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Abstract

This compendium contains results used in the paper Tightness of RandomWalks
in Infinite Dimensional Spaces and Manifolds [7], that are here collected for con-
venience of the reader.
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1 Dposets,Nets
Definition 1.1 (dposet,net). A set 𝔗 with a reflexive and transitive binary relation ≤ is
called directed [6] if

∀𝜏1, 𝜏2 ∈ 𝔗 , ∃𝜏3 ∈ 𝔗 , 𝜏1 ≤ 𝜏3, 𝜏2 ≤ 𝜏3 .

We will suppose that 𝔗 also enjoys the antisymmetric properties, so that it is a
partially ordered set; see Remark 2B3 from [5], and references therein.

Suppose that (𝔗, ≤) is a partially ordered set and is a directed set, then the following
are equivalent 1:

• (𝔗, ≤) has no maxima;

• (𝔗, ≤) has no maximals;

•
∀𝜏1, 𝜏2 ∈ 𝔗 , ∃𝜏3 ∈ 𝔗 , 𝜏1 < 𝜏3, 𝜏2 < 𝜏3 .

A partially ordered directed set with no maxima will be abbreviated to dposet in the
following.

Functions 𝑓 ∶ 𝔗 → 𝑆 whose domain is a dposet will be called nets.

A subset of𝔗 that is totally ordered by≤ is called a chain. Nets are a generalization
of sequences (sinceℕ is a dposet); the concept of subsequence is replaced by the concept
of subnet 𝑓

�̃�
where �̃� ⊆ 𝔗 is cofinal:

∀𝜏 ∈ 𝔗, ∃ ̃𝜏 ∈ �̃� such that 𝜏 ≤ ̃𝜏 . (1.1)

Most definitions and results that are valid for sequences can be reformulated for
nets. Let (𝑆, 𝜏𝑆) be a Hausdorff topological space.

• Let 𝑓 ∶ 𝔗 → 𝑆; we define that

lim
𝜏∈𝔗

𝑓(𝜏) = 𝑥 ∈ 𝑆

if for all 𝐴 ∈ 𝜏𝑆 with 𝑥 ∈ 𝐴 there exists ̂𝜏 such that

∀𝜏 ≥ ̂𝜏 , 𝑓(𝜏) ∈ 𝐴 .

• 𝐶 ⊆ 𝑆 is closed iff for any net 𝑓 ∶ 𝔗 → 𝐶 converging to

lim
𝜏∈𝔗

𝑓(𝜏) = 𝑥 ∈ 𝑆

we have 𝑥 ∈ 𝐶.

• For 𝑓 ∶ 𝔗 → ℝ we define

lim sup
𝜏∈𝔗

𝑓(𝜏) def= inf
̂𝜏∈𝔗

sup
𝜏≥ ̂𝜏

𝑓(𝜏)

and symmetrically for lim inf.
1See 06V from [5].
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Remark 1.2. All of the above can be formulated for directed sets that have a maximum
̃𝜏, but then it is quite trivial: lim𝜏∈𝔗 𝑓(𝜏) = 𝑓( ̃𝜏) and so on.

Remark 1.3. In [6] and other texts a net is a function 𝑓 ∶ 𝔗 → 𝑆 whose domain is
a directed set. Since we will always assume that the topological space 𝑆 is Hausdorff,
then all results in [6] that we will need are equally valid for this definition of net. Indeed
the family of neighbourhoods of a point 𝑥0 ∈ 𝑆 is a dposet when ordered 𝑈 ≤ 𝑉 ⟺
𝑈 ⊇ 𝑉 .

Some results are actually more intuitive with nets. The following theorem2 is of
fundamental importance in topology (and in particular in connection with Prokhorov’s
Theorem, in the form presented in 4.13 later on).

Theorem 1.4. Let 𝑆 be a Hausdorff topological space, 𝐾 ⊆ 𝑆; the following are equiv-
alent.

• 𝐾 is pre-compact3;

• for any dposet 𝔗 and any net 𝑓 ∶ 𝔗 → 𝑆 there is a converging subnet.

2 Continuous functions
Definition 2.1. For 𝑆 a Hausdorff topological space and 𝐼 ⊆ ℝ an interval, let 𝐶(𝐼; 𝑆)
be the set of continuous functions 𝑥 ∶ 𝐼 → 𝑆. In the first part of the paper [7] we have
𝑆 = 𝐻, the separable Hilbert Space 𝐻, so:

• if 𝐼 is not compact then 𝐶(𝐼; 𝑆) is a Frechét space where the topology4 is defined
by the seminorms

[𝑓]𝐼𝑘,∞ where [𝑓]𝐼,∞ = sup
𝑡∈𝐼

|𝑓(𝑡)|𝐻

and 𝐼𝑘 are compact, 𝐼𝑘 ⊂ 𝐼𝑘+1,⋃𝑘 𝐼𝑘 = 𝐼;

• whereas if 𝐼 is compact then 𝐶(𝐼; 𝑆) = 𝐶𝑏(𝐼; 𝑆) is the usual Banach space with
norm

‖𝑓‖∞ = sup
𝑡∈𝐼

|𝑓(𝑡)|𝐻 .

Note that in any case 𝐶(𝐼; 𝑆) is separable. When instead in the second part of the
paper [7] we have 𝑆 = 𝑀, a closed subset of 𝐻, then 𝐶(𝐼;𝑀) ⊆ 𝐶(𝐼; 𝐻) so 𝐶(𝐼;𝑀) is
nonetheless a complete separable metric space.

Remark 2.2. Consider the restriction map

𝑟𝑇 ∶ 𝐶(ℝ+; 𝐻) → 𝐶([0, 𝑇]; 𝐻) (2.1)

given by 𝑟𝑇𝑓 = 𝑓
[0,𝑇]

; then the topology on 𝐶(ℝ+; 𝐻) is the initial topology with
respect to the maps 𝑟𝑛 and the Banach spaces 𝐶([0, 𝑛]; 𝐻).

Hence the following result can be applied, by setting𝑊 = 𝐶(ℝ+; 𝐻),𝑊𝑛 = 𝐶([0, 𝑛]; 𝐻).
2Derived from Chapter 2 in [6].
3This means that the closure of 𝐾 is compact
4The topology does not depend on the choice of the sequence 𝐼𝑛.
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Theorem 2.3. Let 𝑊 be a set and 𝑓 ∶ 𝑊 → 𝑊𝑛 be separating functions where 𝑊𝑛
are Hausdorff topological spaces; endow𝑊 with the initial topology. A set 𝐾 ⊂ 𝑊 is
compact if and only if

• for each 𝑛 ∈ ℕ, 𝑟𝑛(𝐾) is compact in𝑊𝑛,

• the image 𝑃(𝐾) of 𝐾 under the product map

𝑃 ∶ 𝑊 →∏
𝑛
𝑊𝑛 , 𝑥 ↦ (𝑟𝑛(𝑥))𝑛

is closed.

3 Measures
In the following 𝑆 will be a Hausdorff topological space.

Definition 3.1. Let 𝜇 ∶ ℱ → ℝ be a finitely-additive function defined on an algebra
ℱ containing the open sets.

𝜇 is regular 5 if for each 𝐸 ∈ ℱ and 𝜀 > 0, there exist 𝐹, 𝐺 ∈ ℱ with 𝐺 ⊆ 𝐸 ⊆ 𝐹,
𝐹 closed and 𝐺 open and such that |𝜇|(𝐹 ∖𝐺) < 𝜀 where |𝜇| is the total variation 6 of 𝜇.

Definition 3.2. 7 Let ℱ be the field generated by open sets; we call rba the vector
space of all 𝜇 ∶ ℱ → ℝ regular bounded finitely-additive functions.

Theorem 3.3. 8 Suppose that 𝑆 is normal, then there is a linear isomorphism between
𝐽 ∈ 𝐶𝑏(𝑆)∗ and 𝜇 ∈rba such that

∀𝑓 ∈ 𝐶𝑏(𝑆) , 𝐽(𝑓) = ∫
𝑆
𝑓 d𝜇 ;

and this isomorphism preserves order.

Unfortunately there are different definitions of Radon measure. We use the defini-
tion from [8, 2, 1]

Definition 3.4. A Radon measure in 𝑆 is a finite non negative measure 𝜇 on the Borel
setsℬ(𝑆) of 𝑆 such that for each 𝐵 ∈ ℬ(𝑆) there exists a a compact set 𝐵 ⊆ 𝐴 such that
𝜇(𝐵 ∖ 𝐾) < 𝜀.

We recall that a Polish space is a space homeomorphic to a separable complete
metric space. If 𝑆 is a Polish space, then each Borel finite measure is Radon (Theorem
3.1 in [8], or Theorem 7.1.7 in [1]).

4 Probability Theory
In this section, for convenience of the reader, we recall some definitions and results in
Probability Theory from the literature.

Let (𝛺,ℱ,P) be a probability space, 𝑆 a Hausdorff topological space.
5Definition 11 in Chapter III Section 5 in [4]
6Definition 4 in Chapter III Section 1 in [4]
7Definition 1 in Chapter IV Section 6 in [4]
8Theorem 2 in Chapter IV Section 6 in [4]
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A measurable function 𝔛 ∶ ℝ+ × 𝛺 → 𝑆 is called a process; for any fixed 𝜔 ∈ 𝛺
the function

𝑡 ↦ 𝔛(𝑡, 𝜔) = 𝔛(𝜔)𝑡
is called a path or a trajectory; if each path is continuous then𝔛 ∶ 𝛺 → 𝐶(ℝ+; 𝑆) hence
the name random function. (Measurability issues are explained in [2], see in particular
Remark 3.1.3).

We recall the Kolmogoroff test (Theorem 3.3 in [3]).

Theorem 4.1. Let 𝐼 = [0, 𝑇] 𝑍 = 𝑍𝑡, 𝑡 ∈ 𝐼 be a process taking values in a complete
metric space (𝑀, 𝜌) such that ∃𝐶 > 0, 𝛿 > 0, 𝜀 > 0

∀𝑡, 𝑠 ∈ 𝐼 , E[𝜌(𝑍(𝑡), 𝑍(𝑠))𝛿] ≤ 𝐶|𝑡 − 𝑠|1+𝜀

then it has a version with paths Hölder continuous with an arbitrary exponent smaller
than 𝜀/𝛿.

4.1 Narrow Convergence
In the following 𝑆 will be a Hausdorff topological space.

In all of the following 𝛼 ∈ 𝐴, a dposet.
Definition 4.2 (Narrow Convergence ). Given a net of Borel measures 𝜇𝛼, 𝜇 on 𝑆, we
will say that lim𝛼∈𝐴 𝜇𝛼 = 𝜇 narrowly if

∀𝑓 ∈ 𝐶𝑏(𝑆) , lim
𝛼
∫
𝑆
𝑓(𝑥) d𝜇𝛼(𝑥) = ∫

𝑆
𝑓(𝑥) d𝜇(𝑥) .

The same definition can be stated when 𝜇𝛼, 𝜇 ∈rba.

Definition 4.3. If𝑍𝛼, 𝑍 are randomvariables taking values in 𝑆wewill say that lim𝛼∈𝐴 𝑍𝛼 =
𝑍 narrowly when lim𝛼∈𝐴 𝜇𝛼 = 𝜇 narrowly where 𝜇𝛼 = 𝑍𝛼♯P, 𝜇 = 𝑍♯P, i.e. if

∀𝑓 ∈ 𝐶𝑏(𝑆) , lim
𝛼∈𝐴

E[𝑓(𝑍𝛼)] = E[𝑓(𝑍)] .

Remark 4.4. In some texts ([2], [8]…) this convergence is calledweak convergence, but
this may create confusion when 𝑆 is a Hilbert space, where weak convergence usually
means: convergence of a sequence (𝑥𝑛)𝑛 ⊂ 𝐻 to 𝑥 ∈ 𝐻 in the duality with continuous
linear functions:

∀𝑣 ∈ 𝐻 , lim
𝑛∈ℕ

⟨𝑥𝑛, 𝑣⟩𝐻 = ⟨𝑥, 𝑣⟩𝐻 .

(There is though an important connection, see Corollary 3.8.5 in [2]). In other texts it
is called distributional convergence, but this may cause confusion with the Schwartz
distributions. The term narrow seems to have originated in Bourbaki’s texts.

We recall this fact from Probability Theory.

Theorem 4.5 (Alexandrov Theorem). Suppose that 𝑆 is a Polish space. Let 𝜇𝛼, 𝜇 be
probability measures on 𝑆; then these are equivalent

• narrow convergence of 𝜇𝛼 to 𝜇;

•
lim sup
𝛼∈𝐴

𝜇𝛼(𝐹) ≤ 𝜇(𝐹)

for all closed sets 𝐹 ⊆ 𝑆;
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•
lim inf
𝛼∈𝐴

𝜇𝛼(𝐴) ≥ 𝜇(𝐴)

for all open sets 𝐹 ⊆ 𝑆.
Proof. By Prop. 3.1 in [8], then 𝜇𝛼, 𝜇 are 𝜏-smooth; so we can apply Alexandrov’s
Theorem in the form in Theorem 3.5 in [8].

This can be applied to nets of r.v. 𝑍𝛼, 𝑍 ∶ 𝛺 → 𝑆, as explained in Definition 4.3.
Some implications in the above Theorem hold also in a more general context (as

can be seen by reading the proof of Theorem 3.5 in [8]); as in this proposition.

Proposition 4.6. Suppose that 𝑆 is normal; suppose that 𝜇𝛼 → 𝜇 narrowly, where
𝜇𝛼, 𝜇 are in rba; then

•
lim sup
𝛼∈𝐴

𝜇𝛼(𝐹) ≤ 𝜇(𝐹)

for all closed sets 𝐹 ⊆ 𝑆;

•
lim inf
𝛼∈𝐴

𝜇𝛼(𝐴) ≥ 𝜇(𝐴)

for all open sets 𝐹 ⊆ 𝑆.
Proof. Since 𝑆 is normal then Urysohn’s Lemma holds in 𝑆. Given 𝐶 ⊆ 𝐴 ⊆ 𝑆 where
𝐶 is closed and 𝐴 open, there exists a continuous function 𝑓 ∶ 𝑆 → [0, 1] such that

1𝐶 ≤ 𝑓 ≤ 1𝐴 (4.1)

so
lim sup

𝛼
𝜇𝛼(𝐶) ≤ ∫𝑓 d𝜇 ≤ lim sup

𝛼
𝜇𝛼(𝐴) (4.2)

and then in particular

lim sup
𝛼

𝜇𝛼(𝐶) ≤ 𝜇(𝐴)

𝜇(𝐶) ≤ lim sup
𝛼

𝜇𝛼(𝐴)

using the fact that 𝜇 is regular then we conclude.

(Note that this is a fundamental step in the proof the Riesz–Markov representation
theorem [9]).

4.1.1 Properties

Lemma 4.7. If 𝜇𝛼 → 𝜇 narrowly, if 𝑓 ∶ 𝑆 → ℝ is continuous and 𝜇-integrable and

lim
𝑅→∞

sup
𝛼
∫
|𝑓|≥𝑅

|𝑓| d𝜇𝛼 = 0 (4.3)

then
lim
𝛼
∫
𝑆
𝑓 d𝜇𝛼(𝑥) = ∫

𝑆
𝑓 d𝜇(𝑥) .
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(The proof is the same as Lemma 3.8.7 from [2], where though it is stated for se-
quences and not nets).

We assume that 𝑆 is a Polish space; so as consequence of Alexandrov’s theorem 9

we state.

Lemma 4.8. If 𝜇𝛼 → 𝜇 narrowly, if 𝑓 ∶ 𝑆 → ℝ+ is lower semi continuous and non
negative, and

∫
𝑆
𝑓 d𝜇 = 𝐿 ∈ [0,∞]

then
lim inf

𝛼
∫
𝑆
𝑓 d𝜇𝑛 ≥ 𝐿 .

Corollary 4.9. If 𝜇𝛼 → 𝜇 narrowly, if 𝑓 ∶ 𝑆 → ℝ is continuous and if there is 𝜀 > 0
such that

𝑠 = sup
𝛼
∫
𝑆
|𝑓|1+𝜀 d𝜇𝛼 < ∞

then
∫
𝑆
|𝑓|1+𝜀 d𝜇 ≤ 𝑠

and
lim
𝛼
∫
𝑆
𝑓(𝑥) d𝜇𝛼(𝑥) = ∫

𝑆
𝑓(𝑥) d𝜇(𝑥) .

Proof. We check that (4.3) is satisfied. Setting

𝜈𝛼(𝐴) = ∫
𝐴
|𝑓| d𝜇𝛼

then
∫
𝑆
|𝑓|1+𝜀 d𝜇𝛼 = ∫

ℝ
|𝑡|1+𝜀 d𝜈𝛼

and
∫
|𝑓|≥𝑅

|𝑓| d𝜇𝛼 = 𝜈𝛼{|𝑡| ≥ 𝑅}

so by Markov inequality

∫
|𝑓|≥𝑅

|𝑓| d𝜇𝛼 ≤
∫ℝ |𝑡|1+𝜀 d𝜈𝛼

𝑅 ≤ 𝑠
𝑅 .

We have that 𝑓♯𝜇𝛼 → 𝑓♯𝜇 narrowly, so by the hypothesis and the previous Lemma

𝑠 ≥ lim inf
𝑛→∞

∫
𝑆
|𝑓|1+𝜀 d𝜇𝛼 = lim inf

𝑛→∞
∫
ℝ
|𝑡|1+𝜀 d𝑓♯𝜇𝛼 ≥ ∫

ℝ
|𝑡|1+𝜀 d𝑓♯𝜇 = ∫

𝑆
|𝑓|1+𝜀 d𝜇

in particular 𝑓 is 𝜇-integrable. So we can apply the previous Lemma 4.7
9See note at Theorem 3.5 in [8].
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Theorem 4.10. 10 Let 𝑝1, 𝑝2 ∈ [1,∞), 𝑝1 < 𝑝2. Suppose that 𝑍𝛼, 𝑍 ∶ 𝛺 → 𝐻 are
random variables taking values in a Hilbert separable space 𝐻, such that 𝑍𝛼 → 𝑍
narrowly and that

sup
𝛼
E[‖𝑍𝛼‖𝑝2𝐻 ] < ∞ ;

then
lim
𝛼
E[‖𝑍𝛼‖𝑝1𝐻 ] = E[‖𝑍‖

𝑝1
𝐻 ] .

Proof. Let 𝜀 = 𝑝2 − 𝑝1; set 𝑌𝛼 = ‖𝑍𝛼‖𝐻 , 𝑌 = ‖𝑍‖𝐻 , then 𝜇𝛼 = 𝑌𝛼♯P, 𝜇 = 𝑌 ♯P and

𝑓 ∶ ℝ → ℝ, 𝑓(𝑡) = |𝑡|𝑝1

so
E[‖𝑍𝛼‖𝑝2𝐻 ] = ∫

ℝ
𝑓(𝑡)1+𝜀 d𝜇𝛼 ,E[‖𝑍𝛼‖𝑝1𝐻 ] = ∫

ℝ
𝑓(𝑡) d𝜇𝛼 ,

and apply the previous results.

Theorem 4.11. Let again

𝑟𝑇 ∶ 𝐶(ℝ+; 𝐻) → 𝐶([0, 𝑇]; 𝐻) (as in (2.1))

be the restriction map. Let𝑊 = 𝐶(ℝ+; 𝐻),𝑊𝑛 = 𝐶([0, 𝑛]; 𝐻) for simplicity. Suppose
𝜇𝛼, 𝜇 are Radon probability measures on𝑊 , these are equivalent:

• lim𝛼∈𝐴 𝜇𝛼 = 𝜇 narrowly in𝑊 ,

• for each 𝑛 ∈ ℕ, lim𝛼∈𝐴 𝑟𝑛♯𝜇𝛼 = 𝑟𝑛♯𝜇 narrowly in𝑊𝑛 .

Proof. One implication is trivial. We prove that the second clause implies the first. The
balls (for 𝜀 > 0, 𝑓 ∈ 𝑊𝑛)

𝐵𝑊𝑛(𝑓, 𝜀) = {𝑔 ∶∈ 𝑊𝑛 ∶ [𝑓 − 𝑔][0,𝑛],∞ < 𝜀}

are a base for the topology in𝑊 𝑛; since each 𝑓, 𝑔 can be extended constantly, we can
say that

{𝑔 ∈ 𝑊 ∶ [𝑓 − 𝑔][0,𝑛],∞ < 𝜀} for 𝜀 > 0, 𝑓 ∈ 𝑊, 𝑛 ∈ ℕ
are a base for the topology in 𝑊 . Since 𝑊 is separable, let 𝑓𝑘 a countable dense se-
quence, then

𝐵(𝑘,𝑚, 𝑛) def= {𝑔 ∈ 𝑊 ∶ [𝑓𝑘 − 𝑔][0,𝑛],∞ < 1/𝑚} for 𝑛,𝑚, 𝑘 ∈ ℕ

is a countable base.
For each 𝐴 ⊆ 𝑊 open there are sequences 𝑘𝑗 , 𝑚𝑗 , 𝑛𝑗

𝐴 =
∞

⋃
𝑗=1

𝐵(𝑘𝑗 , 𝑚𝑗 , 𝑛𝑗)

let

𝐴𝑙 =
𝑙

⋃
𝑗=1

𝐵(𝑘𝑗 , 𝑚𝑗 , 𝑛𝑗)

10This seems a standard result, but we could not find a reference for it.
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then there are 𝐵𝑙 ∈ 𝑊 𝑁𝑙 open such that

𝐴𝑙 = 𝑟−1𝑁𝑙
(𝐵𝑙)

with 𝑁 𝑙 = max𝑗≤𝑙 𝑛𝑗 . We eventually write

lim inf
𝛼

𝜇𝛼(𝐴) ≥ lim inf
𝛼

𝜇𝛼(𝐴𝑙) = lim inf
𝛼

𝑟𝑁𝑙 ♯𝜇𝛼(𝐵𝑙) ≥ 𝑟𝑁𝑙 ♯𝜇(𝐵𝑙) = 𝜇(𝐴𝑙)

and then pass to the limit on RHS. We conclude by Alexandrov’s Theorem 4.5.

4.2 Tightness
Let 𝑆 be a Hausdorff topological space.
Definition 4.12. Letℳ be a family of Radon measures. It is called11 tight if for every
𝜀 > 0 there is a compact set 𝐾 ⊆ 𝑆 such that

∀𝜇 ∈ ℳ , 𝜇(𝑆 ∖ 𝐾) < 𝜀 .

Note that any finite family is tight, by 3.4; and if some familiesℳ1,…ℳ𝑣 are tight
then⋃𝑣

𝑗=1ℳ𝑗 is tight.
We endow the family ℛ(𝑆) of all Radon probabilities on 𝑆 with the weak topol-

ogy induced by the duality with 𝐶𝑏(𝑆; ℝ); for coherence with the above, we call this
topology narrow topology.

In this case the following version of Prokhorov’s Theorem holds (here expressed in
the form of Theorem 3.6 in [8]).

Theorem 4.13 (Prokhorov’s Theorem). Letℳ ⊆ ℛ(𝑆) .
1. If 𝑆 is a completely regular Hausdorff topological space andℳ is tight then it is

pre-compact in the narrow topology.

2. If 𝑆 is a Polish space and ℳ is pre-compact in the narrow topology then ℳ is
tight.

We agree on this (non standard) definition.

Definition 4.14. Let 𝔗 be a dposet.
Let 𝜇𝜏 be a net of Radon measures on 𝑆: it is tight if ∀𝜀 > 0 there is a compact set

𝐶 ⊆ 𝑆 such that
lim sup
𝜏∈𝔗

𝜇𝜏(𝑆 ∖ 𝐶) ≤ 𝜀 .

Let 𝔛𝜏 a net of r.v. taking values in 𝑆, for 𝜏 ∈ 𝔗: it is tight if the net of laws
𝜇𝜏 = 𝔛𝜏♯P is tight, namely ∀𝜀 > 0 there is a compact set 𝐶 ⊆ 𝑆 such that

lim sup
𝜏∈𝔗

P(𝔛𝜏 ∉ 𝐶) ≤ 𝜀 .

Definition 4.15. For 𝑓 ∶ 𝔗 → ℛ(𝑆) we define the narrow limit points 𝐿 ⊆ 𝑆 by

𝐿 = ⋂̂
𝜏∈𝔗

{𝑓(𝜏) ∶ ̂𝜏 ≤ 𝜏} . (4.4)

where “closure” is in the narrow topology of ℛ(𝑆).
11In Definition 3.8.3 from [2] it is called uniformly tight.

9



Theorem 4.16. Let 𝑆 be a Polish space, let 𝔗 be a dposet, let 𝜇𝛼, 𝛼 ∈ 𝔗 be a tight net
of Radon probabilities on 𝑆: then it has a narrowly converging subnet; in particular
the set of narrow limit points is not empty.

Proof. A possible proof can be obtained by adapting the proof of Theorem 3.6 in [8];
we present a slightly different proof.

If 𝜇 is a finite signed Borel measure let 𝐽𝜇 ∈ 𝐶𝑏(𝑆)∗ be given

𝐽𝜇 ∶ 𝐶𝑏(𝑆) → ℝ , 𝐽𝜇(𝑓) = ∫
𝑆
𝑓 d𝜇𝜇

and recall that such functionals are bounded

|𝐽𝜇(𝑓)| ≤ ‖𝜇‖‖𝑓‖∞

where ‖𝜇‖ is the total variation norm.
ByBanach-Alaoglu Theorem andTheorem1.4, the net 𝐽𝜇𝛼 admits a subnet �̃�weakly

converging to 𝐽 ∈ 𝐶𝑏(𝑆)∗; obviously 𝐽 is positive.
By Theorem 3.3 there exists 𝜈 ∶ 𝐹 → ℝ in rba, where 𝐹 is the algebra generated

by open sets, such that 𝐽 can be represented as 𝐽𝜈; moreover since 𝐽 is positive then 𝜈
is positive; and obviously 𝐽(1) = 1 = 𝜈(𝑆) . By the generalization 4.6 of Alexandroff
Theorem, for any open set 𝐴,

𝜈(𝐴) ≤ lim inf
𝛽∈�̃�

𝜈𝛽(𝐴)

and by hypothesis ∀𝑛 ≥ 1 there is a compact set 𝐶𝑛 ⊆ 𝑆 such that

lim sup
𝛽∈�̃�

𝜈𝛽(𝑆 ∖ 𝐶𝑛) ≤ 1/𝑛 ,

so
𝜈(𝑆 ∖ 𝐶𝑛) ≤ 1/𝑛

hence by Theorem 3.2 in [8] there is an unique extension of 𝜈 to a Radon measure; and
again by Alexandroff Theorem we have that 𝜈 is the narrow limit of the subsequence.
(See Corollary 3 of Theorem 3.5 in [8])

Corollary 4.17. If 𝑆 is a Polish space and if 𝔛𝜏 a tight net of r.v. taking values in 𝑆, for
𝜏 ∈ 𝔗; then the net of laws 𝔛𝜏♯P admits narrowly converging subnets.
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