¢).

Doubling of variables. We perform the usual doubling of variables introduced by Kruzkov:
given a test function @(t,z,7,y) € CL(R x R” x R x R™), we combine the entropy inequalities
(2.12) for u(t,z) and v(7,y) and integrate w.r.t. the two additional variables. For conciseness,
we omit the arguments of u(¢,x) and v(7,y). We then obtain

T T
/ // {7751; )0 + P2 (t, x,u,v) - Vap — go/ divy P*(t,z, s)n. (s )ds}dxdydth
0Jo

//n (// |2l duo,e(x dt+// |Ve@| dpn e (w )dt> dydr

—a/o/ne(P,gb(‘, 7,y)) dy dr,

(2.13a)
T pT
LI {nsu 0,5+ Q% (. ysu,0) -V — @ / diva Q°(,y, s )n;’,u<s>ds}dxdydtdf
0 0 n, n

_/o/n (/()/Rn|¢| dug¢(y)dr + A%n|vx¢|dV1,t(y) dT) dz dt

T
—a// e(Q,¢(t,x, -, -)) dxdt.
0 n
(2.13b)
We now consider a test function of the form

N t+7 z4+y
pit.omy) = o( 5T Y Yl — oyt - 7).

where ¢ € C}((0,T) x R;[0,00)) is a space-time test function and 3,7 € (0, 1] are parameters.
Once ¢ is fixed, for v small enough we have that ¢(t, z, 7,y) > 0 implies ¢, 7 € (0, 7). With this
particular choice, we can bound the first integrals appearing in the right hand side of (2.13a) as

T,T T,T
L el agaear = [ ] [ o
0J0JR"/R™ 0JOJR™R"™

= /OT/OT/ n/Rn|<,o(s, 2)|wp (2(z — 2)) py (2(t — 5)) dppo s (2)2" dz dt2ds
_ /OT/R”\@(S, 2] /OT/R Wyl — 2)py ot — 5) dpo o () dt dz ds
= /[)T/Rn|g0(s, 2)|po,5,4(s, 2) dz ds,

(t+7 Tty

o ) oat — w)es (¢~ ) dpo(o) dy dedr

12



where 119 g, denotes the function

T
to,8~(8,2) = /O/n wg/2(z — @)pyya(s — t) dpoe(@) At = [(pyj2wg/2) * (L1 @ pog)] (s, 2),

and similarly

T /T
//// |Ve@| dpy ¢(x) dy dt dr
0JoJrn/rn
T 1 t+717 4+
S/// / ‘V%O( ’ y)‘wﬁ(x_y)Pv(t—T)dMLt(x)dydth
0JoJrn/R 2 2 9
T t+7 x4+
+/0/0/n/n S0( 2 7 2 y)‘\Vwﬁ(x —y)lpy(t — 1) dp1e(x) dy dt dr
1 /T 1 (T
"2 dzds + 5 i dzd
2/O/RJV?SO(S’Z)’ML@V(S’Z) z 8+2/()/Rn‘gp(s’z)mwﬂ(s’z) 2 ds,

where py g, and fi1 g, denote the functions

T
mpq(s,2) = /0/n wg/2(z — @) pyya(s — t) dur (@) dt = [(pyjowg 2) * (L1 ® p14)] (s, 2),

T
f,5q(8,2) = /0 R7L|Vw5/2(z — )| py/2(s —t) dpr () dt = [(p7/2|Vw5/2|) (L@ pe)] (s, z).

Of course analogous estimates hold with v in place of p. Informally speaking, observe that
lpy/2ws/2ll1 = 1, therefore g 5., and jui1 5, are comparable to pg = Lr'@porand py = L1 @pury
respectively, whereas |[p, o Vwg /a1 ~ B~1, therefore fiy g is comparable to S~ uy. In order to

estimate the errors fOTfRn e(P,g(-, -, 7,y))dydr and f(;‘FfRn e(Q,¢(t,x, -, -)) dz dt we perform
a similar computation as above replacing po and 1, with £". We have that

T T
// |g5|dacdyd7':/// \¢(s,z)|w5/2(mfz)p,y/Q(tfs)dxdzds
0JR™R™ 0JR"JR™

T
= [ et st = 91ds < Bl 01110

and
T i LT
/// |Vx<,0|dmdyd7-:f/// ‘VQQO(S’Z)‘WEQ(JP_Z)Py/z(t—s)d:pdzds
0JRWR? 2 Jo Jrn)rn
1 /T
+iﬁ/n/n@(s’z)www(w—Z)Ipfy/z(t—s) drdzds

1 1
< §||V290||L00([O,T];L1(]R")) + §||Vw6/2||1H(‘O”LOO([O,T];Ll(R"))’

therefore, recalling the definition of e( -, - ) introduced in (2.11), the error terms can be estimated
a

S
T T
/O/He(P,gé(-, -,T,y))dydT—i—/O/Rne(Q,gé(t,x, ) dadt
T
<1l (1), [LAPs(iva P(2)) + Lipg(cliva Q(t))) e
T
(19280 o0y * 99521000 e 17102y ), iP5 (P(0) + Libg(@(0)] e

= E(Pv Q, @awﬁ/Q)'
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Summing the two inequalities (2.13) and using the previous estimates for the terms in the
right hand side we get
T,T
LI L= 0@+ 0:0) + [P (0.0) - Vg + Q2 p,) - ¥,

- (/ dive P*(t,z, s)n” ,(s) ds + / dive Q% (7,y, s)n” () ds) } dzdydtdr

T 1 1 N -
> = [ (161000 + 1000 + 51920l + 7100 + Gl + 72,00 ) dds

- OéE(P, Q, SoawB/Q)'
(2.14)

Exploiting the identities
- - .1 21
0P + 0rp = O1pwppy, Vap = ivwwam +pVwgpy, Vyp= ivﬂpwﬂpv — pVwgpy,

we split the left hand side of (2.14) as I + II + III, where

TrT
I://// Ne(u — v) 01 pwgp do dy dt dr,
0JoJrn/Rn
T

r 1
II://// {[Paa(t,x,u,v)—i—Q?(T,y’u?U)].v%owﬁpv
0JoJrn/rn | 2
T [P‘g(t’ z, u, U) - Q?(Ta Yy, u, U)] ’ ng«ppy} dz dy dtdr,

T,T U v
I = — /// / & </ dive P*(t,x, s)n. ,(s) ds +/ dive Q*(7,y, s)n’ . (s) ds> dz dydt dr.
0J0JR"™JR™ v u

Dedoubling in time. We now perform the dedoubling of the time variables, which corresponds
to passing to the limit v — 0. All three terms I, II and III will be treated in a unified manner
with the aid of Lemma 2.11. For each of the three we apply the lemma with the following choice

of functions:

e dedoubling of I:

A(tvxvuav):nf?(u_v)v B:algD, C:CU5,
e dedoubling of II:
A(t,z,u,v) = P&(t,x,u,v), B = Vs, C = wg,
A(t, z,u,v) = P&(t,x,u,v), B =y, C = Vwg,
and symmetrically for Q¢;
e dedoubling of III:
B =, C = wg,

A(t,x,u,v) = / dive P*(t,z, s)n (s — v) ds,

and symmetrically for Q2.

14



As a result, in the limit v — 0 we obtain the new terms
~ T
I= // / Ne(u — v)01pwg dx dy dt,
I = // / { X (t, x,u,v) + QE(t, y, u,v)] - Vapws
R™ n
P2t 0,0) = QX y.u0)] - Visg f dody

T U v
- // / (/ divy PY(t, z, s)n. ,(s) ds + / dive Q*(t,y, s)1z ,,(s) ds) pwg da dy dt,
0 JR™/R™ v u

where we omitted the new implicit arguments

uta), oty e(t5Y) e,

Let us now focus on the right hand side of (2.14). We have that

T
tim [ ] Jo(s 20,50 (5, 2) dz ds
0JR™

y—0

T[T
= lim ///n Rn|<p(s,z)\p7/2(s —t)wg/a(z — o) dpo(x) dzdt ds

v—0

=ty [ 1o 2)1 yal O » o) () s

¥—0

// |o(t, 2) (w2 * pos) (2) dz dt

because the function (¢, z) = [|¢( -, 2)|*py /2] (t) converges uniformly to |¢(t, z)| and have bounded
support, whereas (wg /2 % to+) dz dt is a locally finite measure. With similar computation for the
other terms, we get

. T 1 1 i ~
lim // <|90‘(M0,/3,w +1084) + = |Vopl(t1sy +v184) + =lel(f1,8~ + ,/175’7)) dz ds
¥—0 Jo JRr" 9 9

T 1 1
= /O/Rn <|<P\w,8/2 * (ot + vor) + 5!%90!005/2 * (e + i) + ilw\lvwﬁ/z\ * (pae + Vl,t)) dz dt.
(2.15)

Integration by parts and chain rule. Integrating by parts w.r.t. x the term involving Vwg,
we can rewrite II as

= //Rn/n{ X (t, x,u,v) + QE(t, y, u,v)] - Vapws
— div, [P (t, z,u,v) — Q2 (L, y, u,v)|pws
- %[Paa(ta'xauv U) - Q?(tayvua U)] : v230w,3} dl’dydt

T

:/// {Q?(t,y,u,v) Vapwg — divy [P (t, x,u,v) — Q?(t,y,u,v)]wwg}da:dydt
0 R’VL n

= ﬁl —{—f[27

where with an abuse of notation we denoted

~ T T
IIs = — // divg[PX(t, z, u,v) — QZ(t, y, u,v)]pwg de dy dt = — // pwg doyy(x) dy dt,
O Rn Rn 0 Rn Rn
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with oty = divy [P (t, x, u(t, x),v(t,y)) — QL (t,y, u(t, ), v(t,y))] being a measure in the variable
x parametrized by (¢,y).

Indeed, since the fluxes P and Q% are C' and u is BV, by the chain rule [Vol67, §
13.2]? we get for every ¢,y that the function P2 (¢, z,u(t,z),v(t,y)) — Q¥(¢,y, u(t, z),v(t,y)) is
BVipe(R™;R™) and its divergence is the measure in the variable = given by

oty = divg P (¢, z,u(t, x), v(t,y))ZL"
+ 03[P (t, z, u(t, z),v(t,y)) — Q(t, y, u(t,z),v(t,y))] - (D2u(t) + DSu(t))

+ {[Pf‘(t,a:,uﬂt, z),v(t,y)) — Q% (t, y,ut (t,z),v(t,y))]
Pt (), vt y)) — Q2 (g, u (f ), v, y))]} o T

where D%u(t), DSu(t) and (u™(t, -) —u™ (¢, ~))n<%””_1|Ju(t) represent the absolutely continuous,
the Cantor and the jump part of the derivative of the BV, function u(t, - ) respectively [AFP0O0].

Estimates of I, II1, II, III. In this section of the proof we make use of several pointwise
estimates, all of which are relevant only when (¢, ), (t,y) € supp© and u,v € [0, R(T")], hence
can be expressed in terms of Notation 2.4.

We fix the specific test function

o(t,x) = O(t,x)0,(t — t1)0,(t2 — 1),

where 6 € C*(R;[0,1]) with 8(¢) =0 for t <0 and 6(t) =1 for § > 1, and 6,.(t) = 6(t/r). For
r < (ta — t1)/2 we have

81<p(t, x JQF y) - 81(9(15, x ; y) 0,(t — t1)0,(ts — t) + @(t, a ;r y) [01(t — t1) — 0L(ts — 1)].

Exploiting the fact that 77;7u has always the same sign in the interval [u Av, uV v], we can estimate

’Q?(tv Y, u, U)| =

/ 03Q (L, s)1l u(5) ds

< Liny(Q°(1) [

L u(5)| ds = Lips(Q*(0)ne(u—v).
Using this Lipschitz estimate for Q¢ and the hypothesis (2.5) we get
~ o~ T T
I+1, = // ns(u—v)81¢w5dxdydt+// QZ(t,y,u,v) - Vapwgdr dy dt
0 nJR™ 0JR™JR"
T
= // / [Ne(u —0)010 + QL (t, y, u,v) - V2Ol (t — t1)0,(t2 — t)wp dz dy dt
0 n, n
T
4 // / ne(u— )OOt — 1) — 0L (t2 — )] da dy dt
0 RTL n
T
< [ 10:0 + Ling(Q® () V2Ol (= 0)0r(t — 1)0, (t2 — )y oy
T
+ // / ne(t — 0)BOL(E — t1) — O (b2 — )]s dady dt
0 Rn n

(2.5) T sty /
< /O/Rn/n ne(u(t,z) — v(t,y))@(t, 5 ) [0.(t — t1) — 0.(t2 — t)]ws(z — y) da d(y dt.)
2.16

2The chain rule is applied to the C* function (z,u) — P2 (t,z,u,v) with (t,v) fixed and the BV, function
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Observe that for 5 < 1 one has

/Rn/n u(t, ) —u(t,x;y>’®(t,x;y) wg(z — y) dz dy

< 2100l TV, (u(t, ) < 21001 B0).

(2.17)

Using this observation and the fact that 7. is 1-Lipschitz, we can continue the estimate (2.16) as

T+1I < //n/n < ( ‘%Ly) v(t,x;y»@(t,x;y) [0L(t — t1) — 0L(ts — t)]ws(x — y) dz dydt
+/0/Rn/n u(t, x —u(t J:—i—y)’@( a:—;—y) 16,.(t — t1) — 0).(t2 — t)|ws(z — y) dz dy dt
it

< /OT/R ne(u(t, @) — o(t,2))O(t, 2)[6L(t — t1) — 0(t2 — )] dar dt
+ B/OTH@@)HooB(t)W?(t —t1) = 0, (t2 — )| dt

y) — w(t, y)‘@(t ?) 10.(t — t1) — 0,(t2 — t)|wp(z — y) dzdy dt

T
= /O/n ne (u(t, ) — v(t, 2))O(t, )[0.(t — t1) — 0, (t2 — t)] dz dt + 28| O] B(t2),
(2.18)

where we used that B(t) < B(ta), ||6..]1 = 1, and the integrand is supported in [t1, to].
Let us now deal with the third term.

/// {/ dive PO(t,z, )1’ (s ds—l—/ dive Q(t,y, s )ngu()ds}gpwgdxdydt
/// {legP (t,z,u)nl(u —v) /d1V283P (t,z,s)nL ,(s)ds

—dive Q¥(t, y, v)n(u —v) — / divo D3Q(t, y, )1, () ds}gowg dz dydt

= — /()T/Rn/n{ |:diV2 P(t,x,u) — dive P*(t, x, v)}

+ [din P(t,xz,v) — divy PY(t,y, v)}
+ [din P(t,y,v) — diva Q*(t,y, v)} }n;(u —v)pwg dz dy dt

T u v
—i—/// {/ dinagPo‘(t,x,s)n;v(s)ds—i—/ dinang‘(t,y,s)n;u(s)ds}gpwﬁdxdydt,
0JR™WR™ LJv ’ u ’
(2.19)

where as usual u = u(t,x) and v = v(t,y). We now estimate the differences of divergences inside
the square brackets:

|divg P*(t, x,u) — divg P*(t,z,v)| < Lipg(divy PY(t))|u — v|,

|dive PY(t,z,v) — dive P*(t,y,v)| <L pg(de Pe(t)|z —yl,

|dive P*(t,y,v) — diva Q*(¢,y,v)| < [|dive(P* — Q%) (¢, v, - )l (o,r(T)))-
On the other hand, using the fact that .| < 1, we have

/ divy O3 P (t,x, s)n. () ds| < Lips(dive P*(t))|u — vl (2.20)
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and similarly for the integral involving Q®. Therefore, continuing (2.19), we get

i< | / [ {[2Lipsldiva P2(6) + Lipy(diva Q*(8)]lu = v + Lips(civa P* (0] 3]

+ [|diva (P* — Q%) (t, y, ')”Loo([o,R(T)])}@wﬁ dz dy dt.
(2.21)

Using (2.17) we can estimate

/]R"/ lu(t,z) — ty|@< > y) dz dy
S/n/nu(t,x+y> ( x—i—y)‘@( x;—y>w3(az—y)dxdy

[ fute) =t 552) ’@(t, ) wsla —y) dedy (2.22)

L) o252 ke

< [ Jutt2) — o(t 0[Ot 2) o + 51O | BO)
R™

T —y|© t,x+y wp(x —y)dedy = 20 — 22|0(t, 2)wg(2x — 22)2" dr dz

2
- /Rnyg;\wﬁ(x) dz(|e()[1 < B,

t2 . o o z+y
1
to
- /t/ [diva (P = Q%) (t,y, )l Lo (o, R O (¢, y) dy di
1
+//n Ranle Qa)(tuy; ')”LOO([O,R(T)]) |:@<t’

= /t RaniV?(Pa —QY)(t,y, )lLee(o,r)) O, y) dy dt
1

r+y

) — @(t,y)] wg(x —y)dedydt

to
+§ ) Lin(G(t))/Q |dive(PY — Q) (t,y, - )L (o,rt)) dy dt,
1 t

which combined and inserted in (2.21) lead to
1T < /t 7 [2 Lips (diva P*(£)) + Lips (dive Q* (£))][u(t, ) — v(t, 2)|O(t, z) dz dt
Jan
+ 8118 B(t2) /t t [2 Lipg (diva P (£)) + Lipg(diva Q*(£))] dt
+ BlIOl| oL /: Lipy(divy P(t)) dt (2.23)
+ /thRanin(Pa = Q) (Y, e (o,re) O y) dy dt

to
+ g”GHL? Lip, /t/Q [dive(PY — Q) (t,y, - )l Lo (jo,re)) dy dt-
1 t
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Finally, we turn to the estimate for I 2, which will be obtained by considering separately the
three integrals which constitute it. First of all, by (2.20) and (2.22) we have

dive P2 (¢, z, u(t, z),v(t,y))pwp da dy dt

nJR"

< [ Lipy (divs P( (/ lu(t, ) — v(t,2)|O(t, 2) do + B0t )HOOB(t)) at

i1
< /t2 Lips(dive P*(t))|u(t, z) — v(t,2)|O(t, x) dz dt + S0 B(t2) /t2 Lipy(divy P(t)) dt.
t1JR™ t1
(2.24)

Let us now estimate

05(P — Q2) (L, z, u, )|
= |05 (/u 03P (t, x, 8)77;(8 —v)ds — /v Q% (t, x, 3)77;(3 —u) ds)
= |05 </u 03P (t,z,s)n.(s — v)ds — /u 93Q%(t,z, s)nt(u — s) ds)

— Pty (u =) — [ 5@ (b, s (u — 5)d.

If |u — v| < € then this is less than

3P (t, x, u)n.(u —v) + / 303Q% (t, , s)nL(s — u) ds + B3Q(t, z,v)nL(v — w)

< |95(P™ — Q) (1, 2, u)| + |95Q°(t, , w) — D5Q (1, 2, v)| + /u\agagQa(t, 2,5)|ds

< Lips ((P* — Q*)(t, %)) + 2 Lip; (35Q° () [u — v|
< Lips ((P* — Q%)(t,z)) + 2 Lip3(93Q“(¢))e.

Otherwise, if |u — v| > ¢ then it is less than

’aS(Pa - Qa)(tvxvu)‘ +

0uQ° (v, — ) = [ Qb sl — ) ds

< Lipg (P* = Q)(t.2)) +| [ 105Q° () = 6" (b, )l (u = 5)ds
< Lipy ((P* — Q%)(t,x)) + Lipg(3:Q°(1))e

since supp(n) C [—¢,¢] and [ n/(u — s)ds = n.(u — v). Therefore in both cases we have

|03(PE — Q2)(t, @, u,v)| < Lipg (P — Q)(t,2)) + 2 Lip3(95Q*(£))e. (2.25)

Moreover,

|03[Q2 (£, z, u,v) — Q2 (t,y,u,v)]| = [05Q° (1 7. 5) — BsQ° (1, s)|nZ (s —u)ds
< Lipy (93Q*(t)) |z — v

(2.26)
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because /(s — u) has mass less than 1 in [u A v,u V v]. With (2.25) and (2.26) we can estimate

anwwgas (2 ult, ), 0(t,y)) — QX (v, ult, 2), v(t.))] - d(Dgu(t) + Du(t)) (x) dy dt

L ewsds(P = Q2w ult, ), v(t,9) - d(Diu(t) + Dsu(n) (x) dy de

.- pwpds Q2 (t, z,u(t, ), v(t,y)) — Q2 (t,y, ult, x), v(t,y))] - d(Dgu(t) + Du(t))(x) dy dt

=< / T/ pwsLips (P* — Q*)(t, ) + 2 Lips (83Q%(t))e] d|D%u(t) + DCu(t)|(z) dy dt
0JRJRR
T
+ [ ] Lipa(@:Qe (1) wsle — vl diD2u(t) + Du(t) () dy de
< /tjn - Lips (P — Q%)(t,2))O(t, 2)ws(x — y) d[Dju(t) + Dgu(t)|(z) dy dt
[ Limal = @) ea)@ (1. ) = 00, — ) AIDZu) + DEa(t)(x)
T
+ /O/n/Rn 2 Lips (03Q%(t))epws d|Deu(t) + DSu(t)|(x) dy dt
T
+ [ ] Lipa(@:Q° (1) ke — vl dIDu(t) + Du(t) (2) dy de

Blta) [ Ly (P = @*)(t. )0t ot + Z10]7e i, Bt [ Ling (P~ @) (1) at

t1
to
+ 250 Bla) [

1

to
Lipg (90 (1) d + 8© | B(t2) |~ Liby (250 (1))

(2.27)

In a similar fashion we have
//Rn/n{ *(t,z,ut(t2),0(t,y) — Q2 (t,y, ut (t,z),v(t,y))]
- [B(tzum (), vt y) — Q?(t,y,u‘(t,x),v(t,ym} cnpwy A, (@) dy dt
_ OZﬂAﬂ{(pg — Q) (b ut (), 0(t ) — (PO — Q%) (t s (1), ol y))} g A 1 (2) dy
[ ] i@t o ve0) - Q2w (), ot )]
() 0(0)) — Q2 (v (62),0(t,0)] | - iy A1 () dy
- //Rn/n/u::) — Q) (t,z,5,v(t,y)) - npwg ds A", , (x) dy dt

ut(t,x)
+ /O/n/n /(t ) 83Q5a (t7 z, s, U(ta y)) - 83Q5a (ta Y,S, U(tu :l/))] " nyws ds d%n_lltfu(t) (.’IJ) dy dt.
By (2.25) and (2.26) we have

/uu(t(t:{a?» — Q) (t,z,s,0(t,y)) + [03Q2 (¢, z, s,v(t,y)) — F3Q (¢, v, s,v(t,y))]} ds
< [Lips ((P* — Q*)(t,z)) + 2 Lip3 (93Q*(t))e + Lipy (05Q“(t)) |z — y] - [ut (t, z) — u™ (¢, 2)|,
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therefore the previous integral can be estimated in absolute value as

{[Pf‘(tvxaf(tw)yv(ty)) — Q2 (t,y, uT(t,x),v(t,y))]

n, n

— [Ptz u” (t,2),0(t,y)) — Q?(t,y,u_(t,a:),v(t,y))}} - Mpwg d,%”"_l\Ju(t> (x)dydt
//n i [Lips ((P* — Q)(t,x)) + 2 Lip3(95Q%(t))e] pwslut — u™| d%"‘lbu(t) (x)dydt
+/// Lipy (35Q° (1)) |z — ylwslu™ —u| "5, (x) dy dt

B2 [ ILina (P~ Q)b )0t )t + 22Ol B() [ Lipy(95@° (1) e

1

B t2 2
+ 51015+ ip, Blt2) / Lipg (P* = Q)(1)) dt + 8Ol B(t2) [ Lip, (0:0°(0) dt

1 t1

(2.28)

In conclusion, from (2.24), (2.27) and (2.28) we deduce
~ t2
T, < / / Lips (dive P* () u(t, 2) — v(t, 2)|©(¢, z) dz dt
t1JR"

+2B(t2) /tlt2HLip3((pa — Q) (t )0 - l|ew dt + 42| O] B(t2) /tg Lips (950°(8)) dt

t1

+ 81Ol ip, Blt2) [ Lina (P~ Q)(0)) d + 2510l B(r2) [ Lipa(85@° (1) dt

t1 t1

to
+Bll@||ooB(t2)/t Lips(divo P*(2)) dt.
(2.29)
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Conclusion. After the dedoubling in time of (2.14), using the estimates (2.15), (2.18), (2.23)
and (2.29) we deduce that

/OT/R ne (ult, z) — v(t, 2))O(t, 2)[6L(¢ — t1) — 6.(ts — t)] dar dt
+ /t 7" [3 Lips(diva P(£)) + Lips(divs Q*(0)][u(t, z) — v(t, 2)[O(t, z) d dt
+ /thQaniVQ(Pa = Q) (Y, )z (o,re) Ot y) dy di
+28(02) [ Ly (P = @) (6, )8 o
+ B1Olc B(t2) (2 + /: [3 Lipg(diva P*(t)) + Lips(dive Q“(t)) + 2 Lip,y(95Q*(1))] dt)
#3Oly [ Lipaldiva P(0)d + 51Ol v, Bltz) [ Ling((P* - Q)(e)
+ §H@HL§° Lip, /:ledin(Pa = Q) (Y, M reeo,ree)) dy dt
+45||@\|m3(t2)/tf2 Lips (35Q° (¢)) dt
>~ [ (1ehospow (oe +00) + 51 Vaeliogyow (v + 1) + 31l Vol » (ung + ) )zl

- OZE(P, Qa 2 wﬂ/?)
(2.30)

Letting € — 0 and o — 0 in this order and estimating the integral in the right hand side we get?
T
// lu(t, ) — v(t,z)|O(t, z)[0.(t — t1) — O.(ty — t)] dx dt
0JR"
t
+ / / 13 Lips (diva P(£)) + Lips(dive Q(£))][u(t, ) — v(t, 2)|O/(t, z) dz dt
t1/JR"
to
+ [ diva(P = Q)lt,y. Voo o.rny ©(t,y) dy e
1
to
+2B(t2) [ Lipg((P = Q)(t. -)O(t, )
1
to
+ 810l B(t2) (2+ [ 8Lipg(diva P(6) + Lipg(diva Q1) + 2 Liny(5Q(0)] dt
1
to to
+B18lszery [ Liva(diva PO)dt + F16llze i, B2) [ Liny (P = Q)(0) e
1 1
B t2 .
180, [ [ Idiva(P = @)t )l o,mcon dy
2 t1J
to
> [0l | (r0a + 1) (supp O, ),
1

1 _ t2
= (31928l + 57Ol Vel ) [ 1+ v10) supp O, ), .
1

3Notice that for & — 0 we have Lip(P® — Q%) — Lip(P — Q) and similarly for the other Lipschitz norms.
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For g < 1, letting r — 0, rearranging the terms and enlarging the set (supp ©(t, ))B to
Qy = (supp O(t, -)), we deduce

to

[/Rn!u(t, z) — v(t,2)|0(t, z) dz

t1

< /t t/ [ Lipy(diva (1)) + Lipg(diva Q(1))][u(t, 2) — v(t, 2)[O(t, z) dz it
[ aiva(P = Q) e o O )y
+28(0) [ [Lins((P ~ (e, )Lt )
100 [ o+ 0@+ 51920 [ e+ 110)(52)
+ 8110l B(t2) (2 4 /t t 13 Lips (diva P(£)) + Lips(divs Q(t)) + 2 Lipy(95Q(£))] dt)

to to
+80l1ezs [ Livy(diva P() dt + 80| in, Blta) |~ Libg (P~ Q)(1)) s

1

5 o
+ 518l tin, [ [ Idiva(P = Q)(t,y, )l o.rcey) dy e
1 t
1)
enB Ol [ s+ 1) (@) dt
1

where in the last line we estimated ||Vw]||; < ¢,.
The last remaining step is to (almost) optimize in 8. Recalling the definitions (2.7) of M
and C' and picking

8= min{M(tl, t2)1/2, 1}

we have that the last four lines of the right hand side, which are of the form C(t1,t2)5 +
cn||©l|ooB~ 1M (t1,t2), can be bounded by

C(tr,to) min{ M (t1,12)1/2, 1} + 0|0 o max{ M (11, £)"/2, M (1, 12) } ,

which leads to the inequality (2.6) claimed in the statement of the theorem. O

Remark 2.10. We provide here details on how to recover the analogous result for the entropic case
stated in Remark 2.8. Heuristically speaking, this could be done by performing the dedoubling
in space too, which amounts to setting S = 0 in the last part of the proof. In view of recycling
as much as possible of the given proof, one can proceed as follows instead.

All the steps of the proof are retraced unaltered except the last one. At the beginning of the
step marked Conclusion, in equation (2.30), we get rid of the integral in the right hand side
which depends on the measures pu;, v; since they are all zero by assumption. Next we take the
limit as § — 0 and as a result eliminate all the terms with 3, appearing in the rows 5 through 7
of the left hand side. Then the limits ¢ — 0 and @ — 0 are taken in the same described way and
we immediately reach the conclusion because the last step (optimization in ) is now unnecessary.

Notice in particular that we can get rid of the assumptions regarding Lip,(divy P(t)) and
Lipy(03Q(t)) because they do not appear in the final statement. Indeed, in (2.30) there are
Lipy(dive P*(t)) and Lipy(93Q“(t)), which are finite because the fluxes are regularized with
a > 0, but these terms disappear by taking 5 — 0 before o — 0.

23



Proof of Proposition 2.9. By assumption we can directly apply Theorem 2.6 and deduce the
validity of (2.6). Using the assumptions (2.8) we can estimate the terms

/:Zan”dmw —Q)(t,z, - )| zoo(0,re)) O (t, ) dz At + 2B(ty) /:QHLip?’«P —Q)(t, -))O(t, )loo dt
<[ +2802)) [ h0) [ futt. ) ot )00 ) dr

Letting

w(t) = Rn\u(t,:p) —v(t,z)|0(t, z) dz,

the above estimate combined with (2.6) leads to an inequality of the form
to
w(tz) < w(ty) + (1, t2) + f(®)w(t) de,
t1

where f(t) = [3Lips(dive P(t)) + Lips(dive Q(¢))] + [1 + 2B(T)]|h(t) and ®(¢1,t2) encompasses
all the remaining terms. Applying Gronwall’s inequality leads to

w(ty) < [w(ty) + B(tr, )] exp( dt) 0

Lemma 2.11 (Dedoubling in time). Let A,034,0,A € LL.([0,7); LiS.(R" x R x R)), B €
Ce((0,T) x R"™), C € CLR"), and u,v € C([O,T), LL . (R™) N LE ([0,T) x R). Then

lim///n/n (t,z,u(t,x),v(r, y))B(t;T x;ry>C’(x—y)py(t—T)dxdydth

¥—0
Tty
= // / A(t,x,u(t,x),v(t,y))B(t, 2) C(x — y) dz dy dt.
0 n, n

Proof. Let T' € (0,T) and r > 0 be such that supp B C [27,T" —2v] x B,(0) and supp C' C B,(0)
for v > 0 sufficiently small and let R : [0,7") — [0,00) be an increasing function such that
u(t,z),v(t,x) € [0, R(t)] for every (¢t,x) € [0,T) x B,(0). Let

H(v) = sup{[[o(ty, -) = v(t2, )lL1(Ba (o)) : t1rt2 € [0,T7], [t —ta| <}
denote the modulus of continuity of the map [0,7"] — L!(Ba,(0)) : t — v(¢t, ) and let

K(v) = sup{||B(t1, -) — B(t2, - )llpoo(rn) : t1,t2 € [0,T"], [t1 — t2| <7}

denote the modulus of continuity of the map [0,7'] — L>®(R™) : t — B(t, ).
Thanks to the assumed continuities we have both H(y), K(v) — 0 for v — 0. Moreover

T’ T’
/ / / |A(t, , u(t, ), v(t,y))| dedy dt S/ IA(E, -, - ) oo (Bor,[0,R()),[0,R(1)) At < 00.
0 BQT‘ BQT 0
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Then, using the notation Lip, (A(t)) = [[04A(t, -, -, - )|l Lo (Bay.[0,R(E),0,RE)]), We have

Aty z,u(t, x), v(r, y))B(t —12— T, v ;_ y) C(x

0
_ /OT/n/n A(t,x,u(t,x),v(t,y))B( x;y> Clz-y) dxdydt‘

—y)py(t — 7)dedydtdr

n, n

S/T/T/nRn[A(t,x,u(t,a:),v(T,y))—A(t,x,u(t 2),v(t,y) \‘B(t+7,x+y>’10x— D)oy (t — 1) dz dy di dr
+///n Rn|Atmutx u(t, y))]'B(t_;T x—;—y) B(t,m+y>‘\0x— Y)|py(t —7)dedydtdr

///n RnL1p4 t)v(r,y) — (tvy)|‘B<t;Tam+y>"C x —y)|py(t —7)dedydtdr

+/0 / Rn|A(t,x7u(t,x>,v(t7y))!K(mgr(x;y> ICllso1p, (z — y) dz dy dt

T/ Tl—’y
< [T L AOBIlCll [ et ) =, syt~ 7) dr
+ K (v HC’||OO// / Atz u(t, z),v(t,y))| dedy de

T/
< BllsoICllL H (1)1 Lipa (A@) [ £ o, +K(7)||C\|oo/0 [ACEs -5 - )lLoe (Ba.Jo,Re1) 0. RE) A

The right hand side of the estimate converges to 0 when v — 0 and this proves the limit in
the statement. ]

3 Applications

In this section we demonstrate how to employ Theorem 2.6 and Proposition 2.9 to both theoretical
and numerical applications.

3.1 Conditional existence via Cauchy sequences in L;

Our stability result Theorem 2.6 leads to a conditional existence theorem of entropy solutions
for the problems dyu + div, (P(t,z,u)) = 0 and dyu + div, (Plu](t, z,u)) = 0 whenever one can
provide a sequence of quasi-entropy solutions with vanishing errors.

Theorem 3.1 (Conditional existence, fixed flux). Let P : [0,T) x R"™ x [0,00) — R" be a
fluz satisfying Assumptions 2.1 with the property that Lips(P(t)) € L2.([0,T)) and let ug €
L>®(R™) N BV (R™) be a non-negative initial datum. Let (uy)gen be a sequence of (fik,0, fk,1)-
quasi-entropy solutions according to Definition 2.3 for the problem

Ou+ divy (P(t,z,u)) =0 (3.1)

with non-negative initial datum uy(0) € L= (R™)NBV (R™) converging to ug in Li (R™), satisfying
the uniform bounds
up(t, -) < R(t),  lu(t, )lley < B@),  Vte[0,T),keN,
for some increasing functions R, B : [0,T) — [0,00). Assume in addition that the measures
kit € L0, T); A+ (R™)) vanish in the sense that for every r > 1/T we have
T—1/r
lim |tk it (Br) dt = 0. (3.2)

k—o0 Jo
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Then for every t € [0,T) the sequence uy(t, -) converges in Li (R™) to a function u(t,x)

loc
which is an entropy solution of (3.1) according to Definition 2.2 with initial datum ug.

Proof. Let § € C*(R;[0,1]) be such that 6(r) =0 for r <0, §(r) =1 for r > 1, and ¢'(r) < 2
for every r. Given ty € (0,T) and a radius 7 > 0, let ¢ = |[Lipg(P(t))| 1 ([0,+,)) and define
0 € C([0,t2] x R™;[0,1]) as

O(t,z) =0(c(te —t) — x| + 1+ 7).

Then we have
00(t,x) = —cb' (c(ta — t) — x| + 1 +7) = —¢|V,O(t, )],

so that (2.5) is satisfied up to ¢t = ts.
For every k,l € N we can then apply Theorem 2.6 to the pair (ug,u;) with ¢; = 0, from which
we deduce that for every ¢ € (0,t2) we have

t

/ luk(t, x) —w(t,x)|O(t, z)dz < 4/ Lipg(divs P(s))/ luk(s,x) —wi(s,x)|O(s, ) dzds

R™ 0 R™
+ /R lug (0, 2) — w(0,2)|O(0, ) dz + ep
where
¢ t
i = [ (nos + hu0)() ds [ (s + ) () ds
+ C(0, 8) min{ My 1(0,)/%, 1} + e max{ My 1(0,)/2, My (0, )}

is a quantity that goes to 0 as k,l — 0 thanks to (3.2). By Gronwall’s inequality we get

/Rn|uk(t7 2)—u(t, 2)|O(t ) dz < [/ank(o, 2) — (0, 2)|0(0, ) dz + gk,l} exp <4 /Ot Lips(divs P(s)) ds> .

Considering that
Huk(ta ) - Ul(t, : )HLl(Br) < /Rn‘uk(tvx) - ul(t,x)](%(t,x) dx

for t € [0,25] and using the fact that ug(0, -) is a Cauchy sequence in L (R™), we deduce that
ug(t, -) is a Cauchy sequence in L'(B,).

From the arbitrariness of to and r we obtain that there exists a limit function (¢, - ) to which
the sequence uy(t, -) converges in Li (R™) for every t € [0,T).

We need to show that u satisfies the entropy inequality (2.1). Since there are some technical
difficulties passing to the limit the entropy inequality with Kruzkov type entropies |u — ¢|, this
will be done by regularizing the absolute value mimicking the second step in the main proof of
the stability theorem and passing to the limit this regularized inequality instead. The desired
entropy inequality of Kruzkov type for the limit function u is then recovered by approximation.

By assumption, u; satisfies

T
// {|ug — '|0wp + sign(up — )[(P(t, z,ur) — P(t,x,)) - Vo — divy P(t,z, )] } da dt
0JR"™

r T
> - /0 /R et @) dpgo () dt - /0 /]R V()| dp () dt

for every constant ¢’ € [0, 00) and non-negative test function ¢ € C2°((0,7) x R™; [0,00)). Letting

ne(w) = [ Islpetu—s)ds = [ [slp.(s) ds
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and its translation 7. .(u) = 7.(u — ¢), with a similar computation as in the step Regularization

of the absolute value on page 10, convolving the previous quasi-entropy inequality with %Ué/,c(cl )

we deduce that
T Uk
// {ns,c(uk)at90+Pe(t,%ukac) : Vm‘/)_ (70/ leI P(tvxas)ngc(s) ds}dxdt
0JR" c s

T T (3.3)
> —/O/Rn’@(t,ﬂvﬂdﬂk,o,t(x)dt—/O/RJVmcp(t,x)\dukyl’t(x)dt’

where

u
P.(t,z,u,c) :/ O P(t,x,s)n. .(s)ds.

We now want to pass to the limit (3.3) as kK — oco. For the first two terms in the left hand
side, we use the fact that the dependence on uy is Lipschitz, indeed

[Mec(uk) = Mee(w)] < Jur —ul,
|P-(t, z, ug, c) — P-(t,x,u,c)| < Lips(P(t))|ur — ul.

For the third term we use the fact that

T ug (t,z)
lim // / o(t,z)div, P(t,z,s)n” (s)dsdzdt =0
0JR™ Ju ’

k—o0 (t,x)
because the integrand is a fixed L' function which is integrated over the set
{(t,z,s) € [0,T) x R" x [0, R(T)] : (t,x) € supp, s € [ug(t,z) ANu(t,z),ur(t,z) V u(t,x)]}
whose measure is

// luk(t, x) — u(t,x)| dedt — 0, for k — oo.
supp ¢

For the right hand side we use the assumption (3.2) to deduce that both terms are vanishing. As
a consequence we obtain that u satisfies the regularized entropy inequality

T U
// {ngvc(u)f)tgo + P.(t,xz,u,c) - Vyp — ga/ div, P(t, x, 5)77;/,0(5) ds} dzdt > 0,
0JR" c

for every constant ¢ € [0, 00) and non-negative test function ¢ € C°((0,T) x R™; [0, 00)).
Letting € — 0 gives us the desired entropy inequality for u with Kruzkov entropies:

T
// {lu— c|dwp + sign(u — ) [(P(t,z,u) — P(t,z,c)) - Vypo — divy P(t,z,¢)p] } dzdt > 0.
0JR"?

By a standard argument, setting ¢ = 0 and ¢ = R(T") in the previous inequality we deduce
that u solves the conservation law dyu + div, (P(t, z,u)) = 0 too.

We now prove the continuity u € C([0,T); LL (R")). From the fact that u solves the
conservation law we deduce that for every ¢ € C°(R™) the map

0, 7) = R:t— - u(t, z)p(x) dx

is differentiable with finite derivative equal to

- [ Pl ut.2) o)

In particular, the map is continuous, hence u(t,, -) — u(t, -) whenever t, — t. This limit
holds also in the strong topology Li. .(R™) because the the equi-boundedness in BV (R™) of the

loc
sequence implies its relatively compactness in L%OC(R”). ]
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Theorem 3.2 (Conditional existence, non-local flux). Let
P:2(0,7),R") = {p:[0,T) x R" x [0,00) — R"}
u+— Plu]
be a map associating to every function u a flux Plu] satisfying the Assumptions 2.1, and let

ug € L*(R")NBV(R™) be a non-negative initial datum. Let (uy)gen be a sequence of ({0, ftk,1)-
quasi-entropy solutions according to Definition 2.3 for the respective non-local problems

Opuy, + divy (Plug](t, z, ug)) =0 (3.4)

with non-negative initial datum uy(0) € L (R™)NBV (R™) converging to ug in Li (R™), satisfying
the uniform bounds

we(t, V< R®),  |lurlt, sy < Bt),  Vte[0,T),k €N,

for some increasing functions R, B : [0,T) — [0,00). Assume in addition that the measures
kit € L0, T); A+ (R™)) vanish in the sense that for every r > 1/T we have

T—1/r
lim kil (By) dt = 0. (3.5)
k—o0 .Jo
Assume that if uy, converges in L2 ([0,T); LL .(R™)) to some function u then
Plug](t,z,s) — Plul(t,z,s) for a.e. (t,z,s),
divy Plug](t, x, s) — dive Plul(t, z, s) for a.e. (t,x,s),
O3 Plug)(t, z,s) — 03 Pu](t, z,s) for a.e. (t,x,s).

Let & C C*([0,T) x R™;[0,00)) be a class of test functions compactly supported in space
with the properties

Vk e NV(t,z) € [0,T) x R" VO € & : 8;0(t,x) < — Lips(Plug](t))|V.O(t, x|,
V(t,z) € [0,T) xR" 30 € # : O(t,z) > 0.

Assume that for every © € .F the quantities®
Lipg (P[ug](t)), Lips(dive Plug](t)), Lipy(9sP[ux(t)), Lipy(dive Pluk](t)),
/Q [dive Plug](t, =, - )|l oo ([0, r()) 42

are equi-bounded in L}OC([O,T)) uniformly in k and assume that there is a non-negative function
h € LY([0,T)) such that

[ iva(Plaa] = Plud)(t, )l o o.mo @ () do < (0) [ fun(t,2) = wt,2) ©1t,2) da,
(3.6a)

[Lipy ((Plus] = Plud)(t, )0t N pn < h®) [ Jui(t.z) — ult,2)O(t,)da,  (3.6b)

hold for a.e. t € [0,T) and for every k,l € N.
Then for every t € [0,T) the sequence ug(t, -) converges in LL (R™) to a function u(t,z)
which is an entropy solution of

Opu + divy (Plul(t,z,u)) =0 (3.7)

according to Definition 2.2 with initial datum ug.

4Recall the notation introduced in Notation 2.4 depends implicitly on ©.
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Proof of Theorem 3.1 and Theorem 3.2. For a fixed © € %, we can apply Proposition 2.9 to the
pair of quasi-solutions (ug, ;) with t; = 0 and ¢ = ¢, from which we deduce that

[ (@) = w(t.2) 0t 2) da
< ([ J(0.2) = (0. 2)/©(0,2) di + D 0,1) ) exp (/Ot frils)ds)
where
fiat) = [3Lipa(diva Plug] (1)) + Lipa(diva Plu] (£))] + [1 + 2B(T)]A(H),

t 1 t
B1(0,6) = Ol | (o + 110, (5upp (s, ), ds + 5 VuOloe [ (i + o) supp (s, -)), ds

+ Cra (0, ) min { My (0,6)/2, 1} + €| max { My 1(0,6)/%, My 1(0,1) },
Cr1(0,t) = ||O]|cc B(2) (2 + /Ot[?) Lips(dive Plug](s)) + Lips(dive Plw](s)) + 2 Lipy (93 Pw](s))] ds)
0y [ Tiva(diva Plugl(s)) ds + 10 1ip, B | Lipa((Plasd — Plul)(s)) d

1 t
+,@wi// diva(Plug] — Plu])(s, 2, - || oo da ds.
51Ol Lip, ; (supp@(s,-))1|| iva (Plug] — Plw])(s, 2, - )| e ((0,r(s))) dr ds

From the equi-boundedness in k of the various norms, we get that fj;(¢t) and C;(0,t) are
uniformly bounded for every k,l € N. Together with (3.5), this implies that ®;;(0,t) — 0 as
k,l — oo.

Thanks to the properties of the family .%#, for every radius r» > 0 we can find a finite subfamily
& C .7 and coeflicients ¢ : & — Ry such that

> ceO(t,-) = 1p,().

ecs

Summing the previous Gronwall inequalities over © € & and using that ug(0, -) is a Cauchy
sequence in L (R™), we deduce that ug(t, - ) is a Cauchy sequence in L'(B,), hence there exists
a limit function u(t, -) to which the sequence u(t, - ) converges in Li. (R") for every t € [0,T).
Since the Grénwall estimate is locally uniform in ¢, we have that uy — u in L2 ([0,7); L .(R™)).

We need to show that u satisfies the entropy inequality associated to the problem (3.7). We
follow the same strategy as for the previous theorem. By assumption, uy satisfy the (p.0, ptr1)-

quasi-entropy inequality for the problem (3.4). Regularizing the absolute value we deduce

T Uk
// {ﬁa,c(w)@t@ + Plug]:(t, z, u, ¢) - Vo — @ divy Plug)(t, z, s)nZ .(s) ds} dx dt
0J/Rn

T T
> —/O/Rn\w(t,mﬂduk,o,t@) dt—/0/Rn|vx90(tv$)|dﬂk,1,t($) dt,

where

Plug]e(t,z,u,c) = /cu 93 Plug)(t, z,s)n. .(s) ds.

We now have to pass to the limit this inequality for & — oco. The first term of the left hand
side and the full right hand side are standard, as in the previous proof. Moreover, we have that
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Plug]c(t, x, ug, c) = Plu]e(t,z,u, c): indeed

| Plug]e(t, x, uk, ¢) — Pluls(t, z,u,c)|
< |Plug)e(t, x, ug, ¢) — Plugle(t, x,u, c)| + | Pluk)e(t, x,u, ) — Plu)-(t, z,u, c)|

< Lipg (Plug](t)) lug — u| +

" (O3Plus] ~ uPlul) b, 5) o (5) ds
R(t)
< Lipg (Pux] (£)) lux — u| + /0 105 Plug] — 9 Plul|(t, 2, 5) ds,

the first term converges to 0 in L' and the second converges to 0 a.e. and enjoys the uniform
bound

[ 0Pl = Dyl 2,9) | < Lim(PLukle) + Livy (PLul)] A,

Finally, for the third term we decompose it as

/ div, Pluy] txsnsc dS—/ div, P tch)nac()dS

[ dive Pl () ds] +

<

/c (divy Plug] — divy Plu])(t, 2, s)1o(s) ds|.

The first integral vanishes in the limit

u (t,x)
lim // / ' o(t, ) divy Plu](t,z, s)n’ .(s)dsdzdt = 0
R™ Ju(

k00
because the integrand is a fixed L' function which is integrated over the set
{(t,z,s) €[0,T) x R" x [0, R(T")] : (t,x) € suppp, s € [uk(t,z) A u(t,z),ur(t,x) Vu(t,z)]}
whose measure is

// lug (t, x) — u(t, z)| dedt — 0, for k — oo.
supp

The second integral can be estimated as

R(t)
< / (dive Plug] — div, Plul|(t, z, 5)n (s) ds,
0

/C * (div Plug] — dive Plu])(t, z, ) (s) ds

which goes to zero thanks to the assumptions on div, P
After this limit kK — 0 we get that u satisfies the regularized entropy inequality

// {nac )Orp + Plulc(t, x,u,c) - Vyp — go/ div, P t:vs)nac()ds}dxdtzo.

Finally, letting ¢ — 0 we deduce that u satisfies the entropy inequality with Kruzkov entropies,
and then that u solves the conservation law and is continuous in time, exactly as for the previous
theorem. O
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3.2 Uniqueness

The uniqueness theorem for a fixed flux we would obtain from our Theorem 2.6 is weaker than
[Kru70] because we require the solutions to be BV in addition to L°.
On the other hand, Theorem 2.6 gives an interesting uniqueness result for the problem

Ou(t, ) + divy (Plu](t, z,u(t,z))) =0

where the flux P[ul(t, z, s) depends non-locally on the whole solution itself, for instance Plu|(t, x, s) =
v(8)(W xu)(t,x). The uniqueness in this setting seems to require the BV regularity.

We provide two statements of the uniqueness, one dealing with solutions compactly supported
in space and one with more general solutions. The reason for this distinction is that in the
compact case it is sufficient to verify the assumptions with a single weight function © which does
not need to satisfy the slope condition (2.5), whereas in the general case we need to work with a
suitable family of weight functions.

Theorem 3.3 (Uniqueness with non-local fluxes, compact solutions). Let
P:2(0,7),R") = {p:[0,T) x R" x [0,00) = R}
u +— Plu]

be such that Plu] is a flux satisfying (A1)-(A4) of Assumptions 2.1.
Suppose that u,v € ([0, T),R™) are compactly supported entropy solutions of the Cauchy
problems

Oyu + divy (Plu](t, z,u)) = 0, O + divy (Pv](t, z,v)) =0
with the same compactly supported initial datum ug € LS. (R™) N BVipe(R™).

loc

Assume that there is © € C1([0,T) x R™; [0, o)) compactly supported in space with © =1 on
a neighborhood of supp(u) U supp(v) and a non-negative function h € Li ([0,T)) such that

/Ranin(P[u] — P[v))(t, x, ')||Loo([07R(t)D@(t,$) dz < h(t) (t,z)—v(t,z)|O(t, z)dz, (3.8a)

|u
Rn

[Lipg ((Plu] = Pt ) )[1ey < h() [ [ult.a) = v(t.2)|O(ta)de (380)

hold for a.e. t € [0,T).
Then u =v.

Proof. Recalling Remark 2.8 which allows us to omit (A5), we can apply Proposition 2.9 with
t1 =0, ® = 0 and f(t) = [3Lips(divy Plu](t)) + Lips(dive P[v](t))] + [1 + 2B(T)]h(t), thus
obtaining

/Rn|u(t2,$) —v(te, x)|dx = /Rn\u(tg,:n) — v(tg, x)|O(ty, ) dz
< (/Rn|u(0,x) —v(0,2)|6(0, x) dx) exp( 0t2 f(t) dt) —0. 0O

Theorem 3.4 (Uniqueness with non-local fluxes, non-compact solutions). Let

P:2(0,7),R") = {p:[0,T) x R" x [0,00) — R}
u — Plu]

be such that Plu] is a flux satisfying (A1)-(A4) of Assumptions 2.1.
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Suppose that u,v € ([0, T),R™) are entropy solutions of the Cauchy problems
Opu + divy (Plu](t, z,u)) = 0, Oy + divg (Pv](t, z,v)) =0

with the same initial datum ug € LS (R™) N BViec(R™).

Let & C C1([0,T) x R";[0,00)) be a class of test functions compactly supported in space with
the properties

V(t,z) €[0,T) x R" VO € # : 9,0(t,x) < — Lip3(P[v](t))|VO(t, x)],
V(t,z) €[0,T) xR" 3©@ € & : O(t,x) > 0.

Assume that for every © € F there is a non-negative function h € LL _([0,T)) such that

Rn”dng(P[u] = Pl))(t,z, - )|l oo (jo,re)) © (¢ 7) dz < h(t) /Rn|u(t,a:) —o(t,z)|O(t,x)dz, (3.9a)

[Lipg ((Plu] = P])(t, -))O(, )l Lo (rny < h(t) /RH/IU(t»ﬂf) —v(t,2)|0(t, z) dz, (3.9b)

hold for a.e. t € [0,T).
Then u = v.

Proof. Given © € % and the corresponding function h satisfying (3.9), recalling Remark 2.8
which allows us to omit (A5), we can apply Proposition 2.9 with ¢; = 0, ® = 0 and f(t) =
[3 Lips(dive P[u](t)) + Lips(dive P[v](t))] + [1 4+ 2B(T)]h(t), thus obtaining

/an(@,x) ~ o(ty, 2)|O(ta, 7) dz < </Rn]u(0,x) — (0, 2)|0(0, 2) dx) exp(/OtQ (1) dt> 0,

hence u(ta, x) = v(t2, z) where O(ta, x) > 0. Letting © vary in .# we get the desired conclusion.
O

3.3 Rate of convergence of various approximating schemes

In this subsection we study the convergence properties of some numerical schemes for the solution
of scalar conservation laws. We consider schemes producing approximate solutions which are
quasi-entropic and continuous in time, so that Definition 2.3 is satisfied.

Among them, we devote more details to a recent particle method [RS21] applied to a non-local
scalar conservation law used to model for instance traffic with congestion. In particular, we
are able to derive an explicit rate of convergence (the convergence in the cited article was by
compactness) and show that it is optimal (Remark 3.8). Furthermore, the Cauchy property
shown in Theorem 3.6 provides an independent way to prove the existence which bypasses the
compactness argument used in [RS21].

In addition to this, we treat the classical vanishing viscosity and front tracking methods
and recover the well known convergence rates. Since our stability theorem holds also for fluxes
depending on (t,z), the convergence rate of the vanishing viscosity method is derived in this
more general setting.

We avoid the discussion of finite difference/volume/elements such as Godunov or higher order
ones since they are described by processes discrete in time. They could be studied within our
framework once one constructs an interpolation in time which produces an error which is L' in
time, as the right hand side of (2.2). Another alternative is to generalize our stability result
Theorem 2.6 in order to treat errors which are bounded by arbitrary measures in time instead
of £, this however causes drastic changes to both the statement and its proof because the
quasi-solutions are not necessarily continuous in time and one can no longer de-double the time
variables. We leave this research direction for future work.
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3.3.1 Particle method

Following the series of articles [DR15; DFR19; DS20] and concurrently with [FT22], in [RS21]
the authors study the scalar conservation law

Oip(t, ) + divy [p(t, z)v(p(t, ) (V (¢, x) — (0:W = p)(t,z))] =0, (3.10)

where the convolution 0, W * p is in space only, and construct a particle based numerical scheme
that produces piecewise constant approximations of the solution.
For N € N fixed, the piecewise constant approximation p" is defined as

1
N(zi(t) — wia(t)’

N
ﬁN(tv'r) = Zpﬁv(t)l(wifl(t),xi(t))(x)7 pzN(t) =
i=1

where the particles X = (xq,...,2x) solve the ODE

i(t) =V (t,2i(t) — (0 W+ p)(t,2:(t))
N
=V (t,2i(t)) = Y (pjr1(t) — pi(0)W (¢, () — (1)), (ODE;)
=0

wilt) = {U(Pi(t))a it 0i(t) <0,
Z v(pit1(t)), if Ui(t) > 0.

In [RS21, Theorem 1.3] it is shown that the 5" converge in L ([0,00) x R) to the entropy
solution p of (3.10). The proof relies on a compactness argument that does not allow to establish
the rate of convergence. The stability result Theorem 2.6 gives an alternative way to deduce the
convergence p" — p together with an explicit rate.

According to [RS21, Proposition 2.6, Proposition 2.10, Corollary 2.12] these functions belong
to C([0,00); LY(R)) N Lg2.([0,00); L=(R)) N L2, ([0,00); BV(R)) uniformly in N. In [RS21,
Proposition 2.13] it is shown that the piecewise constant densities satisfy an approximate entropy
inequality. However, the notion adopted there differs from Definition 2.3 because the error term
is not written in integral form. Therefore we cannot directly use [RS21, (2.14)] in order to apply
our stability result and must instead slightly modify the way we estimate the error terms in its
proof. The statement we can prove is the following.

Proposition 3.5 (Modified version of [RS21, Proposition 2.13]). For N € N let p be the
piecewise constant density associated to the particles X~ = (z;)¥, solving (ODE;y).
Then p% is a (pdY, iV )-quasi-entropy solution of (3.10) in the sense of Definition 2.3 with
N
poe =0 and

iy = Zm(ﬂfv(t))‘ff(ta 2) = Ut 2i1(8) L,y 1)) (0) 2

(2

N
+ 3o (@) [|2i0) - 21 @) +
=1

N
=1

2 () — U(va(f))U(tvxz‘—l(t))H sy (0t (2)-L
enjoying the estimate of the total mass

pe(R) < - H(t)

1
N

for some increasing function H :[0,00) — [0,00) independent of N.
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Proof. In the proof of [RS21, Proposition 2.13] it is shown that
|7 A1 = clog + sign(p" = &) [(m(p") = m(e) TN 0o — m()0, 0]} do
0o JrR
can be written as I 4 II + III where I,1I > 0 and®
N T _ _ T _
11 = Z/O sign(p; — C){m(l)i) [w(xi)(U(wi) = U(wi-1)) — / U dw}
=1 Ti—1

4 i = 1) 0(@) — () — (pla) — plai) (wly — v(p)Dlain)] |

with Z; € (21, ;) such that ¢(z;) = ff;l o(x)dz.
The first line of III is the integral in time of

Zagn m(p;) [so( WO @) =~ UGn) - [ 0.0 da

= - 2 sign(p — mip:) | 0,0 () (¢(x) — () da

= Z sign(p; — c)m(p;) /:_1 U(x)0pp(x) da + gsign(m —)m(p)U (zi-1) (p(xi-1) — p(2:))
- ZSIgn mip) [ [0() = Dlain)lonp(e) da

€T

|U(2) = U(@ien)|0ap ()| da;

i—1

N
> =3 m(p /

whereas the second line of II] is the integral in time of

zs1gn pi— i [@:;—x’ ) (f o(z) do — pla ))—(som) so(azi1>>(w;_1—v<pz->0<xu>>]

——Zsign<p¢—c>p [ C% T e dyde + (s~ (U [ %w(y)dy]

Tj—
= — ) sign(p; —c)pi
Z

—Zpi “a:; — T
i=1

@=ai) [ 2w dy+ v Ue) [ oe) dy]

Ty

we)Uain]] [ 10,6l dy

Ti—1

Combining these last two computations we deduce that

T
11z = [ [0l dudy () dt
0J/R ’

where u]l\ft is the one claimed in the statement of the proposition.

SFor simplicity of notation we write p; instead of pl¥.
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Making use of some of the computations performed in [RS21] to bound III, the total mass of
/ﬂl\ft can be estimated by

N T _ N _
e (R) <> piv(pi) (i — fﬁifl)/ 10U dz + > p; [\1‘2 — @[+ i — U(Pi)U(SEz’fl)ﬂ (i — 2i1)
i=1 Ti-1 i=1

< . | HOO/S(t)’ | Ly (‘ / i ’ |vi- (p)[|U (wi— )‘)
v 0 U|dz + E T; — Ti_1| + |vi v(pi) ||U (z;

- N —S(t) N = ! ! !
1

<

vl F(O[1 + G(S(1) + G(25(2))]

+ [2||vrooF<t>G<25<t>>[1 + RIS + 8F<t>G<R<t>>G(zsos))B(t)} ,

in terms of the functions F,G, B, R, S defined in [RS21], which are independent of N. O

Once we have established that the piecewise constant approximations pV are quasi-entropy
solutions, we can proceed to show the converge of pVV to the exact entropy solution of (3.10).
With respect to [RS21, Assumptions 1.4], we need to require better regularity of the velocity
fields V' and W so that the resulting flux satisfies (A5) of Assumptions 2.1.

Theorem 3.6 (Cauchy property and rate of convergence). Let v, V,W,py be as in [RS21,
Theorem 1.8]. Assume in addition that V,W € LL ([0,00); W2°(R)). For N € N let 5 be the

loc
piecewise constant density associated to the particles solving (ODEy), with initial datum ﬁév as

in [RS21, Theorem 1.3].
Then (p™N)nen is a Cauchy sequence in L>([0,T]; L*(R)) for every T > 0. More precisely,

for M, N € N large enough so that (ﬁ + %) H(T) < 1, we have

B ~ B ~ 1 1 1/2
16%(6) = 7 (Olzsey < K@ 3 sy + 20 (37 + 7 ) (311)

for some increasing functions K, L : [0,00) — [0,00) independent of M, N .
Moreover, the rate of convergence of p~ to the unique entropy solution p is

1870 — ol < KO — poll e + Lfﬁ) (3.12)

Proof. Under the assumptions [RS21, Assumptions 1.4], we have that the flux
IN(t,z,8) = m(s)(V(t,x) — (O:W * p~)(t, x))

satisfies (A1)—(A4) of Assumptions 2.1. Under the additional assumptions on V and W we have
that J satisfies (A5) as well because

02N (t, 2, 5) = m(s)[02V (¢, x) + (O2W + Dp™)(t,2)] € Lioc([0, 00); Lie(R))

and
0z 05N (t,m,8) = m'(5)[0:V (¢, ) + (O3W = p ) (¢, 2)] € Lige([0,00); Lis.(R)).

As in [RS21, Proposition 2.5], let S(¢) be such that supp(p™(¢)) C [-S(t),S(t)]. Taking
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© <1 as in Remark 2.7 with supp O(¢, - ) C [-25(t), 25(t)], we have

/||diV2(JN — IM)(t, 2, )l (o, O, ) d

—M
Y@ # 0V =N D] oy O )

25(1) o
< Hmumwm [ [ (D20 (7 = >)<t,x>\dx

35(1)
< [Im/| Lo ([0, R(2)) d!D 0 W (1)] Nt x) = pM(t, x)| da

—-35
< |1l oo o, F (¢ )[1 L 6G(35(t /\p (t,2) — ™ (¢, 2)|O(t, 2) de di

and

[Lips ((JY = JM)(t, )) ( )||L<>o
< Lip(m)[[(9:W = (p M), Moo ((—250),254)
< Lip(m)||(0:W * (p M), ||L°° ([=25(1),25(8)])
< Lip(m)|[|0.W (¢, )HLoo (=3s@asepla™ ) = ™ (¢t e esw).sw)
< Lip(m)F()G(3S(t /|p (t,2) — M (¢, 2)|O(t, ) da.

Therefore P = JM Q = JN, u = pM, v = pV satisfy (2.8) with

h(t) = [[ml| o= (jo,reeyy F'(O[1 + 6G(BS())S(t)] + Lip(m) F(H)G(35(¢)).

Therefore, taking into account [RS21, Proposition 2.6, Proposition 2.10] and Proposition 3.5, we
can apply Proposition 2.9 with ¢t; = 0 and 5 = t. As a consequence we obtain the estimate

L1705 el de < (168 = 3l + 20.0) exp( [ fs)as). 313)

Noticing that under the assumption on M, N we have

min { M (0,4)!/2, 1} = max {M(0,)/2, M(0,1)} = M(0,8)"/2 < H(t)"/2 (J\14 + N)l/Q,

the right hand side of (3.13) can be bounded by

oo [ o)) {npéV s+ [BI01e + €100+ ea] 2 (1 + N)W} .

The proof is concluded by estimating f(s) and C(0,t) in terms of the functions F, G, R, S, B,m
from [RS21] independently of M, N, in a similar way as we already did for H and h.

The second part of the claim, the rate of convergence of p™ (t) — p(t) in L'(R), is obtained
either by sending M — oo or by replicating the above Grénwall argument to the pair (pV, p). O

Remark 3.7. Notice that the existence of p, apart from being already ensured by [RS21, Theo-
rem 1.3], can now be deduced as a consequence of the Cauchy estimate (3.11), which implies the
compactness in C([0,T]; L1(R)) for every T > 0.
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Remark 3.8. Notice that any initial datum pg as in [RS21, Theorem 1.3] can be approximated
by pj as in [RS21, Lemma 1.2] with the additional property that ||5)" — pol|f1®) < CN™— 172,
therefore (3.12) as a whole is of the order N~/2. Moreover, in general the 1n1t1a1 datum pg
cannot be approximated in L'(R) by some ,Eév better than N~1/2, thus this rate is sharp. A
precise formulation of these claims is given in the next lemma.

Lemma 3.9. Given a fived pg € Z(R) N L>®(R) N BV (R) with the bounds

po < Ry, supp(po) < [—S0, Sol, TV(po) < B,
for every N € N there is a family of sorted particles XN = (2, ...,2xn) such that the correspond-
ing piecewise constant p satisfies
_ _ _ _ 250 + Bo
pV < Ro,  supp(p") C[=50,%],  TV(EY)<Bo, 5" —pollpiw < -

V2N

On the other hand, we have the following counterexample. For every positive sequence
(an)Nen such that ay = o(1/v/N) there exists pg € Z(R) N L>®°(R) N BV (R) with

po <1, supp(po) € [—1,1], TV(po) < 3,

such that for every sequence of sorted particles XN = (zo,...,zN) the corresponding piecewise
constant p~ satisfy

. 16N = poll 1 (w)

limsup ————= =

N—oo an

Proof. Define zp and x be such that [z, 2] is the smallest interval containing supp(po), i.e. it is
its convex hull, and then consider intermediate particles x; for ¢ = 1,..., N — 1 with the property
that po([zi—1,2i]) = 1/N. The estimates on the L® norm, the support and the total variation of
p"V are established in [RS21, Lemma 1.2]. Letting l; = z; — 2;_1 and v; = TV (2, 1,2:)(p0), We
have

1™ = poll L2 sy < li (eSSSUP po — essinf P0> < lvi,

(xi_l,mi) (xi—lvxi)
_ _ 2
HPN — pOHLl([xi,l,xi]) < HpNHLl([CUi—hIi]) + HpOHLl([l‘thz‘]) < N

Therefore

N
2
15" = poll s <Z||p = ol < omin{es

250+ B
<2fﬁwf22-°;“

Let us now move on to the counterexample. Given N,Cn € N define the building block

Z \ﬁ [Qk/f(%ﬂ)/f]( z).

We have
2CNn +1 Cy+1 Cy+1
By <1,  supp(Bn) C {0, jﬁ] : V(Bn) <2 J\V/N 7 16821y = NN :
Let XV = (20,...,2x) be an arbitrary family of sorted particles and let p™¥ be its associated
piecewise constant density. Given k =0,...,Cxy — 1, we distinguish two cases:
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o pV(z) <1/(2V/N) for some = € [(2k 4+ 1)/VN, (2k +2)/v/N]\ XV: letting i be the index
such that x € (z;_1,;), we must have z; — ;1 > 2/+/N, therefore the set

{y V) < 1/(2\/N)} - ([%\J/FNW’ 21;%1} U [21;%2’ %:/LN5/2D

has measure at least 1/(2v/N), thus

17" = BN”Ll([(2k+1/2)/\/ﬁ,(2k+5/2)/\/ﬁ]) > 1/(2VN)? = 1/(4N);

o pN(x) > 1/(2V/N) for every z € [(2k +1)/V/'N, (2k +2)/v/'N]: since Sy = 0 in the interval
we have

15" = BNl 1 (ans1y v vy 2 L/(2VN) - 1/VN = 1/(2N).

Summing over k and noting that the intervals over which we have the L' estimate are essentially
disjoint we get
W't on
—-N _
1P _ﬁNHLl([o,@CNH)/\W]) =z Z AN ~ 4N’

By assumption, ayN < v/ N. Choose Cy such that ayN < Cy < VN, for instance
Cny = a%zN 3/4 The counterexample will be given by the probability

=> By, (z—bn,) + (1 -> N]JVJF ) 1_1,0(7),

=1 =1 Y
where
h=1 v

is chosen so that the supports of the building blocks are disjoint and V; is a sequence growing
sufficiently fast so that

2C +1 > C +1 X Oy, +1
320wt N <1, 22 s Y <L
=1 VA =1
Indeed py < 1,
0 QCN +1
supp(po) € |1, N c [-1,1],
7j=1
TV(po) <2+ZTV,3 <2+Z2 O, 11 g
0 N = Jy
7j=1 7j=1 N]
and for any family of sorted particles XVi = (wo,...,zN;) we have

7N L
HlaNj _pOHLl(R) ||p J —5N]~( bNJ')HLl([ij,ij-i-(QCNj-i-l)/ /Nj}) . CNj . -
Q.
anN; anN; B 4NjaNj
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3.3.2 Vanishing viscosity

The vanishing viscosity method is a way to construct solutions to the scalar conservation law
O+ divy (P(t,z,u)) =0 (3.14)
as the limit for € — 0 of functions u. that solve
Opus + divy (P(t, 2, us)) = eAue. (3.15)

In this section we demonstrate how to apply Theorem 2.6 to get the rate of convergence of
solutions u, to u. Theorem 3.11 does not address the issue of the existence of the solutions u. for
the equation (3.15). In this regard, see for instance [LSU68] which provides assumptions under
which it is guaranteed.

In [Kru70, Theorem 5] the author uses the vanishing viscosity method to show the existence
of solutions for the problem (3.14); however, he does not provide a rate of convergence of the
approximating sequence u. because he relies on a compactness argument. In [Kuz76, Theorem 3]
the author shows the rate of convergence ~ /2 of the vanishing viscosity method for BV
solutions in the particular case of a flux P(¢,z,u) = P(u) independent of space and time. In this
section we extend its result to the general case.

The following proposition shows how the approximating viscous solutions of (3.15) fall in
this framework and can be interpreted as quasi-entropy solutions of (3.14). This will be used in
Theorem 3.11 to deduce the rate of convergence.

Proposition 3.10. Given P satisfying Assumptions 2.1, let
us € O([0,7); L'(R™)) N Li ([0, T); BV(R™)) N Lig (0, T); H(R™))

be a solution of (3.15). Then u. is a (p§, 15)-quasi-entropy solution of (3.14) in the sense of
Definition 2.3 with

Mg,t =0, /ﬁ,t = g|Vu(t, - )L™
Proof. Fix n € C%(R) convex. Letting
Py(t.wou) = [ 0sP(t,,9)7/(5) ds,
0

by the chain rule [DL03, Theorem 1.5] we have the identity

divy (P(t, z,us(t,2)))n (us(t, x))

= divy P(t, z, u:(t,x))n’ ( <(t,2)) + O3 P(t, z,us(t, z)) - Vayue(t, z)n (us(t, )

= dive P(t, z, us(t, 2))n' (us(t, 2)) + 03Py (¢, z, uc(t, 2)) - Vyue(t, x)

= divy (P, (t, z, ue(t, 2))) + [dive P(¢, 2, us(t, 2))n (us(t, z)) — dive Py (¢, z, us(t, ))].

Testing the left hand side of the equation (3.15) satisfied by u. with 7'(u:)¢ and using the
previous identity we get

/oT/n[atuf + divg (P(t, @, ue)) |0 (ue)p dz dt

T
T /O/R {n(ug)f)tcp + Py(t,x,ue) - Vo — [dive P(t, z, ue)n' (ue) — divy P,(t,x, ua)]go} dx dt,
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whereas for the right hand side we can estimate

T T T
E// Auan/(ua)@dxdt: —8// |Vug|27)"(ue)cpdxdt—8// vuav@n/(ua) dz dt
0JR™ 0JRn oJrn
T
< el [ [ 1VllVuc|dodt
0JR"™

Given a fixed constant ¢ € R, in the limit as n(u) approximates n.(u) = |u — ¢|, we have
that 7(u) approximates n)(u) = sign(u — ¢), the flux P,(¢,z,u) approximates P, (t,z,u) =
sign(u — ¢)[P(t,z,u) — P(t,x,c)] and [divy P(t, z,u)n’ (u) — diva Py (t, z,u)] approximates

divy P(t, x,u) sign(u — ¢) — dive Py, (¢, z,u)
= divy P(t,z,u) sign(u — ¢) — sign(u — ¢) dive[P(t, z,u) — P(t,x,c)] = sign(u — ¢)P(t, z, c).

Combining the previous computations we deduce

T
// {|ue — ¢|0p + sign(us — ¢)[P(t,x,us) — P(t,x,c)] - Vo — dive P(t,x,c)p} dedt
0JRn

T
2—6// V|| Vu| dz dt,
0Jrn

which is the definition of quasi-entropy solution with po = 0 and p;+ = ¢|Vue(t, - )|.2". O

Theorem 3.11 (Rate of convergence of vanishing viscosity method). Given P satisfying As-
sumptions 2.1, for every e > 0 let

ue € C([0,7); L' (R™) N L, (0, T7); L= (R™)) N Lig. ([0, T); BV (R™)) N Lig. (0, T); H' (R™))

be a solution of (3.15) with initial datum ug € L'(R™) N L>®(R™) N BV( ™). Assume that u. are
equi-continuous in C'([0, T); LY(R™)) and equi-bounded in L{2.([0,T); L°(R™)) and L2, ([0,T); BV (R™)).
Then for e — 0 we have that u. converges in C([0,T); L( ))

u e C([0,7); LY (R™)) N Lig. ([0, T); L>(R™)) N L5 ([0,T); BV (R™))

which is the unique entropy solution of (3.14) in the sense of Definition 2.2 with initial datum
ugQ-

Given a weight function © € Cl([O,T) x R™;[0,00)) compactly supported in space for every
time and satisfying the property®

2O(t,x) < —Lips(P(t))|VLO(t, x)], V(t,x) € [0,T) x R",

we have the convergence rate (fore <1)
/ e (t,2) — u(t, 2)|O(t x) de < V2L(1), Vit € [0,T),
R”

for some increasing function L : [0,T) — [0,00) independent of .

Proof. The claimed convergence u. — u is ensured by the assumptions on u. and Ascoli-Arzela
Theorem. Passing to the limit the quasi-entropy inequality (2.2) obtains (2.1), which says that u
is an entropy solution of (3.14).

Recall that the notation Lip, (P(t)) depends implicitly on both Q; = (supp o(t, )) , and the L norm of u.
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Let B : [0,T) — [0,00) be a non-decreasing function providing the bounds TV (uc(t, - )), TV (u(t, -)) <
B(t). Recalling Proposition 3.10 we have

to to
M(tr,t2) = g/ / Vu(t,2)|dedt <e [ B(t)dt < eB(ta)ts.
t1 Qt tl
Applying Theorem 2.6 with P = @, vg = 11 = 0 we get
to
[ Justt,2) — ult,2)l0(t,2) o
RTL

t1

to 1
< 4 Lips(dive P(t))/ lu(t, ) — v(t,x)|O(t, x) dz dt + §HV29HOOM(t1,t2)
t1 R~

+ C(tr, ta) min{ M(t1,£2)/2, 1} + c]|0] oo max{ M (t1, £2)"/%, M (t1,2) }

where
to
Clt,t2) = @ Blt2) (2+ [ [ Lipg(cive P(e)) + 2Lipy(0aP(1))] t
1
to
+1Ollzmny [ Lipa(dive P))dt,

Letting t; = 0, t2 = t, calling w(t) = [gn|us(t,z) — u(t,z)|O(t, z) dz and using the fact that u.
and u have the same initial datum ug we deduce
t 1
w(t) < / ALips(diva P(s))u(s) ds + =B (1)t V20 oc
0
+ C(0,t) min{e2B(t)/2/2,1} + ¢,0]|0o max{e/2B(t)Y/2t}/2 cB(t)t}.

For ¢ < 1 Gronwall Theorem implies then

w(t) < e/ <;||v2@||oo +C0,1) + cn||®||oo> (B()t+B(1)/2] exp (/Ot 4 Lips(divy P(s)) ds> .

Similarly to what we did in Theorem 3.6, a variation of our presented argument where we
apply the stability theorem to ., and u., directly implies that (u., )nen is a Cauchy sequence
in L2 ([0,T), Li, . (R™)) whenever €, — 0. This is an alternative way to deduce the existence of
a solution for the limiting problem (3.14) which does not rely on the equi-continuity and the

compactness arguments.

3.3.3 Front tracking

Given f € C?(R), consider the flux P(t,z,u) = f(u). The front tracking is a scheme introduced
by [Daf72; HHHS88] to solve the conservation law

Bpu + By f (u) = 0. (3.16)

For v € N, define the piecewise linear function f, : R — R which interpolates f on the grid 277Z.
The approximating functions u, considered by the front tracking are the entropy solutions of the
conservation law associated to the modified flux

Opuy + Oy fu(uy) = 0. (3.17)
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The initial datum w,,¢ used in combination with (3.17) is a discretization of the initial datum ug
of (3.16) taking values only in 27"Z.

Specializing Theorem 2.6 to the case of a problem independent of space and time, we are
able to recover the well-known convergence rate [HHHSS].

Instead of considering wu, as a (ug, p1)-quasi-entropy solution of the same problem (3.16) to
which u is an exact entropy solution with g = 0 and py = 2||f — fo | e (r)-Z; a better stability
estimate is obtained exploiting the fact that u, is an exact entropy solution of the nearby problem
(3.17). The net result is that the estimate becomes independent of the measure of the support of
the weight function ©.

Theorem 3.12 (Rate of convergence of front tracking method). Let f € C?(R) and ug €
L>*(R) N BV(R) with ||ugllr~ < Ro and TV(ug) < By. Forv € N, let f, : R — R be
the piecewise linear function which interpolates f on the grid 277Z. Let u, be the entropy
solution of the problem (3.17) with an initial datum such that Im(u, o) C 27VZ, ||uyollre~ < Ro,
TV(uy0) < By and u,o — ug in LY(R). Then

Jup (t) = w(@®) 1wy < lluwo — ol 1wy + 277 Boll fllc2((= ro, Ro]) t

where u is the unique entropy solution of (3.16) with initial datum ug.

Proof. By construction we have Lipi_p, g, (fv — f) < 1l c2(=ro,rop 2" -

In [Dafl6, Section 14.1] it is shown that ||u,(t)||re < |lupollze < Ro and TV(u,(t)) <
TV(uy0) < By for every t € [0, 00).

Taking © € C1([0,0) x R;[0,1]) compactly supported in space and satisfying 8;0(¢, x) <
— Lip(f)]|0:09(t, x)|, we can apply Theorem 2.6 with Remark 2.8. Observing that the terms
divy P, dive @ = 0 because the fluxes are independent of space, we deduce

to to

< 2By t Lip(_ gy, ro) (fv — IO, )|[oc dt
1

< 27" Bol| fllo2 (=R, o)) (t2 — t1)-

Taking the limit as © approximates the constant function identically equal to 1 we get the
thesis. 0

[/R’uy(t,x) —u(t,z)|O(t, ) dm}

t1
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