
Chapter 1
Stratified Energies: Ground States with Cracks

M. Giaquinta, P. M. Mariano, G. Modica and D. Mucci

Abstract Elastic bodies admitting cracks are analyzed. Separated pairs of displace-
ment fields and cracks are found as minimizers of the energy inlarge strain setting.
The crack patterns are constructed in terms of varifolds. The discontinuity set of
the displacement field is contained in the cracks and may or may not coincide with
them.

1.1 Introduction

By following Griffith’s pioneering suggestions, a variational view on the analysis of
cracks in simple bodies has been proposed in [3] (see also [1]). Minimality of the
energy at every time among all virtual crack-displacement pairs at that time is re-
quired. An energy conservation statement throughout the time evolution is imposed.
The difficulty of managing crack geometries in finding minimizers has suggested the
convenient simplification of identifying cracks with the jump sets of displacement
fields (see results in [3] [2]). However, appropriate function spaces contain fields
with discontinuity sets with closure of positive Lebesgue measure. Theorems allow-
ing the selection of fields with physically significant discontinuity sets — that are
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sets that can be appropriate candidates for describing reasonable crack patterns —
seem to be not available at least up to now. A new view has been done in [5]. Sepa-
rated pairs of displacement fields and cracks are found as minimizers of the energy
in simple bodies undergoing large strain. A way for managingthe geometry of crack
patterns is constructed in terms of special measures, namely varifolds. The discon-
tinuity set of the displacement field is contained in the cracks and may or may not
coincide with them. The description of closed cracks is alsoincluded in this way.
Moreover, an essential point is that no crack is prescribed to exist a priori: its possi-
ble existence is eventually obtained by the minimization ofthe energy of the body. A
energetic threshold for the formation of a crack arises naturally. Existence theorems
are obtained for a non-standard energy functional including a surface energy which
depend on the curvature of the possible crack and on the measure localizing it over
the body. The present paper anticipates without proof some of the results collected
in [5].

1.2 Curvature varifolds with boundary

Some preliminary notions are necessary to the ensuing developments.
Let B be an open, bounded subset ofR

n, n≥ 2, with Lipschitz boundary. For a
positive integerk, 1≤ k≤ n, the Grassmann manifold ofk-planes through the origin
in R

n is indicated byGk,n and is also identified with the set of projectorsΠ : R
n →R

n

onto k-planes, characterized byΠ2 = Π , Π ∗ = Π , RankΠ = k, a set which is a
compact subset ofRn ⊗R

n. Consider also the trivial bundleGk(B) := B × Gk,n

with natural projectionπ : Gk(B) → B. A k-varifold onB is a nonnegative Radon
measureV overGk(B), namelyV ∈ M (Gk(B)). Theweight measureof V is the
Radon measureµV := π#V whereπ# is the natural projection of measures associated
with the projectionπ , and themassof V is M(V) := V(Gk(B)) = µV(B).

Denote byH k the k-dimensional Hausdorff measure inRn. If b is a H k-
measurable, countablyk-rectifiable subset ofB andθ ∈ L1(b,H k), for θ H k

b

a.e.x∈ B there exists the approximate tangentk-spaceTxb to b at x. Define

Vb,θ (ϕ) :=
∫

Gk(B)
ϕ(x,Π)dVb,θ (x,Π) :=

∫

b

θ (x)ϕ(x,Π(x))dH
k(x) (1.1)

for anyϕ ∈C0
c(Gk(B)), whereΠ(x) is the orthogonal projection ofRn ontoTxb.

Definition 1. V is called acurvature k-varifold with boundaryif

1. V = Vb,θ is the integer rectifiablek-varifold associated with(b,θ ,H k),
2. there exist a functionA ∈ L1(Gk(B),Rn∗ ⊗R

n ⊗R
n∗), A = (Aℓi

j ), and a vector
Radon measure∂V ∈ M (Gk(B),Rn) such that

∫

Gk(B)
(ΠDxϕ +ADΠ ϕ + ϕ t tr(AI))dV(x,Π) = −

∫

Gk(B)
ϕ d∂V(x,Π)
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for everyϕ ∈C∞
c (Gk(B)).

Moreover, forp≥ 1 the subclass of curvaturek-varifolds with boundary such that
A∈ Lp(Gk(B)) is indicated byCVp

k (B).

The functionx 7→ A(x,Π(x)) ∈ R
n∗ ⊗R

n ⊗R
n∗ is called thecurvatureof the

varifoldV. The vector measure∂V is called thevarifold boundary measure.
The following results proven in [7] and [8] collect the geometrical properties of

curvaturek-varifolds with boundary.

Theorem 1.Let V = Vb,θ be a k-varifold with boundary∂V and curvature A, with
Aℓi

j ∈ L1(Gk(B)).

1. The following symmetry properties hold:

Aℓi
j = A ji

ℓ , A ji
j = 0, Aℓi

j = Π ℓ
hAhi

j + Πh
j Aℓi

h , V −a.e.

2. Π i
hAℓh

j = Aℓi
j V-a.e. in such a way that, by setting Hi(x) := Ai j

j (x,Π(x)), one gets

Πh
i Hh = 0 V-a.e.; in particular, ifΠ = Π(x) is the orthogonal projection over

Txb, then
H(x,Π(x)) ⊥ Txb µV −a.e.

3. The projection map x→ Π(x) is µV -a.e approximately differentiable and

(∇bΠ ℓ
j (x))

i = Aℓi
j (x,Π(x))

for µV -a.e. x.
4. The support of|∂V| is contained in the support of V and|∂V| ⊥V.
5. ∂V is tangential tob in the sense that(Π i

j)#∂ jV = ∂ iV as measures onGk(B).
6. V is a varifold with locally bounded first variation and generalized mean cur-

vature in the sense of Allard with generalized mean curvature vector H(x) =
H(x,Π(x)) and generalized boundaryπ#∂V.

Theorem 2 (Rectifiability of the boundary). Let V be a curvature k-varifold with
boundary∂V and k≥ 1. There exists aH k−1-countably rectifiable setC and a
functionσ ∈ L1(C ,H k−1) such thatπ#|∂V| = σH k−1 C . Moreover, one has

∫
ϕ(x,Π(x))d∂V(x,Π) =

∫

C

(∫

Gk,n

ϕ(x,Π)dτx(Π)
)

dH
k−1(x)

for everyϕ ∈ C∞
c (Gk(B)), where forH k−1-a.e. x∈ C the vector valued measure

τx onGk,n has the structure

τx =
ix

∑
i=1

mx
i αx

i δpx
i
, (1.2)

where ix ∈ N, δpx
i

is the Dirac delta supported by a k-plane px
i of the Grass-

manianGk,n; moreover, theαx
i ’s are positive integers and the mx

i ’s are unit vec-
tors in R

n. In addition pxi contains the tangent(k− 1)-space TxC to C at x and
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px
i = Span

{
TxC ,mx

i

}
. In the special case of one-dimensional curvature varifoldV

with boundary, the formula(1.2)reduces to

τx :=
jx

∑
j=1

α j t jδPj

whereδPj is the Dirac delta function supported by a straight line Pj in G1,n, t j is
a unit vector that orients Pj and α j a positive integer. As a consequence, for the
boundary of a curvature1-varifold one gets

∂V(x,P) =
∞

∑
i=1

δxi (x)× τxi (P).

Theorem 3 (Compactness [8]).For 1< p< ∞, let{V(r)}⊂CVp
k (B) be a sequence

of curvature k-varifolds V(r) = Vbr ,θr with boundary. The corresponding curvatures

and boundaries are indicated by A(r) = {A(r)ℓi
j } and∂V(r), respectively. Assume that

for every open setΩ ⊂⊂B there exists a constant c= c(Ω) > 0 such that for every
r

µV(r)(Ω)+ |∂V(r)|(Gk(Ω))+

∫

Gk(Ω)
|A(r)|pdV(r) ≤ c(Ω).

There exists a subsequence{V(rs)} of {V(r)} and a curvature k-varifold V= Vb,θ ∈
CVp

k (B), with curvature A and boundary∂V, such that

V(rs) ⇀ V, A(rs) dV(rs) ⇀ AdV, ∂V(rs) ⇀ ∂V,

in the sense of measures. Moreover, for any convex and l.s.c.function f : R
n∗⊗R

n⊗
R

n∗ → [0,+∞], one gets
∫

Gk(B)
f (A)dV ≤ lim inf

s→∞

∫

Gk(B)
f (A(rs))dV(rs).

1.3 Transplacement fields and bulk energy

Only Cauchy bodies are called upon in the analyses presentedhere. They are bod-
ies for which the morphology of each material element is described only by the
place in space occupied by its centre of mass. In other words,a body is identified
with a regionB of the Euclidean ambient spaceR3 that it occupies in a macro-
scopic reference configuration, taken as reference place.B is considered here as
an open set with Lipshitz boundary. Other configurations arereached by means of
transplacements that are usually taken as orientation preserving differentiable bi-
jectionsu : B −→ R

3 mappingB in the current configurationu(B), a set that is
presumed to be always open and endowed with Lipshitz boundary.
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The body occupyingB is said to be anhyperelastic simple bodywhen it is en-
dowed by a bulk energy which is absolutely continuous with respect to the volume
measure and depends on the deformation gradient only. Ground states of such a type
of body are described by minimizers of the overall energy. Such minimizers can be
determined in terms of Cartesian currents [6] that are described briefly below.

1.3.1 Sobolev maps and related Cartesian currents.

Let I(k,n) be the space of multi-indices in(1, . . . ,n) of lengthk. Denote also by
0 the empty multi-index of length 0. For anyα, the complementarymulti-index
to α in (1, ...,n) is indicated byᾱ, ᾱ ∈ I(n− k,n), andσ(α, ᾱ) is the sign of the
permutation from(1, . . . ,n) into (α1, . . . ,αk, ᾱ1, ..., ᾱn−k). For (e1, e2, . . . , en) and
(ε1, ε2, . . . , εn) bases inRn andR

N, respectively,Λr(R
n×R

N) is the vector space
of skew-symmetric tensors overR

n×R
N of the form

ξ = ∑
|α |+|β |=r

ξ αβ eα ∧ εβ =
min(r,N)

∑
max(0,r−n)

ξ(k), ξ(k) = ∑
|α |+|β |=r
|β |=k

ξ αβ eα ∧ εβ .

For any linear mapG : R
n → R

N, the notationM(G) is used for the simplen-vector
in Λn(R

n×R
N) tangent to the graph ofG and defined by

M(G) := Λn( Id×G)(e1∧·· ·∧en) = (e1,G(e1))∧·· ·∧ (en,Gen)).

For u : B → R
N an a.e. approximately differentiable map, denote byDu its ap-

proximate gradient.u has a Lusin representative on the subsetB̃ of Lebesgue points
of bothu andDu, and|B \ B̃| = 0. Let ũ(x) andDũ(x) be the Lebesgue values of
u andDu at x∈ B̃, respectively. Assume that|M(Du)| ∈ L1(B). By following [6],
thegraphof u, defined by

Gu :=
{
(x,y) ∈ B×R

N
∣∣∣x∈ B̃, y = ũ(x)

}
,

is a n-rectifiable subset ofB ×R
N with approximate tangent vectorn-space at

(x, ũ(x)) generated by the vectors(e1,Dũ(x)e1), . . . ,(en,Dũ(x)en)) in R
n×R

N. The
n-current integration over the graphof u is defined by the linear functional on
smoothn-formsω = ω(x,y) with compact support inB×R

N given by

Gu(ω) =

∫
< ω ,ξ > dH

n
Gu, (1.3)

whereξ (x) := M(Dũ(x))
|M(Dũ(x))| , for x ∈ B̃, is the unitn-vector that orients the approx-

imate tangentn-space toGu at (x, ũ(x)); moreover,Gu has finite massM(Gu) :=
sup||ω||∞≤1Gu(ω) < ∞, since
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M(Gu) =

∫

B

|M(Du(x))|dx= H
n(Gu).

In particular,Gu is a vector valued measure onB×R
N, actually aninteger rectifi-

able n-current with multiplicity 1 onB×R
N. Theboundaryof the currentGu can

be defined by duality as the(n−1)-current acting on compactly supported smooth
(n− 1)-forms ω in B ×R

N, namely∂Gu(ω) := Gu(dω), ω ∈ Dn−1(B ×R
N),

wheredω is the differential ofω .

1.3.2 The bulk energy.

By taking apart for a while the description of the possible cracks, it is assumed that
the external body forces have conservative nature so that the bulk energy of the body
has the usual form

EB(u) :=
∫

B

e(x,u,Du)dx

wheree(·) is the sum of the elastic energy and the potential of externalforces. It is
assumed thate= e(x,u,F) satisfies common assumptions listed below:

• (H1) e: B× R̂
n×M

+
n×n → [0,+∞] is continuous, whereM+

n×n is the class of real
(n×n)-matricesF such that detF > 0.

• (H2) The mapF 7→ e(x,u,F) is polyconvex, i.e. there exists a function

Pe(x,u,ξ ) : B× R̂
n×Λn(R

n× R̂
n) → [0,+∞]

continuous in(x,u) for everyξ , convex and lower semicontinuous inξ for every
(x,u), such that

e(x,u,F) = Pe(x,u,M(F)) ∀F ∈ M
+
n×n, ∀(x,u) ∈ B× R̂

n.

• (H3) e= e(x,u,F) satisfies the growth conditions

e(x,u,F) ≥ c4 |M(F)|q ∀F ∈ M
+
n×n, ∀(x,u) ∈ B× R̂

n,

for somec4 > 0 andq > 1.
• (H4) For everyx∈B andF ∈M

+
n×n if for someu∈ R̂

n the inequalitye(x,u,F) <
+∞ is satisfied, then detF > 0.

The assumptions (H1) and (H4) are essentially suggested by physical plausibility.
The hypothesis (H2) is an essence an assumption of material stability while the
growth condition (H3) has more technical nature.
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1.4 A skeletal model admitting formation of cracks

The aim now is to describe the possible presence of cracks. The setting is selected
two-dimensional for the sake of simplicity. The generalization to 3D and extensions
are in [5]. Cracks are here represented here by 1-dimensional curvature varifolds
with curvature inLp, p > 1, which are quite regular. BasicallyV ∈ CVp

1 (B) can
be essentially described as (the integration over) a locally finite union ofC1,1−1/p

curves counted with integer multiplicities. Their boundaries are just Dirac measures
concentrated at the endpoints with their tangential directions.

Definition 2. A macroscopic configuration of a bodyB ⊂ R
2 with a crack is a pair

composed by the bounded connected open setB with Lipschitz boundary and a
curvature 1-varifold with boundary, namelyV = Vb,θ ∈CVp

1 (B) for somep > 1.

The gross place occupied by the body and the crack are treatedas distinct ob-
jects. The crack is not part of the initial boundary: it is selected by a measure over
B, namely a curvature varifold, and may or may not be an empty set in the ref-
erence place. Since the material bonds across the crack margins are broken, along
the deformation, the cracks faces may loose contact. The obvious implication is that
the graph of the deformation may have nonzero boundary. An appropriate class of
admissible deformations has to be defined.

Weak diffeomorphismshave been found to be natural descriptors of deformations
of standard elastic bodies [6]. They are orientation-preserving, allow frictionless
contact of parts of the boundary while still prevent self-penetration of the matter.
However, they satisfy a condition of zero boundary in the sense of currents, a con-
dition avoiding the formation of ‘holes’ of various nature.To allow fractures, an
extended version of them has to be formulated.

Definition 3. Let B ⊂ R
2 be a body with crackV ∈ CVp

1 (B). A weak diffeomor-
phismonB admitting cracksdescribed byV is an a.e. approximately differentiable
mapu : B → R̂

2 such that

1. |Du|,detDu∈ L1(B);
2. π#|∂Gu| ≤ µV , whereµV := π#V;
3. detDu(x) > 0 for a.e.x∈ B;
4. for every compactly supported smooth functionf : B× R̂

2 → [0,+∞)

∫

B

f (x,u(x)) detDu(x)dx≤
∫

R̂2
sup
x∈B

f (x,y)dy.

In this case, one writesu∈ dif 1,1(B,V,R̂2). Moreover, forq > 1 the class
dif q,1(B,V,R̂2) is defined by

dif q,1(B,V,R̂2) :=
{

u∈ dif 1,1(B,V,R̂2)
∣∣∣ |M(Du)| ∈ Lq(B)

}
.

Condition (ii) implies that the Green formulas hold true inB outside the crack and
prescribes that the boundary current has finite mass, namelyM(∂Gu) < ∞.
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Theorem 4.Let {V(r)} ⊂ CVp
1 (B), with p > 1, be a sequence of curvature var-

ifolds describing cracks in the bodyB, with equibounded total variations, i.e.
supr µV(r)(B) < ∞. Moreover, assume ur ∈ dif 1,1(B,V(r),R̃2). Suppose also that
there exist u∈ L1(B,R̂2), v ∈ L1(B,Λn(R

2 × R̂
2)), and V∈ CVp

1 (B) such that
ur ⇀ u, M(Dur) ⇀ v weakly in L1, and Vr ⇀ V as measures. Then v= M(Du) and,
moreover, ifdetDu > 0 a.e., u∈ dif 1,1(B,V,R̂2).

1.4.1 The energy functional

Bulk and crack contributions to the energy are involved as usual. The crack in this
skeletal model is one dimensional. The part of the energy associated with the crack
is then splitted in two contributions: (i) the energy along the margins, which depend
on the curvature of the margins themselves and is represented by the curvature of a
varifold and (ii) the energy at the tips, the corners and the junctions of the fracture,
that are represented by the boundary of the same varifold.

The energyE (u,V) reads

E (u,V) : = E (u,V,B)

=

∫

B

e(x,u,Du)dx+c1

∫

G1(B)
|A|pdV+c2M(V)+c3M(∂V)

(1.4)

where theci ’s are positive constants and the hypotheses (H1) (H2), (H3)and (H4)
of Section 1.3 on the bulk energy densitye= e(x,u,F) are satisfied.

As regards to crack energy term, thep-norm|A|p of the curvature can be replaced
by φ(|A|) whereφ : R

+ → R
+ is a convex function satisfyingφ(t) ≥ c5 t p.

The termc2M(V) is the Griffith-like part of the surface energy of the crack.

1.4.2 Ground states: existence theorems

It may be convenient to prescribe acomparison varifold̃V ∈CVp
1 (B) such that all

competing varifoldsV satisfy the boundµṼ ≤ µV . The comparison varifold̃V can

be of course zero when an initial crack is absent. In the opposite case,̃V describes
a crack from which the competing cracks may extend without excluding that they
may have portions unrelated with̃V.

The space

Aq,p,K,Ṽ(B) :=
{

(u,V)
∣∣∣V ∈CVp

1 (B), u∈ dif q,1(B,V,R̂2),

||u||L∞(B) ≤ K, µṼ ≤ µV

}
,
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with K > 0, is then the natural functional environment for investigating the existence
of minimizers(u,V) for the energyE .

Theorem 5.ConsiderB ⊂R
2, q, p> 1, K > 0, Ṽ ∈CVp

1 (B). Assume that there ex-
ists an element(u,V)∈Aq,p,K,Ṽ(B) that satisfies the prescribed Dirichlet boundary
conditions. Then the energy functional(1.4)attains its minimum in the subclass of
Aq,p,K,Ṽ(B) of couples(u,V) where u satisfies the prescribed boundary conditions.

The constantK is selected at will for purposes of physical plausibility: it is only
necessary for establishing the boundedness of theL∞ norm of u. In contrast, the
constantsp andq and the comparison varifold̃V have constitutive nature. The a-
priori L∞ bound on the transplacement field has been relaxed in [2] [4] in a different
setting, not dealing with the path followed here.

The simpler description of the boundary measure of the one dimensional curva-
ture varifolds allows one to state another existence theorem with a different growth
condition for the bulk energy.

Consider the energy functional (1.4) where the bulk energy density e(x,u,F)
satisfies (H1), (H2), (H4) of Section 1.3 and impose a different growth condition
indicated here by

(H3-1):
e(x,u,F) ≥ c4|F|

2 ∀F ∈ M
+
2×2, ∀(x,u) ∈ B× R̂

2,

for somec4 > 0.

ForK > 0 andṼ ∈CVp
1 (B) the class

Ap,Ṽ,K :=
{
(u,V)

∣∣∣V ∈CVp
1 (B), p > 1, u∈ dif 1,1(B,V,R̂2), Du∈ L2(B),

||u||L∞(B) ≤ K, µṼ ≤ µV

}
,

(1.5)
is then the natural functional setting for another existence result.

Theorem 6.Assume that the bulk energy density of(1.4)satisfies(H1), (H2) (H4)of
Section 1.3 and(H3-1). Suppose that that there is at least one element(u0,V0) in the
class(1.5)with u0 satisfying a given Dirichlet data. Then the functional(1.4)has a
minimizer in the subclass of(1.5)of couples(u,V) with u satisfying the prescribed
Dirichlet boundary conditions.

In the previous scheme, a sequence of varifolds accumulating at the boundary
of B vanishes at the limit. It is possible to consider a differentsituation where the
propagation of cracks at the boundary of the bodyB is taken into account, and a
term involving the crack at the boundary may contribute to the limit energy of mini-
mizing sequences. Such a situation has a clear meaning in terms of transplacements
for the Dirichlet problem, where the limit crack may be seen as a rupture of the
boundary condition.

A related existence theorem again follows.
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