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Abstract. We construct non-unique Leray solutions of the forced Navier-Stokes
equations in bounded domains via gluing methods. This demonstrates a certain
locality and robustness of the non-uniqueness discovered by the authors in [1].
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1. Introduction

In the recent work [1], we constructed non-unique Leray solutions of the Navier-
Stokes equations in the whole space with forcing:

∂tu+ u · ∇u−∆u+∇p = f

div u = 0 .
(NS)

The non-unique solutions are driven by the extreme instability of a “background”
solution ū, which has a self-similar structure:

ū(x, t) =
1√
t
Ū

(
x√
t

)
. (1.1)

In particular, the non-uniqueness “emerges” from the irregularity at the space-
time origin and is expected to be local. However, while ū is compactly supported,
the non-uniqueness in [1] involves another solution whose support is R3 × [0, T ].
Below, we demonstrate a certain locality and robustness of the non-uniqueness
discovered in [1] by gluing it into any smooth, bounded domain Ω ⊂ R3 with no-
slip boundary condition u|∂Ω = 0 and into the torus T3 := R3/(2πZ)3, i.e., the
fundamental domain [−π, π]3 with periodic boundary conditions.

Theorem 1.1 (Non-uniqueness in bounded domains). Let Ω be a smooth, bounded
domain in R3 or the torus T3. There exist T > 0, f ∈ L1

tL
2
x(Ω × (0, T )), and two

distinct suitable Leray–Hopf solutions u, ū to the Navier–Stokes equations on Ω×
(0, T ) with body force f , initial condition u0 ≡ 0, and no-slip boundary condition.
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We assume a certain familiarity with the conventions of [1], although it will be
convenient to recall the basics below. For x ∈ R3 and t ∈ (0,+∞), define the
similarity variables

ξ =
x√
t
, τ = log t . (1.2)

A velocity field u and its similarity profile U are related via the transformation

u(x, t) =
1√
t
U(ξ, τ) . (1.3)

The force f and its profile F transform according to

f(x, t) =
1

t3/2
F (ξ, τ) . (1.4)

The Navier-Stokes equations in similarity variables are

∂τU −
1

2
(1 + ξ · ∇ξ)U −∆U + U · ∇U +∇P = F

divU = 0 .
(1.5)

Then Ū ∈ C∞0 (B1) constructed in [1] (see (1.1) above) is an unstable steady state
of (1.5) with suitable smooth, compactly supported forcing term F̄ , and the non-
unique solutions are trajectories on the unstable manifold associated to Ū .

In this paper, we take the following perspective. The force f and one solution
ū are exactly the ones from [1]. They are self-similar, smooth for positive times,
and compactly supported inside the domain Ω, which we assume contains the
origin. Each non-unique solution in [1] constitutes then an “inner solution” which
lives at the self-similar scaling |x| ∼ t1/2, and this solution can be glued to an
“outer solution” (namely, u ≡ 0), which lives at the scaling |x| ∼ 1. The boundary
conditions are satisfied by the outer solution. The solutions are glued by truncating
on an intermediate scale |x| ∼ tγ, where 0 < γ � 1. Let η(x, t) = η0(x/tγ) be a
suitable cut-off function with η0 ≡ 1 on B2 and η0 ≡ 0 on R3 \ B3. Our main
ansatz is

u = ū+ φη + ψ , (1.6)

where ū is the compactly supported self-similar solution of the previous work, φ is
the inner correction defined on the whole R3 (although only the values in supp η
matter for the definition of u), and ψ is the outer correction defined on the torus.
Since φ is the inner correction, it will be natural to track its similarity profile Φ
(we keep the lower and uppercase convention).

The PDE to be satisfied in Ω by φη + ψ is

∂t(φη)−∆(φη) + ū · ∇(φη) + ηφ · ∇ū+ ηφ · ∇(φη) + ū · ∇ψ + ψ · ∇ū
+ ∂tψ −∆ψ + ηφ · ∇ψ + ψ · ∇(φη) + ψ · ∇ψ +∇q = 0 ,

(1.7)

together with div(φη + ψ) = 0. We distribute the terms into an “inner equation”,
which we think of as an equation for φ involving some terms in ψ, localized around
the origin, and an “outer equation”, thought of as an equation for ψ. The inner
and outer equations, when satisfied separately, imply that (1.7) is satisfied.
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1.1. Inner equation. The inner equation has to be satisfied on the support of η,
which is contained in B3tγ :

∂tφ−∆φ+ ū · ∇φ+ φ · ∇ū+ φ · ∇(φη)

+ φ · ∇ψ + ψ · ∇φ+ ū · ∇ψ + ψ · ∇ū+∇q = 0 ,
(1.8)

and it is coupled to the divergence-free condition

div φ = 0 . (1.9)

We introduce the operator Lss, i.e., the linearized operator of (1.5) around Ū :

−LssΦ = −1

2
(1 + ξ · ∇ξ) Φ−∆Φ + P

(
Ū · ∇Φ + Φ · ∇Ū

)
. (1.10)

In self-similar variables, we rewrite the cut-off η(x, t) = N(ξ, τ). We rewrite the
inner equation (1.8) as

∂τΦ−LssΦ + Φ · ∇(ΦN) + div(ÑΨ⊗ Φ + ÑΦ⊗Ψ)

+ Ū · ∇Ψ + Ψ · ∇Ū +∇Π = 0 ,
(1.11)

where Ñ(ξ, τ) = N(ξ/3, τ). We now require that it is satisfied in the whole R3, not
merely on the support of N .

1.2. Outer equation. Using that (ū · ∇η)φ = 0, as a consequence of our choice
of η, we deduce the following system for the outer equation:

∂tψ −∆ψ + ψ · ∇ψ +∇π + φ(∂tη −∆η)− 2∇φ · ∇η + (ψ · ∇η)φ = 0

divψ = −∇η · φ (1.12)

The problem (1.12) is to be solved in Ω with the boundary condition ψ|∂Ω = 0.

We now consider the PDEs (1.8) and (1.12) as a system for (Φ, ψ). The two
components will be controlled using two different linear operators, Lss and P∆.

In dividing the terms of (1.7) into the inner and outer equations, we put the
“boundary terms”, i.e., terms involving derivatives of η, into the outer equation,
whereas the we put the terms Ū · ∇Ψ and Ψ · ∇Ū into the inner equation.

Crucially, we expect that the boundary terms are small because solutions of the
inner equation are well localized. Consequently, ψ decouples from φ as t→ 0+, and
therefore the linear part of the system should be invertible.1 For this to work, it is
necessary to show that the boundary terms are negligible, which requires knowledge
of the inner correction Φ in weighted spaces.

With this knowledge, we solve the full nonlinear system via a fixed point argu-
ment. The details of the scheme will be discussed in Section 3.

Our method is inspired by the parabolic “inner-outer” gluing technique exploited
in [3] to analyze bubbling and reverse bubbling in the two-dimensional harmonic
map heat flow into S2. The reverse bubbling in [3] is also an example of gluing
techniques applied to non-uniqueness, although its mechanism is quite different. It

1One can compare this to the matrix

[
a b
ε d

]
where ε represents the boundary terms, b repre-

sents the Ū ·∇Ψ + Ψ ·∇Ū terms, and the diagonal elements a and d are O(1). In fact, eventually
we will see that ψ decays faster than φ as t→ 0+, so the terms corresponding to b are small, and
the whole system decouples.
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is worth noting that, in that setting, the harmonic map heat flow actually has a
natural uniqueness class [9].

We expect that Theorem 1.1 may be extended in a number of ways. Our tech-
niques extend with minimal effort to non-uniqueness centered at k points. We
expect that the conditionally non-unique solutions of Jia and Šverák [7] can also
be glued.2 Finally, it would be interesting to glue the two-dimensional Euler con-
structions of [11, 12] (see also [2]) into the torus or bounded domains. This is likely
to be more challenging than the present work, since the Euler equations are quasi-
linear and the construction of the unstable manifold more involved. We leave these
and other extensions to future work.

2. Preliminaries

Consider p ∈ (1,+∞) and Ω = R3,T3, or a smooth, bounded domain in R3.

We define

Lpσ(Ω) := {φ ∈ C∞c (Ω;R3) : div φ = 0}
Lp(Ω;R3)

, (2.1)

which can be understood as the space of Lp velocity fields with div φ = 0 on Ω and
φ · ν = 0 on ∂Ω, where ν is the exterior normal to Ω. See [5, Chapter III] or [10,
Lemma 1.4]. Notice that the boundary condition is vacuous when Ω = R3,T3.

There exists a bounded projection P : Lp(Ω;R3) → Lpσ(Ω) satisfying Pφ =
φ−∇∆−1

N div φ for any φ ∈ C∞c (Ω;R3), where ∆N is the Neumann Laplacian. This
is the Leray projection. By density of divergence-free test fields, it agrees across Lp

spaces and, in particular, with the extension of the L2-orthogonal projection onto
divergence-free fields; see [5, Chapter III] or [10, Theorem 1.5].

2.1. Linear instability. The following theorem provides an unstable background
for the 3D Navier-Stokes equations. We refer the reader to [1] for its proof.

Theorem 2.1 (Linear instability). There exists a divergence-free vector field Ū ∈
C∞(R3;R3) with supp Ū ⊂ B1(0) such that the linearized operator Lss : D(Lss) ⊂
L2
σ(R3)→ L2

σ(R3) defined by

−LssU = −1

2
(1 + ξ · ∇ξ)U −∆U + P(Ū · ∇U + U · ∇Ū) , (2.2)

where D(Lss) := {U ∈ L2
σ : U ∈ H2(R3), ξ · ∇U ∈ L2(R3)}, has a maximally

unstable eigenvalue λ with non-trivial smooth eigenfunction ρ belonging to Hk(R3)
for all k ≥ 0:

Lssρ = λρ and a := Reλ = sup
z∈σ(Lss)

Re z > 0 . (2.3)

The construction in [1] allows Ū to be chosen to make a arbitrarily large, and it
will be convenient, though not strictly necessary, to enforce that a ≥ 10.

We can now define
U lin(·, τ) = Re(eλτρ) , (2.4)

a solution of the linearized PDE ∂τU
lin = LssU

lin, with maximal growth rate a ≥ 10.

2For this, it may be necessary to assume that the self-similar solution is just barely unstable,
as is done in the truncation procedure in [7]. Typically, the background solution ū must be cut in
the gluing procedure, but we avoid this because in our setting ū is already compactly supported.



5

The following lemma, borrowed from [1, Lemma 4.4], provides sharp growth
estimates on the semigroup eτLss .

Lemma 2.2. Let Ū be as in Theorem 2.1. Then, for any σ2 ≥ σ1 ≥ 0 and δ > 0,
it holds

‖eτLssU‖Hσ2 .σ1,σ2,δ τ
− (σ2−σ1)

2 eτ(a+δ)‖U‖Hσ1 , (2.5)

for any U ∈ L2
σ ∩Hσ1(R3).

2.2. Improved space decay. For ζ ∈ R and p ∈ [1,+∞], define Lpζ(R3) to be

the space of f ∈ Lploc(R3) satisfying

‖f‖Lpζ := ‖〈·〉ζf‖Lp < +∞ , (2.6)

where 〈ξ〉 = (1 + |ξ|2)1/2 is the Japanese bracket notation. We further define

Lpw(R3) := Lp4(R3) . (2.7)

Lemma 2.3. Let ζ ∈ (3, 4], p ∈ (3,+∞] and δ > 0. Then

‖eτLssP div ‖Lpζ→L∞ζ .δ,ζ,p τ
−( 1

2
+ 3

2p
)e(a+δ)τ . (2.8)

Remark 2.4. For M ∈ Lp(R3;R3×3) and p ∈ [1,+∞], the solution operator
eτLssP divM is easily shown to be well defined by standard arguments. Namely,
consider the solution u to the following PDE:

∂tu−∆u+ P div(ū⊗ u+ u⊗ ū) = 0 , u(·, 1) = P divM . (2.9)

The mild solution theory of the above PDE can be developed using properties of
the semigroup et∆P div (whose kernel consists of derivatives of the Oseen kernel,
see (2.14)-(2.15) below) by considering P div(ū ⊗ u + u ⊗ ū) as a perturbation in
Duhamel’s formula. In particular, it is standard to demonstrate that, for all T > 1
and t ∈ (1, T ], we have

‖u(·, t)‖Lq .T,p,q (t− 1)−[ 1
2

+ 3
2

( 1
p
− 1
q

)]‖M‖Lp , (2.10)

for all 1 ≤ p ≤ q ≤ +∞. Finally, we define eτLssP divM := U : R3× [0,+∞)→ R3

according to

u(x, t) =
1√
t
U(ξ, τ) . (2.11)

With this in mind, we focus below on growth estimates for the semigroup.

Proof of Lemma 2.3. To begin, we establish weighted estimates for the semigroup
eτAP div, where

−A := −1

2
(1 + ξ · ∇)−∆ . (2.12)

For M ∈ Lpζ(R3;R3×3) ⊂ L2, consider the solution u : R3 × [1,+∞)→ R3 to

∂tu−∆u = 0 , u(·, 1) = P divM . (2.13)

We have the representation formula

u(x, t) = g(·, t− 1) ∗M , (2.14)
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where g is tensor-valued and consists of derivatives of the Oseen kernel (see,
e.g., [10, p. 80]),

g =
1

t2
G

(
x√
t

)
, (2.15)

satisfying the pointwise estimate

|G(ξ)| . 〈ξ〉−4 . (2.16)

Define e·AP divM := U : R3 × [0,+∞)→ R3 according to

u(x, t) =
1√
t
U(ξ, τ) . (2.17)

Using the representation formula and elementary estimates for convolution (see
Lemma 7.1 and Remark 7.2), we have two estimates. First, we have the short-time
estimate

‖u‖L∞ζ .ζ,p (t− 1)−( 1
2

+ 3
2p

)‖M‖Lpζ , t ∈ (1, e] , (2.18)

which implies that

‖U‖L∞ζ .ζ,p τ
−( 1

2
+ 3

2p
)‖M‖Lpζ , τ ∈ (0, 1] . (2.19)

Moreover, we have the long-time estimate

‖U‖L∞ζ .ζ,p ‖M‖Lpζ , τ ∈ [1,+∞) . (2.20)

This completes the semigroup estimates for eτAP div.

We now turn our attention to the growth estimate for eτLssP div. First, we prove

‖eτLssP divM‖L∞ .δ,p τ−( 1
2

+ 3
2p

)eτ(a+δ)‖M‖Lp , τ > 0 . (2.21)

We already have this estimate for τ ∈ (0, 2], see (2.10) in Remark 2.4, so we
focus on τ ≥ 2. This is done by splitting eτLssP div = e(τ−1)LssP ◦ eLssP div, using
estimate (2.10) (with p = q = 2) for the operator eLssP div, and using the growth
estimate

‖eτLssP‖L2→H2 .δ τ
−1eτ(a+δ) , τ > 0 , (2.22)

from Lemma 2.2, for the operator e(τ−1)LssP, along with Sobolev embedding H2 ⊂
L∞ in dimension three. With (2.21) in hand, we proceed with the desired L∞ζ
estimate. Define U := eτLssP divM and write

U(·, τ) = eτAP divM −
∫ τ

0

e(τ−s)AP div(Ū ⊗ U + U ⊗ Ū) ds . (2.23)
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We will combine the semigroup estimates (2.19) and (2.20) for A with (2.21) and
the fact that Ū is compactly supported. We end up with

‖U‖L∞ζ .δ,p max(τ−( 1
2

+ 3
2p

), 1)‖M‖Lpζ

+

∫ τ

0

max((τ − s)−
1
2 , 1)‖(Ū ⊗ U + U ⊗ Ū)(·, s)‖L∞ζ ds

.δ,p max(τ−( 1
2

+ 3
2p

), 1)‖M‖Lpζ +

∫ τ

0

max((τ − s)−
1
2 , 1)‖U(·, s)‖L∞ ds

.δ,p max(τ−( 1
2

+ 3
2p

), 1)‖M‖Lpζ +

∫ τ

0

max((τ − s)−
1
2 , 1)s−( 1

2
+ 3

2p
)es(a+δ)‖M‖Lp ds

.δ,p max(τ−( 1
2

+ 3
2p

), 1)eτ(a+δ) ds ,
(2.24)

where we used that p > 3. This holds for all δ > 0, completing the proof. �

Lemma 2.5. The eigenfunction ρ in Theorem 2.1 belongs to L∞w (R3).

Proof. The proof is akin to [1, Corollary 3.3]: ρ ∈ D(Lss) solves

λρ− 1

2
(1 + ξ · ∇ξ)ρ−∆ρ = P divF (2.25)

where −F = Ū⊗ρ+ρ⊗Ū . Notably, local elliptic regularity implies that ρ is smooth
on the support of Ū . Hence, F ∈ L∞w . Next, we ‘undo’ the similarity variables by
defining

h(x, t) = tλ−
1
2ρ

(
x√
t

)
, M(x, t) = tλ−1F

(
x√
t

)
. (2.26)

Then
∂th−∆h = P divM , h(·, 0) = 0 , (2.27)

and we have the representation formula

ρ = h(·, 1) =

∫ 1

0

e∆(1−s)P divM(·, s) ds , (2.28)

which yields (see (2.18))

‖ρ‖L∞w .
∫ 1

0

(1− s)−
1
2‖M(·, s)‖L∞w ds .

∫ 1

0

(1− s)−
1
2 sReλ−1 ds‖F‖L∞w < +∞

(2.29)
since Reλ > 0. Here, we used that ‖f(x/`)‖L∞w ≤ ‖f‖L∞w for ` ∈ (0, 1]. This
completes the proof. �

2.3. Stokes equations in bounded domains. We now turn our attention to
the linear theory for the outer equation. We begin with semigroup theory for the
Stokes equations, see [6, Sections 2 and 5] and [10, Chapter 5].

Lemma 2.6 (Stokes in bounded domains). Let p ∈ (1,+∞) and Ω ⊂ R3 be a
smooth, bounded domain. Define

D(A) := W 2,p ∩W 1,p
0 ∩ Lpσ(Ω) (2.30)

and the Stokes operator

A = P∆ : D(A)→ Lpσ(Ω) . (2.31)
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Then the Stokes operator A generates an analytic semigroup (etA)t≥0, and we have,
for all p ∈ (1,+∞) and q ∈ [p,+∞], the smoothing estimates

‖etAP‖Lp→Lq + t
1
2‖etAP div ‖Lp→Lq . t

3
2

( 1
q
− 1
p

) . (2.32)

The function u(x, t) = (etAu0)(x) solves the Stokes equations with no-slip bound-
ary conditions

∂tu−∆u+∇π = 0 , u(·, t) = 0 on ∂Ω , (2.33)

for any u0 ∈ Lpσ(Ω). The boundary conditions are built into the domain of the
operator, and etA : Lpσ → D(A) for any t > 0.

To solve the Stokes equations with non-zero divergence, we use the following
lemma due to [4, Theorem 4].

Lemma 2.7 (Stokes with inhomogeneous divergence). Let T > 0 and Ω ⊂ R3

be a smooth, bounded domain. For p ∈ (3,+∞), and r ∈ (1,+∞), consider h ∈
LrtL

p
x(Ω× (0, T )) with zero mean:

∫
Ω
h(x, t) dx = 0 for a.e. t ∈ (0, T ).

Then there exists a unique very weak solution u ∈ LrtLpx(Ω × (0, T )) to the fol-
lowing Stokes problem in Ω× (0, T ):

∂tu−∆u+∇π = 0

div u = h

u|∂Ω×(0,T ) = 0

u(·, 0) = 0 ;

(2.34)

that is, for all divergence-free w ∈ C1
c ([0, T ); (C2 ∩ C0)(Ω̄)), we have∫ T

0

∫
Ω

u(−∂t −∆)w dx dt = 0 (2.35)

and div u = h in the sense of distributions on Ω× (0, T ). Moreover, u satisfies the
estimate

‖u‖LrtLpx(Ω×(0,T )) .Ω,r,p ‖h‖LrtLpx(Ω×(0,T )) . (2.36)

Remark 2.8. The initial condition u(·, 0) = 0 is understood “modulo gradi-
ents”. Moreover, it can be proven (cf. [4, Theorem 4, Remark 3]) that A−1Pu ∈
C([0, T );Lpσ(Ω)) and A−1Pu(·, 0) = 0. Notably, uniqueness holds in the above class
of very weak solutions, which makes the notion a useful generalization.

2.4. Stokes equations in the periodic domain. On the torus T3 := R3/(2πZ)3,
the Stokes equations can be solved by means of the heat semigroup, since the Stokes
operator A in Lpσ(T3), p ∈ (1,+∞), coincides with

∆ : W 2,p ∩ Lpσ(T3)→ Lpσ(T3) . (2.37)

Hence, the associated Stokes semigroup (etA)t≥0 coincides with the heat semigroup
and enjoys the smoothing estimates

‖etAP‖Lp→Lq + t
1
2‖etAP div ‖Lp→Lq . t

3
2

( 1
q
− 1
p

) , (2.38)

for all p ∈ (1,+∞) and q ∈ [p,+∞].
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The Stokes equations with non-zero divergence,
∂tu−∆u+∇π = 0

div u = h

u(·, 0) = 0 ,

(2.39)

admit an explicit solution
u = ∇∆−1h , (2.40)

provided h satisfies the compatibility condition
∫
T3 h(x, t) dx = 0 for a.e. t ∈ (0, T ).

The solution is in the very weak sense, that is, div u = h in the sense of distribu-
tions, and, for all w ∈ C1

c ([0, T );C2(T3)), we have∫ T

0

∫
T3

u(−∂tw −∆w) dx dt = 0 . (2.41)

As in Remark 2.8, the initial condition is only “modulo gradients”.

It is immediate to check that

‖u‖LrtLpx(T3×(0,T )) .p ‖h‖LrtLpx(T3×(0,T )) , (2.42)

for any r ∈ [1,∞] and p ∈ (1,∞).

Moreover, there is uniqueness when u ∈ LrtLpx(T3 × (0, T )). That is, necessarily
u is given by (2.40). Indeed, if div u = 0, then u = Pu, and (2.41) simply asserts
that u solves the heat equation with zero initial condition.

3. The integral equations

In what follows Ω is either a smooth, bounded domain or the periodic box T3.
For τ̄ ∈ R, t̄ > 0, and α, β > 0, we define the norms

‖Φ‖Xα
τ̄

:= sup
τ≤τ̄

e−τα‖Φ(·, τ)‖L∞w (3.1)

‖ψ‖Y β
t̄

:= sup
s∈(0,t̄)

s−β‖ψ‖LrtLpx(Ω×(0,s)) , (3.2)

where r, p � 1 will be fixed later. The function spaces Xα
τ̄ and Y β

t̄ consist of
C((−∞, τ̄ ];L∞w (R2)) and measurable functions, respectively, with finite norm. Let

Zα,β
t̄ := Xα

τ̄ × Y
β
t̄ (3.3)

endowed with the norm

‖(Φ, ψ)‖Zα,β
t̄

= ‖Φ‖Xα
τ̄

+ ‖ψ‖Y β
t̄
. (3.4)

We drop the dependence on τ̄ from Zα,β
t̄ since we always assume that τ̄ = log t̄.

We use the decomposition

Φ = Φlin + Φper , (3.5)

where
Φlin(·, τ) = U lin(·, τ) = Re(eλτρ) (3.6)

was defined in (2.4).

Our goal is to solve a set of integral equations for Φper and ψ:

(Φper, ψ) = L[(Φper, ψ)] +B[(Φper, ψ)] +G (3.7)
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where L = (Li, Lo), B = (Bi, Bo), and G = (Gi, Go) will be specified below.
The integral equations will be a reformulation of the inner and outer equations
introduced in Section 1.

We want to show that, for an appropriate choice of the parameters α and β,
defined in (4.5), r, p � 1, and γ = 1/r � 1, there exists t̄ > 0 such that the

integral equations admit a unique solution (Φper, ψ) ∈ Zα,β
t̄ . In what follows, we

allow the implied constants to depend on γ, r, p, and a.

We now determine the above operators, beginning with the inner integral equa-
tion.

3.1. Inner integral equation. Recall that the inner PDE is

∂τΦ−LssΦ + Φ · ∇(ΦN) + div(ÑΦ⊗Ψ + ÑΨ⊗ Φ)

+ Ū · ∇Ψ + Ψ · ∇Ū +∇Π = 0 ,
(3.8)

which must be satisfied on the support of N , and which we seek to solve in the
whole space. With the decomposition (3.5), we can derive an equation for Φper.
The equation is

∂τΦ
per −LssΦ

per = P divL[(Φper, ψ)] + P divB[(Φper, ψ)] + P divG , (3.9)

where L is a linear operator in (Φper, ψ) given by

−L[(Φper, ψ)] = NΦlin ⊗ Φper +NΦper ⊗ Φlin︸ ︷︷ ︸
=:−L1

+ ÑΦlin ⊗Ψ + ÑΨ⊗ Φlin︸ ︷︷ ︸
=:−L2

+ Ū ⊗Ψ + Ψ⊗ Ū︸ ︷︷ ︸
=:−L3

.
(3.10)

The operator B[(Φper, ψ)] = B[(Φper, ψ), (Φper, ψ)] is induced by the bilinear form

−B[(Φper
1 , ψ1), (Φper

2 , ψ2)] = NΦper
2 ⊗ Φper

1︸ ︷︷ ︸
=:−B1

+ ÑΦper
1 ⊗Ψ2 + ÑΨ2 ⊗ Φper

1︸ ︷︷ ︸
=:−B2

. (3.11)

We finally have

−G = NΦlin ⊗ Φlin . (3.12)

The associated integral operators are

Li[(Φ
per, ψ)] =

∫ τ

−∞
e(τ−s)LssP divL(·, s) ds (3.13)

Bi[(Φ
per, ψ)] =

∫ τ

−∞
e(τ−s)LssP divB(·, s) ds (3.14)

Gi =

∫ τ

−∞
e(τ−s)LssP divG(·, s) ds . (3.15)
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3.2. Outer integral equation. Let ψdiv[Φ] be the solution of the Stokes equations
with inhomogeneous divergence: When Ω is a smooth, bounded domain, we define
ψdiv[Φ] as in Lemma 2.7 with h = −∇η · φ. In the periodic setting, we set

ψdiv[Φ] = −∇∆−1(∇η · φ) , (3.16)

see the discussion in Section 2.4.

Recall that the outer PDE is posed on Ω and reads{
∂tψ −∆ψ + ψ · ∇ψ +∇π + φ(∂tη −∆η)− 2∇φ · ∇η + (ψ · ∇η)φ = 0

divψ = −∇η · φ .
(3.17)

It will be convenient to rewrite

∇φi · ∇η = div(φi∇η)− φi∆η , (3.18)

to keep everything in divergence form:{
∂tψ −∆ψ + div(ψ ⊗ ψ) +∇π + φ(∂tη + ∆η)− 2 div(φ⊗∇η) + (ψ · ∇η)φ = 0

divψ = −∇η · φ .
(3.19)

The PDE is supplemented with the boundary condition ψ|∂Ω = 0.

The integral equation for ψ is

ψ = ψdiv[Φ]−
∫ t

0

e(t−s)AP[φ(∂t + ∆)η − 2 div(φ⊗∇η)](·, s) ds

−
∫ t

0

e(t−s)AP[div(ψ ⊗ ψ) + (ψ · ∇η)φ](·, s) ds .
(3.20)

We rewrite it as

ψ = Lo[(Φ
per, ψ)] +Bo[(Φ

per, ψ)] +Go , (3.21)

where Lo acts linearly on (Φper, ψ) according to

Lo[(Φ
per, ψ)] =ψdiv[Φper]−

∫ t

0

e(t−s)AP[φper(∂t + ∆)η − 2 div(φper ⊗∇η)](·, s) ds

−
∫ t

0

e(t−s)AP[(ψ · ∇η)φlin](·, s) ds .

(3.22)

The operator Bo is induced by the bilinear form

Bo[(Φ
per
1 , ψ1), (Φper

2 , ψ2)] = −
∫ t

0

e(t−s)AP[div(ψ1 ⊗ ψ2) + (ψ1 · ∇η)φper
2 ](·, s) ds ,

(3.23)
and finally,

Go = ψdiv[Φlin]−
∫ t

0

e(t−s)AP[φlin(∂t + ∆)η − 2 div(φlin ⊗∇η)](·, s) ds . (3.24)
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3.3. Elementary estimates. We have the following elementary estimate for Y β
t̄ .

From now on, suppose that t̄ ≤ 1. Let β′ ∈ (0, β). Then (extending ψ by zero in
time as necessary)

‖t−β′ψ‖LrtLpx(Ω×(0,t̄)) .

(∑
k≤0

2−kβ
′r‖1(2k−1,2k)ψ‖rLrtLpx(Ω×(0,t̄))

) 1
r

.

(∑
k≤0

2(β−β′)kr

) 1
r

‖ψ‖Y β
t̄

. ‖ψ‖Y β
t̄
,

(3.25)

where the implied constants depend on β, β′, r. Hence,

‖eτ(−β′− 1
2

+ 3
2p

+ 1
r

)ΨÑ‖LrτLpξ(R3×(−∞,τ̄)) . ‖ψ‖Y β
t̄
, (3.26)

where the 1/r arises from the change of measure eτ dτ = dt.

Meanwhile, we have

‖φ(·, t)‖L∞ = t−
1
2‖Φ(·, τ)‖L∞ . (3.27)

Let At = supp∇η(·, t) ⊂ {r0 ≤ |x|
tγ
≤ r1} for appropriate 0 < r0 < r1 < +∞

(notably, r0t
γ− 1

2 ≤ |ξ| ≤ r1t
γ− 1

2 with ξ = x/
√
t). Then

‖φ(·, t)|At‖Lp . t−
1
2

+ 3γ
p

+4( 1
2
−γ)‖Φ(·, τ)‖L∞w . (3.28)

4. Outer estimates

We begin with the outer estimates. Crucially, we will see that the boundary
terms from Φlin will limit the decay rate β of ψ. First, we unpack the notation in
∂tη, ∆η, and ∇η:

∂tη = −γt−1 x

tγ
· ∇η0

( x
tγ

)
, ∆η = t−2γ∆η0

( x
tγ

)
, ∇η = t−γ∇η0

( x
tγ

)
. (4.1)

Except in the ψdiv terms which correct the divergence, it will be convenient to work
with pointwise estimates in time and use the observation that, for functions f ,

‖f‖Lr(0,t) ≤ t
1
r ‖f‖L∞(0,t) . (4.2)

It will be convenient, though not strictly necessary, to choose r and γ satisfying

1

r
= γ . (4.3)

Let

κ := κ(p, r) =
1

r
− 1

2
+

3γ

p
+ 4
(1

2
− γ
) r,p→+∞−→ 3

2
. (4.4)

This exponent with appear in the decay rates α and β. The 1/r term will be seen
to come from (4.2). As in (3.28), the −1/2 term comes from the inner-outer change
of variables, the 3γ/p term comes from estimating the Lp norm on the support of
∇η by the L∞ norm, and the 4(1/2 − γ) term comes from pointwise estimates
evaluated on the support of ∇η. We recognize the exponent in (3.28) as κ− 1/r.
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We then define

β := κ+ a− γ

2
, α := β +

1

8
. (4.5)

Finally, we recall the estimate from Lemma 2.5,

‖Φlin(·, τ)‖L∞w . eτa , for any τ ∈ R . (4.6)

4.1. Estimate on Go (3.24). We begin with the divergence term, which will have
the worst contribution. It is estimated using Lemma 2.7, (2.42) (depending on
whether Ω is a bounded or a periodic domain), (3.28) and (4.6):

‖ψdiv[Φlin]‖LrtLpx(Ω×(0,t)) . ‖∇η · φlin‖LrtLpx(Ω×(0,t))

. t−γ+κ‖Φlin‖L∞τ L∞w (R3×(−∞,log t)) . t−γ+κ+a .
(4.7)

The remaining terms are estimated using either Lemma 2.6 or (2.38):∥∥∥∥∫ t

0

e(t−s)AP[φlin(∂t + ∆)η − 2 div(φlin ⊗∇η)](·, s) ds
∥∥∥∥
Lp(Ω)

.
∫ t

0

‖[φlin(∂t + ∆)η](·, s)‖Lp(Ω) + (t− s)−
1
2‖φlin ⊗∇η(·, s)‖Lp(Ω) ds

.
∫ t

0

(s−1 + s−2γ)sa+κ− 1
r + (t− s)−

1
2 s−γsa+κ− 1

r ds

. ta+κ− 1
r .

(4.8)

Of the terms in (4.8), the ∂tη term has the worst contribution. Notice that the
−1/r factor in (4.8) will drop after applying (4.2). Combining (4.7) and (4.8), We
conclude that for all t ∈ (0, t̄),

‖Go‖LrtLpx(Ω×(0,t)) . t−γ+κ+a . (4.9)

Hence, (4.5) gives

‖Go‖Y β
t̄
. t̄

γ
2 . (4.10)

4.2. Estimate on Lo (3.22). The terms in the first line of (3.22) are estimated
similarly to the Go estimate except that a is replaced by α and Φlin by Φper. We
employ either Lemma 2.6 or (2.38) to estimate the remaining term:∥∥∥∥∫ t

0

e(t−s)AP[(ψ · ∇η)φlin](·, s) ds
∥∥∥∥
Lp(Ω)

.
∫ t

0

s−γ‖ψ(·, s)‖Lp‖φlin(·, s)|As‖L∞ ds

. t−γ+β+κ+a+1− 2
r
− 3γ

p ‖ψ‖Y β
t̄

. tβ+κ+a‖ψ‖Y β
t̄
,

(4.11)

provided r and p are big enough. We conclude that

‖Lo[(Φper, ψ)]‖Y β
t̄
. t̄

γ
2

+(α−a)‖Φper‖Xα
τ̄

+ t̄κ+a‖ψ‖Y β
t̄
. t̄κ‖(Φper, ψ)‖Zα,β

t̄
. (4.12)
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4.3. Estimate on Bo (3.23). By the semigroup estimates in Lemma 2.6 (or (2.38),
in the periodic setting), for all t ∈ (0, t̄), we have∥∥∥∥∫ t

0

e(t−s)AP div[ψ1 ⊗ ψ2](·, s) ds
∥∥∥∥
Lp(Ω)

.
∫ t

0

(t− s)−
1
2
− 3

2p‖ψ1(·, s)‖Lp‖ψ2(·, s)‖Lp ds

.

(∫ t

0

(t− s)(− 1
2
− 3

2p
)(2r)′ ds

) 1
(2r)′

‖ψ1‖LrtLpx(Ω×(0,t))‖ψ2‖LrtLpx(Ω×(0,t))

. t2β‖ψ1‖Y β
t̄
‖ψ2‖Y β

t̄
,

(4.13)

where we choose p, r � 1 such that the first term is time integrable. Finally,∥∥∥∥∫ t

0

e(t−s)AP[(ψ1 · ∇η)φper
2 ](·, s) ds

∥∥∥∥
Lp(Ω)

.
∫ t

0

s−γsκ−
3γ
p
− 1
r ‖ψ1‖Lp‖Φper

2 ‖L∞w ds

.

(∫ t

0

s(−γ+κ− 3γ
p
− 1
r

+α)r′ ds

) 1
r′

‖ψ1‖LrtLpx(Ω×(0,t))‖Φper
2 ‖Xα

τ̄

. tα+β‖ψ1‖Y β
t̄
‖Φper

2 ‖Xα
τ̄
.

(4.14)

Combining (4.13) and (4.14) with (4.2) (also, α ≥ β), we have

‖Bo[(Φ
per
1 , ψ1), (Φper

2 , ψ2)]‖Y β
t̄
. t̄β+ 1

r ‖(Φper
1 , ψ1)‖Zα,β

t̄
‖(Φper

2 , ψ2)‖Zα,β
t̄
. (4.15)

5. Inner estimates

We now turn to the inner estimates, for which our main tool is Lemma 2.3.

5.1. Estimate on Gi (3.15), (3.12). For all τ ∈ (−∞, τ̄), we have (with δ = a/2,
in Lemma 2.3),

‖Gi(·, τ)‖L∞w =

∥∥∥∥∫ τ

−∞
e(τ−s)LssP divG(·, s) ds

∥∥∥∥
L∞w

.
∫ τ

−∞
e(τ−s)( 3a

2
)(τ − s)−

1
2 e2as ds . e2aτ ,

(5.1)

that is,

‖Gi‖Xα
τ̄
. e(2a−α)τ̄ . (5.2)

5.2. Estimate on Bi (3.14), (3.11). The estimate for the B1 terms is analogous
to the Gi estimate. For all τ ∈ (−∞, τ̄), we have∥∥∥∥∫ τ

−∞
e(τ−s)LssP divB1(·, s) ds

∥∥∥∥
L∞w

. e2ατ‖Φper
1 ‖Xα

τ̄
‖Φper

2 ‖Xα
τ̄
. (5.3)
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For the B2 terms, we apply Lemma 2.3 and (3.26) to get∥∥∥∥∫ τ

−∞
e(τ−s)LssP divB2(·, s) ds

∥∥∥∥
L∞w

.δ

∫ τ

−∞
e(τ−s)(a+δ)(τ − s)−

1
2
− 3

2p‖Φper
1 (·, s)‖L∞w ‖Ψ2Ñ(·, s)‖Lp ds

.δ

∫ τ

−∞
e(τ−s)(a+δ)(τ − s)−

1
2
− 3

2p esαe(β′+ 1
2
− 3

2p
− 1
r

)s

× ‖e(−β′− 1
2

+ 3
2p

+ 1
r

)sΨ2Ñ(·, s)‖Lp ds ‖Φper
1 ‖Xα

τ̄

(3.26)

.δ,β′ e
τ(α+β′+ 1

2
− 3

2p
− 1
r

)‖Φper
1 ‖Xα

τ̄
‖Ψ2‖Y β

t̄

.δ,β′ e
(α+β)τ‖Φper

1 ‖Xα
τ̄
‖Ψ2‖Y β

t̄

(5.4)

where β′+1/2−3/(2p)−1/r = β and δ = β/2. Combining the above two estimates,
we conclude

‖Bi[(Φ
per
1 , ψ1), (Φper

2 , ψ2)]‖Xα
τ̄
. eβτ̄‖(Φper

1 , ψ1)‖Zα,β
t̄
‖(Φper

2 , ψ2)‖Zα,β
t̄
. (5.5)

5.3. Estimate on Li (3.13), (3.10). The estimate for the L1 terms is analogous
to the Gi and B1 estimates. For all τ ∈ (0, τ̄), we have∥∥∥∥∫ τ

−∞
e(τ−s)LssP divL1(·, s) ds

∥∥∥∥
L∞w

. eτ(a+α)‖Φper‖Xα
τ̄
. (5.6)

The estimates for the L2 terms is analogous to the B2 estimate:∥∥∥∥∫ τ

−∞
e(τ−s)LssP divL2(·, s) ds

∥∥∥∥
L∞w

. e(a+β)τ‖Ψ2‖Y β
t̄
. (5.7)

Finally, we have ∥∥∥∥∫ τ

−∞
e(τ−s)LssP divL3(·, s) ds

∥∥∥∥
L∞w

.δ

∫ τ

−∞
e(τ−s)(a+δ)(τ − s)−

1
2
− 3

2p‖Ū‖L∞w ‖Ψ‖Lp ds

.δ,β′ e
(β′+ 1

2
− 3

2p
− 1
r

)τ‖ψ‖Y β
t̄

.δ,β′ e
(β+ 1

4
)τ‖ψ‖Y β

t̄
,

(5.8)

where β′ + 1/4 − 3/(2p) − 1/r = β and δ = (a + β)/2 − a. Combining the above
three estimates and a ≥ 10, we have

‖Li[(Φ
per, ψ)]‖Xα

τ̄
. e(β+ 1

4
−α)τ̄‖(Φper, ψ)‖Zα,β

t̄

(4.5)

. e
1
8
τ̄‖(Φper, ψ)‖Zα,β

t̄
. (5.9)

6. Conclusion

We now collect the estimates (4.10), (4.12), (4.15), (5.2), (5.5), (5.9), which yield
that

‖L‖Zα,β
t̄
→Zα,β

t̄
+ ‖B‖Zα,β

t̄
×Zα,β

t̄
→Zα,β

t̄
+ ‖G‖Zα,β

t̄
→ 0 as t̄→ 0+ , (6.1)



16 ALBRITTON, BRUÉ, AND COLOMBO

with the appropriate choices of α and β in (4.5), p, r � 1, γ = 1/r � 1, and
a ≥ 10. In particular, there exists t̄� 1 such that

L+B +G : {‖(Φper, ψ)‖Zα,β
t̄
≤ 1} → {‖(Φper, ψ)‖Zα,β

t̄
≤ 1} (6.2)

is a contraction, cf. [1, Subsection 4.2.2]. Hence, there exists a unique solution
(Φper, ψ) to the integral equation (3.7) in the above ball. By the ansatz (1.6) and
decomposition (3.5), the solution (Φper, ψ) determines a mild Navier-Stokes solution
u : Ω× (0, t̄)→ R3 with forcing f and satisfying

u ∈ LrtLpx(Ω× (ε, t̄)) , (6.3)

for all ε ∈ (0, t̄).

That the solution is indeed mild is a technical point, which we now justify.
Initially, we know that, for all divergence-free w ∈ C1

c ((0, T );C2 ∩C0(Ω)), we have∫ t̄

0

∫
Ω

u(−∂tw −∆w) dx dt =

∫ t̄

0

∫
Ω

u⊗ u : ∇w + f · w dx dt , (6.4)

and u(·, t) ∈ Lpσ(Ω) for a.e. t ∈ (0, t̄). In particular, u = Pu, and it is weakly
continuous in (0, t̄) due to (6.4). Consider ε ∈ (0, t̄) such that u(·, ε) ∈ Lpσ(Ω).
Let v be the mild solution to the Stokes equations on Ω × (ε, t̄) with initial data
v(·, ε) = u(·, ε) and right-hand side − div u ⊗ u + f . Then u − v is a very weak
solution in the sense of Lemma 2.7 with zero initial data, zero right-hand side, and
zero divergence. By uniqueness, u ≡ v on Ω× (ε, t̄).

We begin by justifying that u 6= ū, which is necessary for non-uniqueness. Re-
call that ‖ΦlinN(·, τ)‖Lp & eτa and ‖Φper(·, τ)‖L∞w . eτα for all sufficiently neg-
ative τ . Additionally, due to (3.26), we have that, for all β′ < β, ‖Ψ(·, τk)‖Lp .
eτk(β′− 1

2
+ 3

2p
− 1
r

) along a sequence τk → −∞; in particular, the exponent on the right-
hand side can be made strictly greater than a. Hence, ‖ΦN(·, τk)+Ψ(·, τk)‖Lp & eτka

for large enough k, which justifies the claim.

We now justify that the above solution is a Leray-Hopf solution with right-hand
side. Since LrtL

p
x(Ω×(ε, t̄)) is a subcritical space when 2/r+3/p < 1 and f is smooth

away from t = 0, it is classical that u ∈ L∞t (W 1,q
0 )x(Ω× (ε, t̄)) for all q ∈ (1,+∞)

(bootstrap using the mild formulation and the linear estimates in Lemma 2.6) and,
moreover, satisfies energy equality on Ω× (ε, t̄), for all ε ∈ (0, t̄) (see [8, Theorem
1.4.1, p. 272], for example). It remains to show that ‖u(·, tk)‖L2 → 0 as k → +∞
for some sequence of times tk → 0+. We have ‖ū(·, t)‖L2 + ‖φη(·, t)‖L2 . t1/2, and
‖ψ(·, tk)‖L2 → 0 follows from (3.25). This completes the proof of Theorem 1.1.
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7. Appendix

Lemma 7.1 (A convolution inequality). Let d ∈ N, α, β ∈ (d,+∞) and δ ∈ (0, 1].
Then

Id,α,β(δ) :=

∫
Rd
〈x− y〉−α

〈y
δ

〉−β
dy .d,α,β 〈x〉−min(α,β)δd . (7.1)
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Proof. We will suppress dependence on d, α, β when convenient.

For |x| ≤ 1, we have

I .
∫
Rd

〈y
δ

〉−β
dy . δd , (7.2)

so we restrict our attention to |x| ≥ 1.

In the region R1 := {|y| ≤ |x|/2}, we have |x− y| ≈ |x| and∫
R1

〈x− y〉−α
〈y
δ

〉−β
dy . 〈x〉−α

∫
|y|≤|x|/2

〈y
δ

〉−β
dy . 〈x〉−αδd . (7.3)

In the region R2 := {|x− y| ≤ |x|/2}, we have |y| ≈ |x| and∫
R2

〈x− y〉−α
〈y
δ

〉−β
dy .

〈x
δ

〉−β ∫
|x−y|≤|x|/2

〈x− y〉−α dy . 〈x〉−β δβ , (7.4)

where |x| ≥ 1 and δ ∈ (0, 1] ensure that 〈x/δ〉 ≈ 〈x〉δ.
In the region R3 := Rd \ (R1 ∪R2), we have |y| ≈ |x− y| and∫

R3

〈x− y〉−α
〈y
δ

〉−β
dy .

∫
r≥|x|/2

r−αr−βδβrd−1 dr . 〈x〉−α−β+dδβ , (7.5)

where we again use that |x| ≥ 1 and δ ∈ (0, 1] to make simplifications.

Finally, we sum the above estimates to complete the proof when |x| ≥ 1. �

Remark 7.2. As a consequence, we have the following variant, which is useful in
the proof of Lemma 2.3. Let ζ, β > d, p ∈ [1,+∞], and p′ be its Hölder conjugate.
Then, for all f ∈ Lpζ , we have∫

Rd
|f(x− y)|

〈y
δ

〉−β
≤ ‖f‖Lpζ × [Id,ζp′,βp′(δ)]

1
p′

.d,α,β,p ‖f‖Lpζ 〈x〉
−min(ζ,β)δ

d
p′ .

(7.6)

with obvious adjustments when p = +∞.
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