I'-limit of 2D traveling waves in the
FitzHugh-Nagumo system
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Abstract: Traveling waves are commonly observed in evolution systems. Such
waves are robust in the sense that they are stable and exist for a wide range of
parameters. Through I'-convergence analysis, a well-known tool for studying con-
centration phenomena, a geometric variational problem representing the I'-limit of
a FitzHugh-Nagumo system in two dimensional domains is studied; this yields both
the wave speed and the structure of a minimizer. In particular we demonstrate
that 1D traveling fronts can become unstable when subject to 2D perturbation.
In suitable parameter regimes multiple traveling waves, including non-planar struc-
tures, can co-exist. Stationary waves have been studied using geometric variational
problems; ours represent the first attempt to treat non-stationary wave problems in
multi-dimensional domains.
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1 Introduction

Patterns and waves are fundamental subjects that have been extensively studied [3, 15,
16, 20, 22, 30, 34, 37, 45, 46] in evolution systems. For reaction-diffusion systems, regularly
recurring patterns are frequently found when physical parameters lie in the vicinity of Turing’s
instability regime [42]. On the other hand recent advances [8, 9, 10, 11, 17, 18, 19, 21, 24, 35,
43, 44] demonstrate that certain patterns and waves may possess localized spatial or temporal
structures. Such localized structures, far from trivial steady states, are robust and exist for a
wide range of parameters.
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An interesting reaction-diffusion model is (a special form of) the FitzHugh-Nagumo system

up = Au+ L(fe(u) — eov),
(1.1)
v =Av4+u—yv,

see [26] and [33], where

1 e

fl) = €€ BAE-1),  Be=g -5 (1.2
and d, a, v, 0, € are all positive parameters. Originally derived as an excitable system for modeling
nerve impulse propagation (when the term Aw is absent), it is now of great interest to the
scientific community as the breeding ground for pattern formation and wave propagation. The
physical parameter eax measures the drive towards a non-trivial state while ec and 1/v are
stabilizing inhibition mechanisms that favor the opposite. Such a competition leads to interesting
dynamics and the emergence of patterns. The parameter d, small in many applications, makes
the patterns more pronounced as it results in sharp spatial transition zones.

The existence of a singular limit as ¢ — 0 will ease qualitative understanding of the self-
organization mechanisms responsible for these pattern formations. The notion of I'-convergence
[7] is particularly useful in this regard: when d = €2 singular limits of stationary solutions of
(1.1) are governed by a geometric variational problem [1, 13, 14] associated with the action
functional

In(Q) = P(O; D)~ a0 + 7 /Q/\/D(Q)dx, (1.3)

where D C RY is a given domain. For any subset Q C D, || and P(£; D) denote the volume
of Q2 and its perimeter in D, respectively. Let yq denote the characteristic function of 2. The
integral term in (1.3) represents a nonlocal interaction energy and Np(Q) is the solution of the
modified Helmholtz equation

—AND() +yNp(©) = xa

subject to prescribed boundary condition on dD. The stable and unstable ball shaped stationary
sets in RY have been completely classified in [13, 14]. Similar results for periodic lamellar
structures in square tori have also been obtained in [1, 2]. Another model that gives rise
to nonlocal geometric variational problems in the literature is the Ohta-Kawasaki model, see
for example [3, 23, 36] and the references therein, for which a I'-convergence analysis yields a
limiting problem that involves the Laplace operator. However, while a (length) scaling argument
is sometimes possible for the Laplace, it never works for the Helmholtz operator which appears
in the model considered here.

The search for the I'-limit of temporal patterns of reaction-diffusion systems is still in its
infancy; the only known result seems to be the 1D case studied in [12]. Traveling waves, the
most known temporal patterns, are ubiquitous in physical and biological systems. These waves
appear stationary when viewed by an observer moving with the wave speed. (There is no known
traveling waves in the Ohta-Kawasaki model). A traveling front connects 2 distinct stationary
solutions while a pulse originates and ends at the same state. Front propagation is found in
diverse fields such as phase transition, combustion and population dynamics. Pulses typically



result from a delicate balance between gain and loss in reaction kinetics free of external input.
Precise conditions on the parameters have been given in [12] for the existence of 1D traveling
fronts and pulses of the I'-limit formulation. The focus of this paper is the I'-limit of traveling
waves in a 2D domain given by an infinite rectangular strip with width 7" under a periodicity
condition in the vertical direction. In particular, under the right parameter regime, we demon-
strate that 1D traveling fronts are stable for small 7" and unstable for large T" when subject to
2D perturbations.

Since throughout the paper we will work in a periodic setting, it is convenient to introduce
the flat torus TZ defined as the set of equivalence classes of points in R? under the equivalence
relation

(r,y)~(2',y') if and only if 2’ ==z, v =y + hT for some h€Z

and endowed with the metric and the differential structure inherited from R?. However, for the
ease of presentation we sometimes identify the flat torus ’H‘% with the infinite strip

sbzmx(—TT}

-, = 1.4
27217 (14)

and denote an element of ’]T%, which is an equivalence class, by z = (z,y), where (z,y) is the
unique representative of the class such that (z,y) € Qp.
If 1 < p < oo we will denote by LE(T%) the set of functions u € L, .(T%) such that

lJwll Lz 12) = (sz e®|w|P dz) VP < 50 and by H!(T%) the space of functions u € L?(T%) with

derivatives in L2(T%) equipped with the norm lull g1 (72 = \/HuHLQ(T2 + HDuHL2 (12) . Clearly,

L%(T2) and H!(T2) are Hilbert spaces with their inner products defined in the obvious way.
The spaces of functions C*(T%) and C**(T2), where k > 0 is an integer and « € (0, 1], are also
defined as usual. The set of functions in C’k(']T%) with compact support in T% will be denoted
by C¢(T7).

In deploying the variational approach to the existence of traveling waves of (1.1) which are
periodic in the y direction, we assume the ansatz (u(c(z — ct),y),v(c(x — ct),y)) proposed in
[28]. In turn this leads to proving the existence of a weak solution (u,v) € H}(T%) x H(T%) of
the elliptic system

dcugy + duyy + dc®ug + fo(u) — eov =0, (1.5)
s —I-Uyy—l—c%x —yw4+u=0, (1.6)
for some wave speed ¢ to be determined. To this aim we set F,(w fo fe(&) d€ so that
1 1 3 2
F.=Fy+acG, where Fy(u)i= qu*(u—1)7, am:VA%—%) (1.7)

In this decomposition, Fy is a balanced bistable nonlinearity in the sense that Fy(0) = Fy(1) =

min Fy = 0; G(0) = 0 is a local maximum and G(1) = —1/6v/2 is a local minimum As for their

sum, when e is small F¢(0) = 0 is a local minimum, F¢(1) = —1_122B€ = 6\/»046 is the global

minimum, while F¢(f.) > 0 is the unique local maximum.
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For any u € L2(T%) let v = L.u be the unique solution in H}(T%) of (1.6). Note that v is
the minimizer in H!(T2) of the functional

2,2 42 2
v em(cvx+—y+£fvu)dz. (1.8)
=2 T2

It is easy to check that L. : L%(T2) — H}(T%) is a self-adjoint operator with respect to the
inner product of L(T%). Note that if E C T2 is measurable then 0 < L.xg < 1/7. Indeed, if it
were otherwise, the function ve,: = (Lexg V 0) A %, which belongs also to H}(T2), would lower
the functional (1.8), thus contradicting the minimality of L.xg.

Given c,e,d > 0, let Z. 4 : H}(T%) — R be defined as

dc? d
Tede(w) = / e’ <Cw§ + fwyZ + Fe(w) + anﬁcw> dz . (1.9)
2\ 2 2 2

A standard variational argument shows that (u,v,c) solves (1.5)-(1.6) provided u is a critical
point of Z, 4. and v = L.u. The last term in the integral above is referred to as the nonlocal
energy. A simple calculation shows that [ e*w Lowdz > 0 for all w € L2(T%).

T

A function in H}(T%) is not necessarily bounded on T2. To seck a (bounded) traveling
wave solution when ¢ < 1, we will choose M > 2 such that

(M — 1)(M — 2)? >o—]\j, (1.10)

an assumption that will be used in Section 5, and restrict Z. 4 to the domain

viefwenim): [

Note that the constraint |jul| r2(r2) = 1 imposed in Y eliminates a continuum of minimizers due
to translation in the z-direction. Assume that for some fixed o, «, v, € and d, one can find a
suitable value of ¢ and a function v € Y such that Z.4.(u) = infy Z. 4 = 0. Then one can
show that the Lagrange multiplier associated with this integral constraint is zero. At this point
one would like to prove that ||u||r < M so that the minimizer u is unconstrained and satisfies
the Euler-Lagrange equations (1.5)-(1.6). In the 1D case (with € not necessarily small), such
an argument has been successfully carried out in [10]. Unfortunately a generalization to the
multi-dimensional case seems to be technically challenging.

eCw?dz =1, —]T]Swgﬂ}. (1.11)

2
T

In this paper we present an alternative path to tackle this problem. We introduce a geo-
metric variational functional 7. which turns out to be in a proper sense the I'-limit of Z. 4. as
€ — 0. Under suitable restrictions on the parameters, we prove that there exist a speed ¢y > 0
and a minimizer set Ey such that J.,(Ep) = inf J,= 0. From this, using the I'-convergence
result, we are able to deduce the existence of a traveling wave solution to (1.5)-(1.6) for small €.
We explain this procedure in details below.



Given ¢, e > 0, we define

z 6wx2 ewy2 Fo(w) o ‘
Jee(w) = /’ﬂ‘?e { 5 + 9e2 + c +O¢G(w)+2w£cw}dz7 ifwey,

0, if we L2(T2)\Y.

(1.12)
€ 7. 4c(w) whenever w € Y and d = €?/c*. By the change of variables
= w(x,y/c), we have

Observe that J.(w) =
g = cy, setting w(x,y)

2 F 1 5% Fy(w
/ ex{ewaregijr O(w)}dZ:/ em{de' + O(w)}dacd?].
T2, 2 2c € cJrz, 2 €

If Q C R™ is a bounded open set with Lipschitz boundary, it is well known, see [32], that the
functionals )
R
Q 2 €

I-converge in L'(Q) as € — 0 to the perimeter of a limit set £ C €. A similar result holds
for the functionals in (1.12). However in our case some technical difficulties arise due to the
non-compactness of 'JI‘% and to the presence of the weight, while the nonlocal term is easy to
handle. In order to give the representation formula for the I'-limit of (1.12), we set

Je(E) = lip (Ey; T%) — £04 e*XE dz—i—;/ e“xXELexE dz, (1.13)

% %

where F C 'JI‘% is a measurable set,
E.:={(z,9) € T?: (z,7/c) € E} (1.14)

and P.(Ec; T?;) denotes the the weighted perimeter of E. in T2y, see the definition in (2.4).
Note that if £ C ']I‘% is a smooth open set then

Pe(E; T%) = / e dH',
OF

where OF is the boundary of E as a subset of ']I‘2T and H' stands for the 1-dimensional Hausdorff
measure.
Recall also that the function L.y g in (1.13) is the unique solution in H}(T%) of the equation

—Pugy — Uyy — vy +yv = xE. (1.15)
Roughly speaking, it turns out that the I'-limit of the functionals J.. is J.. To be precise, let

us define J; : L2(T%) — (—o0, +0o0] as

(1.16)

T (w) = Je(E) if w= xp for a measurable set E C T2 with |E|. = 1,
400 otherwise,
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where |E|. stands for the weighted volume of E, defined as

|E|e ::/ e*xEdz.
2

TT
Then, we have that J} = F—lir% Je,e in LZ(T2.), whenever ¢, — ¢ > 0 as € — 0, see Theorem 4.2.
€E—

We now state our main results, starting with the existence of traveling waves solutions
for the limit problem and for the FitzHugh-Nagumo equation. To this aim we introduce the
following conditions on the parameters «, o,y and c:

(TW1) 3\?" Sa—1>0, (1.17)
(TW2)  inf{J.(E): ECT% and |El.=1}=0. (1.18)

Theorem 1.1 (Traveling waves of the limiting problem).
(i) Let ¢,y >0, 0 > 0 and a € R. The minimum problem

min{J.(E): ECT% and |E|. =1} (1.19)

admits at least a solution E. Any such minimizer is a connected open set with boundary of class
C38 for all 0 < B < 1, such that E C {(z,y) € TZ : © < M} for some M > 0 depending only
on c,o,v and T'.

Moreover, if (TW1) holds there exists co > 0 such that (TW2) holds. In this case any
absolute minimizer Ey of Je, ts an unconstrained critical point of J.,. Therefore the Lagrange
multiplier associated with the volume constraint |E|. = 1 is zero and so cq is the wave speed
associated with the limiting wave profile Ey.

(ii) Let E be an (unconstrained) critical point of J,. of class C?. Then it satisfies the following
FEuler-Lagrange equation

2 2 in 0 2
Vi o LY2__ csin ol —Y2a=0 on 0B, (1.20)
12 (2sin® 0 4 cos? 0)3/2 * 12 | /cos2 9 + 2 sin 0 12

Here k is the signed curvature of OF (i.e. k = div;v where v is the exterior unit normal) and
0 is the signed angle made by the tangent vector with the positive x-axis.

In the following, whenever E is a minimizer of problem (1.19) we shall say that E is a constrained
minimizer of J.. Note that formula (1.20) has a simpler expression if one replaces the curvature
of OF with that of OE,, where E, is the set defined in (1.14), see (6.20).

As a consequence of the previous result we are able to recover the existence of traveling
waves for the FitzHugh-Nagumo equations provided e is sufficiently small .

Theorem 1.2 (Traveling waves for FitzHugh-Nagumo equations).

1. Assume condition (TW1) holds. Then there exists e; > 0 with the property that for any
0 < € < €1, there is ce > 0 such that, on setting de = 62/63 and ve = L ue, there
exists a traveling wave solution (uc,ve,ce) of (1.5)-(1.6) with [luc|lr2(q,) = 1. Moreover
Te.d.(uc) =0 and uc is an unconstrained minimizer of L, 4. .



2. If cg > 0 is an isolated root of the function ¢ — miny J. and Ey is a strict minimizer
of Jeo, then there exist a sequence €, — 01 and a corresponding sequence (up,vp,cp)
of traveling wave solutions of (1.5)-(1.6) such that ¢, — co, up — xg, in L2(T?) and
Vp — LCOXED m H;(T%)

The proof of the above Theorem is based on the existence of a speed ¢y for which condition
(TW2) holds, on the continuity of the function ¢ — infy J. and on the already mentioned
I"-convergence result Theorem 4.2.

We now turn to the issue of the stability of traveling waves. Given a smooth vector field
X 'IFQT — ’]1‘2T with compact support, we consider the associated flow ® : TQT X (—00,00) > ’]I‘ZT
defined as the solution of the following equation

—(2,t) = X(®(2, 1)) , (1.21)

The global existence and uniqueness of ® are a consequence of the fact that the vector field X is
smooth and bounded. Note that ®(-,¢) is a smooth diffeomorphism from T% to T% for all t. Let
E C T2 be an open set of class C? and set F; := ®(-,¢)(E). The first and the second variations
of J. at E with respect to the vector field X are defined, respectively, as
d 9 d?
8\76(E)[X] = @jc(Et)} s 0 jc(E)[X] = @
t=0
The first and second variation formulae will be proved in Section 6. The first variation is given
in (6.22). Setting the first variation to zero for all X leads to the Euler-Lagrange equation. The
second variation formula is more involved and requires some additional notation. To this aim,
let £ and X be as above and denote by v and v, the exterior unit normals to the sets £ and
E,, respectively. Then, define a vector field X, : T%. — T2, as follows

Xe(z,y) = (Xeq, Xe2) == (Xi(z,y/c), cXa(z,y/c)) for (z,y) € TET

and set Z. := DX/ [X.] = 25:1 XcjDjX.. Finally, denote by D, and div, the tangential
gradient and divergence, respectively, on dF, and by G the Green’s function associated with the
operator L., so that if u € L2(T%) then Lou (2) = [12 G(z,w) u(w) dw for all z € T7.

T

jc(Et)‘

t=0

Theorem 1.3 (Second variation formula).
Let E C T% be an open set of class C? and let X : T2 — T% be a smooth field with compact
support. Setting v = L.xE, we have

V2

O’ J.(B)[X] ~Tos e" (X4 + DXo1 - Xe + 2Xadive, X, + dive, Ze + |(Dr, Xe) - vel?) dH!
¢ JoE.
+ 0'/ d?-[i,/ e*G(z,w) X (2) - v(2) X(w) - vp(w)dH] (1.22)
oF oF
: T 1 \/i : x 1
+o div(e®vX) X -vdH — —« div(e"X) X -vdH" .
oF 12 Jok

In case X is weighted volume preserving, so that div (e*X) =0 on TI‘ZT, the last integral on the
right hand side is zero.
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We use this theorem to investigate the stability of a planar traveling front for the limit problem.
In the 1D counterpart of our problem the necessary and sufficient conditions for the existence
of a traveling front turns out to be the same as condition (TW1), see [12]. In this case the wave
speed cy is uniquely given by
a—1)y

2h*
il where hy, =1 — (

cf=———,
! 1 —h2 320

From [12, Lemma 6.2] we know that

>0. (1.23)

(A1)* a > >a—1>0

320
Y

is a necessary and sufficient condition for the planar front (—oo,0) to be the unique global
minimizer of the 1D counterpart of problem (1.19) with inf J., = 0; therefore it is locally stable
when subject to 1D perturbations.

At the same time the condition

320
Y

is necessary and sufficient for a global 1D minimizer to be a planar pulse for some unique wave
speed ¢, see [12, Lemma 7.3 and Remark 7.9]. Since c; and ¢, satisfy (6.4) and (7.4) of [12],
respectively, one easily shows that ¢, < ¢y whenever both planar waves coexist in the same
parameter regimes.

A planar traveling wave which happens to be a global minimizer among 1D configurations
needs to be a connected interval, see [12, Lemma 5.1]. Therefore from the above discussion it is
clear that in the parameter range not considered in (A1)* and (A2), that is when 0 < @ <
a — 1, no such 1D traveling wave exists.

We now go back to our 2D analysis. Conditions (A1)* and (A2) will continue to play
crucial roles for the local stability of the planar front. If a traveling wave E is merely a critical
point of 7. (and therefore satisfies the Euler-Lagrange equation) but not a global minimizer,
there is a possibility that it is composed of disconnected sets. However the necessary condition
Je(E) = 0 is always satisfied; this follows from setting X = e; := (1,0) in 0 = 0J.(F)[X]| =
# (e T(E))] g = Te(E).

Theorem 1.4 (Stability of I'-limit traveling planar front).
Suppose conditions (TW1) and (TW2) hold and W is a traveling planar front with speed cj.

>a>a—1>0

(42)

1. Let condition (A1)* hold. Then the front W is a global minimizer among all 1D configu-
rations, and is locally stable with respect to 2D perturbations for all strip width T.

2. Suppose condition (A2) holds and hy = 3 (\/1 + A - 1). Then
(a) If 1 < o < 3/2, the front W is stable for all T.
(b) If o« > 3/2 and
3V 20 - a—1
gl 1—hy’

(A2a)



there exists a unique Ty > 0 such that whenever T > Ty, the front W is unstable, and for
T < Ty, the front is stable.
(c) If &« > 3/2 and

3v/20 a—1

A2b <
(A2b) e

then W is stable for all T.

In Theorem 1.1 we have established a traveling wave of the limiting problem in 'JI'ZT; this
wave may be planar. With further restriction on the parameters, there are multiple co-existing
planar and non-planar traveling waves.

Theorem 1.5. Fiz v > 0 and let condition (A2) hold with @ = A« for some A > 1. Then
there exists Ag > 1 such that for every A > Ay, there are two positive constants Ty = Tp(A)
and o, = a(A) with the following property. Whenever the torus size T > Ty and o > o, there
co-exist at least 3 traveling waves: a non-planar global minimizer with speed c.«, a planar pulse
with speed ¢, and a planar front with speed cy satisfying the inequalities c, < ¢, < cj.

The layout of this paper is as follows. In Section 2 we introduce the space BVE(TQT) of
functions of finite weighted total variation in T#. These functions will be used in the proof of
the I'-convergence worked out in Theorem 4.2. The section contains also the definition and the
main properties of sets of finite weighted perimeter in ’]I‘%. In Section 3 we prove the existence
of a minimizer for problem (1.19). We will also show that any minimizer is connected and
bounded from the right in the z-direction. Finally we will prove that condition (TW1) yields
the existence of a speed ¢y for which (TW2) holds. These results will establish Statement (i) of
Theorem 1.1. Section 4 starts with a compactness property for a sequence of functions up € Y
such that supy, Je, ¢, (up) < oo, with €, — 0+ and ¢;, — ¢ > 0. This is the key ingredient in
the proof of the I'-convergence of the functionals (1.13). The characterization of the I'-limit is
then used in Section 5 to deduce the existence and stability of traveling waves for the FitzHugh-
Nagumo system stated in Theorem 1.2. In Section 6 we calculate the first and the second
variations of the geometric functional 7. subject to a smooth vector field. The former leads to
the Euler-Lagrange equation (Statement (ii) of Theorem 1.1), while the latter is the content of
Theorem 1.3. The second variation at a critical point of 7. will allow us in Section 7 to study the
stability and instability of a planar traveling front with respect to 2D perturbations. As stated
in Theorem 1.4, depending on the values of mutual relations among the parameters o, and o,
this wave is always stable when T is small, but may be unstable when T is large. In Section 8
we give a proof of Theorem 1.5 using energy comparison. Finally the Appendix contains the
proofs of some technical facts used in the paper, including a regularity result for minimizers of
the functional 7.

2 Periodic BV functions and sets of finite perimeter

Given u € L} (T2), we define the weighted total variation of u in T2 with respect to the
measure e*dz as
| Dul|e(T2) == sup{/ udiv(e®p)dz : ¢ € CHTH;R?), |¢| < 1} . (2.1)
%
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Note that if || Dul|(T%) < oo, for any bounded open set U C T? the total variation of u in U
| Dul|(U) = sup{/ udivpdz : ¢ € CHT%;R?), suppy C U, |¢| < 1}
U

is also finite. Therefore by the Riesz representation theorem there exist a Radon measure p in T,
and a py-measurable function o : T% — T2 with |o| = 1 p-a.e., such that for any ¢ € C1(T2;R?)

J

It follows from (2.2) that the measure odu coincides with the distributional derivative Du, which
is a vector-valued measure. In particular if u is C'(T%) then dp = |Du|dz and o = Du/|Dul.

We denote by BV,(T2) the space of the functions u € L.(T%) such that || Du|.(T%) < oo.
Then BV,(T%) is a Banach space when equipped with the norm

udivgodz:—/ p-odu. (2.2)
2

2
T TT

lull v, rz) = lull Ly(zzy + 1 Dulle(TF) -

Note that (2.2) implies that if u € BV,(T%) then for any ¢ € C}(T%;R?)

J

Observe also that if u : T2 — R is locally Lipschitz, from (2.1) we have immediately that

udiv(exgo)dz:—/ eCp-odu.
2 TQ
T T

| Du||(T%) = /2 e’|Du(z)| dz. (2.3)

T

The following lemma is a straightforward consequence of the definition (2.1) for weighted total
variation.

Lemma 2.1 (Lower semicontinuity of the total variation).
Let {uy} C L}, (T%). If up — ug in L}, (T%), then || Dug||c(T%) < li’gnianDukHe(T%).
— 00
The next lemma is proved as in the standard case of BV functions, see [25, Theorem 2,
p.172]. To this aim, given z € R? we will denote by B,(z) the open ball of radius r > 0 centered
at z. When z = 0 this ball will be simply denoted by B,..

Lemma 2.2 (Approximation by smooth functions).

Let u € BVE(T%). There exists a sequence uy € COO(’]I‘%) such that
(i) up — w in Lé(’]I‘QT),

(ii) | Dug|e(TF) — || Dulle(T7).

Proof. Throughout the proof of this lemma, in order to simplify the notation, given a function
v ’]T% — R, we will denote with the same symbol also its T-periodic extension to R2.

Let u € BV(T%). Fix a standard mollifier o > 0 with supp 0 = B1, [, 0dz = 1 and for
every ¢ > 0 and z € R? set p.(z) = E%g(g) and u, = o, * u. Then u. is a smooth T-periodic
function in the y-direction and u. — u in LL(T%.).
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To prove (ii), fix ¢ € C}(T%,R?) with |¢| < 1. By changing variable and then using Fubini’s
theorem, we get

/WT e (2)div(e®p(2)) dz = /QT dz /R2 0: (2 — w)u(w)div(e®o(2)) dw
= /R2 0:(v) dv /QT u(z — v)div(e®p(z)) dz.

Denoting by (v1,v2) the components of v and setting 2’ = (2/,4y’) = z — v, from the definition of
periodic weighted total variation in (2.1) we obtain

J

ue(z)div(e®p(z)) dz = / 0:(v) alv/Q ) w(2)div, (e¥ T (2 4 v)) d2’

2
T
:/ 0:(v)e™! dv/ u(2)divy (% (2 +v)) d2’

R2

2
TT

< HDu\e/ 0e(0)e¥ dv < €| Du].
B.

From this inequality, passing to the supremum with respect to ¢ in the left hand side, and
letting € — 0, we get

lim sup || Due|le < ||[Dulle -
e—0t

The conclusion then follows on combining this inequality with the one provided by Lemma 2.1.
O

Lemma 2.3. Let u € BV,(T2) and h € R. Then

(i) lu(- + her)ll pyrzy = e ™ lull prerz,) ;

(ii) | D(u(- + he1))lle(TF) = e[| Dull(T%) ;

(iii) ut and u~ are in BV.(T%) and ||Du*||.(T%) < || Dulc(T2) ;
() lullLycrzy < [[1Dulle(TF) ;

(v) There exists a constant C > 0 such that for all T >0

J

Proof. (i) and (ii) follow directly from the definitions.
In order to prove (iii)-(v) we assume that u is smooth. The general case will follow using
Lemmas 2.2 and 2.1. If u is smooth, from (2.3) we have

1
¢**u(z)? dz < Cmax{1, 75} (I Dulle(T3))".

2
T

HDuJ“H6 = / e®*|Du|dz < ||Dule -
TZN{u>0}

A similar estimate holds for v~ hence (iii) follows.
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To prove (iv), fix 6 > 0 and choose R > 0 such that 0 < fT%ﬂ{lfﬂl>R} e’luldz < 4. Let
1 € C*°(R) be such that ¥(x) = 1 on [-R, R], ¥(z) = 0 for |z] > R+ 2, 0 <t < 1 when
R <|z| < R+2 and [¢/| < 1. Integrating by parts, we have

|lullpr —d < / e“luly dz = —/ exw(x)iur dz —/ e*luly’ (z) dz
‘ 2 T T2,

T2 2 1{u0} |ul

< ||[Dulle +/ e“luldz < ||Dulle + 6 .
TZN{R<|z|<R+2}

Hence (iv) follows by letting § — 0.

In order to prove (v) we fix a function n € C*°(R) with compact support in (7,7,
0<n<1l,np=1in[-T/2,T/2], || < 3/T and, still denoting by u its T-periodic extension to
R2, set v(x,y) = u(z,y)n(y). Observe that e*v(z,y) € WHL(R?). Therefore from the Sobolev
inequality and (iv) we have

/ e* u(z)? dz < / e**v(2)* dz < C||D(e") |21 g2y
T2 R
2
1 2
< o(/R e*(|Duly + (0 + 1] |u|>dz> < Cmax{l, 75 HIDuly a3,
O

Let £ C ’JI‘QT be a measurable set. The weighted perimeter of E in ']I‘2T is defined by setting

P.(E;T3) = sup{/ xediv(e®p)dz : ¢ € CHT?R?), |p| < 1} : (2.4)
TQ

T

If P.(E;T2) < oo we say that E has finite weighted perimeter. In this case P.(E;T%) =
IDxElle(T7)-

Recall that if ' C R? is measurable and U C R? is an open set, the perimeter of F' in U is
defined as

P(F;U) = Sup{/ xrdivpdz: o € CHU;R?), |p| < 1} . (2.5)
U
The perimeter of F' in R? will be simply denoted by P(F).

Remark 2.4. Note that if E has finite weighted perimeter in T%, then its T -periodic extension
to R?, denoted by E, is a set of locally finite perimeter in R?, i.e., P(E;U) < oo for every
bounded open set U C R?.

We recall a few important facts from the theory of sets of (locally) finite perimeter. As a
reference, the reader may consult the books [4, 31]. We start with De Giorgi’s structure theorem,
see [4, Theorem 3.59] which in the 2-dimensional case reads as follows (recall that H! denotes
the 1-dimensional Hausdorff measure in R?).
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Theorem 2.5. Let F C R? be a set of locally finite perimeter. There exist a Borel set 0*F C OF
and a Borel measurable map vy : O*F — S! such that for any ¢ € C(R?;R?)

/ divpdz = / - -vpdH!. (2.6)
F O*F

The set O*F is a 1-rectifiable subset in R?, i.e., O*F coincides, up to a set of zero H' measure,
with an at most countable union of pairwise disjoint compact sets {K;}icr with K; C M;, where
each M; is a 1-dimensional manifold of class C*. Moreover if x € K; for some i € I, the unit
vector vp(x) is orthogonal to the tangent line to M; at x.

We refer to the set 9*F as the reduced boundary of F', while v is the generalized exterior
unit normal to F. In the following we will denote by 77 the unit vector field obtained by rotating
vr counterclockwise by 7/2. When F is an open set with a C! boundary, then 9*F = 0F and
vr is the usual exterior unit normal to OF while 7 is a unit tangent vector. Note also that from
the definition (2.5) and the generalized divergence formula (2.6), we have that for any open set
UCR?

P(F;U)=H"(0*"FNU).

Thanks to Remark 2.4 it is clear that De Giorgi’s structure theorem applies to a set F& C T% of
finite weighted perimeter with the obvious changes due to periodicity. From (2.6) we have

/ div(e®y) dz = / e - vp dH! for all p € C}(T%;R?).
E O E

Then, from the above formula, recalling the definition (2.4), we get

P (E;T3) = / et dH. (2.7)
O*E

It is well known that sets of locally finite perimeter can be approximated by smooth sets, see [4,

Theorem 3.42]. Here we need a weighted version of this approximation result.

Theorem 2.6. Let £ C ']I‘% be a set with finite weighted perimeter and volume. Then there exists
a sequence of smooth bounded open sets Ej, C T2 such that xg, — xg in LL(T%), |Exle = |E|e
and Pe(Ep; T%) — P(E; TZ).

The proof of this theorem requires some technical facts from geometric measure theory and
will be given in the Appendix. Next we recall a simple consequence of the area formula, see
[4, Theorem 2.91], that we will use later. Let £ C R? be a set of locally finite perimeter and
® : R? » R? a C! diffeomorphism. Then ®(E) is a set of locally finite perimeter and for any
Borel function g : R? — [0, 00)

/ o(w) dH* = / 9(®(2))| DB (2)7p(2)] dH! (2.8)
9*O(E) 9*E

where 7 is the unit tangent vector defined above. As an immediate consequence of this formula,
we have
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Corollary 2.7. Let E C ']I‘% be a set of finite weighted perimeter. Then ¢ — %PG(EC;’]T%T) 18
decreasing for ¢ > 0.

Proof. From (2.7), by applying (2.8) to the map ®(z,y) = (z,cy), we get, on setting the unit
tangent vector 7 = (71, 72),

1 1 |7}
“Pe(Ee; TZ) = / e’ dH! _/ e\ L 4 73 d! (2.9)
C C 8*F, * C

which is clearly a decreasing function in c. O
Note that (2.9) implies that

max{1, c}P.(E; T%) > Pe(Eg; ']TET) > min{1, ¢} P.(E; T%) . (2.10)

3 Existence of minimizers

We now prove that problem (1.19) has a solution. To this end we define the functional K.
setting for every measurable £ C ’]T%

2
Ke(E) = i776(Ec; T%) + U/ e*xE LcXE dz (3.1)
12¢ 2 Jr
and consider the following minimum problem
min{K.(F): E C T2 is measurable and |E|. = 1} (3.2)

which is equivalent to problem (1.19), since J.(E) and K.(F) differ by a constant if |E|. = 1.
Let |E|. = 1. Multiplying both sides of (1.15) by e*Lxg and integrating by parts, we get

1 1
1£exellrz < Zlxellz =~ (3.3)
gl gl

and

0 [ explowds < Ixeluz 1 Eoxel: <
T

T

==

The inequality (3.3) leads to the observation that
XE, — Xg in L} = Loxm, — Loxp in L2, (3.4)

Let W = {(z,y) € T2 : = < log1/T} be a front satisfying |W|. = 1. Using (2.9) and the
explicit calculation of £.xr made in [12, Section 5], a direct computation gives

ICC(W):‘/§ U(V02+47_C)§mwzz‘/§ g, (3.5)

7_‘_7
12 2y Ve + 4y

Note that the constant myy does not depend on T or c.

ﬁ?’y
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We recall a well known property of Hausdorff measures, see for instance [4, Proposition 2.49].
Let 7 denote the projection of R? onto a straight line L. Then for every Borel set S C R?

H(7(S)) < H(S). (3.6)
In the following we shall denote by 7, and 7, the projections on the x and y axis, respectively.

Lemma 3.1. Let E CC (0,00) x (=T/2,T/2) be a connected open set such that Pe(E;T2) < Cj.
Set m = inf 7,(E) and assume that OE N {x > m} is of class C*. Then

Co—m
Bl < =

(Pe(B;TH))?.

Proof. Set M = sup m;(E) and observe that (m, M| C m,(OE N {x > m}), since E is connected.
Therefore, by (3.6) and (2.7) we have

M—mﬁ?—ll(@Eﬂ{m>m})§/ e®dH' < P(E;T2) < Cp.
OEN{z>m}

Recall that by the isoperimetric inequality 47|E| < (P(E))?. Then the conclusion follows from
the previous estimate, since

eM

47

Co—m

47

M—2m) e

(PE)? < &

|El. < eM|E| < S =

(Pe(E;T7))* < (Pe(E;T7))*.

O

Lemma 3.2. Let Cy > 0. If E C T% is a measurable set such that |E|. < oo and P.(E;T%) <
Co. Then for all m > max{log %, 0}

eCo—m

/ e”dz < (P(E;T%))?. (3.7)
En{z>m}

™

Proof. Thanks to Theorem 2.6 it suffices to prove (3.7) when F is a smooth, bounded open set.
Take m > max{log %,O}. From (3.6) we have

H () (OE N {z > m}) < H'OEN {& > m}) < eimpe(E; T2) < T, (3.9)

where the last inequality follows from the choice of m. Therefore, there exists an interval
(to,t1) C (=T/2;T/2) such that EN({x > m} x (to,t1)) = (. By translating F in the y direction
if necessary, we may assume that E;; cC (0,00) x (=T7/2,T/2), where Ef = EN{x > m}. Let
{F;}ier be the connected components of E;} and for every i € I set m; = inf 7,(F;) > m > 0.
Observe that the sets F; satisfy the assumptions of Lemma 3.1. Therefore,

Co—m; Co—m

e e
|File <

< (Pe(F3;T7))* < (Pe(Fi; TT))? -

™
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From this inequality we have

/Em{wm}e dz =) |Fi < PP T < (D2 P E,TT) . (39)

el i€l i€l

eom

Observe now that from (2.7)

ZP (F3; TF) <Z/ e dH! S/ e“dr + e HY (EN{x=m}). (3.10)
icl icl 9EN{z>m}

Note that if (m,y) € E then there exists x > m such that (z,y) € 0E. Thus EN{x =m} C

my(OE N {xz > m}) and from (3.6) we have

E"HYEN{z=m}) < ™HYOEN {z >m}) < / e’ dx .
OEN{z>m}

From this inequality and (3.10) we then have

S P(FiTE) <2 / e du

icl OEN{z>m}
and the conclusion follows thanks to (3.9). O

Let us proceed to the proof of the existence of minimizers for problem (3.2).
Theorem 3.3. Let o > 0. Problem (3.2) admits always a minimizer.

Proof. Assume that {E}} C T is a minimizing sequence , i.e., a sequence such that |Ep|. = 1
for all h and K.(Ey,) — inf{K.(F) : |F|. = 1}. Since the sequence {P.((Ep)¢; T%-)} is bounded,
from (2.10) we infer that there exists Cp > 0 such that

Po(Ep;T2) < Cy  forall h.

From this inequality it follows that for all £ € N the sets Fj have equibounded perimeters in
Qr = T2N{|z| < k}. Thus, by a well known compactness result, see [4, Theorem 3.39], we get a
subsequence {E}, } and a measurable set G, C TZ such that XEy,, = XG, in LY(Q4). Therefore
a standard diagonalization argument yields that there exist a measurable set ' C ']I‘?p and a
subsequence Ej, such that xg, — xg in LZOC(T%) and a.e. in ’]I‘%.

We claim that xgp, — xg in LI(T%). Note that if this claim is true, we have |E|. = 1.

Moreover, since X(g, ), = XE. in Lé(']I‘ET), by the lower semicontinuity of the perimeter, see

Lemma 2.1, we have Pe(FEy; TET) < liminf, o0 Pe((En,)c; "JI‘CT) thus proving the existence of a
minimizer when o = 0.
When o > 0, observe that (3.4) yields that Lcxg, — Lexp in L?. In turn, this implies the
convergence of the nonlocal term and we conclude again that E is a minimizer of problem (3.2).
It remains to prove the claim. Take e € (0,1) and fix m > max{log %, log %} By Lemma 3.2

we have that for all r € N

- ™ em

Co—m
/ e dz < & i = < < Cke. (3.11)
Ey ﬂ{x>m}
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At the same time the Lt

loc
€ as well as m, such that

('IFQT) convergence of xg, yields that there exists r. € N, depending on

/ IXE,, — XE,, |dz <€ for all r,s > r..
TZ0{|z|<m}

Therefore when r,s > r, from this inequality and (3.11)

—m

IXEw, — XEn, lL1(r2) < 2T/

—00

exdm+/ e*IXE,, — XE,, |dz +2Ce
T70{|z|<m}
<2Te ™™ +e+42Ce < (2T + 1+ 2C)e.

This shows that the sequence x g, is a Cauchy sequence in Lé(TQT) This proves the claim, thus
concluding the proof. O

We will prove later, see Theorem 9.2 and Remark 9.3 that a minimizer of problem (3.2) is
an open set with boundary of class C3# for any 0 < 8 < 1.

Lemma 3.4. Let 0 > 0 and let E be a minimizer of (3.2). Then E is a connected, open set.

Proof. We argue by contradiction assuming that F is not connected. If this is the case, since
by Theorem 9.2 OF is of class C!, we have that E = Ey U E,, with Fy, Ey disjoint, nonempty,
open sets such that F; N Ey = (). Then, recalling that L. is self-adjoint,

Ke(E) = Ke(Er) + Ke(E2) + 0/2 e“xEy LeXB, dz . (3.12)
TT

Since |Ei|. = e™™ and |Es|. = e™"2 for some hy,hy > 0 satisfying e ™™ + e7"2 = 1, we have
|E; + hier]|e = 1 for i = 1,2. From the minimality of E it follows that

Ko(E) < Ko(E; + hiey) = MK (E;), i=1,2.

Inserting these inequalities in (3.12) and using that e™" +e~h2 =1,

Ke(E) > (e_h1 + e_hQ)ICC(E) + 0/2 e*xey LeXE, dz
I’]IT
which implies 0 > ng e*xEr, LcXE, dz. But this leads to a contradiction since E; has positive
T

measure and L.xg, > 0 in 'JI‘%, hence ng e*XEe, LcXE, dz > 0. This contradiction concludes the
T
proof. O

Proposition 3.5. Given ¢ > 0, there exists a constant M = M (¢, T,0,7) > 0 such that if E is
a minimizer of (3.2), then E C {(z,y) € T3 : @ < M}. Moreover My := supy.<; M(c,T,0,7)
is bounded for T > 0 fized.
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Proof. Let E C T% be a minimizer of (3.2). From (2.10) and (3.5) we have that
1
P.(E;T2) < max {1, f}Pe(EC; T2;) < 6v2max{c, 1}K.(W) < 6v2max{c, 1}my = Cj .
¢

Let m; = 1 + max{log %,0}. Then, (3.8) holds with m replaced by my. Therefore, arguing
as in the proof of Lemma 3.2, we may assume that, up to a vertical translation if needed,
En{z >mi} CcC Rx (=T/2,T/2). Since E is a connected open set, m,(FE N {x > my}) =
7z (Ee N {x >my}) is a bounded open interval. If this interval is empty, then we are done
choosing M = m;. Otherwise let us denote this interval by (a,b) with m; < a < b< + co. We
have

b—a=HM"((a,)) < Pe(Ew; Qer) < 6cV2myy < 00. (3.13)
Let us now fix m > m1, depending only on ¢ and 7', so that
Co—m
c Cg < 1.

Then from (3.7) we have that

/ e“dz <1
En{z>m}

which in particular yields m; < a < m. Therefore, from (3.13) we conclude that
b<m+6evV2my = M(c,T,0,7).

We now fix T'. Both Cp and my are clearly uniformly bounded when 0 < ¢ < 1, thus supg..<; M
is bounded as well. O

As observed at the beginning of this section, Theorem 3.3 shows that for any ¢ > 0 there
exists a minimizer E(c) of the volume constrained problem (1.19).

In the following we shall say that a set £ C T% of weighted finite perimeter is a traveling
wave of the limiting problem if it is a critical point of 7. for some ¢ > 0. In order to show that
such a traveling wave exists, it is enough to prove that there exists ¢y > 0 such that the set E(c)
is a critical point of the volume constrained problem (1.19) with J.,(E(co)) = 0, see Lemma 6.6.
As a reminder, we have already shown that 7., (E(co)) = 0 is a necessary condition for E(cg) be
a traveling wave, see the discussion just before Theorem 1.4.

The existence of a speed ¢y > 0 such that the minimum of the problem (1.19) is zero will
be proved under the assumptions that the parameters «, o and v satisfy condition (TW1) in
(1.17). To this aim we begin with some preliminary lemmas.

Lemma 3.6. Let |E|. = 1. For any T,y >0, Lcxp — 0 in L2(T%) and [ e“Xp Loxpdz — 0
T
as ¢ — 00.

Proof. Integrating the 1-dimensional Poincaré type inequality stated in [30, Corollary 4.2] we
have that for any function w € H}(T%)
1
/ eCw?dz < / Cwldz. (3.14)
4 Jr T

2 2
T T
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Let v = L.xg. From (1.15) we have

J

Combining this equation with (3.14) we immediately get that [lv[[z2 < 4/c2.  Consequently
0 < [r2 €"XE Lexpdz < ||v 2 < 4/c*. Hence, the result follows. O
T e

1 ¥ 1
x(, 2 2 2 _ T
%e (vz+—02vy+—02v )dz = 2 T2T6 vxgdz .

Lemma 3.7. Let a > 1. Then J.(E(c)) < 0 for ¢ sufficiently large.

Proof. Recall that P.(We;T%) = ¢, where W := {(z,y) € T2 : & < log1/T}. Thus, from
Lemma 3.6 if ¢ sufficiently large we have

12
V2

zﬁ(l—a)—|—0(1)<0.

Te(E(c)) < T (W) = V2 (ipe(wc; Qur) — a) + ‘;/W e Loxw dz

Next we study the behavior of J.(E(c)) as ¢ — 0. To this aim we first prove
1
Lemma 3.8. Let E(c) be a minimizer of (3.2). Then lim i(I)lf “P((E(c))e; T2p) > 1.
c— C

Proof. For ¢ > 0 set
B(c) := me (0 E(c)) = 0 (0 (E(c))e) -

Observe that B(c) is closed. Let {cx} C (0,1) be a sequence converging to 0 such that

o] N 2
timinf P (E(e))ei Tor) = Jim —Pe((B(cw))es Thr) (3.15)

From (2.10) and (3.5) we have that

V2 (B0):TH) < o Pu(Blen))oyi T ) < Koy (Blen)) < =
CL

V2 o
12 + 2 (3.16)
Thus the sets E(cg) have equibounded weighted perimeters P(E(ck); T2). Therefore, arguing
as in the proof of Theorem 3.3 we may conclude that there exists a measurable set Fy C ’]1‘%
such that, up to a (not relabelled subsequence), Xg(,) — X&, in L} (T2). Note also that by
Proposition 3.5 there exists M; > 0 such that E(cx) C {(z,y) € T% : x < M;}. Therefore we
may conclude that to xg() — Xg, in L{(T%) and thus |Egle = 1.

Let A < 0. Since by Theorem 9.2 9E(cy,) is of class C*, from (3.6), (2.7) and (3.16) we have

A (Ber) N {z > A}) < eAHY(O(E(cr))e, N{z > A}) < / e® dz
A(E(ck))e, N{a>A}

< Pe((Eck))ey: T2 1) < 6eivV2myy .
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Thus H'(B(ck) N{z > A}) — 0 as k — oo. By Lemma 3.4 the sets E(c;) are connected open
sets. Therefore the projection m,(E(ck)) is an open interval (ag, by), with by < Mj. Thus, up
to another not relabelled subsequence k, we may assume that ap — a¢ and by — by for some
—o0 < ag < by < M.

We claim that Eg = {(z,y) € T% : ap < = < bp}. In fact, observe that for every k

T T

(((ar, bi) N (A, M)\ Blex)) % (— 5 5) CE(ck) N{z > A} C {(z,y) € T2 : a < a < by}

Therefore, passing to the limit as k — oo and recalling that #'(B(cy) N {z > A}) — 0 we have
that for every A < 0, up to possibly removing from Ejy a set of Lebesgue measure zero, the
following inclusions hold

((ao, bo) N (A, My)) x (-%%) CEyn{z>A)yc{(z,y) €T2: ap<z < by}

Hence, the claim follows by letting A — —co. The claim leads immediately to the conclusion of
the proof since from (3.15) and (2.10) we have, by the lower semicontinuity of the perimeter,

limint 2P, (E(e))e: T2p) > lim inf Po(E(c): T2) > Po( Eo: T2)
c—0 ¢ k—o0

= T(e% + %) > T(ebo — ) = / e’xEp,dz=1.
T2

T

Next we analyze the nonlocal term. First we need the following lemma.

Lemma 3.9. Let G, be the fundamental solution of the 1D operator —02;—;
Then

(i) Ge — %(5 in distribution sense as ¢ — 0, where ¢ is the Dirac delta distribution;

(ii) Let v € H} (R) be the weak solution of the equation —c*v" —c*v'+~yv = xp, where F = [a,b].

Then v = G * xF and v(x) — %XF(.%) for all z € R\ {a,b} as ¢ — 0.

—02%—}—7 forec>0.

Proof. A simple computation shows that if ¢ > 0 the fundamental solution of the 1D operator

2 d? 2.d ;
—C w—c %"_’YIS

Ge(§) =

1 r1€ :
76\/me , if&>0.

Here r; < —1 < 0 < 7o are the roots of the quadratic equation c?r? 4 c?r — vy =0, i.e.,

1
r= 2—(—0:& V2 +4vy) .
c

By direct computation it can be readily checked that
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(a) ’y/ Ge(€) d§ =1 for all ¢ > 0;
R
(b) ’y/ e*G.(€) d¢ = 1 for all ¢ > 0;
R
(c) for any € > 0 we have Gc(§)dé — 0 asc— 0

|€]>e

(d) for any € > 0 we have G (€)dE — 0 as c— 0.
g1

Statements (a) and (¢) imply that yG. * ¢ — ¢ pointwise as ¢ — 0 for all ¢ € C.(R). From this
convergence, if v = G, * xr is the weak solution of the equation —c?v” — cv’ + yv = xr with
F = [a,b], we immediately get that for all x € R\ {a, b}

v(z) = (Ge * xr)() = ,1y<5 “xr)(x) = imm

as ¢ — 0. O

Lemma 3.10. Let E(c) be a minimizer of (3.2). Then lim inf/ e” XE(e) LeXr(e) dz = 1/7.
T

c—0 2
T

Proof. Let ¢, — 07 be a sequence such that

lim inf/]r e’ X]E(c) ﬁch(c) dz = lim e’ XE(ck) ECkXIE(ck) dz .

c—0 2 k—oo J2
T T

Arguing as in the proof of Lemma 3.8 we may assume that xg(,) — Xpg, in Li(T%), where

Ey = T2T N{ap < & < by} for some —oo < ap < by < +00. As the non-local energy is always

non-negative, it follows that [r. e*(XE(cr) = XEo) Lep,(XE(ey) — XEo) dz > 0 for all k. Combining
T

this inequality with the self-adjointness of the operators L. with respect to the weighted L?
inner product, we have

/11‘2 €"XE(ex) Lo XE(ey) 47 + /11‘2 e*XEy Loy XE, A2 > 2/1‘2 €" XE(ep) Lo XEo A2 - (3.17)

T T T

Note that the function L., x g, depends only on the x variable. On using Lemma 3.9 we have
1 o
L XEo = Gey * X(ao,bo) — ;XEO pointwise in T7 .

Using the dominated convergence theorem to pass to the limit in the second and third integral
in (3.17) we conclude that

: : x : x 1 x 1
lim mf/ €"XE(c) LeXE(e) d2 = lim € XE(c) LowXE(er) 47 = / e (xp, ) dz = — .
T2 k Y JT2 2

c—0 —00 JT2
T T T

We conclude this section with the following crucial
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Lemma 3.11. Suppose condition (TW1) holds, i.e., 3\?" > a—1>0. Then there exist co > 0
and a minimizer E(co) of (1.19) such that Je,(E(co)) = 0. In other words E(co) is a traveling
wave of the limiting problem with speed cg.

Proof. From Lemmas 3.8 and 3.10 we have

. (V2 o .
hrcrilonf Je(E(c)) = liminf (—73 ((E(¢))e; TET) - —a+ = [JTQT e"XE(c) LXE(e) dz)

>0 \12¢" ° 12 2

V2 o
>~ “(a—1)+ — . 1
> 12(a )+27>0 (3.18)

Therefore, the assumption (TW1) implies that the right hand side of this inequality is positive
for ¢ > 0 small. Then, recalling Lemma 3.7, the conclusion follows from the intermediate value
theorem and the continuity of the function ¢ — miny 7, on (0,+00), a property that will be
proved in Lemma 4.4 in the next section. O

Note that the assumption a > 1 is a necessary condition for Lemma 3.11 to hold.

Lemma 3.12. Suppose a < 1. Then for any ¢ > 0 and any minimizer E(c) of (1.19) one has
Je(E(c)) > 0.

Proof. Fix ¢ > 0. Recalling (2.9) and applying the divergence theorem to the smooth minimizer
E(c), one gets, denoting by v = (v1,v2) the exterior normal to JE(c),

V2

To(B(0) > L PA(EE) T) — Ve

/2
12

2ﬂ</ ex|72\d7-[1—a) Z\/i</ exygd’;'-ll—a>
1 OE(c) 1 OE(c)
V2
12

O

As we already mentioned in the Introduction, in [12] we proved that (Al)* and (A2), are
necessary and sufficient conditions for the existence and uniqueness of planar traveling front
and traveling pulse, respectively. Both (A1)* and (A2) imply (TW1). Hence in both cases
Lemma 3.11 ensures the existence in the 2-dimensional case of a traveling wave global minimizer
in 2D.

4 ['-convergence

Let us now define the function ¢(§) = f0£  2Fy(n) dn, where Fy is as in (1.7), which is
commonly used in the framework of phase transition problems, see for instance [29, 32]. Although
the situation considered in these papers is similar to ours, in dealing with traveling waves instead
of stationary solutions additional complications arise: an unbounded domain, a nonlocal term
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I

and the weight e”. Observe that ¢ is a strictly increasing function with ¢(0) = 0 and ¢(1) =
A direct calculation yields

3 2
3 2 X
o) = HCF+5)  ifo<E<t,
3 2
%<%_%+%) ife>1

Let M > 2 be the number appearing in the definition (1.11). Note that there exists ko > 0 such
that for all || < M
|6(6)] > kot® . (4.1)

Lemma 4.1 (Compactness and lower bound).
Let {e},{cn} C (0,00) be two sequences such that e, — 0, ¢, = ¢ > 0 and let {wy} C Y be
such that hm mf Jep.en(wp) < Co for some Cy > 0. Then there exists a measurable set E C ’]I‘%

such that, up to a not relabelled subsequence, wy, — Xg in Lz(']I‘QT) Moreover,

2 2

1 w w F

o) )Pe(EC;TET) < lim inf/ e’ (ehh“ + ok hy O(wh>> dz . (4.2)
c h—oo J12, 2 ¢ 2 €n

Proof. Throughout the proof of this lemma, in order to ease the presentation, we will denote
with the same symbol a function u : ']T2 — R and its T-periodic extension to R2.

From the definition of Y we have ||wp| e < M, hence lwnllp < Hwh||2/p ||whH(Lp;2)/p <

M@®=2/p for all p > 2. For every (z,y) € R? we set wy(x,y) = wy(x,y/cy). Note that

wy, € HL _(R?) and is ¢, T-periodic in y. Recalling the definition of Q7 in (1.4), and (1.7),
1
o o ) €| D(p(wp) |dz-/ T/ 2F(wp) 2whydz
Ch

w w? Fo(
< / e’ <eh 12”6 + = Eh 12Ly 4+ 20 (wn > dz (4.3)
T2 ; eh

< Jep e, (Wh) + a/ e*|G(wp)| dz
Qr

a /1 1
< Jo & (w —i—(/ e*|lw 3dz—|—/ e”|w 2dz>§C,
mh( h) \/§ 3 o ’ h‘ 9 O ’ h‘ 1

for some constant C depending only on «, Cy and M.

Since the functions ¢(wy,) are c,T-periodic in y, they are equibounded in W1t (By,) for all
integers k > 1. Therefore by the compactness theorem for W1 functions on bounded, smooth
domains and a standard diagonalization argument, we may find a (not relabeled) subsequence
¢(wp,) converging in LIOC(RQ) and a.e. to a function ®y € L}, (R?). We may also assume that
along the subsequence wy, there exists the limit

L = lim e®|D(¢p(wp))| dz < oo (4.4)

h—o0 QchT
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We claim that ®( is ¢T-periodic in y. Indeed using (4.4), for h large we have,
[¢(wWn(z,y)) — ¢(Wn(z,y + D)1 (0ur) = 9(Wn(z,y + enT)) — ¢(wWn(z,y + 1)l L1 (0ur)

1
< /QCT e’ dz/o ‘d% (d(@p(z,y +cT +0(cy, — c)T)) do

1
<Tlen—el [ dz [ 1D, (@) + T+ 0fer — T db
Qer 0
<2LT|cp—c| = 0.

Since ¢ is a strictly increasing function, setting wp := ¢~ 1(®g), we have that w;, — wp a.e. and
thus —M < wp < M a.e.. Setting wy(x,y) = wo(z,cy), wo is T-periodic in y and wy, — wp in
L} (R?) and a.e.. Observe that from (4.3) we have

loc

/ e’ Fo(wp) dz < eh{Jch@h(wh) + a/ e*|G(wp)] dz} < e,C .
Qr

Qr

An application of the Fatou’s lemma gives

h—o00

0< / e“Fo(wp) dz < liminf/ e“Fo(wp)dz =10,
QT QT

which forces Fy(wp) = 0 a.e.. In turn this implies that wg(z) € {0,1} for all z € R%. Therefore,
there exists a measurable set £ C R? such that wy = yg and wg = x E,- Note that E+Tes = E.

Let us now prove that wy, converge to xg in L2(Qr). To this end fix M > 0 large. We are
now going to estimate

/ e“widz = / e“wi dz + / e“wi dz.
Qrn{z>M} Qrn{z>M}n{|w,|<1/2} Qrn{z>M}n{|w,|>1/2}

The first integral on the right hand side is easily controlled as follows:

/ emw,% dz < C eng(wh) dz < C 6xF0(U)h) dz < Cgeh .
Qr{z>MIN{|w,|<1/2} Qrn{|wy|<1/2} Qr

To control the second integral on the right hand side we use Lemma 2.3 and (4.1):

1

/ eCwidz = — e Wy dz
Qrn{z>M¥n{|wy,|>1/2} Ch JQ., r0{z>M}N{|@n|>1/2}
1 ~
< e*|o(n] dz
ChR0 JQc, rn{z>M}N{|@k|>1/2}

o )
P —
— o(1/2)cnko Jo,, rofa>Min{i@>1/2}

< C’eM/ X p(wp,)? dz
QchTﬁ{.’L'>M}

. N ,
< O M (ID(@) 130, )" < Cae™

e (in)? dz
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for some constant C'3 independent of h. Summing the above estimates, we obtain
/ ezw,% dz < Caep, + CgefM .
QTQ{$>M}

We can now conclude the proof of the L2 convergence. Indeed, for any h, k we have

/ e®|wy, — wy|? dz
Qr

§/ e$\wh—wk\2dz+/ e$|wh—wk|2dz—{—/ e®|lwy, — wy|? dz
QTO{:BS—M} QTO{—MS.TSM} QTﬂ{:DZM}

<4MZ2eMT 4 / e®|lwy, — wi|* dz + 20y (ep, + €;) + 4C3e™M
Qrn{—M<z<M}

Let § > 0. First, choose M > 0 so that both the first and the fourth term in the last line of
the above formula are smaller than §. Next pick an hg so that the third addend is smaller than
0 when h,k > hg. Finally, the conclusion follows by observing that since the functions wy, are
uniformly bounded and converge to g pointwise, they also converge in L?(Qr N {|z| < M}).

Let us now show (4.2). Observe that if ¢;, were a decreasing sequence, then the sets Q, 7
would also decrease with respect to inclusion and they would all contain Q.7. In this case, since
wy, — X, in L} (R?), the proof of (4.2) would be an immediate consequence of the Lemma 2.1
and of the first two lines of (4.3). However, since we have no such information on the sequence
¢, we need to prove an apriori estimate on the weighted total variation of D(¢(wp,)) in a strip
slightly larger than €, 7.

To this end, we fix an integer N > 1 and subdivide the interval (—=7'/2,7/2) in N intervals
of equal length with endpoints t; = T( — % + ﬁ), for i = 0,...,N. Recall (4.4) and observe
that, passing possibly to a further (not relabelled) subsequence, we may always assume that for
every i = 1,..., N there exists also the limit

chti
lim dy/ ¢*| D((T))| dax
cpti—1 R

h—o00

Then, by (4.4) it is clear that there exists j € {1,..., N} such that

cpty L
im [ dy [ D@ d <
h—oc0 cntioa R N
Set now vp(z,y) = {Eh(:c,y + chT(ij\‘, — ﬁ)) and vg(z,y) = {DO(CC,y + CT(% — ﬁ)) for all
(z,y) € R? and observe that the functions vy, converge in L}, (R?) to U, which in turn is equal
to the characteristic function of E, — cT(% — 7 )ea. Moreover from (4.4) and the inequality

above, we have that

lim |6 ()] dz < L(1+ %) |

h—o0 Qe, (T+T/N)
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For h sufficiently large, we have Q. C Q, (747/n). Recalling Lemma 2.1 and the first inequality
in (4.3), we conclude that

. i
O()P(Bei Tiy) = oV (e — T (% = 5 )eai T ) = [ D(6(70)||e(TEy)
1
li “ID(p(vp))| d L1+ —
<Jm I d < (1+%)
N v [ e pistan)| dx

N h—o00 QchT

2 2

N +1 w w F

< 7( Je lim inf e’ | e h.a + —Eg hy + 70(10;1) dz.
N h—oo  Jo 2 ¢y, 2 €h

Then (4.2) follows by letting N — oo. O

We are now going to prove that the functional J; defined in (1.16) is the I'-limit of J. . with
respect to the L? convergence, the main result in this section.

Theorem 4.2. Let ¢ > 0 and let ¢ : (0,e1) = (0,00) such that limc(e) = ¢ > 0. Then the

—0

following two properties hold:
(i) if {wp} C L3(T2) is a sequence converging to wq in L2(T%) and e, — 0, then

Jg(wo) < llhnl>logf Jc(eh),eh (wn) ; (4.5)

(ii) for any wy € L2(T%) and any sequence e, — O there exists a sequence {wy} C L2(T%)
converging in L2(T%) to wo such that

JZ (wo) > limsup Jo(e, ) e, (Wh) - (4.6)
h—o0
When both conditions (i) and (i7) in the above Theorem are satisfied, we say that the
functionals J) . I'-converge to J; in L%(T2) and write J; = F—lin% Je(e) e
€E—>

Before proving Theorem 4.2, recall that if u € L2(T%), from (1.6), setting v = L.u,

/ e"””{cQ((Ecu)gc)2 + ((Leu)y)® + 'y(ﬁcu)Q} dz = / e“uLoudz .

% 7

From this inequality it follows that when the function c(e) satisfies the assumption of Theorem 4.2
then [|L.yullg: < Cllul| 2 for some positive constant C, independent of e. Observe also that if
wp, — wo in L2 and {c;,} is a sequence of positive numbers converging to ¢ > 0 then Lo(epywn —
Lowg in H 61 and thus

/11'2 e*wp, Lo, wp dz — . e wo Lowg dz ase—0. (4.7)
T T

The proof of Theorem 4.2 will be achieved by proving the two conditions (i) and (ii) separately.
Let us start with the
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Proof of (4.5). Without loss of generality and passing possibly to a not relabelled subsequence,
we may assume that the liminf in (4.5) is a limit and that it is finite. Thus for h large wy, € Y;
hence ||wp||rz = 1 and —M < w, < M. By assumption wj, — wy in L%(T2) and thus from
Lemma 4.1 we have wy = x g, where E C T% is a measurable set such that |E|. = 1.

Since the sequence wy, is bounded in L> and converges to g in L2, we have also wj, — x&
in L2. As a consequence,

2
a/ e*G(we) dz — a/ e"G(xp)dz = aG(1) = _ia.
T3 T2 12
T T
The conclusion then follows at once on recalling (4.2) and (4.7). O

The proof of the limsup inequality relies on the following proposition whose proof is con-
tained in the Appendix.

Proposition 4.3. £ C ']I‘?p be a bounded, smooth, open set. Then, there exists a family of
Lipschitz functions v, : T2T — [0,1], € € (0,1), satisfying the following conditions:

- for all €
/

- there exists R > 0 such that ve(z,y) = 0 whenever |z| > R,

e“vidz = / e“xpdz,
T

2 2
T T

- ve = xp in LY(T2) and

lim sup /T% ew{;]DvE(z)F + FO(UG)} dz < ¢(1)Pe(E;TZ). (4.8)

e—0 €
We complete the proof of Theorem 4.2 by giving the

Proof of (4.6). It suffices to assume JZ(wp) < co. From (1.16) it follows that wy = x g, where
E C T2, |E|e =1 and Pe(Eg; T2,) < c0.

Assume first that E is a bounded, smooth open set. Let {v.} : T2, — [0,1] be the family
of Lipschitz functions obtained by applying Proposition 4.3 with E and ’]I‘% replaced by E; and
']I%T, respectively. In particular we have HUeH%g (12, = fT%T e”xp,dz = ¢. Then, given a sequence
er, = 0, on setting wy(z,y) = v, (z, ¢y) we get ||whHLg(T2T) =1 for all h, wy, — xg in L2(T2)
and, recalling (4.8),

2 2
11m sup / ez (Eh U)h7x + 67]7, whvy + Fo(wh)> dZ
h—oo JTZ, 2 2 2 en

C h—0c0 €h c

1 F 1
= Alimsup/ e”ﬁ{;h|Dveh(z)]2 + O(UE’L)} dz < @PAE&Q&T).
T2r
It is immediate from this inequality that

2 2
) w e, W Fo(w 1
hmsup/ e’ <eh ;m +_h 5 g’y + b h)> dz < L(A )Pe(E,g; Qear) -
h—oo JTZ C(Gh) €h ¢
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Then (4.6) follows at once from the above inequality, (4.7) and the fact that w, — xg in L2(T%).

Now let F C ']I‘2T be such that J}(xg) < oo. Take a sequence of bounded, smooth, open

sets [; as in Theorem 2.6 and observe that lim Ji(xg,) = Ji(xg). Fix a sequence e, — 0.
j—oo

Then, for each j there exists a sequence {wéj )
Ji(xg;) 2 limsup Jo(e, ) e, (w,(l] )). Thus we can find a strictly increasing sequence {h;} such that
h—o00
i (XE;) + % > Jceh.:fhj (w,(fj)) and ||[xg — w;fj)HLg < 1/j for all j. Then the result follows by
J
: _ _ )
taking the sequences €; = €p,; and w; = whjj . O

}72 | converging to xg; in LZ(T7) and such that

We conclude this section by showing that the minimum value of problem (1.19) is a continuous
function of the parameter c. Recall that E(c) denotes any minimizer of of J.(F) under the
volume constraint |E|. = 1.

Lemma 4.4. (i) The function ¢ — J.(E(c)) is continuous for ¢ € (0,00);
(i1) If €, — 0 and ¢, — ¢, for some ¢ > 0, then hlim (1]1}2f Jener) = T(E(c)).
—00 2

Proof. Part (ii) is a standard result in I'-convergence. We supply the proof for completeness.
Using Theorem 4.2 we may find a sequence {wy,} C Y converging to xg() in L*(T2) such that
(4.6) holds. Then

J(E(c)) = J:(XE(C)) > limsup Je, ¢, (wp) > limsup (1]1{12f Jch,eh) .

h—o00 h—o0

To prove the opposite inequality, passing possibly to a not relabelled subsequence, we may

assume that the lign inf(infzz2 Je, c,) is indeed a limit. Then for every h we may choose a
—00 €

function wy, € Y such that infr2 Je, ¢, > Je, ¢, (wp) — 1/h. Using compactness Lemma 4.1 and
passing to a further subsequence if needed, we have that there exists £ C TQT such that wp, — xg
in L2(T%). Therefore, by (4.5) we have

lim inf (i£12f Jensen) = 1i£i£f Jepen(wn) > JX(xg) > Te(E(0)),

h—o00

thus concluding the proof of (ii).
Let {5} C (0,00) be a sequence converging to some ¢ > 0. Observe that for any set E C T2
of finite weighted measure and weighted perimeter, from (2.9) and (4.7) we have

im Pe(Ee,; T2, 1) = Pe(Ee; Top),  Leyxe — Lexp in HY(TF).

h—o00

Therefore we immediately have

(s

g x
(B Tr) = S50+ 5 [ xmoLoxai ds )
T

T(E(c) = lim { — Y

h—oo | ¢p 12 €

> limsup J, (E(cp)) .

h—o00
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Fix now a sequence €; — 0. For any h, thanks to (ii) we have in particular that lim (inf 12 Jch,ej) =
j—o0 €

Je, (E(cp)). Therefore we may find a strictly increasing sequence of integers {j;,} and a sequence

{wn} C Y such that T, (E(cp)) > Je, e, (wp) — 1/h for all h. Then, by Lemma 4.1 and passing

possibly to a not relabelled subsequence, we have that w, — xg for some E C ']I‘%. Hence,

recalling (4.5), we get

liminf J;, (E(cp)) > lihm inf Je, ¢, (wn) > Je(E) = Te(E(c)) .

h—o0

Then the conclusion follows. O

5 Minimizer for the FitzHugh-Nagumo equations

The two lemmas in this section enable us to recover traveling wave solutions for the
FitzHugh-Nagumo equations (1.5)-(1.6) from the minimizers of the limit functional 7.

Lemma 5.1. Assume condition (TW1) in (1.17) holds. There exists e > 0 with the property
that for any € € (0,¢1), there exists ¢ > 0 and u € Y such that, taking d = €2/c?,

Ic,d,e(”) = innIc,d,e = 07

where I 4 is defined as in (1.9).

Proof. We first show that if infy Z. 4. = 0 for some ¢,d,e > 0 with e sufficiently small, then
1.4, has a minimizer u € Y.

To see this observe that there exists a constant Ms > 0, depending only on «, such that
—M¢? < F.(€) for all ¢ € R and 0 < € < 1. Therefore for any ¢,d > 0, ¢ € (0,1) and any w € Y’

we have
Ic,d,e(w) Z/
T

so that infy 7. 4. is bounded from below. Let {wy,} C Y be a minimizing sequence such that
Tede(wp) < infy Z.q.+ 1. Then

e’ Fe(w)dz > —MQ/ “w?dz = — My

2 2
T TT

ilmin{c2, 1}/ |V, |* dz < T g.c(wy) — / e’ Fe(wy) dz
2 TS T3

< iI}}fIc,d,E +1+ M.

Using the Poincaré inequality (3.14) we get that the sequence {w,} is bounded in HZ(T2).
Therefore we may assume that there exists w € H}(T%) such that, up to a (not relabelled)

subsequence, w, — w weakly in H'(T%), strongly in L} (T%) and pointwise a.e.. Thus |w| < M
and

o (A 5 d o, - o (A, o d,
/T2Te <2ww+2wy> dzglgglcgf/jr%e <2(wn)x+2(wn)y dz .



30 Chen, Choi and Fusco
From the inequality sz e?(wy, — w) Le(w, —w)dz > 0, we easily obtain
T

e*wl.wdz < liminf e“wp Lewy, dz .
']I*Q n—oo T2
T T

It remains to control the integrals of e* F(wy,). Fix M > 0 and split

/ e’ Fe(wy)dz = / e*Fe(wy)dz + / e’ Fe(wy,) dz .
TZN{z>M} TZN{z>M}N{w,<1/4} TZN{o>M}N{w,>1/4}

A similar splitting for the integral of e*F,(w) into the sets {w < 1/4} and {w > 1/4} is also
performed. Observe that if € > 0 is sufficiently small, depending on «, then F(§) > 0 for all
¢ < 1/4. Thus the first integral on the right hand side can be easily estimated by Fatou’s lemma

e’ Fe(w)dz < liminf

/ / ¢ F,(wy) dz,
T2.N{z>M}N{w<1/4} n=oe J1Zn{z>MIn{w,<1/4}

observing that X {,<1/4}(2) < linrr_l)géf X{uwn<1/4}(2) for a.e. z.
To control the second integral on the right hand side, we first fix a constant k; > 0 so

that |F.(€)| < k€2 for all 1/4 < ¢ < M and all € € (0,1). Setting wy(z,y) = wn(z,cy) and
w(z,y) = w(x,cy), we use Lemma 2.3 and (4.1) to obtain, arguing as in the proof of (4.3),

1
/ | Fe(wy)| dz = / e’ |Fe(wy)| dz
T2.N{z>M}N{wn>1/4} € J12, n{z>M}{@,>1/4}
<f () dz
cko J12,0{a> My {@,>1/4}

< F /
cko ¢(1/4) T2,N{z>M I {@,>1/4}

<Ce ™M /T2 ey e ¢(wy)? dz < Ce™ M (|[Dd(@n) | 11(r2,))
crMiz>

e“p(Wn)? dz

2

2
<Ce M (1Ic,d,€(wn) + / €”|G(wy,)] dz>
T2

T
2
<Ce ™M (ir;flc,d,e +1+ HwnHig + Hwn|]%3> <Ce ™,

for some constant C' (which may change from line to line) depending on € and on the uniform
bounds on w,, but independent of n and M. A similar calculation yields

/ e®|F.(w)|dz < Ce™ |
TZN{z>M}n{w>1/4}

The above inequalities lead to

/ e*F(w) dz Sliminf/ e’ Fe(wy,) dz —I—/ e’|Fe(w)|dz
T2 {z>M} =0 J12n{e>MIn{wn<1/4} T2.N{z>M}N{w>1/4}

<lim inf/ e*F (wp) dz +2Ce ™M
TZN{z>M}

n—o0
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Then, from this inequality, observing that fTQTm{xSM} e’ F(w)dz = limy 00 fTZTﬂ{xSM} e’ Fe(wy,) dz
by the dominated convergence and letting M — oo, we get

/ e’ Fe(w)dz < liminf/ e*Fe(wy) dz
and thus
Tede(w) <liminfZ, 4 (wy,) = ir;fl'cjdj6 =0.

n—oo
Note that ||w| 2 < liminf ||wy| 2 = 1. If |w||f2 = 1, then w € Y and it is a minimizer of
€ n—00 € €

Z.a, in Y. Otherwise, if ||w[[z2 < 1, we first observe that w cannot be identically equal to zero
because otherwise from the above estimates we would have, recalling (3.14),

d 2
0=lminfZ. 4. (w,) > % liminf | (wp) |72 + lim inf/ e’ (Fe(wn) +eZw, Ecwn) dz
n—00 " 2  n—oo e n—00 ']I‘% 2
2 2

d d
> %linrggf Hwn”%g + /T% e’ (Fe(w) + e%w Ecw> dz = % >0.

Thus [[wz2 > 0. Therefore we can shift w to the right by a distance a > 0 so that, setting
u(z,y) == w(r—a,y), we have ||lu|| 12 = e®/? [wlzz =1. Thusu € Y and Z, g (u) = €L g (w) <
Zede(w) <0. Hence u € Y is a minimizer of Ic’d,‘e with Z, g.(u) = 0.

To conclude the proof we need to show that for ¢ > 0 small there exist ¢,d > 0 such
that infy Z. 4 = 0. From (3.18) and Lemma 3.7 we know that there exist 0 < ¢4 < c_ such
that J., (E(cy)) > 0 and J._(E(c-)) < 0. As a consequence of statement (ii) of Lemma 4.4, by
choosing €1 small enough we can ensure that inf L2 Je, e > 0and inf 2 Je_e <O0forall0 < e <e.
Set now for 0 < € < €

¢ =inf {c € (cy,c): ij{lgf Jee < 0} )

We claim that infr2 Jg = 0. Indeed fix a sequence ¢, € [c, c_] such that inf;> J., . <0 for all n
and ¢, — ¢. For every n take a function w, € Y such that J;, ((w,) < infrz Je, e+ 1/n. Then,
with the same argument used above, we get that there exists w € H}(T%) such that, up to a
not relabelled subsequence, J; (w) < linnr_l> %)réf Je, e(wp) < 0. Again, the same argument as above

shows that w is not identically zero and that, possibly shifting a bit w to the right, one can find
u € Y such that Jz(u) <0. Hence, inf;2 Jz. <0.

On the other hand this infimum cannot be strictly negative because otherwise ¢ > ¢+ and
we could take w € Y such that Jz.(w) < 0. But then there would exists ¢ € (c4,¢) such that
also Je(w) < 0, which is impossible by the definition of ¢. Thus inf;2 Jz = 0. This concludes
the proof since, taking d = €2/¢2, we have Joe = Tode- O

Lemma 5.2. There exists g > 0 with the following property. Let u be a global minimizer of
Tede inY such that Z.4.(u) = 0 for some 0 < € < €y and let v = L.u. Then (u,v,c) satisfies
(1.5)-(1.6); i.e., it is a traveling wave solution of (1.1) with speed c.

Proof. We claim that if |u| < M— 1, then the Lagrange multiplier associated with the remaining
constraint [|w| ;2 =1 in Y is zero. Note that this will immediately imply that u is a traveling
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wave of (1.1) with speed c. To prove the claim we set L(u) = Z. 4.(u) + A [12 e“u? dz, where A
T
is the Lagrange multiplier. Then wu satisfies the following Euler-Lagrange equation

L'(uww =T 4 (w)w + 2A/ e‘uwdz =0 for all w € H}(Q7) ,

T%

where L' and I; die stand for the Fréchet derivative of L and Z. 4., respectively. Note that u
is a smooth function whose first derivatives belong to H!(T%). To see this set @ := e/,
Then, taking into account the additional Lagrange multiplier term 2Awu, (1.5) becomes the
linear equation dc?di,, + Ay, + e®/2g = 0 for a suitable function ¢ such that ¢*/2¢ LZ(']I‘QT).
Applying local W22 estimate yields that there exists a constant C' such that ][22k pe1) <

Cllull2(k—1,k+2) + 9l L2(k—1,k+2)) for any integer k& € Z. Then, summing over k, one gets that
uwe W2? (T%) Therefore we may plug w = u, in the above equation, thus getting

0=L'(u)u, = / e (dc*ugtipy + duytgy — fe(u)ug + eougLou) dz + 2A euuy, dz
T% T%
€

02
= /H% e (%(Ug)x + g(uz)w + (Fe(’u))x + 2(u£cu)m> dz + A ea:(u2)$ dz

=—Tege(u) — A e“u?dz = —Tede(u) — A
T%
so that A =0, since Z. g (u) = 0.

We now prove that |u| < M — 1. First, comparing the energy of L.u with the one of the
truncated function (LcuV —M /y) A (M/v), we get || Leul[p < % Suppose M — 1 <u < M
on a set S with positive measure. We define a cut-off function setting ey := u A (]Tj —1). As
before, we get || Letieut||re < % By the convexity of F, on [M — 1,00) for € < ¢y sufficiently
small, we have

€0
Ic,d,e(ucut) - Ic,d,e(u) </ e’ (Fe(ucut) - Fe(u) + ?(Ucut - u) ﬁc(ucut + U)) dz
Qr
. —~ €o
< [ e = eur) (F(M = 1) - S (Leut Lotteur) ) dz
S

S/Sez(u—ucm)<—(1\7—1)(1\7—2)2+a]\3> dz < 0

by the choice of M in (1.10) and the definition of fc in (1.2). Hence Z. g ¢(teut) < 0. Since
0 < [lucutllzz < llullzz = 1, we shift ucy to the right by a distance a > 0, so that the func-

tion Ueyt(2,y) := Ucut(x,y — a) satisfies the constraint ||Uewt||zz = e”/2||ucut\|Lg = 1. Thus
TedeUeut) = Lo ge(ueur) < 0, a contradiction to the minimality of w in Y. Hence u < M—1.
A similar argument gives u > —M + 1. O

Remark 5.3. The above lemmas and their proofs establish Statement 1 in Theorem 1.2. State-
ment 2 in the same Theorem can be deduced using the same argument in proving Lemma 5.1
with the new cy and c— being taken in a small neighborhood of co and [7, Theorem 5.1].
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6 First and second variation formulae

In this section we shall denote by X : ’]I‘% — TQT a smooth vector field with compact support
and by @ : T2 x (—00,00) > T2 the associated vector field defined as in (1.21). Note that ®(-,t)
is a smooth diffeomorphism for all ¢. Therefore if £ C ’]I‘% is a smooth open set the same is true
also for E; := ®(-,t)(E). We will consider a weight (or density) of the type e¥ where ¢ : T2 — R
is a smooth function. Though we are interested in the case when v (z,y) = = to treat traveling
waves, we will derive the first and the second variation formulae for such general weight and
we shall always assume that E has finite weighted measure and finite weighted perimeter with
respect to the weight under consideration. Let us denote the weighted volume of E; by

V(t) = / eV dz
Ey

We calculate the derivatives of V. To this end we recall that

t2
D®(,t) =1 +tDX + 5DZ+o(t2), (6.1)

where Z = DX[X], that is Z; = 2321 X;D;X; for i = 1,2. Denoting by J® the Jacobian of
the diffeomorphism ®(-,¢), from the above formula we have (see [23, (2.28) and (2.30)])

2
JO =1+ tdivX + Z-div((divX)X) + o(t?), (6.2)
Proposition 6.1. If X, E and ¢ are as above, then
V(t) = / VX - vp, dH?, (6.3)
OF,

V'(t) = /d ; div(e¥X) X - v, dH . (6.4)
t

Proof. For any t
V(t) :/ e¥ dz:/ @ Jd dw .
E E
From (6.1) we immediately get
2
¥ (@) — ew<2>{1 +tX - D+ %((X DY)’ + X - D(X - D¢))} + o(t?). (6.5)

Thus, recalling (6.2), we have

V(t) = /Eew{l +t(X - Dy + divX)

+ t;(2(X - Dy)divX + (X - Dy)> + X - D(X - D) + div((divX)X)} dx + o(t?).



34 Chen, Choi and Fusco

From this formula, using the divergence theorem, we obtain

V'(0) = /E (e¥(X - DY) + e¥divX) dz = /

div(e¥X)dz = / X -vgdH!,
E

oFE

V'(0) = /Eew ((X .DY)? + X - D(X - Do) + 2(X - Dp)divX + div((divX)X)) dz
- / (div(ew(X.Dw)X) +div(e¢(divX)X)) dz = / VX - vp(X - DY + divX) dH!
E OF

— / div(e¥X) X - vg dH .
oF

Thus we have proved (6.3) and (6.4) for t = 0. To get the corresponding formulae for any ¢ it is
enough to recall the semigroup property of @, that is

(I)(q)(zat)a s) = ‘I)(Z,t + 3)7
for any s. O

Now we establish the first and second variation formulae for the weighted perimeter. To
this end, given a set E and a smooth vector field X as above, we recall that the tangential
divergence of X along OF is defined as

2
div, X =divX — Y D; X, vy,
ij=1
where v = (v1, 12) is the exterior unit normal to E. We also recall that the tangential Jacobian
of J-® on OF can be computed as follows, see [39, p.63],

t2
S =1+ tdiv,X + 5 (divTZ + (div, X)? + [(D-X) - v]? — |(D-X) - 7\2) +o(t?)
t2
=1+ tdiv, X + §(divTZ + (D X) - v]?) + o(t?) . (6.6)

Set

P(t):/ eV dH! .
OFE;

Clearly P(t) = P.(Ey; TZ) if 9(z,y) = .
Proposition 6.2. If X, E and v are as above, then

P'(1) :/BE roy X v dH)

P"(t) = /BE e’ (X - DY)? + X - D(X - DY) + 2(X - D)div, X + div, Z + |(D- X) - vg, |2) dH!
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where ky = Kk + D - v and k is the curvature of Ey. In particular when ¢(x,y) = x we have
P :/ (k4 10) X - vdH! (6.7)
OE;
P'(t) = / e"(X{ + DXy - X +2X1div, X + div,Z + |(D-X) - vg,|*) dH" . (6.8)
OE;
Proof. By a change of variable, we have
P(t) = / eVdH! = / eV ®) & dH' . (6.9)
OE; oF
Then one may argue as in the proof of Proposition 6.1 using (6.6) instead of (6.2) to obtain
P'(0) :/ e¥(X - D + div, X) dH' .
oF

Since
div,(e¥X) = e¥div, X +e¥ X - V1),

it follows that
e¥(X - D + div, X) = div, (e X) + e¥(X - v) (D - v) |

resulting in

P'(0) = / (divT(ewX) +e¥(X - v) (D - 1/)) dH! = / eV(k+Dip-v) X -vdH!.
OE, 0Ly
The sum ky, := £+ D1 - v is known as the generalized mean curvature, see [40]. Note that P’(0)
depends only on the normal component X - v.
Similar calculations as in the proof of Proposition 6.1 yield P”(0), while the semigroup
property of ® yields the formulae for P’'(t) and P"(t). O

We now calculate the first and the second variation of the nonlocal energy.

Lemma 6.3. Let X be as above and E C T% a smooth open set with finite volume and perimeter
with respect to the weight e*. Then

1. for all ¢ € H(T?)
d
— | e'pdz= / X -vg, dH'. (6.10)
dt Jg, OF,
2. Letv : T2 xR — [0,1/7] be the function defined for everyt € R by setting v(-,t) = L(XE,)-
Then, denoting by vy the distributional derivative of v with respect to the parameter t, we
have that for every t € R

ve(z,t) = G(z,w) X(w) - vg,(w) dH}, for a.e. z €T3, (6.11)
OE;
where G is the Green’s function on T2 for the operator L. = —0288—; — 59—;2 — 028% + .

Moreover, v(-,t) € HX(T2) for all t.
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Proof. Fix ¢ € H!(T2). Arguing as in the proof of (6.3) we have

CZ(/& exsodz)‘ = ;i</Eeq)l(z’t)w(q)(zjt))ef@(z’t) dz>‘

t=0 t=0

= / div(e®*pX)dz = / o X -vpdH!.
E OE

This proves (6.10) for ¢ = 0. As in the proof of Lemma 6.1 the general case follows from the
semigroup property of the flow ®.

We now recall a result in distribution theory, see [38, Example 5.59, p.148]. Let u(-,t) be
a distribution for each value of the parameter ¢ € R such that % Jp2 u(z, t)(x) do exists for

T
all ¢ € C(T%). Then %—? exists in distribution sense. Indeed M is a distribution.
Since the limit of [1, %)_u(“)qﬁ(x) dx exists as h — 0, by [38, Theorem 5.31] we have that
T

% converges in the distribution sense to a distribution that we denote by %.

From (6.10) we have (xg, )i = (X - vg,)H'|OE; := . We claim p; € H; Y(T%). Indeed for
any ¢ € HL(TZ%)

/11‘2 e“oduy

T

= ‘/ e®p X -vg, dH?
OE}

= ‘/ div(e®pX) dz §/ div(e®pX)|dz < Clloll ga(n2,)
Ey T2, T

for some constant C' depending only on [|X | (12)-
Let v(-,t) = LcxE,- Now

9 z 0 z _9 z
at/T?Te vd)dz—at/TQTe qS,CCXEtdz—at/TQTe XE, Lcpdz

= [ etttz = [ o Lpds
T2 T2

T T

so that v, = L. ps. This proves (6.11). Then standard regularity estimates imply v, € H2(T2.).

O
Set for all ¢
1 1
N(t) = 2/ e LoxEg, dz = 2/ e’ (021)320(2,25) + vz(z,t) + vv2(z,t)) dz . (6.12)
E; T2
Proposition 6.4. Let X and E be as in Lemma 6.5. Then we have
N'(t) —/ e“v(z,t) X (2) - vg,(z d?—[1 / dw/ X (2) - vg,(2) d?—[i, (6.13)
OF; Ey OE;
N"(t / d’Hl / X(z) vg,(2)X(w) -vg, (w)d?-[i (6.14)
oE, (2o

—i—/ div(e®v(z, )X (2)) X (2) - vg, (2)dHL.
OFy
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Remark 6.5. Observe that the first summand in (6.14) can be written as

/BEt dML, /BEt e*G(z,w) X (2) - vg,(2) X (w) - vg, (w)dH. = / e Lo(pe) dpe,

T%
where py is the singular measure (X - vg,)H|OF; .

Proof of Proposition 6.4. We differentiate (6.12) with respect to ¢ and use the fact that by (6.11)
vy = Le(pe) to get

N'(t) = /T

Expressing v by means of the Green’s function G gives (6.13).
Observe that the same argument used in the proof of (6.1) yields the following general
formula
d af

il t)dz = —d X -vdHt.
g Etf(x,) 2z 4 Ot z+ aEtf vdH

* (V1 vz +V1y vy FYVLV) dz:/ e*v dpuy :/ e®v(z,t) X (2)vg, (2) dH' . (6.15)
T2 0

2
T T Ey

Writing the last integral in (6.15) as a volume integral and using the above formula we have

d
N"(t) = dt/E div(e®v X) dz
t

= / div(ef@X)der / div(e®vX) (X - v) dH?
B ot OE;

:/ e“v(z,t) X (2) - vg, (2) dHL +/ div(e®vX) (X -v)dH' =T+ 1T .
OFy OF;

On substituting v; in I by (6.11) we obtain (6.14). O

To derive the Euler-Lagranage equation that governs a critical point E of K. or J., we need
to calculate how the perimeter of the stretched set (E;). evolves under a given velocity field.
We achieve this by computing (E.); under a modified velocity field X, such that (E;). = (E¢):.
The coordinate transformations & = x and § = ¢y map a point (z,y) € E to (Z,9) € E.. In a
different notation the flow (1.21) is written as dz/dt = X1(z,y) and dy/dt = Xs(z,y). Evolution
of E. is then governed by

T xa@af, D=/
with the initial condition (Z(0),7(0)) = (x(0), cy(0)). The modified velocity field is therefore
given by
Xol#,9) = (X1(5,3/c), cXa(#, 7/c)) (6.16)

Assume E is of class C2. If v is the exterior unit normal to E we denote by 7 the tangent
vector obtained by rotating v counter-clockwise by 7/2 and by 6 the signed angle made by 7 with
the positive z-axis. Thus, 7 = (cos,sinf) and v = (sinf, — cos #). The signed curvature of OF
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is defined as k = div,v. Note that if s is an arc length along OF inducing the same orientation
of 7, then k = df/ds. Observe also that if v, is the exterior unit normal to E., 7. is the
tangent vector oriented as above and 6, is the corresponding signed angle, then tan 6. = ctan @,
Te || (cosB, csinf) and v, || (csin®, — cosf). We can therefore infer that

c
G Ve2sin20 + cos? 6
Let K. be the functional defined as in (3.1). From (6.7) and (6.13) we get
ey

Xc-uc‘ X'l/‘ . (6.17)

(z,y)

(B)[X] == o= —Pe((Ey)e; T2 N’
OK(B)X] = 1 PA(E)Ti)| +oN'(0)
2
= i ex(/ac—l—ucl)Xc-ycdHi%—a/ e Loxp X -vdH, (6.18)
12¢ JoE, OF
where v := csinf and, for the sake of clarity, we have denoted by H! the one-

v/ ¢2 sin? 0+cos? 0

dimensional Hausdorff measure in the (z,7)-plane. Note that under the change of variable
(%,7) = (x,cy) one has, see (2.8), dH. = Vcos? 0 + c2sin? 0 dH!. Let s. and s are arc lengths
along OF. and OF, respectively. With the above orientation choice, we have the signed curvature
ke =df./ds. = %%% = :‘ic(li%c (%SC; a direct calculation gives

B V2 . CK do.

(B X] = = —< X -vdH!
OKe(E)X] 12¢ 8E8 Ve2sin? 0 + cos2 9 A0 Vi
2 2sinf (X -
+\f/ o 50 (X - v) d?-[l—i—zf/ e Loxp X - vdH! (6.19)
12¢ Jor  \/cos20 + c2sin? 0 22)

/ . [ V2 CK _I_\/Q csin @
= é —_— rre
oF 12 (2sin? 0 + cos?0)3/2 12 | /cos2 0 + 2 sin?

+0£CXE>X-udH1,

where the last equality follows from tanf. = ctan, which in turn gives ‘ifec = m.

Observe that OK.(F)[X] depends only on X - v, but not on the tangential component of X.

Let £(c) be a critical point of J.(F) under the constraint |E|. = 1. Recall that if £(c) is a
minimizer, we have denoted it by E(c).

Lemma 6.6. Let £(c) be a critical point of J. under the constraint |E|. = 1, for some ¢ > 0.
If, in addition, J.(E(c)) = 0, then E(c) is also an unconstrained critical point of Je.

Moreover, if E is any unconstrained critical point of J. of class C?, then it satisfies the
following FEuler-Lagrange equation

5 5
\g(,{c F ) +oV — \ga —0 on OE,. (6.20)

where k. and v, are defined as above and V is the unique solution in H} (TET)Of the equation
— PV — Vyy — Ve +4V = x5, on T2 . (6.21)

Finally, equation (6.20) can be equivalently rewritten on OF as (1.20).
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Proof. Let &(c) be a critical point of J. under the volume constraint |E|. = 1, such that
Jc(E(c)) = 0 and let A be the Lagrange multiplier associated with the constraint. Set E; =
E(c) + tey, and

L(t) := J.(E}) — A/

E

e dz = el <jc(€(c)) —A e’ dz) = —Ae'.
&(e)

From the criticality assumption on £(c¢) we then get L'(0) = 0, hence A = 0. This proves that
&(c) is also an unconstrained critical point of J..

Assume now that E is an unconstrained critical point of J. of class C2. From (6.18) and
(6.3) we have for any smooth vector field X with compact support in T%

_ V2

0Jc(B)X] = 1o . €® (Ketve,) Xe - Ve dH}
2
—|—U/ e Loxp X -vdH! — £04 X -vdH! (6.22)
oF 12 Jor
1 . 1V2 V2
= C/aEce {12(/{/0"_7/01) +O'V— 120{} XC . VCdHi7

where the last equality follows by a change of variables in the integrals on OF, recalling (6.17) and
that d#! = \/cos? 6 + c2sin? § dH! and observing that V(z,y) = Lexg(z,y/c) so that V is the
solution of equation (6.21). The above formula immediately yields (6.20) by the arbitrariness of
X. Finally the equivalence between (6.20) and (1.20) follows immediately from (6.22), rewriting
the integral on the first line on OF as we did in (6.19). O

Note that the above Lemma, together with Theorem 3.3, Lemma 3.11 and Remark 9.3
completes the proof of Theorem 1.1. At the same time Theorem 1.3 follows at once from (6.4),
(6.8) applied to OE, and (6.14).

7 Stability analysis of a planar traveling front

In this section we discuss the local stability of a volume constrained critical point £(c) of
Je.. To this aim we study its second variation 92J.(£(c))[X] where X is a smooth velocity field
with compact support such that the associated flow ® is volume preserving. By setting V' = 0
and expressing the right side on (6.3) as a volume integral, this amounts to requiring that

diV(eIX):X1+—x—|——:0 on T7. (7.1)
Thus in the following we say that £(c) is locally stable if

*T(E(e))]X] >0

for all smooth vector fields with compact support, not identically zero, satisfying (7.1). If
instead 02J.(£(c))[X] < 0 for some vector field X we say that £(c) is unstable. Note that the
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weighted volume of a set increases strictly when translating it to the right along the x-direction.
Therefore condition (7.1) eliminates a pure translation mode. The actual computation of the
second variation requires a detailed knowledge of the shape of £(c). We therefore study the
simplest case: a planar traveling front.

Suppose £(c) = W = T2N{x < a} is a planar front traveling in the z-direction and that W
is an unconstrained critical point of J.. Since the curvature x is identically zero and the angle
6 in (1.20) is constantly equal to /2, the the Euler-Lagrange equation becomes

V2

D — (1 —a)+cLlcxw =0 at oW . (7.2)

The function L.xw depends only on the variable  and it coincides with the unique solution

v € H}(R) of the ODE (7.7) below, whose explicit expression is given in (7.8). An elementary

calculations shows that ECXW‘ = %(1—[17 (c)), where H(c) := —=—, a quantity independent
ow

Vet

of a. Thus we have

\g(l—a)—i—;(l—H(C)):O. (7.3)
Note that this equation turns out to be the same as J.(£(c)) = 0. Hence the existence of a
positive root ¢ for (7.3) is equivalent to saying that W is an unconstrained critical point of 7,
hence a planar traveling wave. The proof in [12, Lemma 6.2] indicates that condition (TW1) in
(1.17) is both necessary and sufficient for the existence of such positive root whose unique value
cy is given in (1.23).

We now study the local stability of this planar front, which in principle may depend also
on the other parameters. Imposing the volume constraint |W|. = 1, this uniquely yields W =
T2 N {z < log £ }. Note that both W and dW, lie on the line z = log .

Let X = (X1,Xy) : ']I'2T > T% be a smooth vector field with compact support satisfying
(7.1). Thus the weighted volume W, stays constant under the corresponding flow. We now
calculate the second variation 92 J.(W)[X] using Theorem 1.3. There are altogether 4 terms on
the right in (1.22), which we label as I to IV. The first term I is the perimeter term, /1 and
I11 come from the nonlocal term and the volumetric term IV is zero, due to (7.1). Recall that
Xe(z,y) = (Xi(z,y/c),cXa(z,y/c)) for (z,y) € T2y, see (6.16). It is easy to check that also X,
satisfies (7.1); hence the modified velocity field X, also preserves the weighted volume |E.|.

Let us first examine the first term. A direct computation, using periodicity, yields

\/§ CT/2 6Zc2 aAXVcl 2
=22 X2 + DXe1 - Xe + 2Xe1 dive, X d
2¢ _CT/2 ( + 1 Xe+ 1d1vy, ) + a2y + < oy > Y
V2 T2 0X 0X o 0Xpo. 1 (0X1\2
= X2 + X, X, 2X, - (= d
12T | gy |t T KTy TRy, 2K (ay> e [ Y

V2 oT/2 0X. 09Xy, O 1 (T2 rox,\?
_126T /_CT/Q (Xcl(Xcl + O + a )+ a (Xchc2)) dy+c/_T/2 (ay> dy

_ V2 72 19X, 2d
12t ) oy ) VY
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which depends only on the value of X7 along x = log%. Set p(y) = Xi(logl/T,y) for
some smooth T-periodic function ¢ : R — R, and decompose ¢(y) using the Fourier modes
{cos(2jmy/T) : 7 =0,1,2,...} U {sin(2jmy/T) : j=1,2,...}. Since X is a volume preserving
vector field we have ffﬁQ ¢(y)dy = 0.} Hence ¢(y) = > o1 (ajcos(2jmy/T) + by sin(2jmy/T))
for some constants aj,b;. Thus

o \/5 T/2 /Qd o \/§ > 2j27T2
T R2ET |’ y_12c2Tj_l T

(a5 +b3) . (7.4)

Next we compute the nonlocal term II. To this aim, see Remark 6.5, we consider the measure
p= (X -v)H'OW which turns out to be the product measure 8, x (¢(y)dy), where d, is the
1D delta distribution at a := log % To compute 0 = L.(u) by separation of variable note that

- 257 2jm
0(z,y) :Z{)] )(a;j cos ]T + b sin ]Ty)'
7j=1

where 9; : R — R is the unique solution of the ODE

(i) = )+ (v + )8 = 6, (7.5
Consequently
T/2
II:U/TQ du—/m Zvj (a3 +b7) . (7.6)

To calculate I11, observe that v = L.xw solves the ODE
—Pvgy — oy + v = X(=o00,a)" (7.7)

Hence, recalling (7.1) and using the fact that v is a function of the variable x only,

Il =0 div(e®vX) X; dH* :a/ e®(Dv - X) X1 dH!

ow ow
o Jv ov'(a) [T/ ov'(a)
=7 X2yt = 20 2 gy — 2
T Jow 0z~ " T /T/zw Y 2 (@

=1

where, we recall, we have set a = log1/T. Thus, from the above expression of II1, (7.6) and
(7.4)

PIWX)=T+1T+1II = 22

j=1

12¢2 T2

{ V2 4 +a(@j(a)+v/(a))} (a2 + 1) .

!Note that if ¢ : R — R is a smooth T-periodic function with zero average on the interval (—1'/2, T/2), then the
vector field X (z,y) = (¢ (z)p(y), —(v(z) +¢'(x)) [ ¢(t)dt), where ¢ : R — R is a smooth function with compact
support such that ¢(log1/T) = 1, clearly satisfies (7.1) and the additional condition Xi(log1/T,y) := ¢(y).
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We need to evaluate 0j(a) and v’(a). The solution of (7.5) is

' Ajeﬁj»*(x_“) ifx>a,

R {Ajeﬂi*(m“) ifr<a,
oj(x) =

where

—_

4 45272
5j»i:2<‘1i\/1+cz(7+ & ))

1

4 45272
62\/1+c2<7+ T2 )

In particular 0;(a) = A;j. At the same time

and

Aj=

L4 A evt(E—a) if o <
) =47 T4 nzsa, (7.8)
A, e (@—a) ifx>a,
where
1 4
ai—<—1:t\/1+z>
c
and o o
A, = + , A = -
* T Yar —a) S C———
Thus
1

v'(a) =Ara_ = —

o/ + 4y

To simplify the notation we set B := 4/1 + i—g and B; := \/1 + ;%(’y + 4];;

2

) . Therefore

o0

1 (V2 45272 11 5 o
ch?<12 ol p)) W)

J

9*T(W)[X]

J

o0 .2 2
N (V2 4o 1 (a2 + 1)
= c2T? 12 c? BBJ(B + B]) J J

0l e T) (@ +12)
1

<.
Il

A positive sign for g for all weighted volume preserving X gives local stability, while a negative
sign for some X indicates instability. Note that %]‘ > (0 and g—% < 0. Thus 57 =1 and large T
is the most unstable scenario. Therefore in order to carry on our stability analysis it suffices to
examine the sign of g for the mode j = 1 and for ¢ = ¢, which is the unique solution of (7.3).
Recall that the planar front W is a travelling wave solution with unique speed (1.23) if
and only if condition (TW1) in (1.17) holds. In turn, assuming the validity of this condition,



43

there are essentially two different scenarios depending on which of the two conditions (A1)* and
(A2) applies. As we recalled in Section 1, under condition (A1)* the front is a global minimizer
among all 1D configuration, therefore it is locally stable when subject to a 1D perturbation. On
the other hand, under condition (A2) the global minimizer among all 1D configurations is a 1D
pulse. However we would like to understand in both cases whether or not the front is locally
stable with respect to 2D perturbations.

Suppose condition (TW1) holds, so that 0 < h, < 1, where h, is as in (1.23). Setting j = 1,

Q _ 20 - Q _ 20c¢y
12 C?B?’ 12 (c?t + 4ry)3/2
V2 ohy(1 — h?) V2

zﬁ—T:EO—(a—l)h*(l-i-h*))-

li 1cp T) =
Tgrolog( NN

Therefore a necessary and sufficient condition for W to be stable for all 7' > 0 is
Qa,hy) :=1—(a—1)h(1+hy)>0,

because the function 7" — g(1,cf,T') is strictly decreasing. Note that the graph of Q(«,-) is a
(concave) parabola with a positive root hy and a negative root h_ with

1 4
he == [4/1 —1) .
+ 2( T a1 )

It is readily seen that hy > 1/a. Moreover hy< 1 iff a> 3/2. Stability of the front amounts to
0 < hy<hy. We are now in position to give the proof of Theorem 1.4.

Proof of Theorem 1.4. Assume first that condition (A1)* holds. By (1.23) we have 3‘?” = f”:hl*.
Thus condition (A1)* is equivalent to saying that o > f“:hl* > a—1> 0. In turn this implies
that h, < 1/a < hy so that Q(«, hy) > 0. This proves Statement 1.

We next assume that condition (A2) holds. Note that (A2) is equivalent to f‘_*hl* >oa > 1.
If 1 <a<3/2, then hy > 1 > h,. Hence Q(a, hy) > 0 and Statement 2(a) holds.

Now assume « > 3/2 so that 1 > h,. Suppose the more stringent condition (A2a) holds.
Then h, > h4, which leads to Q(«, hy) < 0. This implies that W is unstable for sufficiently large
T. On the other hand as T' — 0, it is immediate that B; — oo so that g(1,cy,T) — g > 0. As
a result the front W is stable in such cases. Statement 2(b) is now clear because g—% < 0.

Finally Statement 2(c) results from the fact that in this case h, < hy. O

Remark 7.1. Theorem 1.4 gives a precise description of all cases in which W is a a strictly
stable critical point for J.,, depending on the the appropriale parameter constraints. Although
we will not do it here, with the techniques introduced in [3] one could prove that all these case W
is also a local minimizer with respect to all variations E satisfying the weighted volume constraint
|E|e =1 such that |EAW |, is sufficiently small.
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8 Non-planar wave

In this section we show the existence of non-planar traveling waves. Throughout the section
we assume Condition (A2); this is the necessary and sufficient condition for the existence and
uniqueness of a planar traveling pulse P, obtained as a global unconstrained minimizer of J.
among all 1D profiles. The analysis yields P = T% N {a < = < b} with length £, := b — a. Both
the speed ¢, and the length /. are uniquely determined (see [12, (7.3), (7.4) and Remark 7.9]).
A key step in proving the existence of a non-planar traveling wave is to show that inf 7. < 0
when ¢ = ¢,. Such requirement imposes further conditions on o and o, while ~ is fixed.

We write Condition (A2) as 01 > a > 1 where 0 := @ Let 01 = Ao for a fixed A > 1.
Then [12, (7.3) and (7.4)] can be cast as

AQ+H(e)(Q—e ™) =14+1/a, (8.1)
Al —H(e) (1 —ere)y=1-1/a, (8.2)
where r1 < 0 < 7y are given by & (—c=®+/c2 4+ 4v) and H(c) := —=——. The next lemma gives

Ve

the precise rate of convergence of ¢, to 0 when a — oco. To simplify the notation we set ¢ = ¢,
for the rest of this section.

Lemma 8.1. Let a > 2, 01 = A« for a fized A > 1 and let B := (1 + (A—1)log %)71. Then
(i) B is a strictly increasing function of A such that B —1 as A — 17, and B =2A+ O(1) as
A — oo;

(ii) acy, = B\/Ay + O(1/a) as o — 0.

Proof. Define g(z) := 1+ (z — 1)log =L for > 1. Then ¢'(z) = 1 +log =1L and ¢"(z) =

——— > 0. With lim,_, ¢'(x) = 0, it is clear that ¢’ < 0 for all x > 1. We observe that
z?(x—1)
g(1%) =1, at the same time g(z) = 5 + O(m%) as r — 0o; Statement (i) is now clear.

Assume by contradiction that there exists a sequence { (o, ¢n)}22 such that a,, — oo and
¢n — 00. Then, the left hand side of (8.2) converges to 0 while the right hand one tends to 1.
This contradiction shows that ¢ is bounded when o — oo.

Next we eliminate ¢, from (8.1) and (8.2) to obtain

First we claim that ¢ — 0 as o — oo. Indeed if otherwise, we can find a sequence {(a,, cp)}02
such that a,, — oo and ¢, — ¢o for some ¢y > 0. Correspondingly H(c,) — Hp := H(cp) > 0.
Rewrite (8.3) as

o log (1 — ﬁ%)
1 log (1—%)

and take the limit as n — oo. This gives

(8.4)

1_H0_log(1—m>

L+ Ho o (1 - 7A(1iHO)>




45

which is equivalent to

1 A(1—Hy) 1 A(1+Hy)
1-— =({1-—— . 8.5
=) (- aaim) 55
For z > 1 set h(z) := (1 — 1)® and hy := logh. Therefore hj = -1 + log(1 — 1) and
Ry = —m < 0. Since lim,_ o b} (z) = 0, it follows that h;, and hence h, are strictly

increasing on the interval (1,00). Thus (8.5) gives a contradiction.
Using the established claim, we expand (8.4) up to the second order, thus obtaining

12 Lo 1
vy log(1 — %) +1og (14 54 (2 - & +O(e?))
which further simplifies to
\/%(A - 1)10g% _ é - \/% +0(?) + 0(—)
This shows Statement (ii). O
Note that
6V2J.(E) = %Pe(Ec;TET) —a /TZ e’ xpdz + yaA /]1‘2 e*xpLlexp dz . (8.6)
T T

We want to show that J.(E) < 0 for some ellipse E when appropriate conditions are imposed
on a, A and T, in particular when « becomes large. However by Lemma 8.1 this implies that
¢ — 0, which turns into a loss of uniform ellipticity in (1.6). To obtain tight estimates when ¢
is small, we note that the case ¢ = 0 corresponding to stationary waves may help. Some results
in the latter case can be found in [13, 14].

Lemma 8.2. Let tg > 0 and consider the equation

d*w dw
tzﬁ it - YW = —t*X[0 4] (8.7)

on the interval (0,00). Then

. i - \%Kl(toﬁ) Io(tyF), if t<to. .

\%ll(toﬁ) Ko(tﬁ) , ’Lf t >ty ,

where I; and K; are the Gt order modified Bessel functions of the first and second kind, respec-
tively.
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Proof. Let 7 :=t\/7, 79 := to\/7 and W (7) := w(t). Then (8.7) becomes

d2W aw 72
2 2
— =7 W = —— )
dr2 +7 dr T ~ X[0,70]

Setting the above left hand side to 0 yields the zeroth order modified Bessel equation which has
Ip and K as its independent solutions. Thus
1 T0 .
— — —Ki(r0) Lp(1), if T<19p,
w={ 7.
;Il(To)Ko(T), if 7> 1,

which is equivalent to (8.8). Indeed it suffices to check the continuity of W and W' at 7 = 7.
The first condition amounts to 7 (K1(7)lo(7) + I1(7)Ko(7)) = 1 at 7 = 79, which is valid by [5,
formula (9.6.15)]. The continuity of W’ requires —K;(7)I}(7) = I(7)K{(7) at 7 = 79. Since
I} =1, and K{j = —K; (see [5, (9.6.27)]), this is true as well. O

From now on in this section we adopt the notations X = z/c, Y =y and Z = (X,Y).

Lemma 8.3. Let E := {(z,y) € R?: C§j2 + f—z <1} and let N € WH2(R?) be the weak solution
of the equation >Ny + Nyy — YN = —xE in the whole R2. Then E isAmapped into the ball E
of the (X,Y) plane of radius r centered at the origin and the function N(X,Y) := N (cX,Y) is

radially symmetric. Precisely, N(X,Y) = N (VX2 + Y?2) where
1 r

T ;T— ﬁKl(rﬁ) In(t\/7), z:f 0o<t<r, ©9)
ﬁh(r 7) Ko(tv7) if t>r.
Moreover e 1
/RQ xeNdz = (5 — L) K (rﬁ)) . (8.10)

Proof. Note that under the change of variable X = z /¢, Y = y the ellipse E is mapped into the
ball E of radius r centered at the origin, while A is the unique solution of AN —yN = —x in

R2. Therefore N is radially symmetric and thus N'(X,Y) = N'(vVX2 + Y2), where N () is the
unique solution in (0, 00) of (8.7) with tg = r. Then (8.9) follows from Lemma 8.2.
Now we directly compute the unweighted nonlocal term using (8.9):

T 2 r
/ XENdz:c/ XE/\?dzzzmz/ N(t)tdt:27rc{r—TK1(r\Fy)/ To(ty/A) tdt}
R? R2 0 2y Y 0

v
r? r VAT
P {— Kl(rﬁ)/o Io(t)tdt} .

As I satisfies the equation (t1)))'—tIy = 0, on integrating we have for‘ﬁ Io(t)tdt = ry Ij(ry/7) =
ry/7 I1(ry/7). Putting this integral in the above equality yields (8.10). O
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Lemma 8.4. Define h : (0,00) — R such that h(t) = & — I;(t)K1(t). Then h is a positive
strictly increasing function and

(1) h(0T) = 0 and limy_,o h(t) = 1/2;

(i) When t is small, we have h(t) = —% logt (14 o(1)), resulting in h(t) < %] logt|.

Proof. The product I K; is strictly decreasing, see [6, Theorem 1]. Using [5, (9.6.7), (9.6.9)]
we obtain the limit of h as ¢ — 0, while [5, (9.7.1), (9.7.2)] yields the limit of h as t — oo in
Statement (i).

To obtain a more precise estimate of h for small argument, we recall [5, (9.6.10), (9.6.11)]:

n(t) = 51+ 0(R))

1 t 1  tlogt
K1(t)=¥+f1(t)logi—l-O(t):Z-l- 2g

+O(1) .

Simple algebraic manipulation gives Statement (ii). O

The function N is not T-periodic in y-direction. With a slight abuse of notation we still de-
note [ fiﬁ% ...dydx by [po ---dz when the integrand involves N'. Note that [, xpN dz =
T T

ng XxeN dz when E C ']I‘?F.

Let Ag > 1 and T} be sufficiently large; both to be chosen later. Fix A > Ay and r = %ﬁ'
Even if & — oo, the size r stays fixed at O(1). A first requirement on Tj is that the torus is
wide enough to accommodate the ellipse; there will be other additional constraints. Recall that

E and E denote the ellipse and the ball, respectively, as stated in the Lemma 8.3.

Lemma 8.5. Let ¢*P,, + Pyy — 7P = —xE n TQT. Then there exists Ty > 4r, depending on

A, such that |fT2T xe N —P)dz| < C\%j whenever T > Ty. Define P(X,Y) = P(x,y) so that

AP —~P = —Xg- Then both P and VP are O(e VXN as | X| — co. Let ¢o := min{1, 7, VT
Then there exists a constant M > 0 such that fTQT eX|VP2dZ < M for all ¢ < cp.

Remark 8.6. We may need to further increase Ty in the proof of Theorem 1.5 below to satisfy
additional requirements.

Proof. Using the variational functional w — [1. (%]Vw|2+%’yw2— X pw) dZ we infer the existence
T

and uniquAeness of P (and hence those of P) with HPHHI(T%) < mHXEHLQ(TQT) = %

and 0 < P < 1/y on T%. Hence for any € > 0, we have ||[P|| 2(x|>¢p) < € if £ is sufficiently

large. Regularity estimates ensure that P is C on {|X| > r}. Consider 2 concentric balls
By, By of radius 1 and 2, respectively, and move their common center in the set {|X| > ¢ + 2}.
Applying local H? estimate to these balls, we see that

1Pllo@ry < ClPlu2s,) < ClPlls,) < Ce

so that 75A—> 0 uniformly as |X| — oo. )
Let E; = E+ jTes, j € Z, by translating the ball E in the Y-direction. Using the method
of images, and still denoting with the same symbol the T-periodic extension of P in y-direction,
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we have AP — 775 = —xr in R? where F = U;"i_ooE'. The fundamental solution associated

with the differential operator (—A+~) is 5- Kg(\f |z|). It solves the equation —Aw+~yw = 0 in
R? minus the origin near which it behaves lik —7 log |z|. Note that Ky is a strictly decreasing

function. When T' > 47 is sufficiently large, for any Z = (X,Y) € E C T2

. n 1

P(Z):N(ZH%#OJ_OO/ Ko(yA1Z = nl) X, (n) dn < (2 +r2]21K0 AUT —20))

2 -V N~AT
+T2ZK (2J ﬂ — )

_( )
)+ 2r? Z I T ———— NG AP by twice the leading order term in [5, (9.7.2)]

leading to

og/ XE(P—N)dz:c/ xp (P K)dZ < enr?|[P — N|pm(m) <
T2 2,

Next consider the function ¢(X,Y) = %e_\ﬁ(x_r_l) on the set {X > r+1}. Clearly Ag—yq =0

with ¢ =1/v > P at X =r+ 1. With P going to 0 for large | X|, we can employ the maximum
prm(:lple In fact ¢ serves as an upper barrier function for P sothat 0 <P < gon{X >r+1}.
Thus P decays at or faster than the rate e"vV7X. Now employ local W?2P estimate for a fixed
p> 2,
5 5 . —/AX
1Pl < CHPllwess,) < ClIP s < Ce V7

so that ]Vﬁ] = O(eV7X) as X — oo. The same is true for large negative X. Thus there exists
a positive constant M such that [, eX|VP|?dz < M for all ¢ < 2,/7.
T

We claim that M can be chosen to be T-independent if ¢ < ¢y = min{1,~, /7}. Write the
equation on P as

(X Px)x + e Pyy — 7P = —€CXXE + ceXPx
which leads to

/eCX(|V75|2+7752)dz:/ eCXXEﬁdz—c/ e“XP Py dz
2 T3 7

T T

ecX
T2

T

so that

(VPP +1P?) dz < 2/T2 Xy yPdz .
T
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This immediately gives

R cr/2
/ ecX P2 < g / €CXX2A dz < u ,
T2, v\ Jr2 E ¥

N cr/2
\// ecX’vp’de < M
T%

Val
and establishes the above claim. ]
Lemma 8.7. Suppose v = L.XE, i.e. C2Upy + Vyy + vy, — v = —xg on T2, then
1
‘ / e“xpLexpdz — / XEsz’ <emrAO(—) . (8.11)
T2, T2, @

Proof. Denote the left hand side of (8.11) by LHS. Then
LHS < )/ (e® — 1)XEECXEdz‘+ ]/ XE (Loxp —P)dz| =1+ 11
% %

We need to control both terms on the right. For the first one,

I< (e = 1) |Ixgll2m 1£explzm < ¢ (¢ = 1) Ixpllemz) 1£exe 2 m)

ecr/2(6cr -1 ecr(ecr . 1) 1

< D slla sl < S —lem?=em?0() . @12

where in the last equality we used the fact that, using (ii) of Lemma 8.1 and the definition of r,
one has acr = 4+ 0O(3). Next let 9(X,Y) = v(z,y) so that AD +cix —v0 = —xpz. Multiplying

1
a

AP — 4P = —Xp by P and integrating over T2, such energy estimate yields (ladl L2(1z) <
Sxpllzarz) = =0 and [[VPllg2rzy < 5llxgllere) = 7‘\/%- Since

A(D—P) 4 (0 — P)x — (0 — P) = —Px ,
this leads to

J

and therefore by Lemma 8.5

) A M
/ eX|o—Pl2dz < © / eX|Py2dz < 8
T2, Y T2, Y

Consequently, recalling (i) and (ii) of Lemma 8.1,

X (1960~ P)P + (0~ P)?) dz = c/ eXPy(i —P)dz

2 2
T TT

= ]c/T X (0= P)dZ | < elxpll o) lo = Pllpagay < creCT/Qﬁ\//E eX|i — P|2dZ
T

2. ,cr/2
ceretVeM a0y
y «
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Proof of Theorem 1.5. Using Lemmas 8.3 to 8.7, we can deduce from (8.6) that

6v2 J.(E) < QWCZQCT —anmcr?e” +yaA {/R2 xeN dz + crr (A O(é) + JT) }
= 21re’” — amerle™ "
2mer? /1 1 r
+raA { (5 — (/DK (r7)) + e (A (=) + ﬁ) }

1
< 27re® — amerle ™ + vaA {7rcr4 log(r + cmr (AO -+ —=
< . log(r ) ) ﬁ

Recall r = Biﬁ' When A is sufficiently large, we have 4\% < Ar = % +0(1) <

yaAmer?| log(ry/7)| < 2amer? | log (/)| v7 -

Choose Ag > 1 sufficiently large and restrict to A > Agy. This ensures that

<
N————
——

and thus

<
3\

2r [log(rvy)[v7 < 3

Hence

_ 1 1 Ary
6V2J.(E) < {2‘” "+ —aer + (AZO +)}
(E) < mr<2e acre gacr +ac(y (=) Wi

Now choose Ty(A) so large that for T > Tp one has 8Ay < /T and a,(A) so large that if o > o,

then
1 r

4By 8

14202 <

Thus we get
3
6vV2 J(E) < mr(2e” — acre™ + gacr)

Finally, recalling that accr = 4—1—0(%), by taking a, larger if needed, we conclude that J.(E) < 0.
Let E* := E — ae; with a € R chosen so that |[E?|, = 1. It follows that

J(E*) =e *J.(E) <O0. (8.13)

Recall E(c) represents a global minimizer of J, when subject to the constraint |E|. = 1. From
(3.18) we infer that liminf.g J.(E(c)) > 0. By (8.13)

jcp(E(Cp)) < jcp(Ea) <0= jcp(P)a

where P is the planar pulse of speed ¢,. Hence there exists ¢, < ¢, such that 7, (E(c,)) = 0; this
implies that E(c) is an unconstrained minimizer of 7.,. The minimizer E(c,) cannot be planar,
as it will violate the known uniqueness results [12] of speed for planar pulse as well as planar
front. In fact from Statement 2 of Theorem 1.4, we know the existence of a planar traveling
front moving with the speed cy; moreover ¢, < ¢, < c¢y. These make up a total of at least 3
co-existing waves for the same parameters in the specified range. O
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9 Appendix

In this section we are giving the proofs of some technical auxiliary results we used in this
paper, all of them being the counterpart in our periodic and weighted setting of results which in
the standard Euclidean setting are well known to the experts in Calculus of Variations or in the
theory of sets of finite perimeter. However we believe that those who are not experts in these
fields may find useful to have the proofs of these results available here. We start with the

Proof of Theorem 2.6. Step 1. We start by assuming that £ C ']I'QT is bounded. Since xg €
BV,(T%) by Lemma 2.2 we have that there exists a sequence of functions of u; € C*°(T2) such
that

uj = xe i Lg(Tf),  [1Dujlle(TF) — Pe(E;T7). (9-1)
Note also that since F is bounded and ypg takes only the values 0 and 1, from the proof of
Lemma 2.2 we have that the functions u; have equibounded supports and that 0 < u; <1 for
all j. From (2.3) and the coarea formula, see [4, Theorem 3.40], we get

1
HDujHe(TZT):/ ex\Duj(z)|dz:/ ds/ et dH. (9.2)
TZ, 0 {uj=s}

Forevery j € Nand s € (0,1), set Fj s = {u; > s} and observe that the sets F}; ; are equibounded.
Moreover, since each u; is a smooth function, by Sard’s theorem there exists a set N; C (0,1)
with zero Lebesgue measure such that for all s € (0,1) \ N; the level set {u; = s} contains no
critical points of u;. Thus, setting N = U;enNj, N has zero measure and, for every j € N and
every s € (0,1) \ N, F} 5 is a smooth open set with 0Fj s = {u; = s}.

From (9.1), (9.2) and (2.7), by Fatou lemma we have

Jj—0o0

1
P(E;T2) = lim ds/ e dH?
0 uj=s}
1 1
= lim [ P(Fjs;T7)ds > / lim inf P (F} ;T ds .
J—00 0 0 J—00
Note that it is always possible to choose t € (0,1) \ N such that
1
/ lim inf Pe(F) ; T3) ds > liminf Pe(Fj; T7) = lim Pe(F}, +; T)
0 J—7>® Jj—00 h—00

for a suitable strictly increasing sequence jp.
We claim that the sets Ej = Fj, ; approximate E in (weighted) area and in perimeter.
First, observe that by the above inequalities

P.(E;T2) > Jim Pe(Ep; T2).
—00

Moreover x5 — XE In LY(T2). Indeed
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Therefore, thanks to (9.1), we have

1 1
/2 em\th —xg|dz < max{t,l_t}/T% e’|uj, — xgldz =0 as h — oo.

T

1

i OC(T%), by the lower semicontinuity of the perimeter we have

Finally, since x B, ' XE in L
lim Pe(Ep;T7) > Pe(B;T7)
h—o0

This proves the convergence of the weighted perimeters. To conclude the proof of the theorem
in this case we have to satisfy the area constraint. To this aim we set Ej, = xpe; + Ep, where xp,
is chosen so that |Ep|.= | E|. Since X, — XE in LY(Qr), it follows that z;, — 0 and xg, — XE
in L1(T2). Moreover P.(Ep; T2) = e*nP,(Ep; T2) — Po(E;T2.).

Step 2. We now remove the assumption that E is bounded. Since E is a set of locally finite

perimeter, there exists a countable set Z C R such that HY(9*EN{z =t}) =0forallt € R\ Z.
Let EW be the set of points of density 1 at E which is defined as

E<1>::{zeﬂ%: nmmB”(z)’:1}.

r—0 7'('7’2

Recall, see [31, (5.19)], that E()) and E differ by as set of zero measure. By Fubini’s theorem
there exists an increasing sequence of positive numbers ¢, — +oo such that t;, € [0,00) \ Z and

/2
lim "X g (£tn, y) dy = 0. (9:3)

h—o00 7T/2
Set Fj, = E N {|z| < tp}. Then, since t ¢ Z, 0*F, = (0*E N {|z| < t,}) U (EW N {jz| = t4}),
up to a set of H! zero measure, see [31, Theorem 16.3]. Thus, recalling (2.7), we have

T/2 T/2
Pe(Fy; T7) =/ e” dH! +/ e "X g (—th, y) dy+/ " x o (th,y) dy -
* En{|z|<tp} ~T/2 /2

In view of (9.3) we have that P.(Fj,;T2) — P.(F;T2) as h — oo. Moreover, we have also that
XF, — XE in Lé(TQT) The conclusion then follows by a standard diagonalization argument,
applying to each F} the approximation result proved in Step 1 and then adjusting the weighted
area as before. O

We now give the proof of Proposition 4.3. The proof is based on the following lemma,
proved in [32, Lemma 4] in any dimension. In the 2-dimensional case, which is of interest here,
it reads as follows.

Lemma 9.1. Let A and Q2 be two smooth bounded open sets of R? and let da : R> — R be the
signed distance from the boundary of A defined by setting

di(z) = dist(z,0A4) if z€ A,
AT _dist(z,04) if 2 A,
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Then da is Lipschitz continuous and |Dda(2)| = 1 for a.e. z € R%. Moreover, if H (DANON) =

0, then
lim H'({z: da(z) =t} N Q) =H' (9AN Q). (9.4)

t—0

Following [32] we now define an auxiliary function, by considering the unique solution U,
of the differential equation
e+ 2Fy(Ue)
€

Ul =

c (9.5)
satisfying the condition U.(0) = 0. Note that U, is strictly increasing and for all ¢ € R
Ue(t)

0 \/€+2F0(8)

So there exists a unique p. > 0 such that Uc(p.) = 1. Moreover,

1
€
pez/ L ds< e
0 e+ 2Fu(s)

Having constructed U, as above, we define a Lipschitz increasing function x. : R — [0, 1], by
setting

0 if t<0,
Xe(t) = q Uc(t) if 0<t<p,
1 ift > pe.

Let us now give the

Proof of Proposition 4.3. Given a smooth bounded open set £ C T2 N {|z| < R} for some
R > 0, we denote by E its T-periodic extension to R2. We set for all ¢ € (0,1) and z € R?,
ve(2) = Xe(dg(2) 4 ne), where d is defined as in Lemma 9.1 and 7 € [0, p| is chosen so that

J

Such a choice is always possible since

J

Note that the periodicity of E yields that dz and v, are T-periodic in the y-direction. Moreover,

since E C (—R,R) x R and p, < /€ < 1, we have that v.(z,y) = 0 if |#] > R + 1. Note also,
that, up to translating a bit F in the y direction, we may always assume that

e"x2(dg(2) +ne) dz :/ e“dz.

2, E

ewxg(dﬁ(z))dzg/exdzg/ e"X2(dz(2) + pe) dz .
E T

2 2
T T

HY(OE N {(z,y) € R%: |y| =T/2}) =0. (9.6)
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By the coarea formula, we have, recalling that [Ddg| =1 a.e. and setting xo = X (0,00)

/;

T

jve — x| dz = /{|y|<T/z}'X€(dﬁ(z)+”€) xo(ds(2))| [Ddz(2)) dz

:/ dt/ IXe(d5(2) +ne) — xo(dg(2))] dH!
{dg=t}n{lyl<T/2}

:/_ Ixe(t+ne) = xo(O H' ({dp =t} 0 {ly| < T/2}) dt

< 2pc sup H'({dz =t} N{lyl <T/2}).

[t|<pe

Thus the convergence of ve to g in L*(T%) follows at once from (9.4), thanks to (9.6). Given
a positive integer n we subdivide the interval [-R — 1, R+ 1] in n subintervals whose endpoints
we denote by —R —1 = apn < a1, - < anyn = R+ 1, such that

2R+3
max (jn = Qj-1n) < :
Jj=1,...,n n

(9.7)

Moroever, since HY(OE N {z = t}) = 0 for all but countably many ¢ € R, we may always choose
the endpoints «a;, so that

Hl(aﬁﬂ{x:ajyn}):o forall » and j=0,1,...,n. (9.8)

Let us denote by R;,, the open rectangle R;,, = (®j—1n,jn) X (=1/2,T/2). We use the coarea
formula again to get

/TQTQ (6|D2’UE| )dz<zea”/]n (exe (dg ; z) + 1) +Fo(xe(d56(2)+ne))>dz
_ ieaj,n/ e (6U22(;+ ne) FO(Ue(z+776)))H1({dE _0nR A (9.9)
j= —Te

n Pe 12
<> e Sen / <6U€2 0, FO(U;(t))> dt,
=1 0

where we have set
Sejn = sup Hl({dE =t}NR;y).
[t|<pe

On the other hand, recalling (9.5), we have

Pe (eU?  Fy(Ue Pe e+ 2Fy(Ue
/ <€Ue n O(U)>dt§/ €+ O(U)dt
0 2 € 0 €

/\/e+2F0 YUl dt = /\/€+2F0 )ds .
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Observe that from (9.6) and (9.8) we have that H(OF N OR;,) = 0. Therefore, thanks to
Lemma 9.1, passing to the limit as € — 0 in (9.9), we get

Dv?  F !
limsup/ eg’f(e| 21)| + 0(v)> z<2eaan lim S,]n/ VeE+2Fy(s)ds
T%

e—0t € = e—0t

ZeO‘J"H (OE N R;»n) < (1 Zeaw—% 1n/ e” dH' .

j=1 aEﬂRj,n
The conclusion then follows recalling (9.7), letting n — oo in the previous inequality. O

In the remaining part of this Appendix we are going to prove the following regularity result
for the volume constrained minimizers of the functional /C..

Theorem 9.2. Let E C ']I'QT be a minimizer of the problem (3.2). Then E is an open set of class
CL for all a € (0, 3).

Remark 9.3. The above reqularity theorem actually holds in a stronger form. Indeed, take
a point zo = (x0,y0) € OE. From Theorem 9.2 we have that in a neighborhood U of zo the
boundary of E is the graph of a CY* function. Let us assume, without loss of generality, that
ENU = {(z,y) € U : y > f(x)} where f € CY*(I) for some open interval I containing
xg. Then, using the first variation formula (6.18), one can see that f satisfies the following
FEuler-Lagrange equation

P f(@). P @)] = 0 Lol @) 910)

where F' = F(z,u,z) : I X R xR — R is a smooth function such that F,, > 0. Therefore, if
o =0 then f € C*(I), hence E is a smooth open set.

If o >0, Loxe € W, ’p(TQ) forallp > 1 (see [27, Theorem 9.11]), hence L.xE € Cl’a(TQT)
for all a € (0,1). Therefore the function x — Lcxg(z, f(x)) is in CL(I) for all o € (0,1/2)
and from (9.10) we get that f € C3(I), hence OF is of class C>%, for all a € (0,1/2). Observe
now that in particular the function x — Lcxg(z, f(x)) is in CL(I) for all « € (0,1). Therefore,
arguing as above we conclude that OF is of class C3<, for all o € (0,1)

The proof of Theorem 9.2 will be a consequence of the general theory of perimeter almost
minimizers. We start by giving the definition of perimeter almost minimizer. Since we are only
dealing with planar sets we give all the relevant definitions and results of the theory only in this
setting. The standard notation EAF := (E\ F) U (F'\ E) will be employed for any two sets E
and F.

Definition 9.4. Given a set of locally finite perimeter E C R?, we say that E is an almost
minimizer of the perimeter in an open set U C R? if there exist a radius ro > 0 and a constant
w > 0 such that for every disk B,(z) C U with 0 < r < ro and any measurable set ' C R? such
that EAF CC B,(z) then

P(E;B,(z)) < P(F; B,(2)) 4+ wr?.

If the above inequality holds with w = 0 we say that E is a local minimizer of the perimeter.
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Thus an almost minimizer locally minimizes the perimeter in small balls with an error
of the order of the area of the ball. Our main tool to prove Theorem 9.2 will be the following
regularity theorem which is a variant of the celebrated regularity result of De Giorgi for perimeter
minimizers, see for instance [41, Theorem 1.9].

Theorem 9.5. Let E C R? be an almost minimizer of the perimeter in an open set U. Then
ENU is open and OENU is of class C for all oo € (0, %) Moreover, if E is a local minimizer
of the perimeter in U, then OE NU s analytic.

Before giving the proof of our Theorem 9.2 we need a couple of preliminary lemmas. The
first one is an immediate consequence of the facts that £, is self-adjoint with respect to the L?
inner product and of the inequality 0 < L.xg < % for a measurable set E.

Lemma 9.6. Let E, F C R? be two measurable sets with finite weighted measure in Qp. Then

‘/ e"(XELXE — XFLeXF) dz
Qp

2
< / e’|xg — xrldz . (9.11)
Y Jor

Lemma 9.7. Let E C T% be a minimizer of problem (3.2). For every R > 0 there exists a
constant C(R), depending only on R,c,o,T and v, such that whenever B.(z) C (—R,R) x R
and 0 < r < cT'/2, we have

P(Ee; Br(20)) < C(R)r, (9.12)

where Ec is the T-periodic extension of E. to R2.

Proof. Let B.(z9) C (—R,R) xR, 0 < r < ¢T'/2. Since E, is cT-periodic in the y direction, up to
translating it in the vertical direction, we may assume that B,(z9) CC (=R, R) x (—cT'/2,cT2).
Let F := {(z,y) € T4 : (z,cy) € E.U By(2)}. Note that F, = E. U B,(z9). Moreover,

0<|Fle—1= / e’(xr — xg)dz (9.13)
T%

J

As |F|. > 1, there exists h > 0 such that |F|, = e”. Setting F = F — hey, then |F|, = 1 and by
the minimality of E we have

1

C

1
e’ (xF. — XEC)dIU’ < / e dw < Lefir?,
or € JBy(20) c

Ko(E) < Ko(F) = e MK (F) < Ke(F) .
From this inequality we get, using (9.11) and (9.13),

V2 9 V2
> - . < 1=
PG(EC’ TCT) — ].2C

12¢
V2
12¢

o
Pe(FdTgT) +5

2/ e"(XrLexF — XELXE) dz
TQ

T

o \/§ ~
< 2P (Fu; %) + / e*|xr — xr|dz < ~o=Pe(Fu; T%) + Cr?,
'7 T2 12C

T
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where the constant C depends only on R, ¢,y and o. Therefore, recalling (2.7), from the above
inequality we obtain

12¢ ~
/ et dH < / er dH' + —CCTQ )
8" BonT2,. 0" (EcUB,(20))NT2, V2

In turn, if o > 7 is a radius such that By(z9) CC (—R, R) x (—cT'/2,cT'2), this last inequality
yields that

12¢ ~
/ e dH! < / e dH! + —=Cr?
9% EoB,(20) 9*(E.UBy(20))NB,(0) V2
12¢

< / B e® dH! +/ e dH + =Cr?.
0% EcN(By(20)\Br(20)) 9B (z0) V2

Thus, letting o | » we obtain

/ e® dH! < C(R)r,
0* E.NBr(z0)

that is (9.12). O
With this lemma in hands we can now give the

Proof of Theorem 9.2. Let E C T#% be a minimizer of the problem (3.2). We claim that for
every R > 0 the set E, is an almost minimizer of the perimeter in (=R, R) x R. Note that, by
Theorem 9.5, this claim implies that Ec is an open set of class C1@ for all a € (0, %) and thus
that the same is true for F.

To this end we fix a ball B.(z9) C (—R,R) x R with 0 < r < ¢T'/2 and 29 = (xg,y0). Up
to a vertical translation of the set we may assume that B,(z9) CC (=R, R) x (—cT/2,cT2).
We denote by G a set of locally finite perimeter in R? such that E.AG cC B, (z9). Let F =
{(z,y) € T2 : (z,cy) € G}, so that F. = GN (R x (—=cT/2,¢T/2)). Arguing as in the proof of
(9.13) we have

1l =1 < Ze™r?.

Therefore there exists h € R such that " = |F|. and
|h| < Cr?, (9.14)

for some constant C, depending only on R, c and T'. Setting F=ehF , from the minimality of
E we have that K.(E) < K.(F.) = e "K.(F). Thus, from Lemma 9.6 and (9.14) we obtain

6
,Pe(Ec; TZT) < eihlpe(Fc; TET) - E ex(XE»CcXE - e7hXF/~"cXF) dz
V2 J12,
_ boc :1: _p, boc .
= e "P(FiT2) — —= | € (xpLlexe — xpLexp)dz — (1—e™)— [ e"xpLlexrdz
V2 T2, V2 T2,

< e MP(F T + O,
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for some constant C depending only on R, ¢, T, v and o . Multiplying both sides of the above
inequality by e” we get
e"P(Ee; T ) < Po(Fu; T2p) + O

Since Pe(E.; T%.) < C(c, T, 7, o), this last inequality together with (9.14) yields that P.(E,; T?) <
Pe(G; ']I‘ET) + Cr? for a possibly larger constant C, and in particular

/ et dH! < / e® dH' + Cr?,
8*EcﬁBr(zo) 3*GHB7«(20)

from which, since for (z,y) € B,(z0), we have e ™" < % < 0",
e " P(Ey; By (20)) < eV P(G; Br(29)) + Cr2.

Multiplying both sides by e=%0~" we have e %" P(E,; B.(20)) < P(G; By(20)) + e~ ~"Cr?, from
which, recalling Lemma 9.7 we finally obtain, still denoting by C a possibly larger constant,

P(E¢; By(20)) < P(G; By(20)) + (1 — ¢7*")P(E; Br(20)) + Cr?
< P(G; B,(z0)) + CrP(E.; By (20)) + cr? < P(G; By(20)) + wr?,

for some constant w depending only on ¢, R, T,y and o. This proves that EC is a perimeter almost
minimizer in (—R, R) x R for all R > 0 and thus that E. is of class C1* for all a € (0, %) O]
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