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Abstract. We study a general total variation denoising model with weighted L1 fidelity,
where the regularizing term is a non-local variation induced by a suitable (non-integrable)
kernel K, and the approximation term is given by the L1 norm with respect to a non-
singular measure with positively lower-bounded L∞ density. We provide a detailed
analysis of the space of non-local BV functions with finite total K-variation, with special
emphasis on compactness, Lusin-type estimates, Sobolev embeddings and isoperimetric
and monotonicity properties of the K-variation and the associated K-perimeter. Finally,
we deal with the theory of Cheeger sets in this non-local setting and we apply it to the
study of the fidelity in our model.

1. Introduction

1.1. Total variation denoising models. Total variation minimizing models have been
employed in a wide variety of image restoration problems. The most common model is
denoising, that is, preserving the most significant features of an image while removing the
background noise.

Total variation denoising models were introduced by Rudin, Osher and Fatemi (ROF)
in their pioneering work [58]. In a domain Ω ⊂ Rn (for instance, the computer screen),
we are given a certain greyscale image, identified with its greyscale function f : Ω → R,
which is supposed to be the noise-corrupted version of a clearer initial image. The idea
of the ROF model is to denoise the given image f by looking for a new greyscale image
u : Ω → R solving the minimization problem

inf
u∈BV (Ω)

∫
Ω

d|Du| + Λ
∫

Ω
|u − f |2 dx. (1.1)
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Here BV (Ω) is the space of functions with bounded variation on Ω and the Lagrangian
multiplier Λ > 0 is the fidelity parameter.

Motivated by the lack of contrast invariance (i.e., homogeneity) of (1.1), Chan and
Esedoḡlu (CE) in [20] proposed the alternative model

inf
u∈BV (Rn)

∫
Rn

d|Du| + Λ
∫
Rn

|u − f | dx. (1.2)

The CE model (1.2) has the advantage to be contrast invariant, but it is merely convex,
thus losing uniqueness of minimizers. Nonetheless, the CE model (1.2) has a strongly
geometric flavor, yielding an interesting link with the Cheeger constant [40, 49,57].

The models (1.1) and (1.2) are of local nature, meaning that the regularizing term is
of local type. Local denoising models are quite efficient, but they scarcely preserve the
details, since fine structures are mostly treated as noise and thus smoothed out.

For these reasons, several works [11, 42, 43, 47] turned the attention towards suitable
non-local replacements of the BV energy. A main advantage of non-local energies is that
they consider both geometric parts and textures within the same framework, sharpening
the sensibility of the regularization term.

In [54], Mazón, Solera and Toledo studied the ROF and CE models (1.1) and (1.2) in
metric random walk spaces. In Rn, their non-local regularization term becomes

u 7→ 1
2

∫
Rn

∫
Rn

|u(x) − u(y)| K(x − y) dx dy, (1.3)

where K is a non-negative and radially symmetric function satisfying
∫
Rn K dx = 1. A

detailed analysis of the energy (1.3) has been carried out in [52, 53]. Since K ∈ L1(Rn),
the energy (1.3) is finite for any u ∈ L1(Rn), hence L1 data are denoised to L1 images.

To improve the regularity of the denoised image, one must drop the assumption K ∈
L1(Rn). In this direction, Novaga and Onoue [55] and the first-named author [4] studied
the ROF model (1.1) and the CE model (1.2), respectively, for K = | · |−n−s with s ∈
(0, 1). We also refer to the recent work [2], where the authors also study the so-called
distributional fractional s-variation, s ∈ (0, 1), introduced by Comi and the second-named
author in [24] (also see [8, 23–29] for an extensive treatment of this non-local energy).

As in the local case, also non-local ROF and CE models can be naturally linked with
the theory of Cheeger sets, see [54, Sec. 3.2] and [4, Sec. 4].

1.2. Main results. The main aim of the present paper is to study the CE model (1.2)
with non-local regularization term of the form (1.3) for non-integrable kernels satisfying
minimal assumptions. Our approach not only covers [4], but also allows for other non-local
energies already appearing in the literature [9, 10,14,22,33], see Section 2.3 below.

The core of our approach is a detailed study of the space

BV K(Rn) =
{

u ∈ L1(Rn) : [u]BV K(Rn) = 1
2

∫
Rn

∫
Rn

|u(x) − u(y)| K(x − y) dx dy < +∞
}

naturally induced by the seminorm (1.3). The space BV K(Rn) has attracted considerable
attention in recent years, mostly in view of non-local minimal surfaces and calibrations [13,
21, 56], isoperimetric inequalities [17, 48, 51], non-local mean curvature flows [18, 19], as-
ymptotic properties [3] and embedding theorems [30, 37,38,46].
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Besides improving the results available in the literature concerning basic properties of
BV K functions, we prove compactness of the embedding BV K(Rn) ⊂ L1

loc(Rn), a Lusin-
type estimate for BV K functions, a rearrangement inequality and a Gagliardo–Nirenberg–
Sobolev-like embedding, a monotonicity property of an isoperimetric-type ratio for dilations
of a fixed set, Sobolev-type inequalities and the monotonicity of the K-perimeter on finite-
measure sets under intersection with convex sets.

Concerning Cheeger sets in the BV K framework, we prove existence and basic properties
of Cheeger sets, calibrability of balls, a Faber–Krahn-type inequality, the relation between
Cheeger sets and BV K eigenfunctions; an L∞ bound for BV K eigenfunctions and a non-
local formulation of the Max Flow Min Cut Theorem.

Finally, we study the following non-local analogue of the CE model (1.2)

inf
u∈BV K(Rn)

[u]BV K(Rn) + Λ
∫
Rn

|u − f | dν. (1.4)

In our model (1.4), the L1 approximation term is of weighted type, namely, we integrate
with respect to an admissible weight measure ν ∈ W(Rn), where

W(Rn) =
{

ν = w L n : w ∈ L∞(Rn), ess-inf
Rn

w > 0
}

.

Besides the properties of the solutions of (1.4), and their link with the solutions of
the geometric analog of (1.4), we prove existence of solutions for L1 data, existence of
(unique) minimal and maximal geometric solutions, a comparison principle for (extremal)
geometric solutions, uniqueness of geometric solutions for a.e. Λ > 0 for bounded convex
data, high-fidelity results for sufficiently smooth data, a low-fidelity result for L1 data with
bounded support and the relation between the fidelity and the Cheeger constant.

1.3. Organization of the paper. The rest of the paper is organized as follows. Section 2
is dedicated to the study of BV K functions and sets. Section 3 deals with the theory of
Cheeger sets in the BV K framework. Sections 4 and 5 deal with the CE model (1.4) and
its geometric analog, respectively. Finally, Section 6 studies the behavior of solutions as
the fidelity parameter varies, proving high and low fidelity results.

2. Non-local BV functions

In this section, we study the non-local variation and non-local perimeter functionals.

2.1. Assumptions on the kernel. We call a kernel K : Rn → [0, +∞] any measurable
function such that K ̸≡ 0 (up to negligible sets). Throughout the paper, a kernel K may
satisfy some of the assumptions listed below.

We may require K to be symmetric,
K(x) = K(−x) for all x ∈ Rn, (Sym)

or radial, if there exists a measurable profile κ : [0, +∞) → [0, +∞] such that
K(x) = κ(|x|) for all x ∈ Rn. (Rad)

Note that (Sym) is not truly relevant, since one may replace K with its symmetrized
K̃(x) = K(x)+K(−x)

2 , x ∈ Rn. We may reinforce (Rad) as
(Rad) holds with κ strictly decreasing in a neighborhood of the origin. (Rad+)
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We may require K to be integrable far from the origin,

K ∈ L1(Rn \ Br) for all r > 0, (Far)

or not too singular (also known as 1-Lévy property),∫
Rn

(1 ∧ |x|) K(x) dx < +∞. (Nts)

Differently from [52,53], we usually deal with non-integrable kernels,

K /∈ L1(Rn). (Nint)

We may require K to be strictly positive,

K(x) > 0 for all x ∈ Rn. (Pos)

We may locally reinforce (Pos) via the positivity of the infimum of K around the origin,

∃ r, µ > 0 : K(x) ≥ µ for all x ∈ Br. (Inf)

We may require K to be decreasing of exponent q ∈ [0, +∞),

|x| ≤ |y| =⇒ K(y)|y|q ≤ K(x)|x|q (Decq)

or (locally) doubling of radius D > 0

∃ C > 0 : |y| = 2|x|, |x| ≤ 2D =⇒ K(x) ≤ CK(y). (DouD)

Sometimes, we may need to reinforce (Decq) in the case q = n as

|x| < |y| =⇒ K(y)|y|n < K(x)|x|n. (Dec+
n )

If K satisfies (Decq), we call q ∈ [0, +∞) the decreasing exponent of K. If K satis-
fies (DouD) with D = +∞, then we call the (smallest) constant C > 0 in (DouD) the
doubling constant of K and p = log2 C the doubling exponent of K.

Remark 2.1 (On a generalization of (Decq)). Assumption (Decq) may be generalized in
many ways. For example, one can replace (Decq) with

|x| ≤ |y| =⇒ K(y) ω(|y|) ≤ K(x) ω(|x|) (Dec-ω)

for some increasing function ω : [0, +∞) → [0, +∞). The more general (Dec-ω) may be
useful when K satisfies (Decq) for all q ∈ [0, q0) but not for the limiting q = q0. This is
in fact the case when K is a radial function of mixed power-logarithmic order, as in the
example (2.4) in Section 2.3 below. We will not deal with the consequences of (Dec-ω).

Remark 2.2 (Assumptions outside negligible sets). The assumptions listed above are
given pointwise everywhere just to keep the exposition simple. In fact, the same assump-
tions may hold only outside a L n-negligible set in Rn, without affecting the validity of
the results of this paper (up to the routine adaptations in the statements, if needed).
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2.2. Relations among the assumptions. We observe that (Rad) =⇒ (Sym) and
(Nts) =⇒ (Far). Also, if (Decq) holds for some q ≥ 0, then it also holds for all q′ ∈ [0, q].
In particular, (Rad) and (Decq) with q > 0 =⇒ (Rad+). We also have (Decq) and (DouD)
with D = +∞ =⇒ (Pos). Actually, one can state the following quantitative version of
the latter implication in terms of the parameter D ∈ (0, +∞] in (DouD).

Lemma 2.3 (Positivity). If K satisfies (Decq) and (DouD) with D > 0, then K(x) > 0
for all x ∈ B4D. In particular, if D = +∞, then K satisfies (Pos).

Also the implication (Decq) =⇒ (Inf) can be made quantitative depending on the
value of q ∈ [0, +∞), as follows.

Lemma 2.4 (Comparison via (Decq)). If K satisfies (Decq), then

∃ R, C > 0 : C
χBR

(x)
|x|q

≤ K(x) ≤ C
χBc

R
(x)

|x|q
+ χBR

(x) K(x) for all x ∈ Rn \ {0}.

(2.1)
In particular, K satisfies (Inf). In addition, if K also satisfies (Nts), then q < n + 1; if,
instead, K ∈ L1

loc(Rn), then q < n.

Finally, the following result can be considered as a dual formulation of the previous
Lemma 2.4 and is a simple consequence of the decaying property induced by (DouD).

Lemma 2.5 (Comparison via (DouD)). If K satisfies (Decq) and (DouD) with D = +∞,
then

∀R > 0 ∃ mR, MR > 0 : mR

χBc
R
(x)

|x|p
≤ K(x) ≤ MR

χBR
(x)

|x|p
+ χBc

R
(x) K(x)

for all x ∈ Rn \ {0}, where p = log2 C ≥ q and C ≥ 2q is the doubling constant of K.
In addition, if K also satisfies (Far), then p > n, that is, (DouD) holds with doubling
constant C ≥ max{2n, 2q}.

Lemmas 2.3, 2.4 and 2.5 above follow from elementary arguments that are omitted.

2.3. Examples of kernels. The typical kernel our theory can be applied to is given by

Kυ,n(x) = υ(|x|)
|x|n

, x ∈ Rn \ {0}, (2.2)

where υ : (0, +∞) → [0, +∞] is a measurable function. We set Kυ,n(0) = +∞. The kernel
in (2.2) satisfies (Rad), and the assumptions in Section 2.1 can be given in terms of υ.

With a slight abuse of notation, the space linked to (2.2) is

BV Kυ,n(Rn) =
{

u ∈ L1(Rn) : (x, y) 7→ |u(x) − u(y)|
|x − y|n

υ(|x − y|) ∈ L1(Rn × Rn)
}

similarly as in [33, Sec. 3] (although with a different notation). The space BV Kυ,n(Rn)
is a generalization of the usual fractional Gagliardo–Slobodeckij–Sobolev space W s,1(Rn),
which, in turn, corresponds to the choice υ(ϱ) = ϱ−s for ϱ > 0, for some fixed s ∈ (0, 1),
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see [32] for an account. All assumptions above are satisfied, with decreasing and doubling
exponents q = p = n + s. More generally, one can consider

υ(ϱ) =

ϱ−s0 for 0 < ϱ ≤ 1,

ϱ−s1 for ϱ > 1,

for fixed 0 ≤ s0 ≤ s1 ≤ 1. Also in this case, all assumptions are satisfied, with decreasing
exponent q = n + s0 and doubling exponent p = n + s1. One can in fact consider
υ(ϱ) = ϱ−s(ϱ) = e−s(ϱ) log ϱ for ϱ > 0, for some fractional-exponent (increasing) function
s : (0, +∞) → [0, 1]. One can also consider logarithms [9, 14,22,33], that is, letting

υ(ϱ) =

(1 − log ϱ)−α for 0 < ϱ ≤ 1,

0 for ϱ > 1,
(2.3)

for fixed α ∈ R or, more generally,

υ(ϱ) =

ϱ−s (1 − log ϱ)−α for 0 < ϱ ≤ 1,

0 for ϱ > 1,
(2.4)

for fixed s ∈ [0, 1) and α ∈ R. Obviously, in both (2.3) and (2.4), (Pos) fails, (DouD)
holds for D < 1

2 and (Far), (Nts) and (Inf) are true. Moreover, (Nint) holds if and only if
(s, α) ∈ (0, 1) × R ∪ {0} × (−∞, 1].

Finally, (Decq) holds for any q ∈ [0, n+s), and for q = n+s whenever α ∈ (−∞, 0]. Clearly,
the examples in (2.3) and (2.4) can be varied in many ways, in particular modifying
the behavior of ϱ 7→ υ(ϱ) for ϱ > 1 in order to also ensure (Pos) and (DouD) with
D = +∞ (and even the continuity of υ) while keeping valid all the other properties.
Further examples can be also derived from the theory of Lévy kernels [37–39].

2.4. K-variation. Let K : Rn → [0, +∞] be a kernel. We let

[u]BV K(Rn) = 1
2

∫
Rn

∫
Rn

|u(x) − u(y)| K(x − y) dx dy (2.5)

be the K-variation of u ∈ L1
loc(Rn) and

BV K
loc(Rn) =

{
u ∈ L1

loc(Rn) : [u]BV K(Rn) < +∞
}

and BV K(Rn) = BV K
loc(Rn) ∩ L1(Rn). The space BV K(Rn) is Banach with respect to

∥u∥BV K(Rn) = ∥u∥L1(Rn) + [u]BV K(Rn), u ∈ L1(Rn).
Since K ̸≡ 0, if [u]BV K(Rn) = 0 for u ∈ L1

loc(Rn), then u = c a.e. for some c ∈ R, with
c = 0 if u ∈ L1(Rn). Note that BV K(Rn) = L1(Rn) whenever K ∈ L1(Rn), since

[u]BV K(Rn) ≤ ∥K∥L1(Rn) ∥u∥L1(Rn) (2.6)
by definition. In addition,

(Nts) =⇒ BV (Rn) ⊂ BV K(Rn) continuously, (2.7)
with

[u]BV K(Rn) ≤ max
{
∥u∥L1(Rn),

1
2 [u]BV (Rn)

} ∫
Rn

(1 ∧ |x|) K(x) dx (2.8)

for all u ∈ BV (Rn). For a proof, see [3, Prop. 2.2] and [36, Lem. 3.48].
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2.5. K-perimeter. For E, A ∈ Mn, where Mn denotes L n-measurable sets, we let

PK(E; A) =
(1

2

∫
A

∫
A

+
∫

A

∫
Ac

)
|χE(x) − χE(y)| K(x − y) dx dy (2.9)

be the K-perimeter of E relative to A. In particular, for A = Rn we let
PK(E) = PK(E;Rn) = [χE]BV K(Rn)

be the (total) K-perimeter of E, so that PK(E) = 0 if and only if |E| = 0 or |Rn \E| = 0.
If (Sym) holds, then (2.9) becomes

PK(E; A) =
(∫

E∩A

∫
Ec∩A

+
∫

E∩A

∫
Ec∩Ac

+
∫

E∩Ac

∫
Ec∩A

)
K(x − y) dx dy.

The K-perimeter is invariant by translations,
PK(E − x; A − x) = PK(E; A) (2.10)

for all x ∈ Rn, where E−x = {y ∈ Rn : y+x ∈ E}, it is invariant under complementation,
PK(Ec; A) = PK(E; A), (2.11)

and it satisfies the submodularity property
PK(E ∩ F ; A) + PK(E ∪ F ; A) ≤ PK(E; A) + PK(F ; A), (2.12)

see [3, p. 8, proof of (vi)]. As in (2.6), if K ∈ L1(Rn) and (Sym) holds, then

PK(E) = ∥K∥L1(Rn)|E| −
∫

E

∫
E

K(x − y) dx dy (2.13)

provided that |E| < +∞. Finally, if (Nts) is in force, then (2.8) becomes

PK(E) ≤ max
{
|E|, 1

2P (E)
} ∫

Rn
(1 ∧ |x|) K(x) dx, (2.14)

where P (E) = [χE]BV (Rn) denotes the perimeter of E.

2.6. Recognizing constant functions. We recall the following simple but fundamental
result on how the K-variation allows to recognize constant functions [6].

Proposition 2.6 (Constant functions). If the lower bound in (2.1) holds for q ≥ n + 1,
then BV K

loc(Rn) contains a.e.-constant functions only, and BV K(Rn) = {0}.

Due to Lemma 2.4 and the above Proposition 2.6, (Decq) becomes truly relevant only
for q < n + 1, which is the case if (Nts) is in force, see the last part of Lemma 2.4.

If (Decq) holds with q > n, then BV K functions are fractional Sobolev of order q − n.

Proposition 2.7 (Embedding in fractional Sobolev space). Let (Decq) with q ∈ (n, n+1)
be in force. Then BV K(Rn) ⊂ W q−n,1

loc (Rn) with continuous inclusion. If, in addition,
(Far) holds, then BV K(Rn) ⊂ W q−n,1(Rn) with continuous inclusion.

Propositions 2.6 and 2.7 above follow from elementary arguments that are omitted.

2.7. Coarea formula. The K-variation and the K-perimeter are connected via the fol-
lowing coarea formula, see [17, Prop. 2.3].

Lemma 2.8 (Coarea formula). If u ∈ L1
loc(Rn), then [u]BV K(Rn) =

∫
R

PK({u > t}) dt.
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2.8. Lower semicontinuity. Fatou’s Lemma yields the semicontinuity property for the
K-variation and the K-perimeter, see [17, Prop. 2.2].

Lemma 2.9 (Lower semicontinuity in BV K
loc). If (uk)k∈N ⊂ BV K

loc(Rn) is such that uk → u
in L1

loc(Rn) as k → +∞ with lim inf
k→+∞

[uk]BV K(Rn) < +∞, then u ∈ BV K
loc(Rn) with

[u]BV K(Rn) ≤ lim inf
k→+∞

[uk]BV K(Rn).

Lemma 2.10 (Lower semicontinuity for PK). Let A ∈ Mn. If (Uk)k∈N ⊂ Mn is such
that χUk

→ χU in L1
loc(Rn) as k → +∞ with lim inf

k→+∞
PK(Uk; A) < +∞, then

PK(U ; A) ≤ lim inf
k→+∞

PK(Uk; A).

2.9. Compactness. We now prove the compactness of the embedding BV K(Rn) ⊂
L1

loc(Rn). Actually, we prove the more general Theorem 2.11 below, which extends [46,
Th. 1.1] and, for p = 1, positively answers a question left open in [17] (see [30] for sim-
ilar results in Orlicz spaces). After we completed our paper and posted it on arXiv,
G. F. Foghem Gounoue kindly indicated his Ph.D. thesis [36] to us (of which we were un-
aware) where he proved Theorem 2.11 below under the additional (Sym), see Remark 2.12.

Let K : Rn → [0, +∞] be a kernel and let p ∈ [1, +∞). Given u ∈ L1
loc(Rn), we let

[u]W K,p(Rn) =
(1

2

∫
Rn

∫
Rn

|u(x) − u(y)|p K(x − y) dx dy
)1/p

and we define
W K,p

loc (Rn) =
{
u ∈ L1

loc(Rn) : [u]W K,p(Rn) < +∞
}

and W K,p(Rn) = W K,p
loc (Rn) ∩ Lp(Rn). The space W K,p(Rn) is Banach with respect to

∥u∥W K,p(Rn) = ∥u∥Lp(Rn) + [u]W K,p(Rn), u ∈ Lp(Rn).

If p = 1, then W K,p(Rn) = BV K(Rn). Since K ̸≡ 0, if [u]W K,p(Rn) = 0 for u ∈ L1
loc(Rn),

then u = c a.e. for some c ∈ R, with c = 0 if u ∈ Lp(Rn). Note that W K,p(Rn) = Lp(Rn)
whenever K ∈ L1(Rn), since

[u]W K,p(Rn) ≤ 2
p−1

p ∥K∥1/p
L1(Rn) ∥u∥Lp(Rn)

by definition. In addition, the condition∫
Rn

(|x|p ∧ 1) K(x) dx < +∞. (Ntsp)

yields the continuous embedding W 1,p(Rn) ⊂ W K,p(Rn), with

[u]W K,p(Rn) ≤ 2−1/p max
{
∥∇u∥Lp(Rn;Rn), 2∥u∥Lp(Rn)

}( ∫
Rn

(|x|p ∧ 1) K(x) dx
)1/p

(2.15)

for all u ∈ W 1,p(Rn). Finally, if (Far) holds, then W K,p(Rn) = W KχBr ,p(Rn) for all r > 0,
with equivalence of the norms.

Theorem 2.11 (Sequential compactness in W K,p). Let (Far) and (Nint) be in force. If
(uk)k∈N ⊂ W K,p(Rn) satisfies sup

k∈N
∥uk∥W K,p(Rn) < +∞, then there exists a subsequence

(ukj
)j∈N ⊂ W K,p(Rn) and u ∈ W K,p(Rn) such that ukj

→ u in Lp
loc(Rn) as j → +∞.
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Remark 2.12 (On the assumptions of [46, Th. 1.1 and Lem. 2.2] and [36, Th. 3.81]).
In [46], the authors assume (Nint) and (Ntsp) (and also (Sym) without loss of generality).
However, one can relax (Ntsp) to (Far), as we do here in Theorem 2.11 (as well as in
Lemma 2.16 below). Indeed, (Ntsp) ensures that W K,p(Rn) ̸= {0}, thanks to (2.15)
(if W K,p(Rn) = {0}, then Theorem 2.11 is obviously true). We also mention that [36,
Th. 3.81] assumes (Sym). However, as we do here, this is not needed.

In Theorem 2.11, we do not assume (Rad). In particular, Theorem 2.11 provides
an alternative proof of the existence of isoperimetric sets among bounded sets for the
anisotropic fractional perimeter considered in [48, 51] (in particular, see [51, Eq. (10)]).
Similarly, we can state the following analogous result, whose plain proof is omitted.
Corollary 2.13 (Conditional isoperimetric inquality). Let (Far) and (Nint) be in force.
Let v ∈ (0, +∞) and Ω ∈ Mn with |Ω| < +∞ be fixed. If

inf
{
PK(E) : E ∈ Mn, |E| = v, E ⊂ Ω

}
< +∞, (2.16)

then the conditional isoperimetric problem (2.16) admits minimizers.
Given E ∈ Mn, we let RE : L1

loc(Rn) → L1
loc(Rn) be given by RE(u) = uχE for

u ∈ L1
loc(Rn). Note that RE is continuous from Lp(Rn) to itself whenever p ∈ [1, +∞].

Definition 2.14 (Locally compact operator on Lp). Let p ∈ [1, +∞). We say that
T : Lp(Rn) → Lp(Rn) is locally compact if RE ◦T : Lp(Rn) → Lp(Rn) is compact whenever
E ⊂ Rn is a compact set.

Since any strong limit of compact operators is also compact (see [7, Th. 6.1] for exam-
ple), any strong limit of locally compact operators is locally compact too.

The following result generalizes [46, Lem. 2.1] to all exponents p ∈ [1, +∞). We also
refer the reader to [36, Th. 3.9] for an even more general result. Its simple proof follows
the one of [46, Lem. 2.1] and is thus omitted.
Lemma 2.15 (Convolution is locally compact). Let p ∈ [1, +∞). If η ∈ L1(Rn), then
Tη : Lp(Rn) → Lp(Rn), Tη(u) = u ∗ η for u ∈ Lp(Rn), is locally compact.

The following results generalizes [46, Lem. 2.2] for all p ∈ [1, +∞) (also see the proof
of [36, Th. 3.81]). Its simple proof follows the one of [46, Lem. 2.2] and is thus omitted.
Lemma 2.16 (Lp distance to convolution in W K,p). Let (Far) be in force. Let δ > 0 be
such that Kδ = KχRn\Bδ

∈ L1(Rn) \ {0}. If ηδ = Kδ

∥Kδ∥L1(Rn)
, then

∥u − u ∗ ηδ∥Lp(Rn) ≤ 21/p ∥Kδ∥−1/p
L1(Rn) [u]W K,p(Rn) for u ∈ W K,p(Rn).

Proof of Theorem 2.11. The proof follows the same strategy of [46], so we only sketch it.
Let S ⊂ W K,p(Rn) be a bounded and C = sup

u∈S
∥u∥W K,p(Rn). Given E ⊂ Rn compact,

we have to show that RE(S) ⊂ Lp(Rn) is relatively compact. Given ε > 0, by (Far)
and (Nint) we can find δ > 0 such that 21/p ∥Kδ∥−1/p

L1(Rn) ≤ ε
C

, so that

∥RE(u) − RETηδ
(u)∥Lp(Rn) ≤ ∥u − Tηδ

(u)∥Lp(Rn) ≤ 21/p ∥Kδ∥−1/p
L1(Rn) [u]W K,p(Rn) ≤ ε

for all u ∈ S by Lemma 2.16, where Tηδ
(u) = u∗ηδ. Therefore, RE(S) is contained in an ε-

neighborhood of the set RETηδ
(S), which is relatively compact according to Lemma 2.15.

Hence RE(S) is totally bounded in Lp(E) and thus relatively compact. □
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2.10. Lusin-type estimate. With the same notation of Section 2.9, the following re-
sult provides a Lusin-type estimate for W K,p functions, generalizing [9, Th. 1.11 and
Prop. 1.13]. Here and in the following, we let

φK(ε, R) =
∫

BR\Bε

K(x) dx (2.17)

for R > ε > 0. If R = +∞, then we simply let

φK(ε) = φK(ε, +∞) =
∫
Rn\Bε

K(x) dx

for ε > 0. Note that 0 ≤ φK(ε, R) < +∞ for all R > ε > 0 as soon as (Far) is in force.

Theorem 2.17 (Lusin-type estimate in W K,p). Let (Far), (Decq) and (DouD) be in force.
Let p ∈ [1, +∞). If u ∈ W K,p(Rn), then

|u(x) − u(y)|p φK(2|x − y|, D) ≤ C
(
DK,pu(x) + DK,pu(y)

)
for a.e. x, y ∈ Rn with |x − y| ≤ D

2 such that DK,pu(x), DK,pu(y) < +∞, where

DK,pu(x) = 1
2

∫
Rn

|u(x) − u(y)|p K(x − y) dy ∈ [0, +∞]

for x ∈ Rn. As a consequence, we have
∥u(· + h) − u∥Lp(Rn) φK(2|h|, D) ≤ C[u]W K,p(Rn)

for all h ∈ Rn with |h| ≤ D
2 . The constant C > 0 depends on n, p and K only.

Proof. The proof is similar to that of [9, Th. 1.11], so we only sketch it. Let R > 0
to be chosen later. We fix x, y ∈ Rn with 2|x − y| ≤ R such that all the quantities
appearing below are well defined and such that [9, Lem. 1.12] is applicable. By (2.17)
and [9, Lem. 1.12], we can estimate

|u(x) − u(y)|p φK(2|x − y|, R) ≤ cn,p

∫
BR\B2|x−y|

K(ζ) −
∫

B3|ζ|\B|ζ|

|u(x + h) − u(x)|p dh dζ

+ cn,p

∫
BR\B2|x−y|

K(ζ) −
∫

B3|ζ|\B|ζ|

|u(y + h) − u(y)|p dh dζ,

where cn,p > 0 is a constant depending on n and p only. We thus can easily bound∫
BR\B2|x−y|

K(ζ) −
∫

B3|ζ|\B|ζ|

|u(x + h) − u(x)|p dh dζ

≤ C
∫
Rn

|u(x + h) − u(x)|p
∫
Rn

K(ζ) χBR\B2|x−y|(ζ)χB3|ζ|\B|ζ|(h) dζ

|ζ|n
dh,

where C > 0 is a dimensional constant. Now K(ζ) ≤ CK(2ζ) ≤ C2K(4ζ) provided that
2|ζ| ≤ 2D, where C > 0 is the constant appearing in (DouD). We can then estimate
K(4ζ) ≤ K(3ζ) ≤ K(h) for all h ∈ B3|ζ| \ B|ζ| by (Decq). Therefore, we have K(ζ) ≤
CK(h) for all ζ ∈ BR \ B2|x−y| and h ∈ B3|ζ| \ B|ζ| provided that we choose R = D, where
C > 0 depends on K only. Hence, we get that∫

Rn
|u(x + h) − u(x)|p

∫
Rn

K(ζ) χBD\B2|x−y|(ζ)χB3|ζ|\B|ζ|(h) dζ

|ζ|n
dh
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≤ C
∫
Rn

|u(x + h) − u(x)|p K(h)
∫
{ζ∈Rn:max{2|x−y|, |h|

3 }≤|ζ|≤min{|h|,D}}
dζ

|ζ|n
dh

≤ C
∫
Rn

|u(x + h) − u(x)|p K(h)
∫ |h|

|h|
3

dr

r
dh

≤ CDK,pu(x),
where C > 0 depends on n and K only (and possibly varies from line to line). The
conclusion hence follows by combining the above estimates and swapping x and y. □

Remark 2.18 (Lp distance to convolution). Under the assumptions of Theorem 2.17,
there exists C > 0, depending on n, p and K only, such that

∥ϱε ∗ u − u∥Lp(Rn) ≤ C ℓK(ε, D) [u]W K,p(Rn) (2.18)

for all u ∈ W K,p(Rn) and ε ∈
(
0, D

2

]
. Here (ϱε)ε>0 is a family of convolution kernels,

ϱε = ε−nϱ
(

·
ε

)
, where ϱ ∈ C∞

c (Rn) is such that supp ϱ ⊂ B1, ϱ ≥ 0,
∫
Rn ϱ dx = 1, and

ℓK(ε, R) =
∫

B1

ϱ(y)
φK(2ε|y|, R) dy for all R > ε > 0,

where φK is as in (2.17). Note that, if (Far) holds, then ℓK is well-defined with 0 <
ℓK(ε, R) ≤ 1/φK(2ε, R) ≤ +∞ for all R > ε > 0. Moreover, if (Far) and (Nint) are in
force, then limε→0+ ℓK(ε, R) = 0 for each R > 0 by the Monotone Convergence Theorem.
Note that (2.18) implies Theorem 2.11, although under stronger assumptions.
2.11. Isoperimetric inequality. For a more detailed presentation of the following no-
tation, see [50, Ch. 3] and [31, App. A]. We set

Bv = Brv , rv =
(

v

|B1|

)1/n

, for v > 0. (2.19)

Given A ∈ Mn with |A| < +∞, we let A⋆ = B|A| as in (2.19). Consequently, we set
χ⋆

A = χA⋆ and thus, whenever f : Rn → [−∞, +∞] is a measurable function such that
|{|f | > t}| < +∞ for all t > 0, i.e., f vanishes at infinity, we let

f⋆(x) =
∫ +∞

0
χ⋆

{|f |>t}(x) dt, x ∈ Rn, (2.20)

be the symmetric-decreasing rearrangement of f . We recall that
{
f⋆ > t

}
= {|f | > t}⋆

for all t ∈ R. Note that f⋆ = f whenever f(x) = φ(|x|) for x ∈ Rn, where φ : [0, +∞) →
[0, +∞] is decreasing. The Riesz rearrangement inequality hence states that∫

Rn

∫
Rn

f(x) g(x − y) h(y) dx dy ≤
∫
Rn

∫
Rn

f⋆(x) g⋆(x − y) h⋆(y) dx dy (2.21)

whenever f, g, h : Rn → [0, +∞] vanish at infinity.
Theorem 2.19 (Isoperimetric inequality). Let (Rad) and (Decq) be in force. If E ∈ Mn

is such that χE ∈ BV K(Rn), then
PK(E) ≥ PK(B|E|). (2.22)

In addition, if (Rad+) is in force, then (2.22) holds as an equality if and only if E is a
translated of B|E| (up to negligible sets).
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The above Theorem 2.19 is a particular case of [17, Prop. 3.1]. However, in [17,
Prop. 3.1], the authors state that equality in (2.22) occurs if K satisfies (Rad) and (Decq).
In fact, in the first step of the proof of [17, Prop. 3.1] (under the additional assumption
K ∈ L1(Rn)), they assert that these two assumptions are enough to characterize the
cases of equality in (2.21). Unfortunately, this is not correct, as some further assump-
tions on K are needed, see [12] for a more detailed discussion. Moreover, in the proof
of [17, Prop. 3.1], the characterization of the equality is not explicitly treated in the gen-
eral case. For these reasons, we provide a proof of Theorem 2.19 where we characterize the
equality case in (2.22) under the additional (Rad+), following the strategy of [31, App. A].

Proof of Theorem 2.19. Assume |E| > 0 and note that ∥K∥L∞(Rn) ∈ (0, +∞], because
K ̸≡ 0. Thanks to (Rad) and (Decq), for every t ≥ 0 there exists R(t) ∈ [0, +∞] such
that {K > t} = BR(t), with R(t) ∈ (0, +∞] for t ∈ (0, ∥K∥L∞(Rn)) and R(t) = 0 for
t ≥ ∥K∥L∞(Rn). By Tonelli’s Theorem, we can write

+∞ > PK(E) =
∫
Rn

∫
Rn

χE(x) χEc(y) K(x − y) dx dy

=
∫ +∞

0

∫
Rn

∫
Rn

χE(x) χEc(y) χ{K>t}(x − y) dx dy dt,

so that ∫
Rn

∫
Rn

χE(x)χEc(y)χ{K>t}(x − y) dx dy < +∞ (2.23)

for L 1-a.e. t > 0. Now we fix t ∈ (0, ∥K∥L∞(Rn)) such that (2.23) holds and we claim
that R(t) < +∞. Indeed, if R(t) = +∞ by contradiction, then (2.23) leads to

+∞ >
∫
Rn

∫
Rn

χE(x) χEc(y) dx dy = |E||Ec| = +∞,

which is impossible. Therefore, since t 7→ {K > t} is decreasing with respect to inclusion,
χ{K>t} ∈ L1(Rn) for every t > 0. Now, by (2.13) (applied to χ{K>t}) we rewrite (2.23) as∫

Rn

∫
Rn

χE(x) χEc(y) χ{K>t}(x − y) dx dy

= |E||BR(t)| −
∫
Rn

∫
Rn

χE(x) χE(y)χBR(t)(x − y) dx dy

for every t > 0. In conclusion, we get that

PK(F ) =
∫ ∥K∥L∞(Rn)

0

(
|F ||BR(t)| −

∫
Rn

∫
Rn

χF (x) χF (y) χBR(t)(x − y) dx dy
)

dt (2.24)

for F ∈ Mn such that PK(F ) < +∞ and |F | < +∞. Inequality (2.22) thus follows
by (2.24) and (2.21). Finally, if (Rad+) holds, then R(t) ↘ 0+ as t ↗ ∥K∥L∞(Rn).
So R(t) ∈ (0, 2r|E|) for t ∈ R close to ∥K∥L∞(Rn). By [12, Th. 1] and (2.24), we get
PK(E) = PK(B|E|) if and only if E is equivalent to a ball. □

Remark 2.20 (A question left open in [9]). Theorem 2.19 affirmatively answers a question
left open in [9, p. 842] concerning the isoperimetric problem for the non-local perimeter
associated to Kγ(x) = |x|−n | log |x||γ−1 χB1/3(x), x ∈ Rn \ {0}, whenever γ ≥ 0. Indeed,
Kγ is radial and satisfies (Decq) for all γ ≥ 0.

The following result generalizes [1, Th. 9.2] and [41, Th. A.1]. We omit its plain proof.
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Theorem 2.21 (Rearrangement inequality). Let (Rad) and (Decq) be in force. If u ∈
BV K(Rn), then also u⋆ ∈ BV K(Rn) with

[u]BV K(Rn) ≥ [u⋆]BV K(Rn). (2.25)

In addition, if also (Rad+) and (Pos) are in force, then (2.25) holds as an equality if
and only if u is proportional to a function v such that v(x) ≥ 0 for L n-a.e. x ∈ Rn and
{v > t} is a ball (up to negligible sets) for L 1-a.e. t > 0.

2.12. The isoperimetric function. We let βK : [0, +∞) → [0, +∞],

βK(v) = PK(Bv) for v > 0, (2.26)

be the isoperimetric function (recall the notation in (2.19)). The following result is a
simple consequence of [17, Lem. 3.2] and we thus omit its proof.

Lemma 2.22 (Behavior of βK). Let (Rad) and (Decq) be in force. It holds

lim
v→0+

βK(v)
v

=


∥K∥L1(Rn) if K ∈ L1(Rn),

+∞ otherwise.

The following dichotomy result is a consequence of Theorem 2.19. Its proof follows the
same strategy of that of [17, Prop. 3.3 and Cor. 3.4] and is thus left to the reader (to this
aim, recall that Lemma 2.4 ensures the validity of (Inf), which is needed in [17]).

Corollary 2.23 (Dichotomy). Let (Rad) and (Decq) be in force. If E ∈ Mn is such that
PK(E) < +∞, then either |E| < +∞ or |Ec| < +∞, and

PK(E) ≥ min
{
βK(|E|), βK(|Ec|)

}
.

With a slight abuse of notation, we let

LβK(·),1(Rn) =
{
u : Rn → [−∞, +∞] measurable : ∥u∥LβK (·),1(Rn) < +∞

}
,

where

∥u∥LβK (·),1(Rn) =
∫ +∞

0
βK

(
|{|u| > t}|

)
dt.

Since ∥u∥LβK (·),1(Rn) = [u⋆]BV K(Rn) by Lemma 2.8, from Theorem 2.21 we can infer the
following Sobolev-type embedding, encoding [32, Th. 6.5], [41, Th. 4.1] and [9, Th. 1.5]
when p = 1 (also compare with [37, Th. 1.1]).

Corollary 2.24 (Sobolev isoperimetric embedding). Let (Rad) and (Decq) be in force.
The embedding BV K(Rn) ⊂ LβK(·),1(Rn) is continuous, with

∥u∥LβK (·),1(Rn) ≤ [u]BV K(Rn) (2.27)

for u ∈ BV K(Rn). In addition, if also (Rad+) and (Pos) are in force, then (2.27) is an
equality if and only if u is proportional to a function v such that v(x) ≥ 0 for L n-a.e.
x ∈ Rn and {v > t} is a ball (up to negligible sets) for L 1-a.e. t > 0.
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2.13. Sobolev embeddings. We now refine Theorem 2.19 and Corollary 2.24.

Lemma 2.25 (Monotonicity). Let (Decq) with q < n + 1 be in force. If E ∈ Mn with
|E| ∈ (0, +∞), then

0 < r ≤ R < +∞ =⇒ PK(rE)
|rE|2− q

n

≥ PK(RE)
|RE|2− q

n

In particular, v 7→ βK(v) v
q
n

−2 is decreasing for v ∈ (0, +∞). If (Dec+
n ) holds, then

0 < r < R < +∞ =⇒ PK(rE)
|rE|

>
PK(RE)

|RE|
and thus v 7→ βK(v) v−1 is strictly decreasing for v ∈ (0, +∞).

Proof. Since

PK(F ) = 1
2

∫
F

∫
F c

K(x − y) dx dy + 1
2

∫
F c

∫
F

K(x − y) dx dy

whenever F ∈ Mn, in virtue of (Decq), we can estimate∫
RE

∫
(RE)c

K(x − y) dx dy = R2n
∫

E

∫
Ec

K(R(ξ − η)) dξ dη

= R2n
∫

E

∫
Ec

K(R(ξ − η)) (R|ξ − η|)q

(R|ξ − η|)q
dξ dη

≤ R2n
∫

E

∫
Ec

K(r(ξ − η)) (r|ξ − η|)q

(R|ξ − η|)q
dξ dη

= R2n−q rq
∫

E

∫
Ec

K(r(ξ − η)) dξ dη

= R2n−q

r2n−q

∫
rE

∫
(rE)c

K(x − y) dx dy

whenever 0 < r ≤ R < +∞, with the unique inequality strict for r < R provided that
(Dec+

n ) holds. A similar estimate holds for the integral relative to Ec ×E. The conclusion
hence follows by rearranging and by the definition of βK in (2.26). □

Lemma 2.25 implies the following isoperimetric-type inequality for small volumes.

Proposition 2.26 (Isoperimetric inequality for small volume). Let (Rad) and (Decq)
with q < n + 1 be in force. If χE ∈ BV K(Rn) with |E| ≤ v for some v ∈ (0, +∞), then

PK(E) ≥ βK(v)
v2− q

n

|E|2− q
n .

Letting Lp,1(Rn) be the Lorentz (p, 1)-space for p ∈ (0, +∞) (see [44, Sec. 1.4] for an
account), from Proposition 2.26 we readily get the following result.

Corollary 2.27 (Sobolev embedding for finite-measure support). Let (Rad) and (Decq)
with q < n + 1 be in force. If u ∈ BV K(Rn) is such that | supp u| < +∞, then

[u]BV K(Rn) ≥
(
2 − q

n

) βK(| supp u|)
| supp u|2− q

n

∥u∥
L

n
2n−q ,1(Rn)

.

Proposition 2.26 pairs with the following result, whose plain proof is omitted.
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Proposition 2.28 (Isoperimetric inequality for large volumes). Let (Rad), (Decq) with
q < n + 1 and (DouD) with D = +∞ be in force. Let the doubling constant of K be such
that C > 2n. Given V ∈ (0, +∞), there exists CV,K,n > 0 such that

PK(E) ≥ CV,K,n|E|2− p
n (2.28)

whenever χE ∈ BV K(Rn) with |E| ≥ V , where p = log2 C.

The assumption on the doubling constant in Proposition 2.28 above is motivated by
Lemma 2.5. In the proof of Proposition 2.28, one needs to exploit that, given p ∈ (n, +∞),
there exists Cn,p > 0, such that, for any x ∈ Rn and E ∈ Mn with |E| ∈ (0, +∞),∫

Ec

dy

|x − y|p
≥ Cn,p |E|1− p

n .

For the simple proof of the above inequality, see [32, Lem. 6.1] and [37, Lem. 3.1].

2.14. Intersection with convex sets. The following result generalizes [35, Lem. B.1],
also see [18, Rem. 2.8].

Theorem 2.29 (Intersection with convex). Let (Rad), (Nts), and (Decq) with q = 1 be
in force. If E ∈ Mn with |E| < +∞, then PK(E ∩ C) ≤ PK(E) for any convex C ⊂ Rn.

As a consequence, we get the following non-local analog of the monotonicity of local
perimeter, see [59, Th. 1.1] and the references therein.

Corollary 2.30 (Monotonicity on convex sets). Let (Rad), (Nts) and (Decq) with q = 1
be in force. If A, B ∈ Mn, A ⊂ B, |B| < +∞ and A is convex, then PK(A) ≤ PK(B).

Theorem 2.29 follows from the following result, see [56, Th. 1] and [13].

Lemma 2.31 (Local minimality of half-spaces). Let (Sym) and (Far) be in force. If
H ⊂ Rn is a half-space, then PK(H; BR) ≤ PK(E; BR) for R > 0 and E ∈ Mn with
E \ BR = H \ BR. If also (Pos) holds, then the inequality is strict for E ̸= H.

Remark 2.32 (On Lemma 2.31). We warn the reader that [56, Th. 1] is stated with the
stronger (Nts) in place of (Far), see the discussion around [56, Eq. (2)]. However, a careful
inspection of the proofs of [56, Ths. 1 and 2] allows to see that only the weaker (Far) is
really needed, while the stronger (Nts) additionally ensures that the class of competitors
is sufficiently large, as in fact mentioned in [56, Rem. 2]. In passing, we also warn the
reader that the pointwise convergence in [56, Def. 1, point 2] has to be actually reinforced
to an L1 convergence, as in [13, Def. 2.1]. We are indebted to Valerio Pagliari for having
shared these observations on [13,56] with us.

Proof of Theorem 2.29. The proof is almost identical to that of [35, Lem. B.1], so we only
sketch it. First, by Lemma 2.10, one reduces to the case C = H an half-space. Second,
since |E| < +∞ and x 7→ K(x)|x| is radially symmetric and decreasing due to (Rad) and
(Decq) with q = 1, by (2.21) one can also assume that E ⊂ BR for some R > 0. Hence

PK(E) − PK(E ∩ H) =
(∫

Ec
−
∫

E∩H

) ∫
E\H

K(x − y) dx dy

≥
(∫

F c
−
∫

F ∩H

) ∫
F \H

K(x − y) dx dy
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= PK(F ; BR) − PK(H; BR),
where F = E ∪ H. The conclusion hence follows by Lemma 2.31. □

3. (K, ν)-Cheeger sets

In this section, we study the theory of Cheeger sets for PK and ν ∈ W(Rn), where

W(Rn) =
{

ν = w L n : w ∈ L∞(Rn), ess-inf
Rn

w > 0
}

(3.1)

denotes the set of admissible weight measures. To avoid heavy notation, when ν = L n

we simply drop the reference to the measure.

3.1. (K, ν)-Cheeger sets. For the general theory of Cheeger sets, see [40,49,57].

Definition 3.1 (K-admissible sets). A set Ω ∈ Mn is K-admissible if there exists E ∈
Mn such that E ⊂ Ω, |E| ∈ (0, +∞) and PK(E) < +∞.

If (Nts) holds, then any set Ω ⊂ Rn with non-empty interior is K-admissible, since
any non-empty open ball B ⊂ Ω satisfies PK(B) < +∞ by (2.14). If K ∈ L1(Rn), then
any Ω ∈ Mn with |Ω| ∈ (0, +∞) is K-admissible by (2.13). Trivially, if (Decq) holds for
q ≥ n + 1, then no set Ω ∈ Mn is admissible, because of Proposition 2.6. For this reason,
in this section we assume that (Decq) holds with q < n + 1.

Definition 3.2 ((K, ν)-Cheeger constant and (K, ν)-Cheeger sets). Given a K-admissible
set Ω ∈ Mn, we let

hK,ν(Ω) = inf
{

PK(E)
ν(E) : E ∈ Mn, E ⊂ Ω, |E| ∈ (0, +∞)

}
∈ [0, +∞) (3.2)

be the (K, ν)-Cheeger constant of Ω. Any minimum E in (3.2) is a (K, ν)-Cheeger set
of Ω and we let CK,ν(Ω) be the collection of all (K, ν)-Cheeger sets of Ω.

The following result generalizes [5, Prop. 5.3] and is a particular application of [40,
Th. 3.1] (also see [40, Sec. 7.3.1]), so we only sketch its proof.

Theorem 3.3 (Existence of (K, ν)-Cheeger sets). Let (Rad), (Far), (Nint) and (Decq)
with q < n + 1 be in force. If Ω ∈ Mn is a K-admissible set with |Ω| < +∞, then
CK,ν(Ω) ̸= ∅, with hK,ν(Ω) > 0 and

|E|
q
n

−1 ≥ βK(|Ω|)
ν |Ω|2− q

n hK,ν(Ω)
(3.3)

for all E ∈ CK,ν(Ω), which, for q = n, reduces to

hK,ν(Ω) ≥ βK(|Ω|)
ν |Ω|

. (3.4)

Moreover, if (Dec+
n ) holds, Ω is open and ν = L n, then ∂E ∩∂Ω ̸= ∅ for any E ∈ CK(Ω).

Proof. The existence part follows a plain compactness argument exploiting Theorem 2.11,
Theorem 2.19, Lemma 2.22 and Lemma 2.10. To prove (3.3), one sees that

ν(E) = PK(E)
hK,ν(Ω) ≥ PK(B|E|)

hK,ν(Ω) = βK(|E|)
hK,ν(Ω) ≥ βK(|Ω|)

|Ω|2− q
n hK,ν(Ω)

|E|2− q
n (3.5)
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for any E ∈ CK,ν(Ω) by Theorem 2.19 and Lemma 2.25. Finally, letting Ω be open,
ν = L n and (Dec+

n ) be in force, if E ∈ CK(Ω) satisfies E ⋐ Ω by contradiction, then also
tE ⋐ Ω for any t > 1 sufficiently close to 1, so that

PK(tE)
|tE|

<
PK(E)

|E|
= hK(Ω),

by Lemma 2.25, in contrast with E ∈ CK(Ω). The proof is complete. □

Remark 3.4 (On touching boundaries). In Theorem 3.3, if (Dec+
n ) holds, Ω is open and

ν = L n, then E ∈ CK(Ω) must touch ∂Ω. Actually, we proved that tE ̸⊂ Ω for t > 1.

For general properties of (K, ν)-Cheeger sets, see [40, Secs. 3.4, 3.5 and 7.3.1]. Here we
only state the following result, generalizing [5, Prop. 5.6].

Proposition 3.5 (Relation with Euclidean Cheeger constant). Let (Nts) be in force. If
Ω ⊂ Rn is an open set with |Ω| < +∞, then

hK,ν(Ω) ≤ max
{

1
ν

,
hν(Ω)

2

}∫
Rn

(1 ∧ |x|) K(x) dx,

where

hν(Ω) = inf
{

P (E)
ν(E) : E ∈ Mn, E ⊂ Ω, |E| > 0

}
.

3.2. (K, ν)-calibrable sets and Faber–Krahn inequality. A (K, ν)-calibrable set Ω is
a K-admissible set with Ω ∈ CK,ν(Ω). The following result proves that balls are (K, L n)-
calibrable, see [49,57] and [5, Rem. 5.2].

Proposition 3.6 (Balls are K-calibrable). Let (Rad), (Nts), (Nint), (Decq) with q ∈
[n, n + 1) be in force. If B is a (non-trivial) ball, then B is K-calibrable. If also (Dec+

n )
holds, then CK(B) = {B}.

Proof. Let B ⊂ Rn be a ball with |B| ∈ (0, +∞). By (2.10), we can assume B is centered
at the origin. By (Nts) and (2.14), B is K-admissible. If E ⊂ B satisfies |E| > 0, then

PK(E)
|E|

≥ PK(B|E|)
|E|

= βK(|E|)
|E|

≥ βK(|B|)
|B|

= PK(B)
|B|

(3.6)

because of Theorem 2.19 and Lemma 2.25 (with q = n). By Definition 3.2, this proves
that B ∈ CK(B). Actually, an inspection of (3.6) yields B|E| ∈ CK(B) for any E ∈ CK(B).
Therefore, for q = n, if also (Dec+

n ) holds, then tB|E| ̸⊂ B for t > 1 by Remark 3.4, so
B|E| = B. Thus |E| = |B|E|| = |B| and so E = B as desired. □

The following result generalizes [5, Prop. 5.5], and (3.7) improves (3.4) for ν = L n.

Proposition 3.7 (K-Faber–Krahn inequality). Let (Rad), (Nts), (Nint) and (Decq) with
q ∈ [n, n + 1) be in force. If Ω ∈ Mn is K-admissible with |Ω| < +∞, then

hK(Ω) ≥ hK(B|Ω|). (3.7)

If also (Dec+
n ) holds, then (3.7) is an equality if and only if Ω is a ball.
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Proof. Let E ∈ CK(Ω) by Theorem 3.3. By Theorem 2.19 and Lemma 2.25, we get

hK(Ω) = PK(E)
|E|

≥ PK(B|E|)
|E|

= βK(|E|)
|E|

≥ βK(|Ω|)
|Ω|

(
|E|
|Ω|

)1− q
n

≥ PK(B|Ω|)
|B|Ω||

≥ hK(B|Ω|)

(3.8)
proving (3.7). If also (Dec+

n ) holds (hence so (Rad+)) and if (3.7) holds as an equality,
then (3.8) is a chain of equalities. In particular, E coincides with B|E| up to a translation
by Theorem 2.19, and B|E| = B|Ω| by Proposition 3.6. Therefore |E| = |B|E|| = |B|Ω|| =
|Ω|, so E = Ω. Thus Ω is equivalent to a ball up to a translation. □

3.3. Relation with first eigenvalue. Following [5, 15,16] and [40, Sec. 5], we let
BV K

0 (Ω) =
{
u ∈ BV K(Rn) : u(x) = 0 for L n-a.e. x ∈ Rn \ Ω

}
(3.9)

for Ω ∈ Mn. By definition, BV K
0 (Ω) is a closed subspace of BV K(Rn). By Definition 3.1

and Lemma 2.8, BV K
0 (Ω) ̸= {0} if and only if Ω is K-admissible. Note that (3.9) circum-

vents any irregularity of ∂Ω, see [16, Rem. 1.1] and [5, Defs. 2.1 and 2.2 and Lem. 2.3].
Definition 3.8 ((K, ν)-eigenvalue and eigenfunction). For Ω ∈ Mn K-admissible, we let

λK,ν(Ω) = inf
{

[u]BV K(Rn)

∥u∥L1(Rn, ν)
: u ∈ BV K

0 (Ω) \ {0}
}

∈ [0, +∞) (3.10)

be the first (K, ν)-eigenvalue relative to Ω. Any function u achieving the infimum in (3.10)
is called a (K, ν)-eigenfunction of Ω.

Since |u| ∈ BV K
0 (Rn) with [|u|]BV K(Rn) ≤ [u]BV K(Rn) for all u ∈ BV K

0 (Rn), we have

λK,ν(Ω) = inf
{
[u]BV K(Rn) : u ∈ BV K

0 (Ω) \ {0}, ∥u∥L1(Rn, ν) = 1, u ≥ 0
}
. (3.11)

Remark 3.9 (K-1-Laplacian). The constant in (3.10) is linked with the K-1-Laplacian〈
(−∆)Ku, v

〉
= 1

2

∫
Rn

∫
Rn

u(x) − u(y)
|u(x) − u(y)| (v(x) − v(y)) K(x − y) dy dx, v ∈ BV K

0 (Rn),

naturally arising from the expression of the BV K energy in (2.5), as done for integrable
kernels in [53, Sec. 4.2]. We do not pursue this research direction here.

The following result generalizes [5, Th. 5.8] and is a particular case of [40, Th. 5.4] (for
N = 1), so we only sketch its proof.
Theorem 3.10 (Relation with first (K, ν)-eigenvalue). If Ω ∈ Mn is a K-admissible set
with |Ω| < +∞, then λK,ν(Ω) = hK,ν(Ω). Moreover, given u ∈ BV K

0 (Ω) \ {0} and letting

Ut =

{u > t} if t ≥ 0,

{u ≤ t} if t < 0,
(3.12)

u is a (K, ν)-eigenfunction if and only if Ut ∈ CK,ν(Ω) for a.e. t ∈ R such that |Ut| > 0.
Proof. Since BV K

0 (Ω) ̸= {0}, hK(Ω) ≥ λK,ν(Ω) according to Definitions 3.2 and 3.8. For
the converse inequality, if u ∈ BV K

0 (Ω) \ {0}, then the sets in (3.12) satisfy Ut ∈ Mn for
L 1-a.e. t ∈ R with Ut ⊂ Ω. In addition, thanks to (2.11) and Lemma 2.8, we get

[u]BV K(Rn) =
∫
R

PK({u > t}) dt =
∫
R

PK(Ut) dt.
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By Cavalieri’s formula, we have ∥u∥L1(Rn, ν) =
∫
R ν(Ut) dt. Therefore, PK(Ut) < +∞ and

|Ut| < +∞ for L 1-a.e. t ∈ R, so PK(Ut)
ν(Ut) ≥ hK,ν(Ω) whenever |Ut| > 0. We thus have that

[u]BV K(Rn)

∥u∥L1(Rn, ν)
= 1

∥u∥L1(Rn, ν)

∫
R

PK(Ut)
ν(Ut)

ν(Ut) dt ≥ hK,ν(Ω)
∥u∥L1(Rn, ν)

∫
R

ν(Ut) dt = hK,ν(Ω),

(3.13)
proving λK,ν(Ω) ≥ hK,ν(Ω). Finally, if u ∈ BV K

0 (Ω) is a (K, ν)-eigenfunction of Ω, then∫
R

PK(Ut) − hK,ν(Ω) ν(Ut) dt = 0. (3.14)

Since PK(Ut) ≥ hK,ν(Ω) ν(Ut) for L 1-a.e. t ∈ R, we must have PK(Ut) = hK,ν(Ω) ν(Ut)
for L 1-a.e. t ∈ R such that |Ut| > 0, yielding Ut ∈ CK,ν(Ω). Viceversa, if Ut ∈ CK,ν(Ω) for
L 1-a.e. t ∈ R such that |Ut| > 0, then (3.14) is true and so (3.13) holds as an equality,
yielding the minimality of u in (3.10), i.e., u is a (K, ν)-eigenfunction of Ω. □

The following result is a non-local analog of [15, Th. 4] and generalizes [5, Th. 7.1].

Corollary 3.11 (L∞ bound). Let (Rad) and (Decq) with q ∈ (n, n+1) be in force and let
Ω ∈ Mn be a K-admissible set with |Ω| < +∞. If u ∈ BV K

0 (Ω) is a (K, ν)-eigenfunction
of Ω, then u ∈ L∞(Ω) with

∥u∥L∞(Ω) ≤
(

ν |Ω|2− q
n hK,ν(Ω)

βK(|Ω|)

) n
q−n

∥u∥L1(Ω). (3.15)

Proof. The proof is similar to [5, Rem. 7.3], so we only sketch it. Let u ∈ BV K
0 (Ω) be

a (K, ν)-eigenfunction of Ω such that u ≥ 0 in view of (3.11). Letting Ut = {u > t} for
all t ≥ 0 as in (3.12), by Theorem 3.10 we get Ut ∈ CK,ν(Ω) for a.e. t ∈ [0, ∥u∥L∞(Ω)).
Arguing as in the proof of Theorem 3.3 to infer (3.5), by Theorem 2.19 and Lemma 2.25
we obtain (3.3) for Ut, namely, since q > n,

|Ut| ≥
(

βK(|Ω|)
ν |Ω|2− q

n hK,ν(Ω)

) n
q−n

for a.e. t ∈ [0, ∥u∥L∞(Rn)). Integrating the above inequality for t ∈ [0, ∥u∥L∞(Rn)), we get

∥u∥L1(Ω) ≥
∫ ∥u∥L∞(Ω)

0

(
βK(|Ω|)

ν |Ω|2− q
n hK,ν(Ω)

) n
q−n

dt =
(

βK(|Ω|)
ν |Ω|2− q

n hK,ν(Ω)

) n
q−n

∥u∥L∞(Ω)

from which (3.15) readily follows. □

3.4. A non-local Max Flow Min Cut Theorem. The Min Cut Max Flow Theo-
rem [45] asserts that the (classical) Cheeger constant of a (sufficiently regular) set Ω can
be recovered by minimizing the L∞ norm of vector fields with prescribed divergence on Ω.
Analogous results are known in the fractional [5, Sec. 8] and integrable [53, Sec. 5.1] cases.
We shall now prove an analogous result in the present setting.

Mimicking [5, Sec. 8] and [7, Sec. 9.4], given Ω ∈ Mn, we let

BV −K(Ω) =
{
F : BV K

0 (Ω) → R : F linear and continuous
}
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be the topological dual space of BV K
0 (Ω). Since BV K

0 (Ω) ⊂ L1(Rn), we have L∞(Rn) ⊂
BV −K(Ω) continuously, with the natural action on BV K

0 (Ω) (tacitly used below). We
thus let ΓK : BV K

0 (Ω) → L1(Rn × Rn) be defined by

ΓK(u)(x, y) = 1
2 (u(x) − u(y)) K(x − y), (x, y) ∈ Rn × Rn.

Note that ΓK is well posed, since
∥ΓK(u)∥L1(Rn×Rn) = [u]BV K(Rn) for u ∈ BV K

0 (Ω). (3.16)
Let Γ∗

K : L∞(Rn × Rn) → BV −K(Ω) be the adjoint operator of ΓK , given by

⟨Γ∗
K(φ), u⟩(BV −K(Ω), BV K

0 (Ω)) =
∫
Rn

∫
Rn

φ ΓK(u) dx dy,

whenever φ ∈ L∞(Rn × Rn) and u ∈ BV K
0 (Ω). Roughly speaking, the operator Γ∗

K can
be thought of as a sort of non-local K-divergence formally acting on L∞ functions as

Γ∗
K(φ)(x) =

∫
Rn

(φ(x, y) − φ(y, x)) K(x − y) dy, x ∈ Rn,

whenever φ ∈ L∞(Rn × Rn). In particular, symmetric L∞ functions correspond to
divergence-free vector fields.

The following result generalizes [5, Th. 8.6] and the second part of [53, Th. 5.3].

Theorem 3.12 (K-Max Flow Min Cut Theorem). Let Ω ∈ Mn be a K-admissible set
with |Ω| < +∞ and let ν = w L n ∈ W(Rn). Then,

1
hK,ν(Ω) = min

{
∥φ∥L∞(Rn×Rn) : φ ∈ L∞(Rn × Rn) such that Γ∗

K(φ) = wχΩ
}
, (3.17)

where the minimum in (3.17) equals +∞ if and only if Γ∗
K(φ) ̸= wχΩ for φ ∈ L∞(Rn×Rn),

otherwise it is finite and achieved by some φ ∈ L∞(Rn × Rn) such that Γ∗
K(φ) = wχΩ.

Proof. The proof is similar to that of [5, Th. 8.6], so we only sketch it. By Theorem 3.10,

(0, +∞] ∋ 1
hK,ν(Ω) = sup

{
∥u∥L1(Rn, ν)

[u]BV K(Rn)
: u ∈ BV K

0 (Ω) \ {0}
}

= sup
{
⟨wχΩ, u⟩ : u ∈ BV K

0 (Ω), [u]BV K(Rn) ≤ 1
}
.

We can rewrite the latter sup as

sup
{
⟨wχΩ, u⟩ : u ∈ BV K

0 (Ω), [u]BV K(Rn) ≤ 1
}

= sup{⟨x∗, x⟩ − G(A(x)) : x ∈ X}

where X = BV K
0 (Ω), x∗ = wχΩ ∈ X∗, A = ΓK and

G(y) =

0 if ∥y∥Y ≤ 1,

+∞ otherwise,

for y ∈ Y = L1(Rn × Rn). Since G : Y → R ∪ {+∞} is convex and lower semicontinuous
and A : X → Y is linear and continuous again by (3.16), we get that

sup{⟨x∗, x⟩ − G(A(x)) : x ∈ X} = (G ◦ A)∗(x∗)
= min{G∗(y∗) : y∗ ∈ Y∗ such that A∗(y∗) = x∗},

(3.18)



NON-LOCAL BV FUNCTIONS AND A DENOISING MODEL WITH L1 FIDELITY 21

by [34, Prop. 5 in Ch. II, Sec. 2], where (G◦A)∗ : X∗ → R∪{+∞} and G∗ : Y∗ → R∪{+∞}
are the Fenchel conjugates of G ◦ A and G, see [34, Def. 7 in Ch. II, Sec. 1] and A∗ = Γ∗

K .
The minimum in (3.18) equals +∞ if and only if (A∗)−1({x∗}) = ∅, otherwise it is finite
and there exists some point in (A∗)−1({x∗}) achieving the minimum. To conclude, we
simply note that Y∗ = L∞(Rn × Rn) and G∗(y∗) = ∥y∗∥L∞(Rn×Rn) for y∗ ∈ Y∗. □

As a consequence, we get the following characterization, which generalizes [5, Cor. 8.7]
and the second part of [53, Th. 5.3]. Below, we set 1

+∞ = 0 and max ∅ = 0.

Corollary 3.13. Let Ω ∈ Mn be a K-admissible set with |Ω| < +∞ and let ν = w L n ∈
W(Rn). Then,

hK,ν(Ω) = max
{
h ∈ R : ∃ φ ∈ L∞(Rn ×Rn) with ∥φ∥L∞(Rn×Rn) ≤ 1 and Γ∗

K(φ) ≥ hwχΩ
}
,

(3.19)
where Γ∗

K(φ) ≥ hwχΩ means that ⟨Γ∗
K(φ), u⟩ ≥ h

∫
Ω u dν for u ∈ BV K

0 (Ω) with u ≥ 0.
Furthermore, hK,ν(Ω) = 0 if and only if the maximization set in (3.19) is empty.

Proof. The proof is similar to that of [5, Cor. 8.7], so we only sketch it. By (3.17),

[0, +∞) ∋ hK,ν(Ω) = max
{

1
∥φ∥L∞(Rn×Rn)

: φ ∈ L∞(Rn × Rn) such that Γ∗
K(φ) = wχΩ

}
(3.20)

where the max is 0 if and only if the set is empty, otherwise the max is achieved by some
φ ∈ L∞(Rn ×Rn), with ∥φ∥L∞(Rn×Rn) ∈ (0, +∞), such that Γ∗

K(φ) = wχΩ. We note that

max
{

1
∥φ∥L∞(Rn×Rn)

: φ ∈ L∞(Rn × Rn) such that Γ∗
K(φ) = wχΩ

}

= max
{

h ∈ R : ∃ φ ∈ L∞(Rn × Rn) with 1
∥φ∥L∞(Rn×Rn)

≥ h and Γ∗
K(φ) ≥ wχΩ

}
,

where any of the two max above is equal to 0 if and only if the corresponding set is
empty, otherwise both max are achieved. Indeed, recalling the way the equality in (3.20)
is understood, in the non-empty case (otherwise being easier and thus omitted), we have

max
{

1
∥φ∥L∞(Rn×Rn)

: φ ∈ L∞(Rn × Rn) such that Γ∗
K(φ) = wχΩ

}
= 1

∥Φ∥L∞(Rn×Rn)

for some Φ ∈ L∞(Rn × Rn) such that Γ∗
K(Φ) = wχΩ, so that

1
∥Φ∥L∞(Rn×Rn)

= max
{

h ∈ R : h ≤ 1
∥Φ∥L∞(Rn×Rn)

}
= max

{
h ∈ R : ∃ φ ∈ L∞(Rn × Rn) with 1

∥φ∥L∞(Rn×Rn)
≥ h and Γ∗

K(φ) ≥ wχΩ

}
,

yielding the conclusion. □

4. The functional problem

In this section, we study the functional K-variation denoising model.
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4.1. Definition of the problem. Let K : Rn → [0, +∞] be a kernel, Λ > 0, f ∈ L1
loc(Rn)

and ν = w L n ∈ W(Rn), where W(Rn) is defined in (3.1). To avoid heavy notation, we
drop the reference to the measure when ν = L n. We consider the functional energy

EK(u) = EK(u; f, Λ, ν) = [u]BV K(Rn) + Λ
∫
Rn

|u − f | dν, u ∈ L1
loc(Rn),

and the associated minimization problem
inf
{
EK(u; f, Λ, ν) : u ∈ L1

loc(Rn)
}
. (P K

f,Λ,ν)

We say that u ∈ L1
loc(Rn) is a solution of (P K

f,Λ,ν) provided that EK(u; f, Λ, ν) < +∞ and
EK(u; f, Λ, ν) ≤ EK(v; f, Λ, ν) for v ∈ L1

loc(Rn), and we let SolK(f, Λ, ν) be the set of
solutions of (P K

f,Λ,ν). Note that SolK(f, Λ, ν) ⊂ BV K
loc(Rn) and SolK(f, Λ, ν) ⊂ BV K(Rn)

for f ∈ L1(Rn).

4.2. Properties of solutions. We collect some properties of SolK(f, Λ, ν), as in [4].

Proposition 4.1 (Basic properties of SolK(f, Λ, ν)). The following hold:
(i) SolK(f, Λ, ν) is a convex and closed set in L1

loc(Rn);
(ii) if uk ∈ SolK(fk, Λ, ν), fk → f in L1(Rn) and uk → u in L1

loc(Rn) as k → +∞,
then u ∈ SolK(f, Λ, ν);

(iii) SolK(f + c, Λ, ν) = SolK(f, Λ, ν) + c for c ∈ R;
(iv) λ SolK(f, Λ, ν) = SolK(λf, Λ, ν) for λ ∈ R \ {0};
(v) if u ∈ SolK(f, Λ, ν), then u+ ∈ SolK(f+, Λ, ν) and u− ∈ SolK(f−, Λ, ν);

(vi) if u ∈ SolK(f, Λ, ν), then u ∧ c ∈ SolK(f ∧ c, Λ, ν) and u ∨ c ∈ SolK(f ∨ c, Λ, ν)
for c ∈ R.

4.3. Existence for L1 data. The following result proves the existence of solutions
of (P K

f,Λ,ν) for f ∈ L1(Rn) as a consequence of Lemma 2.9 and Theorem 2.11.

Proposition 4.2 (Existence for (P K
f,Λ,ν) with f ∈ L1). Let (Far) and (Nint) be in force.

If f ∈ L1(Rn), then SolK(ν, f, Λ) ̸= ∅.

5. The geometric problem

In this section, we study the geometric K-variation denoising model. The results below
can be proved as in [4] with minor adjustments (even if the datum set has finite measure).

5.1. Definition of the problem. Let Λ > 0, E ∈ Mn and ν ∈ W(Rn). We consider
the geometric energy

EK
G (U ; E, Λ, ν) = PK(U) + Λ ν(E △ U), U ∈ Mn,

and the associated minimization problem
inf
{
EK

G (U ; E, Λ, ν) : U ∈ Mn

}
. (GP K

E,Λ,ν)

We say that U ∈ Mn is a solution (or a global minimum) of (GP K
E,Λ,ν) if EK

G (U ; E, Λ, ν) <

+∞ and EK
G (U ; E, Λ, ν) ≤ EK

G (V ; E, Λ, ν) for all V ∈ Mn, and we let GSolK(E, Λ, ν) be
the set of solutions of (GP K

E,Λ,ν). Note that, if F ∈ GSolK(E, Λ, ν), then χF ∈ BV K
loc(Rn),

and, analogously, if F ∈ GSolK(E, Λ, ν) then χF ∈ BV K(Rn) whenever |E| < +∞.
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The following result is a simple consequence of Lemma 2.8 and of the layer-cake formula

∥f − g∥L1(Rn,ν) =
∫
R

ν({f > t} △ {g > t}) dt, for f, g ∈ L1(Rn).

Lemma 5.1 (Layer-cake formula). If f ∈ L1(Rn) and u ∈ BV K(Rn), then

EK(u; f, Λ, ν) =
∫
R

EK
G ({u > t}; {f > t}, Λ, ν) dt.

5.2. Properties of solutions. We collect some properties of GSolK(E, Λ, ν), as in [4].

Proposition 5.2 (Basic properties of solutions). Let Λ > 0, E ∈ Mn and ν ∈ W(Rn),
f ∈ L1(Rn) and u ∈ BV K(Rn). The following hold:

(i) if U ∈ GSolK(E, Λ, ν), then U + x ∈ GSolK(E + x, Λ, νx) for x ∈ Rn, where
νx(A) = ν(A − x) for A ∈ Mn;

(ii) if Uk ∈ GSolK(Ek, Λ, ν) with Ek ∈ Mn for k ∈ N and χEk
→ χE in L1(Rn) and

χUk
→ χU in L1

loc(Rn) as k → +∞, then U ∈ GSolK(E, Λ, ν);
(iii) if U ∈ GSolK(E, Λ, ν) then U c ∈ GSolK(Ec, Λ, ν);
(iv) if {u > t} ∈ GSolK({f > t}, Λ, ν) for L 1-a.e. t ∈ R, then u ∈ SolK(f, Λ, ν);
(v) if u ∈ SolK(f, Λ, ν), then {u > t} ∈ GSolK({f > t}, Λ, ν) for t ∈ R \ {0}.

Remark 5.3 (Other versions of Proposition 5.2(iv) and (v)). As observed in [4], proper-
ties (iv) and (v) in Proposition 5.2 can be completed with the following:

(iii1) if {u ≥ t} ∈ GSolK({f ≥ t}, Λ, ν) for L 1-a.e. t ∈ R, then u ∈ SolK(f, Λ, ν);
(iv1) if u ∈ SolK(f, Λ, ν), then {u ≥ t} ∈ GSolK({f ≥ t}, Λ, ν) for t ∈ R \ {0};
(iii2) if {u ≤ t} ∈ GSolK({f ≤ t}, Λ, ν) for L 1-a.e. t ∈ R, then u ∈ SolK(f, Λ, ν);
(iv2) if u ∈ SolK(f, Λ, ν), then {u ≤ t} ∈ GSolK({f ≤ t}, Λ, ν) for t ∈ R \ {0};
(iii3) if {u < t} ∈ GSolK({f < t}, Λ, ν) for L 1-a.e. t ∈ R, then u ∈ SolK(f, Λ, ν);
(iv3) if u ∈ SolK(f, Λ, ν), then {u < t} ∈ GSolK({f < t}, Λ, ν) for t ∈ R \ {0}.

Remark 5.4 (Case t = 0 in Proposition 5.2 and Remark 5.3). The case t = 0 in Propo-
sition 5.2 and Remark 5.3 is more delicate, as {u > 0} ∈ GSolK({f > 0}, Λ, ν) if either
|{f > 0}| < +∞ or |{f ≤ 0}| < +∞, and similarly for {u ≥ 0}, {u < 0} and {u ≤ 0}.

From Proposition 4.1, Remark 5.3 and Remark 5.4, we can deduce the following result.

Corollary 5.5 (Geometric L1 datum). Let E ∈ Mn be such that |E| < +∞.
(i) If U ∈ GSolK(E, Λ, ν), then χU ∈ SolK(χE, Λ, ν).

(ii) If u ∈ SolK(χE, Λ, ν), then u(x) ∈ [0, 1] for L n-a.e. x ∈ Rn, with {u > t} ∈
GSolK(E, Λ, ν) for all t ∈ [0, 1) and {u ≥ t} ∈ GSolK(E, Λ, ν) for all t ∈ (0, 1].

As a consequence, we get the following result dealing with (countable) intersections and
unions of solutions of (GP K

E,Λ,ν).

Corollary 5.6 (Intersection and union). Let E ∈ Mn be such that |E| < +∞.
(i) GSolK(E, Λ, ν) is closed under finite intersection and finite union.

(ii) GSolK(E, Λ, ν) is closed under countable decreasing intersection and countable
increasing union.



24 K. BESSAS AND G. STEFANI

5.3. Existence for geometric L1-data. The following existence result for (GP K
E,Λ,ν) is

a simple consequence of Proposition 4.2 and Corollary 5.5(ii).
Corollary 5.7 (Existence for (GP K

E,Λ,ν) with geometric L1 datum). Let (Far) and (Nint)
be in force. If E ∈ Mn is such that |E| < +∞, then GSolK(E, Λ, ν) ̸= ∅.
5.4. Bounded data and maximal and minimal solutions. The following result is a
simple consequence of Theorem 2.29.
Lemma 5.8 (Bounded geometric datum). Let (Rad), (Nts), and (Decq) with q = 1 be
in force. If E ⊂ BR for some R > 0, then also U ⊂ BR for every U ∈ GSolK(E, Λ, ν).

In the following result, we prove the existence of a maximal and a minimal solution of
problem (GP K

E,Λ,ν), with respect to set inclusion, whenever E has finite measure.
Proposition 5.9 (Existence of maximal and minimal solutions). Let (Far) and (Nint)
be in force. If E ∈ Mn with min {|E|, |Ec|} < +∞, then (GP K

E,Λ,ν) admits a minimal
and a maximal solution E−

Λ , E+
Λ ∈ GSolK(E, Λ, ν) (with respect to inclusion) which are

uniquely determined up to L n-negligible sets. Moreover, E−
Λ and E+

Λ satisfy
(Ec)−

Λ = (E+
Λ )c, (Ec)+

Λ = (E−
Λ )c, (5.1)

and
ν(E−

Λ ) ≤ ν(E+
Λ ) ≤ 2ν(E). (5.2)

Proof. The proof is similar to that of [19, Prop. 6.1] (also see [4, Lem. 4.7]), so we only
sketch it. Assume |E| < +∞. By Corollary 5.7, GSolK(E, Λ, ν) ̸= ∅, so take U ∈
GSolK(E, Λ, ν). By testing the minimality of U against ∅, we get

PK(U) + Λ ν(U △ E) ≤ Λ ν(E),
which leads to

ν(U) ≤ ν(U △ E) + ν(E) ≤ 2ν(E). (5.3)
Now let us set

m = inf
{
ν(U) : U ∈ GSolK(E, Λ, ν)

}
∈ [0, 2ν(E)]

and let (Uk)k∈N ⊂ GSolK(E, Λ, ν) be such that ν(Uk) → m as k → +∞. Letting
E−

Λ = ⋂
j∈N

j⋂
k=1

Uk and making use of Corollary 5.6, we infer that E−
Λ ∈ GSolK(E, Λ, ν)

is the minimal solution of (GP K
E,Λ,ν). The construction of E+

Λ is similar and thus left to
the reader. For (5.2), we just need to apply (5.3) to E+

Λ ⊃ E−
Λ . In the case |Ec| < +∞,

the existence of E±
Λ follows from Proposition 5.2(iii) and the previous case, while (5.2)

becomes trivial. Properties (5.1) follow from Proposition 5.2(iii). □

The following result provides a comparison principle between maximal and minimal so-
lutions of (GP K

E,Λ,ν) as E ∈ Mn varies. For a strictly related discussion, see the questions
left open in [20, pp. 1826–1827] and [60, Th. 3.1]. In Theorem 5.10 we assume (Pos) for
the first time, see Remark 5.11 for more details.
Theorem 5.10 (Comparison Principle). Let (Sym), (Far), (Nint) and (Pos) be in force.
Let E1, E2 ∈ Mn be such that PK(Ei) < +∞ and min {|Ei|, |Ec

i |} < +∞, i = 1, 2. If
E2 ⊂ E1, then (E2)−

Λ ⊂ (E1)−
Λ and (E2)+

Λ ⊂ (E1)+
Λ .
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Proof. Thanks to Proposition 5.2(iii) and Corollary 5.7, pick U1 ∈ GSolK(E1, Λ, ν) and
U2 ∈ GSolK(E2, Λ, ν). Arguing as in [4, Lem. 4.11], by minimality of U1, U2 and (2.12),

PK(U1) + PK(U2) = PK(U1 ∩ U2) + PK(U1 ∪ U2) (5.4)
and

ν(U1 △ E1) + ν(U2 △ E2) = ν
(
(U1 ∪ U2) △ E1

)
+ ν

(
(U1 ∩ U2) △ E2

)
. (5.5)

Setting
Ln,K(x, y) = K(x − y) L 2n(x, y) for x, y ∈ Rn, (5.6)

using the definition of PK and the finite additivity of Ln,K , equality (5.4) rewrites as

Ln,K

(
(U1 \ U2) × (U2 \ U1)

)
= 0. (5.7)

Since L 2n ≪ Ln,K by (Pos), we conclude that
U1 ⊂ U2 or U2 ⊂ U1. (5.8)

Arguing again as in [4, Lem. 4.11] we deduce that
U1 ⊂ U2 =⇒ U1 ∈ GSolK(E2, Λ, ν) , U2 ∈ GSolK(E1, Λ, ν) . (5.9)

By Proposition 5.9, if U1 = (E1)−
Λ and U2 = (E2)−

Λ , then (E2)−
Λ ⊂ (E1)−

Λ or (E1)−
Λ ⊂ (E2)−

Λ
by (5.8). If (E2)−

Λ ⊂ (E1)−
Λ , then we have nothing to prove. If (E1)−

Λ ⊂ (E2)−
Λ instead,

then (5.9) readily gives (E1)−
Λ ∈ GSolK(E2, Λ, ν) and (E2)−

Λ ∈ GSolK(E1, Λ, ν), so that
(E1)−

Λ = (E2)−
Λ . The proof that (E2)+

Λ ⊂ (E1)+
Λ is similar and thus left to the reader. □

Remark 5.11 (Theorem 5.10 at small scales). In the proof of Theorem 5.10, (Pos) is
used only to pass from (5.7) to (5.8). In other words, (Pos) can be dropped if one is able
to ensure that Ln,K defined in (5.6) satisfies

Ln,K

(
(U1 \ U2) × (U2 \ U1)

)
= 0 =⇒ U1 ⊂ U2 or U2 ⊂ U1

whenever Ui ∈ GSolK(Ei, Λ, ν), i = 1, 2. The above implication holds if
K(x − y) > 0 for a.e. x ∈ U1 \ U2 and y ∈ U2 \ U1 (5.10)

whenever Ui ∈ GSolK(Ei, Λ, ν), i = 1, 2. Thanks to Lemma 2.3, assuming (Decq)
and (DouD), we have supp K ⊃ B4D. If D < +∞ (otherwise (Pos) is satisfied), then (5.10)
holds provided that U1, U2 ⊂ BD for Ui ∈ GSolK(Ei, Λ, ν), i = 1, 2. By Lemma 5.8, an
thus assuming (Decq) with q = 1, this holds by additionally requiring that

E2 ⊂ E1 ⊂ BD (5.11)
Hypothesis (5.11) provides a small-scale version of Theorem 5.10.

5.5. Convex data and uniqueness outside the jump set. For f ∈ L1(Rn), we define
µ+

K(f, Λ, ν) = sup
{
∥u − f∥L1(Rn, ν) : u ∈ SolK(f, Λ, ν)

}
,

µ−
K(f, Λ, ν) = inf

{
∥u − f∥L1(Rn, ν) : u ∈ SolK(f, Λ, ν)

}
,

for all Λ > 0. We also define the jump set
JK(f, ν) = {Λ > 0 : µ−

K(f, Λ, ν) < µ+
K(f, Λ, ν)}

associated to (P K
f,Λ,ν). The following result generalizes [4, Lem. 4.3]. Its proof follows the

same line of that of [20, Claim 5] and is thus omitted.
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Lemma 5.12 (Monotonicity of µ±
K(f, Λ, ν)). If f ∈ L1(Rn), then

µ−
K(f, Λ1, ν) ≤ µ+

K(f, Λ1, ν) ≤ µ−
K(f, Λ2, ν) ≤ µ+

K(f, Λ2, ν)

for all Λ1 ≥ Λ2 > 0. Consequently, Λ 7→ µ±
K(f, Λ, ν) are two decreasing functions whose

sets of discontinuity points contain JK(f, ν). In particular, JK(f, ν) is a countable set.

As a consequence, we get the following result, generalizing [4, Th. 4.4].

Theorem 5.13 (Uniqueness outside the jump set). Let (Rad), (Nts), (Nint) and (Decq)
with q = 1 be in force. If E ⊂ Rn is a bounded convex set, then SolK(χE, Λ, ν) = {χUΛ}
for all Λ ∈ (0, +∞) \ JK(χE, ν), where UΛ ∈ Mn is such that UΛ ⊂ E.

Proof. Fix Λ ∈ (0, +∞) \ JK(χE, ν). By Proposition 4.2, SolK(χE, Λ, ν) ̸= ∅. Since E is
convex, the conclusion follows by Theorem 2.29 as in the proof of [4, Th. 4.4]. □

6. Fidelity analysis

In this section, we study the behavior of the solutions of the functional and geometric
K-variation denoising models with respect to the fidelity parameter. Here we let

ν = ess-inf
Rn

w, ν = ess-sup
Rn

w, (6.1)

for any given ν = w L n ∈ W(Rn) and notice that 0 < ν ≤ ν < +∞ by (3.1).

6.1. High fidelity. The following result generalizes [4, Th. 4.5].

Theorem 6.1 (High fidelity for C1,1 regular sets). Let (Rad), (Nts), (Nint), (Pos)
and (Decq) with q = 1 be in force. If E ⊂ Rn is an open set of class C1,1 with
min{|E|, |Ec|} < +∞, then there exists ΛE,K,ν > 0, depending on E, K and ν only,
such that GSolK(E, Λ, ν) = {E} and GSolK(Ec, Λ, ν) = {Ec} for Λ ≥ ΛE,K,ν.

To prove Theorem 6.1, we start with the case E is a ball, generalizing [4, Lem. 4.13].

Proposition 6.2 (High fidelity for balls). Let (Rad), (Nts), (Nint) and (Decq) with
q = 1 be in force. If x ∈ Rn and r > 0, then GSolK(Br(x), Λ, ν) = {Br(x)} and
GSolK(Br(x)c, Λ, ν) = {Br(x)c} for Λ ≥ Λr,K,ν = 2 PK(Br)

ν |Br| .

Proof. Fix x ∈ Rn and r > 0. By Corollary 5.7, GSolK(Br(x), Λ, ν) ̸= ∅, so pick
U ∈ GSolK(Br(x), Λ, ν). By Lemma 5.8, U ⊂ Br(x) and thus B|U |(x) ⊂ Br(x), where
B|U |(x) = x + B|U | (recall (2.19) for the latter symbol), so that

|U △ Br(x)| = |Br(x)| − |U | = |Br(x)| − |B|U |(x)|. (6.2)

Therefore, by Theorem 2.19, (2.10) and (6.2), we can estimate

PK(Br(x)) ≥ PK(U) + Λν
(
U △ Br(x)

)
≥ PK(B|U |) + Λν |U △ Br(x)|

= PK(B|U |(x)) + Λν
(
|Br(x)| − |B|U |(x)|

)
.

(6.3)
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Now, for Λν ≥ 2 PK(Br(x))
|Br(x)| = 2 PK(Br)

|Br| and |B|U |(x)| < |Br(x)|, we can estimate

PK(B|U |(x)) + Λν
(
|Br(x)| − |B|U |(x)|

)
= PK(B|U |(x)) + Λν

|Br(x)|2 − |B|U |(x)|2
|Br(x)| + |B|U |(x)|

> PK(B|U |(x)) + Λν
|Br(x)|2 − |B|U |(x)|2

2|Br(x)|

≥ PK(B|U |(x)) + PK(Br(x))
|Br(x)|2

(
|Br(x)|2 − |B|U |(x)|2

)
.

(6.4)

By Lemma 2.25, we must have

PK(B|U |(x)) + PK(Br(x))
|Br(x)|2

(
|Br(x)|2 − |B|U |(x)|2

)
≥ PK(Br(x)) (6.5)

and thus, by combining (6.3), (6.4) and (6.5), we get that

PK(Br(x)) > PK(B|U |(x)) + PK(Br(x))
|Br(x)|2

(
|Br(x)|2 − |B|U |(x)|2

)
≥ PK(Br(x))

whenever |B|U |(x)| < |Br(x)|. This is clearly a contradiction, so |B|U |(x)| = |Br(x)|, from
which U = Br(x). The conclusion hence follows from Proposition 5.2(iii). □

Remark 6.3 (On the constant Λr,K,ν). By (Nts), one can apply (2.14) to Br and get

Λr,K,ν = 2 PK(Br)
ν |Br|

≤
(

2 ∨ n

r

) 1
ν

∫
Rn

(1 ∧ |x|) K(x) dx < +∞ for r > 0.

In the case of the fractional perimeter Ps (see [4] for the definition), Ps(Br) = Ps(B1) rn−s,
so Λr,Ks,ν = 2Ps(B1)

ν rs as in [4, Lem. 4.13] (up to multiplicative constants). However, the
proof of Proposition 6.2 differs from the one of [4, Lem. 4.13], since PK does not enjoy any
scaling property, explaining while here we relied on Lemma 2.25. Also note that we do not
need the characterization of equality in Theorem 2.19, again differently from [4, Lem. 4.3]
Proof of Theorem 6.1. Since ∂E is of class C1,1, we find r0 = r0(E) > 0 and two countable
families Fint = {Bsk

(xk) : xk ∈ E, sk ≥ r0} and Fext = {Btk
(yk) : yk ∈ Ec, tk ≥ r0} with

Bsk
(xk) ⊂ E ⊂ Btk

(yk)c,
⋃

k∈N
Bsk

(xk) = E,
⋂

k∈N
Btk

(yk)c = E. (6.6)

We hence define
ΛE,K,ν = 2 PK(Br0)

ν |Br0|
(6.7)

and note that ΛE,K,ν < +∞ by (Nts) as in Remark 6.3. Let Λ ≥ ΛE,K,ν and note that
GSolK(Bsk

(xk), Λ, ν) = {Bsk
(xk)}, GSolK(Btk

(yk)c, Λ, ν) = {Btk
(yk)c}, (6.8)

for all k ∈ N, thanks to Proposition 6.2. Since either |E| or |Ec| is finite, by Proposition 5.9
we can find a minimal and a maximal solution E−

Λ , E+
Λ ∈ GSolK(E, Λ, ν) which are

uniquely determined up to L n-negligible sets. Moreover, since either |E| < +∞ or
|Ec| < +∞, and ∂E is of class C1,1, either E or Ec is bounded, so that PK(E) < +∞
because of (2.7), being either χE ∈ BV (Rn) or χEc ∈ BV (Rn). Hence, Theorem 5.10, in
combination with (6.6) and (6.8), implies that

Bsk
(xk) ⊂ E−

Λ ⊂ E+
Λ ⊂ Btk

(yk)c (6.9)



28 K. BESSAS AND G. STEFANI

for all k ∈ N. By (6.6) and (6.9) we get E ⊂ E−
Λ ⊂ E+

Λ ⊂ E up to L n-negligible sets. □

Definition 6.4 (Function with C1,1 regular superlevel sets). A function f has uniformly
C1,1 regular superlevel sets if there exists r0 = r0(f) > 0 such that, for each t ∈ R,
Et = {f > t}, we can find two countable families Fint(t) = {Bsk

(xk) : xk ∈ Et, sk ≥ r0},
Fext(t) = {Btk

(yk) : yk ∈ Ec
t , tk ≥ r0}, such that

Bsk
(xk) ⊂ Et ⊂ Btk

(yk)c,
⋃

k∈N
Bsk

(xk) = Et,
⋂

k∈N
Btk

(yk)c = Et.

If f ∈ L1(Rn) has uniformly C1,1 regular (and thus open, in particular) superlevel sets
Et = {f > t}, t ∈ R, then either Et or (Et)c is bounded for t ̸= 0.

The following result generalizes [4, Th. 4.16] and can be seen as a non-local counterpart
of [20, Th. 5.6], which is instead proved via a calibration argument. We omit its proof.

Corollary 6.5 (High fidelity for regular L1 functions). Let (Pos), (Rad), (Nts), (Nint)
and (Decq) with q = 1 be in force. If f ∈ L1(Rn) is as in Definition 6.4, then there exists
Λf,K,ν > 0, depending on f , K and ν only, such that SolK(f, Λ, ν) = {f} for Λ ≥ Λf,K,ν.

6.2. Low fidelity. The following result generalizes [4, Th. 4.18].

Theorem 6.6 (Low fidelity). Let (Rad), (Nts), (Nint), (Decq) with q = 1 and (DouD)
be in force. Given R < D

4 , there exists ΛR,K,ν > 0, depending on R, K and ν only, such
that, if f ∈ L1(Rn) with supp f ⊂ BR, then SolK(f, Λ, ν) = {0} for Λ < ΛR,K,ν.

Proof. Let Λ > 0. Since f ∈ L1(Rn), SolK(f, Λ, ν) ̸= ∅ by Proposition 4.2, so pick
u ∈ SolK(f, Λ, ν). We claim that u = 0. Since u± ∈ SolK(f±, Λ, ν) byProposition 4.1(v),
we can assume f ≥ 0. By Proposition 5.2(v), {u > t} ∈ GSolK({f > t}, Λ, ν) for t > 0.
Since {f > t} ⊂ supp f ⊂ BR for t > 0, by Lemma 5.8 we also get {u > t} ⊂ BR for
t > 0, so that supp u ⊂ BR. Thus, by testing the minimality of u against v = 0, we get

[u]BV K(Rn) + Λ∥u − f∥L1(BR, ν) ≤ Λ∥f∥L1(BR, ν).

In addition, by Theorem 2.17, we have
CK [u]BV K(Rn) ≥ φK(2|h|, D) ∥u(· + h) − u∥L1(Rn)

for h ∈ Rn with |h| ≤ D
2 , where CK > 0 depends on K only. On the other side, we have

∥u(· + h) − u∥L1(Rn) = 2 ∥u∥L1(BR) ≥ 2
ν

∥u∥L1(BR, ν)

for h ∈ Rn with |h| ≥ 2R. Therefore, for h ∈ Rn with |h| ∈
[
2R, D

2

]
, we get that

2 φK(2|h|, D)
ν CK

∥u∥L1(BR,ν) + Λ∥u − f∥L1(BR,ν) ≤ Λ∥f∥L1(BR,ν)

and thus(
2 φK(2|h|, D)

ν CK

− Λ
)

∥u∥L1(BR,ν) ≤ Λ
(
∥f∥L1(BR,ν) − ∥u − f∥L1(BR,ν) − ∥u∥L1(BR,ν)

)
≤ 0.

The conclusion hence follows by choosing

ΛR,K,ν = sup
h∈BD/2\B2R

2 φK(2|h|, D)
ν CK

= 2 φK(4R, D)
ν CK

∈ (0, +∞) (6.10)
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and the proof is complete. □

Remark 6.7 (On the constant ΛR,K,ν). The proof of Theorem 6.6 differs from the one
of [4, Th. 4.18], since we cannot directly rely on Corollary 2.24, due to the implicit
function βK . Nonetheless, in the fractional case, the definition in (6.10) gives

ΛR,Ks,ν = 2
ν CK

∫
Rn\B4R

|x|−n−s dx = 2n|B1|
s4s ν CK

1
Rs

for R > 0,

(note that, in this case, (DouD) holds with D = +∞), which is the bound found in [4,
Th. 4.18] (up to multiplicative constants). However, the strategy of proof of [4, Th. 4.18]
can be adapted to Theorem 6.6 via Corollary 2.27 provided that (Decq) holds with q ∈
[n, n + 1), with no need of assuming (DouD) in this case.
6.3. (K, ν)-Cheeger sets and fidelity. The following result refines Theorem 5.13 if the
datum E is bounded and convex (and, possibly, calibrable).
Theorem 6.8 (Relation with fidelity). Let (Rad), (Nts), (Nint), (Decq) with q ∈ [1, n+1)
and (DouD) with D = +∞ be in force. If E ⊂ Rn is bounded and convex, with non-empty
interior, then:

(i) hK,ν(E) = sup
{
Λ > 0 : ∅ ∈ GSolK(E, Λ, ν)

}
∈ (0, +∞);

(ii) if Λ < hK,ν(E), then GSolK(E, Λ, ν) = {∅};
(iii) if Λ = hK,ν(E), then GSolK(E, Λ, ν) = CK,ν(E) ∪ {∅} and so

SolK(χE, hK,ν(E), ν)

=
{
u ∈ BV K(Rn; [0, 1]) : {u > t} ∈ CK,ν(E) ∪ {∅} for all t ∈ [0, 1)

}
;

(6.11)

(iv) if Λ > hK,ν(E) and the set E is (K, ν)-calibrable, then GSolK(E, Λ, ν) = {E}.
Proof. Since E is bounded and convex with non-empty interior, E is K-admissible by
(Nts), so hK,ν(E) ∈ (0, +∞). Since E is convex, PK(U ∩ E) ≤ PK(U) for U ∈ Mn with
|U | < +∞ by Theorem 2.29. Moreover, ν

(
(U ∩ E) △ E

)
≤ ν(U △ E) for U ∈ Mn.

Hence (GP K
E,Λ,ν) is equivalent to the following minimization problem

inf
{
PK(U) − Λν(U) : U ∈ Mn, U ⊂ E

}
.

Let us set Λ0(E, ν) = sup
{
Λ > 0 : ∅ ∈ GSolK(E, Λ, ν)

}
. Since E is bounded, Λ0(E, ν) ∈

[0, +∞) by Corollary 5.5(i) and Theorem 6.6. As in the proof of [4, Th. 4.21], we get
Λ0(E, ν) = hK,ν(E), proving (i). Points (ii), (iii), (iv) can be proved as in [4, Th. 4.21
and Th 4.22], so we leave the details to the reader. □

Remark 6.9 (Theorem 6.8 at small scales). If we only require that (DouD) holds with
D < +∞ in Theorem 6.8, then we have to assume that E ⊂ BD/4 in order to ensure that
Λ0(E, ν) < +∞ (recall Theorem 6.6). This yields a small-scale version of Theorem 6.8.
Remark 6.10 (Theorem 6.8 under (Decq) for q ∈ [n, n + 1)). By Remark 6.7, we can
drop (DouD) in Theorem 6.8 (and in Remark 6.9) if (Decq) holds with q ∈ [n, n + 1).

The following result is a consequence of Theorem 6.8, Remark 6.10 and Proposition 3.6,
and refines Proposition 6.2 and Theorem 6.6 (applied to f = χB) in the case ν = L n

(also improving the constants given by Theorem 6.1 and Corollary 6.5).
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Corollary 6.11 (Fidelity for balls). Let (Rad), (Nts), (Nint) and (Dec+
n ) be in force. If

B is a (non-trivial) ball, then

GSolK(B, Λ) =


{∅} for Λ < PK(B)

|B| ,

{∅, B} for Λ = PK(B)
|B| ,

{B} for Λ > PK(B)
|B| .
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