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Abstract. In this paper we study random walks 𝔛𝜏; these are processes taking values in

𝐶(ℝ+; 𝑆), where ℝ+ = [0,∞). These random walks are defined at discrete times 𝑡 ∈
𝜏 = {𝑡0 = 0 < 𝑡1 < 𝑡2…} and then interpolated for 𝑡 between 𝑡𝑖, 𝑡𝑖+1.

The main objective is to prove tightness for the family of all𝔛𝜏; by Prokhorov’s Theo-
rem, this implies that the sequence has limit points, that are random functions in𝐶(ℝ+; 𝑆).

We will provide results in three cases: 𝑆 = 𝐻 a (possibly infinite dimensional) separa-

ble Hilbert Space; 𝑆 a manifold embedded in𝐻; and then the particular case when 𝑆 is the

Stiefel Manifold.

These results are motivated by problems in Probability Theory and in Shape Theory,

and in particular some models of manifolds of planar immersed curves.

1. Introduction

Let (𝛺,ℱ,P) be a probability space. Let 𝐻 be a separable Hilbert space,𝑀 a manifold

embedded in 𝐻, possibly infinite dimensional. Let 𝑆 = 𝐻 or 𝑆 = 𝑀.

Let 𝔗 be a family whose elements 𝜏 are discrete countable sets of positive rational num-

bers (a precise definition will be in 3.9).

In this paper we study random walks 𝔛𝜏; these are processes, i.e. random functions,

taking values in the Frechét space 𝐶(ℝ+; 𝑆), where ℝ+ = [0,∞). These random walks are

defined at discrete times 𝑡 ∈ 𝜏 = {𝑡0 = 0 < 𝑡1 < 𝑡2…} and then interpolated for 𝑡 between
𝑡𝑖, 𝑡𝑖+1. We will denote as 𝔛𝜏𝑡 ∶ 𝛺 → 𝑆 the random variable obtained from the process 𝔛𝜏
at time 𝑡, so 𝔛𝜏 = {𝔛𝜏𝑡 }𝑡∈ℝ+.

Themain objective is to prove tightness for the family of all𝔛𝜏, for 𝜏 ∈ 𝔗; by Prokhorov’s
Theorem, this implies that the sequence has limit points (in the narrow sense) that are ran-

dom functions in 𝐶(ℝ+; 𝑆).
We will provide results in three cases: random walks in 𝑆 = 𝐻, in Section 5; geodesic

random walks in 𝑆 = 𝑀, in Section 6; and eventually geodesic random walks in the Stiefel

Manifold 𝑆, in Section 7.
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These results are motivated by problems in Probability Theory (in particular Stochastic

Processes in manifolds) and in Shape Theory, that are detailed in Section 2. We are partic-

ularly concerned by the infinite dimensional case, since, as discussed in Section 2.2.3, in

this case many standard methods cannot be applied.

We will use some definition and results from Probability Theory; since there may be am-

biguity in some definitions, and some results are not easily found in the needed generality,

then we have written a compendium in [19].

1.1. Random walk. Here we briefly define the random walks 𝔛𝜏 that we will study (more

details will be in Section 3.4).

Let ℝ+ = [0,∞); let 𝐻,𝑈 be separable Hilbert spaces. Let

𝜏 = {𝑡0 = 0 < 𝑡1 < 𝑡2…} ⊂ ℚ .

Note again that these times are assumed to be rational numbers, for convenience (See

Lemma 3.14). We will need a source of random noise: for 𝑡 ∈ ℝ+, a family of i.i.d.

r.v. 𝑌𝑡 taking values in 𝑈, each with law 𝛾. We will need a Borel map

𝐷 = 𝐷(𝑥, 𝑣, 𝑡, 𝑠) ∶ 𝐻 × 𝑈 × (ℝ+)2 → 𝐻

continuous in 𝑠 and such that 𝐷(𝑥, 𝑣, 𝑡, 0) = 𝑥 . We fix 𝑋𝜏
0 = 𝔛0 a random variable, and we

define recursively

𝑋𝜏
(𝑛+1) = 𝑋𝜏

𝑛 + 𝐷 (𝑋𝜏
𝑛 , 𝑌𝑡𝑛 , 𝑡𝑛 , (𝑡𝑛+1 − 𝑡𝑛)) . (1.1)

Then we interpolate using

𝔛𝜏𝑡 = 𝑋𝜏
𝑛 + 𝐷 (𝑋𝜏

𝑛 , 𝑌𝑡𝑛 , 𝑡𝑛 , (𝑡 − 𝑡𝑛)) (1.2)

for 𝑡𝑛 ≤ 𝑡 ≤ 𝑡(𝑛+1); so each trajectory 𝑡 ↦ 𝔛𝜏𝑡 (𝜔, 𝑡) is continuous; hence each 𝔛𝜏 is a r.v.
taking value in 𝐶(ℝ+; 𝐻), the Frechét space of continuous functions 𝑥 ∶ ℝ+ → 𝐻.

Since 𝑈 is used only in the second argument of 𝐷, and 𝐻,𝑈 are isomorphic, we can

decide that 𝐻 = 𝑈 with no loss of generality.

2. Motivation

2.1. Wiener Process, Donsker’s Theorem. We recall this standard result.

Theorem 2.1. Let 𝑌1, 𝑌2, 𝑌3,… be a sequence of i.i.d. real random variables with mean 0

and variance 1. Let

𝑆𝑛 =
𝑛
∑
𝑖=1

𝑌𝑖

We rescale and extend the process to continuous time 𝑡 ∈ [0, 1]. Define

𝑊 𝑛(𝑡) =
𝑆𝑗
√𝑛

, 𝑡 = 𝑗/𝑛 , 𝑗 = 0,… , 𝑛

and then linearly interpolate

𝑊 𝑛(𝑡) = (1 − 𝑠)
𝑆𝑗
√𝑛

+ 𝑠
𝑆𝑗+1
√𝑛

=
𝑆𝑗 + 𝑠𝑌𝑗
√𝑛

, (2.1)

for 𝑗/𝑛 ≤ 𝑡 ≤ (𝑗 + 1)/𝑛 and

𝑡 = (1 − 𝑠)𝑗/𝑛 + 𝑠(𝑗 + 1)/𝑛 i.e. 𝑠 = 𝑛𝑡 − 𝑗 ;
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so 𝑊 𝑛 is a random variable taking values in 𝐶([0, 1]). Then, the sequence of random

function (𝑊 𝑛)𝑛 converges narrowly to a random function𝑊 on 𝐶([0, 1]), as 𝑛 → ∞; this

𝑊 is the standard Wiener Process.1

Theorem 9.1 in [5] uses the above as amethod to defineWiener Process; byKolmogoroff

Theorem, 𝑊 has a version where almost all paths are continuous. Other sources call the

above result Donsker’s Theorem.

Apossible proof may be found in Theorem 9.12 in [5]; the proof is obtained in two steps:

(1) show that the family𝑊 𝑛 is tight: by Prokhorov’s theorem 3, then it admits narrow

limits in 𝐶([0, 1]) as 𝑛 → ∞;

(2) show that there is an unique narrow limit𝑊: by a standard argument this implies

that 𝑊 𝑛 → 𝑊 narrowly. Indeed it is easy to argue that any narrow limit 𝑊 has

independent increments and the law of𝑊𝑡−𝑊𝑠 is𝑁(0, 𝑡−𝑠) (by CLT): this uniquely
identifies the Wiener Process.

(Other methods of proofs are possible, see Remark 2.6).

The above construction of𝑊 𝑛 in Theorem 2.1 is a special case of the random walk 𝔛𝜏𝑡
where 𝜏 = {𝑖/𝑛 ∶ 𝑗 ∈ ℕ}, 𝔛0 = 0, 𝐻 = ℝ and 𝐷(𝑥, 𝑣, 𝑡, 𝑠) = √𝑠 𝑣. (There is a slightly
different interpolation method: cf 2.2).

So we can imagine a form of Donsker’s theorem, for random walks with variable time

step and taking value in infinite dimensional Hilbert spaces, or manifolds; to be proven in

this way:

(1) show that the family 𝔛𝜏𝑡 is tight;
(2) show that there is an unique narrow limit 𝔛: by a standard argument this implies

that 𝔛𝜏 → 𝔛 narrowly.

Hence, one purpose of this paper is to provide a tool for the first step: this is Theorem 5.5.

Remark 2.2. In order to apply the linear interpolation (used in eqn. (2.1)) to our random

walk, we would replace eqn. (1.2) with

𝔛𝜏𝑡 = 𝑠𝑋𝜏
𝑛+1 + (1 − 𝑠)𝑋𝜏

𝑛 ,
where 𝑠 ∈ [0, 1] satisfies

𝑡 = 𝑡𝑛+1𝑠 + 𝑡𝑛(1 − 𝑠)
that is

𝑠 =
𝑡 − 𝑡𝑛

𝑡𝑛+1 − 𝑡𝑛
.

We prefer the former formulation (1.2) since it provides some technical simplifications: see

Remark 3.13. Conversely, if we set 𝐻 = ℝ, 𝔛0 = 0 and 𝐷(𝑥, 𝑣, 𝑡, 𝑠) = √𝑠𝑣 − 𝑥 then, to be

able to state that 𝔛𝜏𝑡 = 𝑊 𝑛(𝑡), we should define the interpolation as

𝑊 𝑛(𝑡) =
𝑆𝑗 +√𝑠𝑌𝑗

√𝑛
(2.2)

and this is not the definition in [5]. Note that this interpolation (2.2) has the benefit that

𝑊 𝑛(𝑡) ∼ 𝑁(0, 𝑡).

At the same time, the results in this paper are valid for different interpolations.

We add an important remark.

1Wiener Process is also known as Brownian Motion in some texts, as [16] or Chapter 12 in [7].
2Theorem 9.1 uses the linear approximations
3See Theorem 6.20 in [19]).
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Proposition 2.3. There is no choice of common probability space where to define 𝑌𝑡 and
𝑊𝑡 and such that the approximating terms𝑊 𝑛 defined above in (2.1) would converge to𝑊
in probability.

(The proof is in Appendix B).

2.2. Manifolds.

2.2.1. Finite Dimensional Manifolds. The theory of Stochastic Differential Equations in

finite dimensional Riemannian Manifolds 𝑀 is well developed; see e.g. [16]. In particu-

lar, there are multiple equivalent definitions of Brownian Motion; each based on different

principles,

• stochastic differential equations in local charts,

• development of euclidean Brownian Motion (Example 2.6.8 in [16]),

• the heat equation and its transition probabilities,

• limit of geodesic random walks 4 (see Remark 2.6 below);

but all leading to the same ultimate definition: see Proposition 3.2.1 in [16].

We define this concept as in Section 4.2 in [16].

Definition 2.4 (Stochastic completeness). Consider a non-compact connected manifold𝑀,

and let∞ be the point added by the Alexandroff compactification (the one-point topological

compactification). For any continuous path 𝑥 ∶ ℝ+ → 𝑀 ∪ {∞} let

𝑒 = 𝑒(𝑥) = sup{𝑡 ≥ 0 ∶ ∀𝑠, 0 ≤ 𝑠 < 𝑡, 𝑥(𝑠) ∈ 𝑀}

be the first time 𝑡 such that 𝑥(𝑡) = ∞; we agree that 𝑥(𝑠) = ∞ for 𝑠 ≥ 𝑒. Suppose that
𝔛 = {𝔛𝑡}𝑡∈ℝ+ is Brownian Motion, whose paths are continuous in𝑀 ∪ {∞}. A manifold is

called stochastically complete if 𝑒(𝔛⋅) is infinite almost surely:

P{𝑒(𝔛⋅) = ∞} = 1 .

A thorough discussion of this problematic may be found in [14]. There is an important

problem: even if the manifold is complete, it may fail to be stochastically complete. ([14]

attributes the first such example to [1]).

There are many properties of𝑀 that ensure that the manifold is stochastically complete,

such as as: volume growth of geodesic balls, isoperimetric inequalities, conservation of

mass in the heat equation, curvature bounds, etc.; see [14]. (Indeed our Theorem 6.3 re-

quires a kind of curvature bound).

2.2.2. Radial process. For 𝔛 a process taking values in 𝑀 and with continuous paths, the

radial process

𝑟𝔛 = {𝑟𝔛(𝑡)}𝑡≥0
is defined by

𝑟𝔛(𝑡) = 𝑑(𝑥0, 𝔛𝑡) ,
where 𝑥0 ∈ 𝑀 is a fixed point and we agree that 𝑑(𝑥0,∞) = +∞. The radial process

satisfies an SDE, and its evolution can be bounded by bounds on the curvature (see Section

3.5 in [16]); since

{𝑒(𝔛𝑡) > 𝑇} = {∀𝑠 ∈ [0, 𝑇] ∶ 𝑟𝔛(𝑡) < ∞}
this can be used to prove stochastic completeness.

4Properly defined in Sec. 3.5.1.
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Proposition 2.5. Let 𝑥0 ∈ 𝑀 be a fixed point. Stochastic completeness is equivalent to

∀𝜀 > 0, ∀𝑇 > 0, ∃𝑅 > 0 such that P{∃𝑡 ∈ [0, 𝑇], 𝑑(𝑥0, 𝔛𝑡) > 𝑅} < 𝜀 . (2.3)

(The proof is in the appendix B)

Since (by Hopf–Rinow theorem) a closed set is compact iff it is bounded, then (2.3) is

equivalent to tightness, in this sense

∀𝜀 > 0, ∀𝑇 > 0, ∃𝐶 ⊆ 𝑀 compact, such that P{∃𝑡 ∈ [0, 𝑇], 𝔛𝑡 ∉ 𝐶} < 𝜀 . (2.4)

This reasoning, though, fails in infinite-dimensional manifolds.

2.2.3. Infinite Dimensional Manifolds. When the Riemannian Manifold 𝑀 is infinite di-

mensional, though, we immediately identify some obstacles.

• When the manifold𝑀 has dimension 𝑁, we have an important property: each tan-

gent space 𝑇𝑥𝑀 is isomorphic toℝ𝑁; hence there is a canonical choice of Gaussian
measure 𝑁(0, I) on each one. This is, in a sense, the “white noise” that is driving

the Brownian Motion.

When themanifold𝑀 is modeled on a infinite dimensional Hilbert Space𝐻 then

there is no Gaussian measure in 𝐻 that is rotationally invariant (actually, rotations

of a Gaussian measure 𝑁(0, 𝑄) tend to be mutually singular, as explained in [6]).

So we will need to decide what “white noise” we will use.

• While the heat equation can be defined in 𝐻, an approach using this tool would

have to deal with some technical difficulties; for example, the heat equation is not

Feller, that is, it does not regularizes the initial data.

Moreover, usually the transition probabilities of the heat kernel are used; these

transition probabilities are expressed as densities with respect to the volume form;

but an infinite dimensional Riemannian Manifold does not have a volume form

that may be used as a reference measure.

• The Hopf–Rinow theorem is false, closed bounded sets are not necessarily com-

pact.

• The one point compactification is not useful, since any non-empty open set con-

tains a sequence such that 𝑥𝑛 →∞
• The radial process is not useful, since there may be examples of complete Rie-

mannian Manifolds where the trajectories of the Brownian Motion are bounded,

but each of them would have 𝔛𝑡 →∞ in finite time. (A key point to build such an

example may be [3]).

Prokhorov’s theorem, on the other end, is valid in any separable metric space (regardless

of “dimension”): so a concept of tightness similar to (2.4) will be the key element for

Theorem 6.3.

For all the reasons above, it may be quite difficult to refer to pre-existing studies and

results of Brownianmotions on finite-dimensional manifolds, when addressing the problem

here presented; as an example, we cite the work of Jørgensen [17].

Remark 2.6. Jørgensen [17] studied geodesic random walks in a finite-dimensional Rie-

mannian manifold, using semigroup theory, and deriving conditions under which a se-

quence of such geodesic random walks converges to a diffusion process. In the language

of [17], a Brownian motion is a diffusion process obtained as the limit of a sequence of

geodesic random walks with identically distributed steps (in this sense: the coefficients

occurring in the expression for its differential generator have zero covariant derivative).
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The Wiener process is the Brownian motion that occurs as the limit of a sequence of ran-

dom walks where the individual steps have a symmetric distribution. [17] proves then that

the Wiener process is the only Brownian motion there is on a two-dimensional complete

Riemannian manifold with nonzero curvature.

These definitions and results cannot be exported to the case of infinite-dimensional man-

ifolds as is, for the reasons listed above. Moreover, all of [17] is based on the identification

of the space of Radon probability measures on𝑀with the dual 𝐶∗
0 (𝑀) of the closure 𝐶0(𝑀)

of the space𝐶𝑐(𝑀) of real continuous functions with compact support on𝑀. Unfortunately,

if 𝑀 is an infinite dimensional manifold, then 𝐶0(𝑀) = 𝐶𝑐(𝑀) = {0}, see Theorem 2.7

in [19].

2.3. StiefelManifolds. The results in this paper will be valid when𝑀 is a StiefelManifold.

Let 𝑛, 𝑝 be a natural numbers with 1 ≤ 𝑝 ≤ 𝑛; classically, the Stiefel manifold St(𝑝, ℝ𝑛)
is defined as the set of all frames composed of 𝑝 orthonormal vectors in ℝ𝑛; those frames

are represented as 𝑛 × 𝑝 matrices. Geodesics in Stiefel manifolds St(𝑝, ℝ𝑛) are known to
have closed form solutions as demonstrated by Edelman et al. [12] in Section 2.2.2 .5 This

property extends to infinite dimensional manifolds, as will be explained in Section 7.3.1.

Let again 𝑝 ≥ 1 be a natural number, and let 𝑉 be a Hilbert space with dim(𝑉) ≥ 2𝑝
(possibly infinite dimensional). Let 𝐻 = 𝑉𝑝, we write

𝑥 ∈ 𝐻 , 𝑥 = (𝑥1,…𝑥𝑝)

and

‖𝑥‖𝐻 =
√√

√

𝑝
∑
𝑖=1

‖𝑥𝑖‖2𝑉

as usual (and similarly for scalar products). By analogy to the finite dimensional space, we

will call columns the 𝑝 vectors 𝑥𝑖 that compose 𝑥. We define

𝜋𝑖 ∶ 𝐻 → 𝑉 , 𝜋𝑖(𝑥) = 𝑥𝑖 .

Definition 2.7. We define St(𝑝, 𝑉) as the manifold of 𝑥 ∈ 𝐻 such that

⟨𝑥𝑖, 𝑥𝑗⟩𝑉 = 𝛿𝑖,𝑗
and St(𝑝, 𝑉) is an embedded manifold in 𝐻 of codimension 𝑝(𝑝 + 1)/2.

The sphere is the special case St(1, 𝑉). The geometry of Stiefel Manifolds is pretty well

understood [12, 15]. See Section 7.3.1 for details.

2.4. Shape Theory, Curves. “Shapes” appear in two broad categories of applications:

• shape optimization, where we want to find the best shape according to a criterion;

• shape analysis, where we study families of shapes for purposes of statistics, (au-

tomatic) cataloging, probabilistic modeling, etc.

Shape theory is central in computer vision because shapes partially characterize objects

in images. We focus on the specific case where shapes are represented by smoothly im-

mersed planar curves; this is a widely studied subject, see [18] and references therein. In

this case, it should be noted that the shape space classically used in shape optimization is

more precisely identified as the space of embedded curves, up to a choice of parameteri-

zation, whereas in shape analysis the space is usually identified as the space of embedded

curves, up to rotation, translation, scaling and reparameterization. We will not address

this issue in this paper.

5[12] credits a personal communication by R. Lippert for the final closed form formula (7.3).
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Figure 1. Stocastic minimization of curve-based segmentation energy,

from [10]. At the left pane , three curves: the blue curve is the best result

so far; in green and red, stochastic steps. In center pane, the current

examined region for segmentation. In the right pane: the image to be

segmented, with curves superimposed.

There are various reasons why it is useful to model the space of curves as a Riemannian

manifold.

• In the past methods for shape optimization were devised that would find the solu-

tion by using appropriate gradient flows. Calling the minimizing flows gradient

flows, however, implies a certain Riemannian metric on the space of curves.

• Modeling the space of curves as a Riemannian manifold has also obvious benefits

in shape analysis: indeed the distance between curves can be used for clustering,

the geodesic can be used to define the average of two shapes, and so on.

We concentrate on two models of “Riemannian manifolds of curves”, where we disre-

gard translation and scaling.

• Amodel for open immersed curves 𝑐 ∶ [0, 1] → ℝ2; using a transformation known

as square-root velocity representation” the Riemannian Manifold is isometric to a

subset of the unit sphere in 𝑉 = 𝐿2([0, 1]); see [21].
• Amodel for closed immersed curves 𝑐 ∶ 𝑆1 → ℝ2; using an appropriate transfor-
mation the Riemannian Manifold is isometric to a subset of the Stiefel Manifold

St(2, 𝑉); see [26, 25, 22] .
Since the sphere in the first model is the special case St(1, 𝑉), we are in both cases

interested in infinite dimensional Stiefel Manifolds. In both cases, the space of smooth im-

mersions is completed to a larger space of absolutely continuous curves, so that the “shape

space” is now St(𝑝, 𝑉).
Since stochastic methods play an important role in applications, we are then lead to in-

vestigate them in St(𝑝, 𝑉). In particular, in [10] a stochastic minimization method was

developed to seek numerically global minima for a task of image segmentation; curves

would stochastically evolve by a scheme resembling the “random walk on manifold” pre-

sented later in Section 6; a pruning method (inspired by simulated annealing) would drive
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the random walk towards a global minimum: see Figure 1. In [22] a stochastic method was

developed in St(2, 𝑉), similar to the classical Kalman filtering, to track a moving object.

Aquestion remained open: could the numerical methods in [10] and in [22] be explained

as a space and time discretization of an (yet to be understood) infinite dimensional stochas-

tic method in St(2, 𝑉)? Space discretization would not pose a problem, since it can be

argued that St(𝑝, 𝑉) can be approximated by St(𝑝, ℝ𝑁) for 𝑁 large (using e.g. Fourier

series). There remain thus this question: does a discrete time random walk in St(𝑝, 𝑉)
somehow approximate a time continuous stochastic process in St(𝑝, 𝑉)? More in general:

how can we define probabilities and stochastic methods in St(𝑝, 𝑉)? Some positive and

negative results were found in [2]. In this paper we will eventually provide a positive re-

sult in Theorem 7.3: the discrete time random walk on St(𝑝, 𝑉) can indeed converge to a

time continuous process, when the time partition gets finer and finer. In the spirit of the

Donsker’s Theorem, this is a first step to an operative definition of “Brownian Motion” on

St(𝑝, 𝑉). In this paper we will not prove that there is an unique possible limit, neither will

we characterize its property: this is left for a future paper. Eventually all of the above will

provide a sound foundation for methods such as the ones in [10] and in [22].

3. Definitions

Let 𝐻 be a separable Hilbert space. We agree that variables 𝑛,𝑚, ℎ, 𝑘, 𝑖, 𝑗, 𝑙 are natural
numbers. We will use the theory of “nets”; in this paper a net is a function whose domain is

a partially ordered directed set with no maxima (abbreviated to “dposet” in the following:

see [19] for details and properties).

3.1. Measures.

Definition 3.1. Given measurable spaces (𝑋1, 𝛴1) and (𝑋2, 𝛴2), a measurable mapping 𝑓 ∶
𝑋1 → 𝑋2 and a measure 𝜇∶ 𝛴1 → [0,+∞], the push forward of 𝜇 is defined to be the

measure 𝑓♯𝜇 ∶ 𝛴2 → [0,+∞] given by

𝑓♯𝜇(𝐵) = 𝜇 (𝑓−1(𝐵)) for all 𝐵 ∈ 𝛴2 .

The push forward measure is denoted also as 𝑓∗𝜇 , 𝜇 ∘ 𝑓−1, or 𝑓#𝜇.

Definition 3.2 (Law a.k.a. Distribution). If (𝛺,ℱ,P) is a probability space and 𝑌 ∶ 𝛺 →
𝑋2 is a r.v. and 𝛾 is a probability measure on (𝑋2, 𝛴2), we will write

𝑌 ∼ 𝛾 when 𝛾 = 𝑌♯P ,

we will say that 𝛾 is the law or the distribution of 𝑌; similarly for 𝑌, 𝑍 ∶ 𝛺 → 𝑋2
𝑌 ∼ 𝑍 when 𝑌♯P = 𝑍♯P .

We will use the narrow convergence. 6

Definition 3.3 (Narrow Convergence ). Let 𝑆 be a Hausdorff topological space. Given a

net of Radon measures 𝜇𝛼, 𝜇 on 𝑆, for 𝛼 ∈ 𝐴 a dposet, we will say that 𝜇𝛼 → 𝜇 narrowly
if

∀𝑓 ∈ 𝐶𝑏(𝑆) , lim𝛼
∫
𝑆
𝑓(𝑥) d𝜇𝛼(𝑥) = ∫

𝑆
𝑓(𝑥) d𝜇(𝑥) .

We agree on this (non standard) definition.

6Other text call this convergence in distribution or weak convergence.
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Definition 3.4. Let 𝔗 be a dposet, and 𝑆 be a Hausdorff topological space. Let 𝜇𝜏 be a net
of Radon measures on 𝑆: it is tight if ∀𝜀 > 0 there is a compact set 𝐶 ⊆ 𝑆 such that

lim sup
𝜏∈𝔗

𝜇𝜏(𝑆 −𝐶) ≤ 𝜀 .

Let 𝔛𝜏 be a net of r.v. taking values in 𝑆, for 𝜏 ∈ 𝔗: it is tight if the net of laws 𝜇𝜏 = 𝔛𝜏♯P
is tight.

3.2. Probability setting.

Hypotheses 3.5. We fix a constant 𝑐𝑡 > 0, that will be used to bound temporal finess, and

a constant 𝑐3 > 0 that will be used to control exponential decay. 7
We will use a Borel measure 𝛾 on 𝐻 satisfying:

•

∫
𝐻
‖𝑥‖4𝑒4𝑐3𝑐𝑡‖𝑥‖ d𝛾(𝑥) < ∞

• 𝛾 is centered

∫
𝐻
𝑥 d𝛾(𝑥) = 0 ;

• There is 8 a linear compact symmetric injective operator 𝐾 ∶ 𝐻 → 𝐻 such that

𝛾(𝐾(𝐻)) = 1 and
•

∫
𝐻
‖𝐾−1𝑥‖4 d𝛾(𝑥) < ∞ .

All the above hold true when 𝛾 = 𝑁(0, 𝑄) a Gaussian measure (as defined in next

section): see Proposition 3.6 and Remark 5.2.

Let 𝛾 be such a probability on 𝐻. We need a Probability Space, so that we have i.i.d. r.v.

𝑌𝑡 ∶ 𝛺 → 𝐻 each with distribution 𝑌𝑡♯P = 𝛾, for 𝑡 ∈ ℚ; to this end we may set

𝛺 = ×𝑡∈ℚ𝐻 , ℱ , P = ⊗𝑡∈ℚ𝛾 ;

where ℱ is the 𝜎-algebra generated by null sets of P and by ℬ(𝛺), the Borel 𝜎-algebra.

Proposition 3.6. For any 𝑐 ∈ [0, 4𝑐3], 𝛼 ∈ [0, 4] there is a constant ̃𝑐 = ̃𝑐(𝛼, 𝑐, 𝑐𝑡) > 0
such that for all 𝛿 ∈ [0, 𝑐𝑡],

E[𝑔(𝛿‖𝑌𝑡‖)] ≤ ̃𝑐𝛿𝛼 ,
where 𝑔(𝑠) = 𝑠𝛼𝑒𝑐𝑠. (The proof is in Section B )

3.3. Gaussian measures. Let 𝐻 be a separable Hilbert space.

Definition 3.7. Suppose that 𝑎 ∈ 𝐻 and 𝑄 ∶ 𝐻 → 𝐻 is a linear symmetric trace-class

operator such that the quadratic form ⟨𝑥, 𝑄𝑥⟩𝐻 is non negative. We recall that 𝛾 = 𝑁(𝑎, 𝑄)
is a Gaussian measure in the Hilbert space 𝐻 when the characteristic function (or Fourier

transform) is

∀𝑓 ∈ 𝐻 , ∫
𝐻
𝑒𝑖⟨𝑓,𝑥⟩ d𝛾(𝑥) = exp (𝑖⟨𝑎, 𝑓⟩ − 1

2⟨𝑥, 𝑄𝑥⟩𝐻)

7The constants 𝑐3, 𝑐𝑡 will appear again in subsequent hypotheses.
8The last two requests are loosely connected to what is explained in Example 3.8.13 in [6].
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(Theorem 2.3.1 in [6]; Section 1.5 in [9]). The mean and variance are characterized by

⟨𝑓, 𝑎⟩ = ∫
𝐻
⟨𝑓, 𝑥⟩ d𝛾(𝑥) (3.1)

⟨𝑓, 𝑄𝑔⟩𝐻 = ∫
𝐻
⟨𝑓, 𝑥 − 𝑎⟩ ⟨𝑔, 𝑥 − 𝑎⟩ d𝛾(𝑥) (3.2)

for all 𝑓, 𝑔 ∈ 𝐻. In particular 𝛾 is called centered when 𝑎 = 0 and non-degenerate when

the variance has empty kernel.

The proposition 3.6 is true for Gaussian Measures.

Proposition 3.8. Let 𝑐 ≥ 0, 𝛼 > 0 and let 𝑔(𝑠) = 𝑠𝛼𝑒𝑐𝑠, suppose 𝑌 ∼ 𝑁(0, 𝑄) then there is
a ̃𝑐 = ̃𝑐(𝛼, 𝑐, 𝑄, 𝑐𝑡) > 0 such that for 0 ≤ 𝛿 ≤ 𝑐𝑡

E[𝑔(𝛿‖𝑌‖)] ≤ ̃𝑐𝛿𝛼 .

(The proof is in Section B )

3.4. Random walk. As aforementioned, in this paper a net is a function whose domain

is a partially ordered directed set with no maxima (abbreviated to “dposet”). We will use

these dposets.

Definition 3.9. We fix a constant 𝑐𝑡 > 0, the same constant as in Hypotheses 3.5.

(1) Let

𝜏 = {𝑡0 = 0 < 𝑡1 < 𝑡2…} ⊂ ℚ
be such that

lim
𝑛→∞

𝑡𝑛 = ∞ , sup
𝑛
(𝑡𝑛+1 − 𝑡𝑛) ≤ 𝑐𝑡 .

Let 𝔗 be the dposet of all such 𝜏, ordered by inclusion.
(2) Let 𝑇 > 0 we define 𝔗𝑇 be the dposet of all 𝜏 of the form

𝜏 = {𝑡0 = 0 < 𝑡1 < 𝑡2 < … < 𝑡𝑛 = 𝑇}

with 𝑡0, 𝑡1,… 𝑡𝑛−1 ∈ ℚ and again max1≤𝑗≤𝑛(𝑡𝑗 − 𝑡𝑗−1) ≤ 𝑐𝑡. (Note that we do not
require that 𝑇 ∈ ℚ ).

We will use 𝔗 for processes with 𝑡 ∈ ℝ+ = [0,∞); while we will use 𝔗𝑇 for processes

with 𝑡 ∈ [0, 𝑇]. We will actually define all processes as in the first case, for simplicity; but

then, up to restricting 𝑡 ∈ [0, 𝑇], we will study tightness using 𝜏 ∈ 𝔗𝑇.
Let 𝐻 be a separable Hilbert space.

Definition 3.10. We will need a Borel map

𝐷 ∶ 𝐻2 × (ℝ+)2 → 𝐻

continuous in the last argument and such that 𝐷(𝑥, 𝑣, 𝑡, 0) = 𝑥 .

Each random walk is a process 𝔛𝜏 = (𝔛𝜏𝑡 )𝑡≥0 taking values in 𝐻.
We fix 𝔛0 a random variable taking values in 𝐻, independent of all 𝑌𝑡.
To define 𝔛𝜏 we define auxiliary processes 𝑋𝜏

𝑛 for 𝑛 ∈ ℕ; where we define 𝑋𝜏
0 = 𝔛0,

and we define recursively

𝑋𝜏
(𝑛+1) = 𝑋𝜏

𝑛 + 𝐷 (𝑋𝜏
𝑛 , 𝑌𝑡𝑛 , 𝑡𝑛 , (𝑡𝑛+1 − 𝑡𝑛)) (as in (1.1);)

then we interpolate using

𝔛𝜏𝑡 = 𝑋𝜏
𝑛 + 𝐷 (𝑋𝜏

𝑛 , 𝑌𝑡𝑛 , 𝑡𝑛 , (𝑡 − 𝑡𝑛)) (as in (1.2))
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for 𝑡𝑛 ≤ 𝑡 ≤ 𝑡(𝑛+1); so each trajectory 𝑡 ↦ 𝔛𝜏𝑡 (𝜔, 𝑡) is continuous; hence each 𝔛𝑡 is a r.v.
taking value in 𝐶(ℝ+; 𝐻), the Frechét space of continuous functions 𝑥 ∶ ℝ+ → 𝐻 with

ℝ+ = [0,∞).

Remark 3.11. Another definition may be as follows: for 𝑡 ≥ 0 we define 𝔛𝜏 as piece wise constant

trajectories

𝔛𝜏
𝑡 = 𝑋𝜏

𝑛 , 𝑛 = max{𝑗 ∶ 𝑡𝑗 ≤ 𝑡}
the idea being that jumps happens at 𝑡𝑛 ∈ 𝜏 where

𝔛𝜏
𝑡𝑛 = 𝑋𝜏

𝑛 ;

so 𝑡 ↦ 𝔛𝜏
𝑡 is cadlag and hence 𝔛𝜏 is a r.v. in the Skorokhod space D(𝐼; 𝐻). We think that following

results would hold also for this definitions of𝔛𝜏
𝑡 , up to some adjustments in the proofs. (Corollary 5.11

would be a key argument).

Proposition 3.12 (Filtration). Let ℱ𝑡 be the 𝜎-algebra generated by 𝔛0 and by 𝑌𝑠 for 𝑠 < 𝑡
(augmented with the null sets of P ). The process 𝑋𝜏

𝑛 for 𝑡𝑛 ≤ 𝑡 is ℱ𝑡-measurable. The

process 𝔛𝜏𝑠 for 𝑠 ≤ 𝑡 is ℱ𝑡-measurable.

Remark 3.13. The choice of interpolation (1.2) has a beneficial effect: suppose 𝑇 is positive
but 𝑇 ∉ 𝜏; define ̂𝜏 = (𝜏 ∪ {𝑇}) ∩ [0, 𝑇] so ̂𝜏 ∈ 𝔗𝑇, then

𝔛 ̂𝜏
𝑡 = 𝔛𝜏𝑡 ∀𝑡 ≤ 𝑇 .

This means that, up to adding𝑇 to 𝜏, we can consider any process defined above as a process
𝔛𝜏𝑡 for 𝑡 ∈ [0, 𝑇] and 𝜏 ∈ 𝔗𝑇. (Note that we do not require that 𝑇 ∈ ℚ ).

We recall that 𝐶(𝐼; 𝐻) is a complete separable metric space; so when the topology asso-

ciated 𝐶(𝐼; 𝐻) is the narrow topology and the family is tight (as defined in Definition 3.4),

by Prokhorov’s theorem9 the set of limit points is not empty. When 𝐼 = [0, 𝑇] this can also
be explained using sequences.

Lemma 3.14. Let 𝑇 > 0, 𝐼 = [0, 𝑇]; let 𝑞0 = 0, 𝑞1 = 𝑇 and

{𝑞2, 𝑞3,…} = (0, 𝑇) ∩ ℚ

be an enumeration, let

𝜃𝑛 = {𝑞0, 𝑞1,… , 𝑞𝑛} ;
then, for 𝑛 ≥ 2, the sequence (𝜃𝑛)𝑛 is cofinal in 𝔗𝑇. So the limit points

⋂̂
𝜏∈𝔗𝑇

{𝔛𝜏 ∶ ̂𝜏 ⊆ 𝜏} (3.3)

along 𝔗𝑇 coincide with the limit points

⋂
𝑛∈ℕ

{𝔛𝜃𝑘 ∶ 𝑘 ≥ 𝑛} (3.4)

along the sequence (𝜃𝑛)𝑛. Similarly limits, limsup, liminf, tightness, etc, can be defined

using that sequence (𝜃𝑛)𝑛.

A similar result does not hold for 𝔗.

Proposition 3.15. There does not exist a cofinal sequence 𝑓 ∶ ℕ → 𝔗. (The proof is in
Appendix B).

9See the version of Prokhorov’s theorem in Theorem 6.26 in [19].
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3.5. Manifold. Suppose 𝑀 is a manifold smoothly embedded in 𝐻; we consider it as a
Riemannian Manifold, since it inherits the scalar product from 𝐻. For 𝑥 ∈ 𝑀, 𝑣 ∈ 𝑇𝑥𝑀
we denote by exp𝑥(𝑣) the exponential map. We require that 𝑀 be a closed subset, so it

is geodetically complete. We consider 𝑇𝑥𝑀 as a linear subspace of 𝐻, not as its affine
translation containing 𝑥. For 𝑥 ∈ 𝑀 we define the orthogonal projection 𝜋𝑇𝑥𝑀 ∶ 𝐻 →
𝑇𝑥𝑀; note that 𝜋𝑇𝑥𝑀 is symmetric that is 𝜋𝑇𝑥𝑀 = 𝜋∗𝑇𝑥𝑀; we will call 𝑃𝑥 = 𝜋𝑇𝑥𝑀 for

simplicity.

3.5.1. Geodesic random walks on manifolds. In this case each random walk is a process

𝔛𝜏 = (𝔛𝜏𝑡 )𝑡≥0 taking values in 𝑀. We fix 𝔛𝜏0 a random variable taking values in 𝑀, inde-

pendent of all 𝑌𝑡. We define recursively 𝑋𝜏
0 = 𝔛𝜏0 and

𝑋𝜏
(𝑛+1) = exp𝑋𝜏

𝑛
(√(𝑡𝑛+1 − 𝑡𝑛)𝑃𝑋𝜏

𝑛𝑌𝑡𝑛)

Then again we define 𝔛𝜏 by interpolating along geodesics

𝔛𝜏𝑡 = exp𝑋𝜏
𝑛
(√(𝑡 − 𝑡𝑛)𝑃𝑋𝜏

𝑛𝑌𝑡𝑛)

for 𝑡𝑛 ≤ 𝑡 ≤ 𝑡(𝑛+1); and again 𝑡 ↦ 𝔛𝜏𝑡 is continuous.
This kind of random walk will be called geodesic random walk.

If, for 𝑥 ∈ 𝑀, 𝑦 ∈ 𝐻, we let

𝐷(𝑥, 𝑦, 𝑡, 𝑠)
def

= exp𝑥 (√𝑠𝑃𝑥𝑦) − 𝑥 (3.5)

then we obtain the same definition as in the previous section 3.4; so all comments and

results apply to this case as well. Note that, in the words of Section 2.2.3, 𝑃𝑥𝑌𝑡 is the source
of “white noise” that we are using to drive the random walk. We will come back to to

manifolds in Section 6 and to Stiefel Manifolds in Section 7

4. Tightness by Ascoli-Arzelà Theorem

In the following, for 𝜓 ∶ ℝ → ℝ, “monotonic” meansmonotonically weakly increasing

that is 𝑠 ≤ 𝑡 ⇒ 𝜓(𝑠) ≤ 𝜓(𝑡).

Definition 4.1. Let 𝐼 ⊆ ℝ be an interval, 𝐸 be a normed vector space with norm ‖ ⋅ ‖𝐸; for
𝑥 ∶ 𝐼 → 𝐸 uniformly continuous and 𝜂 > 0 we define the modulus of continuity

𝜔𝐼,𝐸(𝑥, 𝜂)
def

= sup{‖𝑥(𝑡) − 𝑥(𝑠)‖𝐸 ∶ 𝑡, 𝑠 ∈ 𝐼, |𝑡 − 𝑠| ≤ 𝜂} ;

note that 𝜔𝐼,𝐸(𝑥, ⋅) is continuous, sub-additive, monotonic, and 𝜔𝐼,𝐸(𝑥, 0) = 0.

We recall that a set is called pre-compact if its closure is compact. We will use this

version of Ascoli-Arzelà Theorem. (See e.g. Chapter IV Section 6 Theorem 7 in [11]). (Recall

that if 𝐼 is compact then 𝐶(𝐼; 𝑆) = 𝐶𝑏(𝐼; 𝑆))

Theorem 4.2. Suppose 𝐻 is a Banach space. Let 𝐼 ⊆ ℝ be a compact interval. Let

𝐹 ⊆ 𝐶(𝐼; 𝐻) be a family of continuous functions 𝑥 ∶ 𝐼 → 𝐻 . Consider these two clauses:

• there is 𝐽 ⊆ 𝐼 countable dense subset such that for each 𝑡 ∈ 𝐽 there exists a pre-

compact set 𝐶𝑡 ⊂ 𝐻 such that ∀𝑥 ∈ 𝐹, 𝑥(𝑡) ∈ 𝐶𝑡 ;
•

lim
𝜂→0

sup
𝑥∈𝐹

𝜔𝐼,𝐻(𝑥, 𝜂) = 0 .

The above two clauses hold if and only if 𝐹 is pre-compact in 𝐶(𝐼; 𝐻).

For probability theory we transform the above as follows.
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Theorem 4.3. Suppose 𝐻 is a Banach space. Let 𝐼 = [0, 𝑇]. Suppose that 𝔛𝛼 ∶ 𝛺 →
𝐶(𝐼; 𝐻) is a net of processes (with 𝛼 ∈ 𝐴) satisfying the following two clauses.

• ∀𝜀 > 0, there exist, a countable set 𝐽 = {𝑎0, 𝑎1,…𝑎𝑗…} dense in 𝐼, and compact

sets 𝐶𝑗 ⊂ 𝐻, such that

∀𝛼 ∈ 𝐴 ∀𝑗 ∈ ℕ, P{𝔛𝛼(𝑎𝑗) ∉ 𝐶𝑗} ≤ 𝜀2−𝑗 . (4.1)

• ∀𝜀0 > 0, ∀𝜀1 > 0, ∃𝜂 > 0, ∃𝛼0 ∈ 𝐴 such that

∀𝛼 ∈ 𝐴, 𝛼 ≥ 𝛼0 ⇒ P {𝜔𝐼,𝐻(𝔛𝛼, 𝜂) ≥ 𝜀0} ≤ 𝜀1 . (4.2)

Then the net 𝔛𝛼 is tight10 in 𝐶(𝐼; 𝐻).

For the proof, see Theorem 4.3 in [19].

Remark 4.4. The second hypothesis (4.2) may be reformulated as

∀𝜀0 > 0 , lim
𝜂→0

lim sup
𝛼

P {𝜔𝐻(𝐼, 𝔛𝛼, 𝜂) ≥ 𝜀0} = 0 (4.3)

since 𝜔 is monotonic in 𝜂.

5. Tightness of random walks

Let again 𝐻 be a separable Hilbert space. The purpose of this section is to state and

prove the Theorem 5.5 on tightness of random walks in 𝐻.

5.1. Tightness operator. Let 𝛾 be as defined in Hypotheses 3.5. We required in Hypothe-

ses 3.5 that there is 𝐾 ∶ 𝐻 → 𝐻 a linear symmetric compact injective operator such that

𝛾(𝐾(𝐻)) = 1, equivalently

P(𝑌𝑡 ∈ 𝐾(𝐻)) = 1 ∀𝑡 .

Define now

𝐷𝐾(0, 𝑟) = {𝐾𝑥 ∶ 𝑥 ∈ 𝐻 , ‖𝑥‖ ≤ 𝑟} = 𝐾(𝐵𝐻(0, 𝑟)) = 𝑟𝐾(𝐵𝐻(0, 1))

then

• they are pre-compact (this means that the closures 𝐷𝐾(0, 𝑟) are compact), and

•

⋃
𝑛
𝐷𝐾(0, 𝑛) = 𝐾(𝐻)

so

𝛾 (⋃
𝑛
𝐷𝐾(0, 𝑛)) = 1 ;

• this means that ∀𝜀 > 0 ∃𝑛 such that

𝛾 (𝐷𝐾(0, 𝑛)) ≥ 1 − 𝜀 .

Remark 5.1. Since 𝐻 is a separable Hilbert space, then every probability measure on it is

Radon hence tight; the above gives us an accessible family of sets for tightness of 𝛾.

Up to rescaling 𝐾 we will assume that

∀𝑣 ∈ 𝐻 , ‖𝐾𝑣‖𝐻 ≤ ‖𝑣‖𝐻 .

10See Definition 3.4.
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Remark 5.2. In general, for any Hilbert space 𝐻 and Gaussian measure 𝛾 = 𝑁(0, 𝑄), such
operator 𝐾 always exists. We show a possible construction. By the spectral theorem let 𝑣𝑛, 𝜎2𝑛 the

eigenvectors and eigenvalues of 𝑄. We find a sequence 𝜆𝑛 > 0 with 1 ≥ 𝜆𝑛 → 0 and

∑
𝑛
𝜎2𝑛/𝜆2𝑛 < ∞ ;

a possible choice is

1
𝜆𝑛

= min({1} ∪ {𝑘 ∈ ℕ ∶ 𝑘 ≥ 1 ∧
∞

∑
𝑗=𝑛

𝜎2𝑗 ≥ 2−𝑘}) ;

so we define

𝐾𝑣 = ∑
𝑛
𝜆𝑛𝑣𝑛⟨𝑣𝑛, 𝑣⟩ ;

then we note that 𝐾−1𝑄𝐾−1 is symmetric and trace class so there exists a Gaussian measure 𝜇 ∼
𝑁(0, 𝐾−1𝑄𝐾−1) and 𝛾 ∼ 𝐾♯𝜇 .

5.2. Tightness Theorem.

Definition 5.3. Given a linear continuous injective operator 𝐾 ∶ 𝐻 → 𝐻 we define

‖𝑣‖𝐾
def

= {
‖𝐾−1𝑣‖𝐻 if 𝑣 ∈ 𝐾(𝐻)
∞ if 𝑣 ∉ 𝐾(𝐻)

. (5.1)

Similarly for scalar products, for 𝑣, 𝑤 ∈ 𝐾(𝐻) we define
⟨𝑣, 𝑤⟩𝐾 = ⟨𝐾−1𝑣, 𝐾−1𝑤⟩𝐾 .

Definition 5.4. Given Banach spaces 𝐵1, 𝐵2, we define ℒ(𝐵1; 𝐵2) to be the space of linear
continuous operators 𝐴 ∶ 𝐵1 → 𝐵2. If 𝐵1 = 𝐵2 then we write ℒ(𝐵1)

Theorem 5.5. Let 𝐼 = [0, 𝑇]. Suppose that the random walks 𝔛𝜏 ∶ 𝛺 → 𝐶(𝐼; 𝐻) above
defined in Definition 3.10 satisfy the following clauses.

(1) There is a linear compact operator 𝐾 ∶ 𝐻 → 𝐻 satisfying the requisites in the

previous section and such that

E[‖𝔛0‖4𝐾] < ∞ . (5.2)

(2) For all 𝑥, 𝑣 ∈ 𝐾(𝐻), 𝑡 ∈ 𝐼, 𝑠 ≥ 0
𝐷(𝑥, 𝑣, 𝑡, 𝑠) ∈ 𝐾(𝐻) .

(3) There is a bounded Borel functional

𝐿(𝑥, 𝑡) ∶ 𝐻 × ℝ+ → ℒ = ℒ(𝐻;𝐻)
such that ∀𝑥, 𝑣 ∈ 𝐾(𝐻)

𝐿(𝑥, 𝑡)𝑣 ∈ 𝐾(𝐻) ;
(4) there are constants 𝑐3, 𝑐 > 0 such that for all 𝑥, 𝑣 ∈ 𝐾(𝐻)

‖𝐿(𝑥, 𝑡)‖𝐾 ≤ 𝑐 (‖𝑣‖𝐾 + ‖𝑥‖𝐾‖𝑣‖𝐻) 𝑒𝑐3‖𝑣‖𝐻 (5.3)

(the constant 𝑐3 must be the same as in Hypotheses 3.5).

(5) Moreover, for all 𝑥, 𝑣 ∈ 𝐾(𝐻), 𝑡 ∈ 𝐼, 𝑠 ∈ [0, 1],

‖𝐷(𝑥, 𝑣, 𝑡, 𝑠) − √𝑠𝐿(𝑥, 𝑡)𝑣‖𝐾 ≤ 𝑐𝑠(‖𝑥‖𝐾‖𝑣‖2𝐻 + ‖𝑣‖𝐾‖𝑣‖𝐻)𝑒𝑐3√𝑠‖𝑣‖𝐻 . (5.4)

(6) There is a constant 𝑐𝑑 > 1 such that ∀𝑥, 𝑣 ∈ 𝐻, ∀𝑡 ∈ ℝ+, ∀𝑠 ∈ [0, 1]

‖𝐷(𝑥, 𝑣, 𝑡, 𝑠)‖𝐻 ≤ 𝑐𝑑√𝑠‖𝑣‖𝐻 , (5.5)

√𝑠‖𝑣‖ ≤ 1/𝑐𝑑 ⇒‖𝐷(𝑥, 𝑣, 𝑡, 𝑠) − √𝑠𝐿(𝑥, 𝑡)𝑣‖𝐻 ≤ 𝑐𝑑𝑠‖𝑣‖2𝐻 . (5.6)
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Then the family 𝔛𝜏, for 𝜏 ∈ 𝔗𝑇, is tight in 𝐶(𝐼; 𝐻).

To prove this Theorem, wewill useTheorem 4.3. The proof is developed in the following

sections.

Remark 5.6. In particular, 𝐷(𝑥, 𝑣, 𝑡, 𝑠) is Frechét differentiable in 𝑣 at 𝑣 = 0, and the dif-

ferential is √𝑠𝐿(𝑥, 𝑡); and by (5.5) we have

‖𝐿(𝑥, 𝑡)‖ℒ ≤ 𝑐𝑑 , ∀𝑥 ∈ 𝐻 . (5.7)

Remark 5.7. The third hypothesis in 3.5 and the first two hypotheses above imply that

∀𝑡 ≥ 0 , P{𝔛𝜏𝑡 ∈ 𝐾(𝐻)} = 1 .

5.2.1. Corollaries.

Corollary 5.8. Suppose that the hypotheses of Theorem 5.5 hold for any 𝑇 > 0; then the

family 𝔛𝜏, for 𝜏 ∈ 𝔗, is tight in 𝐶(ℝ+; 𝐻).

Proof. We recall this fact. Let 𝑇 > 0; consider the restriction map

𝑟𝑇 ∶ 𝐶(ℝ+; 𝐻) → 𝐶([0, 𝑇]; 𝐻) (5.8)

given by 𝑟𝑇𝑓 = 𝑓
[0,𝑇]

; then the topology on 𝐶(ℝ+; 𝐻) is the initial topology with respect
to the maps 𝑟𝑛 and the Banach spaces 𝐶([0, 𝑛]; 𝐻), for 𝑛 ∈ ℕ. (See also Section 5 in [19]
for more details).

Let 𝜀 > 0, for any 𝑛 ∈ ℕ by Theorem 5.5 there exists a compact set 𝐸𝑛 ⊆ 𝐶([0, 𝑛]; 𝐻)
such that

P{𝔛𝜏 ∉ 𝑟−1𝑛 (𝐸𝑛)} ≤ 𝜀2−𝑛

let

𝐸 = {𝑓 ∈ 𝐶(ℝ+; 𝐻) ∶ ∀𝑛 ∈ ℕ, 𝑟𝑛𝑓 ∈ 𝐸𝑛}
then (by a diagonal argument) 𝐸 is precompact in 𝐶(ℝ+; 𝐻) and

P{𝔛𝜏 ∉ 𝐸} = P{𝔛𝜏 ∈ 𝐸𝑐} = P {𝔛𝜏 ∈⋃
𝑛
𝑟−1𝑛 (𝐸𝑐𝑛)} ≤

≤ ∑
𝑛
P {𝔛𝜏 ∈ 𝑟−1𝑛 (𝐸𝑐𝑛)} = ∑

𝑛
P {𝑟𝑛 ∘ 𝔛𝜏 ∉ 𝐸𝑛} ≤ 2𝜀 �

(More detailed and more general statements can be found in Section 6.3 in [19].)

Since 𝐶(ℝ+; 𝐻) is a Fréchet space, by Prokhorov’s theorem we obtain this result.

Corollary 5.9. Suppose that the hypotheses of Theorem 5.5 hold for any 𝑇 > 0; the net of
processes 𝔛𝜏, as r.v. in the Frechét space 𝐶(ℝ+; 𝐻), has narrow limit points.

Corollary 5.10. By Lemma 5.18 we have

E[‖𝔛𝜏𝑡‖4𝐾] < ∞ (5.9)

so the process 𝔛𝜏𝑡 can be restarted at time 𝑡 using 𝔛𝜏𝑡 as initial time.

Suppose that the family 𝔛𝜏 is tight in 𝐶(𝐼; 𝐻) (with 𝐼 = [0, 𝑇] or 𝐼 = [0,∞)) ; then
by Prokhorov’s theorem, the set of limit points is not empty; obviously, being 𝔛 a random

variable 𝐶(𝐼; 𝐻), then (almost all) paths are continuous. Something more can be said.

Corollary 5.11. Any limit point 𝔛 will have a version such that almost all trajectories

𝑡 ↦ 𝔛𝑡 of 𝔛 are Hölder continuous functions with an arbitrary exponent smaller than 1/4.
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Proof. We use Theorem 6.19 from [19] with 𝑝1 < 𝑝2 = 4 and use Lemma 5.18 below to

state that

lim
𝜏
E[‖𝔛𝜏𝑡 − 𝔛𝜏𝑠‖

𝑝1
𝐻 ] = E[‖𝔛𝑡 − 𝔛𝑠‖

𝑝1
𝐻 ] ≤ 𝑐|𝑡 − 𝑠|𝑝1/2 .

We use the Kolmogoroff test11: we apply it with 𝛿 = 𝑝1, 𝜀 = 1 and replacing

𝜌(𝑍(𝑡), 𝑍(𝑠))𝛿 = ‖𝔛𝑡 − 𝔛𝑠‖
𝑝1
𝐻

so there is a version where paths are Hölder continuous functions with an arbitrary exponent

smaller than
1
2
− 1

𝑝1
. �

Remark 5.12. At this level of generality, we do not expect that there is an unique limit

point. Consider this example. Going back to the classical Donsker Theorem 2.1, this time

we define the random walk 𝔛𝜏𝑡 by setting 𝔛0 = 0,𝐻 = ℝ and𝐷(𝑥, 𝑣, 𝑡, 𝑠) = 𝑔(𝑡)𝑣√𝑠where
𝑔(𝑡) = 1 if 𝑡 ∈ ℚ otherwise 𝑔(𝑡) = 2. Then the above Theorem can be applied (let 𝐿 = 𝑔);
but setting 𝜏𝑛 = {𝑗/𝑛 ∶ 𝑗 ∈ ℕ}, 𝜃𝑛 = {𝜋𝑗/𝑛 ∶ 𝑗 ∈ ℕ}, we have

𝔛𝜏𝑛 →𝑛 𝑊 , 𝔛𝜃𝑛 →𝑛 2𝑊

where𝑊 is the standard Brownian Motion.

5.2.2. Proof of Theorem 5.5, step 1. In this section we prove that, under the hypotheses of

Theorem 5.5, the first hypothesis in Theorem 4.3 is satisfied. We will use this Lemma in

two ways, with 𝐾 being the compact operator defined above in the hypotheses of 5.5, but

also with 𝐾 being the identity.

Lemma 5.13. Let 𝐾 ∶ 𝐻 → 𝐻 a linear injective operator (not necessarily compact). Let

‖𝑣‖𝐾 be defined in eqn. (5.1). We assume that for all 𝑥, 𝑣 ∈ 𝐾(𝐻), 𝑡, 𝑠 > 0

𝐷(𝑥, 𝑣, 𝑡, 𝑠) ∈ 𝐾(𝐻) , 𝐿(𝑥, 𝑡)𝑣 ∈ 𝐾(𝐻)

(these are the hypotheses 2 and 3 from the Theorem), but we rewrite hypothesis 5 in this

form: there are constants 𝑐1𝐷, 𝑐2𝐷 ≥ 0 such that for all 𝑥, 𝑣 ∈ 𝐾(𝐻), 𝑠 ∈ [0, 1]

‖𝐷(𝑥, 𝑣, 𝑡, 𝑠) − 𝑠𝐿(𝑥, 𝑡)𝑣‖𝐾 ≤ 𝑠(𝑐1𝐷‖𝑥‖𝐾‖𝑣‖2𝐻 + 𝑐2𝐷‖𝑣‖𝐾‖𝑣‖𝐻)𝑒𝑐3√𝑠‖𝑣‖𝐻 . (5.10)

and we rewrite hypothesis 4: there are constants 𝑐1𝐿, 𝑐2𝐿 ≥ 0 such that for all 𝑥, 𝑣 ∈ 𝐾(𝐻),

‖𝐿(𝑥, 𝑡)𝑣‖𝐾 ≤ (𝑐1𝐿‖𝑥‖𝐾‖𝑣‖𝐻 + 𝑐2𝐿‖𝑣‖𝐾) 𝑒𝑐3‖𝑣‖𝐻 . (5.11)

Define the following objects: let 𝜏 ∈ 𝔗; fix 𝑚 ≥ 0 and 12 𝐹 ∈ ℱ𝑡𝑚 with P(𝐹) > 0;
we will write E𝐹 for the expectation computed using the conditional probability P(⋅|𝐹);
consider 𝑛 ≥ 𝑚; let

𝑒𝑚 = E𝐹[‖𝑋𝜏
𝑚‖2𝐾] , 𝑏𝑛

def

= E𝐹[‖𝑋𝜏
𝑛 − 𝑋𝜏

𝑚‖2𝐾] .

Then we have two theses.

• If 𝑐1𝐷 = 𝑐1𝐿 = 0 then
𝑏𝑛 ≤ (𝑒𝑐5(𝑡𝑛−𝑡𝑚) − 1) . (5.12)

• Instead if (𝑐1𝐿 + 𝑐1𝐷) > 0 then

𝑏𝑛 ≤ (𝑒𝑚 + 1) (𝑒𝑐5(𝑡𝑛−𝑡𝑚) − 1) . (5.13)

where 𝑐5 > 0 depends only on 𝑐1𝐿, 𝑐2𝐿, 𝑐1𝐷, 𝑐2𝐷, on ̃𝑐(4, 4𝑐3) from Prop. 3.6, on 𝐾 and the

law 𝛾 of 𝑌𝑡; but 𝑐5 does not depend on 𝑒𝑚, on 𝐹, and on 𝜏.

11See Theorem 3.3 in [8], or Theorem 6.35 in [19])
12Recall from Lemma 3.12 that ℱ𝑡 is the 𝜍-algebra generated by 𝔛0 and by 𝑌𝑠 for 𝑠 < 𝑡.
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Remark 5.14. Recall that

√E𝐹[‖𝑋𝜏
𝑛‖2𝐾] ≤ √E𝐹[‖𝑋𝜏

𝑛 − 𝑋𝜏
𝑚‖2𝐾] +√E𝐹[‖𝑋𝜏

𝑚‖2𝐾]

(or otherwise using Lemma A.1) we get

E𝐹[‖𝑋𝜏
𝑛‖2𝐾] ≤ (√𝑒𝑚 +√𝑏𝑛)2 ≤ 2(𝑒𝑚 + 𝑏𝑛) . (5.14)

Proof of Lemma 5.13. For 𝑡 ≥ 𝑡𝑚 we define

𝑎𝐾,𝛼 = E𝐹[‖𝑌𝑡‖𝛼𝐾] = E[‖𝑌𝑡‖𝛼𝐾] , 𝑎𝛼 = E𝐹[‖𝑌𝑡‖𝛼] = E[‖𝑌𝑡‖𝛼] . (5.15)

where the equality derives by independence; by Hypotheses 3.5 these are finite for 𝛼 ≤ 4.
For readability, we write 𝑋𝑛 instead of 𝑋𝜏

𝑛, we write ̃𝑋𝑛 instead of 𝑋𝜏
𝑛 − 𝑋𝜏

0 and 𝛿𝑛 =
𝑡𝑛+1 − 𝑡𝑛; we abbreviate

𝐷𝑛 =𝐷(𝑋𝑛 , 𝑌𝑡𝑛 , 𝑡𝑛 , √𝛿𝑛) , (5.16)

𝐴𝑛 =𝐷𝑛 −√𝛿𝑛𝐿(𝑡𝑛 , 𝑋𝑛)𝑌𝑡𝑛 . (5.17)

By (5.14) and (5.10) using Lemma A.1 and Lemma 3.6, when 𝑐3 > 0

E𝐹[‖𝐴𝑛‖2𝐾] ≤2𝑐21𝐷𝛿𝑛E𝐹 [‖𝑋𝑛‖2𝐾‖𝑌𝑡𝑛‖
4
𝐻𝑒2𝑐3

√𝛿𝑛‖𝑌𝑡𝑛‖𝐻]+ (5.18)

2𝑐22𝐷𝛿𝑛E𝐹 [‖𝑌𝑡𝑛‖
2
𝐾‖𝑌𝑡𝑛‖

2
𝐻𝑒2𝑐3

√𝛿𝑛‖𝑌𝑡𝑛‖𝐻] ≤

≤2𝑐21𝐷E𝐹 [‖𝑋𝑛‖2𝐾]E [‖√𝛿𝑛𝑌𝑡𝑛‖
4
𝐻𝑒2𝑐3‖

√𝛿𝑛𝑌𝑡𝑛‖𝐻]+

2𝑐22𝐷𝛿𝑛√E [‖𝑌𝑡𝑛‖
4
𝐾]√E [‖√𝛿𝑛𝑌𝑡𝑛‖

4
𝐻𝑒4𝑐3‖

√𝛿𝑛𝑌𝑡𝑛‖𝐻] ≤

≤𝛿2𝑛 (4𝑐21𝐷(𝑏𝑛 + 𝑒𝑚) ̃𝑐(4, 2𝑐3) + 2𝑐22𝐷√ ̃𝑐(4, 4𝑐3) 𝑎4,𝐾)

when 𝑐3 = 0 we note that ̃𝑐(𝛼, 0) = 𝑎𝛼 (as can be seen in the proof of Lemma 3.6) so

E𝐹[‖𝐴𝑛‖2𝐾] ≤ 𝛿2𝑛 (4𝑐21𝐷(𝑏𝑛 + 𝑒𝑚)𝑎4 + 2𝑐22𝐷√𝑎4,𝐾𝑎4) . (5.19)

Summarizing we have

E𝐹[‖𝐴𝑛‖2𝐾] ≤ 𝛿2𝑛𝑐24(𝑐21𝐷(𝑏𝑛 + 𝑒𝑚) + 1) . (5.20)

where 𝑐4 depends only on 𝑐2𝐷, 𝑐3, on ̃𝑐 from Corollary 3.6, on 𝑐𝑡 > 0 from Hypotheses 3.5

and Definition 3.9; but but 𝑐4 does not depend on 𝐹, on 𝑐1𝐷 and 𝜏.
Similarly using (5.11)

𝛿𝑛E𝐹[‖𝐿(𝑋𝑛, 𝑡)𝑌𝑡𝑛‖
2
𝐾] ≤2𝑐21𝐿𝛿𝑛E𝐹 [‖𝑋𝑛‖2𝐾‖𝑌𝑡𝑛‖

2
𝐻𝑒2𝑐3

√𝛿𝑛‖𝑌𝑡𝑛‖𝐻]+ (5.21)

2𝑐22𝐿𝛿𝑛E [‖𝑌𝑡𝑛‖
2
𝐾𝑒2𝑐3

√𝛿𝑛‖𝑌𝑡𝑛‖𝐻] ≤

≤2𝑐21𝐿E𝐹 [‖𝑋𝑛‖2𝐾]E [‖√𝛿𝑛𝑌𝑡𝑛‖
2
𝐻𝑒2𝑐3‖

√𝛿𝑛𝑌𝑡𝑛‖𝐻]+

2𝑐22𝐿𝛿𝑛√E [‖𝑌𝑡𝑛‖
4
𝐾]√E [𝑒4𝑐3‖√𝛿𝑛𝑌𝑡𝑛‖𝐻] ≤

≤𝛿𝑛 (4𝑐21𝐿(𝑏𝑛 + 𝑒𝑚) ̃𝑐(2, 2𝑐3) + 2𝑐22𝐿√ ̃𝑐(0, 4𝑐3) 𝑎4,𝐾)

summarized to

𝛿𝑛E𝐹[‖𝐿(𝑋𝑛, 𝑡)𝑌𝑡𝑛‖
2
𝐾] ≤𝛿𝑛𝑐24(𝑐21𝐿(𝑏𝑛 + 𝑒𝑚) + 1) , (5.22)

possibly enlarging 𝑐4, that now depends also on 𝑐2𝐿.
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We estimate iteratively. We begin by expressing

‖ ̃𝑋𝑛+1‖2𝐾 = ‖𝐷𝑛 + ̃𝑋𝑛‖2𝐾 = ‖ ̃𝑋𝑛 +√𝛿𝑛𝐿(𝑋𝑛, 𝑡)𝑌𝑡𝑛 + 𝐴𝑛‖2𝐾 =

= ‖ ̃𝑋𝑛‖2𝐾 + 𝛿𝑛‖𝐿(𝑋𝑛, 𝑡)𝑌𝑡𝑛‖
2
𝐾 + ‖𝐴𝑛‖2𝐾+

+ 2√𝛿𝑛⟨ ̃𝑋𝑛, 𝐿(𝑋𝑛, 𝑡)𝑌𝑡𝑛⟩𝐾 + 2⟨ ̃𝑋𝑛, 𝐴𝑛⟩𝐾+

+ 2√𝛿𝑛⟨𝐴𝑛, 𝐿(𝑋𝑛, 𝑡)𝑌𝑡𝑛⟩𝐾
we then compute the expectation; we note that

E𝐹[⟨ ̃𝑋𝑛, 𝐿(𝑋𝑛, 𝑡)𝑌𝑡𝑛⟩𝐾] = 0

because 𝑌𝑡𝑛 has zero average and is independent of 𝐹, of 𝑋𝑛 and 𝑋𝑚; whereas

E𝐹[‖ ̃𝑋𝑛‖2𝐾] =𝑏𝑛
𝛿𝑛E𝐹[‖𝐿(𝑋𝑛, 𝑡)𝑌𝑡𝑛‖

2
𝐾] ≤𝛿𝑛𝑐24(𝑐21𝐿(𝑏𝑛 + 𝑒𝑚) + 1)

E𝐹[‖𝐴𝑛‖2𝐾] ≤𝛿2𝑛𝑐24(𝑐21𝐷(𝑏𝑛 + 𝑒𝑚) + 1)

E𝐹[⟨𝐴𝑛, √𝛿𝑛𝐿(𝑋𝑛, 𝑡)𝑌𝑡𝑛⟩𝐾] ≤√E𝐹[‖𝐴𝑛‖2𝐾]√E𝐹[𝛿𝑛‖𝐿(𝑋𝑛, 𝑡)𝑌𝑡𝑛‖
2
𝐾]

≤ 𝛿3/2𝑛 𝑐24(𝑐21(𝑏𝑛 + 𝑒𝑚) + 1)

E𝐹[⟨ ̃𝑋𝑛, 𝐴𝑛⟩𝐾] ≤√𝑏𝑛√E𝐹[‖𝐴𝑛‖2𝐾]

where 𝑐1 = max{𝑐1𝐿, 𝑐1𝐷}.
In this last line, if 𝑐1𝐷 = 𝑐1𝐿 = 0 then again we use √𝑠 ≤ 𝑠 + 1 and (5.20) so

E𝐹[⟨ ̃𝑋𝑛, 𝐴𝑛⟩𝐾] ≤ √𝑏𝑛√E𝐹[‖𝐴𝑛‖2𝐾] ≤ 𝛿𝑛𝑐4√𝑏𝑛 ≤ 𝛿𝑛𝑐4(𝑏𝑛 + 1)

so (recalling that 𝛿𝑛 ≤ 𝑐𝑡, the constant from Hypotheses 3.5 ) we estimate as follows

𝑏𝑛+1 ≤ 𝑏𝑛 + 𝑐5𝛿𝑛(1 + 𝑏𝑛) = 𝑏𝑛(1 + 𝑐5𝛿𝑛) + 𝑐5𝛿𝑛 (5.23)

which, by the Lemma A.5 (shifting the sequence), implies (5.12).

Instead if 𝑐1 > 0 we note that

𝑠(𝑐21𝑠 + 2𝑎) ≤ 𝑐21𝑠2 + 2𝑎𝑠 + 𝑎2/𝑐21 = (𝑐1𝑠 + 𝑎/𝑐1)2

hence using (5.20) and setting 𝑠 = 𝑏𝑛, 𝑎 = (𝑐21𝑒𝑚 + 1)/2

E𝐹[⟨ ̃𝑋𝑛, 𝐴𝑛⟩𝐾] ≤ 𝛿𝑛𝑐4√𝑏𝑛√(𝑐21(𝑏𝑛 + 𝑒𝑚) + 1) ≤ 𝛿𝑛𝑐4 (𝑐1𝑏𝑛 + 𝑐1
𝑒𝑚
2 + 1

2𝑐1
) (5.24)

Eventually we estimate as follows

𝑏𝑛+1 ≤ 𝑏𝑛(1 + 𝑐5𝛿𝑛) + 𝑐5𝛿𝑛(𝑒𝑚 + 1) (5.25)

which, by the Lemma A.5 (shifting the sequence), implies (5.13). �

Corollary 5.15. Let 𝑚 = 0, 𝐹 = 𝛺, then by (5.14) and (5.13) we obtain that

E[‖𝑋𝜏
𝑛‖2𝐾] ≤ (𝑒0 + 1)𝑒𝑐5𝑡𝑛

with 𝑒0 = E[‖𝔛0‖2𝐾] < ∞, assuming hypothesis (5.2); moreover as explained in Re-

mark 3.13 we have

E[‖𝔛𝜏𝑡‖2𝐾] ≤ (𝑒0 + 1)𝑒𝑐5𝑡

for all 𝑡 ≥ 0.
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Conclusion of step 1 . So to conclude the first step, we consider a process 𝔛𝜏 and a time

𝑇 > 0; let 𝜀 > 0, for 0 ≤ 𝑡 ≤ 𝑇, 𝑟 > 0 we have then by Markov inequality

P{‖𝔛𝜏𝑡‖𝐾 ≥ 𝑟} ≤
E[‖𝔛𝜏𝑡‖2𝐾]

𝑟2 ≤ 1
𝑟2 𝑐𝐾

with

𝑐𝐾 = (𝑒0 + 1)𝑒𝑐5𝑇

so setting 𝑟𝑗 = √(𝑐𝐾2𝑗/𝜀)
P{𝔛𝜏𝑎𝑗 ∉ 𝐷𝐾(0, 𝑟𝑗)} < 𝜀2−𝑗

and this satisfies the first hypothesis in Theorem 4.3. �

5.2.3. Proof: Lemmas for step 2. In this section we prove some powerful Lemmas that

then will be used to prove that the second hypothesis in Theorem 4.3 is satisfied.

Remark 5.16. Consider hypothesis 6 in Theorem 5.5; note that, for 𝑠 ∈ [0, 1], by equations
(5.5) and (5.7),

‖𝐷(𝑥, 𝑣, 𝑡, 𝑠)−√𝑠𝐿(𝑥, 𝑡)𝑣‖𝐻 ≤ ‖𝐷(𝑥, 𝑣, 𝑡, 𝑠)‖𝐻+‖√𝑠𝐿(𝑥, 𝑡)𝑣‖𝐻 ≤ 2𝑐𝑑√𝑠‖𝑣‖𝐻 ≤ 2𝑐2𝑑𝑠‖𝑣‖
2
𝐻

for √𝑠‖𝑣‖ ≥ 1/𝑐𝑑 so adding (5.6) we obtain

∀𝑥, 𝑣 ∈ 𝐻, ∀𝑠 ∈ [0, 1], 𝑡 ≥ 0 , ‖𝐷(𝑥, 𝑣, 𝑡, 𝑠) − √𝑠𝐿(𝑥, 𝑡)𝑣‖𝐻 ≤ 2𝑐2𝑑𝑠‖𝑣‖
2
𝐻 . (5.26)

Lemma 5.17. Assume hypothesis 6 in Theorem 5.5; define the objects as in Lemma 5.13,

with 𝐾 being the identity, recall that in this case

𝑏𝑛
def

= E𝐹[‖𝑋𝜏
𝑛 − 𝑋𝜏

𝑚‖2𝐻] ;
then for 𝑛 ≥ 𝑚

𝑏𝑛 ≤ (𝑒𝑐5(𝑡𝑛−𝑡𝑚) − 1) . (5.27)

In particular for 0 ≤ 𝑡𝑚 ≤ 𝑡𝑛 ≤ 𝑇 we have

𝑏𝑛 ≤ 𝑐6(𝑡𝑛 − 𝑡𝑚) . (5.28)

Proof. Use Remark 5.16 and Remark 5.6; apply Lemma 5.13 with 𝐾 being the identity,

𝑐1𝐿 = 𝑐1𝐷 = 𝑐3 = 0, 𝑐2𝐿 = 𝑐2𝐷 = 2𝑐2𝑑; we obtain the constant 𝑐5 > 0 and hence we set

𝑐6 = 𝑐5𝑒𝑐5𝑇. �

Lemma 5.18. Assume hypothesis 6 in Theorem 5.5; We fix 𝜏 ∈ 𝔗; we fix 𝑚 ≥ 0 and

𝐹 ∈ ℱ𝑡𝑚; we will write E𝐹 for the expectation computed using the conditional probability

P(⋅|𝐹); consider 𝑛 ≥ 𝑚; letting

𝑏𝑛
def

= E𝐹[‖𝑋𝜏
𝑛 − 𝑋𝜏

𝑚‖2𝐻] ,
suppose that there is a constant 𝑐6 such that

𝑏𝑛 ≤ 𝑐6(𝑡𝑛 − 𝑡𝑚) . (5.29)

for 0 ≤ 𝑡𝑚 ≤ 𝑡𝑛 ≤ 𝑇 (as in (5.28)) and eventually let

𝑞𝑛
def

= E𝐹[‖𝑋𝜏
𝑛 − 𝑋𝜏

𝑚‖4𝐻] .
We prove that, for 0 ≤ 𝑡𝑛 ≤ 𝑡𝑚 ≤ 𝑇,

𝑞𝑛 ≤ (𝑐7 + 2𝑐8)𝑔(𝑡𝑛 − 𝑡𝑚) (5.30)

where

𝑔(𝑡) =
𝑒𝑐7𝑡 − 1 − 𝑐7𝑡

𝑐27
. (5.31)
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and where 𝑐8, 𝑐7 depend only on 𝑐6, 𝑐𝑑 and the fourth moment of 𝑌𝑡.

Proof of Lemma. For 𝑡 ≥ 𝑡𝑚 we define

𝑎𝛼 = E𝐹[‖𝑌𝑡‖𝛼] = E[‖𝑌𝑡‖𝛼]

where the equality derives by independence.

Again, for readability, we write 𝑋𝑛 instead of 𝑋𝜏
𝑛, and ̃𝑋𝑛 instead of 𝑋𝜏

𝑛 − 𝑋𝜏
𝑚, 𝛿𝑛 =

𝑡𝑛+1 − 𝑡𝑛 and
𝐷𝑛 = 𝐷(𝑋𝑛 , 𝑌𝑡𝑛 , 𝑡𝑛 , √𝛿𝑛)

and ‖𝑥‖ = ‖𝑥‖𝐻. We compute

‖ ̃𝑋𝑛+1‖4 = ‖ ̃𝑋𝑛 + 𝐷𝑛‖4 = (‖ ̃𝑋𝑛‖2 + 2 ⟨ ̃𝑋𝑛, 𝐷𝑛⟩ + ‖𝐷𝑛‖2)
2
=

= ‖ ̃𝑋𝑛‖4 + 4 ⟨ ̃𝑋𝑛, 𝐷𝑛⟩
2 + ‖𝐷𝑛‖4 + 4‖ ̃𝑋𝑛‖2 ⟨ ̃𝑋𝑛, 𝐷𝑛⟩ + 4 ⟨ ̃𝑋𝑛, 𝐷𝑛⟩ ‖𝐷𝑛‖2 + 2‖ ̃𝑋𝑛‖2‖𝐷𝑛‖2

then we compute integrals; for the fourth term, since

E𝐹 [‖ ̃𝑋𝑛‖2 ⟨ ̃𝑋𝑛, 𝐿(𝑋𝑛, 𝑡𝑛)𝑌𝑡𝑛⟩] = 0

by independence, then

E𝐹 [‖ ̃𝑋𝑛‖2 ⟨ ̃𝑋𝑛, 𝐷𝑛⟩] = E𝐹 [‖ ̃𝑋𝑛‖2 ⟨ ̃𝑋𝑛, 𝐷𝑛 −√𝛿𝑛𝐿(𝑋𝑛, 𝑡𝑛)𝑌𝑡𝑛⟩] (5.32)

so by (5.26)

||E𝐹 [‖ ̃𝑋𝑛‖2 ⟨ ̃𝑋𝑛, 𝐷𝑛⟩]|| ≤ E𝐹 [‖ ̃𝑋𝑛‖3‖𝐷𝑛 −√𝛿𝑛𝐿(𝑋𝑛, 𝑡𝑛)𝑌𝑡𝑛‖] ≤

≤ 2𝑐2𝑑𝛿𝑛E𝐹 [‖ ̃𝑋𝑛‖3‖𝑌𝑡𝑛‖
2] =

= 2𝑐2𝑑𝛿𝑛E𝐹 [‖ ̃𝑋𝑛‖3]E [‖𝑌𝑡𝑛‖
2] ≤

≤ 2𝑐2𝑑𝛿𝑛𝑎2√E𝐹 [‖ ̃𝑋𝑛‖2]E𝐹 [‖ ̃𝑋𝑛‖4] ≤

≤ 2𝑐2𝑑𝛿𝑛𝑎2√𝑞𝑛√𝑏𝑛
(again by using independence in the third step). For the other terms, using (5.5),

E𝐹 [⟨ ̃𝑋𝑛, 𝐷𝑛⟩
2] ≤E𝐹 [‖ ̃𝑋𝑛‖2‖𝐷𝑛‖2] ≤

≤ 𝑐2𝑑E𝐹 [‖ ̃𝑋𝑛‖2‖√𝛿𝑛𝑌𝑡𝑛‖
2] ≤ 𝑐2𝑑𝑎2𝑏𝑛𝛿𝑛 ,

E𝐹 [‖𝐷𝑛‖4] ≤𝑐4𝑑𝑎4𝛿2𝑛 ,

E𝐹 [⟨ ̃𝑋𝑛, 𝐷𝑛⟩ ‖𝐷𝑛‖2] ≤E𝐹 [‖ ̃𝑋𝑛‖‖𝐷𝑛‖3] ≤

≤ 𝑐3𝑑𝛿3/2𝑛 E𝐹 [‖ ̃𝑋𝑛‖‖𝑌𝑛‖3] ≤ 𝑐3𝑑𝑎3√𝑏𝑛𝛿3/2𝑛 ,

Eventually we use 𝑏𝑛 ≤ 𝑐6𝑡𝑛 and note that 𝑡𝑛 ≥ 𝛿𝑛 then 𝑡𝑛𝛿𝑛 ≥ √𝑡𝑛𝛿3/2𝑛 and 𝑡𝑛𝛿𝑛 ≥ 𝛿2𝑛;
hence (defining 𝑐7, 𝑐8 > 0 appropriately), summarizing

𝑞𝑛+1 ≤ 𝑞𝑛 + (𝑐7√𝑞𝑛𝑡𝑛 + 𝑐8𝑡𝑛)𝛿𝑛
using Lemma A.3 (shifting the sequence) we obtain (5.30). �

We recall Etemadi’s inequality [13] in the version of Theorem 22.5 in [4].

Lemma 5.19 (Etemadi’s inequality). Suppose that 𝑆𝑛 is a process taking value in normed

space, and it is the sum 𝑆𝑛 = 𝑌1 +⋯+ 𝑌𝑛 of i.i.d. r.v. (𝑌𝑛)𝑛; then for 𝜀 > 0 we have

P(max
1≤𝑘≤𝑙

|𝑆𝑘| ≥ 3𝜀) ≤ 3 max
1≤𝑘≤𝑙

P(|𝑆𝑘| ≥ 𝜀) .



TIGHTNESS OF RANDOM WALKS IN INFINITE DIMENSIONAL SPACES AND MANIFOLDS 21

This is a keys step in the proof of Donsker Theorem, but we cannot use it in this form.

To conclude the proof of Theorem 5.5 we need to prove a similar result, adapted to our

process and hypotheses.

Lemma 5.20. In the hypotheses of Theorem 5.5, with 𝜏 ∈ 𝔗 (as in previous Lemmas), we

fix 𝑇, 𝜀 > 0, we fix 𝑙 ≥ 𝑚 > 0 integers such that 𝑡𝑙 ≤ 𝑇, then

P( max
𝑚≤𝑘≤𝑙

‖𝑋𝜏
𝑘 − 𝑋𝜏

𝑚−1‖ > 3𝜀) ≤
𝑐10
𝜀4 𝑔(𝑡𝑙 − 𝑡𝑚−1) (5.33)

where again 𝑔 was defined in (5.31); and 𝑐10 depends only on the constants in previous

Lemmas.

Proof. Let 𝑋 = 𝑋𝜏 for simplicity, and

̃𝑋𝑘 = 𝑋𝑘 − 𝑋𝑚−1 ,

note that
̃𝑋𝑛 − ̃𝑋𝑗 = 𝑋𝑛 − 𝑋𝑗 .

Let

𝐴𝑚 = {‖ ̃𝑋𝑚‖ > 3𝜀}
and for 𝑗 = 𝑚 + 1,… 𝑙 let

𝐴𝑗 = { max
𝑚≤𝑖≤𝑗−1

‖ ̃𝑋𝑖‖ ≤ 3𝜀 ∧ ‖ ̃𝑋𝑗‖ > 3𝜀}

so
𝑙

⋃
𝑗=𝑚

𝐴𝑗 = { max
𝑚≤𝑘≤𝑙

‖ ̃𝑋𝑘‖ > 3𝜀}

then, further disintegrating,

P ( max
𝑚≤𝑘≤𝑙

‖ ̃𝑋𝑘‖ > 3𝜀) ≤ P (‖ ̃𝑋𝑙‖ ≥ 𝜀) +
𝑙
∑
𝑗=𝑚

P (𝐴𝑗 ∩ {‖ ̃𝑋𝑙‖ < 𝜀}) ≤

≤ P (‖ ̃𝑋𝑙‖ ≥ 𝜀) +
𝑙
∑
𝑗=𝑚

P (𝐴𝑗 ∩ {‖𝑋𝑙 − 𝑋𝑗‖ > 2𝜀}) =

= P (‖ ̃𝑋𝑙‖ ≥ 𝜀) +
𝑙
∑
𝑗=1

P(𝐴𝑗)P ({‖𝑋𝑙 − 𝑋𝑗‖ > 2𝜀} | 𝐴𝑗)

by Markov

P ({‖𝑋𝑙 − 𝑋𝑗‖ > 2𝜀} | 𝐴𝑗) ≤
1

24𝜀4E [‖𝑋𝑙 − 𝑋𝑗‖4 | 𝐴𝑗] .

We use Lemma 5.17 with 𝐾 the identity and 𝐹 = 𝐴𝑗; note that indeed 𝐴𝑗 ∈ ℱ𝑡𝑗; having set
𝑇 > 0 we obtain (5.27) that is (5.29). So (5.29) is satisfied and we can apply Lemma 5.18

to obtain the eqn. (5.30) in the thesis in Lemma 5.18, that we rewrite as

E [‖𝑋𝑛 − 𝑋𝑗‖4 | 𝐴𝑗] ≤ (𝑐7 + 2𝑐8)𝑔(𝑡𝑛 − 𝑡𝑗) . (5.34)

Plugging it all in

𝑙
∑
𝑗=𝑚

P(𝐴𝑗)P ({‖𝑋𝑙 − 𝑋𝑗‖ > 2𝜀} | 𝐴𝑗) ≤
1

24𝜀4 (𝑐7 + 2𝑐8)𝑔(𝑡𝑙 − 𝑡𝑚−1)
𝑙
∑
𝑗=𝑚

P(𝐴𝑗) .

Similarly we deal with the first term P (‖ ̃𝑋𝑙‖ ≥ 𝜀). �

We then prove the same result for the process 𝔛𝜏.
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Corollary 5.21. In the hypotheses of the previous Lemma, fix 𝜀 > 0, then for 𝑡𝑚 ∈ 𝜏 and
𝑡𝑚 ≤ 𝑠 ≤ 𝑇

P( sup
𝑡𝑚<𝑡≤𝑠

‖𝔛𝜏𝑡 − 𝔛𝜏𝑡𝑚‖ > 3𝜀) ≤
𝑐10
𝜀4 𝑔(𝑠 − 𝑡𝑚) (5.35)

Proof. Fix 𝜏 ∈ 𝔗𝑇 and 𝑡𝑚 ∈ 𝜏. For 𝑡𝑚 ≤ 𝑠 ≤ 𝑇 let

𝐴𝜏𝑠 = 𝐴𝑠
def

= { sup
𝑡𝑚≤𝑡≤𝑠

‖𝔛𝜏𝑡 − 𝔛𝜏𝑡𝑚‖ > 3𝜀}

then

𝐴𝑠 = { sup
𝑡𝑚≤𝑡≤𝑠 , 𝑡∈ℚ

‖𝔛𝜏𝑡 − 𝔛𝜏𝑡𝑚‖ > 3𝜀}

since trajectories are continuous. Then for 𝑠1 < 𝑠2 we have 𝐴𝑠1 ⊆ 𝐴𝑠2 and moreover

⋃
𝑠1<𝑠2

𝐴𝑠1 = 𝐴𝑠2

again using the fact that trajectories are continuous; hence we obtain left-continuity

sup
𝑠1<𝑠2

P(𝐴𝑠1) = lim
𝑠1→𝑠2−

P(𝐴𝑠1) = P(𝐴𝑠2) .

As noted in Remark 3.13 if ̂𝑡 > 0 (and not necessarily ̂𝑡 ∈ ℚ ), if we add ̂𝑡 to 𝜏 and obtain
̂𝜏 = 𝜏 ∪ { ̂𝑡} then

𝔛 ̂𝜏
𝑡 = 𝔛𝜏𝑡 ∀𝑡 ≤ ̂𝑡 ,

so

𝐴 ̂𝜏
𝑡 = 𝐴𝜏𝑡 ∀𝑡 ≤ ̂𝑡 ,

but then we can apply the previous Lemma and the above left-continuity to say that

P(𝐴 ̂𝜏
𝑡 ) = P(𝐴𝜏𝑡) ≤

𝑐10
𝜀4 𝑔(𝑡 − 𝑡𝑚) . �

We recall this other fundamental Lemma (that is key to Theorem 8.3 in [5]).

Lemma 5.22. Suppose 𝐸 is a normed vector space, 𝐼 = [𝑎, 𝑏]; let 𝜂, 𝜀, 𝑣 > 0 with 𝑣 ∈ ℕ;
suppose 𝜇 is a probability measure on the space 𝐶 = 𝐶(𝐼; 𝐸), let 𝑎 = 𝑠0 < 𝑠1 < …𝑠𝑣 =
𝑏 ∈ 𝐼 with

(𝑠𝑖+1 − 𝑠𝑖) ≥ 𝜂 for 𝑖 = 2,…𝑣 − 2 (5.36)

then

𝜇{𝑥 ∈ 𝐶 ∶ 𝜔(𝑥, 𝜂) ≥ 3𝜀} ≤
𝑣−1
∑
𝑖=0

𝜇 {𝑥 ∈ 𝐶 ∶ sup
𝑠𝑖≤𝑠<𝑠𝑖+1

‖𝑥(𝑠) − 𝑥(𝑠𝑖)‖𝐸 ≥ 𝜀} (5.37)

(For the proof, see the Corollary after Theorem 8.3 in [5]). Note that the inequality

(5.36) need not hold for 𝑖 = 1, 𝑖 = 𝑣 − 1.
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5.2.4. Proof of Theorem 5.5, step 2. Now that we have proved the powerful Lemmas, we

prove the second hypothesis in Theorem 4.3, that is eqn. (4.2); to this end, we fix 𝜀0 >
0, 𝜀1 > 0; there is an 𝜂 > 0 with 𝜂 ∈ ℚ, 𝜂 < 𝑐𝑡, 𝜂 < 𝑇/2 such that

94⌈𝑇/𝜂⌉𝑐10
𝑔(𝜂)
𝜀40

< 𝜀1 (5.38)

where 𝑔was defined in eqn. (5.31) in Lemma 5.18; eqn. (4.2) will be satisfied with 𝐴 = 𝔗𝑇
and

𝛼0 = 𝜏0 = {𝜂𝑖 ∶ 0 ≤ 𝑖 < 𝑣} ∪ {𝑇} . (5.39)

where 𝑣 = ⌈𝑇/𝜂⌉.
Let 𝜀 = 𝜀0/9. Define for convenience 𝑠𝑖 = 𝜂𝑖 (that are equispaced for 𝑖 < 𝑣 ) while

𝑠𝑣 = 𝑇. Consider any 𝜏 ⊇ 𝜏0; let 𝔛𝜏 be a process; by (5.37)

P{𝜔(𝔛𝜏, 𝜂) ≥ 9𝜀} ≤
𝑣−1
∑
𝑖=0

P { sup
𝑠𝑖≤𝑡<𝑠𝑖+1

‖𝔛𝜏(𝑡) − 𝔛𝜏(𝑠𝑖)‖𝐻 ≥ 3𝜀} (5.40)

For the terms in the sum in (5.40) we use our version (5.35) of Etemadi’s estimate to

obtain

P{𝜔(𝔛𝜏, 𝜂) ≥ 9𝜀} ≤
𝑣−1
∑
𝑖=0

P { sup
𝑠𝑖≤𝑡<𝑠𝑖+1

‖
‖𝔛

𝜏
𝑡 − 𝔛𝜏𝑠𝑖

‖
‖𝐻

> 3𝜀} ≤ 𝑣
𝑐10
𝜀4 𝑔(𝜂) < 𝜀1 (5.41)

by (5.38). Sowe have satisfied the second hypothesis of Theorem 4.3, in the form expressed

in eqn. (4.3).

This concludes the proof of Theorem 5.5.

6. Results on manifolds

6.1. Hypotheses for manifolds. We again define, for 𝑣 ∈ 𝐾(𝐻), ‖𝑣‖𝐾
def

= ‖𝐾−1𝑣‖𝐻 as in

Definition 5.3; similarly for scalar products. The following Theorem uses the following

hypotheses on the manifold 𝑀 and its embedding in 𝐻. Let exp𝑥 𝑣 be the exponential

mapping of 𝑀. For convenience we denote by 𝑃𝑥 ∶ 𝐻 → 𝑇𝑥𝑀 the orthogonal projection

𝑃𝑥 = 𝜋𝑇𝑥𝑀.

Hypotheses 6.1. We assume what follows.

(1) The manifold𝑀 is isometrically embedded in the Hilbert space𝐻 and it is a closed

subset of it.

(2) The second fundamental form of the embedding of the manifold 𝑀 is uniformly

bounded.

We suppose that there exists a compact operator 𝐾 satisfying the requisites in the previous

section 5.1, and constants 𝑐𝑒, 𝑐𝑝 > 0, such that:
(3)

P{𝔛0 ∈ 𝑀} = 1
and

E[‖𝔛0‖4𝐾] < ∞ . (6.1)

(4) If 𝑥 ∈ 𝑀 ∩ 𝐾(𝐻) and 𝑣 ∈ 𝐾(𝐻) then 𝑃𝑥𝑣 ∈ 𝐾(𝐻)
(5) and

‖𝑃𝑥𝑣‖𝐾 ≤ 𝑐𝑝 (‖𝑣‖𝐾 + ‖𝑥‖𝐾‖𝑣‖𝐻) ; (6.2)

(6) if 𝑥 ∈ 𝑀 ∩ 𝐾(𝐻) and 𝑣 ∈ 𝑇𝑥𝑀 ∩ 𝐾(𝐻) then exp𝑥 𝑣 ∈ 𝑀 ∩ 𝐾(𝐻)
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(7) and

‖(exp𝑥 𝑣) − (𝑣 + 𝑥)‖𝐾 ≤ 𝑐𝑒(‖𝑥‖𝐾‖𝑣‖2𝐻 + ‖𝑣‖𝐾‖𝑣‖𝐻)𝑒𝑐3‖𝑣‖𝐻 . (6.3)

The second hypothesis can be reformulated as follows.

Proposition 6.2. The following are equivalent:

(1) The second fundamental form of the embedding of manifold𝑀 is uniformly bounded.

(2) ∃𝑐𝑒 > 0 such that ∀𝑥 ∈ 𝑀 , ∀𝑣 ∈ 𝑇𝑥𝑀 ,

‖𝑣‖𝐻 ≤ 1/𝑐𝑒 ⇒ ‖(exp𝑥 𝑣) − (𝑣 + 𝑥)‖𝐻 ≤ 𝑐𝑒‖𝑣‖2𝐻 . (6.4)

6.2. Tightness of geodesic random walk.

Theorem 6.3. Consider the geodesic random walks 𝔛𝜏 defined as in Section 3.5.1; restrict
each 𝔛𝜏𝑡 to 𝑡 ∈ 𝐼 = [0, 𝑇]. Under Hypotheses 6.1, these 𝔛𝜏, for 𝜏 ∈ 𝔗𝑇, are a tight family

in 𝐶(𝐼;𝑀).

Since this Theorem is proved using Theorem 5.5, then all corollaries of the latter hold

also for the former. We have moreover this result.

Corollary 6.4. Any limit point 𝔛 of 𝔛𝜏 is a process taking values in 𝐶(𝐼;𝑀) a.s.

Proof. Since𝑀 ⊂ 𝐻 was assumed to be closed, then 𝐶(𝐼;𝑀) is a closed subset of 𝐶(𝐼; 𝐻);
by construction 𝔛𝜏𝑡 ∈ 𝑀 for all 𝑡 ∈ 𝐼, hence

P(𝔛𝜏 ∈ 𝐶(𝐼;𝑀)) = 1

so by Alexandrov’s Theorem 13

P(𝔛 ∈ 𝐶(𝐼;𝑀)) = 1 . �

Remark 6.5. Nothing is specifically “infinite dimensional” in this approach: this theorem

can be applied to finite dimensional manifolds as well. Recall that, by Nash embedding

theorems, any finite dimensional Riemannian manifold can be isometrically embedded in

𝐻 = ℝ𝑁; and in this case we set 𝐾 to be the identity; moreover (6.2) is trivially true. We

then require that

P{𝔛0 ∈ 𝑀} = 1 , E[|𝔛0|4] < ∞ ; (6.5)

then we require the bound on the second fundamental form, that implies (6.4) that in turn

implies (6.3) (see Remark 5.16): under this conditions Theorem 6.3 holds.

Proof of Theorem 6.3. As in eqn. (3.5) in Section 3.5.1 we define

𝐷(𝑥, 𝑦, 𝑡, 𝑠)
def

= exp𝑥 (√𝑠𝑃𝑥𝑦) − 𝑥 (seen in (3.5))

and we define

𝐿(𝑥, 𝑡)𝑣 = 𝑃𝑥𝑣 (6.6)

In this way, the random walk on the manifold can be seen as a special case of a random

walk in 𝐻. We recall the following hypothesis 6 for Theorem 5.5:

‖𝐷(𝑥, 𝑣, 𝑡, 𝑠)‖𝐻 ≤ 𝑐𝑑√𝑠‖𝑣‖𝐻 , (seen in (5.5))

√𝑠‖𝑣‖ ≤ 1/𝑐𝑑 ⇒‖𝐷(𝑥, 𝑣, 𝑡, 𝑠) − √𝑠𝐿(𝑥, 𝑡)𝑣‖𝐻 ≤ 𝑐𝑑𝑠‖𝑣‖2𝐻 . (seen in (5.6))

13In the version in Theorem 3.8.2 in [6], or Theorem 3.5 in [23]; see Theorem 6.11 in [19]) for convenience.
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The first one, when 𝑐𝑑 ≥ 1, is true for any embedded manifold, since the length of a curve

is larger (or equal) than the distance between its end points, and ‖𝑃𝑥𝑣‖𝐻 ≤ ‖𝑣‖𝐻. For the
second one, for √𝑠‖𝑣‖ ≤ 1/𝑐𝑒 we write

‖𝐷(𝑥, 𝑣, 𝑡, 𝑠) − √𝑠𝐿(𝑥, 𝑡)𝑣‖𝐻 = ‖ exp𝑥(√𝑠𝑃𝑥𝑣) − (√𝑠𝑃𝑥𝑣 + 𝑥)‖𝐻 ≤ 𝑐𝑒𝑠‖𝑃𝑥𝑣‖2𝐻 ≤ 𝑐𝑒𝑠‖𝑣‖2𝐻
using (6.4) from Proposition 6.2.

For hypothesis 5 for Theorem 5.5: substitute in (6.3) to obtain

‖(exp𝑥 𝑃𝑥𝑣) − (𝑃𝑥𝑣 + 𝑥)‖𝐾 ≤ 𝑐𝑒(‖𝑥‖𝐾‖𝑃𝑥𝑣‖2𝐻 + ‖𝑃𝑥𝑣‖𝐾‖𝑃𝑥𝑣‖𝐻)𝑒𝑐3‖𝑃𝑥𝑣‖𝐻 .

then we use ‖𝑃𝑥𝑣‖𝐻 ≤ ‖𝑣‖𝐻 again, and we use (6.2) namely

‖𝑃𝑥𝑣‖𝐾 ≤ 𝑐𝑝 (‖𝑣‖𝐾 + ‖𝑥‖𝐾‖𝑣‖𝐻) ; (6.2)

so

‖ exp𝑥(𝑃𝑥𝑣) − (𝑃𝑥𝑣 + 𝑥)‖𝐾 ≤ 𝑐𝑒‖𝑥‖𝐾‖𝑣‖2𝐻𝑒𝑐3‖𝑣‖𝐻 + 𝑐𝑒𝑐𝑝 (‖𝑣‖𝐾 + ‖𝑥‖𝐾‖𝑣‖𝐻) ‖𝑣‖𝐻𝑒𝑐3‖𝑣‖𝐻 =

= (𝑐𝑒(1 + 𝑐𝑝)‖𝑥‖𝐾‖𝑣‖2𝐻 + 𝑐𝑒𝑐𝑝‖𝑣‖𝐾‖𝑣‖𝐻)𝑒𝑐3‖𝑣‖𝐻

then replacing √𝑠𝑣 for 𝑣 this last satisfies (5.4) namely

‖𝐷(𝑥, 𝑣, 𝑡, 𝑠) − √𝑠𝐿(𝑥, 𝑡)𝑣‖𝐾 ≤ 𝑐𝑠(‖𝑥‖𝐾‖𝑣‖2𝐻 + ‖𝑣‖𝐾‖𝑣‖𝐻)𝑒𝑐3√𝑠‖𝑣‖𝐻 . (5.4)

with 𝑐 = 𝑐𝑒(1 + 𝑐𝑝). So Theorem 6.3 can be straightforwardly seen as a corollary of

Theorem 5.5. �

7. Results on Stiefel Manifolds

let 𝑉 be a separable Hilbert space with dim(𝑉) ≥ 2𝑝 (possibly infinite dimensional).

We define the Hilbert space 𝑉𝑝 and the Stiefel manifold St(𝑝, 𝑉) as in Section 2.3.
In the following two sections we will show that the above hypotheses 6.1 are satisfied

when𝑀 = St(𝑝, 𝑉) is the Stiefel manifold: so the family of random walks is tight.

We will use these definitions with 𝐸 = 𝐻 or 𝐸 = 𝐻2.

Definition 7.1. If 𝐸 is a vector space with a scalar product, we agree that, for 𝑥, 𝑣 ∈ 𝐸𝑝,
𝐴 = 𝑥⊤𝑣 is the 𝑝 × 𝑝 matrix defined by

𝐴𝑖,𝑗 = ⟨𝑥𝑖, 𝑣𝑗⟩𝐸 .

We also agree that, given 𝑥 ∈ 𝐸𝑝 and 𝐴 ∈ ℝ𝑝×𝑝 the right product

𝑦 = 𝑥𝐴

is the vector 𝑦 ∈ 𝐸𝑝

𝑦𝑖 =
𝑝
∑
𝑗=1

𝑥𝑗𝐴𝑗,𝑖 .

7.1. Probabilities on Stiefel Manifolds. When𝑀 = St(𝑝, 𝑉) is a Stiefel Manifold, it will

be convenient to build the probabilistic infrastructure in Sec. 3.2 in this specific way.

Suppose that ̃𝛾 = 𝑁(0, �̃�) is a centered non-degenerate Gaussian measure in the sepa-

rable Hilbert space 𝑉. We will then define the operator 𝑄 ∶ 𝐻 → 𝐻 by tensor product

⟨𝑥, 𝑄𝑦⟩𝐻 =
𝑝
∑
𝑖=1
⟨𝑥𝑖, �̃�𝑦𝑖⟩𝑉
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so 𝛾 = 𝑁(0, 𝑄) is a centered non-degenerate Gaussian measure in the separable Hilbert

space 𝐻, given by the measure product

𝛾 = ̃𝛾 ⊗…⊗ ̃𝛾

Equivalently, if we consider 𝑥 ∈ 𝐻 as a r.v. with distribution 𝛾, then the columns of 𝑥 ∈ 𝐻
will be independent r.v. each with distribution ̃𝛾.

Proposition 7.2. Given 𝐴 ∈ 𝑂(𝑝), the action

𝐴 ∶ 𝐻 → 𝐻 , 𝑥 ↦ 𝑥𝐴

maps identically

𝛾 = 𝐴♯𝛾

the probability 𝛾 to itself.

7.2. Tightness operator. As noted in Remark 5.2, in the space 𝑉 starting from �̃� we can

define a compact operator ̃𝐾 ∶ 𝑉 → 𝑉 such that ̃𝐾−1�̃� ̃𝐾−1 is still trace class. We eventually

define 𝐾 ∶ 𝐻 → 𝐻 as

𝑦 = 𝐾𝑥 when 𝑦𝑖 = ̃𝐾𝑥𝑖 (7.1)

So 𝐾 commutes with the right multiplication by matrixes

(𝐾𝑥)𝐴 = 𝐾(𝑥𝐴) (7.2)

defined in Definition 7.1.

7.3. Tightness in Stiefel Manifolds.

Theorem 7.3. Suppose that 𝑌𝑡 ∼ 𝑁(0, 𝑄) as defined in previous Section 7.1. Consider

geodesic random walks 𝔛𝜏 defined as in Section 3.5.1 when𝑀 is a Stiefel Manifold, having

P{𝔛0 ∈ 𝑀} = 1 , E[‖𝔛0‖4𝐾] < ∞

and restrict each 𝔛𝜏𝑡 to 𝑡 ∈ 𝐼 = [0, 𝑇]: these 𝔛𝜏, for 𝜏 ∈ 𝔗𝑇, are a tight family in 𝐶(𝐼;𝑀).

In the following sections we will indeed show that all Hypotheses 6.1 are satisfied in

Stiefel Manifolds.

Since this Theorem is proved using Theorem 5.5, and this latter using Theorem 6.3, then

all corollaries of 6.3 and 5.5 will hold also for Theorem 7.3.

We have moreover this result.

Corollary 7.4. If the law of the starting r.v. 𝔛𝜏0 of the random walks is invariant for right

actions of𝐴 ∈ 𝑂(𝑝), then the law of𝔛𝜏 is invariant for right actions of𝐴 ∈ 𝑂(𝑝); so this is
true for any limit point 𝔛 of 𝔛𝜏. So the above can be interpreted as a result for Grassmann
Manifolds as well.

7.3.1. More on geodesics. The results from [12] still hold, with minor adjustments in no-

tation.

Lemma 7.5. Given 𝑥 ∈ 𝑀 = St(𝑝, 𝑉) and 𝑣 ∈ 𝐻, we have that 𝑣 ∈ 𝑇𝑥𝑀 iff 𝑥⊤𝑣 is an

asymmetric matrix.

Given 𝑥 ∈ 𝑀 = St(𝑝, 𝑉) and 𝐴 ∈ 𝑂(𝑝) orthogonal matrix, then 𝑥𝐴 ∈ 𝑀 . The action

𝑥 ↦ 𝑥𝐴 is an isometry in 𝐻 and hence in𝑀.
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Proposition 7.6 (Critical geodesics in St(𝑝, 𝑉) ). Let St(𝑝, 𝑉) be endowed with the induced
metric from 𝐻 = 𝑉𝑝. Let 𝛾 ∶ [0, 1] → St(𝑝, 𝑉) be a path. Then the geodesic equation is

̈𝛾 + 𝛾( ̇𝛾⊤ ̇𝛾) = 0. Solutions to the geodesic equation exist for all time and are given by

(𝛾(𝑡)𝑒𝐴𝑡, ̇𝛾(𝑡)𝑒𝐴𝑡) = (𝛾(0), ̇𝛾(0)) exp 𝑡 (𝐴 −𝑆
I 𝐴 ) (7.3)

where I is the 𝑝 × 𝑝 identity matrix and 𝐴 = 𝛾(0)⊤ ̇𝛾(0), 𝑆 = ̇𝛾(0)⊤ ̇𝛾(0).

Note that 𝐴 is asymmetric and 𝑆 is symmetric; moreover 𝐴 = 𝛾(𝑡)⊤ ̇𝛾(𝑡), 𝑆 = ̇𝛾(𝑡)⊤ ̇𝛾(𝑡)
are constant along the geodesic; and 𝑒𝐴𝑡 ∈ 𝑂(𝑝).

Further properties of infinite dimensional Stiefel and Grassmann manifolds are dis-

cussed in [15]. In particular it is proven that any two points in thosemanifolds are connected

by a minimal length geodesic.

We will now add more analysis to achieve the desired results.

Remark 7.7. Let 𝜆 ∈ ℝ, 𝜆 ≠ 0, fix 𝑥 ∈ 𝑀, 𝑣 ∈ 𝑇𝑥𝑀 and set (𝛾(0), ̇𝛾(0)) = (𝑥, 𝑣). Define
𝐴 = 𝑥⊤𝑣, 𝑆 = 𝑣⊤𝑣 as above. In the geodesic equation (7.3), we multiply as follows

(𝛾(𝑡)𝑒𝐴𝑡, 𝜆 ̇𝛾(𝑡)𝑒𝐴𝑡) = (𝑥, 𝜆𝑣) (I 0
0 𝜆−1I) exp (𝑡 (

𝐴 −𝑆
I 𝐴 )) (I 0

0 𝜆I)

so

(𝛾(𝑡)𝑒𝐴𝑡, 𝜆 ̇𝛾(𝑡)𝑒𝐴𝑡) = (𝑥, 𝜆𝑣) exp 𝑡 ( 𝐴 −𝜆𝑆
𝜆−1I 𝐴 ) = (7.4)

= (𝑥, 𝜆𝑣) exp 𝑡𝜆−1 (𝜆𝐴 −𝜆2𝑆
I 𝜆𝐴 )

We can use this relation as follows. Let now 𝜃 = ‖𝑣‖, ̂𝑣 = 𝑣/𝜃, ̂𝐴 = 𝑥⊤ ̂𝑣, ̂𝑆 = ̂𝑣⊤ ̂𝑣 then
setting 𝜆 = 1/𝜃

(𝛾(𝑡)𝑒𝑡𝜃�̂�, 𝜃−1 ̇𝛾(𝑡)𝑒𝑡𝜃�̂�) = (𝑥, ̂𝑣) exp 𝑡𝜃 (
̂𝐴 − ̂𝑆
I ̂𝐴 ) (7.5)

this formula decouples 𝑣 into the initial direction ̂𝑣 and the initial speed 𝜃.

Remark 7.8. The above has a general explanation: it is well known that (in any geodesically complete

Riemannian manifold) if 𝜆 ∈ ℝ 𝑥 ∈ 𝑀, 𝑣 ∈ 𝑇𝑥𝑀 and 𝛾, 𝜂 are geodesics with initial conditions

(𝛾(0), ̇𝛾(0)) = (𝑥, 𝑣) , (𝜂(0), ̇𝜂(0)) = (𝑥, 𝜆𝑣)

then

𝜂(𝑡) = 𝛾(𝜆𝑡)

so we can “pass scalars” from time to velocity and vice versa: so in 𝑀 = St(𝑝, 𝑉) comparing

eqn. (7.3) and

(𝜂(𝑡)𝑒𝜆𝐴𝑡, ̇𝜂(𝑡)𝑒𝜆𝐴𝑡) =(𝑥, 𝜆𝑣) exp 𝑡 (𝜆𝐴 −𝜆2𝑆
I 𝜆𝐴 )

hence by substituting 𝑡 for 𝑡/𝜆 we again obtain eqn. (7.4).
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7.3.2. Estimates. Define ‖𝑣‖𝐾 as in 5.3.

Lemma 7.9. Recall the Definitions 7.1. For𝑊 ∈ ℝ𝑘×𝑘 we use the norm

|𝑊| =
√√√

√

𝑘
∑
𝑖,𝑗=1

|𝑊𝑖,𝑗|2

and remark that

|𝑊𝑉| ≤ |𝑉| |𝑊| ;
we will use it with 𝑘 = 𝑝 or 𝑘 = 2𝑝; if 𝐸 is a vector space with a scalar product, then for

𝑣, 𝑤 ∈ 𝐸 we have

|𝑣⊤𝑤| ≤ ‖𝑣‖𝐸‖𝑤‖𝐸
and for 𝑣 ∈ 𝐸𝑘

‖𝑣𝑊‖𝐸𝑘 ≤ ‖𝑣‖𝐸𝑘|𝑊|
by Cauchy-Schwarz inequality.

Lemma 7.10. Consider the orthogonal projection 𝜋𝑇 ∶ 𝐻 → 𝐻 to a hyperplane

𝑇 = {𝑥 ∈ 𝐻 ∶ ∀𝑖 ≤ 𝑣, ⟨𝑤𝑖, 𝑥⟩𝐻 = 0}

orthogonal to 𝑤1,…𝑤𝑣 ∈ 𝐻, where those vectors are orthogonal but not orthonormal:

then

𝜋𝑇𝑣 = 𝑣 −
𝑣
∑
𝑖=1

𝑤𝑖
⟨𝑤𝑖, 𝑣⟩𝐻
‖𝑤𝑖‖2𝐻

. (7.6)

we immediately note that if 𝑣, 𝑤𝑖 are in a vector subspace 𝐸 of 𝐻, then 𝜋𝑇𝑣 will be in the

same 𝐸. Starting from (7.6) we estimate

‖𝜋𝑇𝑣‖𝐾 ≤ ‖𝑣‖𝐾 +
𝑣
∑
𝑖=1

‖𝑤𝑖‖𝐾
‖𝑣‖𝐻
‖𝑤𝑖‖𝐻

.

The tangent plane 𝑇 = 𝑇𝑥𝑀 to the Stiefel Manifold is such a plane, with

•
𝑤𝑖 = (0,…0, 𝑥𝑖, 0,… 0)

containing the i-th column of 𝑥 in position i-th; this for 𝑖 = 1,…𝑝;
• and then for 𝑖 = 𝑝 + 1,…𝑝(𝑝 + 1)/2

𝑤𝑖 = (0,…0, 𝑥ℎ, 0,… 0,−𝑥𝑘, 0,… 0)

containing the h-th column of 𝑥 in position k-th and vice versa, and with a minus

sign;

so by the diagonal structure (7.1) of 𝐾 and by (7.6) above we obtain this: if 𝑥 ∈ 𝑀 ∩𝐾(𝐻)
and 𝑣 ∈ 𝐾(𝐻) then 𝜋𝑇𝑥𝑀𝑣 ∈ 𝐾(𝐻).

Moreover such 𝑤𝑖 are mutually orthogonal; and ‖𝑤𝑖‖𝐻 = 1 for 𝑖 = 1,…𝑝, while
‖𝑤𝑖‖𝐻 = 2 otherwise; while ‖𝑤𝑖‖𝐾 ≤ ‖𝑥‖𝐾 in all cases; so in conclusion

‖𝜋𝑇𝑥𝑀𝑣‖ ≤ 𝑐𝑝(‖𝑣‖𝐾 + ‖𝑥‖𝐾‖𝑣‖𝐻) (7.7)

for a 𝑐𝑝 > 0 independent of 𝑥, 𝑣. This proves estimate (6.2) in Hypotheses 6.1.

The above suggests that (6.2) in Hypotheses 6.1 may hold for other manifolds, as long

as the embedding in 𝐻 has finite codimension.
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Lemma 7.11. Let ̃𝐾 ∶ 𝑉 → 𝑉 a linear continuous injective operator. Recall that 𝐻 = 𝑉𝑝

and we defined 𝐾 ∶ 𝐻 → 𝐻 in (7.1) as

𝑦 = 𝐾𝑥 when 𝑦𝑖 = ̃𝐾𝑥𝑖 .

So𝐾 is a linear continuous operator and commutes with the right multiplication by matrixes

(𝐾𝑥)𝐴 = 𝐾(𝑥𝐴) . (as defined in (7.2))

There is a constant 𝑐 > 0 such that, for all 𝑥 ∈ 𝑀 ∩ 𝐾(𝐻), 𝑣 ∈ 𝑇𝑥𝑀 ∩ 𝐾(𝐻) and the

geodesic with

(𝛾(0), ̇𝛾(0)) = (𝑥, 𝑣) ,

we have

(‖𝛾(1) − 𝑥 − 𝑣‖𝐾 + ‖ ̇𝛾(1) − 𝑣 + 𝑆𝑥‖𝐾) ≤ 𝑐(‖𝑥‖𝐾‖𝑣‖2𝐻 + ‖𝑣‖𝐾‖𝑣‖𝐻)𝑒𝑐‖𝑣‖𝐻 . (7.8)

Note that 𝑐 does not depend on 𝐾 but only on 𝑝.
This proves (6.3) in in Hypotheses 6.1.

Proof. Fix 𝑥 ∈ 𝑀, 𝑣 ∈ 𝑇𝑥𝑀 and set 𝜃 = ‖𝑣‖, ̂𝑣 = 𝑣/𝜃. We will use the formula seen in

eqn. (7.5) with 𝑡 = 1. We define

̂𝐴 = 𝑥⊤ ̂𝑣 , ̂𝑆 = ̂𝑣⊤ ̂𝑣 ,

𝑍 = (
̂𝐴 − ̂𝑆
I ̂𝐴 ) , 𝐵 = (−

̂𝐴 0
0 − ̂𝐴) , 𝛩 = (I 0

0 𝜃I)

so the formula (7.5) becomes

(𝛾(𝑡), ̇𝛾(𝑡)) = (𝑥, ̂𝑣) exp(𝑡𝜃𝑍) exp(𝑡𝜃𝐵)𝛩 (7.9)

then

(𝛾(𝑡), ̇𝛾(𝑡)) = (𝑥, ̂𝑣) ( ∑
𝑖≥0,𝑗≥0

(𝑡𝜃)𝑖+𝑗𝑍
𝑖

𝑖!
𝐵𝑗
𝑗! )𝛩 =

(𝑥, ̂𝑣) (I + 𝑡𝜃(𝑍 + 𝐵) + ∑
𝑖,𝑗,𝑖+𝑗≥2

(𝑡𝜃)𝑖+𝑗𝑍
𝑖

𝑖!
𝐵𝑗
𝑗! )𝛩 =

= (𝑥 + 𝑡𝑣, 𝑣 − 𝑡𝜃2𝑥𝑆) + (𝑥, ̂𝑣) ( ∑
𝑖,𝑗,𝑖+𝑗≥2

(𝑡𝜃)𝑖+𝑗𝑍
𝑖

𝑖!
𝐵𝑗
𝑗! )𝛩 (7.10)

Now

| ̂𝐴| ≤ 𝑝 , | ̂𝑆| ≤ 1 , | ̂𝐵| ≤ 2𝑝 , |𝑍| ≤ √3𝑝 + 1

and setting 𝑡 = 1

√‖𝛾(1) − 𝑥 − 𝑣‖2𝐾 + ‖ ̇𝛾(1) − 𝑣 + 𝜃2𝑥 ̂𝑆‖2𝐾 ≤ √‖𝑥‖2𝐾 + ‖ ̂𝑣‖2𝐾
||||

∑
𝑖,𝑗,𝑖+𝑗≥2

𝜃𝑖+𝑗𝑍
𝑖

𝑖!
𝐵𝑗
𝑗!
||||
|𝛩| ≤

√‖𝑥‖2𝐾 + ‖ ̂𝑣‖2𝐾 ∑
𝑖,𝑗,𝑖+𝑗≥2

|𝜃|𝑖+𝑗
|𝑍|𝑖

𝑖!
|𝐵|𝑗

𝑗! √(1 + 𝑝𝜃2) ≤

√‖𝑥‖2𝐾 + ‖ ̂𝑣‖2𝐾𝜃2𝑔(𝜃)
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where we are using the fact (7.2) that left multiplication by 𝐾 and right multiplication by a

matrix are associative; and

𝑔(𝑠) = ∑
𝑖,𝑗,𝑖+𝑗≥2

𝑠𝑖+𝑗−2
(3𝑝 + 1)𝑖/2

𝑖!
(2𝑝)𝑗

𝑗! =

∑
2≤𝑛

∑
0≤𝑘≤𝑛

𝑠𝑛−2
𝑛! ((

𝑛
𝑘
)(3𝑝 + 1)𝑘/2(

𝑛
𝑛 − 𝑘

)(2𝑝)𝑛−𝑘) = ∑
2≤𝑛

𝑠𝑛−2
𝑛! (√3𝑝 + 1 + 2𝑝)

𝑛
=

= 1
𝑠2 (exp 𝑎 − 1 − 𝑎) with 𝑎 = 𝑠 (√3𝑝 + 1 + 2𝑝) .�

Remark 7.12. A further approximation may be obtained by computing

𝑍2 + 2𝑍𝐵 + 𝐵2 = (𝑆 𝐴𝑆 − 𝑆𝐴
0 𝑆 )

so the following term is

(𝑥, ̂𝑣) 12𝜃
2(𝑍2 + 2𝑍𝐵 + 𝐵2)𝛩 = 𝜃2(𝑥𝑆, ̂𝑣𝑆 + 𝑥(𝐴𝑆 − 𝑆𝐴))𝛩 = 𝜃2(𝑥𝑆, 𝑣𝑆 + 𝜃𝑥(𝐴𝑆 − 𝑆𝐴)) .

Remark 7.13. Note that by the geodesic equation ̈𝛾 + 𝛾( ̇𝛾⊤ ̇𝛾) = 0 we expect that
̇𝛾(𝑡) − ̇𝛾(0)

𝑡 ∼ −𝛾(0)(𝑣⊤𝑣)

and this can be seen in equation (7.10).

The first and second hypothesis in 6.1 are obviously true for Stiefel Manifolds: indeed

the curvatures and second fundamental form are uniformly bounded, since Stiefel Mani-

folds are homogeneous space. Nonetheless we can provide this estimate that satisfies (6.4).

Corollary 7.14. There is a constant 𝑐 > 0 such that for all 𝑥 ∈ 𝑀, 𝑣 ∈ 𝑇𝑥𝑀 and the

geodesic with

(𝛾(0), ̇𝛾(0)) = (𝑥, 𝑣)
we have

‖𝛾(1) − 𝑥 − 𝑣‖𝐻 ≤ 𝑐min{‖𝑣‖𝐻, ‖𝑣‖2𝐻} .

Proof. We note that the Stiefel Manifold St(𝑝, 𝑉) has diameter 𝑑, so that for 𝑣 ≥ 𝑑 we can
estimate

‖𝛾(1) − 𝑥 − 𝑣‖𝐻 ≤ 𝑑 + ‖𝑣‖𝐻
while for 𝑣 ≤ 𝑑 we use the above lemma 7.11 with 𝐾 being the identity, recalling that

‖𝑥‖𝐾 = √𝑝 in this case. �

8. Future Developments

We now know that, under appropriate hypotheses, the random walks 𝔛𝜏 have narrow
limit points 𝔛 when the partition 𝜏 becomes finer and finer; these 𝔛 are random functions

in 𝐶(ℝ+; 𝑆) with 𝑆 = 𝐻 or 𝑆 = 𝑀 an embedded manifold.

There are multiple questions left unanswered, material for future research.

• Do the limit points enjoy some standard property? It seems plausible that they may

enjoy some kind of Markov Property, for example.

• Under which additional hypotheses can we say that there is an unique limit point?

• Can we then characterize the limit points as solutions to a kind of SDE?

(These two questions are in synergy).
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• Can we expand the results to more general cases of random walks, for example,

where the constants in the hypothesis are not “uniform” but rather they may grow

(e.g. be bounded by a function of the distance from a given point)?

• Consequently, are there other infinite dimensional manifolds where the present

results hold true?

All the above questions are starting point for future research.

Appendix A. Useful Lemmas

In this section we have collected the technical Lemmas used here and there in the paper.

Lemma A.1. For 𝐸 space with scalar product and 𝑣, 𝑤 ∈ 𝐸,

|𝑣 + 𝑤|2 ≤ 2|𝑣|2 + 2|𝑤|2 .

Proof.

|𝑣 + 𝑤|2 ≤ (|𝑣| + |𝑤|)2 ≤ 2|𝑣|2 + 2|𝑤|2 �

In the following monotonic means monotonically weakly increasing that is 𝑠 ≤ 𝑡 ⇒
𝑔(𝑠) ≤ 𝑔(𝑡).

Lemma A.2. Let 𝛽 ∈ ℝ. Let

𝑡0 = 0 < 𝑡1 < 𝑡2 < …

and let 𝛿𝑛 = 𝑡𝑛+1−𝑡𝑛. Suppose 𝑏𝑛 is a real valued sequence with 𝑏𝑛 ≥ 𝛽 for all 𝑛. Suppose
that

𝜑 = 𝜑(𝑡, 𝑥) ∶ [0,∞) × [𝛽,∞) → [0,∞)

is a continuous non negative function, such that 𝜑(⋅, 𝑥) and 𝜑(𝑡, ⋅) are monotonically in-

creasing. Let 𝑓 ∶ [0,∞) → [𝛽,∞] be a solution of

{
𝑓′(𝑡) = 𝜑(𝑡, 𝑓(𝑡))
𝑓(0) = 𝑏0

(A.1)

(possibly 𝑓(𝑡) = ∞ for large 𝑡 ). If

𝑏𝑛+1 ≤ 𝑏𝑛 + 𝜑(𝑡𝑛, 𝑏𝑛)𝛿𝑛 (A.2)

holds then

𝑏𝑛 ≤ 𝑓(𝑡𝑛) . (A.3)

Proof. Proof by induction. Note that 𝑓 is monotonic since 𝑓′ ≥ 0 but then it is convex

since 𝑓′ is monotonic.

𝑏𝑛+1 ≤ 𝑏𝑛 + 𝜑(𝑡𝑛, 𝑏𝑛)𝛿𝑛 ≤ 𝑓(𝑡𝑛) + 𝜑(𝑡𝑛, 𝑓(𝑡𝑛))𝛿𝑛 = 𝑓(𝑡𝑛) + 𝑓′(𝑡𝑛)𝛿𝑛 ≤ 𝑓(𝑡𝑛+1)

�

Note that indeed (A.2) can be rewritten as

𝑏𝑛+1 − 𝑏𝑛
𝑡𝑛+1 − 𝑡𝑛

≤ 𝜑(𝑡𝑛, 𝑏𝑛) .
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Lemma A.3. Let

𝑡0 = 0 < 𝑡1 < 𝑡2 < …
and let 𝛿𝑛 = 𝑡𝑛+1 − 𝑡𝑛; fix 𝑐7 > 0, 𝑐8 > 0. Suppose 𝑏𝑛 is a real valued sequence with

𝑏0 = 0, 𝑏𝑛 ≥ 0 that satisfies

𝑏𝑛+1 ≤ 𝑏𝑛 + 2𝛿𝑛(𝑐7√𝑏𝑛√𝑡𝑛 + 𝑐8𝑡𝑛) ; (A.4)

then

𝑏𝑛 ≤ (𝑐7 + 2𝑐8)𝑔(𝑡𝑛) with 𝑔(𝑡) =
𝑒𝑐7𝑡 − 1 − 𝑐7𝑡

𝑐27
.

Moreover, set

̂𝜀 = 2
𝑐7 + 2𝑐8

,

then

∀𝑛 , 𝑡𝑛 ≤ ̂𝜀 ⇒ 𝑏𝑛 ≤ 𝑡2𝑛(𝑐7 + 𝑐8) (A.5)

and note that 𝑏0 = 𝑏1 = 0.

Proof. Consider a solution of the ODE

{
𝑓′(𝑡) = 2𝑐7√𝑓(𝑡)√𝑡 + 2𝑐8𝑡
𝑓(0) = 0

; (A.6)

(that is (A.1) for this special case). Since

√𝑎𝑏 ≤ 𝑎 + 𝑏
2

then

𝑓′(𝑡) ≤ 𝑐7𝑓(𝑡) + (𝑐7 + 2𝑐8)𝑡
substituting 𝑓(𝑡) = 𝑔(𝑡)𝑒𝑐7𝑡 and with some calculations we obtain

𝑓(𝑡) ≤ (𝑐7 + 2𝑐8)𝑔(𝑡) with 𝑔(𝑡) =
𝑒𝑐7𝑡 − 1 − 𝑐7𝑡

𝑐27
.

Since

𝑓′(𝑡) ≥ 2𝑐8𝑡
then

𝑓(𝑡) ≥ 𝑐8𝑡2 (A.7)

in particular for any solution we have 𝑓(𝑡) > 0 and 𝑓′(𝑡) > 0 for 𝑡 > 0. We have 𝑓′(0) = 0
so 𝑓(𝑡) ≤ 𝑡 for 𝑡 ≤ 𝜀 with 𝜀 small; more precisely, note that 𝑔(𝑡) is convex and increasing
and 𝑔(0) = 𝑔′(0) = 0 so we set 𝜀 to be the unique positive solution of

(𝑐7 + 2𝑐8)𝑔(𝑡) = 𝑡 ;

moreover 𝑔(𝑡) ≥ 𝑡2/2 so we know that

𝜀 ≥ 2
𝑐7 + 2𝑐8

.

Now we set

̂𝑠 = sup{𝑠 ≥ 0 ∶ 𝑡 ≤ 𝑠 ⇒ 𝑓(𝑡) ≤ 𝑡}
note that 𝜀 ≤ ̂𝑠 ≤ 1/𝑐8; for 𝑡 ∈ [0, ̂𝑠]

𝑓′(𝑡) ≤ 2(𝑐7 + 𝑐8)𝑡
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so

𝑓(𝑡) ≤ (𝑐7 + 𝑐8)𝑡2 . (A.8)

�

Remark A.4. Computing the second derivative

𝑓″(𝑡) =𝑐7
𝑓′(𝑡)√𝑡
√𝑓(𝑡)

+ 𝑐7
√𝑓(𝑡)
√𝑡

+ 2𝑐8 =

= 𝑐7
𝑐7√(𝑓(𝑡)√𝑡 + √𝑡

√𝑓(𝑡)
+ 𝑐7

√𝑓(𝑡)
√𝑡

+ 2𝑐8 =

= 𝑐72√𝑡 + 𝑐7
𝑡√𝑡
√𝑓(𝑡)

+ 𝑐7
√𝑓(𝑡)
√𝑡

+ 2𝑐8

using (A.7) and (A.8), passing to the limit

lim
𝑡→0

𝑓″(𝑡) = 2𝑐8 = 𝑓″(0)

so actually 𝑓(𝑡) = 𝑡2𝑐8 + 𝑜(𝑡2).

Lemma A.5. Let

𝑡0 = 0 < 𝑡1 < 𝑡2 < …
and let 𝛿𝑛 = 𝑡𝑛+1− 𝑡𝑛. Suppose 𝑏𝑛 is a real valued sequence. If, for 𝑐7 > 0, 𝑐8 ≥ 0, 𝑐9 ≥ 0,

𝑏𝑛+1 ≤ 𝑏𝑛(1 + 𝑐7𝛿𝑛) + 𝛿𝑛(𝑐8 + 𝑐9𝑡𝑛) (A.9)

holds then

𝑏𝑛 ≤𝑏0𝑒𝑐7𝑡𝑛 + (𝑒𝑐7𝑡𝑛 − 1)(𝑐8/𝑐7 + 𝑐9/𝑐27) − 𝑐9𝑡𝑛/𝑐7 =

𝑒𝑐7𝑡𝑛(𝑏0 + 𝑐8/𝑐7 + 𝑐9/𝑐27) − ((𝑐8 + 𝑐9𝑡𝑛)/𝑐7 + 𝑐9/𝑐27) . (A.10)

Proof. Indeed (A.9) can be rewritten as

𝑏𝑛+1 − 𝑏𝑛
𝑡𝑛+1 − 𝑡𝑛

≤ 𝑐7𝑏𝑛 + 𝑐8 + 𝑐9𝑡𝑛

and the associated differential equation is

𝑓′(𝑡) = 𝑐7𝑓(𝑡) + 𝑐8 + 𝑐9𝑡

that has solution

𝑓(𝑡) = 𝑒𝑐7𝑡𝑓(0) + (𝑒𝑐7𝑡 − 1)(𝑐8/𝑐7 + 𝑐9/𝑐27) − 𝑐9𝑡/𝑐7
so this proves the result. �

Nonetheless, we present a simple direct proof.

Alternate proof. By induction

𝑏𝑛+1 ≤ 𝑏𝑛(1 + 𝑐7𝛿𝑛) + (𝑐8 + 𝑐9𝑡𝑛)𝛿𝑛 ≤

(𝑒𝑐7𝑡𝑛(𝑏0 + 𝑐8/𝑐7 + 𝑐9/𝑐27) − ((𝑐8 + 𝑐9𝑡𝑛)/𝑐7 + 𝑐9/𝑐27)) (1 + 𝑐7𝛿𝑛) + (𝑐8 + 𝑐9𝑡𝑛)𝛿𝑛 =

= (𝑏0 + 𝑐8/𝑐7 + 𝑐9/𝑐27)𝑒𝑐7𝑡𝑛(1 + 𝑐7𝛿𝑛) − ((𝑐8 + 𝑐9𝑡𝑛)/𝑐7 + 𝑐9/𝑐27)(1 + 𝑐7𝛿𝑛) + (𝑐8 + 𝑐9𝑡𝑛)𝛿𝑛

for the first term we use the Bernoulli inequality

𝑒𝑐7(𝑡𝑛+𝛿𝑛) ≥ 𝑒𝑐7𝑡𝑛(1 + 𝑐7𝛿𝑛)
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while for the other two terms

−((𝑐8 + 𝑐9𝑡𝑛)/𝑐7 + 𝑐9/𝑐27)(1 + 𝑐7𝛿𝑛) + (𝑐8 + 𝑐9𝑡𝑛)𝛿𝑛 =

= −((𝑐8 + 𝑐9𝑡𝑛)/𝑐7 + 𝑐9/𝑐27) − 𝛿𝑛((𝑐8 + 𝑐9𝑡𝑛) + 𝑐9/𝑐7 − (𝑐8 + 𝑐9𝑡𝑛)) =

= −((𝑐8 + 𝑐9𝑡𝑛)/𝑐7 + 𝑐9/𝑐27) − 𝛿𝑛𝑐9/𝑐7 = −((𝑐8 + 𝑐9𝑡𝑛+1)/𝑐7 + 𝑐9/𝑐27) .

�

Appendix B. Proofs

Proof of Proposition 2.3. This proof comes from [24]. Suppose that there is convergence

in probability𝑊 𝑛
1 →𝑊1; consider the equality

𝑆2𝑛
√2𝑛

−
𝑆𝑛
√𝑛

= 1
√2

𝑆2𝑛 − 𝑆𝑛
√𝑛

− (1 − 1
√2

)
𝑆𝑛
√𝑛

then the LHS would converge to the zero constant in probability , whereas on the RHS the

random variables

𝑆𝑛
√𝑛

and
𝑆2𝑛 − 𝑆𝑛
√𝑛

are independent and both converge narrowly to 𝑁(0, 1). Moreover we can prove directly that

there cannot be a.s. convergence, that is for almost all 𝜔

1
√𝑛

𝑛

∑
𝑖=1

𝑌𝑖(𝜔) →𝑛 𝑊1

since the Law of the Iterated Logarithm 14 tells that instead

lim sup
𝑛

1
√2𝑛 log log𝑛

𝑛

∑
𝑖=1

𝑌𝑖(𝜔) = 1 .

�

Proof of Proposition 2.5. Stochastic completeness is equivalent to

∀𝑇 > 0 , P{𝑒(𝔛𝑡) > 𝑇} = 1

then

{𝑒(𝔛𝑡) > 𝑇} = {∀𝑠 ∈ [0, 𝑇] ∶ 𝑟𝔛(𝑡) < ∞}

by path continuity; in turn

{∀𝑠 ∈ [0, 𝑇] ∶ 𝑟𝔛(𝑡) < ∞} =⋃
𝑅
{∀𝑠 ∈ [0, 𝑇] ∶ 𝑟𝔛(𝑡) ≤ 𝑅}

so there is a 𝑅 > 0 such that

P{∀𝑠 ∈ [0, 𝑇] ∶ 𝑟𝔛(𝑡) ≤ 𝑅} > 1 − 𝜀

and this proves (2.3). �

14CF Theorem 9.5 in [4]
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Proof of Proposition 3.6. If 𝑐 = 0 then

E[𝑔(𝛿‖𝑌‖)] = 𝛿𝛼E [‖𝑌‖𝛼]

so we set

̃𝑐 = E [‖𝑌‖𝛼] .
Otherwise we set

̃𝑐 = E [‖𝑌‖𝛼𝑒𝑐𝑐𝑡‖𝑌‖] ,
so

E[𝑔(𝛿‖𝑌‖)] = 𝛿𝛼E [‖𝑌‖𝛼𝑒𝑐𝛿‖𝑌‖] ≤ 𝛿𝛼E [‖𝑌‖𝛼𝑒𝑐𝑐𝑡‖𝑌‖] = ̃𝑐𝛿𝛼 �

We recall Proposition 1.13 from [9].

Proposition B.1. Let 𝑌 = 𝑁(0, 𝑄) and

𝜆1 = max
‖𝑥‖≤1

⟨𝑥, 𝑄𝑥⟩𝐻

be the highest eigenvalue of 𝑄. Then for 0 < 𝜀 < 1/𝜆1

∫
𝐻
𝑒𝜀‖𝑥‖2/2 d𝛾(𝑥) =

exp (− 1
2
⟨𝑎, (1 − 𝜀𝑄)−1𝑎⟩𝐻)

√det(1 − 𝜀𝑄)
(B.1)

whereas for 𝜀 ≥ 1/𝜆1 the integral is infinite.

(This behavior is observed in more general contexts, as shown by the Fernique inequality, see

Theorem 2.8.5 in [6]). Proposition 3.6 is valid for Gaussian Measures.

Proof of Proposition 3.8. Set 𝑐𝑡 = 1 for simplicity. By the previous proposition, for any

𝜆 > 0,
E[𝑒𝜆‖𝑌‖𝐻] < ∞ .

For 𝑘 ∈ ℕ and 𝑎 > 0 we have 𝑎𝑘𝑠𝑘 ≤ 𝑘!𝑒𝑎𝑠 hence choosing 𝑘 = ⌈𝛼⌉,

𝑠𝛼𝑒𝑠𝑐 ≤ 𝑘!
𝑎𝑘
𝑒𝑠(𝑎+𝑐)

so again we define

̃𝑐 = E[𝑔(‖𝑌‖)] < ∞ ;
and we proceed as in the above proof of Proposition 3.6. �

Remark B.2. For Gaussian Measures, the value of ̃𝑐 may be effectively estimated; here is a possible

method. Using equation (B.1) let 0 < 𝜀 < 1/𝜆1, set

𝛽𝜀 = (det(1 − 𝜀𝑄))−1/2 .

Obviously for 𝑠 ≥ 2𝜆/𝜀 we have
𝑒𝜆𝑠 ≤ 𝑒𝜀𝑠2/2

then

E[𝑒𝜆‖𝑌‖] ≤ 𝑒2𝜆2/𝜀 + 𝛽𝜀 .
Then choose

𝑎 = 𝑘√𝑘!
in the previous proof; we get

̃𝑐 = E [‖𝑌‖𝛼𝑒𝑐‖𝑌‖] ≤ E [𝑒‖𝑌‖(𝑎+𝑐)] = 𝑒2(𝑎+𝑐)2/𝜀 + 𝛽𝜀 .

When 𝛼 = 1 then 𝑘 = 𝑎 = 1; for 𝛼 > 1, 𝑎 = 𝑘√𝑘! < 𝑘.
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Proof of Proposition 3.15. By contradiction, suppose there is; up to substituting 𝑓(𝑛) with
⋃𝑛

𝑗=0 𝑓(𝑗) we can suppose that 𝑓 is monotonic. Let 𝑐𝑡 = 1 for simplicity. We build it-

eratively 𝜏 ∈ 𝔗 such that ∀𝑛, 𝜏 ⊈ 𝑓(𝑛), in this way. We will build a (non decreasing)

sequence 𝑛𝑚 ∈ ℕ such that 𝑛𝑚 →𝑚 ∞, and a sequence 𝑡0 = 0 < 𝑡1 < … ∈ 𝜏 satisfying
the requisites in Definition 3.9. Let 𝑡0 = 0, 𝑡1 = 1, 𝑛0 = 𝑛1 = 0; for 𝑚 ≥ 1 having chosen
𝑡𝑚 ∈ 𝜏 and 𝑛𝑚, we look for 𝑘 > 𝑛𝑚 such that there is a 𝑡 ∈ 𝑓(𝑘) −𝑓(𝑛𝑚) ∧ 𝑡 ≥ 𝑡𝑚 + 1/2;

• if there is no such 𝑘, we stop the iterative process by adding to 𝜏 an arbitrary se-

quence 𝑡𝑚+1 < 𝑡𝑚+2 < … with 𝑡𝑚+𝑗 ∉ ⋃𝑘 𝑓(𝑘) and 1/2 < 𝑡𝑚+𝑗+1 − 𝑡𝑚+𝑗 < 1;
we set 𝑛𝑚+𝑗 = 𝑛𝑚 + 𝑗; all that for 𝑗 ≥ 0 .

• If there is such 𝑘, 𝑡, we add to 𝜏 an arbitrary sequence

𝑡𝑚+1 < 𝑡𝑚+2 < … < 𝑡𝑚+𝑙 = 𝑡

such that

1/2 < 𝑡𝑚+𝑗+1 − 𝑡𝑚+𝑗 < 1 for 𝑗 = 0,… 𝑙 − 1 ;
then we set 𝑛𝑚+1 = … = 𝑛𝑚+𝑙 = 𝑘; then we repeat the iteration using 𝑚 + 𝑙 as
the new 𝑚.

In any case we obtain that for infinitely many 𝑚 there is a 𝑙 such that 𝑡𝑚+𝑙 ∉ 𝑓(𝑛𝑚). �
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