
REVERSIBLE ADHESION: FROM DISCRETE TO CONTINUUM

F. MADDALENA, D. PERCIVALE, G. PUGLISI, L. TRUSKINOVSKY

Abstract. We study a simple mechanical model whose aim is to reproduce basic physical
mechanisms behind reversible surface attachment-detachment under quasi-static loading. At
the micro level the adhesive layer is modeled as an elastic chain of particles interacting with a
rigid foundation through breakable springs. This model can be viewed as prototypical for the
description of a wide range of phenomena from peeling of polymeric tapes to rolling of cells,
working of Gecko’s fibrillar structures and denaturation of DNA. We show that the model re-
produces qualitatively the following experimentally observed effect: hysteretic transition from
an incremental evolution of the adhesion front to a sudden decohesion of a macroscopic segment
of the adhesion layer. We construct the rigorous continuum limit of our discrete model which
captures both stable and metastable configurations. As the microscopic properties of the break-
able elements change, the macroscopic behavior varies from quasi-ductile to quasi-brittle, with
corresponding decrease in the size of the adhesion hysteresis. At the micro-scale this corresponds
to a transition from a ‘localized’ to a ‘diffuse’ structure of the decohesion front. The achieved
parametric control of the microscopic mechanism can be used in the design of new biological
inspired materials and reversible adhesion devices.
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Introduction

Adhesion phenomena are governed by complex energy exchange between multiple scales
arranged in hierarchical structures. Phenomenological modeling of cohesion-decohesion phenom-
ena have been generally successful in describing the variety of experimentally observed static
and dynamic adhesion regimes (see [6, 10, 18, 2]). The phenomenological models, however, are of
a black box type and have limited predictive power outside of a particular range of parameters.
More importantly, they can not be used for the microstructural optimization of the artificially
created adhering materials. It is therefore of interest to develop a multi-scale approach linking
the microscopic attachment-detachment mechanisms with the macroscopic phenomenological
parameters. This step is crucial for the analysis of a variety of adhesion related phenomena from
the fiber decohesion in composites ([12, 13]) and crazing phenomena in polymers ([22]) to the
activity of focal adhesions involved in cell motility ([5]) and animal locomotion ([9, 25]).

In this paper we contribute to this general task by constructing a minimal mechanical
model. While our model captures only the most important effects associated with quasi-static
decohesion it has an advantage of being amenable to a completely transparent mathematical
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2 REVERSIBLE ADHESION: FROM DISCRETE TO CONTINUUM

analysis allowing one to study how macroscopic responses vary depending on the microscopic
parameters. We focus here only on the case of elastic adhesion and assume that the decohesion
phenomenon is reversible. Such reversible adhesion-decohesion is crucial for the working of the
biological systems ([21]), in particular, for the functioning of the self-similar fibrillar Gecko’s
hair([9, 16, 25]). Despite this focus, the resulting model can be viewed as prototypical for the
description of a much broader range of phenomena from pealing of polymeric tapes ([10]) to
rolling of cells ([23, 4]) and denaturation of DNA ([17]). The irreversible version of the model,
which is relevant for the description of decohesion in conventional composite materials, will be
presented in a separate paper.

Figure 1.

According to typical observations ([10] and references therein) the process of reversible
quasi-static decohesion includes three main stages. First the system behaves elastically until
decohesion begins. Then there is a steady state incremental evolution of the decohesion front.
Finally, at a critical threshold, the system undergoes a sudden transition to the fully debonded
configuration. Similarly, if the system is unloaded from the fully debonded state, there exists an
unloading threshold beyond which a finite portion of the adhesive layer suddenly reattaches to
the adhesive background. The whole phenomenon is usually hysteretic with different attachment
and detachment thresholds.

In an attempt to reproduce this basic behavior we consider a simple model represented
at the micro scale by a discrete chain of massless points connected by identical (harmonic)
shear elastic springs. The particles are attached to a rigid support by breakable elastic links
(see Fig.1) which mimick, depending on parameters, either direct molecular interactions or
interactions through the fibrillar adhesive layer with internal elasticity ([9, 16]). We consider
quasi-static transversal loading of this system in a hard device and study the rate independent
evolution of the emerging debonding front. The reversals of the front direction represent the
switches between attachment and detachment. Similar discrete models of the Frenkel-Kontorova
type have been used previously in the analysis of lattice trapping in crystals ([24]), interfacial
wetting ([11]) and duplication and transcription of DNA ([17]) among other phenomena. Our
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use of the simplified piece-wise quadratic approximation for the on site potential, representing
breaking bonds, makes it possible to formulate the main results in the analytic form.

We apply to our mechanical system an incremental energy minimization approach and
explicitly solve the discrete variational problem with assigned displacement of one of the masses.
We find all equilibrium configurations representing global (stable) and local (metastable) minima
of the energy functional. The analysis of the energy minimizers allows one to prove rigorously
that there is always a single decohesion front. We show that the metastable configurations
form separate branches which are parameterized by the loading parameter. The absence of
continuity along these branches leads to the necessity of the ’dynamic snapping’ representing a
discontinuous branch switching events. These events may be dissipative and, while not preventing
reversibility, may contribute to adhesive hysteresis in cyclic loading (see also ([9, 16, 25])).

We discuss two evolutionary strategies. One strategy assumes overdamped gradient flow
dynamics and can be viewed as a vanishing viscosity limit (maximum delay convention, e.g. [20]).
The other strategy simply postulates that the system always remains in the global minimum of
the energy (Maxwell convention). For these two evolutionary strategies we show the existence of
the thresholds separating the regime of incremental propagation of the decohesion front from the
regime of a sudden and massive decohesion. When we restrict the evolution of the system to the
global minima of the energy, the loading and unloading thresholds coincide. When instead we
allow the system to follow the maximum delay convention and explore the set of marginally stable
configurations, the two thresholds become different. The comparison with experiments shows
that it is the vanishing viscosity solution which reproduces the observed adhesion hysteresis
most faithfully ([10, Chapter 3]).

We then develop a macroscopic analog of our microscopic model, interpreting it as a formal
Γ-limit ([1, 3]). While the limiting functional, constructed in this way, is expected to capture
only the global minima in the original problem, in our case it also preserves the description of
the local minima. To prove this we perform a systematic study of all metastable solutions of the
continuum problem. Overall, the continuum model is much more transparent mathematically
than the discrete model and allows one to obtain the values of all relevant thresholds in explicit
form.

The important goal of the simplified models is to study how macroscopic responses vary de-
pending on the microscopic parameters. Our prototypical model depends on one non-dimensional
parameter ν measuring the relative elasticity of the adhesive layer responsible for the dynamic
snapping. We show that the degree of localization of the decohesion front increases as ν decreases.
Macroscopically this is revealed as a transition from quasi-ductile to quasi-brittle behavior.

The paper is organized as follows. In Section 1 we introduce our discrete model and present
an analytical description of all stable and metastable configurations corresponding to a given
loading. In Section 2 we derive the Γ-limit of the discrete model and classify the local minimizers
of the limiting problem. In Section 3 we study two different responses of the discrete model to
monotonous and cyclic loading, one dissipative and another nondissipative. In the dissipative
case we compute the associated heat to work ratio and construct the hysteresis loops. Finally,
in Section 4 we show how the main features of the cohesion decohesion hysteresis modify as one
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goes form discrete to continuum description and present the results of the detailed parametric
study of the model. In Appendix we collect mathematical results of technical nature.

1. Microscopic model

Consider a discrete chain containing n+1 points which are connected by linear elastic springs
with reference distance l = L/n. Each point is also connected to a rigid substrate by a breakable
spring. In this maximally simplified setting one can deal with two prototypical problems: pull
out test (e.g. [13]) and pull off or peeling test (e.g. [15]). For determinacy, we shall focus on the
peeling problem and assume that the points move orthogonally to the substrate (see Fig.2).

Figure 2. Schematic representation of the discrete model.

Denote by ui the vertical displacements of the particles from their reference positions. The
elastic energy of the connecting linear springs can be written as

φ(δi) =
1
2
Gδ2

i , (1.1)

where G is the (shear) modulus and δi = (ui+1 − ui)/l. For the energy of the breakable springs
we assume the simplest form

ϕ(wi) =





1
2

Ew2
i if wi < 1

1
2
E if wi ≥ 1,

(1.2)

where E is the longitudinal elastic modulus, wi = ui/ur are the normalized displacements, and
ur is the breaking threshold. The total energy of the chain can be written as

Φ =
1
n

(
n+1∑

i=1

ϕ(wi) +
n∑

i=1

φ(δi)). (1.3)
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We load the chain in a hard device, meaning that the (normalized) displacement d of the first
spring is prescribed

w1 = d > 0. (1.4)
We begin by rewriting the energy in a more compact form. To this end we introduce a

vector distinguishing ‘bonded’ and ‘de-bonded’ springs

χf (i) =

{
0 if wi < 1

1 if wi ≥ 1,
(1.5)

and construct the (n + 1) × (n + 1) diagonal matrix D = diag(χf (1), . . . , χf (n + 1)). In what
follows it will be convenient to use the following notations: w ∈ IRn+1 - the displacement vector,
1 ∈ IRn+1 - the vector with (1)i = 1, and i1 - the first vector of the canonical basis in IRn+1.
We also introduce the (n + 1)× (n + 1) tri-diagonal matrix

A =




1 −1 0
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2 −1

0 −1 1




.

By using these notations, we can rewrite the dimensionless total energy (1.3) in the form

JD(w) :=
Φ
E

=
1
2n

(Bw ·w + ξ), (1.6)

where
B = I −D + n2ν2 A. (1.7)

The dimensionless energy (1.6) depends on the two scaling parameters: n and

ν =
ur

L

√
G

E
. (1.8)

The main physical nondimensional parameter of the problem, ν, implicitly characterizes the
toughness of the breakable bonds, in particular, by decreasing ν we increase the cohesion energy.
The geometrical parameter n is a measures of discreteness and n → ∞ would mean for us the
‘macroscopic’ or ‘continuum’ limit (see Section 2).

To find the equilibrium state of the chain at a given d, it is natural to first minimizing
the elastic energy at a fixed configuration of debonded springs D. We obtain the following
minimization problem

Min
{
JD(w) | w ∈ IRn+1,w · i1 = d

}
. (1.9)

The necessary conditions of equilibrium can be written as

Bw − σni1 = 0, (1.10)
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where σ = ur
ELλ is the Lagrange multiplier, representing the external force λ acting on the first

point of the chain. The stability of these equilibrium configurations is ensured by the positive
definiteness of the Hessian matrix B which immediately follows from (1.7). We can then conclude
that all solutions of (1.10) are local minima of the energy.

The linear equations (1.10) can be solved formally which allows us to represent all metastable
equilibrium configurations by the formulas

σ =
d

nB−1
e i1 · i1

, (1.11)

w =
B−1

e i1

B−1
e i1 · i1

d, (1.12)

JD =
1
2n

(
d2

B−1i1 · i1
+ ξ

)
. (1.13)

We observe that the variables wi given by (1.12) decrease as the index i increases. This
follows from the fact that the column elements in the invertions of diagonally dominant tri-
diagonal matrices necessarily decrease (see e.g. [14]). Therefore in each metastable configuration
it is necessarily the first ξ springs that are debonded while the remaining n+1−ξ remain bonded.
This observation allows one to write the following analytical representation for the displacement
field (see Appendix A for details)

wi =





d− (i− 1)
σ

nν2
, i = 1, ..., ξ,

cosh[(n + 3/2− i)η]
sinh[(n + 1− ξ)η] sinh[η/2]

σ

2nν2
, i = ξ + 1, ..., n + 1.

(1.14)

Here
σ = Kd, (1.15)

is the stress,

K =
2nν2

2ξ − 1 + coth η
2 coth[(n + 1− ξ)η]

, (1.16)

is the effective elastic modulus and η is one of the two solutions of the equation

1 +
1

2n2ν2
= cosh[η]. (1.17)

The energy of the metastable configurations can be written as

J(d, ξ) =
1
2n

(nKd2 + ξ). (1.18)

In order to be admissible, the configurations (1.14) must respect the compatibility condition
requiring that all bonded springs have wi < 1 and all debonded springs have wi ≥ 1. This
condition is equivalent to a restriction on ξ. To obtain this restriction we compute the value of
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the loading parameter d1(ξ) corresponding to wξ+1 = 1 and the value d2(ξ) corresponding to
wξ = 1. We obtain

d1(ξ) = 1 +
2(ξ − 1)

coth[η2 ] coth[(n− ξ + 1)η] + 1
,

d2(ξ) = 1 +
2ξ

coth[η2 ] coth[(n− ξ + 1)η]− 1
.

(1.19)

We call the interval [d1(ξ), d2(ξ)] the stability domain of a solution with a given geometry of a
crack ξ. In general, several crack geometries may be compatible with a given load d. The detailed
study of the obtained solutions, in particular the specialization of the global minimizers, will be
postponed till Section 3.

2. Macroscopic problem

In most applications the parameter n is a large number. Therefore it is of interest to describe
the continuum limit of the discrete model formulated in the previous section. As a first step we
can look at the point-wise limits of the discrete solutions (1.14) as n → ∞. To compute these
limits we introduce the following notations:

x := i/n, coordinate of the i-th spring,
ζ := ξ/n, fraction of debonded springs.

By assuming that in the limit n →∞ the parameter ζ is finite we obtain from (1.15)

d(ζ) = 1 +
ζ

ν2
σ. (2.1)

It is also easy to see that
lim

n→∞ d1(ζ) = lim
n→∞ d2(ζ) = d(ζ). (2.2)

This means that for each value of ζ the stability domain shrinks in the continuum limit to a
point. For the limiting displacement field we obtain

wζ(x) =





1 +
1
ν2

(ζ − x) σ if x ∈ (0, ζ),

cosh( 1
ν (1− x))

cosh( 1
ν (1− ζ))

if x ∈ (ζ, 1).
(2.3)

The value of the continuum energy of a metastable state can now be computed from the formula

J(ζ) =
1
2
(ζ (1 +

σ2

ν2
) + σ). (2.4)

Here we used the limiting relation between the stress and the length of the de-bonded region

σ = ν tanh
(

1− ζ

ν

)
. (2.5)
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To interpret these results correctly we can independently look at the limit of the variational
problem (1.9) as n →∞. To this end we can define the space of piecewise constant functions on
(0, L)

An(0, L) =:

{
n∑

i=1

an
i 1[i−1,i)L

n
: an

i ∈ R, an
1 = d

}
,

and rewrite the discrete energy functional (1.3) in the form

Jn(w) =





1
nE

(
n+1∑

i=1

ϕ

(
w

(
i
L

n

))
+

n∑

i=1

φ

(
w(iL

n )− w((i− 1)L
n )

L/n
ur

))
if w ∈ An(0, L)

+∞ otherwise in L2(0, L).

Next we can define A∗n as the subset of the functions w ∈ H1(0, L) such that there exists ŵ ∈ An

which satisfies

w′(x) =
n∑

i=1

ur
ŵ

(
iL
n

)− ŵ
(
(i + 1)L

n

)

L/n
1[i,i+1)L

n
, w(0) = d. (2.6)

Clearly, w( iL
n ) = ŵ( iL

n ) and we rewrite the original functional in the form

Jn(w) =
1

nE

n+1∑

i=1

ϕ

(
w

(
i
L

n

))
+

1
EL

∫ L

0
φ(urw

′) dx, (2.7)

where now w ∈ A∗n. It is easy to see that all (local and global) minimizers of Jn on An can be
described in terms of the corresponding minimizers of Jn on A∗n which makes the two problems
equivalent.

We can now study a point-wise limit of the functional (2.7). It is straightforward to see
that this finite dimensional variational problem converges as n →∞ to the infinite dimensional
problem for the continuum functional

J(w) =





1
EL

∫ L

0
(ϕ(w) + φ(urw

′)) dx if w ∈ A(0, L)

+∞ otherwise in L2(0, L)

(2.8)

which is defined on the spaceA = {w ∈ H1(0, L) : w(0) = d}. In Appendix B we prove that the
point-wise convergence automatically implies Γ- convergence. In particular, this guarantees that
the global minimizers of (2.8) can be viewed as the continuum limits of the global minimizers of
(2.7).

The next question concerns the status of the local minimisers of (2.8). We say that w ∈ A
is a local minimizer of J if there exists δ > 0 such that for every v ∈ A with ‖w − v‖H1 ≤ δ we
have J(w) ≤ J(v). In the important case d > 1 we can prove (see Appendix C) that w ∈ A is
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a local minimizer of J if and only if it is a solution of the following system:



w′′ = 0 in (0, ζ̄)

w(0) = d; w(ζ̄) = 1





ν2w′′ = w in (ζ̄, 1)

w(ζ̄) = 1, w′(1) = 0
(2.9)

where ζ̄ is a local minimizer of the function J(ζ) = J(wζ). In the case d < 1 there is only one
minimum given by the solution of the Euler-Lagrange equation ν2w′′ = w in (0, 1) with the
boundary conditions w(0) = d and w′(1) = 0. In the special case d = 1 there are two solutions,
namely, the solution of the differential equation ν2w′′ = w and the homogeneous solution w = 1
which means that the detached set can be either empty or coincide with the whole interval (0, 1).

The solution of the linear equations (2.9) can be computed explicitly. It is easy to show that
they are given exactly by the formulae (2.3). This means that the n →∞ limit of the metastable
branches of the discrete model coincides with the metastable branches of the continuum model.
Therefore besides ensuring convergence of the global minima our pointwise limit also preserves
the local minimizers.

3. Evolutionary strategies

In the previous sections for each value of the loading parameter d we found the whole variety
of the accessible metastable configurations. Suppose that the value of the loading parameter is
changing quasi-statically. Then the choice of a particular local minimum occupied by the system
at each value of the loading parameter is controlled by dynamics. Of particular interest are the
following two evolutionary strategies. The first one represents the vanishing viscosity limit of the
corresponding viscoelastic (overdamped) problem (e.g. [20]). In this case the system stays in a
given metastable state till it becomes unstable (maximum delay convention). The second strategy
imposes that the system is always in the global minimum of the energy (Maxwell convention).
This behavior can be viewed as the zero temperature limit of the hamiltonian (underdamped)
dynamics.

3.1. Viscosity solution. Suppose that the parameter d is monotonically increasing starting
from the value d = 0 with no debonded springs (point O in Fig.3). The ‘virgin’ branch becomes
unstable when the first spring breaks at w1 = 1. According to (1.19) the decohesion starts at
d = d2(0) = 1. The system then switches to a new metastable branch and we assume that
in this new branch the only first spring, verifying w1 = 1, detaches whereas all other springs
still remain in the elastic regime (A − B in Fig.3). To check that only one spring breaks one
has to study the global energy landscape and determine the steepest descending paths (see
e.g. [19]). We observe that in the continuum limit, according with (2.2), a single metastable
branch can be associated to each d. If the displacement is increased further, the debonding
continues as the second spring reaches the breaking limit at d = d2(1) (C in Fig.3). This pattern
repeats itself as the subsequent springs debond one at a time. As we see the system follows a
‘pinning-depinning’ type of evolution with alternating slow elastic stages and sudden transitions
between different metastable branches. This behavior, with the system switching between the
branch with ξ debonded springs to the branch with ξ + 1 debonded springs is possible till
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Figure 3. With bold lines we represent the stress-strain behavior, under the maximum

delay convention, of a system with n = 6 breakable springs and ν = 0.3.

d2(ξ + 1) > d2(ξ). The numerical solution shown in Fig.3 shows that there exists a value of
the external load d = dmd, such that for d > dmd the only equilibrium solution is the totally
debonded configuration, i.e. ξ = n. Thus, when d = dmd all the remaining elastic springs break
simultaneously and the system jumps to the fully debonded configuration. In the case of infinite
n, we shall be able to find the value of the limiting threshold dmd analytically (see Section 2).

3.2. Global minimum. To find the global minimum we have to minimize the energy of the
metastable equilibrium states with respect to the parameter ξ. Fig.4 shows by bold lines the
Maxwell path for the same system as in the previous section. We observe the existence of another
threshold dMax < dmd separating the regime with a progressive debonding from the sudden jump
to the fully detached configuration. Overall, the resulting stress-strain path is analogous to the
one in the case of the maximum delay convention. In quantitative terms, the Maxwell loading
path is lower and the transition to the fully debonded configuration is attained at a lower
assigned displacement.

3.3. Dissipation. To characterize the dissipation associated with the maximum delay strategy,
consider, for instance, the path b-c-d-e shown in Fig.5. We denote by ξ̄ the number of debonded
springs at the starting equilibrium branch b-c. The subsequent branch d-e will then have ξ̄ +
1 debonded elements. According to the maximum delay convention, the system follows the
equilibrium branch ξ̄ until it becomes unstable at d = d2(ξ̄) (path b-c). Then it switches to a
new branch with a smaller energy (jump c-d). To find the energy dissipated during this jump
event we need to compare the energies (1.18) corresponding to the two branches ξ̄ and ξ̄ + 1 at
a fixed displacement d = d̄. We can write

∆J(d̄, ξ̄) := Jξ̄+1(d̄)− Jξ̄(d̄) =
1
2n

(nd̄ 2(Kξ̄+1 −Kξ̄) + 1). (3.10)
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Figure 4. With bold lines we represent the global minima of the energy (Maxwell convention)

for the same system of Fig.3

The first term in the right hand side represents the difference of the elastic energies (area inside
the triangle O-P-Q in Fig.5). The second term represents the cohesive energy accumulated by
the system in the transition between the two states (it does not depend on ξ̄). The released
elastic energy is partially accumulated by the system in the form of cohesion energy and the
rest is dissipated. The dissipation is zero when the energy difference in (3.10) vanishes which
corresponds to the Maxwell path.1 Instead, along the maximum delay path, represented by the
points b-c-d in Fig.5, the system switches to the new branch in a dissipative way (jump c-d)
and the dissipated energy ∆J(d2(ξ̄), ξ̄) is equal to the area C-c-D-d. In general, according to the
maximum delay convention the area underneath the stress-strain path, representing the external
work, can be decomposed into the decohesion energy represented in Fig.5 by the equal triangles
of area ϕr = 1 (along the Maxwell path at each switching the variation of decohesion energy
ϕr = 1 coincides with the variation of elastic energy), the accumulated elastic energy represented
by the dark grey and the dissipated energy represented by the light areas between the maximum
delay stress-strain path and the Maxwell path.

3.4. Hysteresis. In Fig.6 an Fig.7 we illustrate the behavior of the system under cyclic loading.
If Maxwell convention is operative, there is no hysteresis and the system follows elastically the
same path for loading and unloading (say, path O-A-B-A-O in Fig.6a).

If the system is unloaded after the transition to the fully debonded state (d > dMax), the
crack heals again at d = dMax with a sudden transformation of the cohesive energy into the elastic

1We remark that under the Maxwell convention also the transition to the fully debonded state happens without
dissipation at a number ξMax of debonded links and at a displacement d = dMax(ξ̄Max) such that the decohesion
energy equals the elastic energy, i.e.

ξ̄Max = nKξ̄Max
d2

Max.



12 REVERSIBLE ADHESION: FROM DISCRETE TO CONTINUUM

Figure 5. Decomposition of the external work into dissipated energy (light grey areas C-c-
D-d, E-e-F-f), decohesion energy (middle grey area O-A-B-C-D-E-F-O) and elastic energy (dark
gray area o-f-g-o). With bold dashed lines we represent the global minima of the energy, with
continuous bold lines we denote the maximum delay path. Constitutive parameters are the same
as those in Fig.3

Figure 6. Partial cyclic loading for a system with n = 30, and ν = 0.3). a) Maxwell conven-

tion, b) maximum delay convention.
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energy. During such event a finite domain of broken springs reconnects simultaneously (path D-C-
B in Fig.7a). Such snaps are indeed observed in experiments, both for loading and unloading (see
[10, Chapter 3] and references therein). Experiments show, however, that the detachment and
reattachment thresholds can be different with the corresponding systems exhibiting an adhesion
hysteresis. This suggests that the Maxwell strategy may be less realistic than the maximum
delay strategy.

Figure 7. Complete cyclic loading for a system with n = 30, ν = 0.3. a) Maxwell convention,

b) maximum delay convention.

Under the maximum delay convention, if the unloading starts before the system reached
fully debonded state (d < dmd), the system shows a limited hysteresis (loop O-A-B-C-A in Fig.6b)
which disappears in continuum limit. If we unload the chain inside this hysteresis loop (from,
say, a branch ξ̄) the system first deforms elastically until d = d1(ξ̄) when the last broken spring
reconnects and the system jumps back to the branch ξ̄ − 1. With further unloading the system
follows this new equilibrium branch until again at d = d1(ξ̄− 1) another springs reconnects and
so on.

In Fig.7b we illustrate the behavior of the dissipative system during the complete unloading
from the fully debonded state. We remark that in contrast to the case of small cycle unloading
the maximal hysteresis is preserved in the macroscopic limit.

4. Continuum behavior

We now turn to the study of the continuum solutions (2.3). Using (2.1) one can see that
there exists a critical value dmd such that for 1 < d < dmd the function J(ζ) from (2.4) has two
non-degenerate critical points where J ′(ζ) = 0 (one stable and one unstable) while for d > dmd

there are no such critical points.
One can also check that for d > 1 the derivative J ′(0) = J ′(1) = 1 − d2 < 0 which means

that the function J(ζ) behaves as shown in the inserts in Fig.8. Notice also that there exists



14 REVERSIBLE ADHESION: FROM DISCRETE TO CONTINUUM

Figure 8. Phase diagram for the continuous model. Bold lines represent the maximum delay

convention; bold-dashed lines represent the global minimization strategy (Maxwell convention).

Inserts show the structure of the function J(ζ) in the corresponding intervals. Here ν = 1.

Figure 9. Equilibrium stress and energy for the macroscopic limit of the system considered

in Fig.6. Bold lines represent the maximum delay convention; bold-dashed lines - the global

minimization strategy (Maxwell convention); bold continuous lines unstable equilibria.

another threshold dmax such that for d < dmax the global minimum is attained at the first
of the two critical points, whereas for dmax < d < dmd the global minimum is attained at
the boundary of the domain, ζ = 0, describing the totally debonded configuration. Moreover,
this state remains the only minimizer for the whole interval d > dmd. In Fig.9 we show the
stress-strain and energy-strain diagrams illustrating this behavior of the continuum solutions.

The critical value of displacement dmd can be obtained from the equation d′(ζ) = 0 (see
Fig.8), which gives the fraction ζmd of debonded springs at d = dmd. This equation can be
written explicitly as ζmd

σ2(ζmd)
ν2 +σ(ζmd)− ζmd = 0. After solving this equation, we can use (2.1)

to find dmd = d(ζmd). The displacement dmax can be obtained by first determining the fraction of
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debonded springs ζmax which satisfy J(ζmax) = J(1) or ζmax
σ2(ζmax)

ν2 +σ(ζmax)− (1−ζmax) = 0.
Then, using (2.1), one can find dmax = d(ζmax).

The overall comparison of Fig. 7 and Fig. 9 shows that the discrete system has a much
reacher set of metastable states (local minima) than its continuum analog. As n increases, we
observe two major tendencies: some of the branches of the local minima of the discrete system
shrink to points representing the local minima of the continuum system whereas some other
branches simply disappear in the limit. On the contrary, the structure of the global minimum
path remains basically unaffected as n →∞.

Figure 10. a) displacement fields at ζ = 0.5 and b) force-displacement diagrams. In a)

ν = 0.01, in b) ν = 0.5, and in c) ν = 10.

Due to the relative simplicity of the continuum model, one can study the dependence of the
predicted behavior on the remaining nondimensional parameter ν characterizing the toughness
of the adhesion layer. In Fig.10a we show three displacement fields corresponding to a given size
of the crack (ζ = 0.5) and to different values of the nondimensional parameter ν. We observe
that the ‘localization’ of the crack tip predicted by our model increases as ν decreases. In
Fig.10b we represent the (normalized) force-displacement diagrams generated by the continuum
model at different values of ν. Observe the interesting evolution of the stress-strain path from
an instantaneous (brittle) debonding of the whole chain to a (plasticity type) plateaux in the
case of a localized tip as the parameter ν decreases. In general one can see in both discrete
and continuum models that the ductility of the system, represented by the overall size of the
adhesion hysteresis,grows as the parameter ν is decreased.
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6. Appendix A

To invert the tri-diagonal matrix Be in (1.7) we can use iterative formulas from [14]. We
first relabel displacements as follows

ui := wi, i = 1, ..., ξ, displacements of debonded springs
vj := wj+ξ, j = 1, ..., n + 1− ξ, displacements of elastic springs (6.11)

and define the vectors u = (ui) and v = (vj). Consider the first ξ equations (1.10) corresponding
to the debonded part of the chain. After rearrangement, these equations can be rewritten as:

B1u= nν




2 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 2







u1

u2

. . .
uξ−1

uξ



=




σ
ν + nν d

0
. . .
0

nνv1




, (6.12)

where we introduced the ξ× ξ matrix B1 and added d to both sides of the first equation. In the
last equation the deformation of the first elastic spring v1 is given by the boundary condition.
Now B1 is a Toeplix tri-diagonal matrix which can be inverted explicitly (see e.g. [8, 14])

(B−1
1 )ij =

1
ν

(i + j − |j − i|)(2ξ + 2− |j − i| − i− j)
4n(ξ + 1)

.

Since in the right hand side of (6.12) only the first and the last elements are different from zero,
we are interested only in

(B−1
1 )i1 = (

1
nν

− i

nν(ξ + 1)
), (B−1

1 )iξ =
i

nν(ξ + 1)
.

Using the first equation of (6.12) and (1.4) we obtain

σ = nν2 d− v1

ξ
. (6.13)

The remaining equations give

ui = d− (i− 1)
σ

nν2
, i = 1, ..., ξ. (6.14)

Similarly, we can reformulate the remaining n+1−ξ equations corresponding to the bonded
part of the chain in the form

B2v=




2 + 1
n2ν2 −1 0
−1 2 + 1

n2ν2 −1
. . . . . . . . .

−1 2 + 1
n2ν2 −1

0 −1 2 + 1
n2ν2







v1

v2

. . .

vn+1−ξ




=




d− (ξ − 1) 1
nν2 σ

0
. . .
0

vn+1−ξ




,

where we introduced the (n + 1− ξ)× (n + 1− ξ) matrix B2. Once again we have a tri-diagonal
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Toeplitz matrix and since the diagonal elements satisfy (B2)ii > 2, i = 1, ..., n + 1 − ξ, we can
write (see again [8])

(B−1
2 )ij =

cosh[(n− ξ + 2− |j − i|)η]− cosh[(n− ξ + 2− i− j)η]
2 sinh[η] sinh[(n− ξ + 2)η]

.

The parameter η is given by the equation (1.17) and the results do not depend on the choice of
one of the two solutions of this equation (indeed the equilibrium solutions are even functions of
η). As in the previous case, we need only the first and the last columns of the inverse matrix

(B−1
2 )i1 =

sinh[(n− ξ + 2− i)η]
sinh[(n− ξ + 2)η]

,

(B−1
2 )i(n−ξ+1) =

sinh[i η]
sinh[(n− ξ + 2)η]

.

By using these formulas we obtain

vi =
sinh[(n + 2− ξ − i)η]

sinh[(n + 2− ξ)η]
(d− 1

ν2

(ξ − 1)σ
n

)+

+
sinh[iη]

sinh[(n + 2− ξ)η]
vn+1−ξ, i = 1, ..., n + 1− ξ.

(6.15)

7. Appendix B

To prove Γ-convergence we proceed in several steps. The first step is to find a tight lower
bound. The following reasoning is standard (see [3])

Proposition 7.1. Assume that wn ∈ A∗n and Jn(wn) ≤ C for every n ∈ N. Then up to
subsequences wn → w weakly in H1(0, L) and w ∈ A. Moreover if wn → w weakly in H1(0, L)
and w ∈ A then

lim inf
n→∞ Jn(wn) ≥ J(w) (7.16)

Proof. The first assertion is trivial since Jn(wn) ≤ C implies ‖w′n‖L2 ≤ C ′ which together with
wn(0) = d yields weak compactness of vn in H1(0, L) and that any limit point of wn belongs to
A. If in addition wn → w weakly in H1(0, L) and w ∈ A then convexity of φ yields

lim inf
n→∞

∫ L

0
φ(w′n) dx ≥

∫ L

0
φ(w) dx.

Moreover by recalling that wn → w in each Lp(0, L) and that

n+1∑

i=1

L

n
ϕ

(
wn

(
iL

n

))
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are the Riemann sums of the function ϕ(wn) we get
n∑

i=1

L

n
ϕ

(
wn

(
iL

n

))
→

∫ L

0
ϕ(w) dx

thus proving inequality (7.16). ¤

The next step is to prove the existence of a recovery sequence

Proposition 7.2. Assume that w ∈ A. Then there exists a sequence wn ∈ A∗n such that wn → w
and

Jn(wn) → J(w). (7.17)

Proof. Let w ∈ A and define wn ∈ A∗n as in (2.6). It is readily seen that Jn(wn) → J(w). ¤

We can now clarify the relationship between the functionals Jn and J .

Theorem 7.3. Let w̄n ∈ A∗n such that

Jn(w̄n)− inf
A∗n

Jn → 0 (7.18)

then up to subsequences w̄n ⇀ w̄ in H1(0, L) and

Jn(w̄n) → J(w̄) = inf
A

J.

Proof. It is readily seen that (7.18) yields Jn(w̄n) ≤ C for suitable C > 0 and by Proposition
7.1 we get, up to subsequences,

lim inf
n→∞ Jn(w̄n) ≥ J(w̄). (7.19)

Let now w ∈ A. Then by Proposition 7.2 there exists a sequence wn ∈ A∗n such that Jn(wn) →
J(w) and wn ⇀ w in H1. Then either Jn(wn) ≥ Jn(w̄n) or

Jn(wn)− inf
A∗n

Jn → 0

and so
J(w) ≥ lim inf

n→∞ Jn(w̄n) ≥ lim inf
n→∞ Jn(w̄n) ≥ J(w̄)

that is J(w̄) = minJ and infA∗n Jn → minJ .
¤

8. Appendix C

We first show that if w is a local minimizer of J then:
(1) If d < 1 then {w > 1} = ∅

(2) If d > 1 then either {w > 1} = [0, L] or {w > 1} = (0, ζL] with ζ ∈ (0, 1).
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We begin with 2). Let d > 1 then {w > 1} is a non empty relatively open subset of [0, L] and
therefore there exists a countable collection of disjoint open intervals of R, say Ij , j ∈ N such
that

{w > 1} =
⋃

j

(Ij ∩ [0, L]).

Assume by contradiction that for every ζ ∈ (0, 1), {w > 1} 6= [0, ζL), then one of the following
conditions holds true

i) {w > 1} = [0, L]

ii) ∃ α ∈ (0, L) such that (α, L] ⊂ {w > 1} and w(α) = 1

iii) ∃ β, γ ∈ (0, L) such that (β, γ) ⊂ {w > 1} and w(β) = w(γ) = 1.

If ii) holds then let η ∈ C1
0 (0, L) η ≡ 0 in [0, α]: since w is a local minimizer we get for every

ε > 0 such that ε‖η‖H1 < δ

0 ≤ J(w + εη)− J(w) =
ε

L

∫ L

α
(u2

rw
′η′ + wη1{w+εη≤1}) dx + o(ε)

and by letting ε → 0 we have ∫ L

α
w′η′ = 0

that is w′′ = 0 in (α,L). Now, since w(α) = 1 and due to the natural boundary condition w′(L) =
0, we get w ≡ 1 in the whole (α, L), which is a contradiction. Case iii) follows analogously and
hence 2) is proven. In order to prove 1) suppose by contradiction that {w > 1} 6= ∅ with d < 1.
Then either ii) or iii) holds true and a contradiction can be obtained also in this case.

We can now study the relation between the local minimizers of the continuum problem
(2.8) and the solution of the linear system (2.9). First observe that if w ∈ A is a local minimizer
of (2.8) then there exists ζ̄ ∈ (0, 1) such that





w′′ = 0 in (0, ζ̄)

w(0) = d; w(ζ̄) = 1

and 



ν2w′′ = w in (ζ̄, 1)

w(ζ̄) = 1, w′(1) = 0.

Moreover, given δ > 0, there exists a given small enough ε > 0, such that wε, the unique solution
of 




w′′ = 0 in (0, ζ̄ − ε)

w(0) = d; w(ζ̄ − ε) = 1



20 REVERSIBLE ADHESION: FROM DISCRETE TO CONTINUUM

and 



ν2w′′ = w in (ζ̄ − ε, 1)

w(ζ̄ − ε) = 1, w′(1) = 0,
satisfies ‖wε−w‖H1 < δ. This follows from well known results for elliptic equations with variable
domains (see [?]). Hence J(wε) ≤ J(w) and therefore ζ̄ is a local minimizer of the function
J(ζ) = J(wζ).

To prove the inverse statement we have to show that if ζ̄ is a local minimizer for J then
wζ̄ is a local minimizer for J . Let η > 0 such that for every |ζ − ζ̄| < η, J(ζ̄) ≤ J(ζ): we may
choose β > 0 such that if v ∈ H1(0, 1), v(0) = 0, ‖v‖H1 ≤ β then wζ̄ + v > 1 in [0, ζ̄ − η

2 ) and
wζ̄ + v < 1 in (ζ̄ + η

2 , 1]. Hence

J(wζ̄ + v) ≥ 1
2

∫ ζ̄− η
2

0

(
|urw

′̄
ζ + v′|2 + 1

)
dx +

1
2

∫ ζ̄+ η
2

ζ̄− η
2

(|u′|2 + |u ∧ 1|2) dx+

+
1
2

∫ 1

ζ̄+ η
2

(‖urw
′̄
ζ + v′|2 + |wζ̄ + v|2) dx

where u(x) ∧ 1 = u(x) if u(x) < 1 and u(x) ∧ 1 = 1 if u(x) ≥ 1. Here u denotes an absolute
minimizer of

u → 1
2

∫ ζ̄+ η
2

ζ̄− η
2

(|uru
′|2 + |u ∧ 1|2) dx

among all u ∈ H1(ζ̄ − η
2 , ζ̄ + η

2 ) such that u(ζ̄ ± η
2 ) = uζ̄(ζ̄ ± η

2 ) + v(ζ̄ ± η
2 ). An argument very

close to that used in the argument in the beginning of this Appendix shows that there exists a
unique ζ∗ ∈ (ζ̄ − η

2 , ζ̄ + η
2 ) such that u > 1 in (ζ̄ − η

2 , ζ∗) and u < 1 in (ζ∗, ζ̄ + η
2 ).

Therefore by defining

w∗(x) =





wζ̄(x) + v(x) in [0, 1] \ [ζ̄ − η
2 , ζ̄ + η

2 ]

u(x) otherwise

and by taking into account that

wζ∗∈argmin

{∫ ζ∗

0
(|urw

′|2 + |w∧1|2)dx : w ∈ H1(0, ζ∗), w(ζ∗)=1,w(0)=d

}

and

wζ∗∈ argmin
{∫ 1

ζ∗
(|urw

′|2 + |w ∧ 1|2)dx : w ∈ H1(ζ∗, 1), w(ζ∗)=1
}

we get
J(wζ̄ + v) ≥ J(w∗) ≥ J(wζ∗).

Since ζ̄ is a local minimizer for J and |ζ̄ − ζ∗| ≤ η/2 , we argue

J(wζ∗) = J(ζ∗) ≥ J(ζ̄) = J(wζ̄),



REVERSIBLE ADHESION: FROM DISCRETE TO CONTINUUM 21

thus proving the local minimality of wζ̄ .
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