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Abstract
We study needle formation at martensite/martensite macro interfaces in shape-memory

alloys. We characterize the scaling of the energy in terms of the needle tapering length
and the transformation strain, both in geometrically linear and in finite elasticity. We
find that linearized elasticity is unable to predict the value of the tapering length, as the
energy tends to zero with needle length tending to infinity. Finite elasticity shows that
the optimal tapering length is inversely proportional to the order parameter, in agreement
with previous numerical simulations. The upper bound in the scaling law is obtained by
explicit constructions. The lower bound is obtained using rigidity arguments, and as an
important intermediate step we show that the Friesecke-James-Müller geometric rigidity
estimate holds with a uniform constant for uniformly Lipschitz domains.
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1 Introduction
Shape-memory materials are special alloys that undergo a diffusionless solid-solid phase
transformation upon a change of temperature or stress. During nucleation, complex mi-
corstructures emerge, and these microscopic patterns seem to be closely linked to macro-
scopic properties of the materials [Bha92, BJ05, Jam19]. The patterns are usually modeled
in the framework of the phenomenological theory of martensite [BJ87], based on finite or lin-
earized elasticity. The linearized theory is widely used and has been proven to arise naturally
as Γ-limit of the nonlinear theory for small displacements [DNP02]. While the linearized
theory often provides a good approximation to the physical (nonlinear) setting, several math-
ematical results indicate that in various situations the linear theory can lead to qualitatively
different predictions, see e.g. [Bha92, Bha93, DM95, CK11, BKS19, CDPR+20].
During nucleation of martensite in an austenitic matrix, various interfaces between austen-
ite and martensite or between different martensitic variants are formed. We focus on in-
terfaces between different regions of laminated martensites, so called martensite/martensite
macrotwins. At such interfaces, one often observes needle-type microstructures, i.e., lami-
nates where the minority variant drops out at the interface (see Figure 1 and [BSK01]). We
point out that in many experiments, the needles show a more complex topological struc-
ture, and in particular branch close to the interface. This leads to different mathematical
challenges [KM92, KM94, CDKZ21], but we will focus here on simple needle structures as
sketched in Figure 2.
The mathematical treatment of such structures within the framework of the phenomenolog-
ical theory started with the work in [BSK01, BS02, SBKB01, SBP+02]. In [BSK01], the
authors used a static variational model based on linearized elasticity and were able to predict
the bending angle at which the needle meets the interface, in terms of the measured tapering
length of the needle. We point out that the authors here did not intend to make predictions on
the tapering length from the theory. Related problems of optimal needle shapes near marten-
site/martensite or martensite/austenite interfaces have since then been studied extensively,
both in the analytical and the numerical literature, see e.g. [Sal91, BS02, Li01, SBKB01,
SBP+02, LRP13, LR15, BO09, FLBGS10, SMF19, CLL+20]. In many numerical simu-
lations, it has been observed that numerical schemes with geometrically linearized elastic
energies are unstable or do not reproduce the experimental results while geometrically non-
linear models appear more appropriate.
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Figure 1: Left: Experimental (high-resolution transmission electron microscopy) image of
needles in the Ni65Al35 shape-memory alloy, from Boullay, Schryvers and Kohn [BSK01,
Fig. 5]. Right: Experimental (optical microscopy with polarized light) image of needles in
the Cu14Al3.9Ni shape-memory alloy, courtesy of Chu and James [Chu93, CJ95]. The two
pictures show a similar phenomenon at very different length scales, of the order of a few
nanometers on the left, and of a fraction of a millimeter on the right.

We follow here the recent approach from the numerical study in [CLL+20]. We aim at a bet-
ter understanding of length scale of such needle structures, in particular the tapering length.
To determine this length in terms of the material parameters, a shape optimization problem
for the parametrized needle shape is considered.
Let us finally comment on some simplifications that have been proposed in the literature. The
most popular simplification is the linearization of the elastic energy (see, e.g., [BSK01]). In
this note, we will underline the numerical findings from [CLL+20] that the linearized theory
is not appropriate to determine the tapering length. More precisely, we show (see Theo-
rem 3.1) that for any energy-minimizing sequence in the geometrically linearized setting,
the tapering lengths tend to infinity. This is in accordance with several other numerical find-
ings in which it was observed that the geometrically linear model does not yield the expected
results (see [BO09, FLBGS10, CLL+20]).
In [ZJM09, Zwi14], a related problem of needle-type microstructures near austenite/martensite
interfaces has been investigated. There, the situation is simplified by assuming constant gra-
dient in the very thin needles. Although one does not expect a large contribution to the elastic
energy from these small domains, our analysis here indicates that the optimal energy scaling
is not preserved under this simplification. Indeed, a significant effect seems to come from
rotations at rather large angles (comparable to the shear in the variants).

Let us start with a brief qualitative explanation of the relevant effects. We work in two
dimensions, and denote the eigenstrains of the two martensitic variants by

Aδ =

(
1 δ
0 1

)
, Bδ =

(
1 −δ
0 1

)
. (1.1)

We start from the large-scale picture, as summarized in Figure 2 and 3. On the far right there

3



e

e⊥

eθ,δ

e⊥θ,δ

Q∗A

A

B

Figure 2: Sketch of the geometry. The right picture is based on data from the numerical
simulation in [CLL+20].
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Figure 3: Sketch of the geometry around a martensite / twinned martensite interface. This
geometry is often called a macrotwin.

is a laminate between Aδ and Bδ, with volume fraction θ ∈ (0, 1); its average deformation is
F := θAδ +(1−θ)Bδ. On the left of the macro interface we have only variant Aδ, but with a
different rotation Q∗ ∈ SO(2). Compatibility of the macro interface implies that Q∗Aδ − F
is rank-one, and the orientation eθ,δ of the macro interface is characterized by the condition
(Q∗Aδ − F )eθ,δ = 0. This fixes both Q∗ ∈ SO(2) and eθ,δ as functions of θ and δ, details
are given in Lemma 2.1 below (see also Figure 2). As Q∗ 6= Id, the two regions in the Aδ
variant are not rank-one compatible, rank(Aδ −Q∗Aδ) = 2.
In the geometry of Figure 2, needles are structures by which the volume fraction of the
Aδ phase varies from 0 close to the macro interface to the asymptotic value θ at large x1.
For this qualitative discussion we use non-orthogonal coordinates and assume that x1 = 0
corresponds to the macro interface. The entire construction is affine-periodic in the direction
of the macro interface, with a periodicity condition given by the macroscopic deformation
on the left, u(x + eθ,δ) = Q∗Aδeθ,δ = Feθ,δ. For definiteness, let us assume that the period
is 1, and denote by ` > 0 the characteristic length scale in the x1 direction. For any x1,
let a(x1) be the volume fraction (averaged over one period) of the Aδ phase at given x1;
correspondingly b(x1) for the Bδ phase. Obviously, a(x1) + b(x1) = 1 for all x1, and by the
boundary conditions a(0) = 0, whereas a(x1) ∼ θ and b(x1) ∼ (1− θ) for x1 � `.
If no rotation is present, and the energy is exactly zero, necessarily ∂2u1 = δ in phase
Aδ, and −δ in phase Bδ. The vertical average of ∂2u1 over one period is then (a − b)δ,
which matches the periodicity requirement only if a = θ and b = 1 − θ. We next include
infinitesimal rotations in the picture, assuming that the rotation angle depends on x1 but not
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on x2. In particular, if β(x1) is the average lattice rotation angle at given x1, then one has
∂1u2 = δ + β in the Aδ and ∂1u2 = −δ + β in the Bδ phase, with ∂1u2 = −β everywhere.
Equating the vertical average to the one required by the periodicity leads to

(a(x1)− b(x1))δ + β(x1) = (2θ − 1)δ. (1.2)

This relation between tapering profile and rotation was first studied in [BSK01], it permits
in particular to express β in terms of a and b. Treating the individual layers as elastic plates,
we see that the change in lattice rotation β′(x1) generates a bending energy depending on the
curvature, and proportional to ∫ `

0

(
d

dx1

β(x1))2dx1. (1.3)

Inserting the previous expression for β leads to minimizing

δ2

∫ `

0

(a′ − b′)2dx1, (1.4)

which yields naturally a(x1) = 1− b(x1) ' θx1/` for x1 ∈ (0, `). Therefore the total energy
is proportional to δ2θ2/`, and the optimal value for ` is ∞ (see Theorem 3.1 below for a
precise statement). The geometrically linear model is unable to predict a finite length scale.
With finite elasticity a new term enters the picture. Indeed, in the matrix product

RβAδ =

(
cos β sin β
− sin β cos β

)(
1 δ
0 1

)
=

(
cos β δ cos β + sin β
− sin β cos β − δ sin β

)
(1.5)

(and the same with Bδ) there are more nontrivial entries. The ∂2u1 term, similarly to (1.2)
above, prescribes β(x1) in terms of a(x1)− b(x1); the ∂1u1 and ∂1u2 terms are not important
for the same reason as above. However, periodicity requires ∂2u2 to have average 1, so that
|∂2u2 − (RβAδ)22| ∼ 1

2
β2 + δβ. The total energy density is then of order β′2 + β2δ2, and

balancing terms one obtains that the characteristic length scale is ` ∼ 1/δ. We refer to
Proposition 4.3 below for a precise construction. As in (1.2) we have β ∼ δθ, and therefore
this results in a total energy scaling as θ2δ3, as specified in Theorem 4.2 below.
These results are made precise below. We first formulate a precise mathematical model for
the needle geometry following [ZJM09, CLL+20], with boundary conditions that fix the
long-range structure and the topology but leave the shape of the domain boundaries free.
The key assumptions are affine-periodic boundary conditions along the macro interface, a
boundary data corresponding to a laminate at large x1, and the fact that the phase bound-
aries are Lipschitz functions. We then provide, separately in the linear and in the nonlinear
case, explicit upper-bound constructions which make the above arguments rigorous. We
finally show that these constructions are, up to universal factors, optimal, by providing cor-
responding lower bounds on the energy. This involves minimizing not only over the elastic
deformation, but also over the phase interfaces, and hence over the shape of the domains of
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the different phases. We present in Section 2 the model, in Section 3 the linear results, and
in Section 4 the nonlinear results.
One important difficulty in proving the lower bound is that one has to deal with Sobolev
functions on varying domains. Our argument in particular uses a trace theorem, a Poincaré
inequality, and a geometric rigidity inequality with constants which are uniform for uni-
formly Lipschitz domains. Whereas the first two are already present in the literature, the
geometric rigidity estimate has, to the best of our knowledge, up to now only been proven
with domain-dependent constants, even if uniformity of the constant for certain classes of do-
mains has been formulated in the literature without explicit proof (for example, [BCDM02,
Prop. 1]), and used in the study of microstructures near austenite/martensite interfaces (see
e.g. [ZJM09, Zwi14]). We provide in Section 5 a full proof of the uniform geometric rigidity
inequality for a general class of domains, which we believe to be of independent interest.
The key ingredient is a uniform weighted Poincaré inequality, which also permits to easily
obtain as byproducts uniform trace and Poincaré estimates.

2 Kinematics and reduction to a 2D problem
We describe the crystallographic situation under consideration (see also [BSK01]) building
on the crystallographic theory of martensite (see [BJ87]). We consider a macrotwin using
two martensitic variants, given by wells SO(3)U1 and SO(3)U2. We make the standard
assumption that the transformation stretch matrices are positive definite with detU1 = detU2

and nontrivial in the sense that U1 6∈ SO(3)U2. If laminates with gradients in the two wells
are possible, then the wells are rank-one connected, i.e., there exist R̃ ∈ SO(3), and non-zero
vectors a, n ∈ R3 such that

R̃U2 − U1 = ã⊗ ñ.
It is shown in [BJ92] that under these assumptions, we may without loss of generality (up to
a linear change of variables) restrict to matrices of the form

Aδ := Id + δe⊗ e⊥, and Bδ := Id− δe⊗ e⊥ (2.1)

for some orthogonal unit vectors e, e⊥ ∈ R3 with δ > 0. Here, δ > 0 measures the shear,
and we will focus on the case of small and moderate strains, |δ| ≤ 1, and in particular on
the limit δ → 0. While we consider the three-dimensional setting, it turns out that in our
analysis, we may restrict to a two-dimensional simplification since, as shown in [BJ91], the
optimal strains are plane strains, cf. Remark 2.2(iii). Specifically, we shall work in the
plane spanned by e and e⊥, and denote by f ∈ R3 a unit vector perpendicular to that plane.
Following [BJ87], the normals to the laminate and macrotwin interfaces can be determined
from the crystallographic theory of martensite. For that, we collect the necessary linear
algebra results in this section.
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2.1 Nonlinear elasticity
In the setting of nonlinear elasticity, the direction of the macro interface is not orthogonal to
the one of the laminate, as illustrated in Figure 2. We denote the orientation of the macro
interface (in the plane orthogonal to f ) by

eδ,θ :=
1√

1 + (δθ)2
(e⊥ − δθe). (2.2)

This expression arises as the unique (up to a sign) nontrivial solution of the rank-one com-
patibility condition betweenAδ and the weighted average of θAδ+(1−θ)Bδ. We summarize
the relevant algebraic conditions in the next Lemma. All assertions can be checked by direct
computation, see for example [Bha03].

Lemma 2.1 Let (e, e⊥, f) be an orthonormal basis of R3, δ ∈ R\{0}, θ ∈ (0, 1), and let Aδ
and Bδ be the matrices given in (2.1). Then there holds:

(i) Aδ −Bδ = 2δe⊗ e⊥.

(ii) The equation

QAδ − (θAδ + (1− θ)Bδ) = b⊗ n, Q ∈ SO(3), b ∈ R3, n ∈ S2 (2.3)

has four solutions. Two of them are (Id,±(1 − θ)2δe,±e⊥), the other two have the
form (Q∗,±b∗,±eδ,θ), where b∗ ∈ R3,

e⊥δ,θ := − e+ δθe⊥√
1 + (δθ)2

(2.4)

and

Q∗ :=
1− δ2(1− θ)2

1 + δ2(1− θ)2

(
e⊗ e+ e⊥ ⊗ e⊥

)
+

2δ(1− θ)
1 + δ2(1− θ)2

(
e⊥ ⊗ e− e⊗ e⊥

)
+ f ⊗ f.

(2.5)

In particular,

Q∗Aδeδ,θ = (θAδ + (1− θ)Bδ)eδ,θ. (2.6)

(iii) There is a unique R0 ∈ SO(3) such that

Q∗Aδ −R0Bδ = a⊗ e for some a ∈ R3. (2.7)
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The rotation R0 is given by

R0 = Q∗

(
1− δ2

1 + δ2

(
e⊗ e+ e⊥ ⊗ e⊥

)
+

2δ

1 + δ2

(
e⊗ e⊥ − e⊥ ⊗ e

)
+ f ⊗ f

)
=

1 + δ4(1− θ)2 − δ2(−2 + 2θ + θ2)

(1 + δ2)(1 + δ2(1− θ)2)
(e⊗ e+ e⊥ ⊗ e⊥) +

+
2δ(1 + δ2(1− θ))θ

(1 + δ2)(1 + δ2(1− θ)2)
(e⊗ e⊥ − e⊥ ⊗ e) + f ⊗ f (2.8)

(iv) All matrices act trivially on f , i.e.,

Aδf = Bδf = Q∗f = R0f = f. (2.9)

We shall in Section 4 consider a macrotwin with normal e⊥δ,θ, and twin plane normal e⊥ deep
in the laminate on the right hand side of the macrotwin, see Figure 3.

Remark 2.2 (i) It follows from (2.2) that eδ,θ → e⊥ as δ → 0, but eδ,θ 6= e⊥ for finite δ.

(ii) If |δ| and θ are small, then the rotation Q∗ as given in (2.5) is a rotation by roughly
2δ(1− θ), while R0 is a rotation by roughly −2δθ. In particular, both rotations are of
order δ.

(iii) Motivated by assertion (iv) of Lemma 2.1, we make the following simplification: We
consider only deformations u satisfying ∇uf = f , and, slightly abusing notation, we
identify the matrices introduced above with their restrictions to the plane spanned by
e and e⊥.

2.2 Linearization
We now turn to the geometrically linearized setting. Precisely, for the small strain case
|δ| � 1, we linearize around the identity and define the strain matrices

Alin :=
Aδ − Id

δ
= e⊗ e⊥, Blin :=

Bδ − Id
δ

= −e⊗ e⊥. (2.10)

We denote by ξsym := 1
2
(ξ + ξT ) the symmetric part of a matrix, so that

Alin
sym =

1

2
(e⊗ e⊥ + e⊥ ⊗ e) and Blin

sym = −1

2
(e⊗ e⊥ + e⊥ ⊗ e). (2.11)

We note the geometrically linearized compatibility properties.

Lemma 2.3 Suppose that θ ∈ (0, 1), and let Alin
sym and Blin

sym be given by (2.11). Then there
holds:
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(i) Alin
sym −Blin

sym = e⊗ e⊥ + e⊥ ⊗ e.

(ii) θAlin
sym + (1− θ)Blin

sym − Alin
sym = (θ − 1)(e⊗ e⊥ + e⊥ ⊗ e).

(iii) The equation (Alin
sym − Blin

sym − S)v = 0 has a solution S ∈ R2×2
skw if and only if v is

parallel to either e or e⊥.

Proof: The proof follows from a direct computation. 2

In particular, in the geometrically linearized setting, both, the macrotwin and the laminates
can have normals e or e⊥. The main difference to the geometrically nonlinear setting is that
the compatibility plane between the two variants is aligned with the compatibility plane of
the macrotwin.

3 Energy scaling in the geometrically linearized setting
Following [BSK01], we first consider the geometrically linearized setting. With the strain
matrices Alin

sym and Blin
sym as defined in (2.11), we are led to study the geometrically linearized

shape optimization problem involving the displacement. We consider a periodic cell of a
macrotwin using linearized kinematics (see, e.g., [Bha92]) and briefly recall the setting.
By Lemma 2.3(i), there are two possible directions for Alin

sym/B
lin
sym laminates, given by the

normals e and e⊥. Deep in the twinned region on the right-hand side of the macrotwin, we
choose the twin planes to be parallel to e, and the macrotwin plane parallel to e⊥. Since
we work in an orthogonal coordinate system, for the ease of notation, we set e1 := e and
e2 := e⊥, and for x ∈ span{e, e⊥} = R2, we use the notation

x1 := x · e1 = x · e, x2 := x · e2 = x · e⊥, and x = (x1, x2).

We describe the needle by the two confining curves f± : [0,∞) → R which we assume to
be measurable and satisfy

f− ≤ f+ ≤ f− + 1 and f+(0) = f−(0)= 0, (3.1)

see Figure 4. Note that we do not impose any regularity assumptions on f± but to get closer
to the experimental results, we could also impose a length or Lipschitz condition without
changing the results, see Remark 3.2(i).
We assume that the displacement v ∈ W 1,2

loc (R2;R2) obeys the periodicity condition

v(x+ e2)− v(x) =
(
θAlin + (1− θ)Blin

)
e2 = (−1 + 2θ)e1, (3.2)
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Figure 4: Sketch of the parametrization of the domain in the geometrically linear setting.

and we consider the two sets

ω̂A := {x ∈ R2 : x1 ≤ 0} ∪
{
x ∈ R2 : x1 > 0, x2 ∈

⋃
k∈Z

[
k + f−(x1), k + f+(x1)

)}
(3.3)

and its complement,

ω̂B :=

{
x ∈ R2 : x1 > 0, x2 ∈

⋃
k∈Z

[
k + f+(x1), k + 1 + f−(x1)

)}
. (3.4)

We further assume that there is ` > 0 such that for x1 ≥ ` the deformation coincides with a
simple laminate, in the sense that there is η ∈ R such that

f−(x1) = η and f+(x1) = η + θ for x1 ≥ `, (3.5)

and

∇v(x) =

{
Alin, if x ∈ (`,∞)× ∪k∈Z(k + η, k + η + θ),

Blin, if x ∈ (`,∞)× ∪k∈Z(k + η + θ, k + 1 + η).
(3.6)

These conditions characterize the class of admissible configurations

A(`)
lin :=

{
(f±, v) : ∃η ∈ R s.t. f± satisfy (3.1) and (3.5), v satisfies (3.2) and (3.6)

}
. (3.7)

As the experimental results indicate that ` is large (see Figure 1), we restrict ourselves to the
case ` ≥ 1. By periodicity, for the computation of the energy it suffices to integrate over one
period, and therefore to consider

ωA,B := ω̂A,B ∩ (R× (0, 1)) (3.8)
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(alternatively, one could take for x1 > 0 only the k = 0 contribution in (3.3) and (3.4), by
periodicity the two choices are equivalent). The elastic shape optimization problem is then
to minimize

Elin[f
±, v] :=

∫
ωA

1

2
C(e(v)− Alin

sym) · (e(v)− Alin
sym)dx (3.9)

+

∫
ωB

1

2
C(e(v)−Blin

sym) · (e(v)−Blin
sym)dx

over A(`)
lin . Note that we minimize with respect to both the configuration given by f± and the

displacement v. Here we denote the symmetric part of the gradient by e(v) := 1
2
(∇v+∇Tv),

and C represents the elastic modulus which satisfies the standard boundedness and coercivity
properties, i.e. C(ξ − ξT ) = 0 for all ξ and there exists α > 0 such that

α|ξsym|2 ≤ Cξ · ξ ≤ 1

α
|ξsym|2 for all ξ ∈ R2×2. (3.10)

The energy functional (3.9) does not contain any interfacial energy term penalizing the
lengths of the interfaces parametrized by f±. Typically such terms are necessary to identify
the appropriate length scale on which the twin structures form. In our setting of a periodic
cell, however, it is of higher order as long as the curves are sufficiently regular.
We find the following scaling law for the minimal energy.

Theorem 3.1 There is a constant c > 0 such that for all θ ∈ (0, 1/2] and all ` ≥ 1, we have

1

c

θ2

`
≤ inf

{
Elin[f±, v] : (f±, v) ∈ A(`)

lin

}
≤ c

θ2

`
.

Remark 3.2 (i) We derive the scaling law for the minimal energy without regularity as-
sumptions on f± but the upper bound uses only a Lipschitz profile with Lipschitz con-
stant bounded by one.

(ii) If on the right boundary we impose boundary conditions only on f± (see (3.1)) but
not on the deformation (see (3.6)) then the infimum of the energy is zero. The reason
for that is that in the linearized setting we can have a strain-free Alin

sym/B
lin
sym interface

along the macrotwin plane {x1 = 0} (a fact that will also be used in the proof of the
upper bound below). Precisely, consider for n ∈ N the configuration

f−n ≡ 0, f+
n (x1) =


0, if x1 ≤ `− 1

n
,

θnx1 + θ(1− n`), if `− 1
n
< x1 ≤ `,

θ, if x1 > `,

11



with displacement

vn(x) = (2θ − 1)x2e1 +

{
2(1− θ)x1e2, if x1 ≤ 0,

−2θx1e2, if x1 > 0.

Then f±n satisfy (3.1) and (3.5) with η = 0, and vn satisfies the periodicity condition
(3.2). Further, v ∈ W 1,∞

loc (R2;R2) with

e(vn) =

{
Alin

sym, if x1 < 0,

Blin
sym, if x1 > 0,

and therefore,

0 ≤ Elin[f±n , vn] ≤
∫ `

`−1/n

∫ f+n (x1)

0

1

α

∣∣Alin
sym −Blin

sym

∣∣2 dx2 dx1 ≤
θ

αn
,

which implies that limn→∞ Elin[f
±
n , vn] = 0.

(iii) The scaling law in Theorem 3.1 implies that the tapering length of needles is not de-
termined by linearized elasticity. Precisely, setting ` = ∞, the infimum of the energy
equals zero, which implies that the optimal tapering length of the needle in this lin-
earized setting is infinite, contradicting the experimental findings.

(iv) If one interprets the linearized energy as an approximation to the nonlinear energy (cf.
(2.10)), the resulting energy scaling is δ2θ2/`.

Proof: Upper bound. To prove the upper bound, i.e., the second inequality in the assertion,
we use a special case of the construction from [BSK01, Figure 4], which makes precise the
sketch discussed in the introduction (see (1.2)–(1.4)). We set

f−(x1) := 0, η := 0, and f+(x1) :=

{
θ
`
x1, if x1 ∈ [0, `),

θ, if x1 ≥ `.
(3.11)

Then f± satisfy (3.1) and (3.5). We first describe the associated displacement v = (v1, v2)
for x1 ≥ 0. Precisely, we set

v1(x) :=

{
x2

(
1− 2θ x1

`
+ 2θ

)
− 2θ x1

`
+ 2θ, if 0 ≤ x1 ≤ ` and 0 ≤ x2 ≤ θ

`
x1,

−
(
2θ
(
x1
`
− 1
)
x2 + x2

)
+ 2θ, if 0 ≤ x1 ≤ ` and θx1

`
< x2 ≤ 1,

(3.12)

and

v2(x) :=
θ

`
x2

1 − 2θx1 + θ` for 0 ≤ x1 ≤ `. (3.13)
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We then extend the displacement constantly in x1, i.e., we set

v(x1, x2) = v(`, x2) for x1 > `.

As v(x1, 1)− v(x1, 0) = (2θ− 1)e1 we can extend it affine-periodic to R2 using (3.2). Then
v ∈ W 1,2

loc ((0,∞) × R;R2) satisfies (3.2) and (3.6). For the gradients, we have inside the
needle, i.e., for 0 ≤ x1 ≤ ` and 0 ≤ x2 ≤ θx1/`

∇v(x) = −2θ

`
(x2 + 1)e1 ⊗ e1 + (1− 2θx1

`
+ 2θ)e1 ⊗ e2 +

(
2θx1

`
− 2θ

)
e2 ⊗ e1

and thus

e(v)(x) = Alin
sym −

2θ

`
(x2 + 1)e1 ⊗ e1. (3.14)

Outside the needle for 0 ≤ x1 ≤ ` and θx1/` ≤ x2 ≤ 1, we have

∇v(x) = −2θx2

`
e1 ⊗ e1 −

(
2θx1

`
− 2θ + 1

)
e1 ⊗ e2 +

(
2θx1

`
− 2θ

)
e2 ⊗ e1,

and thus

e(v)(x) = Blin
sym −

2θx2

`
e1 ⊗ e1. (3.15)

For x1 < 0, we extend v such that the elastic energy in {x1 < 0} vanishes. Precisely, we set

v1(x) := v1(0, x2) = 2θx2 − x2 + 2θ, and
v2(x) := 2(1− θ)x1 + θ`.

Then e(v) = Alin
sym in {x1 < 0}, v is continuous in R2 and is admissible. By (3.14) and

(3.15), we find with that there is a constant (not depending on ` or θ) such that by (3.10)

Elin[f
±, v] =

∫
ωA∩{x1>0}

1

2
C(e(v)− Alin

sym) · (e(v)− Alin
sym)dx

+

∫
ωB

1

2
C(e(v)−Blin

sym) · (e(v)−Blin
sym)dx

≤ c

∫
(0,`)×(0,1)

θ2

`2
dx ≤ c

θ2

`
. (3.16)

This concludes the proof of the upper bound. For later reference we remark that f+ and f−

are θ/`-Lipschitz.

13



Lower bound. Let c̃ > 0 be a fixed (small) constant chosen below. Let (f±, v) ∈ A(`)
lin be an

arbitrary admissible configuration. If the elastic energy on the left hand side of the interface
is large, i.e., ∫

(−1,0)×(0,1)

|e(v)− Alin
sym|2dx ≥ c̃

θ2

`

then the assertion follows. Hence, from now on, we assume that∫
(−1,0)×(0,1)

|e(v)− Alin
sym|2dx < c̃

θ2

`
.

Thus, by Korn’s inequality, there exists a constant cK > 0 and an infinitesimal rotation
W := w(e2 ⊗ e1 − e1 ⊗ e2) ∈ R2×2

skew with some w ∈ R such that∫
(−1,0)×(0,1)

∣∣∇v(x)− Alin −W
∣∣2 dx ≤ c̃cK

θ2

`
,

and hence in particular, ∫
(−1,0)×(0,1)

|∂2v1 − 1 + w|2dx ≤ c̃cK
θ2

`
.

By Fubini’s theorem and Hölder’s inequality, there exists x∗1 ∈ (−1, 0) such that∫ 1

0

|∂2v1(x∗1, x2)− 1 + w|dx2 ≤ c̃1/2c
1/2
K

θ

`1/2
. (3.17)

By (3.2), this implies that

|(−1 + 2θ)− (1− w)| =
∣∣∣∣∫ 1

0

∂2v1(x∗1, x2)dx2 − 1 + w

∣∣∣∣ ≤ c̃1/2c
1/2
K

θ

`1/2
. (3.18)

We finally note that using Poincaré’s inequality and (3.17), there exists b1 ∈ R such that∫ 1

0

|v1(x∗1, x2)− (1− w)x2 − b1| dx2 ≤ c̃1/2c
1/2
K

θ

`1/2
.

With (3.18) we can eliminate w and obtain∫ 1

0

|v1(x∗1, x2)− (2θ − 1)x2 − b1| dx2 ≤ 2c̃1/2c
1/2
K

θ

`1/2
. (3.19)

We now consider the slice at x1 = `. By (3.6) and the condition θ ≤ 1/2, there exists an
interval (t, t+1/4) ⊂ (0, 1) (depending on η) of length 1/4 such that ∂2v1(`, ·) = (Blin)12 =
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−1 and therefore v1(`, x2) = b2 − x2 on this interval. However by (3.19) v1(x∗1, x2) is close
in L1 to a different affine function than v1(`, x2). We thus estimate the energy from below
with this difference using Hölder’s and triangle inequality,

Elin[f
±, v] ≥

∫
(−1,`)×(0,1)

|∂1v1|2dx ≥
∫

(x∗1,`)×(t,t+ 1
4

)

|∂1v1|2dx ≥
4

`

(∫
(x∗1,`)×(t,t+ 1

4
)

|∂1v1|dx
)2

≥ 4

`

(∫ t+1/4

t

∣∣∣∣∣
∫ `

x∗1

∂1v1 dx1

∣∣∣∣∣ dx2

)2

=
4

`

(∫ t+1/4

t

|v1(`, x2)− v1(x∗1, x2)| dx2

)2

.

If c̃ > 0 is chosen small enough such that c̃1/2 ≤ 1

128c
1/2
K

, then for all ` ≥ 1, by v1(`, x2) =

b2 − x2 and (3.19)∫ t+1/4

t

|v1(`, x2)− v1(x∗1, x2)| dx2

≥
∫ t+1/4

t

|b2 − b1 − 2θx2|dx2 −
∫ t+1/4

t

|v1(x∗1, x2)− (2θ − 1)x2−b1|dx2

≥ 1

32
θ − 2(c̃cK)1/2 θ

`1/2
≥ 1

64
θ,

and hence

Elin[f
±, v] ≥ θ2

1024`
.

This concludes the proof of the lower bound. 2

The fact that the minimal energy tends to zero as `→∞ indicates that we cannot existence
of minimizers for the problem on the infinite domain. We show that this is indeed the case,
at least if we prescribe that the phase boundaries are uniformly Lipschitz.

Proposition 3.3 Let L ≥ 1.

(i) For any ` ≥ 1 there exists a minimizer (f±, v) of Elin in

B(L,`)
lin :=

{
(f±, v) ∈ A(`)

lin : f± L-Lipschitz
}
.

(ii) For B(L)
lin :=

⋃
`>0 B

(L,`)
lin , there holds

inf
B(L)
lin

Elin = 0,

and there exists no minimizer.
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Proof: (i). Let ` ≥ 1. By (3.16) we have infB(L,`)lin
Elin < ∞. Let (f±n , vn) be a min-

imizing sequence. Then by the Lipschitz condition and (3.1), we have a uniform bound
supn ‖f±n ‖C0,1([0,`]) < ∞. By Arzelà-Ascoli, there exists a subsequence (not relabeled, the
same subsequence for f+ and f−) such that f±n → f± uniformly on [0, `], which implies
f±(0) = 0, (f+−f−)(`) = θ, f− ≤ f+ ≤ f−+1, and f± ∈ C0,1([0, `]) with Lip(f±) ≤ L.
From boundedness of the energy, we get that supn ‖e(vn)‖L2((−∞,`)×(0,1)) <∞. Since the pe-
riodicity condition (3.2) fixes that the average of (∇vn)12 is−1+2θ, this implies a bound on
the full gradients, supn ‖∇vn‖L2((a,`)×(0,1)) <∞ for all a < 0. By adding a constant, we can
assume without restriction that all vn have mean zero over (0, 1)2, and thus by Poincare’s
inequality, we obtain a subsequence that converges weakly in W 1,2

loc (R2;R2) to an admis-
sible function v ∈ W 1,2

loc (R2;R2). The boundary condition and the periodicity condition
immediately pass to the limit. It remains to estimate the energy of the limit. Let ε > 0.
Then, by uniform convergence, there exists N ∈ N such that for all n ≥ N , we have
graph(f±n )⊂Bε(f

±) := {x ∈ R2 : dist(x, graph(f+) ∪ graph(f−)) < ε}. Then by lower
semicontinuity, ∫

ω
(n)
A

1

2
C(e(vn)− Alin

sym) · (e(vn)− Alin
sym)dx

≥
∫
ω
(n)
A \Bε(f±)

1

2
C(e(vn)− Alin

sym) · (e(vn)− Alin
sym)dx

≥
∫
ωA\Bε(f±)

1

2
C(e(v)− Alin

sym) · (e(v)− Alin
sym)dx,

and analogously in ω(n)
B . Taking ε→ 0, the assertion follows.

(ii). By the upper bound of Theorem 3.1, we obtain for `→∞ a sequence (f±` , v`) ∈ B
(L,`)
lin

such that lim`→∞ Elin[f
±
` , v`] = 0. On the other hand, let (f±, v) ∈ B(L)

lin . Then there exists
` > 0 such that (f±, v) ∈ B(L,`)

lin , and by the lower bound of Theorem 3.1, Elin[f
±, v] > 0. 2

4 Energy scaling in the geometrically nonlinear setting
It appears that in the geometrically nonlinear setting, the qualitative behavior of the minimal
energy is rather different. On a technical level, the main difference seems to be that the
macrotwin habit plane eδ,θ is not parallel to a plane of compatibility of the two wells e⊥.
Recall that this property was in particular used to extend the test function in the upper bound
of Theorem 3.1 with vanishing energy to the left-hand side of the interface.
We first introduce the setting, using the notation from Lemma 2.1. As in Section 3, we
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assume without loss of generality e := e1 and e⊥ = e2. We recall the definitions

eδ,θ :=
1√

1 + (δθ)2
(e2 − δθe1), e⊥δ,θ := − 1√

1 + (δθ)2
(e1 + δθe2). (4.1)

We shall impose the following periodicity condition on admissible deformations

u(x+ eδ,θ) = u(x) + (θAδ + (1− θ)Bδ)eδ,θ for all x∈ R2. (4.2)

To parametrize the needle shapes, let f± : [0,∞)→ R be measurable and such that

f− ≤ f+ ≤ f− + 1 and f+(0) = f−(0) = 0. (4.3)

(Later on, we will assume that they are L-Lipschitz.)
The periodicity condition (4.2) suggests that we use the non-orthogonal coordinates intro-
duced by the macrotwin, see Figure 2. Precisely, we define the linear map Tδ,θ : R2 → R2

by
Tδ,θ := (eδ,θ · e2)e1 ⊗ e1 + eδ,θ ⊗ e2. (4.4)

We also define d, g : R2 → R by

d(x) :=
x · e2

eδ,θ · e2

= e2 · T−1
δ,θ (x), g(x) := −

x · e⊥δ,θ
(eδ,θ · e2)2

= e1 · T−1
δ,θ (x), (4.5)

which is equivalent to
T−1
δ,θ (x) = g(x)e1 + d(x)e2. (4.6)

Note that d(e1) = 0 and d(eδ,θ) = 1, so that bd(x)c ∈ Z is the index of the period x is
in. In turn, g(x) denotes the coordinate along the needle, which corresponds to x1 in the
geometrically linear setting. We set

ω̂A :={x ∈ R2 : x · e⊥δ,θ ≥ 0}∪

∪
{
x ∈ R2 : x · e⊥δ,θ < 0, d(x) ∈

⋃
k∈Z

[
k + f−(g(x)), k + f+(g(x))

)}

=Tδ,θ

{
y ∈ R2 : y1 ≤ 0 or y1 > 0 and y2 ∈

⋃
k∈Z

[
k + f−(y1), k + f+(y1)

)} (4.7)

and
ω̂B := R2 \ ω̂A. (4.8)

By periodicity, for the computation of the energy it suffices to integrate over one period, and
therefore to consider

ωA,B := ω̂A,B ∩
{
x ∈ R2 : d(x) ∈ (0, 1)

}
= Tδ,θ(R× (0, 1)). (4.9)
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The class of admissible configurations is given by

Anl :=
{

(f±, u) : f± : R→ R satisfy (4.3), u ∈ W 1,2
loc (R2;R2) satisfies (4.2)

}
, (4.10)

it depends implicitly on δ and θ via (4.2). For L > 0 we further set

ALnl := {(f±, u) ∈ Anl : f± are L-Lipschitz}. (4.11)

The resulting variational problem then is to minimize over this set the functional

Enl[f
±, u] :=

∫
ωA

W (∇uA−1
δ )dx+

∫
ωB

W (∇uB−1
δ )dx. (4.12)

Here, W : R3×3 → [0,∞) is a typical nonlinear elastic energy density satisfying

1

cW
dist2(F, SO(2)) ≤ W (F ) = W (RF ) ≤ cW dist2(F, SO(2))

for all R ∈ SO(2) and F ∈ R2×2
(4.13)

with some constant cW > 0.

Remark 4.1 Note that in contrast to the geometrically linearized setting, we do not assign
boundary conditions for the deformation deep in the laminate.

Theorem 4.2 For every L ≥ 1 there are constants cL > 0 and δ0 > 0 such that for all
θ ∈ (0, 1/2] and all δ ∈ (−δ0, δ0), we have

1

cL
|δ|3θ2 ≤ inf{Enl[f

±, u] : (f±, u) ∈ ALnl} ≤ cL|δ|3θ2.

There is cf > 0 such that, if δ 6= 0, the same holds if one imposes that for x1 ≥ cf |δ|−1

f−(x1) = 0, f+(x1) = θ, ∇u(x) =

{
Aδ, if d(x) ∈ (0, θ),

Bδ, if d(x) ∈ (θ, 1).
(4.14)

Proof: The upper bound follows from Proposition 4.3, the lower bound from Proposition 4.9.
2
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4.1 Upper bound
Proposition 4.3 There exists a constant c > 0 such that for every δ ∈ [−1, 1] and θ ∈ (0, 1

2
]

there are (f±, u) ∈ A1
nl such that

Enl[f
±, u] ≤ c|δ|3θ2.

The functions (f±, u) obey (4.14) for x1 ≥ cf |δ|−1 for some universal cf > 0 (provided
δ 6= 0).

Proof: For δ = 0, we have Aδ = Bδ = Id, and an affine function u(x) = x has vanishing
energy, with f+ = f− = 0. Consider now δ 6= 0. Let Q∗ be as in Lemma 2.1. Left of the
interface, in {g(x) ≤ 0} = {x · e⊥δ,θ ≥ 0}, we set

u(x) := Q∗Aδx.

Note that by (2.6), this definition satisfies the periodicity condition (4.2). Set

f−(t) := 0 for all t ≥ 0, (4.15)

and let f+ : [0,∞)→ [0, 1) be a 1-Lipschitz function with f(0) = 0, to be determined later.
We now describe the deformation. By periodicity, we consider for the ease of notation a
shifted cell of periodicity, i.e.,

ω∗A := {x ∈ R2 : g(x) ≥ 0, 0 ≤ d(x) ≤ f+(g(x))},
ω∗B := {x ∈ R2 : g(x) ≥ 0, f+(g(x))− 1 ≤ d(x) < 0}.

To make an ansatz for the deformation on the right-hand side of the interface, we consider
a rotation and a shift as independent parameters. Precisely, let R : [0,∞) → SO(2) and
w : [0,∞)→ R2 be differentiable functions to be determined later, and set

φ(t) := (e2 · eδ,θ)
∫ t

0

R(s)e1ds. (4.16)

The reason for this choice will become clear in (4.23) below. With these quantities, we define
the deformation u : ω∗A ∪ ω∗B → R2 as

u(x) :=

{
uA(x), if x ∈ ω∗A,
uB(x), if x ∈ ω∗B,

(4.17)

where

uA(x) := φ(g(x)) +R(g(x))Aδeδ,θd(x) + w(g(x))d(x),

uB(x) := φ(g(x)) +R(g(x))Bδeδ,θd(x) + w(g(x))d(x).
(4.18)
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We note that this yields a continuous function in ω∗A ∪ ω∗B since for d(x) = 0 we have
uA(x) = uB(x). To obtain an admissible configuration, the functions R, f+, and w have to
satisfy the following properties. First, f+ should be 1-Lipschitz with

f+(0) = 0 and f+(t) ∈ [0, 1) for all t > 0. (4.19)

Second, this definition, when extended with the periodicity condition (4.2), should generate
a continuous function on {g(x) ≥ 0} = {x · e⊥δ,θ ≤ 0}. This requires that

uA(x+ eδ,θ)− uB(x) = (θAδ + (1− θ)Bδ)eδ,θ if d(x) = f+(g(x))− 1.

Using d(x+ eδ,θ) = d(x) + 1 and d(x) + 1 = f+(g(x)) we obtain

uA(x+ eδ,θ)− uB(x) =R(g(x))Bδeδ,θ

+ f+(g(x))R(g(x))(Aδ −Bδ)eδ,θ + w(g(x)),
(4.20)

so that the periodicity condition is equivalent to(
f+(g(x))R(g(x))− θ Id

)
(Aδ −Bδ) eδ,θ

+ (R(g(x))− Id)Bδeδ,θ + w(g(x)) = 0.
(4.21)

Note that on the line {g(x) = 0} = Reδ,θ, as f+(0) = 0 the function t 7→ u(teδ,θ) is
affine. By (2.6), the periodicity condition and u(0) = 0 it coincides with the expression
Q∗Aδx that we used to define u on {g(x) ≤ 0}. Equivalently, one can see from (4.21) that
(R(0)−Id)Bδeδ,θ+w(0) = θ(Aδ−Bδ)eδ,θ, so that (4.17)-(4.18) give u(teδ,θ) = uB(teδ,θ) =
R(0)Bδteδ,θ + w(0)t = (θAδ + (1− θ)Bδ)eδ,θt, which by (2.6) equals Q∗Aδeδ,θt.
From now on, we restrict to {g(x) > 0}. Before we give the explicit constructions, we
provide an estimate for the energy within this ansatz. We observe that ∇d = 1

eδ,θ·e2 e2,
∇g = −(eδ,θ · e2)−2e⊥δ,θ, and

− e1 ⊗ e⊥δ,θ + eδ,θ ⊗ e2 = (e2 · eδ,θ) Id . (4.22)

The definition of φ (see (4.16)) was chosen so that φ′ = (e2 · eδ,θ)Re1 = (e2 · eδ,θ)RAδe1,
which – using (4.22) – implies

φ′(g(x))⊗∇g +R(g(x))Aδeδ,θ ⊗∇d =
1

e2 · eδ,θ
R(g(x))Aδ(−e1 ⊗ e⊥δ,θ + eδ,θ ⊗ e2)

=R(g(x))Aδ.

(4.23)

Therefore
∇uA(x) =φ′(g(x))⊗∇g +R(g(x))Aδeδ,θ ⊗∇d+ d(x)R′(g(x))Aδeδ,θ ⊗∇g

+ d(x)w′(g(x))⊗∇g + w(g(x))⊗∇d

=R(g(x))Aδ −
1

(e2 · eδ,θ)2
d(x) (R′(g(x))Aδeδ,θ + w′(g(x)))⊗ e⊥δ,θ

+
1

eδ,θ · e2

w(g(x))⊗ e2,
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and similarly

∇uB(x) =R(g(x))Bδ −
1

(e2 · eδ,θ)2
d(x) (R′(g(x))Bδeδ,θ + w′(g(x)))⊗ e⊥δ,θ

+
1

eδ,θ · e2

w(g(x))⊗ e2.

Hence, the elastic energy of such an admissible test function is estimated by

Enl[f
±, u] ≤ cW

(∫
ω∗A

|∇uA(x)−RAδ|2 dx+

∫
ω∗B

|∇uB(x)−RBδ|2 dx
)

≤ c

∫ ∞
0

(
|R′(t)|2 + |w′(t)|2 + |w(t)|2

)
dt. (4.24)

Finally, we specify how to chooseR, w and f+. We consider the periodicity condition (4.21)
and divide it into two equations, testing with e1 and e2. First, we set

w · e1 = 0, (4.25)

and take the scalar product of (4.21) with e1. Using that (Aδ − Bδ)eδ,θ = 2δ√
1+(δθ)2

e1 and

Bδeδ,θ = e2−δ(1+θ)e1√
1+(δθ)2

, we obtain, multiplying by
√

1 + (δθ)2 and skipping the arguments

g(x) everywhere,

2δ
(
f+e1 ·Re1 − θ

)
+ e1 ·Re2 − δ(1 + θ)e1 ·Re1 + δ(1 + θ) = 0.

We let α := e1 · Re1, β := e1 · Re2 and solve this equation for f+, which leads to the
definition

f+ :=
θ

α
− β

2δα
+

1 + θ

2
− 1 + θ

2α

= −1− θ
2α
− β

2δα
+

1 + θ

2
. (4.26)

Since R is a rotation, we have |α| =
√

1− β2, and we choose α =
√

1− β2. Roughly
speaking, we expect that for large arguments approximately β = 0 and α = 1, which cor-
respond to f+ = θ. On the other hand, in view of Remark 2.2(ii) since R0 is a rotation by
roughly −2δθ, we expect that for small arguments, β ≈ 2δθ which is positive for δ > 0 and
negative for δ < 0. Hence, we assume that β

δ
is monotonically decreasing and α is mono-

tonically increasing, so that by (4.26) also f+ is monotonically increasing. We shall fix the
value β(0) from the condition f+(0) = 0, so that monotonicity of f+ implies 0 ≤ f+ ≤ θ
everywhere and in particular (4.19).
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Rearranging terms, the condition f+(0) = 0 is (for α(0) 6= 0) the same as

(1− θ) +
β(0)

δ
= (1 + θ)α(0). (4.27)

We choose β(0) such that β(0)/δ > 0, hence squaring and inserting α2 = 1 − β2, this is
equivalent to (

1 + δ2(1 + θ)2
)(β(0)

δ

)2

+ 2(1− θ)β(0)

δ
− 4θ = 0. (4.28)

As θ ∈ (0, 1/2], this quadratic equation has a unique solution with β(0)/δ > 0. Since the
left-hand side is larger than (

β(0)

δ

)2

+
β(0)

δ
− 2,

we find that β(0)/δ ≤ 1, i.e., |β(0)| ≤ |δ|. Analogously, since the left-hand side of (4.28) is
larger than

2|β(0)|2 + |β(0)| − 2,

we obtain |β(0)| ≤ 4
5
. Further, as the first term in (4.28) is positive we have 2(1−θ)β(0)

δ
< 4θ,

and with 2(1− θ) ≥ 1 this leads to |β(0)| ≤ 4θ |δ|. Summarizing,

|β(0)| ≤ min{|δ|, 4|δ| θ, 4

5
}. (4.29)

We then set, for some ` > 0 to be chosen later,

β(s) :=

{
`−s
`
β(0) if s ≤ `,

0 otherwise,
and α(s) :=

√
1− β2(s). (4.30)

Finally, w · e2 is determined from (4.21) by testing with e2. Since R ∈ SO(2) the definitions
of α and β imply e2 ·Re2 = α, e2 ·Re1 = −β. A similar computation as above leads to

e2 · w =
1√

1 + (δθ)2

(
1− α +

(
2δf+ − δ(1 + θ)

)
β
)
, (4.31)

which together with (4.25) defines w. Note that for s ≥ `, we have α = 1 and β = 0 which
implies that w(s) = 0. To estimate the energy, we observe that |β(s)| ≤ |β(0)|≤ 4

5
, which

implies α ≥ 1
5

and |α′| = |ββ′|√
1−β2

≤ 5|β′|. As |β′|(s) = |β(0)|
`
≤ 4|δ|θ

`
for s ∈ (0, `), from

(4.26) we have

|(f+)′| ≤
∣∣∣∣α′α2

∣∣∣∣+

∣∣∣∣ β′2δα

∣∣∣∣+

∣∣∣∣ βα′2δα2

∣∣∣∣ ≤ c
|β′|
|δ| ≤ cf

θ

`
, (4.32)

for some universal constant cf > 0, and thus from (4.31)

|w′| ≤ |α′|+ 3|δ| |β′|+ 2|δ| |β|
∣∣(f+)′

∣∣ ≤ c|β′|≤ c
|δ|θ
`
.
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Finally, with 1− α = β2

1+α
≤ β2 ≤ |δ| |β| and (4.31) we obtain

|w| ≤ |1− α|+ 2|δ||β| ≤ 3|δ| |β| ≤ cδ2θ.

Hence, using (4.24) we can estimate the energy by

Enl[f
±, u] ≤ c

∫ `

0

(
|R′|2 + |w′|2 + |w|2

)
dt ≤ c

(
δ2θ2

`
+ `δ4θ2

)
.

Recalling (4.32), if we choose ` := cf |δ|−1 we obtain that f+ is 1-Lipschitz and Enl[f
±, u] ≤

c|δ|3θ2. 2

4.2 Lower bound
For the lower bound, we need some auxiliary statements.

4.2.1 Technical preliminaries

For v ∈ R2 we write v⊥ := (−v2, v1).

Lemma 4.4 There is c > 0 such that if α ∈ R, Q ∈ SO(2) and v ∈ R2\{0} are such that

|Q(v − αv⊥)− v| ≤ η|v|

for some η ≥ 0, then
|Q− (Id +αJ)| ≤

√
2 η

where J :=

(
0 −1
1 0

)
.

Proof: This follows immediately by the fact that all matrices considered are conformal. For
clarity we present a short explicit computation. By scaling we can assume |v| = 1. Let
φ ∈ (−π, π] be such that Q = cosφ Id + sinφJ . Then

η2 ≥ |Q(v − αv⊥)− v|2 =|v − αv⊥ −QTv|2 = |v − αv⊥ − cosφv + sinφv⊥|2
=(1− cosφ)2 + (α− sinφ)2.

Then

|Q− (Id +αJ)|2 = |(cosφ− 1) Id +(sinφ− α)J |2 = 2(1− cosφ)2 + 2(sinφ− α)2 ≤ 2η2

concludes the proof. 2

The next lemma concerns stability of the rank-one directions.
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Lemma 4.5 Suppose that δ ∈ [−1, 1] and that QA, QB ∈ SO(2), t ∈ S1 satisfy t · e1 > 0
and, for some η > 0,

|(QAAδ −QBBδ)t| ≤ η. (4.33)

Then

|QA −QB| ≤
3

t · e1

η. (4.34)

Proof: We write t = t1e1 + t2e2 and find that |Aδt| + |Bδt| ≤ 2(1 + |δ|) ≤ 4 since |δ| ≤ 1.
Assumption (4.33) gives ||Aδt| − |Bδt|| = ||QAAδt| − |QBBδt|| ≤ η and therefore

4η ≥ ||Aδt| − |Bδt|| · ||Aδt|+ |Bδt|| =
∣∣|Aδt|2 − |Bδt|2

∣∣ = 4|δ||t1t2| (4.35)

which implies that
|t2| ≤

η

|δ|t1
. (4.36)

From Aδ = Id +δe1 ⊗ e2 and Bδ = Id−δe1 ⊗ e2 we deduce

|Aδt− t| = |Bδt− t| = |δ||e2 · t| ≤
η

t1
,

so that with (4.33)

|QA −QB|√
2

= |QAt−QBt| ≤ |QAt−QAAδt|+ |QAAδt−QBBδt|+ |QBBδt−QBt|

= |t− Aδt|+ |QAAδt−QBBδt|+ |Bδt− t|

≤ 2
η

t1
+ η ≤ 3

t1
η

(4.37)

concludes the proof. 2

The next two statements are uniform geometric rigidity and trace statements on domains
which are appropriate sections of the sets ω̃A, ω̃B defined in (4.7)-(4.8). For clarity we
present here the specific assertion used in the lower bound, postponing to Section 5 the proof
in a more general context and the specific definition of (L,R)-Lipschitz sets.

Proposition 4.6 For any L,M > 0 there are constants L̂, R̂,cL,M > 0 with the following
property. Let ` > 0, f, g : [0, `]→ R be L-Lipschitz functions. Assume that

L`

M
≤ g(t)− f(t) ≤ML` for all t ∈ [0, `] (4.38)
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and define
ωf,g := {x : x1 ∈ (0, `), f(x1) < x2 < g(x1)}, (4.39)

fix any θ ∈ (0, 1
2
] and any δ ∈ [−1, 1]. Then the sets ωf,g and Tδ,θ(ωf,g) are (L̂, R̂)-Lipschitz.

Further, for any u ∈ W 1,2(ωf,g;R2), and any F ∈ {Aδ, Bδ, Id}, there is QF
u ∈ SO(2) such

that ∫
Tδ,θ(ωf,g)

|∇u−QF
uF |2dx ≤ cL,M

∫
Tδ,θ(ωf,g)

dist2(∇u, SO(2)F )dx (4.40)

and, for some du ∈ R2,∫
Tδ,θ(ωf,g)

|u(x)− du −QF
uFx|2dx ≤ cL,M

∫
Tδ,θ(ωf,g)

dist2(∇u, SO(2)F )dx. (4.41)

Proof: By Lemma 5.4 the sets ωf,g are (2L+ 1, R)-Lipschitz (see Definition 5.1), for some
R which depends only on L and M . We observe that the definition (4.4) implies T−1

δ,θ =√
1 + (δθ)2(Id +δθe1 ⊗ e2), and therefore

|Tδ,θ| ≤
√

2, |T−1
δ,θ | ≤

√
2(
√

2 +
1

2
) ≤ 3. (4.42)

By Lemma 5.3 we obtain that the sets Tδ,θ(ωf,g) are (6(2L + 1), 6R)-Lipschitz. The result
for F = Id follows then immediately from Theorem 5.10.
Consider now F = Aδ. For notational simplicity we prove the statement for ωf,g, the argu-
ment for Tδ,θ(ωf,g) is identical. We define v ∈ W 1,2(Aδω

f,g;R2) by v(x) := u(A−1
δ x), so

that∇v(x) = ∇u(A−1
δ x)A−1

δ , which implies

dist(∇v, SO(2))(x) = dist(∇uA−1
δ , SO(2))(A−1

δ x) ≤ |A−1
δ | dist(∇u, SO(2)Aδ)(A

−1
δ x).
(4.43)

By Lemma 5.3, using that |Aδ|, |A−1
δ | ≤ 3, we obtain that the sets A−1

δ ωf,g are (c(2L +
1), cR)-Lipschitz. Therefore Theorem 5.10 implies that there is QAδ

u ∈ SO(2) such that∫
A−1
δ ωf,g

|∇v −QAδ
u |2dx ≤ cL,M

∫
A−1
δ ωf,g

dist2(∇v, SO(2))dx. (4.44)

Using (4.43) and a change of variables, this implies∫
ωf,g
|∇u−QAδ

u Aδ|2dx ≤ c′L,M

∫
ωf,g

dist2(∇u, SO(2)Aδ)dx, (4.45)

and concludes the proof. The case F = Bδ is identical.
The second bound follows immediately from Theorem 5.8. 2

For completeness, we finally note a rescaling property of the trace norm.
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Corollary 4.7 (Trace estimate) Let M0, L > 0. There exists a constant CT with the fol-
lowing property: Let ` > 0, and let f, g : [0, `] → R be L-Lipschitz continuous with
L`
M0

< g(t) − f(t) < M0L` for all t ∈ [0, `]. Then, setting ωf,g := {x ∈ R2 : x1 ∈
(0, `), f(x1) < x2 < g(x1)}, for every u ∈ W 1,2(ωf,g) there exists du ∈ R such that

‖Tu− du‖2
L2(∂ωf,g) ≤ CT `‖∇u‖2

L2(ωf,g).

Proof: For ` = 1, this follows from Lemma 5.4, Theorem 5.8, and Theorem 5.9. The gen-
eral case follows from rescaling f` : (0, `) → R, f`(t) := `f1( t

`
) (similarly for g`) and

u` ∈ W 1,2(ωf`,g`) given by u`(x1, x2) := u(x1/`, x2/`). 2

4.2.2 Proof of the lower bound

We start introducing some notation. Recall that the periodicity condition (4.2) is the same
as u(Tδ,θ(y + e2)) = u(Tδ,θ(y)) + (θAδ + (1 − θ)Bδ)Tδ,θ(e2). Let f± : [0,∞) → R be
L-Lipschitz with f− ≤ f+ ≤ f− + 1. Given I ⊆ (0,∞) we set

ωIA :=Tδ,θ({y : y1 ∈ I, f−(y1) < y2 < f+(y1)}),
ωIB :=Tδ,θ({y : y1 ∈ I, f+(y1) < y2 < f−(y1) + 1})

(4.46)

and (for I ⊆ (0,∞) Borel measurable)

E [I; (f±, u)] :=

∫
ωIA

dist2(∇u, SO(2)Aδ)dx+

∫
ωIB

dist2(∇u, SO(2)Bδ)dx. (4.47)

Proposition 4.8 Let L > 0, assume that f± are L-Lipschitz with f− ≤ f+ ≤ f− + 1, and
let I∗ ⊆ (0,∞) be an interval of length 1/4L. For any u ∈ W 1,2

loc (R2;R2) there isQ ∈ SO(2)
such that ∫

ωI∗A

|∇u−QAδ|2dx+

∫
ωI∗B

|∇u−QBδ|2dx ≤ cE [I∗; (f±, u)]. (4.48)

The constant may depend on L.

Proof: For brevity in this proof we write E(I) for E [I; (f±, u)]. We can assume L ≥ 1 in the
proof (otherwise we cover I∗ with cL subintervals of length 1/4 and use the result for L = 1
in each of them).
Step 1: Estimate on ωI∗A . Let t∗ be the midpoint of I∗ and `∗ its length. We assume that
(f+ − f−)(t∗) ≥ 1

2
. If not, then f− + 1 − f+ ≥ 1

2
, and the same argument can be used

swapping Aδ with Bδ and (f+, f− + 1) with (f−, f+). This implies

1 ≥ (f+ − f−)(t) ≥ 1

2
− 2L

`∗
2
≥ 1

4
for all t ∈ I∗. (4.49)
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f+

f−

f− + 1

ωA

ωI
B

ω̂I
A

`

`∗

Figure 5: Sketch of the sets entering the proof of Proposition 4.8.

We write ωA := ωI∗A , and cL for a generic constant that may change from line to line but
depends only on L. Proposition 4.6 can be applied (with M = 4) to the set ωA, and there is
Q ∈ SO(2) such that∫

ωA

|∇u−QAδ|2dx ≤ cL

∫
ωA

dist2(∇u, SO(2)Aδ)dx ≤ cLE(I∗). (4.50)

Note that this concludes the proof in the degenerate case ωI∗B = ∅, i.e., if I∗ ∩ {f− + 1 >
f+} = ∅. In the other case, we note that here is dA ∈ R2 such that∫

ωA

|u(x)−QAδx− dA|2dx ≤ cLE(I∗). (4.51)

Step 2: Estimate on ωI∗B . For any Borel set I ⊆ I∗ we write, recalling (4.47) and E(I) :=
E [I; (f±, u)],

Ê(I) := E(I) +

∫
ωIA

|u(x)−QAδx− dA|2dx. (4.52)

It is clear that E and Ê are measures on I∗, and that Ê(I∗) ≤ cLE(I∗). We shall first obtain es-
timates on suitable subintervals of I∗, and then cover I∗ by countably many such subintervals.
Let M > 0 be a fixed number, we shall choose M = 16 below.
Assume that I ⊆ I∗ is an interval of length ` ∈ (0, `∗] such that

L`

M
≤ (f− + 1)− f+ ≤ML` pointwise on I, (4.53)

see Figure 5. Then by Proposition 4.6 there is QI
B ∈ SO(2) such that∫

ωIB

|∇u−QI
BBδ|2dx ≤ cL

∫
ωIB

dist2(∇u, SO(2)Bδ)dx ≤ cLE(I). (4.54)
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By Poincaré and the trace theorem (see Corollary 4.7), there is dIB ∈ R2 such that, setting
γI+ := Tδ,θ({(t, f+(t)) : t ∈ I}),∫

γI+

|u(x)−QI
BBδx− dIB|2dH1 ≤ cL`‖∇u−QI

BBδ‖2
L2(ωIB) ≤ cL`E(I). (4.55)

Analogously, the trace theorem on ω̂IA := Tδ,θ({y : y1 ∈ I, f+(y1) − `
4
< y2 < f+(y1)}),

which by (4.49) and ` ≤ `∗ ≤ 1/4 is contained in ωIA, gives∫
γI+

|u(x)−QAδx− dA|2dH1 ≤ cL`Ê(I) (4.56)

so that with a triangular inequality and E ≤ Ê we obtain∫
γI+

|QAδx+ dA −QI
BBδx− dIB|2dH1 ≤ cL`Ê(I). (4.57)

Therefore there is v ∈ R2 with v1 ≥ 1
3
` and |v2| ≤ Lv1 such that

|(QAδ −QI
BBδ)v|2 ≤ cLÊ(I). (4.58)

We apply Lemma 4.5 with t := v/|v|, QA := Q, QB := QI
B, and η := (cLÊ(I))1/2/|v| ≤

3(cLÊ(I))1/2/`. Since

t1 =
v1

|v| ≥
1√

1 + L2
,

we obtain |Q−QI
B| ≤ 3

√
1 + L2η and therefore

`2|Q−QI
B|2 ≤ cLÊ(I). (4.59)

Combining (4.54) and (4.59) we conclude that∫
ωIB

|∇u−QBδ|2dx ≤ cLÊ(I). (4.60)

As L2
(
ω
I∗∩{f−+1=f+}
B

)
= 0, it remains to show that I∗ ∩ {f− + 1 > f+} can be covered

(up to null sets) by countably many intervals I with the property (4.53) and finite overlap.
For any t ∈ I∗ ∩ {f− + 1 > f+}, the interval

(t− f−(t) + 1− f+(t)

4L
, t+

f−(t) + 1− f+(t)

4L
) (4.61)

contains t and obeys the property (4.53) with M = 3. By the Besicovitch covering theorem
this family contains a countable set of intervals (Ik)k which covers I∗ ∩ {f− + 1 > f+}
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and has finite overlap. The intervals (Ik ∩ I∗)k obey property (4.53) with M = 6, since
f−(t)+1−f+(t)

4L
≤ 1

4L
= `∗ implies L1(Ik ∩ I∗) ≥ 1

2
L1(Ik). Therefore by (4.60)∫

ωI∗B

|∇u−QBδ|2dx =

∫
ω
I∗∩{f−+1>f+}
B

|∇u−QBδ|2dx ≤ cL
∑
k

∫
ω
I∗∩Ik
B

|∇u−QBδ|2dx

≤cL
∑
k

Ê(I∗ ∩ Ik) ≤ cLÊ(I∗)

(4.62)

and with (4.51) and Ê(I∗) ≤ cLE(I∗) the proof is concluded. 2

Proposition 4.9 Let L > 0. There are cL > 0, δL > 0 such that for all θ ∈ (0, 1
2
], all

δ ∈ [−δL, δL], all (f±, u) ∈ ALnl there holds

Enl[f
±, u] ≥ cL|δ|3θ2.

Proof: For brevity in this proof we write E(I) := E [I; (f±, u)] and E := Enl[f
±, u].

Step 1. Piecewise affine approximation. Consider the intervals

Ij :=

(
j

8L
,
j + 2

8L

)
.

By Proposition 4.8 there are rotations Qj ∈ SO(2) such that for any j ∈ N one has∫
ω
Ij
A

|∇u−QjAδ|2dx+

∫
ω
Ij
B

|∇u−QjBδ|2dx ≤ cLE(Ij) (4.63)

with the constant cL (here and in all following estimates) depending only on L.
We shall use this estimate and the periodicity condition to obtain four different bounds, which
are stated in (4.64), (4.65), (4.67) and (4.68).
Step 2. Continuity term. With a triangular inequality, using L1(Ij ∩ Ij+1) = 1/(8L) from
(4.63) and |A−1

δ | ≤ 3 we obtain∑
j∈N
|Qj −Qj+1|2 ≤ cLE((0,∞)). (4.64)

Step 3. Left boundary term. By the trace theorem used in ωI0B , recalling that f−(0) =
f+(0), from (4.63) we obtain that for some d0 ∈ R2∫

(0,1)

|u(teδ,θ)−Q0Bδeδ,θt− d0|2dH1 ≤ cLE(I0) ≤ cLE.
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By geometric rigidity and the trace theorem used in Tδ,θ((−1, 0) × (0, 2)) there are Q− ∈
SO(2) and d− ∈ R2 such that∫

(0,2)

|u(teδ,θ)−Q−Aδeδ,θt− d−|2dH1 ≤ cL

∫
Tδ,θ((−1,0)×(0,2))

W (∇uA−1
δ )dx ≤ cLE

which, with the periodicity condition, implies

|Q−Aδeδ,θ − vθ| ≤ cLE
1/2

where vθ := (θAδ+(1−θ)Bδ)eδ,θ = (Id +δ(2θ−1)e1⊗e2)eδ,θ. With a triangular inequality,

|Q0Bδeδ,θ − vθ| ≤ cLE
1/2.

We observe that Bδeδ,θ − vθ = −θ(Aδ −Bδ)eδ,θ = −2δθe1/
√

1 + δ2θ2. As |vθ − e2| ≤ c|δ|,
Bδeδ,θ = vθ + 2δθv⊥θ +O(δ2θ) we have

|Q0(vθ + 2δθv⊥θ )− vθ| ≤ cL
(
E1/2 + δ2θ

)
and from Lemma 4.4 we obtain

|Q0 − Id +2δθJ | ≤ cLE
1/2 + cLδ

2θ. (4.65)

Step 4. Volume term. The periodicity condition (4.2) implies that the average of ∇ueδ,θ
over ωIjA ∪ ω

Ij
B coincides with vθ,

1

L2(ω
Ij
A ∪ ω

Ij
B )

∫
ω
Ij
A ∪ω

Ij
B

∇ueδ,θdx = (θAδ + (1− θ)Bδ)eδ,θ = vθ.

From (4.63) we obtain∣∣∣∣∣
∫
ω
Ij
A

∇ueδ,θdx− L2(ω
Ij
A )QjAδeδ,θ

∣∣∣∣∣+

∣∣∣∣∣
∫
ω
Ij
B

∇ueδ,θdx− L2(ω
Ij
B )QjBδeδ,θ

∣∣∣∣∣ ≤ cLE1/2(Ij).

Therefore, setting λj := L2(ω
Ij
A )/L2(ω

Ij
A ∪ ω

Ij
B ) and wj := (λjAδ + (1 − λj)Bδ)eδ,θ =

(Id +δ(2λj − 1)e1 ⊗ e2)eδ,θ, we obtain

|Qjwj − vθ| ≤ cLE1/2(Ij). (4.66)

Since

wj − vθ = 2δ(λj − θ)(e1 ⊗ e2)eδ,θ =
2δ(λj − θ)√

1 + δ2θ2
e1

and |e1 + v⊥θ | ≤ c|δ|, we have |Qj(vθ + 2δ(θ − λj)v⊥θ )− vθ| ≤ cE1/2(Ij) + cδ2|λj − θ| and
again by Lemma 4.4 we obtain our first volume estimate

|Qj − Id +2δ(θ − λj)J | ≤ cL
(
E1/2(Ij) + δ2|λj − θ|

)
. (4.67)
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At the same time,

|vθ|2 =
1 + δ2(θ − 1)2

1 + δ2θ2

and

|Qjwj|2 = |wj|2 =
1 + δ2(2λj − θ − 1)2

1 + δ2θ2

so that from (4.66) and |wj|+ |vθ| ≤ C we obtain the second volume estimate,

cLE(Ij)
1/2 ≥ |Qjwj − vθ| · |Qjwj + vθ| ≥

∣∣|wj|2 − |vθ|2∣∣ =
4δ2(1− λj)|θ − λj|

1 + δ2θ2
. (4.68)

Step 5. Conclusion of the proof. Using (4.65) and (4.67) for j = 0, there is cL > 0 (fixed
for the rest of the proof) such that

|δ| |λ0| ≤ cLE
1/2 + cLδ

2θ+cLδ
2|λ0 − θ|≤ cLE

1/2 + 2cLδ
2θ + cLδ

2|λ0|.

Choose δ0 > 0 such that δ0 ≤ 1/(6cL). Then for |δ| ≤ δ0, we have cLδ2|λ0| ≤ 1
6
|δ| |λ0|, the

last term can be absorbed in the left-hand side, and we obtain

5

6
|δ| |λ0| ≤ cLE

1/2 + 2cLδ
2θ.

If |λ0| ≥ 1
2
θ then, using 2cLδ

2θ ≤ 1
3
|δ|θ, we obtain

5

12
|δ|θ ≤ cLE

1/2 +
1

3
|δ|θ

so that E ≥ Cδ2θ2 and we are done.
Assume now that |λ0| ≤ 1

2
θ. By (4.68), for any j ∈ N such that |λj| ≤ 1

2
θ we have E(Ij) ≥

c′Lδ
4θ2. Therefore there are at most finitely many such j. Let ` := min{j ∈ N : |λj| > 1

2
θ},

so that (4.68) gives
E ≥ c′L`δ

4θ2. (4.69)

Using again (4.65) and (4.67) for j = `,

|Q` −Q0 − 2δλ`J | ≤ c′′LE
1/2 + c′′Lδ

2θ + c′′Lδ
2|λ`|.

As |2δλ`J | = 2
√

2|δ| |λ`|, if δ0 is chosen so that c′′Lδ0 ≤ 1
2

then

|Q` −Q0| ≥2
√

2|δ| |λ`| − c′′LE1/2 − c′′Lδ2θ − c′′Lδ2|λ`|
≥2|δ| |λ`| − c′′LE1/2 − c′′Lδ2θ

≥|δ| θ − c′′LE1/2 − c′′Lδ2θ ≥ 1

2
|δ|θ − c′′LE1/2,
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where in the third step we used |λ`| ≥ 1
2
θ. As above, if E ≥ (4c′′L)−2δ2θ2 then we are done.

Otherwise |Q` −Q0| ≥ 1
4
|δ|θ. With (4.64) and Cauchy-Schwarz we conclude

c′′′LE ≥
`−1∑
j=0

|Qj −Qj+1|2 ≥
1

`
|Q0 −Q`|2 ≥

1

16

δ2θ2

`

and therefore, recalling (4.69),

E ≥ CL

(
δ2θ2

`
+ `δ4θ2

)
≥ 2CL|δ|3θ2

which concludes the proof. 2

4.3 Existence of minimizers
Proposition 4.10 Let W obey (4.13) and be quasiconvex. Let L ≥ 1, θ ∈ (0, 1

2
], δ ∈ [−1, 1].

Then the functional Enl defined in (4.12) has a minimizer in the set ALnl defined in (4.11).

Proof: We proceed along the lines of the proof of Proposition 3.3(i). Let (f±j , uj) ⊂ ALnl be
a minimizing sequence. By subtracting constants, we can assume without loss of generality
that ∫

(0,1)×(0,1)

uj(x) dx = 0. (4.70)

After passing to a subsequence, the functions f±j converge locally uniformly to L-Lipschitz
functions f±∗ which by uniform convergence satisfy (4.3). For every m ∈ N, by the lower
bound in (4.13), there is a uniform bound on the L2-norms

‖∇uj‖L2(Tδ,θ((−m,m)2)) ≤ Cm
(
E((−m,m), (f±j , uj)) +m|Aδ|2

)
,

and hence, by (4.70), there is a subsequence that converges locally weakly in W 1,2 to u∗ ∈
W 1,2

loc (R2;R2). By Rellich’s theorem, the limiting function u∗ satsifies the periodicity condi-
tion (4.2). Let ω∗A and ω∗B denote the respective domains induced by f±∗ , which are defined
as in (4.7)–(4.9). By quasiconvexity of W and the growth condition (4.13), we get lower
semi-continuity of the energy restricted to compact sets in (ω∗A ∪ ω∗B) \ graph(f±∗ ) \ (Reδ,θ),
and hence, choosing a diagonal sequence as in the proof of Proposition 3.3, we find for every
m > 0,

E((−m,m), (f±∗ , u∗)) ≤ lim inf
j→∞

E((−m,m), (f±j , uj)). (4.71)
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Then

E((−m,m), (f±∗ , u∗)) ≤ lim inf
j→∞

E(R, (f±j , uj)) = lim inf
j→∞

Enl[f
±
j , uj] = inf

ALnl
Enl. (4.72)

As Enl[f
±
∗ , u∗] = E(R, (f±∗ , u∗)) = sup{E((−m,m), (f±∗ , u∗)) : m > 0}, this concludes the

proof. 2

It would be natural to ask if for a minimizer (f±∗ , u∗) the functions f±∗ (x1) have a finite limit
as x1 → ∞. This does not follow from the above proof. Another open question is whether
the condition that f± are Lipschitz is needed, or if it can be replaced by a term of the form

σ

∫ ∞
0

(
√

1 + (f ′+(x1))2 +
√

1 + (f ′−(x1))2 − 2)dx1, (4.73)

which represents the additional length of the interfaces with respect to the “flat” situation.

5 Korn’s inequality and geometric rigidity for uniformly
Lipschitz domains

5.1 Uniformly Lipschitz domains
We show that certain estimates on Sobolev functions hold uniformly for a class of bounded
open sets which are uniformly Lipschitz. We focus on bounded sets and use the following
definition, which is a variant of the one in [Leo17, Def. 13.11]. For x ∈ Rn, we use the
notation x = (x′, xn) with x′ ∈ Rn−1 and xn ∈ R.

Definition 5.1 Let L,R > 0. An open set Ω ⊆ Rn is (L,R)-Lipschitz if there is ε > 0 such
that:

(i) |x− y| < Rε for all x, y ∈ Ω;

(ii) For each x ∈ ∂Ω there are fx ∈ Lip(Rn−1;R) with Lip(fx) ≤ L and an isometry
Ax : Rn → Rn such that Bε(x) ∩ Ω = Bε(x) ∩ Vx, where

Vx := Ax{(y′, yn) ∈ Rn−1 × R : yn < fx(y
′)}. (5.1)

This definition ensures on the one hand uniformity of the Lipschitz constant, on the other
hand uniform size of the neighbourhoods in which (5.1) holds with respect to the size of Ω.

Remark 5.2 (i) The definition is monotonous, in the sense that if Ω is (L,R)-Lipschitz
then it is also (L′, R′)-Lipschitz for any L′ ≥ L, R′ ≥ R.

33



(ii) From x ∈ ∂Ω one immediately obtains that ŷ := A−1
x x obeys ŷn = f(ŷ′); one can

assume without loss of generality that ŷ = 0.

(iii) Condition (ii) implies that the open segment joining x = Axŷ withAx(ŷ−εen) belongs
to Ω; in particular R ≥ 1.

(iv) Suppose Ω ⊆ Rn and ε > 0 satisfy property (i) of Definition 5.1 and property (ii) with
Bε(x) replaced by x+ ((−ε, ε)n−1 × (−2εL, 2εL)). Then Ω is (L,R0)-Lipschitz with
R0 = Rmax{1, 1/(2L)}. On the other hand, if Ω is (L,R)-Lipschitz then Ω satisfies
property (ii) of Definition 5.1 withBε(x) replaced by x+((−ε0, ε0)n−1 × (−2ε0L, 2ε0L))
with ε0 := ε√

n
min{1, 2L}. Similar statements holds for other sets whose size is uni-

formly controlled by ε.

(v) One can reduce to the case that only finitely many functions fx appear, after changing
R to 2R. Indeed, if Ω ⊂ Rn is (L,R)-Lipschitz then (using the notation of Definition
5.1) the balls Bε/2(x), x ∈ ∂Ω, cover ∂Ω. By Vitali’s covering theorem there is a
subset x1, . . . , xM such that ∂Ω ⊆ ∪Mi=1Bε/2(xi) and Bε/10(xi) ∩ Bε/10(xj) = ∅ for
i 6= j. Since ∂Ω is contained in a ball of radius Rε, we have M ≤ (10 ·R + 1)n. As
for every x ∈ ∂Ω there is i ∈ {1, . . . ,M} such that Bε/2(x) ⊆ Bε(xi), only the M
functions fx1 , . . . , fxM are relevant.

(vi) Let Ω be such that there are open sets ωi, i = 1, . . . ,M , Lipschitz functions fi with
Lip(fi) ≤ L and isometries Ai such that ωi ∩Ω = ωi ∩ Vi, Vi := Ai{y : yn < fi(y

′)},
and assume that there is ε > 0 such that for all x ∈ ∂Ω there is i with Bε(x) ⊆ ωi.
Then property (ii) in Definition 5.1 holds and Ω is (L, diam(Ω)/ε)-Lipschitz.

Lemma 5.3 Let Ω ⊆ Rn be (L,R)-Lipschitz, F ∈ Rn×n an invertible matrix. Then the set
FΩ ⊆ Rn is (cF (L+ 1), cFR) Lipschitz, with cF := |F | · |F−1|.

Proof: Let ε > 0 as in Definition 5.1 for Ω and set ε′ := ε/|F−1|. Pick y ∈ ∂(FΩ) and let
x := F−1y ∈ ∂Ω. We first show that

Bε′(y) ⊆ FBε(x).

To see this, we pick z ∈ Bε′(y), consider z′ := F−1z, and compute |z′−x| = |F−1(z−y)| ≤
|F−1||z−y| < ε. Therefore z′ ∈ Bε(x) and z ∈ FBε(x). Further, diam(FΩ) ≤ |F | diam Ω,
hence setting R′ := |F | |F−1|R we have diam(FΩ) ≤ R′ε′.
Fix again y ∈ ∂(FΩ). We need to show that

(FΩ) ∩Bε′(y) = Iy{wn < g(w′)} ∩Bε′(y) (5.2)

for some isometry Iy and some g ∈ Lip(Rn−1;R) with Lip(g) ≤ L′; the precise value of L′

is given below.
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We let x := F−1y as above. By property (ii) in Definition 5.1 there are an isometry Ax and
an L-Lipschitz function f : Rn−1 → R such that

Ω ∩Bε(x) = Ax{zn < f(z′)} ∩Bε(x). (5.3)

Then Bε′(y) ⊆ FBε(x) implies

(FΩ) ∩Bε′(y) = (F (Ω ∩Bε(x)) ∩Bε′(y) = (FAx{zn < f(z′)}) ∩Bε′(y). (5.4)

The isometryAx can be written asAxz = b+Rz for someR ∈ O(n). We set η := |FRen| ∈
(0, |F |], pick a rotation Q ∈ SO(n) such that FRen = ηQen, and let T := QTFR ∈ Rn×n.
Then FR = QT and QTen = ηQen, which implies Ten = ηen. We shall show below that

T{zn < f(z′)} = {wn < g(w′)} (5.5)

with g as stated after (5.2). This implies that

FAx{zn < f(z′)} = Fb+ FR{zn < f(z′)} = Fb+QT{zn < f(z′)}
= Fb+Q{wn < g(w′)} = Iy{wn < g(w′)} (5.6)

where Iyw := Fb+Qw, which together with (5.4) concludes the proof of (5.2) and therefore
of the Lemma.
It remains to construct g ∈ Lip(Rn−1;R) such that (5.5) holds. We observe that T is invert-
ible, with |T−1| = |F−1| and T−1en = 1

η
en, and write

T−1(w′, wn) = (Sw′,
1

η
wn + s · w′) (5.7)

for some s ∈ Rn−1 and S ∈ R(n−1)×(n−1), invertible. They obey max{|S|, |s|} ≤ |T−1| =
|F−1|. Then

1

η
wn + s · w′ < f(Sw′) (5.8)

is the same as
wn < g(w′) := η · (f(Sw′)− s · w′) (5.9)

so that
{zn < f(z′)} = T−1{wn < g(w′)}, (5.10)

which is the same as (5.5). The function g : Rn−1 → R constructed above is Lipschitz, with
Lip(g) ≤ η(|S|Lip(f) + |s|) ≤ |F |(|F−1|L+ |F−1|). This concludes the proof. 2

Lemma 5.4 Let f, g : [0, `]→ R, ` > 0, L > 0, and set

ωf,g := {x ∈ R2 : x1 ∈ (0, `), f(x1) < x2 < g(x1)}.
Assume that α` ≤ g− f ≤ β` for some α, β > 0, and that Lip(f),Lip(g) ≤ L. Then ωf,g is
(2L+ 1, R)-Lipschitz for some R which depends only on α, β and L.
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x1

x2

y1

y2 (1, L)

α

Figure 6: Sketch of the rotation in the proof of Lemma 5.4. The shaded area is the one where
y2 < F (y1), the dotted line shows the direction (1, L).

Proof: Let ε := `
2(1+L)

min{α, 1}, R := (β + 1 + L)`/ε. Clearly R depends only on α, β,
and L, and its definition ensures that condition (i) in Definition 5.1 holds. The choice of ε
ensures that |(x1, f(x1))− (x′1, g(x′1))| ≥ ε for all x1, x′1 ∈ [0, `], so that the top and bottom
boundaries can be treated separately.
We consider points close to the lower-left corner, in the sense that we show property (ii) of
Definition 5.1 for x in (see Figure 6)

ALL := {0} × [f(0),
f(0) + g(0)

2
] ∪ {(x1, f(x1)) : x1 ∈ [0,

1

2
`]} ⊆ ∂ωf,g; (5.11)

the other three corners can be treated analogously. We extend f to R, setting f(t) = f(0)
for t < 0 and f(t) = f(`) for t > `. By the choice of ε we see that for all x ∈ ALL the ball
Bε(x) does not intersect {z : z2 = g(z1)} and {z : z1 = `}, in the sense that

Bε(x) ∩ ωf,g = Bε(x) ∩ {z ∈ R2 : z1 > 0, z2 > f(z1)}. (5.12)

After a translation, we can assume f(0) = 0. In order to make the mentioned boundary the
graph of a Lipschitz function we need a nontrivial rotation, as illustrated in Figure 6. Let
Q ∈ SO(2) be such that Qe2 bisects the angle between e2 and (1, L), which means that Q is
a clockwise rotation by α := 1

2
(π

2
− arctanL). Then there is a unique function F : R → R

such that
{z ∈ R2 : z2 > f(z1)} = Q{y ∈ R2 : y2 > F (y1)}, (5.13)

obviously F (0) = 0. One can check that F is L′ := tan(π
2
− α)-Lipschitz, and that L′ =

L+
√

1 + L2 ≤ 1 + 2L. At the same time, by the definition of Q and L′

{z ∈ R2 : z1 > 0} = Q{y ∈ R2 : y2 > −L′y1}. (5.14)
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Recalling (5.12), we see that it suffices to intersect these two sets. We define F̃ (t) :=
max{−L′y1, F (y1)}, which is also L′-Lipschitz. Then for every x ∈ ALL we have

Bε(x) ∩ ωf,g = Bε(x) ∩Q{y : y2 > F̃ (y1)}. (5.15)

This concludes the proof. 2

5.2 Weighted Poincaré inequality
The next result is a quantitative version of the estimate in [Kuf80, Theorem 8.8].

Theorem 5.5 (Weighted Poincaré) Let Ω ⊆ Rn be a connected, bounded (L,R)-Lipschitz
set, p ∈ [1,∞). Then for any u ∈ W 1,p

loc (Ω;Rk) there is a ∈ Rk such that

‖u− a‖Lp(Ω) ≤ cWP‖ dist(·, ∂Ω)∇u‖Lp(Ω). (5.16)

In particular, u ∈ Lp(Ω;Rk). The constant cWP depends only on n, p, L and R.

We first prove the result in one dimension, by an explicit computation.

Lemma 5.6 Let I = (a, b) ⊆ R be a bounded interval, ϕ ∈ C1(I), E ⊆ I with positive
measure, α ∈ R, p ∈ [1,∞). Then∫

I

|ϕ− α|pdt ≤ cp
L1(I)

L1(E)

[∫
E

|ϕ− α|pdt+

∫
I

(t− a)p|ϕ′|p(t)dt
]
. (5.17)

The constant cp depends only on p.

Proof: If the right-hand side is finite, then the function ϕ can be extended continuously to
(a, b]. Let β := ϕ(b). For any x ∈ I by the fundamental theorem of calculus applied to
|ϕ− β|p we have

|ϕ− β|p(x) ≤ p

∫ b

x

|ϕ(t)− β|p−1|ϕ′(t)|dt. (5.18)

We integrate over all x ∈ I and use Fubini’s theorem,∫ b

a

|ϕ−β|p(x)dx ≤ p

∫ b

a

∫ b

x

|ϕ(t)−β|p−1|ϕ′(t)|dt dx = p

∫ b

a

(t−a)|ϕ(t)−β|p−1|ϕ′(t)|dt.
(5.19)

With Hölder’s inequality,∫ b

a

|ϕ− β|p(x)dx ≤ p‖|ϕ− β|p−1‖Lp′ (I)‖(· − a)ϕ′‖Lp(I) (5.20)

37



so that, as ‖|ϕ− β|p−1‖Lp′ = ‖ϕ− β‖p−1
Lp ,

‖ϕ− β‖Lp(I) ≤ p‖(· − a)ϕ′‖Lp(I). (5.21)

By a triangular inequality,

|α− β|(L1(E))1/p ≤ ‖ϕ− α‖Lp(E) + ‖ϕ− β‖Lp(I) (5.22)

so that, with a further triangular inequality,

‖ϕ− α‖Lp(I) ≤ |α− β|(L1(I))1/p + ‖ϕ− β‖Lp(I)

≤ 2p
(L1(I))1/p

(L1(E))1/p

[
‖ϕ− α‖Lp(E) + ‖(t− a)ϕ′‖Lp(I)

] (5.23)

concludes the proof. 2

Lemma 5.7 Let Ω ⊂ Rn be (L,R)-Lipschitz, ε as in Definition 5.1, x∗ ∈ ∂Ω, r ∈ (0, ε/(4+
4L)], p ∈ [1,∞). For any u ∈ W 1,p

loc (Ω) there is α ∈ R such that∫
Ω∩Br(x∗)

|u− α|pdx ≤ c

∫
Ω

distp(x, ∂Ω)|∇u|p(x)dx. (5.24)

The constant c depends only on n, p, and L.

Proof: By Definition 5.1 we have Bε(x∗) ∩ Ω = Bε(x∗) ∩ V , where (as in (5.1))

V := A{(y′, yn) ∈ Rn−1 × R : yn < f(y′)} (5.25)

for some isometry A and L-Lipschitz function f : Rn−1 → R. As the assertion is invariant
under rotations and translations we can assume that A is the identity and that x∗ = 0; from
x∗ ∈ ∂Ω we then obtain f(0) = 0.
Let h := rL ∈ (0, ε/4) and consider the cylinder T := B′r× (−3h,−2h) (see Figure 7). For
any x′ ∈ B′r we have f(x′) ≥ −rL = −h, and therefore f(x′)−xn ≥ h for all (x′, xn) ∈ T .
Further, from (3h)2 + r2 ≤ 9

16
ε2 + 1

16
ε2 = 5

8
ε2 ≤ ε2 we obtain that T ⊆ Bε ∩ V . As the

shape of T (up to uniform rescaling) depends only on L, by the usual Poincaré inequality
(for a fixed domain) there is α ∈ R with∫

T

|u− α|pdx ≤ crp
∫
T

|∇u|pdx (5.26)

with c depending only on n, p, L. For every x′ ∈ B′r we apply Lemma 5.6 to u(x′, ·) with
I = (−3h, f(x′)) and E = (−3h,−2h), and obtain, using h = L1(E) ≤ L1(I) ≤ 4h,∫

I

|u(x)− α|pdxn ≤ c

∫
I

|f(x′)− xn|p|∇u|p(x)dxn + c

∫
E

|u(x)− α|pdxn. (5.27)
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Let U := (B′r × (−3h,∞)) ∩ V , so that Br ∩ Ω = Br ∩ U and U ⊆ Bε ∩ V = Bε ∩ Ω. We
integrate over x′ ∈ B′r, use (5.26) and rL = h ≤ f(x′)− xn for all (x′, xn) ∈ T to conclude∫
U

|u− α|pdx ≤ c

∫
B′r

∫
(−3h,f(x′))

|f(x′)− xn|p|∇u|pdxndx′ + c

∫
T

|f(x′)− xn|p|∇u|pdx

≤ c

∫
U

|f(x′)− xn|p|∇u|pdx,
(5.28)

where the constant c depends only on L, p, and n. We finally show that there is cL > 0,
depending only on L, such that

|f(x′)− xn| ≤ cL dist(x, ∂Ω) for all x ∈ U. (5.29)

Indeed, for any x ∈ U let y ∈ ∂Ω be such that d := dist(x, ∂Ω) = |x − y|. We know that
|f(x′)| ≤ h = rL and that xn ∈ (−3h, h), which imply |f(x′) − xn| ≤ 4h ≤ ε, and with

|x′| < r we obtain |x| ≤
√
r2 + (3h)2 ≤

√
5
8
ε. We distinguish two cases. If y 6∈ Bε then

|x−y| ≥ (1−
√

5
8
)ε and the proof of (5.29) is concluded (if cL is sufficiently large). If instead

y ∈ Bε then necessarily y ∈ ∂V and yn = f(y′), which implies d2 = |y′−x′|2+|f(y′)−xn|2.
As f is L-Lipschitz, f(y′) ≥ f(x′)− L|x′ − y′|, so that

d ≥ max{|x′ − y′|, f(x′)− L|x′ − y′| − xn}. (5.30)

If d ≥ 1
2
(f(x′)− xn), then we are done (with any cL ≥ 2). Otherwise, 1

2
(f(x′)− xn) > d ≥

(f(x′) − xn) − L|x′ − y′| implies Ld ≥ L|x′ − y′| ≥ 1
2
(f(x′) − xn) which concludes the

proof of (5.29) for any cL ≥ 2L.
Inserting (5.29) and Br ∩ V ⊆ U in (5.28) concludes the proof. 2

Proof:[Proof of Theorem 5.5] It suffices to consider the scalar case; by density it suffices to
prove the inequality if u is C1(Ω). For brevity, let A := ‖ dist(·, ∂Ω)∇u‖Lp(Ω). Let ε be as
in Definition 5.1 and fix rB := ε/(12(L+ 1)) (the reason will become clear below).
We first show that for every x ∈ Ω there is α(x) ∈ R such that

‖u− α(x)‖Lp(BrB (x)∩Ω) ≤ cA (5.31)

with c depending only on n, p, L andR. To see this, we distinguish two cases. If dist(x, ∂Ω) ≥
2rB this follows from the usual Poincaré inequality applied to the ball BrB(x) ⊂ Ω, with
dist(·, ∂Ω) ≥ rB in BrB(x). If not, we fix x∗ ∈ ∂Ω with |x∗ − x| < 2rB and use Lemma 5.7
to B3rB(x∗) (this is the point where the size of rB is fixed). As BrB(x) ⊆ B3rB(x∗), this
concludes the proof of (5.31).
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Figure 7: Sketch of the geometry in the construction of Lemma 5.7.

By Vitali’s covering theorem, there is a finite set x0, . . . , xK ∈ Ω such that Ω ⊂ ∪Kk=0Bk,
Bk := BrB/2(xk), with the smaller balls BrB/10(xk) pairwise disjoint. In particular, since
they are all centered in Ω and the diameter of Ω is bounded by Rε, we obtain K ≤ (1 +
10Rε/rB)n ≤ cRnLn. Let αk := α(xk). We claim that for every k = 1, . . . , K one has

r
n/p
B |α0 − αk| ≤ cKA. (5.32)

To see this, fix k, and let j0 := 0, j1, . . . , jH := k be finitely many indices in {0, K} such
that Bjh ∩ Bjh+1

∩ Ω 6= ∅ for all h. They exist since Ω is connected, which means that there
is a continuous curve in Ω which joins a point of B0 ∩Ω with a point of Bk ∩Ω; as the curve
is compact it is covered by finitely many of the balls. We can further assume the indices jh
to be distinct. Indeed, if jh = jh′ for some h < h′, we can remove h, h+ 1, . . . , h′ − 1 from
the set. As there are at most K balls, we obtain H ≤ K.
In turn, Bjh ∩ Bjh+1

∩ Ω 6= ∅ implies that the larger balls have significant overlap. Indeed,
for each x ∈ Ω one has Ln(Ω ∩ BrB/2(x)) ≥ cLr

n
B, and recalling that the radius of the balls

Bk is rB/2 we obtain

cLr
n
B ≤ Ln(BrB(xjh) ∩BrB(xjh+1

) ∩ Ω). (5.33)

Using (5.31) on these two balls and then a triangular inequality,

r
n/p
B |αjh − αjh+1

| ≤ cA, (5.34)

which, as H ≤ K, implies (5.32). Finally, using that the balls B0, . . . , BK cover Ω,

‖u− α0‖Lp(Ω) ≤
K∑
k=0

[
‖u− αk‖Lp(Bk∩Ω) + (Ln(Bk))

1/p|αk − α0|
]
≤ cK2A. (5.35)
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2

Many well-known results from the literature follow easily from the weighted Poincaré in-
equality and its proof above. We start with a Poincaré inequality as follows e.g. also from
[Rui12, Theorem 1.2].

Theorem 5.8 (Poincaré inequality) Let Ω ⊂ Rn be a connected, bounded (L,R)-Lipschitz
set and p ∈ [1,∞). Then there exists a constant cPo > 0 depending only on n, p, L, and R
such that for all u ∈ W 1,p(Ω;Rk) there exists du ∈ Rk with

‖u− du‖Lp(Ω) ≤ cPo diam(Ω)‖∇u‖Lp(Ω).

Proof: This follows from Theorem 5.5, using that dist(x, ∂Ω) ≤ diam(Ω) for all x ∈ Ω. 2

With the same strategy as above we can obtain a uniform estimate on the trace operator, as
a map from W 1,p to Lp of the boundary. Also this result is well-known in the literature, see
e.g. [Leo17, Theorem 18.40].

Theorem 5.9 (Trace) Let Ω ⊆ Rn be a bounded (L,R)-Lipschitz set, p ∈ [1,∞). Then the
trace operator T : W 1,p(Ω;Rk)→ Lp((∂Ω,Hn−1);Rk) obeys

‖Tu‖Lp(∂Ω) ≤ cTr(d
1−1/p‖∇u‖Lp(Ω) +

1

d1/p
‖u‖Lp(Ω)) (5.36)

where d := diam(Ω). The constant cTr depends only on n, p, L and R.

Proof: This can be proven along the same lines as Theorem 5.5. One starts showing that, in
the setting of Lemma 5.6, one has

|ϕ(a)− α|p ≤ cp
1

L1(E)

∫
E

|ϕ− α|pdt+ cp(L1(I))p−1

∫
I

|ϕ′|p(t)dt. (5.37)

To see this, it suffices to observe that for any t′ ∈ E the fundamental theorem of calculus in
(a, t′) ⊆ I gives

|ϕ− α|(a) ≤ |ϕ− α|(t′) +

∫
I

|ϕ′|(t)dt. (5.38)

We take the p-th power, average over all t′ ∈ E, and use Hölder’s inequality in the last term
to obtain (5.37).
In the next step we observe that, with r as in Lemma 5.7, for any x ∈ ∂Ω∫

Br(x)∩∂Ω

|u− α|pdHn−1 ≤ crp−1

∫
Ω

|∇u|pdx+
c

r

∫
Ω

|u− α|pdx, (5.39)
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with c depending only on n, p, L. This follows from (5.37) with a change of variables, inte-
grating over the same domain as in Lemma 5.7. The passage to the integral inHn−1 follows
observing that Br(x) ∩ ∂Ω is the graph of an L-Lipschitz function. The coefficients can be
replaced by the corresponding powers of d (by property (iii) in Remark (iii) ε ≤ diam Ω,
by property (i) in Definition (i) diam Ω ≤ Rε). Finally, we cover ∂Ω with no more than
cRn(ε/r)n such balls, as in the proof of Theorem 5.5, and conclude the proof. 2

5.3 Rigidity
We prove a version of geometric rigidity from [FJM02] and of Korn’s inequality with uni-
form constant on all (L,R)-Lipschitz sets. Instead of repeating the entire proof, and checking
that the variuos constants depend on the domain only through the parameters L and R, we
show that the estimate for a general domain can be reduced to the one for a cube. We refer to
[CDM14] for the proof for general p and a review of the literature on Korn’s inequality and
rigidity. The explicit dependence of the constant on the shape of the domain was analyzed, in
the specific case of long and thin domains, in [Har18, Har20]. Korn’s inequality was derived
for John domains and related classes using different techniques, see [DM04, ADM06, JK17]
and references therein.

Theorem 5.10 (Uniform rigidity) Let Ω ⊆ Rn be a connected, bounded (L,R)-Lipschitz
set, p ∈ (1,∞). Then for any u ∈ W 1,p(Ω;Rn) there are R ∈ SO(n) and S ∈ Rn×n

skw such
that

‖∇u−R‖Lp(Ω) ≤ cRig‖ dist(∇u, SO(n))‖Lp(Ω) (5.40)

and
‖∇u− S‖Lp(Ω) ≤ cRig‖∇u+∇uT‖Lp(Ω). (5.41)

The constant cRig depends only on n, p, L and R.

We recall that both estimates do not hold for p = 1 and p =∞.

Proof: For the case that Ω is a cube both results are well known. We prove the first inequality,
the proof of the second one is almost identical.
The key observation is that the constant depends on the domain only via the weighted
Poincaré estimate. The general structure of the argument, using a Whitney decomposition
of the domain, is similar to the one used in [FJM02] for the harmonic part. Indeed, there
rigidity was first proven in small cubes, and then the second derivative was estimated using
harmonic estimates. Here we instead construct a new function (called β below) which in-
terpolates between the values of the rotation in each cube, using a partition of unity. This
permits to avoid discussing the dependence on the domain of the constants involved in the
initial truncation in the proof of [FJM02]. This argument is almost identical to the one used
in [CG21], we repeat it here for completeness.
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We intend to construct a partition of unity subordinated to a Whitney covering of Ω, done
as in [Ste70, Section VI.1] or [EG92, Sect. 6.5]. Precisely, we select countably many cubes
Qj := xj +(−rj, rj)n such that, letting Q̂j := xj +(−1

2
rj,

1
2
rj)

n denote cubes with the same
center and half the size,

χΩ ≤
∑
j

χQ̂j ≤
∑
j

χQj ≤ cχΩ, (5.42)

and
rj ≤ dist(Qj, ∂Ω) ≤ crj. (5.43)

Both constants depend only on the dimension n. These conditions imply that the cubes have
finite overlap, and that if Qj ∩Qk 6= ∅ then 1/c ≤ rj/rk ≤ c.
We fix ϕ∗ ∈ C∞c ((−1, 1)n; [0, 1]) with ϕ∗ = 1 on (−1

2
, 1

2
)n, let ϕ̂j(x) := ϕ∗((x − xj)/rj)

and ϕj := ϕ̂j/
∑

k ϕ̂k. Using (5.42) one obtains ϕj ∈ C∞c (Qj),
∑

j ϕj = 1 in Ω, and
|∇ϕj| ≤ c/rj . By the estimate for the cube, for each j there is Rj ∈ SO(n) such that

‖∇u−Rj‖Lp(Qj) ≤ cn,p‖ dist(∇u, SO(n))‖Lp(Qj). (5.44)

We define β : Ω → Rn×n as a smooth interpolation between the Rj , β :=
∑

j ϕjRj . Using∑
j ϕj = 1 in Ω, ϕj ≤ 1 and the finite overlap,

‖∇u− β‖pLp(Ω) = ‖
∑
j

ϕj(∇u−Rj)‖pLp(Ω) ≤ c
∑
j

‖∇u−Rj‖pLp(Qj)
. (5.45)

Using first (5.44) in each cube Qj and then summing via (5.42) leads to

‖∇u− β‖pLp(Ω) ≤ c
∑
j

∫
Qj

|∇u−Rj|pdx ≤ c

∫
Ω

distp(∇u, SO(n))dx. (5.46)

At the same time, the distance between ∇u and the Rj controls the derivative of β. Indeed,
from

∑
j ϕj = 1 we obtain

∑
j∇ϕj = 0 on Ω, so that

∇β =
∑
j

∇ϕjRj =
∑
j

∇ϕj(Rj −∇u). (5.47)

At this point we recall that |∇ϕj| ≤ c/rj , and that dist(Qj, ∂Ω) ≤ crj , which implies that

dist(x, ∂Ω)|∇ϕj|(x) ≤ cχQj(x) for all x ∈ Ω. (5.48)

Therefore∫
Ω

distp(x, ∂Ω)|∇β|pdx ≤ c
∑
j

∫
Qj

distp(x, ∂Ω)|∇ϕj|p|∇u−Rj|pdx

≤ c
∑
j

∫
Qj

|∇u−Rj|pdx.
(5.49)
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We then apply the weighted Poincaré inequality in Theorem 5.5 and obtain that there is
R∗ ∈ Rn×n with

‖β −R∗‖pLp(Ω) ≤ c

∫
Ω

distp(x, ∂Ω)|∇β|pdx ≤ c

∫
Ω

distp(∇u, SO(n))dx. (5.50)

Finally, we let R be the matrix in SO(n) closest to R∗. Then, using that |R − R∗| =
dist(R∗, SO(n)) ≤ |R∗ −∇u|(x) + dist(∇u(x), SO(n)) pointwise we obtain

|R−R∗|(Ln(Ω))1/p ≤ c‖ dist(∇u, SO(n))‖Lp(Ω) (5.51)

which, together with (5.46) and (5.50), concludes the proof. 2
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