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Abstract

In this paper we study random walks Xτ ; these are processes taking values in
C(R+;S), where R+ = [0,∞). These random walks are defined at discrete times
t ∈ τ = {t0 = 0 < t1 < t2 . . .} and then interpolated for t between ti, ti+1.

The main objective is to prove tightness for the family of all Xτ ; by Prokhorov’s
Theorem, this implies that the sequence has limit points that are random functions in
C(R+;S).

We will provide results in three cases: S = H a (possibly infinite dimensional)
separable Hilbert Space; S a manifold embedded in H; and then the particular case
when S is the Stiefel Manifold.

These results are motivated by problems in Probability Theory and in Shape Theory,
and in particular some models of manifolds of planar immersed curves.
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1 Introduction

Let H be a separable Hilbert space, M a manifold embedded in H, possibly infinite
dimensional. Let S = H or S =M .

In this paper we study random walks Xτ ; these are processes, i.e. random functions,
taking values in the Frechét space C(R+;S), where R+ = [0,∞).

These random walks are defined at discrete times t ∈ τ = {t0 = 0 < t1 < t2 . . .} and
then interpolated for t between ti, ti+1.
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Tightness of Random Walks

The main objective is to prove tightness for the family of all Xτ ; by Prokhorov’s
Theorem, this implies that the sequence has limit points (in the narrow sense) that are
random functions in C(R+;S).

We will provide results in three cases: S = H in Section 5, S =M in Section 6 and
then the particular case when S is the Stiefel Manifold in Section 7.

These results are motivated by problems in Probability Theory (in particular Stochastic
Processes in manifolds) and in Shape Theory, that are detailed in Section 2. We
are particularly concerned by the infinite dimensional case, since, as discussed in
Section 2.2.3, in this case many standard methods cannot be applied.

We will use some definition and results from Probability Theory; since there may
be ambiguity in some definitions, and some results are not easily found in the needed
generality, then we have written a compendium in [18]; it is available as supplemental
material.

1.1 Random walk

Here we briefly define the random walks Xτ
t that we will study (more details will be

in Section 3.4).
Let R+ = [0,∞); let H,U be separable Hilbert spaces. Let

τ = {t0 = 0 < t1 < t2 . . .} ⊂ Q .

We will need a source of random noise: for t ∈ R+, a family of i.i.d. r.v. Yt taking values
in U , each with law γ. We will need a Borel map

D = D(x, v, t, s) : H × U × (R+)2 → H

continuous in s and such that D(x, v, t, 0) = x . We fix Xτ
0 = X0 a random variable, and

we define recursively

Xτ
(n+1) = Xτ

n +D (Xτ
n , Ytn , tn , (tn+1 − tn)) . (1.1)

Then we interpolate using

Xτ
t = Xτ

n +D (Xτ
n , Ytn , tn , (t− tn)) (1.2)

for tn ≤ t ≤ t(n+1); so each trajectory t 7→ Xτ
t (ω, t) is continuous; hence each Xτ is a r.v.

taking value in C(R+;H), the Frechét space of continuous functions x : R+ → H.
Since U is used only in the second argument of D, and H,U are isomorphic, we can

decide that H = U with no loss of generality.

2 Motivation

2.1 Wiener Process, Donsker’s Theorem

We recall this standard result.

Theorem 2.1. Let Y1, Y2, Y3, . . . be a sequence of i.i.d. real random variables with mean
0 and variance 1. Let

Sn =

n∑
i=1

Yi

We rescale and extend the process to continuous time t ∈ [0, 1]. Define

Wn(t) =
Sj√
n
, t = j/n
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Tightness of Random Walks

and then linearly interpolate

Wn(t) = (1− s)
Sj√
n
+ s

Sj+1√
n

=
Sj + sYj√

n
(2.1)

for j/n ≤ t ≤ (j + 1)/n and

t = (1− s)j/n+ s(j + 1)/n i.e. s = nt− j ;

so Wn is a random variable taking values in C([0, 1]). Then sequence of random function
(Wn)n converges narrowly to a random function W on C([0, 1]), as n→ ∞; this W is the
standard Wiener Process.1

Theorem 9.1 in [5] uses the above as a method to define Wiener Process; by
Kolmogoroff Theorem, W has a version where almost all paths are continuous. Other
sources call the above result Donsker’s Theorem. The proof may be found in Theorem 9.1 2

in [5]; the proof is obtained in two steps:

1. show that the family Wn is tight: by Prokhorov’s theorem 3, then it admits narrow
limits in C([0, 1]) as n→ ∞;

2. show that there is an unique narrow limit W : by a standard argument this implies
that Wn → W narrowly. Indeed it is easy to argue that any narrow limit W has
independent increments and the law of Wt−Ws is N(0, t−s) (by CLT): this uniquely
identifies the Wiener Process.

The above construction of Wn in Theorem 2.1 is a special case of the random walk
Xτ

t where τ = {i/n : j ∈ N}, X0 = 0, H = R and D(x, v, t, s) =
√
s v. (There is a slightly

different interpolation method: cf 2.2).
So we can imagine a form of Donsker’s theorem, for random walks with variable time

step and taking value in infinite dimensional Hilbert spaces, or manifolds; to be proven
in this way:

1. show that the family Xτ
t is tight;

2. show that there is an unique the narrow limit X: by a standard argument this
implies that Xτ → X narrowly.

Hence one purpose of this paper is to provide a tool for the first step: this is Theorem 5.5.

Remark 2.2. If we would like to apply the linear interpolation (used in (2.1)) to our
random walk then we would replace (1.2) with

Xτ
t = sXτ

n+1 + (1− s)Xτ
n

where s ∈ [0, 1] satisfies
t = tn+1s+ tn(1− s)

that is

s =
t− tn

tn+1 − tn
.

We prefer the former (1.2) since it provides some technical simplifications: see Remark 3.13.
Conversely, if we set H = R, X0 = 0 and D(x, v, t, s) =

√
sv − x then, to be able to state

that Xτ
t =Wn(t), we should define the interpolation as

Wn(t) =
Sj +

√
sYj√

n
(2.2)

and this is not the definition in [5]. Note that this interpolation (2.2) has the benefit that
Wn(t) ∼ N(0, t).

1Wiener Process is also known as Brownian Motion in some texts, as [16] or Chapter 12 in [7].
2Theorem 9.1 uses the linear approximations
3See Theorem 4.13 in [18].

Page 3/35



Tightness of Random Walks

At the same time, the results in this paper are valid for different interpolations. We
add an important remark.

Proposition 2.3. There is no choice of common probability space where to define Yt and
Wt and such that the approximating terms Wn defined above in (2.1) would converge to
W in probability.

(The proof is in Appendix B).

2.2 Manifolds

2.2.1 Finite Dimensional Manifolds

The theory of Stochastic Differential Equations in finite dimensional Riemannian Manifolds
M is well developed; see e.g. [16]. In particular, there are multiple equivalent definitions
of Brownian Motion; each based on different principles,

• stochastic differential equations in local charts,

• development of euclidean Brownian Motion (Example 2.6.8 in [16]),

• the heat equation and its transition probabilities;

but all leading to the same ultimate definition: see Proposition 3.2.1 in [16].
We define this concept as in Section 4.2 in [16].

Definition 2.4 (Stochastic completeness). Consider a non-compact connected manifold
M , and let ∞ be the point added by the Alexandroff compactification (the one-point
topological compactification). For any continuous path x : R+ →M ∪ {∞} let

e = e(x) = sup{t ≥ 0 : ∀s, 0 ≤ s < t, x(s) ∈M} = sup{t ≥ 0 : x(t) ∈M}

be the first time t such that x(t) = ∞; we agree that x(s) = ∞ for s ≥ e. Suppose that
Xt is Brownian Motion, whose paths are continuous in M ∪ {∞}. A manifold is called
stochastically complete if e(Xt) is infinite almost surely:

P{e(Xt) = ∞} = 1 .

A thorough discussion of this problematic may be found in [14]. There is an important
problem: even if the manifold is complete, it may fail to be stochastically complete. ([14]
attributes the first such example to [1]).

There are many properties of M that ensure that the manifold is stochastically
complete, such as as: volume growth of geodesic balls, isoperimetric inequalities,
conservation of mass in the heat equation, curvature bounds, etc.; see [14]. (Indeed our
Theorem 6.3 requires a kind of curvature bound).

2.2.2 Radial process

For X a process taking values in M and with continuous paths, the radial process is

rX(t) = d(x0,Xt)

where x0 ∈ M is a fixed point and we agree that d(x0,∞) = +∞. The radial process
satisfies an SDE, and its evolution can be bounded by bounds on the curvature (see
Section 3.5 in [16]); since

{e(Xt) > T} = {∀s ∈ [0, T ] : rX(t) <∞}

this can be used to prove stochastic completeness.
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Proposition 2.5. Let x0 ∈M be a fixed point. Stochastic completeness is equivalent to

∀ε > 0,∀T > 0,∃R > 0 such that P{∃t ∈ [0, T ], d(x0,Xt) > R} < ε . (2.3)

Since (by Hopf–Rinow theorem) a closed set is compact iff it is bounded, then (2.3) is
equivalent to tightness, in this sense

∀ε > 0,∀T > 0,∃C ⊆M compact, such that P{∃t ∈ [0, T ],Xt /∈ C} < ε . (2.4)

2.2.3 Infinite Dimensional Manifolds

When the Riemannian Manifold M is infinite dimensional, though, we immediately
identify some obstacles.

• When the manifold M has dimension N , we have an important property: each
tangent space TxM is isomorphic to RN ; hence there is a canonical choice of
Gaussian measure N(0, I) on each one. This is, in a sense, the “white noise” that is
driving the Brownian Motion.

When the manifold M is modeled on a infinite dimensional Hilbert Space H then
there is no Gaussian measure in H that is rotationally invariant (actually, rotations
of a Gaussian measure N(0, Q) tend to be mutually singular, as explained in [6]).
So we will need to decide what “white noise” we will use.

• While the heat equation can be defined in H, an approach using this tool would
have to deal with some technical difficulties; for example, the heat equation is not
Feller, that is, it does not regularizes the initial data.

Moreover, usually the transition probabilities of the heat kernel are used; these
transition probabilities are expressed as densities with respect to the volume form;
but an infinite dimensional Riemannian Manifold does not have a volume form that
may be used as a reference measure.

• The Hopf–Rinow theorem is false, closed bounded sets are not necessarily compact.

• The one point compactification is not useful, since any non-empty open set contains
a sequence such that xn → ∞

• The radial process is not useful, since there may be examples of complete Riemannian
Manifolds where the trajectories of the Brownian Motion are bounded, but each of
them would have Xt → ∞ in finite time. (A key point to build such an example may
be [3]).

Prokhorov’s theorem, on the other end, is valid in any separable metric space
(regardless of “dimension”): so a concept of tightness similar to (2.4) will be the key
element for Theorem 6.3.

2.3 Stiefel Manifolds

The results in this paper will be valid when M is a Stiefel Manifold.
Classically, the Stiefel manifold St(p,Rn) is defined as the set of all frames composed

of p orthonormal vectors in Rn (with 1 ≤ p ≤ n); those frames are represented as
n× p matrices. Geodesics in Stiefel manifolds St(p,Rn) are known to have closed form
solutions as demonstrated by Edelman et al. [12] in Section 2.2.2 .4 This property
extends to infinite dimensional manifolds, as will be explained in Section 7.3.1.

Let p ≥ 1 and let V be a Hilbert space with dim(V ) ≥ 2p (possibly infinite dimensional).
Let H = V p, we write

x ∈ H , x = (x1, . . . xp)

4[12] credits a personal communication by R. Lippert for the final closed form formula (7.3).
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and

∥x∥H =

√√√√ p∑
i=1

∥xi∥2V

as usual (and similarly for scalar products). By analogy to the finite dimensional space,
we will call columns the p vectors xi that compose x. We define

πi : H → V , πi(x) = xi .

Definition 2.6. We define St(p, V ) as the manifold of x ∈ H such that

⟨xi, xj⟩V = δi,j

and St(p, V ) is an embedded manifold in H of codimension p(p+ 1)/2.

The sphere is the special case St(1, V ). The geometry of Stiefel Manifolds is pretty
well understood [12, 15]. See Section 7.3.1 for details.

2.4 Shape Theory, Curves

“Shapes” appear in two broad categories of applications:

• shape optimization, where we want to find the best shape according to a criterion;

• shape analysis, where we study families of shapes for purposes of statistics,
(automatic) cataloging, probabilistic modeling, etc.

Shape theory is central in computer vision because shapes partially characterize
objects in images. We focus on the specific case where shapes are represented
by smoothly immersed planar curves; this is a widely studied subject, see [17] and
references therein. In this case, it should be noted that the shape space classically
used in shape optimization is more precisely identified as the space of embedded curves,
up to a choice of parameterization, whereas in shape analysis the space is usually
identified as the space of embedded curves, up to rotation, translation, scaling and
reparameterization. We will not address this issue in this paper.

There are various reasons why it is useful to model the space of curves as a
Riemannian manifold.

• In the past methods for shape optimization were devised that would find the
solution by using appropriate gradient flows. Calling the minimizing flows gradient
flows, however, implies a certain Riemannian metric on the space of curves.

• Modeling the space of curves as a Riemannian manifold has also obvious benefits
in shape analysis: indeed the distance between curves can be used for clustering,
the geodesic can be used to define the average of two shapes, and so on.

We concentrate on two models of “Riemannian manifolds of curves”, where we
disregard translation and scaling.

• A model for open immersed curves c : [0, 1] → R2; using a transformation known
as square-root velocity representation” the Riemannian Manifold is isometric to a
subset of the unit sphere in V = L2([0, 1]); see [20].

• A model for closed immersed curves c : S1 → R2; using an appropriate transformation
the Riemannian Manifold is isometric to a subset of the Stiefel Manifold St(V, 2);
see [25, 24, 21] .
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Figure 1: Stocastic minimization of curve-based segmentation energy, from [10]. At
the left pane , three curves: the blue curve is the best result so far; in green and red,
stochastic steps. In center pane, the current examined region for segmentation. In the
right pane: the image to be segmented, with curves superimposed.

Since the sphere in the first model is the special case St(1, V ), we are in both cases
interested in infinite dimensional Stiefel Manifolds. In both cases, the space of smooth
immersions is completed to a larger space of absolutely continuous curves, so that the
“shape space” is now St(p, V ).

Since stochastic methods play an important role in applications, we are then lead to
investigate them in St(p, V ). In particular, in [10] a stochastic minimization method was
developed to seek numerically global minima for a task of image segmentation; curves
would stochastically evolve by a scheme resembling the “random walk on manifold”
presented later in Section 6; a pruning method (inspired by simulated annealing) would
drive the random walk towards a global minimum: see Figure 1. In [21] a stochastic
method was developed in St(2, V ), similar to the classical Kalman filtering, to track a
moving object.

A question remained open: could the numerical methods in [10] and in [21] be
explained as a space and time discretization of an (yet to be understood) infinite
dimensional stochastic method in St(2, V )? Space discretization would not pose a
problem, since it can be argued that St(p, V ) can be approximated by St(p,RN ) for N
large (using e.g. Fourier series). There remain thus this question: does a discrete time
random walk in St(p, V ) somehow approximate a time continuous stochastic process in
St(p, V )? More in general: how can we define probabilities and stochastic methods in
St(p, V )? Some positive and negative results were found in [2]. In this paper we will
eventually provide a positive result in Theorem 7.3: the discrete time random walk on
St(p, V ) can indeed converge to a time continuous process, when the time partition gets
finer and finer. In the spirit of the Donsker’s Theorem, this is a first step to an operative
definition of “Brownian Motion” on St(p, V ). In this paper we will not prove that there is
an unique possible limit, neither will we characterize its property: this is left for a future
paper. Eventually all of the above will provide a sound foundation for methods such as
the ones in [10] and in [21].
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3 Definitions

Let H be a separable Hilbert space. We agree that variables n,m, h, k, i, j, l are
natural numbers. We will use the theory of “nets” ; in this paper a net is a function whose
domain is a partially ordered directed set with no maxima (abbreviated to “dposet” in
the following): see [18] for details and properties.

3.1 Measures

Definition 3.1. Given measurable spaces (X1,Σ1) and (X2,Σ2), a measurable mapping
f : X1 → X2 and a measure µ : Σ1 → [0,+∞], the push forward of µ is defined to be the
measure f♯µ : Σ2 → [0,+∞] given by

f♯µ(B) = µ
(
f−1(B)

)
for all B ∈ Σ2 .

The push forward measure is denoted also as f∗µ , µ ◦ f−1, or f#µ.

Definition 3.2 (Law a.k.a. Distribution). If (Ω,F ,P) is a probability space and Y : Ω →
X2 is a r.v. and γ is a probability measure on (X2,Σ2), we will write

Y ∼ γ when γ = Y♯P ,

we will say that γ is the law or the distribution of Y ; similarly for Y,Z : Ω → X2

Y ∼ Z when Y♯P = Z♯P .

We will use the narrow convergence. 5

Definition 3.3 (Narrow Convergence ). Let S be a Hausdorff topological space. Given a
net of Radon measures µα, µ on S, for α ∈ A a dposet, we will say that µα → µ narrowly
if

∀f ∈ Cb(S) , lim
α

∫
S

f(x) dµα(x) =

∫
S

f(x) dµ(x) .

We agree on this (non standard) definition.

Definition 3.4. Let T be a dposet, and S be a Hausdorff topological space. Let µτ be a
net of Radon measures on S: it is tight if ∀ε > 0 there is a compact set C ⊆ S such that

lim sup
τ∈T

µτ (S \ C) ≤ ε .

Let Xτ a net of r.v. taking values in S, for τ ∈ T: it is tight if the net of laws µτ = Xτ
♯P is

tight.

3.2 Probability setting

Hypotheses 3.5. We fix a constant ct > 0 that will be used to bound temporal finess
and a constant c3 > 0 that will be used to control exponential decay. 6

We will use a Borel measure γ on H satisfying:

• ∫
H

∥x∥4e4c3ct∥x∥ dγ(x) <∞

• γ is centered ∫
H

xdγ(x) = 0 ;

5Other text call this convergence in distribution or weak convergence.
6The constants c3, ct will appear again in subsequent hypotheses.
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• There is 7 a linear compact symmetric injective operator K : H → H such that
γ(K(H)) = 1 and

• ∫
H

∥K−1x∥4 dγ(x) <∞ .

All the above hold true when γ = N(0, Q) a Gaussian measure (as defined in next
section): see Proposition 3.6 and Remark 5.2.

Let γ be such a probability on H. We need a Probability Space, so that we have i.i.d.
r.v. Yt : Ω → H each with distribution Yt♯P = γ, for t ∈ Q; to this end we may set

Ω = ×t∈QH , F , P = ⊗t∈Qγ ;

where F is the σ-algebra generated by null sets of P and by B(Ω), the Borel σ-algebra.

Proposition 3.6. For any c ∈ [0, 4c3], α ∈ [0, 4] there is a constant c̃ = c̃(α, c, ct) > 0 such
that for all δ ∈ [0, ct],

E[g(δ∥Yt∥)] ≤ c̃δα ,

where g(s) = sαecs. (The proof is in Section B )

3.3 Gaussian measures

Let H be a separable Hilbert space.

Definition 3.7. Suppose that a ∈ H and Q : H → H is a linear symmetric trace-
class operator such that the quadratic form ⟨x,Qx⟩H is non negative. We recall that
γ = N(a,Q) is a Gaussian measure in the Hilbert space H when the characteristic
function (or Fourier transform) is

∀f ∈ H ,

∫
H

ei⟨f,x⟩ dγ(x) = exp

(
i⟨a, f⟩ − 1

2
⟨x,Qx⟩H

)
(Theorem 2.3.1 in [6]; Section 1.5 in [9]). The mean and variance are characterized by

⟨f, a⟩ =
∫
H

⟨f, x⟩ dγ(x) (3.1)

⟨f,Qg⟩H =

∫
H

⟨f, x− a⟩ ⟨g, x− a⟩ dγ(x) (3.2)

for all f, g ∈ H. In particular γ is called centered when a = 0 and non-degenerate when
the variance has empty kernel.

The proposition 3.6 is true for Gaussian Measures.

Proposition 3.8. Let c ≥ 0, α > 0 and let g(s) = sαecs, suppose Y ∼ N(0, Q) then there
is a c̃ = c̃(α, c,Q, ct) > 0 such that for 0 ≤ δ ≤ ct

E[g(δ∥Y ∥)] ≤ c̃δα .

(The proof is in Section B )

7The last two requests are loosely connected to what is explained in Example 3.8.13 in [6].
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3.4 Random walk

As aforementioned, in this paper a net is a function whose domain is a partially
ordered directed set with no maxima (abbreviated to “dposet” ). We will use these
dposets.

Definition 3.9. We fix a constant ct > 0, the same constant as in Hypotheses 3.5.

1. Let
τ = {t0 = 0 < t1 < t2 . . .} ⊂ Q

be such that
lim
n→∞

tn = ∞ , sup
n

(tn+1 − tn) ≤ ct .

Let T be the dposet of all such τ , ordered by inclusion.

2. Let T > 0 we define TT be the dposet of all τ of the form

τ = {t0 = 0 < t1 < t2 < . . . < tn = T}

with t0, t1, . . . tn−1 ∈ Q and again max1≤j≤n(tj − tj−1) ≤ ct. (Note that we do not
require that T ∈ Q ).

We will use T for processes with t ∈ R+ = [0,∞); while we will use TT for processes
with t ∈ [0, T ]. We will actually define all processes as in the first case, for simplicity; but
then, up to restricting t ∈ [0, T ], we will study tightness using τ ∈ TT .

Let H be a separable Hilbert space.

Definition 3.10. We will need a Borel map

D : H2 × (R+)2 → H

continuous in the last argument and such that D(x, v, t, 0) = x .
Each random walk is a process Xτ = (Xτ

t )t≥0 taking values in H.
We fix X0 a random variable taking values in H, independent of all Yt.
To define Xτ we define auxiliary processes Xτ

n for n ∈ N; where we define Xτ
0 = X0,

and we define recursively

Xτ
(n+1) = Xτ

n +D (Xτ
n , Ytn , tn , (tn+1 − tn)) (as in (1.1);)

then we interpolate using

Xτ
t = Xτ

n +D (Xτ
n , Ytn , tn , (t− tn)) (as in (1.2))

for tn ≤ t ≤ t(n+1); so each trajectory t 7→ Xτ
t (ω, t) is continuous; hence each Xt is a r.v.

taking value in C(R+;H), the Frechét space of continuous functions x : R+ → H with
R+ = [0,∞).

Proposition 3.12 (Filtration). Let Ft be the σ-algebra generated by X0 and by Ys for
s < t (augmented with the null sets of P ). The process Xτ

n for tn ≤ t is Ft-measurable.
The process Xτ

s for s ≤ t is Ft-measurable.

Remark 3.13. The choice of interpolation (1.2) has a beneficial effect: suppose T is
positive but T /∈ τ ; define τ̂ = (τ ∪ {T}) ∩ [0, T ] so τ̂ ∈ TT , then

Xτ̂
t = Xτ

t ∀t ≤ T .

This means that, up to adding T to τ , we can consider any process defined above as a
process Xτ

t for t ∈ [0, T ] and τ ∈ TT . (Note that we do not require that T ∈ Q ).
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We recall that C(I;H) is a complete separable metric space; so when the topology
associated C(I;H) is the narrow topology and the family is tight (as defined in Definition 3.4),
by Prokhorov’s theorem8 the set of limit points is not empty. When I = [0, T ] this can
also be explained using sequences.

Lemma 3.14. Let T > 0, I = [0, T ]; let q0 = 0, q1 = T and

{q2, q3, . . .} = (0, T ) ∩Q

be an enumeration, let
θn = {q0, q1, . . . , qn}

then for n ≥ 2 the sequence (θn)n is cofinal in TT . So the limit points⋂
τ̂∈TT

{Xτ : τ̂ ⊆ τ} (3.3)

along TT coincide with the limit points⋂
n∈N

{Xθk : k ≥ n} (3.4)

along the sequence (θn)n. Similarly limits, limsup, liminf, tightness, etc, can be defined
using that sequence (θn)n.

A similar result does not hold for T.

Proposition 3.15. There does not exist a cofinal sequence f : N→ T. (The proof is in
Appendix B).

3.5 Manifold

Suppose M is a manifold smoothly embedded in H; we consider it as a Riemannian
Manifold, since it inherits the scalar product from H. For x ∈M,v ∈ TxM we denote by
expx(v) the exponential map. We require that M be a closed subset, so it is geodetically
complete. We consider TxM as a linear subspace of H, not as its affine translation
containing x. For x ∈ M we define the orthogonal projection πTxM : H → TxM ; note
that πTxM is symmetric that is πTxM = π∗

TxM
; we will call Px = πTxM for simplicity.

3.5.1 Random walks on manifolds

In this case each random walk is a process Xτ = (Xτ
t )t≥0 taking values in M . We fix

Xτ
0 a random variable taking values in M , independent of all Yt. We define recursively

Xτ
0 = Xτ

0 and
Xτ

(n+1) = expXτ
n

(√
(tn+1 − tn)PXτ

n
Ytn
)

Then again we define Xτ by interpolating along geodesics

Xτ
t = expXτ

n

(√
(t− tn)PXτ

n
Ytn
)

for tn ≤ t ≤ t(n+1); and again t 7→ Xτ
t is continuous. If, for x ∈M,y ∈ H, we let

D(x, y, t, s)
def
= expx

(√
sPxy

)
− x (3.5)

then we obtain the same definition as in the previous section 3.4; so all comments and
results apply to this case as well. Note that, in the words of Section 2.2.3, PxYt is the
source of “white noise” that we are using to drive the random walk. We will come back
to to manifolds in Section 6 and to Stiefel Manifolds in Section 7

8See the version of Prokhorov’s theorem in Theorem 4.16 in [18].
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4 Tightness by Ascoli-Arzelà Theorem

In the following, for ψ : R→ R, “monotonic” means monotonically weakly increasing
that is s ≤ t⇒ ψ(s) ≤ ψ(t).

Definition 4.1. Let I ⊆ R an interval, E a normed vector space, for x : I → E uniformly
continuous and η > 0 we define the modulus of continuity

ωI,E(x, η)
def
= sup{∥x(t)− x(s)∥E : t, s ∈ I, |t− s| ≤ η} ;

note that ωI,E(x, ·) is continuous, sub-additive, monotonic, and ωI,E(x, 0) = 0.

We recall that a set is called pre-compact if its closure is compact. We will use this
version of Ascoli-Arzelà Theorem. (Recall that if I is compact then C(I;S) = Cb(I;S))

Theorem 4.2. Suppose H is a Banach space. Let I ⊆ R be a compact interval. Let
F ⊆ C(I;H) be a family of continuous functions x : I → H . Consider these two clauses:

• there is J ⊆ I countable dense subset such that for each t ∈ J there exists a
pre-compact set Ct ⊂ H such that ∀x ∈ F, x(t) ∈ Ct ;

•
lim
η→0

sup
x∈F

ωI,H(x, η) = 0 .

The above two clauses hold if and only if F is pre-compact in C(I;H).

For probability theory we transform the above as follows.

Theorem 4.3. Suppose H is a Banach space. Let I = [0, T ]. Suppose that Xα : Ω →
C(I;H) is a net of processes (with α ∈ A) such that

• ∀ε > 0 there exists a countable set J = {a0, a1, . . . aj . . .} dense in I and compact
sets Cj ⊂ H such that

∀α ∀j, P{Xα(aj) /∈ Cj} ≤ ε2−j (4.1)

• ∀ε0 > 0, ∀ε1 > 0, ∃η > 0,∃α0 ∈ A such that

∀α ∈ A,α ≥ α0 ⇒ P {ωI,H(Xα, η) ≥ ε0} ≤ ε1 (4.2)

then the sequence Xα is tight9 in C(I;H).

Proof. Fix ε > 0, ε0 > 0, ε1 > 0, let F ⊆ C(I;H) be the set of all x such that

∀j, x(aj) ∈ Cj

and ωI,H(x, η) < ε0. Then ∀α ≥ α0 we have

P(Xα /∈ F ) ≤ 2ε+ ε1 .

Remark 4.4. The second hypothesis (4.2) may be reformulated as

∀ε0 > 0 , lim
η→0

lim sup
α

P {ωH(I,Xα, η) ≥ ε0} = 0 (4.3)

since ω is monotonic in η.

9See Definition 3.4.

Page 12/35



Tightness of Random Walks

5 Tightness of random walks

Let again H be a separable Hilbert space. The purpose of this section is to state and
prove the Theorem 5.5 on tightness of random walks in H.

5.1 Tightness operator

Let γ be as defined in Hypotheses 3.5. We required in Hypotheses 3.5 that there
is K : H → H a linear symmetric compact injective operator such that γ(K(H)) = 1,
equivalently

P(Yt ∈ K(H)) = 1 ∀t .

Define now

DK(0, r) = {Kx : x ∈ H , ∥x∥ ≤ r} = K(BH(0, r)) = rK(BH(0, 1))

then

• they are pre-compact (this means that the closures DK(0, r) are compact), and

• ⋃
n

DK(0, n) = K(H)

so

γ

(⋃
n

DK(0, n)

)
= 1 ;

• this means that ∀ε > 0 ∃n such that

γ
(
DK(0, n)

)
≥ 1− ε .

Remark 5.1. Since H is a separable Hilbert space, then every probability measure on it
is Radon hence tight; the above gives us an accessible family of sets for tightness of γ.

Up to rescaling K we will assume that

∀v ∈ H , ∥Kv∥H ≤ ∥v∥H .

Remark 5.2. In general, for any Hilbert space H and Gaussian measure γ = N(0, Q),
such operator K always exists.

5.2 Tightness Theorem

Definition 5.3. Given a linear continuous injective operator K : H → H we define

∥v∥K
def
=

{
∥K−1v∥H if v ∈ K(H)

∞ if v /∈ K(H)
. (5.1)

Similarly for scalar products, for v, w ∈ K(H) we define

⟨v, w⟩K = ⟨K−1v,K−1w⟩K .

Definition 5.4. Given Banach spaces B1, B2, we define L(B1;B2) to be the space of
linear continuous operators A : B1 → B2. If B1 = B2 then we write L(B1)

Theorem 5.5. Let I = [0, T ]. Suppose that the random walks Xτ : Ω → C(I;H) above
defined in Definition 3.10 satisfy
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1. there is a K : H → H a linear compact operator satisfying the requisites in the
previous section and such that

2.
E[∥X0∥4K ] <∞ (5.2)

3. for all x, v ∈ K(H), t ∈ I, s ≥ 0

D(x, v, t, s) ∈ K(H)

4. there is a bounded Borel functional

L(x, t) : H ×R+ → L = L(H;H)

such that ∀x, v ∈ K(H)

L(x, t)v ∈ K(H) ,

5. and there are constants c3, c > 0 such that for all x, v ∈ K(H)

∥L(x, t)∥K ≤ c (∥v∥K + ∥x∥K∥v∥H) ec3∥v∥H (5.3)

(the constant c3 must be the same as in Hypotheses 3.5),

6. and such that, for all x, v ∈ K(H), t ∈ I, s ∈ [0, 1],

∥D(x, v, t, s)−
√
sL(x, t)v∥K ≤ cs

(
∥x∥K∥v∥2H + ∥v∥K∥v∥H

)
ec3

√
s∥v∥H . (5.4)

7. there is a constant cd > 1 such that ∀x, v ∈ H,∀t ∈ R+,∀s ∈ [0, 1]

∥D(x, v, t, s)∥H ≤ cd
√
s∥v∥H , (5.5)

√
s∥v∥ ≤ 1/cd ⇒∥D(x, v, t, s)−

√
sL(x, t)v∥H ≤ cds∥v∥2H . (5.6)

Then the family Xτ , for τ ∈ TT , is tight in C(I;H).

To prove this Theorem, we will use Theorem 4.3. The proof is developed in the
following sections.

Remark 5.6. In particular, D(x, v, t, s) is Frechét differentiable in v at v = 0, and the
differential is

√
sL(x, t); and by (5.5) we have

∥L(x, t)∥L ≤ cd , ∀x ∈ H . (5.7)

Remark 5.7. The third hypothesis in 3.5 and the first two hypotheses above imply that

∀t ≥ 0 , P{Xτ
t ∈ K(H)} = 1 .

5.2.1 Corollaries

Corollary 5.8. Suppose that the hypotheses of Theorem 5.5 hold for any T > 0; then
the family Xτ , for τ ∈ T, is tight in C(R+;H).

Proof. We recall this fact. Let T > 0; consider the restriction map

rT : C(R+;H) → C([0, T ];H) (5.8)

given by rT f = f
[0,T ]

; then the topology on C(R+;H) is the initial topology with respect

to the maps rn and the Banach spaces C([0, n];H), for n ∈ N.
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Let ε > 0, for any n ∈ N by Theorem 5.5 there exists a compact set En ⊆ C([0, n];H)

such that

P{Xτ /∈ r−1
n (En)} ≤ ε2−n

let

E = {f ∈ C(R+;H) : ∀n ∈ N, rnf ∈ En}

then (by a diagonal argument) E is precompact in C(R+;H) and

P{Xτ /∈ E} = P{Xτ ∈ Ec} = P

{
Xτ ∈

⋃
n

r−1
n (Ec

n)

}
≤

≤
∑
n

P
{
Xτ ∈ r−1

n (Ec
n)
}
=
∑
n

P {rn ◦ Xτ /∈ En} ≤ 2ε

Since C(R+;H) is a Fréchet space, by Prokhorov’s theorem we obtain this result.

Corollary 5.9. Suppose that the hypotheses of Theorem 5.5 hold for any T > 0; the net
of processes Xτ , as r.v. in the Frechét space C(R+;H), has narrow limit points.

Corollary 5.10. By Lemma 5.18 we have

E[∥Xτ
t ∥4K ] <∞ (5.9)

so the process Xτ
t can be restarted at time t using Xτ

t as initial time.

Suppose that the family Xτ is tight in C(I;H) (with I = [0, T ] or I = [0,∞)) ; then by
Prokhorov’s theorem, the set of limit points is not empty; obviously, being X a random
variable C(I;H), then (almost all) paths are continuous. Something more can be said.

Corollary 5.11. Any limit point X will have a version such that almost all trajectories
t 7→ Xt of X are Hölder continuous functions with an arbitrary exponent smaller than 1/4.

Proof. We use Theorem 4.10 from [18] with p1 < p2 = 4 and use Lemma 5.18 below to
state that

lim
τ
E[∥Xτ

t − Xτ
s∥

p1

H ] = E[∥Xt − Xs∥p1

H ] ≤ c|t− s|p1/2 .

We use the Kolmogoroff test10: we apply it with δ = p1, ε = 1 and replacing

ρ(Z(t), Z(s))δ = ∥Xt − Xs∥p1

H

so there is a version where paths are Hölder continuous functions with an arbitrary
exponent smaller than 1

2 − 1
p1

.

Remark 5.12. At this level of generality, we do not expect that there is an unique limit
point. Consider this example. Going back to the classical Donsker Theorem 2.1, this
time we define the random walk Xτ

t by setting X0 = 0, H = R and D(x, v, t, s) = g(t)v
√
s

where g(t) = 1 if t ∈ Q otherwise g(t) = 2. Then the above Theorem can be applied; but
setting τn = {i/n : j ∈ N}, θn = {πi/n : j ∈ N}, we have

Xτn →n W , Xθn →n 2W

where W is the standard Brownian Motion.

10See Theorem 3.3 in [8], or Theorem 4.1 in [18]
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5.2.2 Proof of 5.5, step 1

In this section we prove that, under the hypotheses of Theorem 5.5, the first hypothesis
in Theorem 4.3 is satisfied. We will use this Lemma in two ways, with K being the
compact operator defined above in the hypotheses of 5.5, but also with K being the
identity.

Lemma 5.13. Let K : H → H a linear injective operator (not necessarily compact). Let
∥v∥K be defined in eqn. (5.1). We assume that for all x, v ∈ K(H), t, s > 0

D(x, v, t, s) ∈ K(H) , L(x, t)v ∈ K(H)

(these are the hypotheses 3 and 4 from the Theorem), but we rewrite hypothesis 6 in
this form: there are constants c1D, c2D ≥ 0 such that for all x, v ∈ K(H), s ∈ [0, 1]

∥D(x, v, t, s)− sL(x, t)v∥K ≤ s
(
c1D∥x∥K∥v∥2H + c2D∥v∥K∥v∥H

)
ec3

√
s∥v∥H . (5.10)

and we rewrite hypothesis 5: there are constants c1L, c2L ≥ 0 such that for all x, v ∈
K(H),

∥L(x, t)v∥K ≤ (c1L∥x∥K∥v∥H + c2L∥v∥K) ec3∥v∥H . (5.11)

Define the following objects: let τ ∈ T; fix m ≥ 0 and 11 F ∈ Ftm with P(F ) > 0;
we will write EF for the expectation computed using the conditional probability P(·|F );
consider n ≥ m; let

em = EF [∥Xτ
m∥2K ] , bn

def
= EF [∥Xτ

n −Xτ
m∥2K ] .

Then we have two theses.

• If c1D = c1L = 0 then

bn ≤
(
ec5(tn−tm) − 1

)
. (5.12)

• Instead if (c1L + c1D) > 0 then

bn ≤ (em + 1)
(
ec5(tn−tm) − 1

)
. (5.13)

where c5 > 0 depends only on c1L, c2L, c1D, c2D, on c̃(4, 4c3) from Prop. 3.6, on K and the
law γ of Yt; but c5 does not depend on em, on F , and on τ .

Remark 5.14. Recall that√
EF [∥Xτ

n∥2K ] ≤
√
EF [∥Xτ

n −Xτ
m∥2K ] +

√
EF [∥Xτ

m∥2K ]

(or otherwise using Lemma A.1) we get

EF [∥Xτ
n∥2K ] ≤ (

√
em +

√
bn)

2 ≤ 2(em + bn) . (5.14)

Proof of Lemma 5.13. For t ≥ tm we define

aK,α = EF [∥Yt∥αK ] = E[∥Yt∥αK ] , aα = EF [∥Yt∥α] = E[∥Yt∥α] . (5.15)

where the equality derives by independence; by Hypotheses 3.5 these are finite for
α ≤ 4. For readability, we write Xn instead of Xτ

n, we write X̃n instead of Xτ
n −Xτ

0 and
δn = tn+1 − tn; we abbreviate

Dn =D
(
Xn , Ytn , tn ,

√
δn

)
, (5.16)

An =Dn −
√
δnL(tn , Xn)Ytn . (5.17)

11Recall from Lemma 3.12 that Ft is the σ-algebra generated by X0 and by Ys for s < t.
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By (5.14) and (5.10) using Lemma A.1 and Lemma 3.6, when c3 > 0

EF [∥An∥2K ] ≤2c21DδnEF

[
∥Xn∥2K∥Ytn∥4He2c3

√
δn∥Ytn∥H

]
+ (5.18)

2c22DδnEF

[
∥Ytn∥2K∥Ytn∥2He2c3

√
δn∥Ytn∥H

]
≤

≤2c21DEF

[
∥Xn∥2K

]
E

[
∥
√
δnYtn∥4He2c3∥

√
δnYtn∥H

]
+

2c22Dδn

√
E [∥Ytn∥4K ]

√
E

[
∥
√
δnYtn∥4He4c3∥

√
δnYtn∥H

]
≤

≤δ2n
(
4c21D(bn + em)c̃(4, 2c3) + 2c22D

√
c̃(4, 4c3) a4,K

)
Summarizing we have

EF [∥An∥2K ] ≤ δ2nc
2
4(c

2
1D(bn + em) + 1) . (5.20)

where c4 depends only on c2D, c3, on c̃ from Corollary 3.6, on ct > 0 from Hypotheses 3.5
and Definition 3.9; but but c4 does not depend on F , on c1D and τ .

Similarly using (5.11)

δnEF [∥L(Xn, t)Ytn∥2K ] ≤2c21LδnEF

[
∥Xn∥2K∥Ytn∥2He2c3

√
δn∥Ytn∥H

]
+ (5.21)

2c22LδnE
[
∥Ytn∥2Ke2c3

√
δn∥Ytn∥H

]
≤

≤2c21LEF

[
∥Xn∥2K

]
E

[
∥
√
δnYtn∥2He2c3∥

√
δnYtn∥H

]
+

2c22Lδn

√
E [∥Ytn∥4K ]

√
E

[
e4c3∥

√
δnYtn∥H

]
≤

≤δn
(
4c21L(bn + em)c̃(2, 2c3) + 2c22L

√
c̃(0, 4c3) a4,K

)
summarized to

δnEF [∥L(Xn, t)Ytn∥2K ] ≤δnc24(c21L(bn + em) + 1) , (5.22)

possibly enlarging c4, that now depends also on c2L.
We estimate iteratively. We begin by expressing

∥X̃n+1∥2K = ∥Dn + X̃n∥2K = ∥X̃n +
√
δnL(Xn, t)Ytn +An∥2K =

= ∥X̃n∥2K + δn∥L(Xn, t)Ytn∥2K + ∥An∥2K+

+ 2
√
δn⟨X̃n, L(Xn, t)Ytn⟩K + 2⟨X̃n, An⟩K+

+ 2
√
δn⟨An, L(Xn, t)Ytn⟩K

we then compute the expectation; we note that

EF [⟨X̃n, L(Xn, t)Ytn⟩K ] = 0

because Ytn has zero average and is independent of F , of Xn and Xm; whereas

EF [∥X̃n∥2K ] =bn

δnEF [∥L(Xn, t)Ytn∥2K ] ≤δnc24(c21L(bn + em) + 1)

EF [∥An∥2K ] ≤δ2nc24(c21D(bn + em) + 1)

EF [⟨An,
√
δnL(Xn, t)Ytn⟩K ] ≤

√
EF [∥An∥2K ]

√
EF [δn∥L(Xn, t)Ytn∥2K ]

≤ δ3/2n c24(c
2
1(bn + em) + 1)

EF [⟨X̃n, An⟩K ] ≤
√
bn

√
EF [∥An∥2K ]
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where c1 = max{c1L, c1D}.
In this last line, if c1D = c1L = 0 then again we use

√
s ≤ s+ 1 and (5.20) so

EF [⟨X̃n, An⟩K ] ≤
√
bn

√
EF [∥An∥2K ] ≤ δnc4

√
bn ≤ δnc4(bn + 1)

so (recalling that δn ≤ ct, the constant from Hypotheses 3.5 ) we estimate as follows

bn+1 ≤ bn + c5δn(1 + bn) = bn(1 + c5δn) + c5δn (5.23)

which, by the Lemma A.5 (shifting the sequence), implies (5.12).
Instead if c1 > 0 we note that

s(c21s+ 2a) ≤ c21s
2 + 2as+ a2/c21 = (c1s+ a/c1)

2

hence using (5.20) and setting s = bn, a = (c21em + 1)/2

EF [⟨X̃n, An⟩K ] ≤ δnc4
√
bn

√
(c21(bn + em) + 1) ≤ δnc4

(
c1bn + c1

em
2

+
1

2c1

)
(5.24)

Eventually we estimate as follows

bn+1 ≤ bn

(
1 + c5δn

)
+ c5δn

(
em + 1

)
(5.25)

which, by the Lemma A.5 (shifting the sequence), implies (5.13).

Corollary 5.15. Let m = 0, F = Ω, then by (5.14) and (5.13) we obtain that

E[∥Xτ
n∥2K ] ≤ (e0 + 1)ec5tn

with e0 = E[∥X0∥2K ] <∞, assuming hypothesis (5.2); moreover as explained in Remark 3.13
we have

E[∥Xτ
t ∥2K ] ≤ (e0 + 1)ec5t

for all t ≥ 0.

Conclusion of step 1 . So to conclude the first step, we consider a process Xτ and a time
T > 0; let ε > 0, for 0 ≤ t ≤ T, r > 0 we have then by Markov inequality

P{∥Xτ
t ∥K ≥ r} ≤ E[∥Xτ

t ∥2K ]

r2
≤ 1

r2
cK

with
cK = (e0 + 1)ec5T

so setting rj =
√
(cK2j/ε)

P{Xτ
aj
/∈ DK(0, rj)} < ε2−j

and this satisfies the first hypothesis in Theorem 4.3.

5.2.3 Proof: Lemmas for step 2

In this section we prove some powerful Lemmas that then will be used to prove that the
second hypothesis in Theorem 4.3 is satisfied.

Remark 5.16. Consider hypothesis 7 in Theorem 5.5; note that, for s ∈ [0, 1], by equations
(5.5) and (5.7),

∥D(x, v, t, s)−
√
sL(x, t)v∥H ≤ ∥D(x, v, t, s)∥H + ∥

√
sL(x, t)v∥H ≤ 2cd

√
s∥v∥H ≤ 2c2ds∥v∥2H

for
√
s∥v∥ ≥ 1/cd so adding (5.6) we obtain

∀x, v ∈ H,∀s ∈ [0, 1], t ≥ 0 , ∥D(x, v, t, s)−
√
sL(x, t)v∥H ≤ 2c2ds∥v∥2H . (5.26)
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Lemma 5.17. Assume hypothesis 7 in Theorem 5.5; define the objects as in Lemma 5.13,
with K being the identity, recall that in this case

bn
def
= EF [∥Xτ

n −Xτ
m∥2H ] ;

then for n ≥ m

bn ≤
(
ec5(tn−tm) − 1

)
. (5.27)

In particular for 0 ≤ tm ≤ tn ≤ T we have

bn ≤ c6(tn − tm) . (5.28)

Proof. Use Remark 5.16 and Remark 5.6; apply Lemma 5.13 with K being the identity,
c1L = c1D = c3 = 0, c2L = c2D = 2c2d; we obtain the constant c5 > 0 and hence we set
c6 = c5e

c5T .

Lemma 5.18. Assume hypothesis 7 in Theorem 5.5; We fix τ ∈ T; we fix m ≥ 0 and
F ∈ Ftm ; we will write EF for the expectation computed using the conditional probability
P(·|F ); consider n ≥ m; letting

bn
def
= EF [∥Xτ

n −Xτ
m∥2H ] ,

suppose that there is a constant c6 such that

bn ≤ c6(tn − tm) . (5.29)

for 0 ≤ tm ≤ tn ≤ T (as in (5.28)) and eventually let

qn
def
= EF [∥Xτ

n −Xτ
m∥4H ] .

We prove that, for 0 ≤ tn ≤ tm ≤ T ,

qn ≤ (c7 + 2c8)g(tn − tm) (5.30)

where

g(t) =
ec7t − 1− c7t

c27
. (5.31)

and where c8, c7 depend only on c6, cd and the fourth moment of Yt.

Proof of Lemma. For t ≥ tm we define

aα = EF [∥Yt∥α] = E[∥Yt∥α]

where the equality derives by independence.
Again, for readability, we write Xn instead of Xτ

n, and X̃n instead of Xτ
n − Xτ

m,
δn = tn+1 − tn and

Dn = D
(
Xn , Ytn , tn ,

√
δn

)
and ∥x∥ = ∥x∥H . We compute

∥X̃n+1∥4 = ∥X̃n +Dn∥4 =
(
∥X̃n∥2 + 2

〈
X̃n, Dn

〉
+ ∥Dn∥2

)2
=

= ∥X̃n∥4 + 4
〈
X̃n, Dn

〉2
+ ∥Dn∥4 + 4∥X̃n∥2

〈
X̃n, Dn

〉
+ 4

〈
X̃n, Dn

〉
∥Dn∥2 + 2∥X̃n∥2∥Dn∥2

then we compute integrals; for the fourth term, since

EF

[
∥X̃n∥2

〈
X̃n, L(Xn, tn)Ytn

〉]
= 0

Page 19/35



Tightness of Random Walks

by independence, then

EF

[
∥X̃n∥2

〈
X̃n, Dn

〉]
= EF

[
∥X̃n∥2

〈
X̃n, Dn −

√
δnL(Xn, tn)Ytn

〉]
(5.32)

so by (5.26)∣∣∣EF

[
∥X̃n∥2

〈
X̃n, Dn

〉]∣∣∣ ≤ EF

[
∥X̃n∥3∥Dn −

√
δnL(Xn, tn)Ytn∥

]
≤

≤ 2c2dδnEF

[
∥X̃n∥3∥Ytn∥2

]
=

= 2c2dδnEF

[
∥X̃n∥3

]
E
[
∥Ytn∥2

]
≤

≤ 2c2dδna2

√
EF

[
∥X̃n∥2

]
EF

[
∥X̃n∥4

]
≤

≤ 2c2dδna2
√
qn
√
bn

(again by using independence in the third step). For the other terms, using (5.5),

EF

[〈
X̃n, Dn

〉2]
≤EF

[
∥X̃n∥2∥Dn∥2

]
≤

≤ c2dEF

[
∥X̃n∥2∥

√
δnYtn∥2

]
≤ c2da2bnδn ,

EF

[
∥Dn∥4

]
≤c4da4δ2n ,

EF

[〈
X̃n, Dn

〉
∥Dn∥2

]
≤EF

[
∥X̃n∥∥Dn∥3

]
≤

≤ c3dδ
3/2
n EF

[
∥X̃n∥∥Yn∥3

]
≤ c3da3

√
bnδ

3/2
n ,

Eventually we use bn ≤ c6tn and note that tn ≥ δn then tnδn ≥
√
tnδ

3/2
n and tnδn ≥ δ2n;

hence (defining c7, c8 > 0 appropriately), summarizing

qn+1 ≤ qn + (c7
√
qntn + c8tn)δn

using Lemma A.3 (shifting the sequence) we obtain (5.30).

We recall Etemadi’s inequality [13] in the version of Theorem 22.5 in [4].

Lemma 5.19 (Etemadi’s inequality). Suppose that Sn is a process taking value in
normed space, and it is the sum Sn = Y1 + · · ·+ Yn of i.i.d. r.v. (Yn)n; then for ε > 0 we
have

P

(
max
1≤k≤l

|Sk| ≥ 3ε
)
≤ 3 max

1≤k≤l
P
(
|Sk| ≥ ε

)
.

This is a keys step in the proof of Donsker Theorem, but we cannot use it in this form.
To conclude the proof of Theorem 5.5 we need to prove a similar result, adapted to our
process and hypotheses.

Lemma 5.20. In the hypotheses of Theorem 5.5, with τ ∈ T (as in previous Lemmas),
we fix T, ε > 0, we fix l ≥ m > 0 integers such that tl ≤ T , then

P

(
max

m≤k≤l
∥Xτ

k −Xτ
m−1∥ > 3ε

)
≤ c10

ε4
g(tl − tm−1) (5.33)

where again g was defined in (5.31); and c10 depends only on the constants in previous
Lemmas.
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Proof. Let X = Xτ for simplicity, and

X̃k = Xk −Xm−1 ,

note that

X̃n − X̃j = Xn −Xj .

Let

Am =
{
∥X̃m∥ > 3ε

}
and for j = m+ 1, . . . l let

Aj =

{
max

m≤i≤j−1
∥X̃i∥ ≤ 3ε ∧ ∥X̃j∥ > 3ε

}
so

l⋃
j=m

Aj =

{
max

m≤k≤l
∥X̃k∥ > 3ε

}
then, further disintegrating,

P

(
max

m≤k≤l
∥X̃k∥ > 3ε

)
≤ P

(
∥X̃l∥ ≥ ε

)
+

l∑
j=m

P

(
Aj ∩ {∥X̃l∥ < ε}

)
≤

≤ P

(
∥X̃l∥ ≥ ε

)
+

l∑
j=m

P (Aj ∩ {∥Xl −Xj∥ > 2ε}) =

= P

(
∥X̃l∥ ≥ ε

)
+

l∑
j=1

P(Aj)P ({∥Xl −Xj∥ > 2ε} | Aj)

by Markov

P ({∥Xl −Xj∥ > 2ε} | Aj) ≤
1

24ε4
E
[
∥Xl −Xj∥4 | Aj

]
.

We use Lemma 5.17 withK the identity and F = Aj ; note that indeed Aj ∈ Ftj ; having set
T > 0 we obtain (5.27) that is (5.29). So (5.29) is satisfied and we can apply Lemma 5.18
to obtain the eqn. (5.30) in the thesis in Lemma 5.18, that we rewrite as

E
[
∥Xn −Xj∥4 | Aj

]
≤ (c7 + 2c8)g(tn − tj) . (5.34)

Plugging it all in

l∑
j=m

P(Aj)P ({∥Xl −Xj∥ > 2ε} | Aj) ≤
1

24ε4
(c7 + 2c8)g(tl − tm−1)

l∑
j=m

P(Aj) .

Similarly we deal with the first term P

(
∥X̃l∥ ≥ ε

)
.

We then prove the same result for the process Xτ .

Corollary 5.21. In the hypotheses of the previous Lemma, fix ε > 0, then for tm ∈ τ and
tm ≤ s ≤ T

P

(
sup

tm<t≤s
∥Xτ

t − Xτ
tm∥ > 3ε

)
≤ c10

ε4
g(s− tm) (5.35)
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Proof. Fix τ ∈ TT and tm ∈ τ . For tm ≤ s ≤ T let

Aτ
s = As

def
=

{
sup

tm≤t≤s
∥Xτ

t − Xτ
tm∥ > 3ε

}
then

As =

{
sup

tm≤t≤s , t∈Q
∥Xτ

t − Xτ
tm∥ > 3ε

}
since trajectories are continuous. Then for s1 < s2 we have As1 ⊆ As2 and moreover⋃

s1<s2

As1 = As2

again using the fact that trajectories are continuous; hence we obtain left-continuity

sup
s1<s2

P(As1) = lim
s1→s2−

P(As1) = P(As2) .

As noted in Remark 3.13 if t̂ > 0 (and not necessarily t̂ ∈ Q ), if we add t̂ to τ and obtain
τ̂ = τ ∪ {t̂} then

Xτ̂
t = Xτ

t ∀t ≤ t̂ ,

so
Aτ̂

t = Aτ
t ∀t ≤ t̂ ,

but then we can apply the previous Lemma and the above left-continuity to say that

P(Aτ̂
t ) = P(Aτ

t ) ≤
c10
ε4
g(t− tm) .

We recall this other fundamental Lemma (that is key to Theorem 8.3 in [5]).

Lemma 5.22. Suppose E is a normed vector space, I = [a, b]; let η, ε, v > 0 with v ∈ N;
suppose µ is a probability measure on the space C = C(I;E), let a = s0 < s1 < . . . sv =

b ∈ I with
(si+1 − si) ≥ η for i = 2, . . . v − 2 (5.36)

then

µ
{
x ∈ C : ω(x, η) ≥ 3ε

}
≤

v−1∑
i=0

µ

{
x ∈ C : sup

si≤s<si+1

∥x(s)− x(si)∥E ≥ ε

}
(5.37)

(For the proof, see the Corollary after Theorem 8.3 in [5]). Note that the inequality
(5.36) need not hold for i = 1, i = v − 1.

5.2.4 Proof of 5.5, step 2

Now that we have proved the powerful Lemmas, we prove the second hypothesis in
Theorem 4.3, that is eqn. (4.2); to this end, we fix ε0 > 0, ε1 > 0; there is an η > 0 with
η ∈ Q, η < ct, η < T/2 such that

94⌈T/η⌉c10
g(η)

ε40
< ε1 (5.38)

where g was defined in eqn. (5.31) in Lemma 5.18; eqn. (4.2) will be satisfied with
A = TT and

α0 = τ0 = {ηi : 0 ≤ i < v} ∪ {T} . (5.39)
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where v = ⌈T/η⌉.
Let ε = ε0/9. Define for convenience si = ηi (that are equispaced for i < v ) while

sv = T . Consider any τ ⊇ τ0; let Xτ be a process; by (5.37)

P
{
ω(Xτ , η) ≥ 9ε

}
≤

v−1∑
i=0

P

{
sup

si≤t<si+1

∥Xτ (t)− Xτ (si)∥H ≥ 3ε

}
(5.40)

For the terms in the sum in (5.40) we use our version (5.35) of Etemadi’s estimate to
obtain

P
{
ω(Xτ , η) ≥ 9ε

}
≤

v−1∑
i=0

P

{
sup

si≤t<si+1

∥∥Xτ
t − Xτ

si

∥∥
H
> 3ε

}
≤ v

c10
ε4
g(η) < ε1 (5.41)

by (5.38). So we have satisfied the second hypothesis of Theorem 4.3, in the form
expressed in eqn. (4.3).

This concludes the proof of Theorem 5.5.

6 Results on manifolds

6.1 Hypotheses for manifolds

We again define, for v ∈ K(H), ∥v∥K
def
= ∥K−1v∥H as in Definition 5.3; similarly for

scalar products. The following Theorem uses the following hypotheses on the manifold
M and its embedding in H. Let expx v be the exponential mapping of M . For convenience
we denote by Px : H → TxM the orthogonal projection Px = πTxM .

Hypotheses 6.1. We assume what follows.

1. The manifold M is isometrically embedded in the Hilbert space H and it is a closed
subset of it.

2. The second fundamental form of the embedding of the manifold M is uniformly
bounded.

We suppose that there exists a compact operator K satisfying the requisites in the
previous section 5.1, and constants ce, cp > 0, such that:

3.
P{X0 ∈M} = 1

and
E[∥X0∥4K ] <∞ . (6.1)

4. If x ∈M ∩K(H) and v ∈ K(H) then Pxv ∈ K(H)

5. and
∥Pxv∥K ≤ cp (∥v∥K + ∥x∥K∥v∥H) ; (6.2)

6. if x ∈M ∩K(H) and v ∈ TxM ∩K(H) then expx v ∈M ∩K(H)

7. and
∥(expx v)− (v + x)∥K ≤ ce

(
∥x∥K∥v∥2H + ∥v∥K∥v∥H

)
ec3∥v∥H . (6.3)

The second hypothesis can be reformulated as follows.

Proposition 6.2. The following are equivalent:

1. The second fundamental form of the embedding of manifold M is uniformly
bounded.

2. ∃ce > 0 such that ∀x ∈M , ∀v ∈ TxM ,

∥v∥H ≤ 1/ce ⇒ ∥(expx v)− (v + x)∥H ≤ ce∥v∥2H . (6.4)
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6.2 Tightness of random walk

Theorem 6.3. Consider the random walks Xτ defined as in Section 3.5.1; restrict each
Xτ

t to t ∈ I = [0, T ]. Under Hypotheses 6.1, these Xτ , for τ ∈ TT , are a tight family in
C(I;M).

Since this Theorem is proved using Theorem 5.5, then all corollaries of the latter
hold also for the former. We have moreover this result.

Corollary 6.4. Any limit point X of Xτ is a process taking values in C(I;M) a.s.

Proof. Since M ⊂ H was assumed to be closed, then C(I;M) is a closed subset of
C(I;H); by construction Xτ

t ∈M for all t ∈ I, hence

P(Xτ ∈ C(I;M)) = 1

so by Alexandrov’s Theorem 12

P(X ∈ C(I;M)) = 1 .

Remark 6.5. Nothing is specifically “infinite dimensional” in this approach: this theorem
can be applied to finite dimensional manifolds as well. Recall that, by Nash embedding
theorems, any finite dimensional Riemannian manifold can be isometrically embedded in
H = RN ; and in this case we set K to be the identity; moreover (6.2) is trivially true. We
then require that

P{X0 ∈M} = 1 , E[|X0|4] <∞ ; (6.5)

then we require the bound on the second fundamental form, that implies (6.4) that in
turn implies (6.3) (see Remark 5.16): under this conditions Theorem 6.3 holds.

Proof of Theorem 6.3. As in eqn. (3.5) in Section 3.5.1 we define

D(x, y, t, s)
def
= expx

(√
sPxy

)
− x (seen in (3.5))

and we define
L(x, t)v = Pxv (6.6)

In this way, the random walk on the manifold can be seen as a special case of a
random walk in H. We recall the following hypothesis 7 for Theorem 5.5:

∥D(x, v, t, s)∥H ≤ cd
√
s∥v∥H , (seen in (5.5))

√
s∥v∥ ≤ 1/cd ⇒∥D(x, v, t, s)−

√
sL(x, t)v∥H ≤ cds∥v∥2H . (seen in (5.6))

The first one, when cd ≥ 1, is true for any embedded manifold, since the length of a curve
is less than the distance between its end points, and ∥Pxv∥H ≤ ∥v∥H . For the second
one, for

√
s∥v∥ ≤ 1/ce we write

∥D(x, v, t, s)−
√
sL(x, t)v∥H = ∥ expx(

√
sPxv)− (

√
sPxv + x)∥H ≤ ces∥Pxv∥2H ≤ ces∥v∥2H

using (6.4) from Proposition 6.2.
For hypothesis 6 for Theorem 5.5: substitute in (6.3) to obtain

∥(expx Pxv)− (Pxv + x)∥K ≤ ce

(
∥x∥K∥Pxv∥2H + ∥Pxv∥K∥Pxv∥H

)
ec3∥Pxv∥H .

then we use ∥Pxv∥H ≤ ∥v∥H again, and we use (6.2) so

∥ expx(Pxv)− (Pxv + x)∥K ≤ ce∥x∥K∥v∥2Hec3∥v∥H + cecp (∥v∥K + ∥x∥K∥v∥H) ∥v∥Hec3∥v∥H =

=
(
ce(1 + cp)∥x∥K∥v∥2H + cecp∥v∥K∥v∥H

)
ec3∥v∥H

then replacing
√
sv for v this last satisfies (5.4) with c = ce(1 + cp). So Theorem 6.3 can

be straightforwardly seen as a corollary of Theorem 5.5.
12In the version in Theorem 3.8.2 in [6], or Theorem 3.5 in [22]; see Theorem 4.5 in [18] for convenience.
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7 Results on Stiefel Manifolds

In the following two sections we will show that the above hypotheses 6.1 are satisfied
when M is the Stiefel manifold: so the family of random walks is tight.

We recall that H = V p. We will use these definitions with E = H or E = H2.

Definition 7.1. If E is a vector space with a scalar product, we agree that, for x, v ∈ Ep,
A = x⊤v is the p× p matrix defined by

Ai,j = ⟨xi, vj⟩E .

We also agree that, given x ∈ Ep and A ∈ Rp×p the right product

y = xA

is the vector y ∈ Ep

yi =

p∑
j=1

xjAj,i .

7.1 Probabilities on Stiefel Manifolds

WhenM = St(p, V ) is a Stiefel Manifold, it will be convenient to build the probabilistic
infrastructure in Sec. 3.2 in this specific way.

Suppose that γ̃ = N(0, Q̃) is a centered non-degenerate Gaussian measure in the
separable Hilbert space V . We will then define the operator Q : H → H by tensor
product

⟨x,Qy⟩H =

p∑
i=1

⟨xi, Q̃yi⟩V

so γ = N(0, Q) is a centered non-degenerate Gaussian measure in the separable Hilbert
space H, given by the measure product

γ = γ̃ ⊗ . . .⊗ γ̃

Equivalently, if we consider x ∈ H as a r.v. with distribution γ, then the columns of x ∈ H

will be independent r.v. each with distribution γ̃.

Proposition 7.2. Given A ∈ O(p), the action

A : H → H , x 7→ xA

maps identically
γ = A♯γ

the probability γ to itself.

7.2 Tightness operator

As noted in Remark 5.2, in the space V starting from Q̃ we can define a compact
operator K̃ : V → V such that K̃−1Q̃K̃−1 is still trace class. We eventually define
K : H → H as

y = Kx when yi = K̃xi (7.1)

So K commutes with the right multiplication by matrixes

(Kx)A = K(xA) (7.2)

defined in Definition 7.1.
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7.3 Tightness in Stiefel Manifolds

Theorem 7.3. Suppose that Yt ∼ N(0, Q) as defined in previous Section 7.1. Consider
random walks Xτ defined as in Section 3.5.1 when M is a Stiefel Manifold, having

P{X0 ∈M} = 1 , E[∥X0∥4K ] <∞

and restrict each Xτ
t to t ∈ I = [0, T ]: these Xτ , for τ ∈ TT , are a tight family in C(I;M).

In the following sections we will indeed show that all Hypotheses 6.1 are satisfied in
Stiefel Manifolds.

Since this Theorem is proved using Theorem 5.5, and this latter using Theorem 6.3,
then all corollaries of 6.3 and 5.5 will hold also for 7.3.

We have moreover this result.

Corollary 7.4. The law of Xτ is invariant for right actions of A ∈ O(p), and so this is true
for any limit point X of Xτ . So the above can be interpreted as a result for Grassmann
Manifolds as well.

7.3.1 More on geodesics

The results from [12] still hold, with minor adjustments in notation.

Lemma 7.5. Given x ∈ M = St(p, V ) and v ∈ H, we have that v ∈ TxM iff x⊤v is an
asymmetric matrix.

Given x ∈M = St(p, V ) and A ∈ O(p) orthogonal matrix, then xA ∈M . The action
x 7→ xA is an isometry in H and hence in M .

Proposition 7.6 (Critical geodesics in St(p, V ) ). Let St(p, V ) be endowed with the
induced metric from V p. Let γ : [0, 1] → St(p, V ) be a path. Then the geodesic equation
is γ̈ + γ(γ̇⊤γ̇) = 0. Solutions to the geodesic equation exist for all time and are given by

(γ(t)eAt, γ̇(t)eAt) = (γ(0), γ̇(0)) exp t

(
A −S
I A

)
(7.3)

where I is the p× p identity matrix and A = γ(0)⊤γ̇(0), S = γ̇(0)⊤γ̇(0).

Note that A is asymmetric and S is symmetric; moreover A = γ(t)⊤γ̇(t), S = γ̇(t)⊤γ̇(t)

are constant along the geodesic; and eAt ∈ O(p).
Further properties of infinite dimensional Stiefel and Grassmann manifolds are

discussed in [15]. In particular it is proven that any two points in those manifolds are
connected by a minimal length geodesic.

We will now add more analysis to achieve the desired results.

Remark 7.7. Starting from the geodesic equation (7.3), let λ ∈ R, λ ̸= 0, having fixed
x ∈ M,v ∈ TxM and setting (γ(0), γ̇(0)) = (x, v), defining A = x⊤v, S = v⊤v as above,
we multiply as follows

(γ(t)eAt, λγ̇(t)eAt) = (x, λv)

(
I 0

0 λ−1
I

)
exp

(
t

(
A −S
I A

))(
I 0

0 λI

)
so

(γ(t)eAt, λγ̇(t)eAt) = (x, λv) exp t

(
A −λS

λ−1
I A

)
= (7.4)

= (x, λv) exp tλ−1

(
λA −λ2S
I λA

)
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We can use this relation as follows. Let now θ = ∥v∥, v̂ = v/θ, Â = x⊤v̂, Ŝ = v̂⊤v̂ then
setting λ = 1/θ

(γ(t)etθÂ, θ−1γ̇(t)etθÂ) = (x, v̂) exp tθ

(
Â −Ŝ
I Â

)
(7.5)

this formula decouples v into the initial direction v̂ and the initial speed θ.

7.3.2 Estimates

Define ∥v∥K as in 5.3.

Lemma 7.9. Recall the Definitions 7.1. For W ∈ Rk×k we use the norm

|W | =

√√√√ k∑
i,j=1

|Wi,j |2

and remark that
|WV | ≤ |V | |W | ;

we will use it with k = p or k = 2p; if E is a vector space with a scalar product, then for
v, w ∈ E we have

|v⊤w| ≤ ∥v∥E∥w∥E

and for v ∈ Ek

∥vW∥Ek ≤ ∥v∥Ek |W |

by Cauchy-Schwarz inequality.

Lemma 7.10. Consider the orthogonal projection πT : H → H to a hyperplane

T = {x ∈ H : ∀i ≤ v, ⟨wi, x⟩H = 0}

orthogonal to w1, . . . wv ∈ H, where those vectors are orthogonal but not orthonormal:
then

πT v = v −
v∑

i=1

wi
⟨wi, v⟩H
∥wi∥2H

. (7.6)

we immediately note that if v, wi are in a vector subspace E of H, then πT v will be in the
same E. Starting from (7.6) we estimate

∥πT v∥K ≤ ∥v∥K +

v∑
i=1

∥wi∥K
∥v∥H
∥wi∥H

.

The tangent plane T = TxM to the Stiefel Manifold is such a plane, with

•
wi = (0, . . . 0, xi, 0, . . . 0)

containing the i-th column of x in position i-th; this for i = 1, . . . p;

• and then for i = p+ 1, . . . p(p+ 1)/2

wi = (0, . . . 0, xh, 0, . . . 0,−xk, 0, . . . 0)

containing the h-th column of x in position k-th and vice versa, and with a minus
sign;
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so by the diagonal structure (7.1) of K and by (7.6) above we obtain this: if x ∈M∩K(H)

and v ∈ K(H) then πTxMv ∈ K(H).
Moreover such wi are mutually orthogonal; and ∥wi∥H = 1 for i = 1, . . . p, while

∥wi∥H = 2 otherwise; while ∥wi∥K ≤ ∥x∥K in all cases; so in conclusion

∥πTxMv∥ ≤ cp(∥v∥K + ∥x∥K∥v∥H) (7.7)

for a cp > 0 independent of x, v. This proves estimate (6.2) in Hypotheses 6.1.

The above suggests that (6.2) in Hypotheses 6.1 may hold for other manifolds, as
long as the embedding in H has finite codimension.

Lemma 7.11. Let K̃ : V → V a linear continuous injective operator. Recall that H = V p

and we defined K : H → H in (7.1) as

y = Kx when yi = K̃xi .

So K is a linear continuous operator and commutes with the right multiplication by
matrixes

(Kx)A = K(xA) . (as defined in (7.2))

There is a constant c > 0 such that for all x ∈ M ∩K(H), v ∈ TxM ∩K(H) and the
geodesic with

(γ(0), γ̇(0)) = (x, v)

we have

(∥γ(1)− x− v∥K + ∥γ̇(1)− v + Sx∥K) ≤ c
(
∥x∥K∥v∥2H + ∥v∥K∥v∥H

)
ec∥v∥H . (7.8)

Note that c does not depend on K but only on p.
This proves (6.3) in in Hypotheses 6.1.

Proof. Fix x ∈ M,v ∈ TxM and set θ = ∥v∥, v̂ = v/θ. We will use the formula seen in
eqn. (7.5) with t = 1. We define

Â = x⊤v̂ , Ŝ = v̂⊤v̂ ,

Z =

(
Â −Ŝ
I Â

)
, B =

(
−Â 0

0 −Â

)
, Θ =

(
I 0

0 θI

)
so the formula (7.5) becomes

(γ(t), γ̇(t)) = (x, v̂) exp(tθZ) exp(tθB)Θ (7.9)

then

(γ(t), γ̇(t)) = (x, v̂)

 ∑
i≥0,j≥0

(tθ)i+j Z
i

i!

Bj

j!

Θ =

(x, v̂)

I+ tθ(Z +B) +
∑

i,j,i+j≥2

(tθ)i+j Z
i

i!

Bj

j!

Θ =

= (x+ tv, v − tθ2xS) + (x, v̂)

 ∑
i,j,i+j≥2

(tθ)i+j Z
i

i!

Bj

j!

Θ (7.10)

Now
|Â| ≤ p , |Ŝ| ≤ 1 , |B̂| ≤ 2p , |Z| ≤

√
3p+ 1
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and setting t = 1

√
∥γ(1)− x− v∥2K + ∥γ̇(1)− v + θ2xŜ∥2K ≤

√
∥x∥2K + ∥v̂∥2K

∣∣∣∣∣∣
∑

i,j,i+j≥2

θi+j Z
i

i!

Bj

j!

∣∣∣∣∣∣ |Θ| ≤

√
∥x∥2K + ∥v̂∥2K

∑
i,j,i+j≥2

|θ|i+j |Z|i

i!

|B|j

j!

√
(1 + pθ2) ≤

√
∥x∥2K + ∥v̂∥2Kθ

2g(θ)

where we are using the fact (7.2) that left multiplication by K and right multiplication
by a matrix are associative; and

g(s) =
∑

i,j,i+j≥2

si+j−2 (3p+ 1)i/2

i!

(2p)j

j!
=

∑
2≤n

∑
0≤k≤n

sn−2

n!

((
n

k

)
(3p+ 1)k/2

(
n

n− k

)
(2p)n−k

)
=
∑
2≤n

sn−2

n!

(√
3p+ 1 + 2p

)n
=

=
1

s2
(exp a− 1− a) with a = s

(√
3p+ 1 + 2p

)
.

The first and second hypothesis in 6.1 are obviously true for Stiefel Manifolds: indeed
the curvatures and second fundamental form are uniformly bounded, since Stiefel
Manifolds are homogeneous space. Nonetheless we can provide this estimate that
satisfies (6.4).

Corollary 7.14. There is a constant c > 0 such that for all x ∈ M,v ∈ TxM and the
geodesic with

(γ(0), γ̇(0)) = (x, v)

we have
∥γ(1)− x− v∥H ≤ cmin{∥v∥H , ∥v∥2H} .

Proof. We note that the Stiefel Manifold St(p, V ) has diameter d, so that for v ≥ d we
can estimate

∥γ(1)− x− v∥H ≤ d+ ∥v∥H
while for v ≤ d we use the above lemma 7.11 with K being the identity, recalling that
∥x∥K =

√
p in this case.

8 Future Developments

We now know that, under appropriate hypotheses, the random walks Xτ have narrow
limit points X when the partition τ becomes finer and finer; these X are random functions
in C(R+;S) with S = H or S =M an embedded manifold.

There are multiple questions left unanswered, material for future research.

• Do the limit points enjoy some standard property? It seems plausible that they may
enjoy some kind of Markov Property, for example.

• Under which additional hypotheses can we say that there is an unique limit point?

• Can we then characterize the limit points as solutions to a kind of SDE?

(These two questions are in synergy).

• Can we expand the results to more general cases of random walks, for example,
where the constants in the hypothesis are not “uniform” but rather they may grow
(e.g. be bounded by a function of the distance from a given point)?
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• Consequently, are there other infinite dimensional manifolds where the present
results hold true?

All the above questions are starting point for future research.

A Useful Lemmas

In this section we have collected the technical Lemmas used here and there in the
paper.

Lemma A.1. For E space with scalar product and v, w ∈ E,

|v + w|2 ≤ 2|v|2 + 2|w|2 .

Proof.
|v + w|2 ≤ (|v|+ |w|)2 ≤ 2|v|2 + 2|w|2

In the following monotonic means monotonically weakly increasing that is s ≤ t⇒
g(s) ≤ g(t).

Lemma A.2. Let
t0 = 0 < t1 < t2 < . . .

and let δn = tn+1 − tn. Suppose bn is a real valued sequence with bn ≥ β for all n.
Suppose that

φ = φ(t, x) : [0,∞)× [β,∞) → [0,∞)

is a continuous non negative function, such that φ(·, x) and φ(t, ·) are monotonic. Let
f : [0,∞) → [β,∞] be a solution of{

f ′(t) = φ(t, f(t))

f(0) = b0
(A.1)

(possibly f(t) = ∞ for large t ). If

bn+1 ≤ bn + φ(tn, bn)δn (A.2)

holds then
bn ≤ f(tn) . (A.3)

Proof. Proof by induction. Note that f is monotonic since f ′ ≥ 0 but then it is convex
since f ′ is monotonic.

bn+1 ≤ bn + φ(tn, bn)δn ≤ f(tn) + φ(tn, f(tn))δn = f(tn) + f ′(tn)δn ≤ f(tn+1)

Note that indeed (A.2) can be rewritten as

bn+1 − bn
tn+1 − tn

≤ φ(tn, bn) .

Lemma A.3. Let
t0 = 0 < t1 < t2 < . . .

and let δn = tn+1 − tn; fix c7 > 0, c8 > 0. Suppose bn is a real valued sequence with
b0 = 0, bn ≥ 0 that satisfies

bn+1 ≤ bn + 2δn(c7
√
bn
√
tn + c8tn) ; (A.4)
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then

bn ≤ (c7 + 2c8)g(tn) with g(t) =
ec7t − 1− c7t

c27
.

Moreover, set

ε̂ =
2

c7 + 2c8
,

then

∀n , tn ≤ ε̂⇒ bn ≤ t2n(c7 + c8) (A.5)

and note that b0 = b1 = 0.

Proof. Consider a solution of the ODE{
f ′(t) = 2c7

√
f(t)

√
t+ 2c8t

f(0) = 0
; (A.6)

(that is (A.1) for this special case). Since

√
ab ≤ a+ b

2

then

f ′(t) ≤ c7f(t) + (c7 + 2c8)t

substituting f(t) = g(t)ec7t and with some calculations we obtain

f(t) ≤ (c7 + 2c8)g(t) with g(t) =
ec7t − 1− c7t

c27
.

Since

f ′(t) ≥ 2c8t

then

f(t) ≥ c8t
2 (A.7)

in particular for any solution we have f(t) > 0 and f ′(t) > 0 for t > 0. We have f ′(0) = 0

so f(t) ≤ t for t ≤ ε with ε small; more precisely, note that g(t) is convex and increasing
and g(0) = g′(0) = 0 so we set ε to be the unique positive solution of

(c7 + 2c8)g(t) = t ;

moreover g(t) ≥ t2/2 so we know that

ε ≥ 2

c7 + 2c8
.

Now we set

ŝ = sup{s ≥ 0 : t ≤ s⇒ f(t) ≤ t}

note that ε ≤ ŝ ≤ 1/c8; for t ∈ [0, ŝ]

f ′(t) ≤ 2(c7 + c8)t

so

f(t) ≤ (c7 + c8)t
2 . (A.8)

Page 31/35



Tightness of Random Walks

Lemma A.5. Let
t0 = 0 < t1 < t2 < . . .

and let δn = tn+1 − tn. Suppose bn is a real valued sequence. If, for c7 > 0, c8 ≥ 0, c9 ≥ 0,

bn+1 ≤ bn(1 + c7δn) + δn(c8 + c9tn) (A.9)

holds then

bn ≤b0ec7tn + (ec7tn − 1)(c8/c7 + c9/c
2
7)− c9tn/c7 =

ec7tn
(
b0 + c8/c7 + c9/c

2
7

)
−
(
(c8 + c9tn)/c7 + c9/c

2
7

)
. (A.10)

Proof. Indeed (A.9) can be rewritten as

bn+1 − bn
tn+1 − tn

≤ c7bn + c8 + c9tn

and the associated differential equation is

f ′(t) = c7f(t) + c8 + c9t

that has solution

f(t) = ec7tf(0) + (ec7t − 1)(c8/c7 + c9/c
2
7)− c9t/c7

so this proves the result.

B Proofs

Proof of Proposition 2.3. This proof comes from [23]. Suppose that there is convergence
in probability Wn

1 →W1; consider the equality

S2n√
2n

− Sn√
n
=

1√
2

S2n − Sn√
n

−
(
1− 1√

2

)
Sn√
n

then the LHS would converge to the zero constant in probability , whereas on the RHS
the random variables

Sn√
n

and
S2n − Sn√

n

are independent and both converge narrowly to N(0, 1).

Proof of Proposition 3.6. If c = 0 then

E[g(δ∥Y ∥)] = δαE [∥Y ∥α]

so we set
c̃ = E [∥Y ∥α] .

Otherwise we set
c̃ = E

[
∥Y ∥αecct∥Y ∥

]
,

so
E[g(δ∥Y ∥)] = δαE

[
∥Y ∥αecδ∥Y ∥

]
≤ δαE

[
∥Y ∥αecct∥Y ∥

]
= c̃δα

We recall Proposition 1.13 from [9].
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Proposition B.1. Let Y = N(0, Q) and

λ1 = max
∥x∥≤1

⟨x,Qx⟩H

be the highest eigenvalue of Q. Then for 0 < ε < 1/λ1∫
H

eε∥x∥
2/2 dγ(x) =

exp
(
− 1

2 ⟨a, (1− εQ)−1a⟩H
)√

det(1− εQ)
(B.1)

whereas for ε ≥ 1/λ1 the integral is infinite.

Proof of Proposition 3.8. Set ct = 1 for simplicity. By the previous proposition, for any
λ > 0,

E[eλ∥Y ∥H ] <∞ .

For k ∈ N and a > 0 we have aksk ≤ k!eas hence choosing k = ⌈α⌉,

sαesc ≤ k!

ak
es(a+c)

so again we define

c̃ = E[g(∥Y ∥)] <∞ ;

and we proceed as in the above proof of Proposition 3.6.

Proof of Proposition 3.15. By contradiction, suppose there is; up to substituting f(n)

with
⋃n

j=0 f(j) we can suppose that f is monotonic. Let ct = 1 for simplicity. We build
iteratively τ ∈ T such that ∀n, τ ⊈ f(n), in this way. We will build a (non decreasing)
sequence nm ∈ N such that nm →m ∞, and a sequence t0 = 0 < t1 < . . . ∈ τ satisfying
the requisites in Definition 3.9. Let t0 = 0, t1 = 1, n0 = n1 = 0; for m ≥ 1 having chosen
tm ∈ τ and nm, we look for k > nm such that there is a t ∈ f(k) \ f(nm) ∧ t ≥ tm + 1/2;

• if there is no such k, we stop the iterative process by adding to τ an arbitrary
sequence tm+1 < tm+2 < . . . with tm+j /∈

⋃
k f(k) and 1/2 < tm+j+1 − tm+j < 1; we

set nm+j = nm + j; all that for j ≥ 0 .

• If there is such k, t, we add to τ an arbitrary sequence

tm+1 < tm+2 < . . . < tm+l = t

such that

1/2 < tm+j+1 − tm+j < 1 for j = 0, . . . l − 1 ;

then we set nm+1 = . . . = nm+l = k; then we repeat the iteration using m+ l as the
new m.

In any case we obtain that for infinitely many m there is a l such that tm+l /∈ f(nm).
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