Chapter 1
Stratified Energies: Ground States with Cracks

M. Giaquinta, P. M. Mariano, G. Modica and D. Mucci

Abstract Elastic bodies admitting cracks are analyzed. Separaiesigfalisplace-
ment fields and cracks are found as minimizers of the energyge strain setting.
The crack patterns are constructed in terms of varifolde discontinuity set of
the displacement field is contained in the cracks and may grmaacoincide with
them.

1.1 Introduction

By following Griffith’s pioneering suggestions, a variatal view on the analysis of
cracks in simple bodies has been proposed in [3] (see alyoMijimality of the
energy at every time among all virtual crack-displacemeaiitspat that time is re-
quired. An energy conservation statement throughoutthe évolution is imposed.
The difficulty of managing crack geometries in finding mirmeris has suggested the
convenient simplification of identifying cracks with thenjip sets of displacement
fields (see results in [3] [2]). However, appropriate fuootspaces contain fields
with discontinuity sets with closure of positive Lebesgusasure. Theorems allow-
ing the selection of fields with physically significant distiouity sets — that are
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sets that can be appropriate candidates for describingmaebke crack patterns —
seem to be not available at least up to now. A new view has baea id [5]. Sepa-
rated pairs of displacement fields and cracks are found asniaigrs of the energy
in simple bodies undergoing large strain. A way for manatjireggeometry of crack
patterns is constructed in terms of special measures, yaragfolds. The discon-
tinuity set of the displacement field is contained in the ksa@nd may or may not
coincide with them. The description of closed cracks is @istuded in this way.
Moreover, an essential point is that no crack is prescribexist a priori: its possi-
ble existence is eventually obtained by the minimizatiothefenergy of the body. A
energetic threshold for the formation of a crack arisesnadlju Existence theorems
are obtained for a non-standard energy functional inclyidisurface energy which
depend on the curvature of the possible crack and on the meelasalizing it over
the body. The present paper anticipates without proof sdnteeaesults collected
in [5].

1.2 Curvature varifolds with boundary

Some preliminary notions are necessary to the ensuing aavelnts.

Let & be an open, bounded subsefff, n > 2, with Lipschitz boundary. For a
positive integek, 1 < k < n, the Grassmann manifold kfplanes through the origin
inR"is indicated by, and is also identified with the set of projectéts R" — R"
onto k-planes, characterized by? = 1, [1* = 1, Rankl1 = k, a set which is a
compact subset dk" @ R". Consider also the trivial bundl€ (%) := % x %n
with natural projectiont: % (%) — 2. A k-varifold on £ is a nonnegative Radon
measure/ over%(#), namelyV € .Z (%(%)). Theweight measuref V is the
Radon measurgy := 1%V whererg is the natural projection of measures associated
with the projectiorvt, and themassofV isM (V) :=V (%(2A)) = v (B).

Denote by.7#% the k-dimensional Hausdorff measure R". If b is a k-
measurable, countabkyrectifiable subset of4 and8 € L1(b,.57%), for 8.5 b
a.e.x € A there exists the approximate tangktspacelyb to b atx. Define

Voo(9) = [

[ B Vo) 1= [ 000906 M)A (0 (1.1)

Jb

for any¢ € CO(%(%)), wherell(x) is the orthogonal projection &" ontoTyb.
Definition 1. V is called acurvature k-varifold with boundarif

1.V =V, g is the integer rectifiablk-varifold associated witkb, 9_,%”"),
2. there exist a functioA € L1(%(%),R™ @ R"@ R™), A = (A‘f'), and a vector
Radon measur@V € .# (%(%),R") such that

/ ,(nDX¢+ADn¢+¢ttr(Al))dV(x,n):f/ ¢ dav (x, M)
G (B) #)

(2
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for every¢ € CZ(%(2A)).

Moreover, forp > 1 the subclass of curvatukevarifolds with boundary such that
A€ LP(%(%)) is indicated byCV/’(%).

The functionx — A(x,M(x)) € R™ @ R" @ R™ is called thecurvatureof the
varifold V. The vector measur@V is called thevarifold boundary measure

The following results proven in [7] and [8] collect the gednal properties of
curvaturek-varifolds with boundary.

Theorem 1.LetV =V, g be a k-varifold with boundaryV and curvature A, with
A‘Jv’I € LY(%(2)).

1. The following symmetry properties hold:
Al =Al Al'=0 Al=mAT Al V-ae

2. MAN = Al V-a.e. in such a way that, by settind(W) := Aijj (x,M(x)), one gets
MMH" = 0V-a.e.; in particular, if T = 1(x) is the orthogonal projection over
Txb, then

H(x,M(x)) L Txb Ly —ae

3. The projection map %> 1(X) is py-a.e approximately differentiable and
(O°M1f(x)" = Af (%, 1(x))

for y-a.e. x.

4. The support ofdV | is contained in the support of V andV| L V.

5.0V is tangential tcb in the sense tha{f1})x01V = 0'V as measures i (%).

6.V is a varifold with locally bounded first variation and gealized mean cur-
vature in the sense of Allard with generalized mean cuneaugctor Hx) =
H(x,IM1(x)) and generalized boundargdV .

Theorem 2 (Rectifiability of the boundary). Let V be a curvature k-varifold with
boundarydV and k> 1. There exists a#’* 1-countably rectifiable se¥’ and a
functiono € LY(%,.#%1) such thatrg|dV| = a.#% 1 L €. Moreover, one has

/¢(x,n(x))daV(x,n) :/

JEC

(/fk ¢(x.17) drx(ﬂ)) d71(x)

for every¢ € CX(%(%)), where for.#*1-a.e. xc ¢ the vector valued measure
Tx ON% n has the structure

szimxaixépix, (1.2)

where i € N, Jpx is the Dirac delta supported by a k-plang pf the Grass-
manian% ,; moreover, thea’s are positive integers and thejfa are unit vec-
tors in R". In addition [ contains the tangentk — 1)-space ¢ to ¢ at x and
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prf= Span{TX%, m"}. In the special case of one-dimensional curvature varitld
with boundary, the formulél.2)reduces to

ix
Ty = Z ajtjop,
=1

wheredp, is the Dirac delta function supported by a straight lingiR %1 p, t; is
a unit vector that orients Pand a; a positive integer. As a consequence, for the
boundary of a curvaturé-varifold one gets

oV (x,P) = iéxi (X) X 7% (P).

Theorem 3 (Compactness [8])For 1 < p < =, let{V{"} c CVP(#) be a sequence
of curvature k-varifolds V) = Ve, 6 With bo_undary. The corresponding curvatures

and boundaries are indicated by'A= {A“)?} anddV ("), respectively. Assume that
for every open se® C C % there exists a constante c(Q) > 0 such that for every
r

By () +IVOl(@) + [ IATPAVO <e(@).
“%(Q)

There exists a subsequerfd€™s)} of {V("} and a curvature k-varifold \=V;, g €
CVP (), with curvature A and boundagV , such that

v vy Al dys ~ady, gV gV,

in the sense of measures. Moreover, for any convex andflagtion f: R™ @ R"®
R™ — [0, +], one gets

S—o0

/ F(A)YAV < liminf / FAT)dv (o).
%) %)

1.3 Transplacement fields and bulk energy

Only Cauchy bodies are called upon in the analyses presbaeted They are bod-
ies for which the morphology of each material element is desd only by the
place in space occupied by its centre of mass. In other wartisdy is identified
with a region# of the Euclidean ambient spa@ that it occupies in a macro-
scopic reference configuration, taken as reference pl#cis. considered here as
an open set with Lipshitz boundary. Other configurationsreaehed by means of
transplacements that are usually taken as orientatiorepiag differentiable bi-
jectionsu : Z — R® mapping4 in the current configuration(2%), a set that is
presumed to be always open and endowed with Lipshitz boyndar
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The body occupying? is said to be amyperelastic simple bodyhen it is en-
dowed by a bulk energy which is absolutely continuous wipeet to the volume
measure and depends on the deformation gradient only. @siates of such a type
of body are described by minimizers of the overall energghSuinimizers can be
determined in terms of Cartesian currents [6] that are de=gibriefly below.

1.3.1 Sobolev maps and related Cartesian currents.

Let I (k,n) be the space of multi-indices if1,...,n) of lengthk. Denote also by
0 the empty multi-index of length 0. For any, the complementarynulti-index
to a in (1,...,n) is indicated bya, a € I(n—k,n), ando(a,a) is the sign of the
permutation from(1,...,n) into (ay,...,0x, 01,...,0n_k). FOr (€1, &,..., &) and
(€1, &,..., &) bases ilR" andRN, respectively/\; (R" x RN) is the vector space
of skew-symmetric tensors ovBf x RN of the form

min(r,N)
&= E%Peyneg = > i fw= §%Peq Neg.
o[ +[B[=r max0,r—n) la|+B|=r
IB|=k

For any linear mafs : R" — RN, the notatiorM(G) is used for the simpla-vector
in An(R" x RN) tangent to the graph @& and defined by

M(G) :=An(ld x G)(e1 A+ Aen) = (€1,G(€1)) A+ - A (n, Gen)).

Foru: # — RN an a.e. approximately differentiable map, denotéiyits ap-
proximate gradients has a Lusin representative on the subBef Lebesgue points
of bothu andDu, and|% \ %| = 0. Let{i(x) andDii(x) be the Lebesgue values of
uandDu atx € %, respectively. Assume thal(Du)| € L1(2). By following [6],
thegraphof u, defined by

Gy = {(x,y) € BxRN|xe 5, y:U(x)},

is a n-rectifiable subset 0% x RN with approximate tangent vectorspace at
(x,U(x)) generated by the vectofe;, Di(x)e1), ..., (en, DU(X)ey)) in R" x RN, The
n-current integration over the grapbf u is defined by the linear functional on
smoothn-formsw = w(x,y) with compact support i8 x RN given by

Gu(w) :/ <w,E> ALY, (1.3)

whereé (x) := %, for x € %, is the unitn-vector that orients the approx-
imate tangenh-space ta%, at (x,U0(x)); moreover,G, has finite mas#(G,) =

SUR)| g, <1 Gu(w) < oo, since
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M (Gy) = /,9 IM(DU(X))|dx= " (0).

In particular,Gy is a vector valued measure of x RN, actually aninteger rectifi-
able ncurrent with multiplicity 1 onZ x RN. Theboundaryof the currenG, can

be defined by duality as th@— 1)-current acting on compactly supported smooth
(n—1)-forms w in Z x RN, namelydG,(w) := Gy(dw), w € 2" (% x RN),
wheredw is the differential ofw.

1.3.2 The bulk energy.

By taking apart for a while the description of the possiblecks, it is assumed that
the external body forces have conservative nature so thaulk energy of the body
has the usual form

Ez(U) = / e(x,u,Du)dx

wheree(-) is the sum of the elastic energy and the potential of extdoneés. It is
assumed that = e(x, u,F) satisfies common assumptions listed below:

o (Hl)e: B xR"x M , — [0,+c]is continuous, wherBl . is the class of real
(nx n)-matrices~ such that deft > 0.
e (H2) The mag- — e(x,u,F) is polyconvexi.e. there exists a function

Pe(x,u, &) : B x R" x An(R" x R") — [0, +-co]

continuous inx, u) for every&, convex and lower semicontinuousgrfor every
(x,u), such that

e(x,u,F) =Pe(x,u,M(F))  VFeM,, V(xu)eZxR"
e (H3)e=e(x,u,F) satisfies the growth conditions
e(x,UF)>cM(F)9  VFeM,, V(xu)esBxR"

for somecy > 0 andq > 1. A
e (H4)Forevery e % andF € M., if for someu € R" the inequalitye(x, u,F) <
+oo is satisfied, then d&t > 0.

The assumptions (H1) and (H4) are essentially suggestelysjqal plausibility.
The hypothesis (H2) is an essence an assumption of mattatality while the
growth condition (H3) has more technical nature.
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1.4 A skeletal model admitting formation of cracks

The aim now is to describe the possible presence of crackssétting is selected
two-dimensional for the sake of simplicity. The generalmato 3D and extensions
are in [5]. Cracks are here represented here by 1-dimerisianaature varifolds
with curvature inLP, p > 1, which are quite regular. Basically € Cle(%’) can
be essentially described as (the integration over) a lpdilite union ofC-1-1/p
curves counted with integer multiplicities. Their bouridatare just Dirac measures
concentrated at the endpoints with their tangential divest

Definition 2. A macroscopic configuration of a bod¥ ¢ R? with a crack is a pair
composed by the bounded connected openzetith Lipschitz boundary and a
curvature 1-varifold with boundary, namely=V; g € Cle(%’) for somep > 1.

The gross place occupied by the body and the crack are traatdistinct ob-
jects. The crack is not part of the initial boundary: it isestéd by a measure over
A, namely a curvature varifold, and may or may not be an emgtynsthe ref-
erence place. Since the material bonds across the crackmaarg broken, along
the deformation, the cracks faces may loose contact. Thieadimplication is that
the graph of the deformation may have nonzero boundary. Anogpiate class of
admissible deformations has to be defined.

Weak diffeomorphisnigve been found to be natural descriptors of deformations
of standard elastic bodies [6]. They are orientation-presg, allow frictionless
contact of parts of the boundary while still prevent selfwpigation of the matter.
However, they satisfy a condition of zero boundary in thessenf currents, a con-
dition avoiding the formation of ‘holes’ of various nature allow fractures, an
extended version of them has to be formulated.

Definition 3. Let 2 C R? be a body with crack € CV,’(%). A weak diffeomor-
phismon % admitting crackslescribed by is an a.e. approximately differentiable
mapu : % — R? such that

1.|Dul,detDu € LY(%);

2. 0G| < v, wherepy := TiV;

3. deDu(x) > 0 fora.ex € %;

4. for every compactly supported smooth function? x R2 [0,+)

/7 f(x,u(x)) detDu(x)dng supf(x,y)dy.
» R’

2 xe B

In this case, one writes € dif 1*(%,V,R?). Moreover, forq > 1 the class
dif41(2,V,R?) is defined by

dif%1(8,V,R?) := {u e dif 11(2,V, R?) \ IM(Du)| € Lq(gg)}.

Condition (ii) implies that the Green formulas hold trueZhoutside the crack and
prescribes that the boundary current has finite mass, navh@hs,) < .
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Theorem 4.Let {V(} c CV(£), with p> 1, be a sequence of curvature var-
ifolds describing cracks in the bodg, with equibounded total variations, i.e.
SUR tym () < . Moreover, assume; e dif +1(%,V (), R?). Suppose also that
there exist ue L1(%,R?), v e L%, An(R? x R?)), and V € CV)(#) such that
Ur — u, M(Duy) — v weakly in I, and V — V as measures. ThenvM(Du) and,
moreover, ifdetDu > 0 a.e., ue dif 1(2,V,R?).

1.4.1 Theenergy functional

Bulk and crack contributions to the energy are involved amushe crack in this
skeletal model is one dimensional. The part of the energycésted with the crack
is then splitted in two contributions: (i) the energy alohg thargins, which depend
on the curvature of the margins themselves and is reprasbytihe curvature of a
varifold and (ii) the energy at the tips, the corners and timefions of the fracture,
that are represented by the boundary of the same varifold.

The energys’(u,V) reads

EuV): =8V, 8)
:/ e(x,u,Du)dx+c1/ |AIPAV +c;M (V) +c3M (aV)
2 Jean ()

' (1.4)
G
where theg’s are positive constants and the hypotheses (H1) (H2), &dd)(H4)
of Section 1.3 on the bulk energy density- e(x, u,F) are satisfied.

As regards to crack energy term, theorm|A|P of the curvature can be replaced
by ¢(|A]) whereg: RT — R is a convex function satisfying(t) > cstP.

The termc,M (V) is the Griffith-like part of the surface energy of the crack.

1.4.2 Ground states: existence theorems

It may be convenient to prescribeeamparison varifold/ ¢ CV(4) such that all
competing varifoldy/ satisfy the boundi; < pv. The comparison varifoldf can
be of course zero when an initial crack is absent. In the dppoase)V describes

a crack from which the competing cracks may extend withoutushing that they
may have portions unrelated with
The space

Ay ok 7 (B) = {(u,V) \v € CVP(), ue dif ¥1(2,V,R?),

||u||L°°(43) <K, My < IJV}7
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with K > 0, is then the natural functional environment for invediiggathe existence
of minimizers(u,V) for the energy?.

Theorem 5.Consider c R?, q,p> 1, K > 0,V € CVP(%). Assume that there ex-
ists an elemenu,V) € egz%q‘p kv (#) that satisfies the prescribed Dirichlet boundary
conditions. Then the energy functior{al4) attains its minimum in the subclass of

"Q{q,p,K,V(‘%)) of couplequ,V) where u satisfies the prescribed boundary conditions.

The constanK is selected at will for purposes of physical plausibilityisionly
necessary for establishing the boundedness ot theorm of u. In contrast, the
constants andq and the comparison varifold have constitutive nature. The a-
priori L* bound on the transplacement field has been relaxed in [2h[d@different
setting, not dealing with the path followed here.

The simpler description of the boundary measure of the ome$ional curva-
ture varifolds allows one to state another existence tmavich a different growth
condition for the bulk energy.

Consider the energy functional (1.4) where the bulk enemgysiy e(x,u,F)
satisfies (H1), (H2), (H4) of Section 1.3 and impose a difieigrowth condition
indicated here by

(H3-1) )
e(x,UF)>clF?  VFeMj, V(xu)e B xR

for somecy > 0.
ForK > 0 andV € CV(#) the class

Doy = {(u,V) ‘v €CVP(#), p> 1, ue dit*}(#,V,R?), Due L%(%),
[Ul|L=(2) <K, by < IJV}7
(1.5)
is then the natural functional setting for another existergsult.

Theorem 6. Assume that the bulk energy densityb#)satisfiegH1), (H2) (H4)of
Section 1.3 an@H3-1). Suppose that that there is at least one elenjentp) in the
class(1.5)with uy satisfying a given Dirichlet data. Then the functiohl4) has a
minimizer in the subclass dfL..5) of couplequ,V) with u satisfying the prescribed
Dirichlet boundary conditions.

In the previous scheme, a sequence of varifolds accumglatithe boundary
of % vanishes at the limit. It is possible to consider a differgntation where the
propagation of cracks at the boundary of the bedys taken into account, and a
term involving the crack at the boundary may contribute ®limit energy of mini-
mizing sequences. Such a situation has a clear meaningns tdrtransplacements
for the Dirichlet problem, where the limit crack may be sesmaarupture of the
boundary condition.

A related existence theorem again follows.
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