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Abstract

We prove the stability of entropy solutions of nonlinear conservation laws with respect to
perturbations of the initial datum, the space-time dependent flux and the entropy inequalities.

Such a general stability theorem is motivated by the study of problems in which the flux
P [u](t, x, u) depends possibly non-locally on the solution itself. For these problems we show
the conditional existence and uniqueness of entropy solutions.

Moreover, the relaxation of the entropy inequality allows to treat approximate solutions
arising from various numerical schemes. This can be used to derive the rate of convergence
of the recent particle method introduced in [RS21] to solve a one-dimensional model of
traffic with congestion, as well as recover already known rates for some other approximation
methods.
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1 Introduction
The study of conservation laws ∂tu + divx

(
P (t, x, u)

)
= 0 has been initiated by [Kru70], who

introduced the notion of entropy solutions as a selecting criterion among the more general
distributional solutions. This notion is encoded in the distributional inequalities

∂t|u− c|+ divx
[
sign(u− c)

(
P (t, x, u)− P (t, x, c)

)]
+ sign(u− c) divxP (t, x, c) ≤ 0, ∀c ∈ R.

By means of his celebrated doubling of variables technique, in [Kru70] the author shows the
L1

loc stability of L∞ entropy solutions with respect to perturbations of the initial datum.
The stability has been extended to allow the treatment of approximate solutions, for instance

arising from numerical methods. This notion of quasi-entropy solutions amounts to introducing
error terms in the right hand side of the entropy inequalities.

In [Kuz76] this flexibility is exploited to derive convergence rates for several numerical
methods in the particular case of a flux P (u) depending only on the density. Following this
research direction, [BP98] codified a more general notion of quasi-entropy solutions where the
error terms in the right hand side of the entropy inequalities are derivatives with respect to t
and x of measures. Their result is still restricted to the case of a flux of the form P (u), which is
a severe limitation in many applications.

An improvement in this direction, but limited to exact entropy solutions, is given by [KR03,
Theorem 1.3], where the authors show the stability of entropy solutions with respect to two
distinct fluxes, which are taken to be of product form P (x, u) = f(u)k(x). Dealing with two
distinct fluxes forces to consider BV solutions instead of merely L∞, as will be pointed out when
we discuss the strategy of our proof.

Table 1: Summary of previous stability theorems.

no. of fluxes type of flux type of solutions regularity in space

[Kru70] 1 P (t, x, u) entropy L∞

[Kuz76] 1 P (u) quasi-entropy, numerical schemes L∞

[BP98] 1 P (u) quasi-entropy, more general L∞

[KR03] 2 f(u)k(x) entropy BV

Ours 2 P (t, x, u) quasi-entropy BV

Goal of the article. Merging the various lines of improvement, we want to obtain a stability
result for quasi-entropy solutions with distinct fluxes depending also on t and x. The notion of
µ-quasi-entropy solutions is a modification of the weak formulation of the entropy inequality in
which the right hand side is allowed to be an error of the form

−
∫ T

0

(∫
Rn
|ϕ(t, x)| dµ0,t(x) +

∫
Rn
|∇xϕ(t, x)| dµ1,t(x)

)
dt

when tested against ϕ ∈ C∞c
(
(0, T )×R; [0,∞)

)
for some non-negative measures µ0,t, µ1,t, instead

of being zero.
The structure of the stability theorem that we obtain can be synthesized in the following

manner. This statement is of course imprecise and we refer the reader to Section 2 for the correct
definitions and formulations.
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Theorem 1.1 (Informal version of Theorem 2.6). Given two fluxes P,Q satisfying suitable
regularity assumptions, let u and v be a µ-quasi-entropy solution and ν-quasi-entropy solution of
the conservation laws

∂tu+ divx
(
P (t, x, u)

)
= 0 and ∂tv + divx

(
Q(t, x, v)

)
= 0

respectively, with the bounds

u(t, · ), v(t, · ) ≤ R(t), ‖u(t, · )‖BV , ‖v(t, · )‖BV ≤ B(t),

for some increasing functions R,B : [0, T )→ [1,∞).
Then∫
Rn
|u(t, x)− v(t, x)| dx ≤

∫
Rn
|u(0, x)− v(0, x)| dx+

∫ t

0
CP,Q(s)

∫
Rn
|u(s, x)− v(s, x)| dx ds

+B(t)
∫ t

0
‖P (s)−Q(s)‖∗ ds+M0 + cnM1 +B(t)CP,Q(t)

√
M1

where

M0 =
∫ t

0
(µ0,s + ν0,s)(Rn) ds, M1 =

∫ t

0
(µ1,s + ν1,s)(Rn) ds,

‖P (s)−Q(s)‖∗ = ‖divx(P −Q)(s, x, u)‖L1
xL
∞
u

+ ‖∂u(P −Q)(s, x, u)‖L∞x L∞u ,
and CP,Q is a function of the norms of some derivatives of P and Q which is bounded under the
assumptions.

The major simplification we introduced in this informal statement is that we integrate over
the whole space, whereas in Theorem 2.6 the estimate is localized with a suitable weight function.

The need for this article is motivated by some limitations in the available literature. The
possibility to work at the same time with distinct fluxes depending on (t, x, u) and quasi-entropy
solutions has several primary benefits.

Firstly, it allows to study problems with fluxes P [u](t, x, u) which depend non-locally on
the solution u itself, for which it is unavoidable to require the space-time dependence and to
consider two distinct fluxes. In this context, the term ‖P −Q‖∗ sometimes can be estimated
with ‖u− v‖L1

x
allowing to close a Grönwall type inequality (Proposition 2.9). Moreover, in the

situations where there is an estimate of the form ‖P −Q‖∗ ≤ ‖u− v‖1, we show in Section 3.1
and Section 3.2 the conditional existence and uniqueness of entropy solutions respectively.

Secondly, quasi-entropy solutions arise naturally in the study of numerical methods and the
stability theorem can be used to derive their rates of convergence (Section 3.3). In particular,
in Section 3.3.1 we obtain for the first time the rate of convergence of a deterministic particle
method presented in [RS21] (see also [FT22]) to solve a scalar conservation law in one dimension
inspired by a model of traffic with congestion ([DR15; DFR19; DS20]). For this application we
really need both improvements (two space-time fluxes, quasi-entropy solutions) with respect to
the present literature: indeed, the stability result of [KR03] only treats entropy solutions whereas
the discrete approximations produced by the particle method are only shown to be quasi-entropy
solutions (Proposition 3.5). The approximation error with N particles that we obtain is of order
N−1/2, which is shown to be sharp in Section 3.3.1. The adopted technique also provides an
independent way to prove the existence of entropy-solutions which bypasses the compactness
argument used in [RS21].

In addition we recover the known rates of convergence of the vanishing viscosity method
(Section 3.3.2), extending its validity to the case of a flux P (t, x, u), and of the front tracking
method (Section 3.3.3).
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Strategy of the proof of the stability theorem. Our approach is inspired by [Kru70;
KR03], with some modifications.

From [Kru70] we adopt the general framework of doubling of variables. However, dealing
with two distinct fluxes has some important consequences: some algebraic symmetries exploited
in [Kru70] do not hold anymore and this causes the appearance of additional mixed terms which
have to be estimated, for instance

divx
[
sign(u− v)

(
P (t, x, u)− P (t, x, v)−Q(t, y, u) +Q(t, y, v)

)]
where u = u(t, x) and v = v(t, y).

The way we deal with this increased complexity shares a closer resemblance with the scheme
presented in [KR03, Theorem 1.3], which also treats two fluxes, albeit of product form; in
particular we decompose the entropy inequality into similar terms and to estimate the one
described above we apply the chain rule. In order to do this, we need to require u and v to be
BV instead of merely L∞ and at the beginning of the proof we also need to regularize the two
fluxes and the absolute value and sign functions.

The fact that we consider quasi-entropy solutions instead of exact entropy solutions excludes
the possibility of performing the full dedoubling of the space variables |x− y| → 0. As in [Kuz76;
BP98], we collapse the space variables |x − y| . β at an optimal scale β which is determined
by the balance between the mass of the error terms and the modulus of continuity in L1 of the
translations of the solutions.

1.1 Future perspectives

More general definition of quasi-entropy solutions. In Definition 2.3 of quasi-entropy
solutions we impose that the right hand side is estimated with measures whose disintegration
with respect to time is of the form dµ(x) dt. A natural generalization is to extend it to arbitrary
measures dµ(t, x) whose projection on time is not necessarily absolutely continuous with respect
to the Lebesgue measure. This generalization goes in the direction of [BP98]. The usefulness
of this extensions comes from the possibility of studying the convergence rate of numerical
schemes which are discrete/discontinuous processes in time, for instance layering/smoothing,
finite difference/volume/elements such as Godunov, or higher order ones. With this more flexible
notion one can no longer expect quasi-solutions to be in C

(
[0, T );L1

loc(Rn)
)
, so this makes it

more difficult to perform the dedoubling of the time variables.

Conservation laws with diffusion and source terms. An interesting and useful general-
ization of the present result that we intend to pursue consists in considering conservation laws of
the form

∂tu+ divx
(
P (t, x, u)

)
= ∆A(u) + f(t, x, u).

This research direction would improve upon the work of [VH69], which treats a single flux
and entropy solutions, and [KR03], which treats two time-independent fluxes of product type
and entropy solutions. Merging our approach with theirs we plan to extend the stability theorem
to two general fluxes and BV quasi-entropy solutions.

This is for example relevant for determining the rate of convergence of deterministic particle
schemes introduced in [FR18; DRR22b; DRR22a] for solving non-local conservation laws where
the flux is a convolution with the solutions itself and there is a linear/nonlinear mobility to
model congestion.

4



Non-conditional existence for non-local problems. In Section 3.1 we prove the conditional
existence of entropy solutions provided that one can construct an approximating sequence of
quasi-entropy solutions. It is natural to ask whether, under some general assumptions on the
fluxes, such a sequence can be constructed.

This approach could be especially beneficial to show the existence of entropy solutions to
non-local problems, for which to the best of our knowledge the results are rather sparse and
specific to some particular equations (for instance traffic, pedestrian, chemotaxis models).
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2 Stability
The aim of this section is to state and prove a precise formulation of the stability result that
was informally presented in Theorem 1.1. We begin by establishing the regularity assumptions
required for the fluxes.

Assumptions 2.1 (Regularity of the flux). We require P : [0, T )× Rn × [0,∞)→ Rn to be a
flux satisfying the following conditions:

(A1) (t, x) 7→ P (t, x, 0) ∈ L1
loc
(
[0, T )× Rn

)
;

(A2) (t, x) 7→ divx P (t, x, 0) ∈ L1
loc
(
[0, T )× Rn

)
;

(A3) u 7→ P (t, x, u) ∈ Liploc(R) locally uniformly for x ∈ Rn with dependence L1
loc
(
[0, T )

)
in

time, i.e. for every R > 0 there is a function CR ∈ L1
loc
(
[0, T ); [0,∞)

)
such that

|P (t, x, u)− P (t, x, v)| ≤ CR(t)|u− v| ∀u, v ∈ [0, R], ∀(t, x) ∈ [0, T )×BR(0);

(A4) u 7→ divx P (t, x, u) ∈ Liploc(R) locally uniformly for x ∈ Rn with dependence L1
loc
(
[0, T )

)
in time, i.e. for every R > 0 there is a function CR ∈ L1

loc
(
[0, T ); [0,∞)

)
such that

|divx P (t, x, u)− divx P (t, x, v)| ≤ CR(t)|u− v| ∀u, v ∈ [0, R], ∀(t, x) ∈ [0, T )×BR(0);

(A5) (t, x) 7→ divx P (t, x, u) and (t, x) 7→ ∂uP (t, x, u) ∈ L1
loc
(
[0, T );W 1,∞

loc (Rn)
)
locally uniformly

for u ∈ [0,∞), i.e. in particular for every R > 0

‖∇x divx P (t, x, u)‖
L∞
(
BR(0)×[0,R]

), ‖∇x∂uP (t, x, u)‖
L∞
(
BR(0)×[0,R]

) ∈ L1
loc
(
[0, T )

)
.

Notice in particular that under the previous assumptions P turns out to be a Carathéodory
function, therefore P (t, x, u(t, x)) is a well defined measurable function of (t, x) when u(t, x) which
is itself measurable. Moreover, |P (t, x, u(t, x))| ≤ |P (t, x, 0)|+ CR(t)|u(t, x)| for some function
CR(t) > 0 locally in x, hence P (t, x, u(t, x)) is L1

loc
(
[0, T ) × Rn

)
as soon as so is u. The same

considerations apply to (divx P )(t, x, u(t, x)). This observation ensures that the formulations
(2.1) and (2.2) of the following definitions make sense.

The assumption (A5) is unnecessary to ensure the meaningfulness of the entropy inequality
and is required only to estimate the error arising in the stability of quasi-entropy solutions. When
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working with entropy solutions (for instance in Remark 2.8, Theorem 3.3 and Theorem 3.4) this
assumption can be omitted.

For the reader’s convenience, we recall the classical definition of entropy solution in the sense
of [Kru70].

Definition 2.2 (Entropy solution). Let P : [0, T ) × Rn × [0,∞) → Rn a flux satisfying
(A1)–(A4) of Assumptions 2.1. We say that a non-negative function u ∈ C

(
[0, T );L1

loc(Rn)
)
∩

L∞loc
(
[0, T );BVloc(Rn)

)
is an entropy solution of the scalar conservation law

∂tu+ divx(P (t, x, u)) = 0

if the following entropy inequality∫ T

0

∫
Rn

{
|u− c|∂tϕ+ sign(u− c)

[(
P (t, x, u)− P (t, x, c)

)
· ∇xϕ− divx P (t, x, c)ϕ

]}
dx dt ≥ 0

(2.1)

holds for every constant c ∈ [0,∞) and non-negative test function ϕ ∈ C∞c
(
(0, T )× R; [0,∞)

)
.1

As anticipated in the introduction, the purpose of the article is to extend the stability beyond
entropy solutions. We therefore introduce a notion of quasi-entropy solution that will be suitable
for our needs.

Definition 2.3 ((µ0, µ1)-quasi-entropy solution). Let µ0,t, µ1,t ∈ L1
loc
(
[0, T ); M+(Rn)

)
be locally-

finite non-negative Borel measures and P : [0, T )×Rn× [0,∞)→ R a flux satisfying (A1)–(A4) of
Assumptions 2.1. We say that a non-negative function u ∈ C

(
[0, T );L1

loc(Rn)
)
∩L∞loc

(
[0, T );BVloc(Rn)

)
is a (µ0, µ1)-quasi-entropy solutions of the scalar conservation law

∂tu+ divx(P (t, x, u)) = 0

if the following entropy inequality∫ T

0

∫
Rn

{
|u− c|∂tϕ+ sign(u− c)

[(
P (t, x, u)− P (t, x, c)

)
· ∇xϕ− divx P (t, x, c)ϕ

]}
dx dt

≥ −
∫ T

0

∫
Rn
|ϕ(t, x)|dµ0,t(x) dt−

∫ T

0

∫
Rn
|∇xϕ(t, x)|dµ1,t(x) dt

(2.2)

holds for every constant c ∈ [0,∞) and non-negative test function ϕ ∈ C∞c
(
(0, T )× Rn; [0,∞)

)
.1

Notice that in comparison to Definition 2.2, the weaker notion of Definition 2.3 allows for
a controlled violation of (2.1). The measures that control this right hand side will then play a
crucial role in the stability estimates.

For the sake of keeping the terms appearing in both the statement of the main theorem and
its proof shorter and more readable, we introduce some notation.

First of all, to avoid possible confusion when differentiating composite functions, we denote
the partial derivatives of a function F : [0, T ) × Rn × [0,∞) → R with respect to its three
arguments as ∂1F , ∇2F and ∂3F respectively. Analogously, this convention extends to div2 F as
well.

Moreover, because of the local nature of Theorem 2.6 that we are going to state, we will need to
refer to various norms of the fluxes computed locally, as opposed to the whole [0, T )×Rn× [0,∞).
In the statement there will be two functions responsible for the localization: a time dependent
weight Θ localizing in space and a function R bounding the density on the support of Θ. The
notation that we introduce is implicit with respect to Θ and R, and has to be understood in the
context where these functions are fixed.

1Observe that it is equivalent to require the inequality for all ϕ ∈ C1
c

(
(0, T )× R; [0,∞)

)
.
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Notation 2.4. Given a functions R : [0, T )→ [0,∞) and a function Θ ∈ C1([0, T )×Rn; [0,∞)
)

compactly supported in space for every time, we introduce the following notation to estimate
some norms of functions F (t, x, u) only in the domain (x, u) ∈

(
supp Θ(t, · )

)
1 × [0, R(t)], where

with Er we denote the enlargement of radius r in space of the set E:

Lip2(F (t)) = sup
{ |F (t, x2, u)− F (t, x1, u)|

|x2 − x1|
: x1, x2 ∈

(
supp Θ(t, · )

)
1, u ∈ [0, R(t)]

}
,

Lip3(F (t)) = sup
{ |F (t, x, u2)− F (t, x, u1)|

|u2 − u1|
: x ∈

(
supp Θ(t, · )

)
1, u1, u2 ∈ [0, R(t)]

}
.

Remark 2.5. With the notation introduced above, observe that (A1)–(A4) of Assumptions 2.1
ensures that Lip3(P (t)) and Lip3(div2 P (t)) are functions belonging to L1

loc([0, T )), whereas (A5)
ensures that Lip2(div2 P (t)) and Lip2(∂3P (t)) are L1

loc([0, T )) too.

2.1 Main results

In this section we present our main results, which deal with non-negative quasi-entropy solutions
belonging to the space

S
(
[0, T ),Rn

)
= C

(
[0, T );L1

loc(Rn)
)
∩ L∞loc

(
[0, T );L∞loc(Rn)

)
∩ L∞loc

(
[0, T );BVloc(Rn)

)
. (2.3)

Theorem 2.6 (Stability). Let P,Q : [0, T )×Rn × [0,∞)→ Rn be two fluxes satisfying Assump-
tions 2.1. Let u, v ∈ S

(
[0, T ),Rn

)
be non-negative quasi-entropy solutions of

∂tu+ divx(P (t, x, u)) = 0 and ∂tv + divx(Q(t, x, v)) = 0

in the sense of Definition 2.3, i.e. there are measures µ0,t, µ1,t, ν0,t, ν1,t ∈ L1
loc
(
[0, T ); M+(Rn)

)
such that the quasi-entropy inequalities∫ T

0

∫
Rn

{
|u− c|∂tϕ+ sign(u− c)

[(
P (t, x, u)− P (t, x, c)

)
· ∇xϕ− divx P (t, x, c)ϕ

]}
dx dt

≥ −
∫ T

0

∫
Rn
|ϕ(t, x)| dµ0,t(x) dt−

∫ T

0

∫
Rn
|∇xϕ(t, x)|dµ1,t(x) dt,

(2.4a)

∫ T

0

∫
Rn

{
|v − c|∂tϕ+ sign(v − c)

[(
Q(t, x, v)−Q(t, x, c)

)
· ∇xϕ− divxQ(t, x, c)ϕ

]}
dx dt

≥ −
∫ T

0

∫
Rn
|ϕ(t, x)|dν0,t(x) dt−

∫ T

0

∫
Rn
|∇xϕ(t, x)|dν1,t(x) dt

(2.4b)

hold for every constant c ∈ [0,∞) and non-negative test function ϕ ∈ C1
c

(
(0, T )× R; [0,∞)

)
.

Let Θ ∈ C1([0, T )× Rn; [0,∞)
)
be a fixed weight function compactly supported in space for

every time and let R,B : [0, T ) → [0,∞) be two increasing functions satisfying the following
properties: the estimates

‖u(t, · )‖L∞(Ωt) ≤ R(t), TVΩt
(
u(t, · )

)
≤ B(t),

‖v(t, · )‖L∞(Ωt) ≤ R(t), TVΩt
(
v(t, · )

)
≤ B(t),

hold for every t ∈ [0, T ) where Ωt =
(
supp Θ(t, · )

)
1 ⊂ Rn, and

∂tΘ(t, x) ≤ −Lip3
(
Q(t)

)
|∇xΘ(t, x)|, ∀(t, x) ∈ [0, T )× Rn. (2.5)
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Then for every 0 ≤ t1 < t2 < T the following inequality holds:[∫
Rn
|u(t, x)− v(t, x)|Θ(t, x) dx

]t2
t1

≤
∫ t2

t1
[3 Lip3(div2 P (t)) + Lip3(div2Q(t))]

∫
Rn
|u(t, x)− v(t, x)|Θ(t, x) dx dt

+
∫ t2

t1

∫
Rn
‖div2(P −Q)(t, x, · )‖L∞([0,R(t)])Θ(t, x) dx dt

+ 2B(t2)
∫ t2

t1
‖Lip3

(
(P −Q)(t, · )

)
Θ(t, · )‖∞ dt

+ ‖Θ‖∞
∫ t2

t1
(µ0,t + ν0,t)(Ωt) dt+ 1

2‖∇xΘ‖∞
∫ t2

t1
(µ1,t + ν1,t)(Ωt) dt

+ C(t1, t2) min
{
M(t1, t2)1/2, 1

}
+ cn‖Θ‖∞max

{
M(t1, t2)1/2,M(t1, t2)

}
,

(2.6)

where
M(t1, t2) =

∫ t2

t1
(µ1,t + ν1,t)(Ωt) dt, (2.7a)

C(t1, t2) = ‖Θ‖∞B(t2)
(

2 +
∫ t2

t1
[3 Lip3(div2 P (t)) + Lip3(div2Q(t)) + 2 Lip2(∂3Q(t))] dt

)
+ ‖Θ‖L∞t L1

x

∫ t2

t1
Lip2(div2 P (t)) dt+ ‖Θ‖L∞t LipxB(t2)

∫ t2

t1
Lip3

(
(P −Q)(t)

)
dt

+ 1
2‖Θ‖L

∞
t Lipx

∫ t2

t1

∫
Ωt
‖div2(P −Q)(t, x, · )‖L∞([0,R(t)]) dx dt,

(2.7b)

and cn > 0 is a dimensional constant.

Remark 2.7 (Compact solutions). When the functions u and v are compactly supported in space
uniformly in time, we can take any function Θ ∈ C1([0,∞) × Rn; [0,∞)

)
such that Θ = 1 in(

supp(u) ∪ supp(v)
)
1, without requiring (2.5). Indeed, inside the proof of Theorem 2.6 the slope

condition (2.5) is used only in the last inequality of (2.16), which remains valid for such a Θ
because [∂1Θ + Lip3(Qα(t))|∇2Θ|]ηε(u− v)ωβ is identically zero.
Remark 2.8 (Entropy solutions). The result of Theorem 2.6 can be simplified significantly
under the assumption that the functions u and v are exact entropy solutions of the scalar
conservations laws instead of merely quasi-entropy solutions. Indeed in such a case all four
measures µ0,t, µ1,t, ν0,t, ν1,t vanish for every t, and the analogue of (2.6) that we obtain is[∫

Rn
|u(t, x)− v(t, x)|Θ(t, x) dx

]t2
t1

≤
∫ t2

t1
[3 Lip3(div2 P (t)) + Lip3(div2Q(t))]

∫
Rn
|u(t, x)− v(t, x)|Θ(t, x) dx dt

+
∫ t2

t1

∫
Rn
‖div2(P −Q)(t, x, · )‖L∞([0,R(t)])Θ(t, x) dx dt

+B(t2)
∫ t2

t1
‖Lip3

(
(P −Q)(t, · )

)
Θ(t, · )‖∞ dt.

Interestingly, in this case we can omit the assumption (A5) of Assumptions 2.1. Please refer to
Remark 2.10 for details on how to obtain this modified statement. This result extends [KR03,
Theorem 1.3], which is limited to fluxes of product form P (t, x, u) = f(u)k(x).
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If in addition P = Q, then the estimate is independent of the total variation bound B(t).
This is consistent with the result by [Kru70] which holds for L∞ entropy solutions.

When the terms of the form P − Q in (2.6) can be estimated by some integral of |u − v|,
the whole inequality assumes a form suitable for the application of Grönwall theorem. More
precisely, we can state the following proposition.
Proposition 2.9 (Grönwall estimate). Let u, v, P,Q, µ0,t, µ1,t, ν0,t, ν1,t, Θ,Ωt, R,B as in
Theorem 2.6. Assume in addition that the fluxes P and Q are close together in the following
sense: there is a non-negative function h ∈ L1

loc([0, T )) such that for a.e. t ∈ [0, T )∫
Rn
‖div2(P −Q)(t, x, · )‖L∞([0,R(t)])Θ(t, x) dx ≤ h(t)

∫
Rn
|u(t, x)− v(t, x)|Θ(t, x) dx, (2.8a)

‖Lip3
(
(P −Q)(t, · )

)
Θ(t, · )‖L∞(Rn) ≤ h(t)

∫
Rn
|u(t, x)− v(t, x)|Θ(t, x) dx. (2.8b)

Then for 0 ≤ t1 < t2 < T we have the estimate∫
Rn
|u(t2, x)− v(t2, x)|Θ(t2, x) dx

≤
(∫

Rn
|u(t1, x)− v(t1, x)|Θ(t1, x) dx+ Φ(t1, t2)

)
exp

(∫ t2

t1
f(t) dt

)
,

(2.9)

where

f(t) = [3 Lip3(div2 P (t)) + Lip3(div2Q(t))] + [1 + 2B(T )]h(t),

Φ(t1, t2) = ‖Θ‖∞
∫ t2

t1
(µ0,t + ν0,t)(Ωt) dt+ 1

2‖∇xΘ‖∞
∫ t2

t1
(µ1,t + ν1,t)(Ωt) dt

+ C(t1, t2) min
{
M(t1, t2)1/2, 1

}
+ cn‖Θ‖∞max

{
M(t1, t2)1/2,M(t1, t2)

}
,

and M(t1, t2) and C(t1, t2) are the same as in Theorem 2.6.

This proposition will be used in Section 3.1 and Section 3.2 to show the conditional existence
and the uniqueness of entropy solutions for the conservation law with non-local flux P [u](t, x, u).
Moreover, in Section 3.3.1 we show an application to a conservation law where the assumptions
(2.8) are satisfied.

2.2 Proofs

Proof of Theorem 2.6. For convenience of the reader we split the proof in several distinct steps
indicated by paragraphs.

We prove the statement for t1 > 0. The case t1 = 0 is recovered by continuity.

Regularization of the fluxes. The first step consists in regularizing by convolution the fluxes
with respect to the space and density variables. This forces us to consider the fluxes evaluated at
negative densities too. Therefore, for convenience we extend the fluxes to P,Q : [0, T )×Rn×R→
Rn by setting P (t, x, u) = P (t, x,−u) and Q(t, x, u) = Q(t, x,−u) for u < 0. The extended fluxes
enjoy the same regularity assumptions as the original ones.

Given α ∈ (0, 1], we define the regularized fluxes Pα, Qα : [0, T )× Rn × R→ Rn obtained by
convolution in space and with respect to the density

Pα(t, x, u) =
∫
Rn

∫
R
P (t, x′, u′)ωα(x− x′)ρα(u− u′) du′ dx′,

Qα(t, x, u) =
∫
Rn

∫
R
Q(t, x′, u′)ωα(x− x′)ρα(u− u′) du′ dx′,
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where ω and ρ are symmetric C∞c mollifiers in Rn and R respectively supported in the corre-
sponding unit balls, and ωα(x) = α−nω(α−1x) and ρα(u) = α−1ρ(α−1u) are the rescalings that
preserve the L1 norm. For every t and almost every x, the regularized fluxes enjoy the regularity
estimates

‖Pα(t, x, · )− P (t, x, · )‖L∞([0,R(t)]) ≤ α‖∂3P (t, · , · )‖L∞(B(x,α)×[−α,R(t)+α]),

‖div2 P
α(t, x, · )− div2 P (t, x, · )‖L∞([0,R(t)]) ≤ α‖∂3 div2 P (t, · , · )‖L∞(B(x,α)×[−α,R(t)+α]).

Adding and subtracting in the quasi-entropy inequalities (2.4) the corresponding regularized
terms with Pα and Qα, we obtain∫ T

0

∫
Rn

{
|u− c|∂tϕ+ sign(u− c)

[(
Pα(t, x, u)− Pα(t, x, c)

)
· ∇xϕ− divx Pα(t, x, c)ϕ

]}
dx dt

≥ −
∫ T

0

∫
Rn
|ϕ(t, x)| dµ0,t(x) dt−

∫ T

0

∫
Rn
|∇xϕ(t, x)|dµ1,t(x) dt− αe(P,ϕ),

(2.10a)∫ T

0

∫
Rn

{
|v − c|∂tϕ+ sign(v − c)

[(
Qα(t, x, v)−Qα(t, x, c)

)
· ∇xϕ− divxQα(t, x, c)ϕ

]}
dx dt

≥ −
∫ T

0

∫
Rn
|ϕ(t, x)|dν0,t(x) dt−

∫ T

0

∫
Rn
|∇xϕ(t, x)|dν1,t(x) dt− αe(Q,ϕ),

(2.10b)

where e(P,ϕ) is defined as the right hand side of the following inequality used to estimate the
error introduced by the convolution:∫ T

0

∫
Rn

{
2‖∂3P (t, · , · )‖L∞(B(x,α)×[−α,R(t)+α])|∇xϕ|

+ ‖∂3 div2 P (t, · , · )‖L∞(B(x,α)×[−α,R(t)+α])|ϕ|
}

dx dt

≤
∫ T

0

{
2 Lip3

(
P (t)

) ∫
Rn
|∇xϕ|dx+ Lip3

(
div2 P (t)

) ∫
Rn
|ϕ| dx

}
dt =: e(P,ϕ).

(2.11)

Regularization of the absolute value. We now introduce a second convolution in order to
regularize the absolute value function. Given the mollifier ρε we define the regularized absolute
value

ηε(u) =
∫
R
|s|ρε(u− s) ds−

∫
R
|s|ρε(s) ds

and its translation ηε,v(u) = ηε(u− v).
The goal of this section is to show that convolving (2.10a) with 1

2η
′′
ε,v(c) = ρε(c − v) has

the effect of replacing the functions η0,c(u) = |u− c|, sign(u− c)
(
Pα(t, x, u)− Pα(t, x, c)

)
and

sign(u− c) divx Pα(t, x, c) with ηε,v(u),

Pαε (t, x, u, v) =
∫ u

v
∂3P

α(t, x, s)η′ε,v(s) ds, and
∫ u

v
divx Pα(t, x, s)η′′ε,v(s) ds

respectively. Similarly, convolving (2.10b) with 1
2η
′′
ε,u(c) = ρε(c− u) has the effect of replacing

the functions η0,c(v) = |v− c|, sign(v− c)
(
Qα(t, x, v)−Qα(t, x, c)

)
and sign(v− c) divxQα(t, x, c)

with ηε,u(v),

Qαε (t, x, u, v) =
∫ v

u
∂3Q

α(t, x, s)η′ε,u(s) ds, and
∫ v

u
divxQα(t, x, s)η′′ε,u(s) ds
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respectively. Notice that in the definitions of Pαε and Qαε the role of u and v is interchanged,
although we write them in the same order as arguments.

With regard to (2.10a), with the mentioned convolution we obtain∫
R
|u− c|ρε(c− v) dc =

∫
R
|u− c|ρε

(
(u− v)− (u− c)

)
dc = ηε(u− v) +

∫
R
|s|ρε(s) ds,

moreover∫
R

sign(u− c)
(
Pα(t, x, u)− Pα(t, x, c)

)1
2η
′′
ε,v(c) dc

=
∫ u

−∞

(
Pα(t, x, u)− Pα(t, x, c)

)1
2η
′′
ε,v(c) dc−

∫ ∞
u

(
Pα(t, x, u)− Pα(t, x, c)

)1
2η
′′
ε,v(c) dc

=
∫ u

v

(
Pα(t, x, u)− Pα(t, x, c)

)
η′′ε,v(c) dc

+
∫ v

−∞

(
Pα(t, x, u)− Pα(t, x, c)

)1
2η
′′
ε,v(c) dc−

∫ ∞
v

(
Pα(t, x, u)− Pα(t, x, c)

)1
2η
′′
ε,v(c) dc

=
[(
Pα(t, x, u)− Pα(t, x, c)

)
η′ε,v(c)

]u
v

+
∫ u

v
∂3P

α(t, x, c)η′ε,v(c) dc

+
∫
R

sign(v − c)
(
Pα(t, x, u)− Pα(t, x, c)

)1
2η
′′
ε,v(c) dc

= Pαε (t, x, u, v)−
∫
R

sign(v − c)Pα(t, x, c)1
2η
′′
ε,v(c) dc

because in the last step the boundary terms vanish and sign(v − c)Pα(t, x, u)η′′ε (c− v) is an odd
function of c− v, and finally

−
∫
R

sign(u− c) divx Pα(t, x, c)1
2η
′′
ε,v(c) dc

= −
∫ u

−∞
divx Pα(t, x, c)1

2η
′′
ε,v(c) dc+

∫ ∞
u

divx Pα(t, x, c)1
2η
′′
ε,v(c) dc

= −
∫ u

v
divx Pα(t, x, c)η′′ε,v(c) dc

−
∫ v

−∞
divx Pα(t, x, c)1

2η
′′
ε,v(c) dc+

∫ ∞
v

divx Pα(t, x, c)1
2η
′′
ε,v(c) dc

= −
∫ u

v
divx Pα(t, x, c)η′′ε,v(c) dc−

∫
R

sign(v − c) divx Pα(t, x, c)1
2η
′′
ε,v(c) dc.

Inserting these computations in the left hand side of (2.10a) we get∫
R

∫ T

0

∫
Rn

{
|u− c|∂tϕ+ sign(u− c)

[(
Pα(t, x, u)− Pα(t, x, c)

)
· ∇xϕ− divx Pα(t, x, c)ϕ

]}1
2η
′′
ε,v(c) dx dtdc

=
∫ T

0

∫
Rn

{
ηε,v(u)∂tϕ+ Pαε (t, x, u, v) · ∇xϕ− ϕ

∫ u

v
divx Pα(t, x, s)η′′ε,v(s) ds

}
dx dt

+
∫ T

0

∫
Rn
∂tϕ

∫
R
|s|ρε(s) dsdx dt−

∫
R

∫ T

0

∫
Rn

sign(v − c) divx
(
Pα(t, x, c)ϕ

)1
2η
′′
ε,v(c) dx dt dc

=
∫ T

0

∫
Rn

{
ηε,v(u)∂tϕ+ Pαε (t, x, u, v) · ∇xϕ− ϕ

∫ u

v
divx Pα(t, x, s)η′′ε,v(s) ds

}
dx dt

because
∫ T
0 ∂tϕdt = 0 and

∫
Rn divx

(
Pα(t, x, c)ϕ

)
dx = 0.

The right hand side of (2.10a) remains unaltered because it does not depend on c and the
convolution kernel 1

2η
′′
ε,v(c) = ρε(c− v) is a probability measure.

11



Applying the same argument to (2.10b), the new pair of inequalities then becomes∫ T

0

∫
Rn

{
ηε,v(u)∂tϕ+ Pαε (t, x, u, v) · ∇xϕ− ϕ

∫ u

v
divx Pα(t, x, s)η′′ε,v(s) ds

}
dx dt

≥ −
∫ T

0

∫
Rn
|ϕ(t, x)|dµ0,t(x) dt−

∫ T

0

∫
Rn
|∇xϕ(t, x)|dµ1,t(x) dt− αe(P,ϕ),

(2.12a)

∫ T

0

∫
Rn

{
ηε,u(v)∂tϕ+Qαε (t, x, u, v) · ∇xϕ− ϕ

∫ v

u
divxQα(t, x, s)η′′ε,u(s) ds

}
dx dt

≥ −
∫ T

0

∫
Rn
|ϕ(t, x)| dν0,t(x) dt−

∫ T

0

∫
Rn
|∇xϕ(t, x)| dν1,t(x) dt− αe(Q,ϕ).

(2.12b)

Doubling of variables. We perform the usual doubling of variables introduced by Kružkov:
given a test function ϕ̃(t, x, τ, y) ∈ C1

c (R× Rn × R× Rn), we combine the entropy inequalities
(2.12) for u(t, x) and v(τ, y) and integrate w.r.t. the two additional variables. For conciseness,
we omit the arguments of u(t, x) and v(τ, y). We then obtain∫ T

0

∫ T

0

∫
Rn

∫
Rn

{
ηε,v(u)∂tϕ̃+ Pαε (t, x, u, v) · ∇xϕ̃− ϕ̃

∫ u

v
div2 P

α(t, x, s)η′′ε,v(s) ds
}

dx dy dt dτ

≥ −
∫ T

0

∫
Rn

(∫ T

0

∫
Rn
|ϕ̃|dµ0,t(x) dt+

∫ T

0

∫
Rn
|∇xϕ̃| dµ1,t(x) dt

)
dy dτ

− α
∫ T

0

∫
Rn
e
(
P, ϕ̃( · , · , τ, y)

)
dy dτ,

(2.13a)∫ T

0

∫ T

0

∫
Rn

∫
Rn

{
ηε,u(v)∂τ ϕ̃+Qαε (τ, y, u, v) · ∇yϕ̃− ϕ̃

∫ v

u
div2Q

α(τ, y, s)η′′ε,u(s) ds
}

dx dy dtdτ

≥ −
∫ T

0

∫
Rn

(∫ T

0

∫
Rn
|ϕ̃|dν0,t(y) dτ +

∫ T

0

∫
Rn
|∇xϕ̃|dν1,t(y) dτ

)
dx dt

− α
∫ T

0

∫
Rn
e
(
Q, ϕ̃(t, x, · , · )

)
dx dt.

(2.13b)

We now consider a test function of the form

ϕ̃(t, x, τ, y) = ϕ

(
t+ τ

2 ,
x+ y

2

)
ωβ(x− y)ργ(t− τ),

where ϕ ∈ C1
c

(
(0, T )× R; [0,∞)

)
is a space-time test function and β, γ ∈ (0, 1] are parameters.

Once ϕ is fixed, for γ small enough we have that ϕ̃(t, x, τ, y) > 0 implies t, τ ∈ (0, T ). With this
particular choice, we can bound the first integrals appearing in the right hand side of (2.13a) as∫ T

0

∫ T

0

∫
Rn

∫
Rn
|ϕ̃| dµ0,t(x) dy dt dτ =

∫ T

0

∫ T

0

∫
Rn

∫
Rn

∣∣∣∣ϕ( t+ τ

2 ,
x+ y

2

)∣∣∣∣ωβ(x− y)ργ(t− τ) dµ0,t(x) dy dt dτ

=
∫ T

0

∫ T

0

∫
Rn

∫
Rn
|ϕ(s, z)|ωβ

(
2(x− z)

)
ργ
(
2(t− s)

)
dµ0,t(x)2n dz dt2 ds

=
∫ T

0

∫
Rn
|ϕ(s, z)|

∫ T

0

∫
Rn
ωβ/2(x− z)ργ/2(t− s) dµ0,t(x) dt dz ds

=
∫ T

0

∫
Rn
|ϕ(s, z)|µ0,β,γ(s, z) dz ds,
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where µ0,β,γ denotes the function

µ0,β,γ(s, z) =
∫ T

0

∫
Rn
ωβ/2(z − x)ργ/2(s− t) dµ0,t(x) dt =

[
(ργ/2ωβ/2) ∗ (L 1 ⊗ µ0,t)

]
(s, z),

and similarly∫ T

0

∫ T

0

∫
Rn

∫
Rn
|∇xϕ̃| dµ1,t(x) dy dt dτ

≤
∫ T

0

∫ T

0

∫
Rn

∫
Rn

1
2

∣∣∣∣∇2ϕ

(
t+ τ

2 ,
x+ y

2

)∣∣∣∣ωβ(x− y)ργ(t− τ) dµ1,t(x) dy dt dτ

+
∫ T

0

∫ T

0

∫
Rn

∫
Rn

∣∣∣∣ϕ( t+ τ

2 ,
x+ y

2

)∣∣∣∣|∇ωβ(x− y)|ργ(t− τ) dµ1,t(x) dy dtdτ

= 1
2

∫ T

0

∫
Rn
|∇2ϕ(s, z)|µ1,β,γ(s, z) dz ds+ 1

2

∫ T

0

∫
Rn
|ϕ(s, z)|µ̃1,β,γ(s, z) dz ds,

where µ1,β,γ and µ̃1,β,γ denote the functions

µ1,β,γ(s, z) =
∫ T

0

∫
Rn
ωβ/2(z − x)ργ/2(s− t) dµ1,t(x) dt =

[
(ργ/2ωβ/2) ∗ (L 1 ⊗ µ1,t)

]
(s, z),

µ̃1,β,γ(s, z) =
∫ T

0

∫
Rn
|∇ωβ/2(z − x)|ργ/2(s− t) dµ1,t(x) dt =

[
(ργ/2|∇ωβ/2|) ∗ (L 1 ⊗ µ1,t)

]
(s, z).

Of course analogous estimates hold with ν in place of µ. Informally speaking, observe that
‖ργ/2ωβ/2‖1 = 1, therefore µ0,β,γ and µ1,β,γ are comparable to µ0 = L 1⊗µ0,t and µ1 = L 1⊗µ1,t
respectively, whereas ‖ργ/2∇ωβ/2‖1 ∼ β−1, therefore µ̃1,β,γ is comparable to β−1µ1. In order to
estimate the errors

∫ T
0
∫
Rn e

(
P, ϕ̃( · , · , τ, y)

)
dy dτ and

∫ T
0
∫
Rn e

(
Q, ϕ̃(t, x, · , · )

)
dxdt we perform

a similar computation as above replacing µ0,t and µ1,t with L n. We have that∫ T

0

∫
Rn

∫
Rn
|ϕ̃| dx dy dτ =

∫ T

0

∫
Rn

∫
Rn
|ϕ(s, z)|ωβ/2(x− z)ργ/2(t− s) dx dz ds

=
∫ T

0
‖ϕ(s, · )‖L1(Rn)ργ/2(t− s) ds ≤ ‖ϕ‖

L∞
(
[0,T ];L1(Rn)

)
and ∫ T

0

∫
Rn

∫
Rn
|∇xϕ̃| dx dy dτ = 1

2

∫ T

0

∫
Rn

∫
Rn
|∇2ϕ(s, z)|ωβ/2(x− z)ργ/2(t− s) dx dz ds

+ 1
2

∫ T

0

∫
Rn

∫
Rn
ϕ(s, z)|∇ωβ/2(x− z)|ργ/2(t− s) dx dz ds

≤ 1
2‖∇2ϕ‖L∞

(
[0,T ];L1(Rn)

) + 1
2‖∇ωβ/2‖1‖ϕ‖L∞

(
[0,T ];L1(Rn)

),
therefore, recalling the definition of e( · , · ) introduced in (2.11), the error terms can be estimated
as∫ T

0

∫
Rn
e
(
P, ϕ̃( · , · , τ, y)

)
dy dτ +

∫ T

0

∫
Rn
e
(
Q, ϕ̃(t, x, · , · )

)
dx dt

≤ ‖ϕ‖
L∞
(
[0,T ];L1(Rn)

) ∫ T

0
[Lip3(div2 P (t)) + Lip3(div2Q(t))] dt

+
(
‖∇2ϕ‖L∞

(
[0,T ];L1(Rn)

) + ‖∇ωβ/2‖1‖ϕ‖L∞
(
[0,T ];L1(Rn)

)) ∫ T

0
[Lip3(P (t)) + Lip3(Q(t))] dt

=: E(P,Q, ϕ, ωβ/2).
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Summing the two inequalities (2.13) and using the previous estimates for the terms in the
right hand side we get∫ T

0

∫ T

0

∫
Rn

∫
Rn

{
ηε(u− v)(∂tϕ̃+ ∂τ ϕ̃) +

[
Pαε (t, x, u, v) · ∇xϕ̃+Qαε (τ, y, u, v) · ∇yϕ̃

]
− ϕ̃

(∫ u

v
div2 P

α(t, x, s)η′′ε,v(s) ds+
∫ v

u
div2Q

α(τ, y, s)η′′ε,u(s) ds
)}

dx dy dtdτ

≥ −
∫ T

0

∫
Rn

(
|ϕ|(µ0,β,γ + ν0,β,γ) + 1

2 |∇2ϕ|(µ1,β,γ + ν1,β,γ) + 1
2 |ϕ|(µ̃1,β,γ + ν̃1,β,γ)

)
dz ds

− αE(P,Q, ϕ, ωβ/2).
(2.14)

Exploiting the identities

∂tϕ̃+ ∂τ ϕ̃ = ∂1ϕωβργ , ∇xϕ̃ = 1
2∇2ϕωβργ + ϕ∇ωβργ , ∇yϕ̃ = 1

2∇2ϕωβργ − ϕ∇ωβργ ,

we split the left hand side of (2.14) as I + II + III, where

I =
∫ T

0

∫ T

0

∫
Rn

∫
Rn
ηε(u− v)∂1ϕωβργ dx dy dtdτ,

II =
∫ T

0

∫ T

0

∫
Rn

∫
Rn

{1
2[Pαε (t, x, u, v) +Qαε (τ, y, u, v)] · ∇2ϕωβργ

+ [Pαε (t, x, u, v)−Qαε (τ, y, u, v)] · ∇ωβϕργ
}

dx dy dt dτ,

III = −
∫ T

0

∫ T

0

∫
Rn

∫
Rn
ϕ̃

(∫ u

v
div2 P

α(t, x, s)η′′ε,v(s) ds+
∫ v

u
div2Q

α(τ, y, s)η′′ε,u(s) ds
)

dx dy dt dτ.

Dedoubling in time. We now perform the dedoubling of the time variables, which corresponds
to passing to the limit γ → 0. All three terms I, II and III will be treated in a unified manner
with the aid of Lemma 2.11. For each of the three we apply the lemma with the following choice
of functions:

• dedoubling of I:

A(t, x, u, v) = ηε(u− v), B = ∂1ϕ, C = ωβ;

• dedoubling of II:

A(t, x, u, v) = Pαε (t, x, u, v), B = ∇2ϕ, C = ωβ,

A(t, x, u, v) = Pαε (t, x, u, v), B = ϕ, C = ∇ωβ,

and symmetrically for Qαε ;

• dedoubling of III:

A(t, x, u, v) =
∫ u

v
div2 P

α(t, x, s)η′′ε (s− v) ds, B = ϕ, C = ωβ,

and symmetrically for Qαε .
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As a result, in the limit γ → 0 we obtain the new terms

Ĩ =
∫ T

0

∫
Rn

∫
Rn
ηε(u− v)∂1ϕωβ dx dy dt,

ĨI =
∫ T

0

∫
Rn

∫
Rn

{1
2[Pαε (t, x, u, v) +Qαε (t, y, u, v)] · ∇2ϕωβ

+ [Pαε (t, x, u, v)−Qαε (t, y, u, v)] · ∇ωβϕ
}

dx dy dt,

ĨII = −
∫ T

0

∫
Rn

∫
Rn

(∫ u

v
div2 P

α(t, x, s)η′′ε,v(s) ds+
∫ v

u
div2Q

α(t, y, s)η′′ε,u(s) ds
)
ϕωβ dx dy dt,

where we omitted the new implicit arguments

u(t, x), v(t, y), ϕ

(
t,
x+ y

2

)
, ωβ(x− y).

Let us now focus on the right hand side of (2.14). We have that

lim
γ→0

∫ T

0

∫
Rn
|ϕ(s, z)|µ0,β,γ(s, z) dz ds

= lim
γ→0

∫ T

0

∫ T

0

∫
Rn

∫
Rn
|ϕ(s, z)|ργ/2(s− t)ωβ/2(z − x) dµ0,t(x) dz dt ds

= lim
γ→0

∫ T

0

∫
Rn

[|ϕ( · , z)| ∗ ργ/2](t)(ωβ/2 ∗ µ0,t)(z) dz dt

=
∫ T

0

∫
Rn
|ϕ(t, z)|(ωβ/2 ∗ µ0,t)(z) dz dt

because the function (t, z) 7→ [|ϕ( · , z)|∗ργ/2](t) converges uniformly to |ϕ(t, z)| and have bounded
support, whereas (ωβ/2 ∗ µ0,t) dz dt is a locally finite measure. With similar computation for the
other terms, we get

lim
γ→0

∫ T

0

∫
Rn

(
|ϕ|(µ0,β,γ + ν0,β,γ) + 1

2 |∇2ϕ|(µ1,β,γ + ν1,β,γ) + 1
2 |ϕ|(µ̃1,β,γ + ν̃1,β,γ)

)
dz ds

=
∫ T

0

∫
Rn

(
|ϕ|ωβ/2 ∗ (µ0,t + ν0,t) + 1

2 |∇2ϕ|ωβ/2 ∗ (µ1,t + ν1,t) + 1
2 |ϕ||∇ωβ/2| ∗ (µ1,t + ν1,t)

)
dz dt.

(2.15)

Integration by parts and chain rule. Integrating by parts w.r.t. x the term involving ∇ωβ ,
we can rewrite ĨI as

ĨI =
∫ T

0

∫
Rn

∫
Rn

{1
2[Pαε (t, x, u, v) +Qαε (t, y, u, v)] · ∇2ϕωβ

− divx[Pαε (t, x, u, v)−Qαε (t, y, u, v)]ϕωβ

− 1
2[Pαε (t, x, u, v)−Qαε (t, y, u, v)] · ∇2ϕωβ

}
dx dy dt

=
∫ T

0

∫
Rn

∫
Rn

{
Qαε (t, y, u, v) · ∇2ϕωβ − divx[Pαε (t, x, u, v)−Qαε (t, y, u, v)]ϕωβ

}
dx dy dt

=: ĨI1 + ĨI2,

where with an abuse of notation we denoted

ĨI2 = −
∫ T

0

∫
Rn

∫
Rn

divx[Pαε (t, x, u, v)−Qαε (t, y, u, v)]ϕωβ dx dy dt = −
∫ T

0

∫
Rn

∫
Rn
ϕωβ dσt,y(x) dy dt,
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with σt,y = divx
[
Pαε
(
t, x, u(t, x), v(t, y)

)
−Qαε

(
t, y, u(t, x), v(t, y)

)]
being a measure in the variable

x parametrized by (t, y).
Indeed, since the fluxes Pαε and Qαε are C1 and u is BVloc, by the chain rule [Vol67, §

13.2]2 we get for every t, y that the function Pαε
(
t, x, u(t, x), v(t, y)

)
−Qαε

(
t, y, u(t, x), v(t, y)

)
is

BVloc(Rn;Rn) and its divergence is the measure in the variable x given by

σt,y = div2 P
α
ε

(
t, x, u(t, x), v(t, y)

)
L n

+ ∂3
[
Pαε
(
t, x, u(t, x), v(t, y)

)
−Qαε

(
t, y, u(t, x), v(t, y)

)]
·
(
Da
xu(t) + Dc

xu(t)
)

+
{[
Pαε
(
t, x, u+(t, x), v(t, y)

)
−Qαε

(
t, y, u+(t, x), v(t, y)

)]
−
[
Pαε
(
t, x, u−(t, x), v(t, y)

)
−Qαε

(
t, y, u−(t, x), v(t, y)

)]}
· nH n−1|Ju(t) ,

where Da
xu(t), Dc

xu(t) and
(
u+(t, · )− u−(t, · )

)
nH n−1|Ju(t) represent the absolutely continuous,

the Cantor and the jump part of the derivative of the BVloc function u(t, · ) respectively [AFP00].

Estimates of Ĩ, ĨI1, ĨI2, ĨII. In this section of the proof we make use of several pointwise
estimates, all of which are relevant only when (t, x), (t, y) ∈ supp Θ and u, v ∈ [0, R(T )], hence
can be expressed in terms of Notation 2.4.

We fix the specific test function

ϕ(t, x) = Θ(t, x)θr(t− t1)θr(t2 − t),

where θ ∈ C∞(R; [0, 1]) with θ(t) = 0 for t ≤ 0 and θ(t) = 1 for θ ≥ 1, and θr(t) = θ(t/r). For
r < (t2 − t1)/2 we have

∂1ϕ

(
t,
x+ y

2

)
= ∂1Θ

(
t,
x+ y

2

)
θr(t− t1)θr(t2 − t) + Θ

(
t,
x+ y

2

)
[θ′r(t− t1)− θ′r(t2 − t)].

Exploiting the fact that η′ε,u has always the same sign in the interval [u∧v, u∨v], we can estimate

|Qαε (t, y, u, v)| =
∣∣∣∣∫ v

u
∂3Q

α(t, y, s)η′ε,u(s) ds
∣∣∣∣ ≤ Lip3(Qα(t))

∫ v

u

∣∣∣η′ε,u(s)
∣∣∣ ds = Lip3(Qα(t))ηε(u−v).

Using this Lipschitz estimate for Qαε and the hypothesis (2.5) we get

Ĩ + ĨI1 =
∫ T

0

∫
Rn

∫
Rn
ηε(u− v)∂1ϕωβ dx dy dt+

∫ T

0

∫
Rn

∫
Rn
Qαε (t, y, u, v) · ∇2ϕωβ dx dy dt

=
∫ T

0

∫
Rn

∫
Rn

[
ηε(u− v)∂1Θ +Qαε (t, y, u, v) · ∇2Θ

]
θr(t− t1)θr(t2 − t)ωβ dx dy dt

+
∫ T

0

∫
Rn

∫
Rn
ηε(u− v)Θ[θ′r(t− t1)− θ′r(t2 − t)]ωβ dx dy dt

≤
∫ T

0

∫
Rn

∫
Rn

[
∂1Θ + Lip3(Qα(t))|∇2Θ|

]
ηε(u− v)θr(t− t1)θr(t2 − t)ωβ dx dy dt

+
∫ T

0

∫
Rn

∫
Rn
ηε(u− v)Θ[θ′r(t− t1)− θ′r(t2 − t)]ωβ dx dy dt

(2.5)
≤
∫ T

0

∫
Rn

∫
Rn
ηε
(
u(t, x)− v(t, y)

)
Θ
(
t,
x+ y

2

)
[θ′r(t− t1)− θ′r(t2 − t)]ωβ(x− y) dx dy dt.

(2.16)
2The chain rule is applied to the C1 function (x, u) 7→ Pαε (t, x, u, v) with (t, v) fixed and the BVloc function

x 7→ (x, u(x)).
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Observe that for β ≤ 1 one has∫
Rn

∫
Rn

∣∣∣∣u(t, x)− u
(
t,
x+ y

2

)∣∣∣∣Θ(t, x+ y

2

)
ωβ(x− y) dx dy

≤ β

2 ‖Θ(t)‖∞TVΩt
(
u(t, · )

)
≤ β

2 ‖Θ(t)‖∞B(t).
(2.17)

Using this observation and the fact that ηε is 1-Lipschitz, we can continue the estimate (2.16) as

Ĩ + ĨI1 ≤
∫ T

0

∫
Rn

∫
Rn
ηε

(
u

(
t,
x+ y

2

)
− v

(
t,
x+ y

2

))
Θ
(
t,
x+ y

2

)
[θ′r(t− t1)− θ′r(t2 − t)]ωβ(x− y) dx dy dt

+
∫ T

0

∫
Rn

∫
Rn

∣∣∣∣u(t, x)− u
(
t,
x+ y

2

)∣∣∣∣Θ(t, x+ y

2

)
|θ′r(t− t1)− θ′r(t2 − t)|ωβ(x− y) dx dy dt

+
∫ T

0

∫
Rn

∫
Rn

∣∣∣∣v(t, x+ y

2

)
− v(t, y)

∣∣∣∣Θ(t, x+ y

2

)
|θ′r(t− t1)− θ′r(t2 − t)|ωβ(x− y) dx dy dt

≤
∫ T

0

∫
Rn
ηε
(
u(t, x)− v(t, x)

)
Θ(t, x)[θ′r(t− t1)− θ′r(t2 − t)] dx dt

+ β

∫ T

0
‖Θ(t)‖∞B(t)|θ′r(t− t1)− θ′r(t2 − t)| dt

≤
∫ T

0

∫
Rn
ηε
(
u(t, x)− v(t, x)

)
Θ(t, x)[θ′r(t− t1)− θ′r(t2 − t)] dx dt+ 2β‖Θ‖∞B(t2),

(2.18)

where we used that B(t) ≤ B(t2), ‖θ′r‖1 = 1, and the integrand is supported in [t1, t2].
Let us now deal with the third term.

ĨII = −
∫ T

0

∫
Rn

∫
Rn

{∫ u

v
div2 P

α(t, x, s)η′′ε,v(s) ds+
∫ v

u
div2Q

α(t, y, s)η′′ε,u(s) ds
}
ϕωβ dx dy dt

= −
∫ T

0

∫
Rn

∫
Rn

{
div2 P

α(t, x, u)η′ε(u− v)−
∫ u

v
div2 ∂3P

α(t, x, s)η′ε,v(s) ds

− div2Q
α(t, y, v)η′ε(u− v)−

∫ v

u
div2 ∂3Q

α(t, y, s)η′ε,u(s) ds
}
ϕωβ dx dy dt

= −
∫ T

0

∫
Rn

∫
Rn

{[
div2 P

α(t, x, u)− div2 P
α(t, x, v)

]
+
[
div2 P

α(t, x, v)− div2 P
α(t, y, v)

]
+
[
div2 P

α(t, y, v)− div2Q
α(t, y, v)

]}
η′ε(u− v)ϕωβ dx dy dt

+
∫ T

0

∫
Rn

∫
Rn

{∫ u

v
div2 ∂3P

α(t, x, s)η′ε,v(s) ds+
∫ v

u
div2 ∂3Q

α(t, y, s)η′ε,u(s) ds
}
ϕωβ dx dy dt,

(2.19)

where as usual u = u(t, x) and v = v(t, y). We now estimate the differences of divergences inside
the square brackets:

|div2 P
α(t, x, u)− div2 P

α(t, x, v)| ≤ Lip3(div2 P
α(t))|u− v|,

|div2 P
α(t, x, v)− div2 P

α(t, y, v)| ≤ Lip2(div2 P
α(t))|x− y|,

|div2 P
α(t, y, v)− div2Q

α(t, y, v)| ≤ ‖div2(Pα −Qα)(t, y, · )‖L∞([0,R(T )]).

On the other hand, using the fact that |η′ε| ≤ 1, we have∣∣∣∣∫ u

v
div2 ∂3P

α(t, x, s)η′ε,v(s) ds
∣∣∣∣ ≤ Lip3(div2 P

α(t))|u− v|, (2.20)

17



and similarly for the integral involving Qα. Therefore, continuing (2.19), we get

ĨII ≤
∫ t2

t1

∫
Rn

∫
Rn

{[
2 Lip3(div2 P

α(t)) + Lip3(div2Q
α(t))

]
|u− v|+ Lip2(div2 P

α(t))|x− y|

+ ‖div2(Pα −Qα)(t, y, · )‖L∞([0,R(T )])
}

Θωβ dx dy dt.
(2.21)

Using (2.17) we can estimate∫
Rn

∫
Rn
|u(t, x)− v(t, y)|Θ

(
t,
x+ y

2

)
ωβ(x− y) dx dy

≤
∫
Rn

∫
Rn

∣∣∣∣u(t, x+ y

2

)
− v

(
t,
x+ y

2

)∣∣∣∣Θ(t, x+ y

2

)
ωβ(x− y) dx dy

+
∫
Rn

∫
Rn

∣∣∣∣u(t, x)− u
(
t,
x+ y

2

)∣∣∣∣Θ(t, x+ y

2

)
ωβ(x− y) dx dy

+
∫
Rn

∫
Rn

∣∣∣∣v(t, x+ y

2

)
− v(t, y)

∣∣∣∣Θ(t, x+ y

2

)
ωβ(x− y) dx dy

≤
∫
Rn
|u(t, x)− v(t, x)|Θ(t, x) dx+ β‖Θ(t)‖∞B(t),

(2.22)

∫
Rn

∫
Rn
|x− y|Θ

(
t,
x+ y

2

)
ωβ(x− y) dx dy =

∫
Rn

∫
Rn
|2x− 2z|Θ(t, z)ωβ(2x− 2z)2n dx dz

=
∫
Rn
|x|ωβ(x) dx‖Θ(t)‖1 ≤ β‖Θ(t)‖1,

and∫ t2

t1

∫
Rn

∫
Rn
‖div2(Pα −Qα)(t, y, · )‖L∞([0,R(T )])Θ

(
t,
x+ y

2

)
ωβ(x− y) dx dy dt

=
∫ t2

t1

∫
Rn
‖div2(Pα −Qα)(t, y, · )‖L∞([0,R(T )])Θ(t, y) dy dt

+
∫ t2

t1

∫
Rn

∫
Rn
‖div2(Pα −Qα)(t, y, · )‖L∞([0,R(T )])

[
Θ
(
t,
x+ y

2

)
−Θ(t, y)

]
ωβ(x− y) dx dy dt

≤
∫ t2

t1

∫
Rn
‖div2(Pα −Qα)(t, y, · )‖L∞([0,R(t)])Θ(t, y) dy dt

+ β

2

∫ t2

t1
Lip2(Θ(t))

∫
Ωt
‖div2(Pα −Qα)(t, y, · )‖L∞([0,R(t)]) dy dt,

which combined and inserted in (2.21) lead to

ĨII ≤
∫ t2

t1

∫
Rn

[2 Lip3(div2 P
α(t)) + Lip3(div2Q

α(t))]|u(t, x)− v(t, x)|Θ(t, x) dx dt

+ β‖Θ‖∞B(t2)
∫ t2

t1
[2 Lip3(div2 P

α(t)) + Lip3(div2Q
α(t))] dt

+ β‖Θ‖L∞t L1
x

∫ t2

t1
Lip2(div2 P

α(t)) dt

+
∫ t2

t1

∫
Rn
‖div2(Pα −Qα)(t, y, · )‖L∞([0,R(t)])Θ(t, y) dy dt

+ β

2 ‖Θ‖L
∞
t Lipx

∫ t2

t1

∫
Ωt
‖div2(Pα −Qα)(t, y, · )‖L∞([0,R(t)]) dy dt.

(2.23)
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Finally, we turn to the estimate for ĨI2, which will be obtained by considering separately the
three integrals which constitute it. First of all, by (2.20) and (2.22) we have∣∣∣∣∣
∫ T

0

∫
Rn

∫
Rn

div2 P
α
ε

(
t, x, u(t, x), v(t, y)

)
ϕωβ dx dy dt

∣∣∣∣∣
≤
∫ t2

t1
Lip3

(
div2 P

α(t)
) (∫

Rn
|u(t, x)− v(t, x)|Θ(t, x) dx+ β‖Θ(t)‖∞B(t)

)
dt

≤
∫ t2

t1

∫
Rn

Lip3
(
div2 P

α(t)
)
|u(t, x)− v(t, x)|Θ(t, x) dx dt+ β‖Θ‖∞B(t2)

∫ t2

t1
Lip3(div2 P

α(t)) dt.

(2.24)

Let us now estimate

|∂3(Pαε −Qαε )(t, x, u, v)|

=
∣∣∣∣∂3

(∫ u

v
∂3P

α(t, x, s)η′ε(s− v) ds−
∫ v

u
∂3Q

α(t, x, s)η′ε(s− u) ds
)∣∣∣∣

=
∣∣∣∣∂3

(∫ u

v
∂3P

α(t, x, s)η′ε(s− v) ds−
∫ u

v
∂3Q

α(t, x, s)η′ε(u− s) ds
)∣∣∣∣

=
∣∣∣∣∂3P

α(t, x, u)η′ε(u− v)−
∫ u

v
∂3Q

α(t, x, s)η′′ε (u− s) ds
∣∣∣∣.

If |u− v| ≤ ε then this is less than∣∣∣∣∂3P
α(t, x, u)η′ε(u− v) +

∫ u

v
∂3∂3Q

α(t, x, s)η′ε(s− u) ds+ ∂3Q
α(t, x, v)η′ε(v − u)

∣∣∣∣
≤ |∂3(Pα −Qα)(t, x, u)|+ |∂3Q

α(t, x, u)− ∂3Q
α(t, x, v)|+

∫ u

v
|∂3∂3Q

α(t, x, s)|ds

≤ Lip3
(
(Pα −Qα)(t, x)

)
+ 2 Lip3

(
∂3Q

α(t)
)
|u− v|

≤ Lip3
(
(Pα −Qα)(t, x)

)
+ 2 Lip3

(
∂3Q

α(t)
)
ε.

Otherwise, if |u− v| > ε then it is less than

|∂3(Pα −Qα)(t, x, u)|+
∣∣∣∣∂3Q

α(t, x, u)η′ε(u− v)−
∫ u

v
∂3Q

α(t, x, s)η′′ε (u− s) ds
∣∣∣∣

≤ Lip3
(
(Pα −Qα)(t, x)

)
+
∣∣∣∣∫ u

v
[∂3Q

α(t, x, u)− ∂3Q
α(t, x, s)]η′′ε (u− s) ds

∣∣∣∣
≤ Lip3

(
(Pα −Qα)(t, x)

)
+ Lip3

(
∂3Q

α(t)
)
ε

since supp(η′′ε ) ⊂ [−ε, ε] and
∫ u
v η
′′
ε (u− s) ds = η′ε(u− v). Therefore in both cases we have

|∂3(Pαε −Qαε )(t, x, u, v)| ≤ Lip3
(
(Pα −Qα)(t, x)

)
+ 2 Lip3

(
∂3Q

α(t)
)
ε. (2.25)

Moreover,

|∂3[Qαε (t, x, u, v)−Qαε (t, y, u, v)]| =
∣∣∣∣∫ v

u
[∂3Q

α(t, x, s)− ∂3Q
α(t, y, s)]η′′ε (s− u) ds

∣∣∣∣
≤ Lip2

(
∂3Q

α(t)
)
|x− y|

(2.26)
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because η′′ε (s− u) has mass less than 1 in [u ∧ v, u ∨ v]. With (2.25) and (2.26) we can estimate∣∣∣∣∣
∫ T

0

∫
Rn

∫
Rn
ϕωβ∂3

[
Pαε
(
t, x, u(t, x), v(t, y)

)
−Qαε

(
t, y, u(t, x), v(t, y)

)]
· d
(
Da
xu(t) + Dc

xu(t)
)
(x) dy dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

0

∫
Rn

∫
Rn
ϕωβ∂3(Pαε −Qαε )

(
t, x, u(t, x), v(t, y)

)
· d
(
Da
xu(t) + Dc

xu(t)
)
(x) dy dt

∣∣∣∣∣
+
∣∣∣∣∣
∫ T

0

∫
Rn

∫
Rn
ϕωβ∂3

[
Qαε
(
t, x, u(t, x), v(t, y)

)
−Qαε

(
t, y, u(t, x), v(t, y)

)]
· d
(
Da
xu(t) + Dc

xu(t)
)
(x) dy dt

∣∣∣∣∣
≤
∫ T

0

∫
Rn

∫
Rn
ϕωβ[Lip3

(
(Pα −Qα)(t, x)

)
+ 2 Lip3

(
∂3Q

α(t)
)
ε] d|Da

xu(t) + Dc
xu(t)|(x) dy dt

+
∫ T

0

∫
Rn

∫
Rn

Lip2
(
∂3Q

α(t)
)
ϕωβ|x− y|d|Da

xu(t) + Dc
xu(t)|(x) dy dt

≤
∫ t2

t1

∫
Rn

∫
Rn

Lip3
(
(Pα −Qα)(t, x)

)
Θ(t, x)ωβ(x− y) d|Da

xu(t) + Dc
xu(t)|(x) dy dt

+
∫ t2

t1

∫
Rn

∫
Rn

Lip3
(
(Pα −Qα)(t, x)

)∣∣∣∣Θ(t, x+ y

2

)
−Θ(t, x)

∣∣∣∣ωβ(x− y) d|Da
xu(t) + Dc

xu(t)|(x) dy dt

+
∫ T

0

∫
Rn

∫
Rn

2 Lip3
(
∂3Q

α(t)
)
εϕωβ d|Da

xu(t) + Dc
xu(t)|(x) dy dt

+
∫ T

0

∫
Rn

∫
Rn

Lip2
(
∂3Q

α(t)
)
ϕωβ|x− y|d|Da

xu(t) + Dc
xu(t)|(x) dy dt

≤ B(t2)
∫ t2

t1
‖Lip3

(
(Pα −Qα)(t, · )

)
Θ(t, · )‖∞ dt+ β

2 ‖Θ‖L
∞
t LipxB(t2)

∫ t2

t1
Lip3

(
(Pα −Qα)(t)

)
dt

+ 2ε‖Θ‖∞B(t2)
∫ t2

t1
Lip3

(
∂3Q

α(t)
)

dt+ β‖Θ‖∞B(t2)
∫ t2

t1
Lip2

(
∂3Q

α(t)
)

dt.

(2.27)

In a similar fashion we have∫ T

0

∫
Rn

∫
Rn

{[
Pαε
(
t, x, u+(t, x), v(t, y)

)
−Qαε

(
t, y, u+(t, x), v(t, y)

)]
−
[
Pαε
(
t, x, u−(t, x), v(t, y)

)
−Qαε

(
t, y, u−(t, x), v(t, y)

)]}
· nϕωβ dH n−1|Ju(t)(x) dy dt

=
∫ T

0

∫
Rn

∫
Rn

{
(Pαε −Qαε )

(
t, x, u+(t, x), v(t, y)

)
− (Pαε −Qαε )

(
t, x, u−(t, x), v(t, y)

)}
· nϕωβ dH n−1|Ju(t)(x) dy dt

+
∫ T

0

∫
Rn

∫
Rn

{[
Qαε
(
t, x, u+(t, x), v(t, y)

)
−Qαε

(
t, x, u−(t, x), v(t, y)

)]
−
[
Qαε
(
t, y, u+(t, x), v(t, y)

)
−Qαε

(
t, y, u−(t, x), v(t, y)

)]}
· nϕωβ dH n−1|Ju(t)(x) dy dt

=
∫ T

0

∫
Rn

∫
Rn

∫ u+(t,x)

u−(t,x)
∂3(Pαε −Qαε )

(
t, x, s, v(t, y)

)
· nϕωβ dsdH n−1|Ju(t)(x) dy dt

+
∫ T

0

∫
Rn

∫
Rn

∫ u+(t,x)

u−(t,x)
[∂3Q

α
ε

(
t, x, s, v(t, y)

)
− ∂3Q

α
ε

(
t, y, s, v(t, y)

)
] · nϕωβ dsdH n−1|Ju(t)(x) dy dt.

By (2.25) and (2.26) we have∣∣∣∣∣
∫ u+(t,x)

u−(t,x)

{
∂3(Pαε −Qαε )

(
t, x, s, v(t, y)

)
+ [∂3Q

α
ε

(
t, x, s, v(t, y)

)
− ∂3Q

α
ε

(
t, y, s, v(t, y)

)
]
}

ds
∣∣∣∣∣

≤
[
Lip3

(
(Pα −Qα)(t, x)

)
+ 2 Lip3

(
∂3Q

α(t)
)
ε+ Lip2

(
∂3Q

α(t)
)
|x− y|

]
· |u+(t, x)− u−(t, x)|,
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therefore the previous integral can be estimated in absolute value as∣∣∣∣∫ T

0

∫
Rn

∫
Rn

{[
Pαε
(
t, x, u+(t, x), v(t, y)

)
−Qαε

(
t, y, u+(t, x), v(t, y)

)]
−
[
Pαε
(
t, x, u−(t, x), v(t, y)

)
−Qαε

(
t, y, u−(t, x), v(t, y)

)]}
· nϕωβ dH n−1|Ju(t)(x) dy dt

∣∣∣∣
≤
∫ T

0

∫
Rn

∫
Rn

[
Lip3

(
(Pα −Qα)(t, x)

)
+ 2 Lip3

(
∂3Q

α(t)
)
ε
]
ϕωβ|u+ − u−|dH n−1|Ju(t)(x) dy dt

+
∫ T

0

∫
Rn

∫
Rn

Lip2
(
∂3Q

α(t)
)
|x− y|ϕωβ|u+ − u−|dH n−1|Ju(t)(x) dy dt

≤ B(t2)
∫ t2

t1
‖Lip3

(
(Pα −Qα)(t, · )

)
Θ(t, · )‖∞ dt+ 2ε‖Θ‖∞B(t2)

∫ t2

t1
Lip3

(
∂3Q

α(t)
)

dt

+ β

2 ‖Θ‖L
∞
t LipxB(t2)

∫ t2

t1
Lip3

(
(Pα −Qα)(t)

)
dt+ β‖Θ‖∞B(t2)

∫ t2

t1
Lip2

(
∂3Q

α(t)
)

dt.

(2.28)

In conclusion, from (2.24), (2.27) and (2.28) we deduce

ĨI2 ≤
∫ t2

t1

∫
Rn

Lip3
(
div2 P

α(t)
)
|u(t, x)− v(t, x)|Θ(t, x) dx dt

+ 2B(t2)
∫ t2

t1
‖Lip3

(
(Pα −Qα)(t, · )

)
Θ(t, · )‖∞ dt+ 4ε‖Θ‖∞B(t2)

∫ t2

t1
Lip3

(
∂3Q

α(t)
)

dt

+ β‖Θ‖L∞t LipxB(t2)
∫ t2

t1
Lip3

(
(Pα −Qα)(t)

)
dt+ 2β‖Θ‖∞B(t2)

∫ t2

t1
Lip2

(
∂3Q

α(t)
)

dt

+ β‖Θ‖∞B(t2)
∫ t2

t1
Lip3(div2 P

α(t)) dt.

(2.29)
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Conclusion. After the dedoubling in time of (2.14), using the estimates (2.15), (2.18), (2.23)
and (2.29) we deduce that∫ T

0

∫
Rn
ηε
(
u(t, x)− v(t, x)

)
Θ(t, x)[θ′r(t− t1)− θ′r(t2 − t)] dx dt

+
∫ t2

t1

∫
Rn

[3 Lip3(div2 P
α(t)) + Lip3(div2Q

α(t))]|u(t, x)− v(t, x)|Θ(t, x) dx dt

+
∫ t2

t1

∫
Rn
‖div2(Pα −Qα)(t, y, · )‖L∞([0,R(t)])Θ(t, y) dy dt

+ 2B(t2)
∫ t2

t1
‖Lip3

(
(Pα −Qα)(t, · )

)
Θ(t, · )‖∞ dt

+ β‖Θ‖∞B(t2)
(

2 +
∫ t2

t1
[3 Lip3(div2 P

α(t)) + Lip3(div2Q
α(t)) + 2 Lip2(∂3Q

α(t))] dt
)

+ β‖Θ‖L∞t L1
x

∫ t2

t1
Lip2(div2 P

α(t)) dt+ β‖Θ‖L∞t LipxB(t2)
∫ t2

t1
Lip3

(
(Pα −Qα)(t)

)
dt

+ β

2 ‖Θ‖L
∞
t Lipx

∫ t2

t1

∫
Ωt
‖div2(Pα −Qα)(t, y, · )‖L∞([0,R(t)]) dy dt

+ 4ε‖Θ‖∞B(t2)
∫ t2

t1
Lip3

(
∂3Q

α(t)
)

dt

≥ −
∫ T

0

∫
Rn

(
|ϕ|ωβ/2 ∗ (µ0,t + ν0,t) + 1

2 |∇2ϕ|ωβ/2 ∗ (µ1,t + ν1,t) + 1
2 |ϕ||∇ωβ/2| ∗ (µ1,t + ν1,t)

)
dz dt

− αE(P,Q, ϕ, ωβ/2).
(2.30)

Letting ε→ 0 and α→ 0 in this order and estimating the integral in the right hand side we get3

∫ T

0

∫
Rn
|u(t, x)− v(t, x)|Θ(t, x)[θ′r(t− t1)− θ′r(t2 − t)] dx dt

+
∫ t2

t1

∫
Rn

[3 Lip3(div2 P (t)) + Lip3(div2Q(t))]|u(t, x)− v(t, x)|Θ(t, x) dx dt

+
∫ t2

t1

∫
Rn
‖div2(P −Q)(t, y, · )‖L∞([0,R(t)])Θ(t, y) dy dt

+ 2B(t2)
∫ t2

t1
‖Lip3

(
(P −Q)(t, · )

)
Θ(t, · )‖∞ dt

+ β‖Θ‖∞B(t2)
(

2 +
∫ t2

t1
[3 Lip3(div2 P (t)) + Lip3(div2Q(t)) + 2 Lip2(∂3Q(t))] dt

)
+ β‖Θ‖L∞t L1

x

∫ t2

t1
Lip2(div2 P (t)) dt+ β‖Θ‖L∞t LipxB(t2)

∫ t2

t1
Lip3

(
(P −Q)(t)

)
dt

+ β

2 ‖Θ‖L
∞
t Lipx

∫ t2

t1

∫
Ωt
‖div2(P −Q)(t, y, · )‖L∞([0,R(t)]) dy dt

≥ −‖Θ‖∞
∫ t2

t1
(µ0,t + ν0,t)

(
supp Θ(t, · )

)
β

dt

−
(1

2‖∇2Θ‖∞ + β−1‖Θ‖∞‖∇ω‖1
)∫ t2

t1
(µ1,t + ν1,t)

(
supp Θ(t, · )

)
β

dt.

3Notice that for α→ 0 we have Lip(Pα −Qα)→ Lip(P −Q) and similarly for the other Lipschitz norms.
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For β ≤ 1, letting r → 0, rearranging the terms and enlarging the set
(
supp Θ(t, · )

)
β
to

Ωt =
(
supp Θ(t, · )

)
1 we deduce[∫

Rn
|u(t, x)− v(t, x)|Θ(t, x) dx

]t2
t1

≤
∫ t2

t1

∫
Rn

[3 Lip3(div2 P (t)) + Lip3(div2Q(t))]|u(t, x)− v(t, x)|Θ(t, x) dx dt

+
∫ t2

t1

∫
Rn
‖div2(P −Q)(t, y, · )‖L∞([0,R(t)])Θ(t, y) dy dt

+ 2B(t2)
∫ t2

t1
‖Lip3

(
(P −Q)(t, · )

)
Θ(t, · )‖∞ dt

+ ‖Θ‖∞
∫ t2

t1
(µ0,t + ν0,t)(Ωt) dt+ 1

2‖∇2Θ‖∞
∫ t2

t1
(µ1,t + ν1,t)(Ωt) dt

+ β‖Θ‖∞B(t2)
(

2 +
∫ t2

t1
[3 Lip3(div2 P (t)) + Lip3(div2Q(t)) + 2 Lip2(∂3Q(t))] dt

)
+ β‖Θ‖L∞t L1

x

∫ t2

t1
Lip2(div2 P (t)) dt+ β‖Θ‖L∞t LipxB(t2)

∫ t2

t1
Lip3

(
(P −Q)(t)

)
dt

+ β

2 ‖Θ‖L
∞
t Lipx

∫ t2

t1

∫
Ωt
‖div2(P −Q)(t, y, · )‖L∞([0,R(t)]) dy dt

+ cnβ
−1‖Θ‖∞

∫ t2

t1
(µ1,t + ν1,t)(Ωt) dt,

where in the last line we estimated ‖∇ω‖1 ≤ cn.
The last remaining step is to (almost) optimize in β. Recalling the definitions (2.7) of M

and C and picking
β = min

{
M(t1, t2)1/2, 1

}
we have that the last four lines of the right hand side, which are of the form C(t1, t2)β +
cn‖Θ‖∞β−1M(t1, t2), can be bounded by

C(t1, t2) min
{
M(t1, t2)1/2, 1

}
+ cn‖Θ‖∞max

{
M(t1, t2)1/2,M(t1, t2)

}
,

which leads to the inequality (2.6) claimed in the statement of the theorem.

Remark 2.10. We provide here details on how to recover the analogous result for the entropic case
stated in Remark 2.8. Heuristically speaking, this could be done by performing the dedoubling
in space too, which amounts to setting β = 0 in the last part of the proof. In view of recycling
as much as possible of the given proof, one can proceed as follows instead.

All the steps of the proof are retraced unaltered except the last one. At the beginning of the
step marked Conclusion, in equation (2.30), we get rid of the integral in the right hand side
which depends on the measures µi, νi since they are all zero by assumption. Next we take the
limit as β → 0 and as a result eliminate all the terms with β, appearing in the rows 5 through 7
of the left hand side. Then the limits ε→ 0 and α→ 0 are taken in the same described way and
we immediately reach the conclusion because the last step (optimization in β) is now unnecessary.

Notice in particular that we can get rid of the assumptions regarding Lip2(div2 P (t)) and
Lip2(∂3Q(t)) because they do not appear in the final statement. Indeed, in (2.30) there are
Lip2(div2 P

α(t)) and Lip2(∂3Q
α(t)), which are finite because the fluxes are regularized with

α > 0, but these terms disappear by taking β → 0 before α→ 0.
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Proof of Proposition 2.9. By assumption we can directly apply Theorem 2.6 and deduce the
validity of (2.6). Using the assumptions (2.8) we can estimate the terms∫ t2

t1

∫
Rn
‖div2(P −Q)(t, x, · )‖L∞([0,R(t)])Θ(t, x) dx dt+ 2B(t2)

∫ t2

t1
‖Lip3

(
(P −Q)(t, · )

)
Θ(t, · )‖∞ dt

≤ [1 + 2B(t2)]
∫ t2

t1
h(t)

∫
Rn
|u(t, x)− v(t, x)|Θ(t, x) dx dt.

Letting
w(t) =

∫
Rn
|u(t, x)− v(t, x)|Θ(t, x) dx,

the above estimate combined with (2.6) leads to an inequality of the form

w(t2) ≤ w(t1) + Φ(t1, t2) +
∫ t2

t1
f(t)w(t) dt,

where f(t) = [3 Lip3(div2 P (t)) + Lip3(div2Q(t))] + [1 + 2B(T )]h(t) and Φ(t1, t2) encompasses
all the remaining terms. Applying Grönwall’s inequality leads to

w(t2) ≤ [w(t1) + Φ(t1, t2)] exp
(∫ t2

t1
f(t) dt

)
.

Lemma 2.11 (Dedoubling in time). Let A, ∂3A, ∂4A ∈ L1
loc
(
[0, T );L∞loc(Rn × R × R)

)
, B ∈

Cc((0, T )× Rn), C ∈ C1
c (Rn), and u, v ∈ C

(
[0, T );L1

loc(Rn)
)
∩ L∞loc([0, T )× Rn). Then

lim
γ→0

∫ T

0

∫ T

0

∫
Rn

∫
Rn
A
(
t, x, u(t, x), v(τ, y)

)
B

(
t+ τ

2 ,
x+ y

2

)
C(x− y)ργ(t− τ) dx dy dtdτ

=
∫ T

0

∫
Rn

∫
Rn
A
(
t, x, u(t, x), v(t, y)

)
B

(
t,
x+ y

2

)
C(x− y) dx dy dt.

Proof. Let T ′ ∈ (0, T ) and r > 0 be such that suppB ⊆ [2γ, T ′−2γ]×Br(0) and suppC ⊆ Br(0)
for γ > 0 sufficiently small and let R : [0, T ) → [0,∞) be an increasing function such that
u(t, x), v(t, x) ∈ [0, R(t)] for every (t, x) ∈ [0, T )×Br(0). Let

H(γ) = sup{‖v(t1, · )− v(t2, · )‖L1(B2r(0)) : t1, t2 ∈ [0, T ′], |t1 − t2| ≤ γ}

denote the modulus of continuity of the map [0, T ′]→ L1(B2r(0)
)

: t 7→ v(t, · ) and let

K(γ) = sup{‖B(t1, · )−B(t2, · )‖L∞(Rn) : t1, t2 ∈ [0, T ′], |t1 − t2| ≤ γ}

denote the modulus of continuity of the map [0, T ′]→ L∞(Rn) : t 7→ B(t, · ).
Thanks to the assumed continuities we have both H(γ),K(γ)→ 0 for γ → 0. Moreover∫ T ′

0

∫
B2r

∫
B2r

∣∣A(t, x, u(t, x), v(t, y)
)∣∣ dx dy dt ≤

∫ T ′

0
‖A(t, · , · , · )‖L∞(B2r,[0,R(t)],[0,R(t)]) dt <∞.
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Then, using the notation Lip4
(
A(t)

)
= ‖∂4A(t, · , · , · )‖L∞(B2r,[0,R(t)],[0,R(t)]), we have∣∣∣∣∫ T

0

∫ T

0

∫
Rn

∫
Rn
A
(
t, x, u(t, x), v(τ, y)

)
B

(
t+ τ

2 ,
x+ y

2

)
C(x− y)ργ(t− τ) dx dy dtdτ

−
∫ T

0

∫
Rn

∫
Rn
A
(
t, x, u(t, x), v(t, y)

)
B

(
t,
x+ y

2

)
C(x− y) dx dy dt

∣∣∣∣
≤
∫ T

0

∫ T

0

∫
Rn

∫
Rn

∣∣A(t, x, u(t, x), v(τ, y)
)
−A

(
t, x, u(t, x), v(t, y)

)∣∣∣∣∣∣B( t+ τ

2 ,
x+ y

2

)∣∣∣∣|C(x− y)|ργ(t− τ) dx dy dt dτ

+
∫ T

0

∫ T

0

∫
Rn

∫
Rn

∣∣A(t, x, u(t, x), v(t, y)
)∣∣∣∣∣∣B( t+ τ

2 ,
x+ y

2

)
−B

(
t,
x+ y

2

)∣∣∣∣|C(x− y)|ργ(t− τ) dx dy dtdτ

≤
∫ T

0

∫ T

0

∫
Rn

∫
Rn

Lip4
(
A(t)

)
|v(τ, y)− v(t, y)|

∣∣∣∣B( t+ τ

2 ,
x+ y

2

)∣∣∣∣|C(x− y)|ργ(t− τ) dx dy dtdτ

+
∫ T ′

0

∫
Rn

∫
Rn

∣∣A(t, x, u(t, x), v(t, y)
)∣∣K(γ)1Br

(
x+ y

2

)
‖C‖∞1Br(x− y) dx dy dt

≤
∫ T ′

0
Lip4

(
A(t)

)
‖B‖∞‖C‖1

∫ T ′−γ

0
‖v(τ, · )− v(t, · )‖L1(B2r)ργ(t− τ) dτ dt

+K(γ)‖C‖∞
∫ T ′

0

∫
B2r

∫
B2r

∣∣A(t, x, u(t, x), v(t, y)
)∣∣ dx dy dt

≤ ‖B‖∞‖C‖1H(γ)‖Lip4
(
A(t)

)
‖L1([0,T ′]) +K(γ)‖C‖∞

∫ T ′

0
‖A(t, · , · , · )‖L∞(B2r,[0,R(t)],[0,R(t)]) dt.

The right hand side of the estimate converges to 0 when γ → 0 and this proves the limit in
the statement.

3 Applications
In this section we demonstrate how to employ Theorem 2.6 and Proposition 2.9 to both theoretical
and numerical applications.

3.1 Conditional existence via Cauchy sequences in L1
loc

Our stability result Theorem 2.6 leads to a conditional existence theorem of entropy solutions
for the problems ∂tu+ divx

(
P (t, x, u)

)
= 0 and ∂tu+ divx

(
P [u](t, x, u)

)
= 0 whenever one can

provide a sequence of quasi-entropy solutions with vanishing errors.

Theorem 3.1 (Conditional existence, fixed flux). Let P : [0, T ) × Rn × [0,∞) → Rn be a
flux satisfying Assumptions 2.1 with the property that Lip3

(
P (t)

)
∈ L∞loc

(
[0, T )

)
and let u0 ∈

L∞(Rn) ∩ BV (Rn) be a non-negative initial datum. Let (uk)k∈N be a sequence of (µk,0, µk,1)-
quasi-entropy solutions according to Definition 2.3 for the problem

∂tu+ divx
(
P (t, x, u)

)
= 0 (3.1)

with non-negative initial datum uk(0) ∈ L∞(Rn)∩BV (Rn) converging to u0 in L1
loc(Rn), satisfying

the uniform bounds

uk(t, · ) ≤ R(t), ‖uk(t, · )‖BV ≤ B(t), ∀t ∈ [0, T ), k ∈ N,

for some increasing functions R,B : [0, T ) → [0,∞). Assume in addition that the measures
µk,i,t ∈ L1([0, T ); M+(Rn)

)
vanish in the sense that for every r > 1/T we have

lim
k→∞

∫ T−1/r

0
|µk,i,t|(Br) dt = 0. (3.2)
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Then for every t ∈ [0, T ) the sequence uk(t, · ) converges in L1
loc(Rn) to a function u(t, x)

which is an entropy solution of (3.1) according to Definition 2.2 with initial datum u0.

Proof. Let θ ∈ C∞
(
R; [0, 1]

)
be such that θ(r) = 0 for r ≤ 0, θ(r) = 1 for r ≥ 1, and θ′(r) ≤ 2

for every r. Given t2 ∈ (0, T ) and a radius r > 0, let c = ‖Lip3
(
P (t)

)
‖L∞([0,t2]) and define

Θ ∈ C∞c
(
[0, t2]× Rn; [0, 1]

)
as

Θ(t, x) = θ
(
c(t2 − t)− |x|+ 1 + r

)
.

Then we have
∂tΘ(t, x) = −cθ′

(
c(t2 − t)− |x|+ 1 + r

)
= −c|∇xΘ(t, x)|,

so that (2.5) is satisfied up to t = t2.
For every k, l ∈ N we can then apply Theorem 2.6 to the pair (uk, ul) with t1 = 0, from which

we deduce that for every t ∈ (0, t2) we have∫
Rn
|uk(t, x)− ul(t, x)|Θ(t, x) dx ≤ 4

∫ t

0
Lip3(div2 P (s))

∫
Rn
|uk(s, x)− ul(s, x)|Θ(s, x) dx ds

+
∫
Rn
|uk(0, x)− ul(0, x)|Θ(0, x) dx+ εk,l

where

εk,l =
∫ t

0
(µk,0,s + µl,0,s)(Ωs) ds+

∫ t

0
(µk,1,s + µl,1,s)(Ωs) ds

+ C(0, t) min
{
Mk,l(0, t)1/2, 1

}
+ cn max

{
Mk,l(0, t)1/2,Mk,l(0, t)

}
is a quantity that goes to 0 as k, l→ 0 thanks to (3.2). By Grönwall’s inequality we get∫
Rn
|uk(t, x)−ul(t, x)|Θ(t, x) dx ≤

[∫
Rn
|uk(0, x)− ul(0, x)|Θ(0, x) dx+ εk,l

]
exp

(
4
∫ t

0
Lip3(div2 P (s)) ds

)
.

Considering that

‖uk(t, · )− ul(t, · )‖L1(Br) ≤
∫
Rn
|uk(t, x)− ul(t, x)|Θ(t, x) dx

for t ∈ [0, t2] and using the fact that uk(0, · ) is a Cauchy sequence in L1
loc(Rn), we deduce that

uk(t, · ) is a Cauchy sequence in L1(Br).
From the arbitrariness of t2 and r we obtain that there exists a limit function u(t, · ) to which

the sequence uk(t, · ) converges in L1
loc(Rn) for every t ∈ [0, T ).

We need to show that u satisfies the entropy inequality (2.1). Since there are some technical
difficulties passing to the limit the entropy inequality with Kruzkov type entropies |u− c|, this
will be done by regularizing the absolute value mimicking the second step in the main proof of
the stability theorem and passing to the limit this regularized inequality instead. The desired
entropy inequality of Kruzkov type for the limit function u is then recovered by approximation.

By assumption, uk satisfies∫ T

0

∫
Rn

{
|uk − c′|∂tϕ+ sign(uk − c′)

[(
P (t, x, uk)− P (t, x, c′)

)
· ∇xϕ− divx P (t, x, c′)ϕ

]}
dx dt

≥ −
∫ T

0

∫
Rn
|ϕ(t, x)|dµk,0,t(x) dt−

∫ T

0

∫
Rn
|∇xϕ(t, x)| dµk,1,t(x) dt

for every constant c′ ∈ [0,∞) and non-negative test function ϕ ∈ C∞c
(
(0, T )×Rn; [0,∞)

)
. Letting

ηε(u) =
∫
R
|s|ρε(u− s) ds−

∫
R
|s|ρε(s) ds
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and its translation ηε,c(u) = ηε(u− c), with a similar computation as in the step Regularization
of the absolute value on page 10, convolving the previous quasi-entropy inequality with 1

2η
′′
ε,c(c′)

we deduce that∫ T

0

∫
Rn

{
ηε,c(uk)∂tϕ+ Pε(t, x, uk, c) · ∇xϕ− ϕ

∫ uk

c
divx P (t, x, s)η′′ε,c(s) ds

}
dx dt

≥ −
∫ T

0

∫
Rn
|ϕ(t, x)|dµk,0,t(x) dt−

∫ T

0

∫
Rn
|∇xϕ(t, x)| dµk,1,t(x) dt,

(3.3)

where
Pε(t, x, u, c) =

∫ u

c
∂3P (t, x, s)η′ε,c(s) ds.

We now want to pass to the limit (3.3) as k →∞. For the first two terms in the left hand
side, we use the fact that the dependence on uk is Lipschitz, indeed

|ηε,c(uk)− ηε,c(u)| ≤ |uk − u|,
|Pε(t, x, uk, c)− Pε(t, x, u, c)| ≤ Lip3(P (t))|uk − u|.

For the third term we use the fact that

lim
k→∞

∫ T

0

∫
Rn

∫ uk(t,x)

u(t,x)
ϕ(t, x) divx P (t, x, s)η′′ε,c(s) dsdx dt = 0

because the integrand is a fixed L1 function which is integrated over the set

{(t, x, s) ∈ [0, T )× Rn × [0, R(T )] : (t, x) ∈ suppϕ, s ∈ [uk(t, x) ∧ u(t, x), uk(t, x) ∨ u(t, x)]}

whose measure is ∫∫
suppϕ

|uk(t, x)− u(t, x)| dx dt→ 0, for k →∞.

For the right hand side we use the assumption (3.2) to deduce that both terms are vanishing. As
a consequence we obtain that u satisfies the regularized entropy inequality∫ T

0

∫
Rn

{
ηε,c(u)∂tϕ+ Pε(t, x, u, c) · ∇xϕ− ϕ

∫ u

c
divx P (t, x, s)η′′ε,c(s) ds

}
dx dt ≥ 0,

for every constant c ∈ [0,∞) and non-negative test function ϕ ∈ C∞c
(
(0, T )× Rn; [0,∞)

)
.

Letting ε→ 0 gives us the desired entropy inequality for u with Kruzkov entropies:∫ T

0

∫
Rn

{
|u− c|∂tϕ+ sign(u− c)

[(
P (t, x, u)− P (t, x, c)

)
· ∇xϕ− divx P (t, x, c)ϕ

]}
dx dt ≥ 0.

By a standard argument, setting c = 0 and c = R(T ) in the previous inequality we deduce
that u solves the conservation law ∂tu+ divx

(
P (t, x, u)

)
= 0 too.

We now prove the continuity u ∈ C
(
[0, T );L1

loc(Rn)
)
. From the fact that u solves the

conservation law we deduce that for every ϕ ∈ C∞c (Rn) the map

[0, T )→ R : t 7→
∫
Rn
u(t, x)ϕ(x) dx

is differentiable with finite derivative equal to

−
∫
Rn
P
(
t, x, u(t, x)

)
∇xϕ(x) dx.

In particular, the map is continuous, hence u(tn, · ) ⇀ u(t, · ) whenever tn → t. This limit
holds also in the strong topology L1

loc(Rn) because the the equi-boundedness in BV (Rn) of the
sequence implies its relatively compactness in L1

loc(Rn).
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Theorem 3.2 (Conditional existence, non-local flux). Let

P : S
(
[0, T ),Rn

)
→ {p : [0, T )× Rn × [0,∞)→ Rn}

u 7→ P [u]

be a map associating to every function u a flux P [u] satisfying the Assumptions 2.1, and let
u0 ∈ L∞(Rn)∩BV (Rn) be a non-negative initial datum. Let (uk)k∈N be a sequence of (µk,0, µk,1)-
quasi-entropy solutions according to Definition 2.3 for the respective non-local problems

∂tuk + divx
(
P [uk](t, x, uk)

)
= 0 (3.4)

with non-negative initial datum uk(0) ∈ L∞(Rn)∩BV (Rn) converging to u0 in L1
loc(Rn), satisfying

the uniform bounds

uk(t, · ) ≤ R(t), ‖uk(t, · )‖BV ≤ B(t), ∀t ∈ [0, T ), k ∈ N,

for some increasing functions R,B : [0, T ) → [0,∞). Assume in addition that the measures
µk,i,t ∈ L1([0, T ); M+(Rn)

)
vanish in the sense that for every r > 1/T we have

lim
k→∞

∫ T−1/r

0
|µk,i,t|(Br) dt = 0. (3.5)

Assume that if uk converges in L∞loc
(
[0, T );L1

loc(Rn)
)
to some function u then

P [uk](t, x, s)→ P [u](t, x, s) for a.e. (t, x, s),
div2 P [uk](t, x, s)→ div2 P [u](t, x, s) for a.e. (t, x, s),
∂3P [uk](t, x, s)→ ∂3P [u](t, x, s) for a.e. (t, x, s).

Let F ⊆ C∞
(
[0, T ) × Rn; [0,∞)

)
be a class of test functions compactly supported in space

with the properties

∀k ∈ N ∀(t, x) ∈ [0, T )× Rn ∀Θ ∈ F : ∂tΘ(t, x) ≤ −Lip3
(
P [uk](t)

)
|∇xΘ(t, x)|,

∀(t, x) ∈ [0, T )× Rn ∃Θ ∈ F : Θ(t, x) > 0.

Assume that for every Θ ∈ F the quantities4

Lip3
(
P [uk](t)

)
, Lip3

(
div2 P [uk](t)

)
, Lip2

(
∂3P [uk](t)

)
, Lip2

(
div2 P [uk](t)

)
,∫

Ωt
‖div2 P [uk](t, x, · )‖L∞([0,R(t)]) dx

are equi-bounded in L1
loc
(
[0, T )

)
uniformly in k and assume that there is a non-negative function

h ∈ L1([0, T )) such that∫
Rn
‖div2(P [uk]− P [ul])(t, x, · )‖L∞([0,R(t)])Θ(t, x) dx ≤ h(t)

∫
Rn
|uk(t, x)− ul(t, x)|Θ(t, x) dx,

(3.6a)

‖Lip3
(
(P [uk]− P [ul])(t, · )

)
Θ(t, · )‖L∞(Rn) ≤ h(t)

∫
Rn
|uk(t, x)− ul(t, x)|Θ(t, x) dx, (3.6b)

hold for a.e. t ∈ [0, T ) and for every k, l ∈ N.
Then for every t ∈ [0, T ) the sequence uk(t, · ) converges in L1

loc(Rn) to a function u(t, x)
which is an entropy solution of

∂tu+ divx
(
P [u](t, x, u)

)
= 0 (3.7)

according to Definition 2.2 with initial datum u0.
4Recall the notation introduced in Notation 2.4 depends implicitly on Θ.
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Proof of Theorem 3.1 and Theorem 3.2. For a fixed Θ ∈ F , we can apply Proposition 2.9 to the
pair of quasi-solutions (uk, ul) with t1 = 0 and t2 = t, from which we deduce that∫

Rn
|uk(t, x)− ul(t, x)|Θ(t, x) dx

≤
(∫

Rn
|uk(0, x)− ul(0, x)|Θ(0, x) dx+ Φk,l(0, t)

)
exp

(∫ t

0
fk,l(s) ds

)
,

where

fk,l(t) = [3 Lip3(div2 P [uk](t)) + Lip3(div2 P [ul](t))] + [1 + 2B(T )]h(t),

Φk,l(0, t) = ‖Θ‖∞
∫ t

0
(µk,0,s + µl,0,s)

(
supp Θ(s, · )

)
1 ds+ 1

2‖∇xΘ‖∞
∫ t

0
(µk,1,s + µl,1,s)

(
supp Θ(s, · )

)
1 ds

+ Ck,l(0, t) min
{
Mk,l(0, t)1/2, 1

}
+ cn‖Θ‖∞max

{
Mk,l(0, t)1/2,Mk,l(0, t)

}
,

Ck,l(0, t) = ‖Θ‖∞B(t)
(

2 +
∫ t

0
[3 Lip3(div2 P [uk](s)) + Lip3(div2 P [ul](s)) + 2 Lip2(∂3P [ul](s))] ds

)
+ ‖Θ‖L∞t L1

x

∫ t

0
Lip2(div2 P [uk](s)) ds+ ‖Θ‖L∞t LipxB(t)

∫ t

0
Lip3

(
(P [uk]− P [ul])(s)

)
ds

+ 1
2‖Θ‖L

∞
t Lipx

∫ t

0

∫(
supp Θ(s, · )

)
1

‖div2(P [uk]− P [ul])(s, x, · )‖L∞([0,R(s)]) dx ds.

From the equi-boundedness in k of the various norms, we get that fk,l(t) and Ck,l(0, t) are
uniformly bounded for every k, l ∈ N. Together with (3.5), this implies that Φk,l(0, t) → 0 as
k, l→∞.

Thanks to the properties of the family F , for every radius r > 0 we can find a finite subfamily
E ⊆ F and coefficients c : E → R+ such that∑

Θ∈E

cΘΘ(t, · ) ≥ 1Br( · ).

Summing the previous Grönwall inequalities over Θ ∈ E and using that uk(0, · ) is a Cauchy
sequence in L1

loc(Rn), we deduce that uk(t, · ) is a Cauchy sequence in L1(Br), hence there exists
a limit function u(t, · ) to which the sequence uk(t, · ) converges in L1

loc(Rn) for every t ∈ [0, T ).
Since the Grönwall estimate is locally uniform in t, we have that uk → u in L∞loc

(
[0, T );L1

loc(Rn)
)
.

We need to show that u satisfies the entropy inequality associated to the problem (3.7). We
follow the same strategy as for the previous theorem. By assumption, uk satisfy the (µk,0, µk,1)-
quasi-entropy inequality for the problem (3.4). Regularizing the absolute value we deduce∫ T

0

∫
Rn

{
ηε,c(uk)∂tϕ+ P [uk]ε(t, x, uk, c) · ∇xϕ− ϕ

∫ uk

c
divx P [uk](t, x, s)η′′ε,c(s) ds

}
dx dt

≥ −
∫ T

0

∫
Rn
|ϕ(t, x)|dµk,0,t(x) dt−

∫ T

0

∫
Rn
|∇xϕ(t, x)|dµk,1,t(x) dt,

where
P [uk]ε(t, x, u, c) =

∫ u

c
∂3P [uk](t, x, s)η′ε,c(s) ds.

We now have to pass to the limit this inequality for k → ∞. The first term of the left hand
side and the full right hand side are standard, as in the previous proof. Moreover, we have that
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P [uk]ε(t, x, uk, c)→ P [u]ε(t, x, u, c): indeed

|P [uk]ε(t, x, uk, c)− P [u]ε(t, x, u, c)|
≤ |P [uk]ε(t, x, uk, c)− P [uk]ε(t, x, u, c)|+ |P [uk]ε(t, x, u, c)− P [u]ε(t, x, u, c)|

≤ Lip3
(
P [uk](t)

)
|uk − u|+

∣∣∣∣∫ u

c
(∂3P [uk]− ∂3P [u])(t, x, s)η′ε,c(s) ds

∣∣∣∣
≤ Lip3

(
P [uk](t)

)
|uk − u|+

∫ R(t)

0
|∂3P [uk]− ∂3P [u]|(t, x, s) ds,

the first term converges to 0 in L1 and the second converges to 0 a.e. and enjoys the uniform
bound ∣∣∣∣∣

∫ R(t)

0
|∂3P [uk]− ∂3P [u]|(t, x, s) ds

∣∣∣∣∣ ≤ [Lip3(P [uk](t)) + Lip3(P [u](t))
]
R(t).

Finally, for the third term we decompose it as∣∣∣∣∫ uk

c
divx P [uk](t, x, s)η′′ε,c(s) ds−

∫ u

c
divx P [u](t, x, s)η′′ε,c(s) ds

∣∣∣∣
≤
∣∣∣∣∫ uk

u
divx P [u](t, x, s)η′′ε,c(s) ds

∣∣∣∣+ ∣∣∣∣∫ uk

c
(divx P [uk]− divx P [u])(t, x, s)η′′ε,c(s) ds

∣∣∣∣.
The first integral vanishes in the limit

lim
k→∞

∫ T

0

∫
Rn

∫ uk(t,x)

u(t,x)
ϕ(t, x) divx P [u](t, x, s)η′′ε,c(s) dsdx dt = 0

because the integrand is a fixed L1 function which is integrated over the set

{(t, x, s) ∈ [0, T )× Rn × [0, R(T )] : (t, x) ∈ suppϕ, s ∈ [uk(t, x) ∧ u(t, x), uk(t, x) ∨ u(t, x)]}

whose measure is ∫∫
suppϕ

|uk(t, x)− u(t, x)| dx dt→ 0, for k →∞.

The second integral can be estimated as∣∣∣∣∫ uk

c
(divx P [uk]− divx P [u])(t, x, s)η′′ε,c(s) ds

∣∣∣∣ ≤ ∫ R(t)

0
|divx P [uk]− divx P [u]|(t, x, s)η′′ε,c(s) ds,

which goes to zero thanks to the assumptions on divx P .
After this limit k → 0 we get that u satisfies the regularized entropy inequality∫ T

0

∫
Rn

{
ηε,c(u)∂tϕ+ P [u]ε(t, x, u, c) · ∇xϕ− ϕ

∫ u

c
divx P [u](t, x, s)η′′ε,c(s) ds

}
dx dt ≥ 0.

Finally, letting ε→ 0 we deduce that u satisfies the entropy inequality with Kruzkov entropies,
and then that u solves the conservation law and is continuous in time, exactly as for the previous
theorem.
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3.2 Uniqueness

The uniqueness theorem for a fixed flux we would obtain from our Theorem 2.6 is weaker than
[Kru70] because we require the solutions to be BV in addition to L∞.

On the other hand, Theorem 2.6 gives an interesting uniqueness result for the problem

∂tu(t, x) + divx
(
P [u](t, x, u(t, x))

)
= 0

where the flux P [u](t, x, s) depends non-locally on the whole solution itself, for instance P [u](t, x, s) =
v(s)(W ∗ u)(t, x). The uniqueness in this setting seems to require the BV regularity.

We provide two statements of the uniqueness, one dealing with solutions compactly supported
in space and one with more general solutions. The reason for this distinction is that in the
compact case it is sufficient to verify the assumptions with a single weight function Θ which does
not need to satisfy the slope condition (2.5), whereas in the general case we need to work with a
suitable family of weight functions.

Theorem 3.3 (Uniqueness with non-local fluxes, compact solutions). Let

P : S
(
[0, T ),Rn

)
→ {p : [0, T )× Rn × [0,∞)→ R}

u 7→ P [u]

be such that P [u] is a flux satisfying (A1)–(A4) of Assumptions 2.1.
Suppose that u, v ∈ S

(
[0, T ),Rn

)
are compactly supported entropy solutions of the Cauchy

problems
∂tu+ divx

(
P [u](t, x, u)

)
= 0, ∂tv + divx

(
P [v](t, x, v)

)
= 0

with the same compactly supported initial datum u0 ∈ L∞loc(Rn) ∩BVloc(Rn).
Assume that there is Θ ∈ C1([0, T )×Rn; [0,∞)

)
compactly supported in space with Θ = 1 on

a neighborhood of supp(u) ∪ supp(v) and a non-negative function h ∈ L1
loc
(
[0, T )

)
such that∫

Rn
‖div2(P [u]−P [v])(t, x, · )‖L∞([0,R(t)])Θ(t, x) dx ≤ h(t)

∫
Rn
|u(t, x)−v(t, x)|Θ(t, x) dx, (3.8a)

‖Lip3
(
(P [u]− P [v])(t, · )

)
Θ(t, · )‖L∞(Rn) ≤ h(t)

∫
Rn
|u(t, x)− v(t, x)|Θ(t, x) dx (3.8b)

hold for a.e. t ∈ [0, T ).
Then u = v.

Proof. Recalling Remark 2.8 which allows us to omit (A5), we can apply Proposition 2.9 with
t1 = 0, Φ = 0 and f(t) = [3 Lip3(div2 P [u](t)) + Lip3(div2 P [v](t))] + [1 + 2B(T )]h(t), thus
obtaining∫

Rn
|u(t2, x)− v(t2, x)| dx =

∫
Rn
|u(t2, x)− v(t2, x)|Θ(t2, x) dx

≤
(∫

Rn
|u(0, x)− v(0, x)|Θ(0, x) dx

)
exp

(∫ t2

0
f(t) dt

)
= 0.

Theorem 3.4 (Uniqueness with non-local fluxes, non-compact solutions). Let

P : S
(
[0, T ),Rn

)
→ {p : [0, T )× Rn × [0,∞)→ R}

u 7→ P [u]

be such that P [u] is a flux satisfying (A1)–(A4) of Assumptions 2.1.
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Suppose that u, v ∈ S
(
[0, T ),Rn

)
are entropy solutions of the Cauchy problems

∂tu+ divx
(
P [u](t, x, u)

)
= 0, ∂tv + divx

(
P [v](t, x, v)

)
= 0

with the same initial datum u0 ∈ L∞loc(Rn) ∩BVloc(Rn).
Let F ⊆ C1([0, T )×Rn; [0,∞)

)
be a class of test functions compactly supported in space with

the properties

∀(t, x) ∈ [0, T )× Rn ∀Θ ∈ F : ∂tΘ(t, x) ≤ −Lip3
(
P [v](t)

)
|∇xΘ(t, x)|,

∀(t, x) ∈ [0, T )× Rn ∃Θ ∈ F : Θ(t, x) > 0.

Assume that for every Θ ∈ F there is a non-negative function h ∈ L1
loc
(
[0, T )

)
such that∫

Rn
‖div2(P [u]−P [v])(t, x, · )‖L∞([0,R(t)])Θ(t, x) dx ≤ h(t)

∫
Rn
|u(t, x)−v(t, x)|Θ(t, x) dx, (3.9a)

‖Lip3
(
(P [u]− P [v])(t, · )

)
Θ(t, · )‖L∞(Rn) ≤ h(t)

∫
Rn
|u(t, x)− v(t, x)|Θ(t, x) dx, (3.9b)

hold for a.e. t ∈ [0, T ).
Then u = v.

Proof. Given Θ ∈ F and the corresponding function h satisfying (3.9), recalling Remark 2.8
which allows us to omit (A5), we can apply Proposition 2.9 with t1 = 0, Φ = 0 and f(t) =
[3 Lip3(div2 P [u](t)) + Lip3(div2 P [v](t))] + [1 + 2B(T )]h(t), thus obtaining∫

Rn
|u(t2, x)− v(t2, x)|Θ(t2, x) dx ≤

(∫
Rn
|u(0, x)− v(0, x)|Θ(0, x) dx

)
exp

(∫ t2

0
f(t) dt

)
= 0,

hence u(t2, x) = v(t2, x) where Θ(t2, x) > 0. Letting Θ vary in F we get the desired conclusion.

3.3 Rate of convergence of various approximating schemes

In this subsection we study the convergence properties of some numerical schemes for the solution
of scalar conservation laws. We consider schemes producing approximate solutions which are
quasi-entropic and continuous in time, so that Definition 2.3 is satisfied.

Among them, we devote more details to a recent particle method [RS21] applied to a non-local
scalar conservation law used to model for instance traffic with congestion. In particular, we
are able to derive an explicit rate of convergence (the convergence in the cited article was by
compactness) and show that it is optimal (Remark 3.8). Furthermore, the Cauchy property
shown in Theorem 3.6 provides an independent way to prove the existence which bypasses the
compactness argument used in [RS21].

In addition to this, we treat the classical vanishing viscosity and front tracking methods
and recover the well known convergence rates. Since our stability theorem holds also for fluxes
depending on (t, x), the convergence rate of the vanishing viscosity method is derived in this
more general setting.

We avoid the discussion of finite difference/volume/elements such as Godunov or higher order
ones since they are described by processes discrete in time. They could be studied within our
framework once one constructs an interpolation in time which produces an error which is L1 in
time, as the right hand side of (2.2). Another alternative is to generalize our stability result
Theorem 2.6 in order to treat errors which are bounded by arbitrary measures in time instead
of L 1, this however causes drastic changes to both the statement and its proof because the
quasi-solutions are not necessarily continuous in time and one can no longer de-double the time
variables. We leave this research direction for future work.
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3.3.1 Particle method

Following the series of articles [DR15; DFR19; DS20] and concurrently with [FT22], in [RS21]
the authors study the scalar conservation law

∂tρ(t, x) + divx
[
ρ(t, x)v

(
ρ(t, x)

)(
V (t, x)− (∂xW ∗ ρ)(t, x)

)]
= 0, (3.10)

where the convolution ∂xW ∗ ρ is in space only, and construct a particle based numerical scheme
that produces piecewise constant approximations of the solution.

For N ∈ N fixed, the piecewise constant approximation ρ̄N is defined as

ρ̄N (t, x) =
N∑
i=1

ρNi (t)1(xi−1(t),xi(t))(x), ρNi (t) = 1
N(xi(t)− xi−1(t)) ,

where the particles X = (x0, . . . , xN ) solve the ODE

x′i(t) = vi(t)Ūi(t),
Ūi(t) = V

(
t, xi(t)

)
− (∂xW ∗ ρ̄)

(
t, xi(t)

)
= V

(
t, xi(t)

)
−

N∑
j=0

(ρj+1(t)− ρj(t))W
(
t, xi(t)− xj(t)

)
,

vi(t) =
{
v
(
ρi(t)

)
, if Ūi(t) < 0,

v
(
ρi+1(t)

)
, if Ūi(t) ≥ 0.

(ODEI)

In [RS21, Theorem 1.3] it is shown that the ρ̄N converge in L1
loc
(
[0,∞)× R

)
to the entropy

solution ρ of (3.10). The proof relies on a compactness argument that does not allow to establish
the rate of convergence. The stability result Theorem 2.6 gives an alternative way to deduce the
convergence ρ̄N → ρ together with an explicit rate.

According to [RS21, Proposition 2.6, Proposition 2.10, Corollary 2.12] these functions belong
to C

(
[0,∞);L1(R)

)
∩ L∞loc

(
[0,∞);L∞(R)

)
∩ L∞loc

(
[0,∞);BV (R)

)
uniformly in N . In [RS21,

Proposition 2.13] it is shown that the piecewise constant densities satisfy an approximate entropy
inequality. However, the notion adopted there differs from Definition 2.3 because the error term
is not written in integral form. Therefore we cannot directly use [RS21, (2.14)] in order to apply
our stability result and must instead slightly modify the way we estimate the error terms in its
proof. The statement we can prove is the following.

Proposition 3.5 (Modified version of [RS21, Proposition 2.13]). For N ∈ N let ρ̄N be the
piecewise constant density associated to the particles XN = (xi)Ni=0 solving (ODEI).

Then ρ̄N is a (µN0 , µN1 )-quasi-entropy solution of (3.10) in the sense of Definition 2.3 with
µN0,t = 0 and

µN1,t =
N∑
i=1

m
(
ρNi (t)

)∣∣∣Ū(t, x)− Ū
(
t, xi−1(t)

)∣∣∣1[xi−1(t),xi(t)](x)L 1

+
N∑
i=1

ρNi (t)
[∣∣x′i(t)− x′i−1(t)

∣∣+ ∣∣∣x′i−1(t)− v
(
ρNi (t)

)
Ū
(
t, xi−1(t)

)∣∣∣]1[xi−1(t),xi(t)](x)L 1

enjoying the estimate of the total mass

µN1,t(R) ≤ 1
N
H(t)

for some increasing function H : [0,∞)→ [0,∞) independent of N .
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Proof. In the proof of [RS21, Proposition 2.13] it is shown that∫ ∞
0

∫
R

{
|ρ̄N − c|∂tϕ+ sign(ρ̄N − c)

[(
m(ρ̄N )−m(c)

)
ŪN∂xϕ−m(c)∂xŪNϕ

]}
dx dt

can be written as I + II + III where I, II ≥ 0 and5

III =
N∑
i=1

∫ T

0
sign(ρi − c)

{
m(ρi)

[
ϕ(xi)

(
Ū(xi)− Ū(xi−1)

)
−
∫ xi

xi−1
∂xŪϕ dx

]

+ ρi
[
(x′i − x′i−1)(ϕ(x̄i)− ϕ(xi))−

(
ϕ(xi)− ϕ(xi−1)

)(
x′i−1 − v(ρi)Ū(xi−1)

)]}
dt,

with x̄i ∈ (xi−1, xi) such that ϕ(x̄i) = −
∫ xi
xi−1

ϕ(x) dx.
The first line of III is the integral in time of

N∑
i=1

sign(ρi − c)m(ρi)
[
ϕ(xi)

(
Ū(xi)− Ū(xi−1)

)
−
∫ xi

xi−1
∂xŪϕdx

]

= −
N∑
i=1

sign(ρi − c)m(ρi)
∫ xi

xi−1
∂xŪ(x)

(
ϕ(x)− ϕ(xi)

)
dx

=
N∑
i=1

sign(ρi − c)m(ρi)
∫ xi

xi−1
Ū(x)∂xϕ(x) dx+

N∑
i=1

sign(ρi − c)m(ρi)Ū(xi−1)
(
ϕ(xi−1)− ϕ(xi)

)
=

N∑
i=1

sign(ρi − c)m(ρi)
∫ xi

xi−1
[Ū(x)− Ū(xi−1)]∂xϕ(x) dx

≥ −
N∑
i=1

m(ρi)
∫ xi

xi−1
|Ū(x)− Ū(xi−1)||∂xϕ(x)|dx;

whereas the second line of III is the integral in time of

N∑
i=1

sign(ρi − c)ρi
[
(x′i − x′i−1)

(
−
∫ xi

xi−1
ϕ(x) dx− ϕ(xi)

)
−
(
ϕ(xi)− ϕ(xi−1)

)(
x′i−1 − v(ρi)Ū(xi−1)

)]

= −
N∑
i=1

sign(ρi − c)ρi
[
x′i − x′i−1
xi − xi−1

∫ xi

xi−1

∫ xi

x
∂yϕ(y) dy dx+

(
x′i−1 − v(ρi)Ū(xi−1)

) ∫ xi

xi−1
∂yϕ(y) dy

]

= −
N∑
i=1

sign(ρi − c)ρi
[
(x′i − x′i−1)

∫ xi

xi−1

y − xi−1
xi − xi−1

∂yϕ(y) dy +
(
x′i−1 − v(ρi)Ū(xi−1)

) ∫ xi

xi−1
∂yϕ(y) dy

]

≥ −
N∑
i=1

ρi
[∣∣x′i − x′i−1

∣∣+ ∣∣∣x′i−1 − v(ρi)Ū(xi−1)
∣∣∣] ∫ xi

xi−1
|∂yϕ(y)| dy

Combining these last two computations we deduce that

III ≥ −
∫ T

0

∫
R
|∂xϕ| dµN1,t(x) dt

where µN1,t is the one claimed in the statement of the proposition.
5For simplicity of notation we write ρi instead of ρNi .
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Making use of some of the computations performed in [RS21] to bound III, the total mass of
µN1,t can be estimated by

µN1,t(R) ≤
N∑
i=1

ρiv(ρi)(xi − xi−1)
∫ xi

xi−1
|∂xŪ |dx+

N∑
i=1

ρi
[∣∣x′i − x′i−1

∣∣+ |x′i−1 − v(ρi)Ū(xi−1)|
]

(xi − xi−1)

≤ 1
N
‖v‖∞

∫ S(t)

−S(t)
|∂xŪ |dx+ 1

N

N∑
i=1

(∣∣x′i − x′i−1
∣∣+ |vi−1 − v(ρi)||Ū(xi−1)|

)
≤ 1
N
‖v‖∞F (t)

[
1 +G

(
S(t)

)
+G

(
2S(t)

)]
+ 1
N

[
2‖v‖∞F (t)G

(
2S(t)

)
[1 +R(t)]S(t) + 8F (t)G

(
R(t)

)
G
(
2S(t)

)
B(t)

]
,

in terms of the functions F,G,B,R, S defined in [RS21], which are independent of N .

Once we have established that the piecewise constant approximations ρ̄N are quasi-entropy
solutions, we can proceed to show the converge of ρ̄N to the exact entropy solution of (3.10).
With respect to [RS21, Assumptions 1.4], we need to require better regularity of the velocity
fields V and W so that the resulting flux satisfies (A5) of Assumptions 2.1.

Theorem 3.6 (Cauchy property and rate of convergence). Let v, V,W, ρ0 be as in [RS21,
Theorem 1.3]. Assume in addition that V,W ∈ L1

loc
(
[0,∞);W 2,∞

loc (R)
)
. For N ∈ N let ρ̄N be the

piecewise constant density associated to the particles solving (ODEI), with initial datum ρ̄N0 as
in [RS21, Theorem 1.3].

Then (ρ̄N )N∈N is a Cauchy sequence in L∞
(
[0, T ];L1(R)

)
for every T > 0. More precisely,

for M,N ∈ N large enough so that
(

1
M + 1

N

)
H(T ) < 1, we have

‖ρ̄N (t)− ρ̄M (t)‖L1(R) ≤ K(t)‖ρ̄N0 − ρ̄M0 ‖L1(R) + L(t)
( 1
M

+ 1
N

)1/2
(3.11)

for some increasing functions K,L : [0,∞)→ [0,∞) independent of M,N .
Moreover, the rate of convergence of ρ̄N to the unique entropy solution ρ is

‖ρ̄N (t)− ρ(t)‖L1(R) ≤ K(t)‖ρ̄N0 − ρ0‖L1(R) + L(t)√
N
. (3.12)

Proof. Under the assumptions [RS21, Assumptions 1.4], we have that the flux

JN (t, x, s) = m(s)
(
V (t, x)− (∂xW ∗ ρ̄N )(t, x)

)
satisfies (A1)–(A4) of Assumptions 2.1. Under the additional assumptions on V and W we have
that JN satisfies (A5) as well because

∂2
xJ

N (t, x, s) = m(s)[∂2
xV (t, x) + (∂2

xW ∗Dρ̄N )(t, x)] ∈ L1
loc
(
[0,∞);L∞loc(R)

)
and

∂x∂sJ
N (t, x, s) = m′(s)[∂xV (t, x) + (∂2

xW ∗ ρ̄N )(t, x)] ∈ L1
loc
(
[0,∞);L∞loc(R)

)
.

As in [RS21, Proposition 2.5], let S(t) be such that supp
(
ρ̄N (t)

)
⊆ [−S(t), S(t)]. Taking
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Θ ≤ 1 as in Remark 2.7 with supp Θ(t, · ) ⊂ [−2S(t), 2S(t)], we have∫
R
‖div2(JN − JM )(t, x, · )‖L∞([0,R(t)])Θ(t, x) dx

=
∫
R

∥∥∥∂x[m( · )
(
∂xW ∗ (ρ̄N − ρ̄M )

)
(t, x)

]∥∥∥
L∞([0,R(t)])

Θ(t, x) dx

≤ ‖m‖L∞([0,R(t)])

∫ 2S(t)

−2S(t)

∣∣∣(Dx∂xW ∗ (ρ̄N − ρ̄M )
)
(t, x)

∣∣∣ dx
≤ ‖m‖L∞([0,R(t)])

∫ 3S(t)

−3S(t)
d|Dx∂xW (t)|

∫ S(t)

−S(t)
|ρ̄N (t, x)− ρ̄M (t, x)|dx

≤ ‖m‖L∞([0,R(t)])F (t)[1 + 6G(3S(t))S(t)]
∫
R
|ρ̄N (t, x)− ρ̄M (t, x)|Θ(t, x) dx dt

and

‖Lip3
(
(JN − JM )(t, · )

)
Θ(t, · )‖L∞(R)

≤ Lip(m)‖
(
∂xW ∗ (ρ̄N − ρ̄M )

)
(t, · )Θ(t, · )‖L∞([−2S(t),2S(t)])

≤ Lip(m)‖
(
∂xW ∗ (ρ̄N − ρ̄M )

)
(t, · )‖L∞([−2S(t),2S(t)])

≤ Lip(m)‖∂xW (t, · )‖L∞([−3S(t),3S(t)])‖ρ̄N (t, · )− ρ̄M (t, · )‖L1([−S(t),S(t)])

≤ Lip(m)F (t)G(3S(t))
∫
R
|ρ̄N (t, x)− ρ̄M (t, x)|Θ(t, x) dx.

Therefore P = JM , Q = JN , u = ρ̄M , v = ρ̄N satisfy (2.8) with

h(t) = ‖m‖L∞([0,R(t)])F (t)[1 + 6G(3S(t))S(t)] + Lip(m)F (t)G(3S(t)).

Therefore, taking into account [RS21, Proposition 2.6, Proposition 2.10] and Proposition 3.5, we
can apply Proposition 2.9 with t1 = 0 and t2 = t. As a consequence we obtain the estimate∫

R
|ρ̄N (t, x)− ρ̄M (t, x)| dx ≤

(
‖ρ̄N0 − ρ̄M0 ‖L1(R) + Φ(0, t)

)
exp

(∫ t

0
f(s) ds

)
. (3.13)

Noticing that under the assumption on M,N we have

min
{
M(0, t)1/2, 1

}
= max

{
M(0, t)1/2,M(0, t)

}
= M(0, t)1/2 ≤ H(t)1/2

( 1
M

+ 1
N

)1/2
,

the right hand side of (3.13) can be bounded by

exp
(∫ t

0
f(s) ds

){
‖ρ̄N0 − ρ̄M0 ‖L1(R) +

[1
2‖∇2Θ‖∞ + C(0, t) + cn

]
H(t)1/2

( 1
M

+ 1
N

)1/2
}
.

The proof is concluded by estimating f(s) and C(0, t) in terms of the functions F,G,R, S,B,m
from [RS21] independently of M,N , in a similar way as we already did for H and h.

The second part of the claim, the rate of convergence of ρ̄N (t)→ ρ(t) in L1(R), is obtained
either by sending M →∞ or by replicating the above Grönwall argument to the pair (ρ̄N , ρ).

Remark 3.7. Notice that the existence of ρ, apart from being already ensured by [RS21, Theo-
rem 1.3], can now be deduced as a consequence of the Cauchy estimate (3.11), which implies the
compactness in C

(
[0, T ];L1(R)

)
for every T > 0.

36



Remark 3.8. Notice that any initial datum ρ0 as in [RS21, Theorem 1.3] can be approximated
by ρ̄N0 as in [RS21, Lemma 1.2] with the additional property that ‖ρ̄N0 − ρ0‖L1(R) ≤ CN−1/2,
therefore (3.12) as a whole is of the order N−1/2. Moreover, in general the initial datum ρ0
cannot be approximated in L1(R) by some ρ̄N0 better than N−1/2, thus this rate is sharp. A
precise formulation of these claims is given in the next lemma.

Lemma 3.9. Given a fixed ρ0 ∈P(R) ∩ L∞(R) ∩BV (R) with the bounds

ρ0 ≤ R0, supp(ρ0) ⊆ [−S0, S0], TV(ρ0) ≤ B0,

for every N ∈ N there is a family of sorted particles XN = (x0, . . . , xN ) such that the correspond-
ing piecewise constant ρ̄N satisfies

ρ̄N ≤ R0, supp(ρ̄N ) ⊆ [−S0, S0], TV(ρ̄N ) ≤ B0, ‖ρ̄N − ρ0‖L1(R) ≤
2S0 +B0√

2N
.

On the other hand, we have the following counterexample. For every positive sequence
(aN )N∈N such that aN = o(1/

√
N) there exists ρ0 ∈P(R) ∩ L∞(R) ∩BV (R) with

ρ0 ≤ 1, supp(ρ0) ⊆ [−1, 1], TV(ρ0) ≤ 3,

such that for every sequence of sorted particles XN = (x0, . . . , xN ) the corresponding piecewise
constant ρ̄N satisfy

lim sup
N→∞

‖ρ̄N − ρ0‖L1(R)
aN

=∞.

Proof. Define x0 and xN be such that [x0, xN ] is the smallest interval containing supp(ρ0), i.e. it is
its convex hull, and then consider intermediate particles xi for i = 1, . . . , N − 1 with the property
that ρ0([xi−1, xi]) = 1/N . The estimates on the L∞ norm, the support and the total variation of
ρ̄N are established in [RS21, Lemma 1.2]. Letting li = xi − xi−1 and vi = TV(xi−1,xi)(ρ0), we
have

‖ρ̄N − ρ0‖L1([xi−1,xi]) ≤ li

(
ess sup
(xi−1,xi)

ρ0 − ess inf
(xi−1,xi)

ρ0

)
≤ livi,

‖ρ̄N − ρ0‖L1([xi−1,xi]) ≤ ‖ρ̄
N‖L1([xi−1,xi]) + ‖ρ0‖L1([xi−1,xi]) ≤

2
N
.

Therefore

‖ρ̄N − ρ0‖L1(R) ≤
N∑
i=1
‖ρ̄N − ρ0‖L1([xi−1,xi]) ≤

N∑
i=1

min
{
livi,

2
N

}

≤
N∑
i=1

√
2
N

√
livi ≤

√
2
N

N∑
i=1

li + vi
2 ≤ 2S0 +B0√

2N
.

Let us now move on to the counterexample. Given N,CN ∈ N+ define the building block

βN (x) =
CN∑
k=0

1√
N

1[2k/
√
N,(2k+1)/

√
N ](x).

We have

βN ≤ 1, supp(βN ) ⊆
[
0, 2CN + 1√

N

]
, TV(βN ) ≤ 2CN + 1√

N
, ‖βN‖L1(R) = CN + 1

N
.

Let XN = (x0, . . . , xN ) be an arbitrary family of sorted particles and let ρ̄N be its associated
piecewise constant density. Given k = 0, . . . , CN − 1, we distinguish two cases:
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• ρ̄N (x) < 1/(2
√
N) for some x ∈ [(2k + 1)/

√
N, (2k + 2)/

√
N ] \XN : letting i be the index

such that x ∈ (xi−1, xi), we must have xi − xi−1 > 2/
√
N , therefore the set

{
y : ρ̄N (y) < 1/(2

√
N)
}
∩
([2k + 1/2√

N
,
2k + 1√

N

]
∪
[2k + 2√

N
,
2k + 5/2√

N

])
has measure at least 1/(2

√
N), thus

‖ρ̄N − βN‖L1([(2k+1/2)/
√
N,(2k+5/2)/

√
N ]) ≥ 1/(2

√
N)2 = 1/(4N);

• ρ̄N (x) ≥ 1/(2
√
N) for every x ∈ [(2k + 1)/

√
N, (2k + 2)/

√
N ]: since βN = 0 in the interval

we have

‖ρ̄N − βN‖L1([(2k+1)/
√
N,(2k+2)/

√
N ]) ≥ 1/(2

√
N) · 1/

√
N = 1/(2N).

Summing over k and noting that the intervals over which we have the L1 estimate are essentially
disjoint we get

‖ρ̄N − βN‖L1([0,(2CN+1)/
√
N ]) ≥

CN−1∑
k=0

1
4N = CN

4N .

By assumption, aNN �
√
N . Choose CN such that aNN � CN �

√
N , for instance

CN = a
1/2
N N3/4. The counterexample will be given by the probability

ρ0(x) =
∞∑
j=1

βNj (x− bNj ) +

1−
∞∑
j=1

CNj + 1
Nj

1[−1,0](x),

where

bNj =
j−1∑
h=1

2CNh + 1√
Nh

is chosen so that the supports of the building blocks are disjoint and Nj is a sequence growing
sufficiently fast so that

∞∑
j=1

2CNj + 1√
Nj

≤ 1,
∞∑
j=1

2
CNj + 1√

Nj
≤ 1,

∞∑
j=1

CNj + 1
Nj

≤ 1.

Indeed ρ0 ≤ 1,

supp(ρ0) ⊆

−1,
∞∑
j=1

2CNj + 1√
Nj

 ⊆ [−1, 1],

TV(ρ0) ≤ 2 +
∞∑
j=1

TV(βNj ) ≤ 2 +
∞∑
j=1

2
CNj + 1√

Nj
≤ 3,

and for any family of sorted particles XNj = (x0, . . . , xNj ) we have

‖ρ̄Nj − ρ0‖L1(R)
aNj

≥
‖ρ̄Nj − βNj ( · − bNj )‖L1([bNj ,bNj+(2CNj+1)/

√
Nj ])

aNj
≥

CNj
4NjaNj

→∞.
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3.3.2 Vanishing viscosity

The vanishing viscosity method is a way to construct solutions to the scalar conservation law

∂tu+ divx
(
P (t, x, u)

)
= 0 (3.14)

as the limit for ε→ 0 of functions uε that solve

∂tuε + divx
(
P (t, x, uε)

)
= ε∆uε. (3.15)

In this section we demonstrate how to apply Theorem 2.6 to get the rate of convergence of
solutions uε to u. Theorem 3.11 does not address the issue of the existence of the solutions uε for
the equation (3.15). In this regard, see for instance [LSU68] which provides assumptions under
which it is guaranteed.

In [Kru70, Theorem 5] the author uses the vanishing viscosity method to show the existence
of solutions for the problem (3.14); however, he does not provide a rate of convergence of the
approximating sequence uε because he relies on a compactness argument. In [Kuz76, Theorem 3]
the author shows the rate of convergence ∼ ε1/2 of the vanishing viscosity method for BV
solutions in the particular case of a flux P (t, x, u) = P (u) independent of space and time. In this
section we extend its result to the general case.

The following proposition shows how the approximating viscous solutions of (3.15) fall in
this framework and can be interpreted as quasi-entropy solutions of (3.14). This will be used in
Theorem 3.11 to deduce the rate of convergence.

Proposition 3.10. Given P satisfying Assumptions 2.1, let

uε ∈ C
(
[0, T );L1(Rn)

)
∩ L∞loc

(
[0, T );BV (Rn)

)
∩ L∞loc

(
(0, T );H1(Rn)

)
be a solution of (3.15). Then uε is a (µε0, µε1)-quasi-entropy solution of (3.14) in the sense of
Definition 2.3 with

µε0,t = 0, µε1,t = ε|∇uε(t, · )|L n.

Proof. Fix η ∈ C2(R) convex. Letting

Pη(t, x, u) =
∫ u

0
∂3P (t, x, s)η′(s) ds,

by the chain rule [DL03, Theorem 1.5] we have the identity

divx
(
P (t, x, uε(t, x))

)
η′(uε(t, x))

= div2 P (t, x, uε(t, x))η′(uε(t, x)) + ∂3P (t, x, uε(t, x)) · ∇xuε(t, x)η′(uε(t, x))
= div2 P (t, x, uε(t, x))η′(uε(t, x)) + ∂3Pη(t, x, uε(t, x)) · ∇xuε(t, x)
= divx

(
Pη(t, x, uε(t, x))

)
+ [div2 P (t, x, uε(t, x))η′(uε(t, x))− div2 Pη(t, x, uε(t, x))].

Testing the left hand side of the equation (3.15) satisfied by uε with η′(uε)ϕ and using the
previous identity we get∫ T

0

∫
Rn

[∂tuε + divx
(
P (t, x, uε)

)
]η′(uε)ϕdx dt

= −
∫ T

0

∫
Rn

{
η(uε)∂tϕ+ Pη(t, x, uε) · ∇ϕ− [div2 P (t, x, uε)η′(uε)− div2 Pη(t, x, uε)]ϕ

}
dx dt,

39



whereas for the right hand side we can estimate

ε

∫ T

0

∫
Rn

∆uεη′(uε)ϕdx dt = −ε
∫ T

0

∫
Rn
|∇uε|2η′′(uε)ϕdx dt− ε

∫ T

0

∫
Rn
∇uε · ∇ϕη′(uε) dx dt

≤ ε‖η′‖∞
∫ T

0

∫
Rn
|∇ϕ||∇uε|dx dt.

Given a fixed constant c ∈ R, in the limit as η(u) approximates ηc(u) = |u − c|, we have
that η′(u) approximates η′c(u) = sign(u − c), the flux Pη(t, x, u) approximates Pηc(t, x, u) =
sign(u− c)[P (t, x, u)− P (t, x, c)] and [div2 P (t, x, u)η′(u)− div2 Pη(t, x, u)] approximates

div2 P (t, x, u) sign(u− c)− div2 Pηc(t, x, u)
= div2 P (t, x, u) sign(u− c)− sign(u− c) div2[P (t, x, u)− P (t, x, c)] = sign(u− c)P (t, x, c).

Combining the previous computations we deduce∫ T

0

∫
Rn
{|uε − c|∂tϕ+ sign(uε − c)[P (t, x, uε)− P (t, x, c)] · ∇ϕ− div2 P (t, x, c)ϕ} dx dt

≥ −ε
∫ T

0

∫
Rn
|∇ϕ||∇uε|dx dt,

which is the definition of quasi-entropy solution with µ0 = 0 and µ1,t = ε|∇uε(t, · )|L n.

Theorem 3.11 (Rate of convergence of vanishing viscosity method). Given P satisfying As-
sumptions 2.1, for every ε > 0 let

uε ∈ C
(
[0, T );L1(Rn)

)
∩ L∞loc

(
[0, T );L∞(Rn)

)
∩ L∞loc

(
[0, T );BV (Rn)

)
∩ L∞loc

(
(0, T );H1(Rn)

)
be a solution of (3.15) with initial datum u0 ∈ L1(Rn) ∩ L∞(Rn) ∩BV (Rn). Assume that uε are
equi-continuous in C

(
[0, T );L1(Rn)

)
and equi-bounded in L∞loc

(
[0, T );L∞(Rn)

)
and L∞loc

(
[0, T );BV (Rn)

)
.

Then for ε→ 0 we have that uε converges in C
(
[0, T );L1(Rn)

)
to

u ∈ C
(
[0, T );L1(Rn)

)
∩ L∞loc

(
[0, T );L∞(Rn)

)
∩ L∞loc

(
[0, T );BV (Rn)

)
which is the unique entropy solution of (3.14) in the sense of Definition 2.2 with initial datum
u0.

Given a weight function Θ ∈ C1([0, T )× Rn; [0,∞)
)
compactly supported in space for every

time and satisfying the property6

∂tΘ(t, x) ≤ −Lip3
(
P (t)

)
|∇xΘ(t, x)|, ∀(t, x) ∈ [0, T )× Rn,

we have the convergence rate (for ε < 1)∫
Rn
|uε(t, x)− u(t, x)|Θ(t, x) dx ≤ ε1/2L(t), ∀t ∈ [0, T ),

for some increasing function L : [0, T )→ [0,∞) independent of ε.

Proof. The claimed convergence uε → u is ensured by the assumptions on uε and Ascoli-Arzelà
Theorem. Passing to the limit the quasi-entropy inequality (2.2) obtains (2.1), which says that u
is an entropy solution of (3.14).

6Recall that the notation Lip3
(
P (t)

)
depends implicitly on both Ωt =

(
supp Θ(t, · )

)
1
and the L∞ norm of u.
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LetB : [0, T )→ [0,∞) be a non-decreasing function providing the bounds TV
(
uε(t, · )

)
,TV

(
u(t, · )

)
≤

B(t). Recalling Proposition 3.10 we have

M(t1, t2) = ε

∫ t2

t1

∫
Ωt
|∇uε(t, x)|dx dt ≤ ε

∫ t2

t1
B(t) dt ≤ εB(t2)t2.

Applying Theorem 2.6 with P = Q, ν0 = ν1 = 0 we get[∫
Rn
|uε(t, x)− u(t, x)|Θ(t, x) dx

]t2
t1

≤
∫ t2

t1
4 Lip3(div2 P (t))

∫
Rn
|u(t, x)− v(t, x)|Θ(t, x) dx dt+ 1

2‖∇2Θ‖∞M(t1, t2)

+ C(t1, t2) min
{
M(t1, t2)1/2, 1

}
+ cn‖Θ‖∞max

{
M(t1, t2)1/2,M(t1, t2)

}
,

where

C(t1, t2) = ‖Θ‖∞B(t2)
(

2 +
∫ t2

t1
[4 Lip3(div2 P (t)) + 2 Lip2(∂3P (t))] dt

)
+ ‖Θ‖L∞t L1

x

∫ t2

t1
Lip2(div2 P (t)) dt.

Letting t1 = 0, t2 = t, calling w(t) =
∫
Rn |uε(t, x)− u(t, x)|Θ(t, x) dx and using the fact that uε

and u have the same initial datum u0 we deduce

w(t) ≤
∫ t

0
4 Lip3(div2 P (s))w(s) ds+ εB(t)t12‖∇2Θ‖∞

+ C(0, t) min
{
ε1/2B(t)1/2t1/2, 1

}
+ cn‖Θ‖∞max

{
ε1/2B(t)1/2t1/2, εB(t)t

}
.

For ε < 1 Grönwall Theorem implies then

w(t) ≤ ε1/2
(1

2‖∇2Θ‖∞ + C(0, t) + cn‖Θ‖∞
) [
B(t)t+B(t)1/2t1/2

]
exp

(∫ t

0
4 Lip3(div2 P (s)) ds

)
.

Similarly to what we did in Theorem 3.6, a variation of our presented argument where we
apply the stability theorem to uε1 and uε2 directly implies that (uεn)n∈N is a Cauchy sequence
in L∞loc

(
[0, T ), L1

loc(Rn)
)
whenever εn → 0. This is an alternative way to deduce the existence of

a solution for the limiting problem (3.14) which does not rely on the equi-continuity and the
compactness arguments.

3.3.3 Front tracking

Given f ∈ C2(R), consider the flux P (t, x, u) = f(u). The front tracking is a scheme introduced
by [Daf72; HHH88] to solve the conservation law

∂tu+ ∂xf(u) = 0. (3.16)

For ν ∈ N, define the piecewise linear function fν : R→ R which interpolates f on the grid 2−νZ.
The approximating functions uν considered by the front tracking are the entropy solutions of the
conservation law associated to the modified flux

∂tuν + ∂xfν(uν) = 0. (3.17)
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The initial datum uν,0 used in combination with (3.17) is a discretization of the initial datum u0
of (3.16) taking values only in 2−νZ.

Specializing Theorem 2.6 to the case of a problem independent of space and time, we are
able to recover the well-known convergence rate [HHH88].

Instead of considering uν as a (µ0, µ1)-quasi-entropy solution of the same problem (3.16) to
which u is an exact entropy solution with µ0 = 0 and µ1 = 2‖f − fν‖L∞(R)L , a better stability
estimate is obtained exploiting the fact that uν is an exact entropy solution of the nearby problem
(3.17). The net result is that the estimate becomes independent of the measure of the support of
the weight function Θ.

Theorem 3.12 (Rate of convergence of front tracking method). Let f ∈ C2(R) and u0 ∈
L∞(R) ∩ BV (R) with ‖u0‖L∞ ≤ R0 and TV(u0) ≤ B0. For ν ∈ N, let fν : R → R be
the piecewise linear function which interpolates f on the grid 2−νZ. Let uν be the entropy
solution of the problem (3.17) with an initial datum such that Im(uν,0) ⊆ 2−νZ, ‖uν,0‖L∞ ≤ R0,
TV(uν,0) ≤ B0 and uν,0 → u0 in L1(R). Then

‖uν(t)− u(t)‖L1(R) ≤ ‖uν,0 − u0‖L1(R) + 2−νB0‖f‖C2([−R0,R0])t,

where u is the unique entropy solution of (3.16) with initial datum u0.

Proof. By construction we have Lip[−R0,R0](fν − f) ≤ ‖f‖C2([−R0,R0])2−ν−1.
In [Daf16, Section 14.1] it is shown that ‖uν(t)‖L∞ ≤ ‖uν,0‖L∞ ≤ R0 and TV(uν(t)) ≤

TV(uν,0) ≤ B0 for every t ∈ [0,∞).
Taking Θ ∈ C1([0,∞)× R; [0, 1]

)
compactly supported in space and satisfying ∂tΘ(t, x) ≤

−Lip(f)|∂xΘ(t, x)|, we can apply Theorem 2.6 with Remark 2.8. Observing that the terms
div2 P,div2Q = 0 because the fluxes are independent of space, we deduce[∫

R
|uν(t, x)− u(t, x)|Θ(t, x) dx

]t2
t1

≤ 2B0

∫ t2

t1
Lip[−R0,R0](fν − f)‖Θ(t, · )‖∞ dt

≤ 2−νB0‖f‖C2([−R0,R0])(t2 − t1).

Taking the limit as Θ approximates the constant function identically equal to 1 we get the
thesis.
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