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We prove a general criterion for the density in energy of 
suitable subalgebras of Lipschitz functions in the metric 
Sobolev space H1,p(X, d, m) associated with a positive and 
finite Borel measure m in a separable and complete metric 
space (X, d).
We then provide a relevant application to the case of the 
algebra of cylinder functions in the Wasserstein Sobolev space 
H1,2(P2(M), W2, m) arising from a positive and finite Borel 
measure m on the Kantorovich-Rubinstein-Wasserstein space 
(P2(M), W2) of probability measures in a finite dimensional 
Euclidean space, a complete Riemannian manifold, or a 
separable Hilbert space M. We will show that such a Sobolev 
space is always Hilbertian, independently of the choice of the 
reference measure m so that the resulting Cheeger energy is a 
Dirichlet form.
We will eventually provide an explicit characterization for 
the corresponding notion of m-Wasserstein gradient, showing 
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useful calculus rules and its consistency with the tangent 
bundle and the Γ-calculus inherited from the Dirichlet form.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of Sobolev spaces associated to a metric measure space (X, d, m) has been 
much developed in recent years. One of the most important approaches (we refer to the 
monographs [12,28] and to the lecture notes [26,44]) is based on the notion of upper 
gradient [27,29] of a map f : X → R: it is a Borel map g : X → [0, +∞] satisfying

|f(γ(b)) − f(γ(a))| ≤
ˆ

γ

g (1.1)

along every d-Lipschitz (or even rectifiable) curve γ : [a, b] → X. The Dirichlet space 
D1,p(X, d, m), p ∈ (1, +∞) can then be defined as the class of measurable functions 
f : X → R that possess a p-integrable upper gradient, thus resulting in a finite Newtonian 
energy

NEp(f) := inf
{ˆ

X

gp dm : g is an upper gradient of f
}
. (1.2)

A crucial and nontrivial fact is that NEp admits a local representation
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NEp(f) =
ˆ

X

|Df |pN dm (1.3)

in terms of the minimal p-weak upper gradient |Df |pN of f , which can be characterized in 
terms of the upper gradient property (1.1) along Modp-a.e. curve and enjoys many nice 
metric-nonsmooth calculus rules. When f is Lipschitz, then the pointwise and asymptotic 
Lipschitz constants

|Df |(x) := lim sup
y→x

|f(y) − f(x)|
d(x, y) , lip f(x) := lim sup

y,z→x, y �=z

|f(y) − f(z)|
d(y, z) (1.4)

are upper gradients, so that

if f ∈ Lipb(X) then |Df |N ≤ |Df | ≤ lip f m-a.e. in X. (1.5)

Functions in Lp(X, m) which admit a good representative (in the usual Lebesgue class 
defined up to m-negligible sets) in D1,p(X, d, m) give raise to the Newtonian spaces 
N̂1,p(X, d, m) [45] [12, Def. 1.19], which is a Banach space with the norm ‖f‖N̂1,p :=(
‖f‖pLp + NEp(f)

)1/p. N̂1,p(X, d, m) can also be identified with the domain of the Lp-
relaxation of NEp [15].

Density of Lipschitz functions: the case of doubling spaces supporting a Poincaré inequal-
ity It is a natural question if NEp can be recovered starting from the distinguished class 
of upper gradients given by the pointwise or asymptotic Lipschitz constants (1.4) of Lip-
schitz functions. When (X, d, m) satisfies a doubling condition and supports a p-Poincaré 
inequality, then Lipschitz functions are dense in N̂1,p(X, d, m) [45, Theorem 4.1] and for 
Lipschitz functions the minimal p-weak upper gradient |Df |N coincides with the point-
wise Lipschitz constant |Df | [15, Theorem 6.1]. In particular for every f ∈ N̂1,p(X, d, m)
there exists a sequence fn ∈ Lipb(X) such that

fn → f, |Dfn| → |Df |N strongly in Lp(X,m). (1.6)

It is worth noticing that in this case N̂1,p(X, d, m) is a reflexive space [15, Theorem 4.48].

Density in energy of subalgebras of Lipschitz functions The strong approximation prop-
erty (1.6) holds in fact for arbitrary complete and separable metric spaces, a result 
obtained in [7] (when p = 2) and [5], where also the approximation by the asymptotic 
Lipschitz constant is considered.

The first aim of the present paper is to discuss the extension of this result when the 
sequence fn in (1.6) is chosen in a suitable unital subalgebra A ⊂ Lipb(X) separating 
the points of X, i.e.

1 ∈ A , for every x0, x1 ∈ X there exists f ∈ A : f(x0) �= f(x1). (1.7)
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The use of a subalgebra is not a formal exercise with no implications. In fact, in relevant 
examples such as Wasserstein Sobolev spaces, which we shall introduce and discuss below, 
and the related subalgebra of cylinder functions, it is possible to recover the Cheeger 
energy as suitable relaxation of an explicitly computable Dirichlet form. Namely, from 
the so-called pre-Cheeger energy

pCEp(f) :=
ˆ

X

(lip f)p dm, f ∈ Lipb(X), (1.8)

we recover the Cheeger energy as its relaxation starting from A :

CEp,A (f) = inf
{

lim inf
n→+∞

pCEp(fn) : fn ∈ A , fn → f in L0(X,m)
}
. (1.9)

Thanks to the algebraic properties of A and (1.7) it is possible to prove [44, Sec. 3] that 
CEp,A admits a local representation of the form

CEp,A (f) =
ˆ

X

|Df |p�,A (x) dm(x) whenever CEp,A (f) < +∞, (1.10)

in terms of a minimal (p, A )-relaxed gradient |Df |�,A , enjoying the same calculus rules 
as |Df |N , see Theorem 2.3 below. We denote by H1,p(X, d, m; A ) the class of functions 
in Lp(X, m) with finite (p, A )-Cheeger energy.

It is easy to check that H1,p(X, d, m; A ) ⊂ N̂1,p(X, d, m) with |Df |N ≤ |Df |�,A m-a.e. 
It turns out that the strong approximation property

for every f ∈ N̂1,p(X, d,m) there exist fn ∈ A : fn → f, lip fn → |Df |N in Lp(X,m)
(1.11)

is equivalent to the identification

H1,p(X, d,m; A ) = N̂1,p(X, d,m), |Df |N = |Df |�,A for every f ∈ N̂1,p(X, d,m).
(1.12)

The density results of [7,5] show that (1.12) always hold if A = Lipb(X). When A is a 
proper subalgebra of Lipb(X), a first sufficient condition for the validity of (1.12), in the 
more general framework of extended topological metric measure spaces, is provided by 
the compatibility condition between d and A [44, Theorems 3.2.7, 5.3.1]

d(x, y) = sup
{
f(x) − f(y) : f ∈ A , Lip(f,X) ≤ 1

}
. (1.13)

We are able to improve (1.13) and to show (Theorem 2.13) that a necessary and sufficient 
condition for (1.12) is that for every y ∈ X (or in a dense subset of X) the distance 
function dy : x 	→ d(x, y) satisfies
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|Ddy|�,A (x) ≤ 1 for m-a.e. x ∈ X. (1.14)

As mentioned above, the density of distinguished subalgebras of Lipschitz functions can 
provide valuable information on the structure of the metric Sobolev space N̂1,p(X, d, m), 
in particular when the asymptotic Lipschitz constant lip f exhibits a more regular be-
havior when restricted to A . A relevant example arises when an algebra A exists for 
which the pre-Cheeger energy (1.8) is induced by a bilinear form and one wants to study 
its closure as it is typical in the theory of Dirichlet forms. In this case our result shows 
that this construction is intrinsically linked to the metric structure, so that it is indepen-
dent of the particular choice of the algebra A satisfying (1.14) and it is invariant with 
respect to measure-preserving isometries. As a byproduct, we will recover in a simple 
way previous Hilbertianity results of [21,31,44].

The Wasserstein Sobolev space An important application, which has been one of the 
inspiring motivations of our investigation, concerns functional analysis over spaces of 
probability measures. In fact, smooth functions do appear recently as solutions of new 
types of partial differential equations over spaces of probability measures defined by 
diverse forms of differentiation, namely nonlinear transport equations [2,3] for describ-
ing population evolutionary games, Kolmogorov equations [35,34] in nonlinear filtering, 
and Hamilton-Jacobi-Bellman equations [11,23,39,14] as appearing, e.g., in the theory 
of mean-field games and mean-field optimal control. In some of these instances, the so-
lutions are considered in classical sense, because of the lack of weak formulations and 
variational descriptions. Moreover, while the expression of these equations is in most 
cases of foundational interest, their relevance in terms of providing insights about so-
lutions and their explicit computation remained so far rather unclear. Hence, a proper 
definition of function spaces of regular functions, rules of calculus, and density proper-
ties are fundamental for developing a more systematic framework for the analysis of such 
novel forms of infinite dimensional PDEs and explaining their practical use and impact.

Moreover, thanks to significant advances in computational optimal transport that 
made its numerical realization feasible also for problems of relatively high dimension, in 
the past decade there has been an increasing and more accepted adoption of probability 
measures to model data points in image and shape processing and other machine learn-
ing applications. While the first applications were about discriminating data encoded 
as distributions available in the form of bags-of-features or descriptors, more recent de-
velopments explored geometric interpolation of data provided by optimal transport, for 
instance in the form of Wasserstein barycenters. In the meanwhile the literature on the 
subject has grown significantly to be really able to offer a complete account and we may 
more simply refer to the recent survey [38] for insights and references.

Building upon these advances, approximating or interpolating efficiently functions 
over data points modeled as (probability) measures can also provide a novel framework 
for machine learning tasks, such as classification and regression. Also for such develop-
ments a proper foundation of functional analysis is necessary.
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These are relevant motivations for us to focus on the study of Sobolev spaces generated 
by a finite measure m on the Wasserstein space P2(M) of Borel probability measures in 
a complete Riemannian manifold (M, dM) with finite quadratic moment

ˆ

M

d2
M(x, xo) dμ(x) < +∞ for some, and thus any, xo ∈ M, (1.15)

endowed with the L2-Kantorovich-Rubinstein-Wasserstein distance W2

W 2
2,dM

(μ, ν) := min

⎧⎨⎩
ˆ

M×M

d2
M(x, y) dμ(x, y) | μ ∈ Γ(μ, ν)

⎫⎬⎭ ; (1.16)

here Γ(μ, ν) is the set of couplings between μ and ν, i.e. probability measures μ in M ×M

whose marginals are μ and ν.
The space of probability measures (P2(M), W2,dM

) may be considered a model class for 
the above mentioned applications and it is an example of complete and separable metric 
space, which exhibits a non-smooth, infinite dimensional pseudo-Riemannian character 
[37,4,49]. In particular, it is not isometric to a finite dimensional Riemannian manifold 
or a Cat(κ) space [20]; when M has nonnegative sectional curvature as in the case of 
the Euclidean space Rd, then (P2(M), W2,dM

) has nonnegative curvature in the sense 
of Aleksandrov [49]; for a general Riemannian manifold M, (P2(M), W2,dM

) is not an 
Aleksandrov space and lacks of any lower or upper curvature bound.

When M is compact, Sobolev spaces on (P2(M), W2) have been constructed in [17]
starting from measures m which have full support and satisfy an integration-by-parts 
formula (see Section 5.2 below) on the unital algebra of cylinder maps FC∞

c (P2(M)), 
generated by linear functionals of the form

Lφ : μ 	→
ˆ

M

φ dμ, φ ∈ C∞
c (M). (1.17)

It turns out that the restriction of the pre-Cheeger energy pCE2 (1.8) to FC∞
c (P2(M)) is 

induced by a bilinear form so that one can study the Dirichlet form arising by its closure.
Our main result is that for every separable and complete Riemannian manifold M and 

for every positive and finite Borel measure m on P2(M) (so, full support and integration-
by-parts properties are not required) the algebra FC∞

c (P2(M)) satisfies property (1.14)
and therefore it is dense in the metric Sobolev space H1,2(P2(M), W2,dM

, m), which is 
therefore a Hilbert space. Due to the non-smooth character of W2 such a Hilbertianity 
property was far from obvious even in the flat case M = Rd. We will also show that this 
result holds when M is an infinite-dimensional, separable, Hilbert space.

Our metric analysis is also supplemented with a detailed discussion of the structure 
of the Cheeger energy and of the minimal relaxed gradient, in the case when M is the 
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Euclidean space Rd. Introducing the measure m =
ˆ (

δμ ⊗ μ
)
dm(μ) in P

(
P2(Rd) ×

Rd), we will show that there is a linear continuous Wasserstein-gradient operator Dm :
H1,2(P2(Rd), W2, m) → L2(P2(Rd) ×Rd, m; Rd) representing the bilinear form associated 
to the Cheeger energy as

CE2(F,G) =
ˆ

DmF (μ, x) · DmG(μ, x) dm(μ, x), (1.18)

and satisfying useful calculus rules which are typical of Γ-calculus for Dirichlet form. Dm

also allows for an explicit characterization of the tangent bundle L2(TP2(Rd)
)

in the 
sense of Gigli [25,26].

We are also able to study the relaxation effect occurring in the construction of the 
Cheeger energy starting from (1.8). We claim that our results are sufficiently strong and 
provide useful tools to pave the way for further studies on the structure and the promising 
applications of Wasserstein Sobolev spaces. In particular, the techniques developed in 
the present paper can also be applied to study the general class of Wasserstein Sobolev 
spaces H1,q(Pp(M), Wp, m), with p, q ∈ (1, +∞), a topic that has been addressed in [46].

Moreover, as a direct consequence of our results, the recovery of the Cheeger energy 
in terms of relaxation of the explicitly computable pre-Cheeger energy pCE2 (1.8) on 
FC∞

c (P2(M)) does allow the equally explicit formulation of Euler-Lagrange equations 
of properly formulated variational problems defined on H1,2(P2(M), W2,dM

, m), which 
can be solved numerically over finite dimensional suitably graduated approximations 
of FC∞

c (P2(M)), as a sort of (nonlinear) Galerkin approximation. Hence, as a con-
cluding remark, perhaps surprisingly, the use of the subalgebra of cylindric functions 
FC∞

c (P2(M)) instead of Lipb

(
P2(M)

)
as a fundamental nucleus to define Wasserstein 

Sobolev spaces allows to bring the theory from its foundational level to rather concrete 
applicability. In particular, we have in mind the above mentioned applications to the 
solutions of PDEs over P2(M) and machine learning.

Plan of the paper After a quick review of the construction of the Cheeger energy start-
ing from a subalgebra A , Section 2 is devoted to prove our main density result under 
condition (1.14) (Section 2.2). The last part 2.4 extends the applicability of the results to 
a larger class of distances: one of its quite useful applications will concern the extension of 
the results for the Wasserstein Sobolev spaces modeled on P2(Rd) to the general case of 
P2(M) for a complete Riemannian manifold M, which will be carried out in Sections 6.1
and 6.2.

We will recap a few properties of the Wasserstein distance in Section 3. Section 4 con-
tains a collection of some properties of cylinder functions, of their asymptotic Lipschitz 
constants (Section 4.1), and our main density and Hilbertianity result for the Wasserstein 
Sobolev space H1,2(P2(Rd), W2, m) (Theorem 4.10).
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Calculus rules for the m-differential are presented in Section 5; the structure of the 
tangent bundle, the properties of the residual differentials, and the study of the relaxation 
effect are discussed in Section 5.1, together with a few examples in Section 5.2.

The last Section 6 shows how to extend the result of Section 4 from Rd to an arbitrary 
complete Riemannian manifold M and to a separable Hilbert space H.
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2. Metric Sobolev spaces and density of unital algebras

In this section we will briefly recap the construction of metric Sobolev spaces adapting 
the relaxation viewpoint of the Cheeger energy to the presence of a distinguished algebra 
of Lipschitz functions [7,5,44].

2.1. Sobolev functions and minimal relaxed gradients

Let (X, d) be a complete and separable metric space. We will denote by Lipb(X, d)
the space of bounded and Lipschitz real functions f : X → R. The asymptotic Lipschitz 
constant of f ∈ Lipb(X, d) is defined as

lipd f(x) := lim
r↓0

Lip(f,B(x, r), d) = lim sup
y,z→x, y �=z

|f(y) − f(z)|
d(y, z) , (2.1)

where B(x, r) denotes the open ball centered at x with radius r and, for A ⊂ X, the 
quantity Lip(f, A, d) is defined as

Lip(f,A, d) := sup
x,y∈A, x �=y

|f(x) − f(y)|
d(x, y) .

We will simply write Lipb(X), lip f, Lip(f, A), omitting to explicitly mention d, when the 
choice of the metric d is clear from the context.

We will also deal with a unital algebra A ⊂ Lipb(X) separating the points of X, i.e.

1 ∈ A , for every x0, x1 ∈ X there exists f ∈ A : f(x0) �= f(x1). (2.2)

The initial Hausdorff topology τA induced on X by A is clearly coarser than the metric 
topology of X.
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Let m be a finite and positive Borel measure on X (being X a Polish space, m is also 
a Radon measure). We will denote by L0(X, m) the set of m-measurable real functions 
defined in X; L0(X, m) is the usual quotient of L0(X, m) obtained by identifying two 
functions which coincide m-a.e. in X. In a similar way, Lp(X, m) and Lp(X, m) are 
the usual Lebesgue spaces of p-summable m-measurable (equivalence classes of) real 
functions, p ∈ [1, +∞]. It is worth noticing that by [44, Lemma 2.1.27] we have that

for every p ∈ [1,∞) and every f ∈ Lp(X,m) taking values in an interval I ⊂ R

there exists a sequence (fn)n ⊂ A with values in I converging to f in Lp(X,m).
(2.3)

We will endow L0(X, m) with the topology of the convergence in measure, which is 
induced by the metric

dL0(f1, f2) :=
ˆ

X

ϑ(|f1 − f2|) dm, f1, f2 ∈ L0(X,m), (2.4)

where ϑ : [0, +∞) → [0, +∞) is any increasing, concave, bounded function with ϑ(0) =
limr↓0 ϑ(r) = 0. In the following we fix an exponent p ∈ (1, +∞).

Definition 2.1 ((p, A )-relaxed gradient). We say that G ∈ Lp(X, m) is a (p, A )-relaxed 
gradient of a m-measurable function f ∈ L0(X, m) if there exists a sequence (fn)n∈N ∈ A

such that:

(1) fn → f in m-measure and lip fn → G̃ weakly in Lp(X, m);
(2) G̃ ≤ G m-a.e. in X.

The minimal (p, A )-relaxed gradient of f (denoted by |Df |�,A ) is the element of minimal 
Lp-norm among all the (p, A )-relaxed gradient of f . We will just write |Df |� if A =
Lipb(X).

Remark 2.2. Notice that the minimal relaxed gradient |Df |�,A depends also on p ∈
[1, +∞), see e.g. [6,12,28]. Since it will be always clear from the context which value of 
p we are considering (a general one or, in the second part of the paper, p = 2), we omit 
to write explicitly this dependence.

We collect in the following Theorem the main properties of |Df |�,A we will extensively 
use.

Theorem 2.3.
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(1) The set

S :=
{

(f,G) ∈ L0(X,m) × Lp(X,m) : G is a (p,A )-relaxed gradient of f
}

is convex and it is closed with respect to the product topology of the convergence 
in m-measure and the weak convergence in Lp(X, m). In particular, the restriction 
Sq := S ∩ Lq(X, m) × Lp(X, m) is weakly closed in Lq(X, m) × Lp(X, m) for every 
q ∈ (1, +∞).

(2) (Strong approximation) If f ∈ L0(X, m) has a (p, A )-relaxed gradient then |Df |�,A
is well defined. If f takes values in a closed (possibly unbounded) interval I ⊂ R

then there exists a sequence fn ∈ A with values in I such that

fn → f m-a.e. in X, lip fn → |Df |�,A strongly in Lp(X,m). (2.5)

If moreover f ∈ Lq(X, m) for some q ∈ [1, +∞) then we can also find a sequence as 
in (2.5) converging strongly to f in Lq(X, m).

(3) (Pointwise minimality) If G is a (p, A )-relaxed gradient of f ∈ L0(X, m) then 
|Df |�,A ≤ G m-a.e. in X.

(4) (Leibniz rule) If f, g ∈ L∞(X, m) have (p, A )-relaxed gradient, then h := fg has 
(p, A )-relaxed gradient and

|D(fg)|�,A ≤ |f | |Dg|�,A + |g| |Df |�,A m-a.e. in X. (2.6)

(5) (Sub-linearity) If f, g ∈ L0(X, m) have (p, A )-relaxed gradient and α, β ∈ R, then

|D(αf + βg)|�,A ≤ |α| |Df |�,A + |β| |Dg|�,A m-a.e. in X. (2.7)

(6) (Locality) If f ∈ L0(X, m) has a (p, A )-relaxed gradient, then for any L 1-negligible 
Borel subset N ⊂ R we have

|Df |�,A = 0 m-a.e. on f−1(N). (2.8)

(7) (Chain rule) If f ∈ L0(X, m) has a (p, A )-relaxed gradient and φ ∈ Lip(R) then 
φ ◦ f has (p, A )-relaxed gradient and

|D(φ ◦ f)|�,A ≤ |φ′(f)| |Df |�,A m-a.e. in X, (2.9)

and equality holds in (2.9) if φ is monotone or C1.
(8) (Truncations) If fj ∈ L0(X, m) has (p, A )-relaxed gradient, j = 1, · · · , J , then also 

the functions f+ := max(f1, · · · , fJ) and f− := min(f1, · · · , fJ) have (p, A )-relaxed 
gradient and

|Df+|�,A = |Dfj |�,A m-a.e. on {x ∈ X : f+ = fj}, (2.10)

|Df−|�,A = |Dfj |�,A m-a.e. on {x ∈ X : f− = fj}. (2.11)



M. Fornasier et al. / Journal of Functional Analysis 285 (2023) 110153 11
Remark 2.4. Notice that the product in (2.9) is well defined since there exists a L 1-
negligible Borel set N ⊂ R such that φ is differentiable in R \N and |Df |�,A vanishes 
m-a.e. in f−1(N) thanks to the locality property (2.8).

Proof. We give a few references for the proofs. The case when p = 2, A = Lipb(X)
and the local slope of f is used to define relaxed gradients have been considered in [7, 
Sec. 4], whose proof generalizes easily to the case p ∈ (1, ∞) and the asymptotic Lipschitz 
constant (2.1), see also [5].

The definition and the properties involving a general unital subalgebra A have been 
discussed in [44, Sec. 3]: points (1,2) correspond to Lemma 3.1.6 and Corollary 3.1.9, (3) 
has been stated in Lemma 3.1.11, (4) refers to Corollary 3.1.10, (5,6,7,8) are proved in 
Theorem 3.1.12 and its Corollary 3.1.13.

Let us make three further technical comments:

• both [7,44] involve an auxiliary topology τ : in the present case, being X complete 
and separable and d a canonical metric (thus d only take finite values), we can select 
τ as the (Polish) topology induced by d.

• In order to deal with extended distances, in [44] has also been assumed that the 
unital algebra A satisfies the stronger compatibility condition

d(x, y) = sup
{
f(x) − f(y) : f ∈ A , Lip(f,X) ≤ 1

}
, (2.12)

which clearly implies that A separates the points of X as in (2.2). However, such 
a property is not needed in the construction and the proofs of Section 3.1.1 of [44]. 
The only point where (2.12) explicitly occurs is in the proof of Locality [44, Lemma 
3.1.11], to ensure that the restriction of A to each compact set K ⊂ X is uniformly 
dense in C(K), a property which is guaranteed in the present setting by (2.2) thanks 
to Stone-Weierstrass Theorem.

• The standard approach of [7,44] considers first functions f belonging to Lp(X, m)
instead of general m-measurable functions. However, the compatibility with trunca-
tions showing that for every k > 0

|DTk(f)|�,A (x) =
{
|Df |�,A (x) if |f(x)| < k,

0 if |f(x)| ≥ k,
Tk(f) := −k ∨ f ∧ k, (2.13)

and the possibility to find strong approximations of Tk(f) ∈ Lp(X, m) (recall that m
is finite) satisfying (2.5) and taking values in [−k, k] (see [44, Cor 2.1.24, Cor. 3.1.9]
where an approximation argument involving odd polynomials is implemented) allow 
for a standard extension of the theory from Lp(X, m) to L0(X, m), see also the 
discussion related to (4.16) of [7]. Notice also that, from a metric point of view, 
there is no reason to couple the integrability of a function f and the one of its 
minimal relaxed gradient |Df |�,A . Also the choice of working in L0(X, m) gives more 
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flexibility and in particular allows to treat the distance function dy from one point 
y ∈ X without imposing any integrability condition. This will be crucial in the rest 
of this paper (see e.g. Theorem 2.13). �

Starting from Definition 2.1 and using the properties of Theorem 2.3 it is natural to 
introduce the following notions.

Definition 2.5 (Cheeger energy and Sobolev space). We call D1,p(X, d, m; A ) the set of 
functions in L0(X, m) with a (p, A )-relaxed gradient and we set

CEp,A (f) :=
ˆ

X

|Df |p�,A (x) dm(x) for every f ∈ D1,p(X, d,m; A ), (2.14)

with CEp,A (f) := +∞ if f /∈ D1,p(X, d, m; A ). The Sobolev space H1,p(X, d, m; A )
is defined as Lp(X, m) ∩ D1,p(X, d, m; A ) and it is a Banach space with the norm 
‖f‖pH1,p(X,d,m;A ) := ‖f‖pLp + CEp,A (f). As usual, we will write D1,p(X, d, m), CEp(f), 
H1,p(X, d, m) and ‖f‖H1,p when A = Lipb(X).

Remark 2.6 (Cheeger energy as relaxation of the pre-Cheeger energy). We can equiva-
lently define the Cheeger energy CEp,A as a sort of L0-lower semicontinuous relaxation 
of the restriction to A of the pre-Cheeger energy pCEp, the latter being defined as

pCEp(f) :=
ˆ

X

(lip f)p dm, f ∈ Lipb(X). (2.15)

In other words, for every f ∈ L0(X, m) it holds ([44, Corollary 3.1.7])

CEp,A (f) = inf
{

lim inf
n→+∞

pCEp(fn) : fn ∈ A , fn → f in L0(X,m)
}
. (2.16)

In particular the functional CEp,A is lower semicontinuous in L0(X, m). Here the choice 
of the L0-topology does not play a crucial role, since, by Theorem 2.3(2), the restriction 
of CEp,A to Lq(X, m), q ∈ [1, ∞), can be equivalently obtained as Lq-relaxation:

CEp,A (f) = inf
{

lim inf
n→+∞

pCEp(fn) : fn ∈ A , fn → f in Lq(X,m)
}
, f ∈ Lq(X,m).

(2.17)
Notice also that, when m has not full support, two different elements f1, f2 ∈ A may give 
rise to the same equivalence class in L0(X, m). In this case, CEp,A can be equivalently 
defined as the L0-lower semicontinuous relaxation of the functional

p̃CEp(f) := inf
{
pCEp(g) : g ∈ A , g = f m-a.e.

}
, f ∈ Am,

where Am is the quotient of A with respect to equality m-a.e.
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It is clear that we have the obvious implication for f ∈ L0(X, m):

f has a (p,A )-relaxed gradient ⇒
{
f has a (p,Lipb(X))-relaxed gradient and

|Df |� ≤ |Df |�,A m-a.e. in X.

(2.18)
The converse implication together with the identity |Df |� = |Df |�,A is an important 
density property for an algebra A : by Theorem 2.3(2), it is equivalent to the following 
property.

Definition 2.7 (Density in energy of a subalgebra of Lipschitz functions). We say that a 
subalgebra A ⊂ Lipb(X) is dense in p-energy if for every f ∈ L0(X, m) with a p-relaxed 
gradient there exists a sequence (fn)n∈N satisfying

fn ∈ A , fn → f m-a.e. in X, lip fn → |Df |� strongly in Lp(X,m). (2.19)

When A is unital and separating, this is equivalent to the fact that f has a (p, A )-relaxed 
gradient and

|Df |�,A = |Df |� m-a.e. in X. (2.20)

In particular D1,p(X, d, m; A ) = D1,p(X, d, m).

Remark 2.8 (Comparison with the Newtonian approach). By the identification (1.12)
when A = Lipb(X) we always have

H1,p(X, d,m) = N̂1,p(X, d,m), |Df |N = |Df |� for every f ∈ N̂1,p(X, d,m). (2.21)

If A is dense in p-energy and f ∈ N̂1,p(X, d, m) we thus obtain

|Df |�,A = |Df |� = |Df |N m-a.e. in X. (2.22)

Notice that (2.22) and (1.5) immediately yield the uniform upper bound in terms of the 
pointwise Lipschitz constant

if f is Lipschitz then |Df |�,A ≤ |Df | m-a.e. in X. (2.23)

Remark 2.9. As we already mentioned in Remark 2.6, the choice of arbitrary measurable 
maps f ∈ L0(X, m) in Definition 2.7 and of the pointwise m-a.e. convergence in (2.19)
is not restrictive: a simple truncation argument (which can be implemented by using 
odd polynomials, see [44, Corollary 2.1.24]) shows that A is dense in p-energy if and 
only if for every f ∈ Lp(X, m) with a p-relaxed gradient there exists a sequence (fn)n∈N
satisfying
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fn ∈ A , fn → f in Lp(X,m), lip fn → |Df |� strongly in Lp(X,m). (2.24)

If A is unital and separating this is equivalent to H1,p(X, d, m; A ) = H1,p(X, d, m) with 
equal norms.

A first sufficient condition to obtain the density in energy of a subalgebra A , in the 
more general framework of extended topological metric measure spaces, is provided by 
the compatibility condition (2.12) [44, Theorems 3.2.7, 5.3.1] (see also [9] for the algebra 
generated by truncated distance functions).

In the present Polish setting, we notice that (2.19) (and, a fortiori, (2.12)) implies the 
weaker condition

for every y ∈ X the function dy : x 	→ d(x, y) has (p,A )-relaxed gradient 1, (2.25)

which is equivalent, thanks to Theorem 2.3(3), to

|Ddy|�,A ≤ 1 m-a.e. in X. (2.26)

In fact, using the truncations (2.13), each function dy can be approximated by the 
increasing sequence fk := Tkdy of bounded 1-Lipschitz maps, so that

|Ddy|� ≤ 1 m-a.e. in X for every y ∈ X, (2.27)

and therefore (2.19) yields (2.26).

Remark 2.10 (The effect of truncations). The (p, A )-relaxed gradient is not affected 
by truncations of the distance functions, in particular it is not restrictive to assume d
bounded above by a constant, e.g. 1. In fact, if we introduce a parameter a > 0 and the 
truncated distance

da(x1, x2) := d(x1, x2) ∧ a for every x1, x2 ∈ X, (2.28)

(X, da) is still a complete and separable metric space, the sets Lipb(X, d) and Lipb(X, da)
coincide, and it is easy to check that

lipd f = lipda
f for every bounded and Lipschitz function f. (2.29)

We deduce that d and da induce the same (p, A )-relaxed gradient. Notice moreover that 
using (2.28) we can also easily cover the case of extended distances (i.e. possibly assuming 
the value +∞), provided (X, da) is a separable metric space. The case when (X, da) is 
not separable requires a more refined setting involving an auxiliary topology τ [44].

It is possible to express (2.26) in a more flexible way, by using suitable nonlinear 
functions of dy. We state a general result.
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Lemma 2.11. Let I = (a, b) be an interval (possibly unbounded) of R and let ζ : R → R

be a Lipschitz and nondecreasing map satisfying

the restriction of ζ to I is of class C1 with ζ ′(s) > 0 if s ∈ I. (2.30)

If f : X → I is a Borel function, then the condition

f ∈ D1,p(X, d,m; A ), |Df |�,A ≤ 1 (2.31)

is equivalent to

ζ ◦ f ∈ D1,p(X, d,m; A ),
∣∣D(ζ ◦ f)

∣∣
�,A

(x) ≤ ζ ′(f(x)) for m-a.e. x ∈ X. (2.32)

Proof. It is clear that if |Df |�,A ≤ 1 then (2.32) holds, thanks to (2.9). In order to 
prove the converse implication, we consider a strictly decreasing sequence an ↓ a, a 
strictly increasing sequence bn ↑ b and nondecreasing and bounded Lipschitz functions 
ψn : R → R such that

ψn(z) = an if z < ζ(an), ψn(ζ(s)) = s for every s ∈ [an, bn], ψn(z) = bn if z > ζ(bn).

The restriction of ψn to the interval [ζ(an), ζ(bn)] is of class C1.
Setting h(x) := ζ(f(x)), the Chain rule (2.9) yields

|D(ψn ◦ h)|�,A (x) ≤ (ψ′
n ◦ h) |Dh|�,A (x) ≤ (ψ′

n ◦ ζ(f(x)))ζ ′(f(x)).

Since ψn(h(x)) = an ∨ f(x) ∧ bn, the locality property (2.8), the truncation Prop-
erty 2.3(8), and the fact that ψn

′(ζ(s))ζ ′(s) = 1 if s ∈ [an, bn] yield

|D(ψn ◦ h)|�,A ≤ 1 m-a.e. (2.33)

Since ψn ◦ h → f pointwise in X as n → ∞, passing to the limit in (2.33) we get 
|Df |�,A ≤ 1. �
Remark 2.12. Thanks to Lemma 2.11, if d is a bounded metric and q > 1, (2.26) is 
equivalent to

|Ddqy|�,A (x) ≤ q dq−1
y (x) for m-a.e. x ∈ X. (2.34)

In particular, if (2.34) holds for some q ≥ 1, it holds for any q ≥ 1.
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2.2. A density result

We have seen that in the present setting of Polish spaces, condition (2.26) (or, 
equivalently, (2.32) for some admissible truncation satisfying (2.30)) is a necessary con-
dition for the validity of the approximation property (2.19) and of the identification 
|Df |� = |Df |�,A . We want to show that (2.26) or (2.32) are also sufficient conditions.

Theorem 2.13. Let (X, d, m) be a Polish metric measure space, let Y ⊂ X be a dense 
subset, and let A be a unital separating subalgebra of Lipb(X) as in (2.2). If

for every y ∈ Y it holds dy ∈ D1,p(X, d,m; A ),
∣∣Ddy

∣∣
�,A

≤ 1 (2.35)

then A is dense in p-energy according to Definition 2.7.

Proof. We split the proof in various steps. Notice that by (2.18) it is sufficient to prove 
that

|Df |�,A ≤ |Df |� m-a.e. in X. (2.36)

(1) It is not restrictive to assume d bounded above by 1 : see Remark 2.10.
By Lemma 2.11 and Remark 2.12 we know that (2.34) holds for every y ∈ Y and 

every q ≥ 1.
(2) It is sufficient to prove that

CEp,A (f) ≤
ˆ

X

(lip f)p dm = pCEp(f) for every f ∈ Lipb(X). (2.37)

In fact, if f has (p, Lipb(X))-relaxed gradient, by (2.5) we can find a sequence fn ∈
Lipb(X) such that fn → f m-a.e. and lip fn → |Df |� strongly in Lp(X, m) as n → ∞. By 
the L0-lower semicontinuity of the CEp,A -energy, passing to the limit in (2.37) written 
for fn we get

CEp,A (f) =
ˆ

X

|Df |p�,A dm ≤
ˆ

X

|Df |p� dm = CEp(f) < ∞.

We deduce that f has a (p, A )-relaxed gradient and that (2.20) holds, since |Df |� ≤
|Df |�,A m-a.e.
(3) For every f ∈ Lipb(X) and t > 0 we introduce the Hopf-Lax regularization Qtf :
X → R defined by

Qtf(x) := inf
y∈X

1
qtq−1 dq(x, y) + f(y), x ∈ X, (2.38)
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where q ∈ (1, +∞) is the conjugate exponent of p i.e. 1/q + 1/p = 1. It is clear that Qtf

is bounded (it takes values in the interval [infX f, supX f ]) and Lipschitz, being the infi-
mum of a family of uniformly Lipschitz functions. We consider the upper semicontinuous 
function [7, (3.4) and Prop. 3.2]

D+
t f(x) := sup

(yn)
lim sup
n→∞

d(x, yn), (2.39)

where the (yn)n’s vary among all the minimizing sequences of (2.38). D+
t f is also uni-

formly bounded and satisfies (see e.g. [44, Lemma 3.2.1])

(
D+

t f(x)
t

)q

≤ (q Lip(f,X))p . (2.40)

In fact, if yn is a minimizing sequence of (2.38), for every ε > 0 we eventually have

1
qtq−1 dq(x, yn) + f(yn) ≤ Qtf(x) + ε ≤ f(x) + ε

i.e., setting L := Lip(f, X),

1
tq

dq(x, yn) ≤ εq

t
+ q

t
(f(x) − f(yn)) ≤ εq

t
+ qL

d(x, yn)
t

≤ εq

t
+ (qL)p + dq(x, yn)

qtqp1/(p−1) .

We thus get

lim sup
n→∞

1
tq

dq(x, yn) ≤ εq

t
+ (qL)p

which yields (2.40) since ε > 0 is arbitrary.
(4) For every f ∈ Lipb(X) and for every t > 0

|DQtf |�,A (x) ≤
(
t−1D+

t f(x)
)q−1 for m-a.e. x ∈ X. (2.41)

Let Y ′ = {yn}n∈N be a countable set dense in Y ; since f ∈ Lipb(X) it is easy to check 
that

Qtf(x) = inf
y∈Y

1
qtq−1 dq(x, y) + f(y) = lim

n→∞
Qn

t f(x),

Qn
t f(x) := min

1≤k≤n

1
qtq−1 dq(x, yk) + f(yk).

(2.42)

We consider now the upper semicontinuous function

Dn
t (x) := max

{
d(x, yk) : 1 ≤ k ≤ n, Qn

t (x) = 1
q−1 dq(x, yk) + f(yk)

}
. (2.43)
qt
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By (2.34) and Theorem 2.3(8), we have that (t−1Dn
t )q−1 is a (p, A )-relaxed gradient of 

Qn
t f . It is then clear that for every x there exists a sequence n 	→ y′(n, x) with y′(n, x) ∈

{y1, · · · , yn} such that Dn
t (x) = d(x, y′(n, x)) and Qn

t f(x) = 1
qtq−1 dq(x, y′(n, x)) +

f(y′(n, x)) → Qtf(x) as n → ∞, i.e. y′(n, x) is a minimizing sequence of (2.38). We 
deduce that

lim sup
n→∞

Dn
t (x) = lim sup

n→∞
d(x, y′(n, x)) ≤ D+

t f(x) for every x ∈ X. (2.44)

Since Dn
t f are uniformly bounded, up to extracting a suitable subsequence we can sup-

pose that (t−1Dn
t )q−1 ⇀∗ G weakly* L∞(X, m) so that, by Theorem 2.3(1), G is a 

(p, A )-relaxed gradient of Qtf , hence |DQtf |�,A ≤ G m-a.e. by Theorem 2.3(3). Also 
notice that by Fatou’s lemma and weak* L∞(X, m) convergence, we have

ˆ

B

G dm = lim
n→+∞

ˆ

B

(t−1Dn
t )q−1 dm ≤

ˆ

B

lim sup
n→+∞

(t−1Dn
t (x))q−1 dm(x)

≤
ˆ

B

(t−1D+
t f(x))q−1 dm(x),

for every Borel set B ⊂ X. We conclude that |DQtf |�,A ≤ (t−1D+
t f(x))q−1 for m-

a.e. x ∈ X.
(5) For every x ∈ X, t > 0, and f ∈ Lipb(X) we have

f(x) − Qtf(x)
t

= 1
p

1ˆ

0

(D+
rtf(x)
rt

)q
dr, (2.45)

lim sup
t↓0

f(x) − Qtf(x)
t

≤ 1
p

(
lip f(x)

)p
. (2.46)

This follows by [44, Thm. 3.2.4] (see also [4, Thm. 3.1.4, Lemma 3.1.5]).
(6) Conclusion. We argue as in [44, Theorem 3.2.7]: (2.45) and (2.40) yield the uniform 

bound

f(x) − Qtf(x)
t

≤ 1
p

(
q Lip(f,X)

)p for every x ∈ X, t > 0. (2.47)

Integrating (2.46) in X and applying Fatou’s Lemma we get

lim sup
t↓0

ˆ

X

f(x) − Qtf(x)
t

dm(x) ≤ 1
p

ˆ

X

(
lip f(x)

)p dm(x). (2.48)

On the other hand, (2.45) and Fubini’s Theorem yield
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ˆ

X

f(x) − Qtf(x)
t

dm(x) = 1
p

1ˆ

0

ˆ

X

(D+
rtf(x)
rt

)q
dm(x) dr. (2.49)

A further application of Fatou’s Lemma yields

lim inf
t↓0

ˆ

X

f(x) − Qtf(x)
t

dm(x) ≥ 1
p

lim inf
t↓0

ˆ

X

(D+
t f(x)
t

)q
dm(x). (2.50)

Using the fact that t−1D+
t f is uniformly bounded by (2.40), we can find a decreasing 

and vanishing sequence n 	→ t(n) and a limit function G ∈ L∞(X, m) such that

(
t(n)−1D+

t(n)f
)q−1

⇀∗ G weakly∗ in L∞(X,m) as n → ∞,

lim
n→∞

ˆ

X

(D+
t(n)f(x)
t(n)

)q
dm(x) = lim inf

t↓0

ˆ

X

(D+
t f(x)
t

)q
dm(x). (2.51)

Since 
(
t−1D+

t f
)q−1 is a (p, A )-relaxed gradient of Qtf by claim (4) and Qtf → f point-

wise everywhere, using Theorem 2.3(1) we get that G is a (p, A )-relaxed gradient of f .
Using the lower semicontinuity of the Lp-norm w.r.t. the weak∗ L∞(X, m) convergence, 
we get that

lim
n→∞

ˆ

X

(
D+

t(n)f(x)
t(n)

)q

dm(x) = lim
n→∞

ˆ

X

(
D+

t(n)f(x)
t(n)

)p(q−1)

dm(x) (2.52)

≥
ˆ

X

Gp dm(x) (2.53)

≥
ˆ

X

|Df |p�,A (x) dm(x), (2.54)

where we also used the pointwise minimality of |Df |�,A given by Theorem 2.3(3). Com-
bining (2.52), (2.51), (2.50) and (2.48) we deduce that

ˆ

X

|Df |p�,A (x) dm(x) ≤
ˆ

X

(
lip f(x)

)p dm(x)

so that (2.37) holds. �
Corollary 2.14 (Density in energy of A in H1,p). If A is a separating unital subalgebra 
of Lipb(X) satisfying (2.35) then

CEp,A (f) = CEp(f) = NEp(f) for every m-measurable function f : X → R. (2.55)
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In particular, H1,p(X, d, m) = H1,p(X, d, m; A ).

As we have already said, (2.55) can be interpreted as a density result in H1,p(X, d, m): 
for every f ∈ H1,p(X, d, m) there exists a sequence fn ∈ A , n ∈ N, such that

fn → f, lip fn → |Df |∗ strongly in Lp(X,m),
ˆ

X

| lip fn|p dm → CEp(f) as n → ∞.

(2.56)

2.3. Applications

We first recall a useful result showing that it is possible to remove the assumption 
that A is unital, if A satisfies a suitable tightness condition. We will denote by 1 the 
unit constant function.

Proposition 2.15. Let A ⊂ Lipb(X) be a separating subalgebra of Lipschitz functions and 
let

A1 := A ⊕ {c1} =
{
f + c1 : f ∈ A , c ∈ R

}
(2.57)

be the minimal unital subalgebra containing A . If A1 is dense in p-energy and there exist 
sequences of compact sets Kn ⊂ X and functions fn ∈ A such that

fn(x) ≥ 1 for every x ∈ Kn, lim
n→∞

ˆ

X\Kn

(
1 + | lip fn(x)|p

)
dm(x) = 0, (2.58)

then A is dense in p-energy as well.

The proof is a simple adaptation of [44, Proposition 5.3.2]. The next result shows 
that the algebra generated by (suitable compositions/truncations of) distance functions 
is always sufficient to generate the Sobolev space H1,2(X, d, m).

Theorem 2.16. Let Y be a dense subset of X and let ζ : [0, +∞) → [0, +∞) be a Lipschitz 
nondecreasing function such that ζ ′ > 0 in an interval I = (0, r) ⊂ (0, +∞) and ζ ∈
C1(I). Then the unital algebra A generated by the functions x 	→ ζ(d(x, y)) is dense in 
p-energy.

Proof. Thanks to Remark 2.10, we can assume that d is bounded above by r. It is not 
difficult to check that A separates the points of X, so that in order to apply Theo-
rem 2.13, it is enough to check that (2.32) with f := dy (recall the notation (2.25)) 
holds.
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Such a property follows immediately from the corresponding estimate on the asymp-
totic Lipschitz constant: for every y ∈ Y and g(x) := ζ(dy(x)), a simple direct computa-
tion shows that

lip g(x) ≤ ζ ′(dy(x)) for every x ∈ B(y, r).

Since g ∈ A we have |Dg|�,A ≤ lip g ≤ ζ ′(f), so that (2.32) holds and we conclude by 
applying Lemma 2.11. �

We now consider a simple application of Theorem 2.13 to the case when p = 2 and 
lip f has good properties for functions of A .

Theorem 2.17 (A Hilbertianity condition). Let p = 2 and let A be a separating unital 
subalgebra of Lipb(X) satisfying (2.35). If for every f, g ∈ A

ˆ

X

(
| lip(f + g)|2 + | lip(f − g)|2

)
dm = 2

ˆ

X

(
| lip f |2 + | lip g|2

)
dm, (2.59)

then H1,2(X, d, m) is a Hilbert space, CE2 is a Dirichlet (thus quadratic) form, and A is 
strongly dense.

Proof. It is sufficient to prove that the Cheeger energy is a quadratic form in its domain. 
Thanks to [16, Prop. 11.9] and the 2-homogeneity of CE2, this property is equivalent to

CE2(f + g) + CE2(f − g) ≤ 2CE2(f) + 2CE2(g) for every f, g ∈ H1,2(X, d,m). (2.60)

We can find two sequences fn, gn ∈ A such that fn → f, gn → g in m-measure as 
n → ∞ and lip fn → |Df |�, lip gn → |Dg|� in L2(X, m). Clearly we have fn+gn → f +g, 
fn − gn → f − g in m-measure and (2.59) shows that lip(fn + gn) and lip(fn − gn) are 
uniformly bounded in L2(X, m). Up to extracting a suitable sequence, it is not restrictive 
to assume that lip(fn + gn) ⇀ G+ ≥ |D(f + g)|� and lip(fn − gn) ⇀ G− ≥ |D(f − g)|�
m-a.e. in X. (2.59) then yields

CE2(f + g) + CE2(f − g) =
ˆ

X

|D(f + g)|2� dm +
ˆ

X

|D(f − g)|2� dm

≤ lim inf
n→∞

ˆ

X

| lip(fn + gn)|2 dm +
ˆ

X

| lip(fn − gn)|2 dm

= lim inf
n→∞

2
ˆ

X

| lip fn|2 dm + 2
ˆ

X

| lip gn|2 dm

= 2CE2(f) + CE2(g).



22 M. Fornasier et al. / Journal of Functional Analysis 285 (2023) 110153
Since H1,2(X, d, m) is Banach space, we deduce that H1,2(X, d, m) is a Hilbert space, so 
it is reflexive. This also shows that A is strongly dense. �
Remark 2.18. In the framework of Theorem 2.17, there exists a scalar product 〈·, ·〉H1,2

on H1,2(X, d, m) inducing the norm ‖ · ‖H1,2 and satisfying

〈f, g〉H1,2 =
ˆ

X

fg dm + CE2(f, g) for every f, g ∈ H1,2(X, d,m), (2.61)

where CE2(·, ·) denotes the bilinear form associated to CE2(·).

Remark 2.19. If (2.59) holds then the restriction (pCE2, A ) of pCE2 to A is a quadratic 
form which is induced by a corresponding bilinear form pCE2(·, ·) defined by the paral-
lelogram rule. We recall that such a form is closable (see e.g. [13, §1.3], [32, Chapter I, 
§.3]) if for any sequence (fn)n∈N in A

fn → 0 in L2(X,m), lim sup
m,n→∞

pCE2(fn − fm) = 0 ⇒ lim
n→∞

pCE2(fn) = 0. (2.62)

Theorem 2.17 shows in particular that if (pCE2, A ) is quadratic and closable, then 
the Cheeger energy (CE2, H1,2(X, d, m)) coincides with the smallest closed extension of 
(pCE2, A ). In this case, trivially, the restriction of CE2 to A coincides with pCE2. Since the 
Cheeger energy CE2 is quasi-regular (see [8, Lemma 6.7], [43, Thm. 4.1], [19, Prop. 3.21], 
[42]), as a by-product we obtain the quasi-regularity of the closure of (pCE2, A ).

An immediate consequence is the Hilbertianity of H1,2(H, dH, m) in the case when 
(H, dH) is a separable Hilbert space (in particular Rd) endowed with the distance induced 
by its Hilbertian norm [20,21,44].

Corollary 2.20. Let (H, dH) be a separable Hilbert space and let m be a finite and positive 
Borel measure on H. Then H1,2(H, dH, m) is a Hilbert space.

Proof. Let A be the algebra C1
b(H) of bounded C1 functions with bounded continuous 

gradient. It is immediate to check that for every φ ∈ C1
b(H) we have lipφ(x) = ‖∇φ(x)‖H

so that pCE2 is a quadratic form on A , thus satisfying (2.59).
On the other hand A contains the functions x 	→ tanh(d2(x, y)), y ∈ H, so that we 

can apply Theorem 2.16. �
Remark 2.21 (Density of C∞

c (Rd) in H1,2(Rd, d, m)). When H = Rd is finite dimensional, 
we can also prove that the algebra A = C∞

c (Rd) is strongly dense in H1,2(Rd, d, m). 
In fact, if ζ is the restriction to [0, ∞) of a smooth nondecreasing transition function 
ζ̃ ∈ C∞(R) satisfying ζ̃(s) = 0 if s ≤ 0, ζ̃(s) = 1 is s > 1 and ζ̃ ′(s) > 0 if s ∈ (0, 1), it is 
immediate to check that for every y ∈ Rd the functions ζ̃(dy) belong to A1, so that A1
is dense in 2-energy by Theorem 2.16.
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On the other hand, being m tight, it is easy to check that A satisfies (2.58), so that 
we can apply Proposition 2.15.

2.4. Intrinsic distances

By using the general properties of metric Sobolev spaces and the equivalence with 
the Newtonian viewpoint based on the notion of upper gradient [12,28] it is possible to 
improve considerably the density result of Corollary 2.14. Let us first recall the notion 
of metric velocity

|γ̇|d(t) := lim sup
h→0

d(γ(t + h), γ(t))
|h| (2.63)

and length

�d(γ, [α, β]) := sup
{ N∑

n=1
d(γ(tn−1), γ(tn)) : t0 = α < t1 < · · · < tN−1 < tN = β

}

=
β̂

α

|γ̇|d(t) dt

(2.64)
of a d-Lipschitz curve γ : [a, b] → X; here [α, β] ⊂ [a, b] and we just write �d(γ) for 
�d(γ, [a, b]).

If Y ⊂ X is a given set, we can introduce the length (or intrinsic) extended distance
dY,� induced by d on Y , as the infimum of the length of Y -valued Lipschitz curves 
connecting two given points y0, y1 ∈ Y :

dY,�(y0, y1) := inf
{
�d(γ) : γ ∈ Lip([0, 1]; (Y, d)), γ(0) = y0, γ(1) = y1

}
(2.65)

= inf
{
� > 0 : γ ∈ Lip([0, �]; (Y, d)), γ(0) = y0, γ(�) = y1, |γ̇|d ≤ 1 a.e.

}
.

(2.66)

Clearly we have

d(y0, y1) ≤ dX,�(y0, y1) ≤ dY,�(y0, y1) for every y0, y1 ∈ Y. (2.67)

If g : X → [0, +∞] is a Borel function, the integral of g along γ is defined by

ˆ
g :=

bˆ
g(γ(t))|γ̇|d(t) dt. (2.68)
γ a
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It is well known that length and integral are invariant with respect to arc-length 
reparametrization of γ and it is always possible to find a 1-Lipschitz curve Rγ :
[0, �d(γ)] → X such that

Rγ(�d(γ, [a, t])) = γ(t) for every t ∈ [a, b], |Ṙγ |(s) = 1 a.e. in [0, �d(γ)],
ˆ

Rγ

g =
ˆ

γ

g

(2.69)
for every nonnegative Borel function g (see e.g. [44, Section 3.3]). A Borel function 
g : X → [0, +∞] is an upper gradient of f : X → R if

|f(γ(b)) − f(γ(a))| ≤
ˆ

γ

g for every γ ∈ Lip([a, b]; (X, d)). (2.70)

Functions in Lp(X, m) which admit an upper gradient in Lp(X, m) characterize the New-
tonian Sobolev space N1,p(X, d, m) [12,28]. We state here a useful consequence of the 
main equivalence results [7, Theorem 6.2] [5, Theorem 7.4].

Theorem 2.22. Let Y be a Borel subset of X of full m-measure (i.e. m(X \ Y ) = 0) 
satisfying

γ ∈ Lip([a, b]; (X, d)), Rγ(s) ∈ Y for L 1-a.e. s ∈ [0, �d(γ)] ⇒ γ([a, b]) ⊂ Y,

(2.71)
let f : X → R be a m-measurable function and let g : Y → [0, +∞] be a Borel function 
satisfying

|f(γ(b)) − f(γ(a))| ≤
ˆ

γ

g for every γ ∈ Lip([a, b]; (Y, d)). (2.72)

If 
ˆ

Y

|g|p dm < ∞ then f has a p-relaxed gradient and

|Df |� ≤ g m-a.e. in Y. (2.73)

Notice that condition (2.72) is weaker than (2.70), since the upper gradient condition 
is imposed only along curves taking values in Y ; however, starting from any function 
g ∈ Lp(Y, m) satisfying (2.72) we can define a new Borel function g̃ : X → [0, +∞] whose 
restriction to Y coincides with g such that g̃|X\Y ≡ +∞. Clearly

ˆ
g̃p dm =

ˆ
gp dm < +∞ since m(X \ Y ) = 0.
X Y
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Moreover g̃ is an upper gradient for f according to (2.70): in fact it is sufficient to check 

(2.70) for those curves γ with γ = Rγ and 
ˆ

γ

g̃ < +∞; since g̃(γ(s)) = +∞ if γ(s) /∈ Y , 

we deduce that γ(s) ∈ Y for L 1 -a.e. s ∈ [0, �d(γ)] so that γ ∈ Lip([0, �d(γ)]; (Y, d)) by 
(2.71), and (2.70) then follows by (2.72).

It is also immediate to check that (2.71) holds if Y is closed.
We consider the situation where

(A) Y ⊂ X is a Borel set with full m-measure satisfying (2.71);
(B) a metric δ : Y × Y → [0, +∞) is given on Y such that (Y, δ) is complete and 

separable and (recall Remark 2.10)

d1(y1, y2) ≤ δ(y1, y2) ≤ dY,�(y1, y2) for every y1, y2 ∈ Y. (2.74)

Remark 2.23 (Y -intrinsic distance). δ is intrinsically equivalent to d on Y , i.e. every 
d-Lipschitz curve γ : [0, 1] → Y is also δ-Lipschitz, its δ-length coincides with the corre-
sponding d-length, and integration along γ does not depend on the choice of the distance. 
In particular condition (2.72) can be equivalently stated in terms of δ.
To see that these conditions are implied by (2.74), let us fix a d-Lipschitz curve 
γ : [0, 1] → Y with Lipschitz constant bounded by L ≥ 0; then

dY,�(γ(s), γ(t)) ≤ �d
(
γ|[s,t]

)
=

tˆ

s

|γ̇|d(r) dr ≤ L|t− s| 0 ≤ s ≤ t ≤ 1,

so that γ is dY,�-Lipschitz continuous and thus, by (2.74), also δ-Lipschitz continuous. 
To see that the δ and the d-lengths of γ coincide, it is enough to show that �δ(γ) ≤ �d(γ), 
since (2.74) and the trivial equality �d1(γ) = �d(γ) already give the other inequality; by
(2.74) we immediately have �δ(γ) ≤ �dY,�

(γ) and by the very definition of dY,� we see 
that �dY,�

(γ) ≤ �d(γ). Finally, to see that the integral along γ does not depend on the 
choice of the distance, it is enough to see that |γ̇|d = |γ̇|δ a.e. in [0, 1]. The ≤ inequality 
is an immediate consequence of (2.74) and (2.63), while the ≥ follows by

δ(γ(s), γ(t))
t− s

≤
�δ(γ|[s,t])
t− s

=
�d(γ|[s,t])
t− s

= 1
t− s

tˆ

s

|γ̇|d(r) dr 0 ≤ s < t ≤ 1,

and passing to the limit as s → t for every Lebesgue point t of |γ̇|d.

Since m(X \ Y ) = 0 we can identify Lp(Y, m) with Lp(X, m). In general, the topology 
induced by δ is finer than the d topology on Y , and they coincide if δ is continuous 
w.r.t. d. It is also clear from property (B) that the restriction to Y of every bounded 
d-Lipschitz function f : X → R is also δ-Lipschitz. Thanks to (2.74) (which in particular 
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implies that δ-balls of radius r < 1 centered at some point y ∈ Y are included in d-balls 
of the same radius and with the same center) it is also clear that

lipδ f(y) ≤ lipd f(y) for every y ∈ Y, f ∈ Lipb(X, d). (2.75)

Since lipδ f is bounded and δ-u.s.c. in Y , it is m-measurable and we can define the δ
pre-Cheeger energy

pCEp,δ(f) :=
ˆ

Y

| lipδ f(y)|p dm(y) (2.76)

and we can still consider its l.s.c. envelope in L0(Y, m)

CEp,δ,A (f) := inf
{

lim inf
n→∞

pCEp,δ(fn) : fn ∈ A , fn → f in L0(X,m)
}
. (2.77)

Theorem 2.24. Let A (X, d) := Lipb(X, d), let A be a separating unital subalgebra of 
Lipb(X, d) satisfying (2.35) and assume that (Y, δ) satisfies the conditions (A), (B) above. 
Then we have

CEp,δ,A (X,d)(f) = CEp,δ,A (f) = CEp,A (f) = CEp(f) for every f ∈ L0(X,m). (2.78)

In particular, the minimal p-relaxed gradients of f ∈ L0(X, m) computed w.r.t. (δ, A ), 
(δ, Lipb(Y )), (d, A ) or (d, Lipb(X)) coincide and we have D1,p(Y, δ, m) = D1,p(Y, δ, m;
A ) = D1,p(X, d, m) = D1,p(X, d, m; A ).

Proof. Since pCEp,δ(f) ≤
´
X

(
lipd f(x)

)p dm for every f ∈ Lipb(X, d), we clearly have

CEp,δ,A (X,d)(f) ≤ CEp,δ,A (f) ≤ CEp,A (f) = CEp(f) for every f ∈ L0(X,m),

where the last equality follows from Corollary 2.14. It is then sufficient to prove that 
CEp,δ,A (X,d)(f) ≥ CEp(f) in order to get (2.78). Using (2.77) and the L0(X, m)-lower 
semicontinuity of CEp (see Remark 2.6), the latter inequality will be a consequence of

ˆ

Y

| lipδ f(y)|p dm(y) ≥ CEp(f) for every f ∈ Lipb(X, d). (2.79)

In order to prove (2.79) it is sufficient to apply Theorem 2.22 and prove that the Borel 
function g := lipδ f satisfies (2.72). Now we use the fact that the restriction to Y of a 
function f ∈ Lipb(X, d) belongs to Lipb(Y, δ) and every d-Lipschitz curve γ with values 
in Y is also δ-Lipschitz, the respective lengths coincide and therefore also the arc-length 
reparametrizations are the same. Since lipδ is an upper gradient we thus obtain
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|f(γ(b)) − f(γ(a))| ≤
ˆ

γ

lipδ f for every γ ∈ Lip([a, b]; (Y, δ)). �

By Theorem 2.22 and also using that m(X \ Y ) = 0, we conclude.

Combining Theorem 2.24 with Corollary 2.20 we recover the following result of [31].

Corollary 2.25. Let (M, dM) be a complete Riemannian manifold endowed with the canon-
ical Riemannian distance and let m be a finite and positive Borel measure on M. Then 
H1,2(M, dM, m) is a Hilbert space and C∞

c (M) is dense in H1,2(M, dM, m).

Proof. By Nash isometric embedding Theorem [36] we can find a dimension d, and an 
isometric embedding j : M → j(M) ⊂ Rd.

Since M is complete and j is an imbedding, M := j(M) is a closed subset of Rd and 
the (Riemannian) metric dM inherited by dM given by dM (j(x), j(y)) := dM(x, y) is an 
isometry. In particular dM induces on M the relative topology of Rd and (M, dM ) is a 
complete and separable metric space. Setting m̃ := j	m, it is clear that the map j∗ : f →
f ◦ j is a linear isometric isomorphism between H1,2(M, dM , m̃) and H1,2(M, dM, m). It 
is then sufficient to prove the statement for H1,2(M, dM , m̃).

We can now apply Theorem 2.24 with the choices (Y, δ) := (M, dM ) and X = Rd

endowed with the Euclidean distance d. Condition (A) clearly holds since M is closed in 
Rd and m̃ is supported on M . Similarly, also (B) holds since j is an isometric immersion.

Remark 2.21 shows that C∞
c (Rd) is dense in H1,2(Rd, dRd , m̃) so that j∗

(
C∞

c (Rd)
)
⊂

C∞
c (M) is dense in H1,2(M, dM, m). �

3. Wasserstein spaces

In this section we list some properties of Wasserstein spaces we will use in the sequel. 
A complete account of this matter can be found e.g. in [49,4].
If (X, d) is a complete and separable metric space, we denote by P(X) the space of Borel 
probability measures on X and by P2(X), the set

P2(X) :=

⎧⎨⎩μ ∈ P(X) |
ˆ

X

d2(x, x0)dμ(x) < +∞ for some x0 ∈ X

⎫⎬⎭ .

Given μ, ν ∈ P(X) the set of transport plans between μ and ν is denoted by Γ(μ, ν) and 
defined as

Γ(μ, ν) :=
{
μ ∈ P(X ×X) | π1

	μ = μ, π2
	μ = ν

}
,

where πi(x1, x2) = xi for every (x1, x2) ∈ X×X and � denotes the push forward operator. 
The L2-Wasserstein distance W2 between μ, ν ∈ P2(X) is defined as
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W 2
2 (μ, ν) := inf

⎧⎨⎩
ˆ

X×X

d2 dμ | μ ∈ Γ(μ, ν)

⎫⎬⎭ .

It is well known that the infimum above is attained in a non-empty and convex set 
Γo(μ, ν) ⊂ Γ(μ, ν); elements of Γo(μ, ν) are called optimal transport plans.

The space (P2(X), W2) is complete and separable and its topology is stronger than 
the narrow topology, the latter being defined as the coarsest topology on P(X) making 
the maps

μ 	→
ˆ

X

ϕdμ

continuous for every ϕ ∈ Cb(X), the space of continuous and bounded functions on X. 
In particular, for a sequence (μn)n ⊂ P2(X) and a point μ ∈ P2(X), we have

W2(μn, μ) → 0 ⇔

⎧⎪⎨⎪⎩
ˆ

X

d2(x, x0)dμn(x) →
ˆ

Rd

d2(x, x0)dμ(x) for some x0 ∈ X,

μn → μ narrowly in P(X).
(3.1)

Moreover, the Wasserstein distance is narrowly lower semicontinuous, meaning that, if 
(μn)n and (μ′

n)n are two sequences in P2(X), μ, μ′ ∈ P2(X) and μn → μ, μ′
n → μ′

narrowly in P(X), then we have

lim inf
n→∞

W2(μn, μ
′
n) ≥ W2(μ, μ′).

The following Theorem is [4, Theorem 8.3.1, Proposition 8.4.5 and Proposition 8.4.6] in 
case X = Rd. Recall that for every μ ∈ P2(Rd)

Tanμ P2(Rd) := {∇ϕ | ϕ ∈ C∞
c (Rd)}L

2(Rd,μ;Rd)
. (3.2)

Theorem 3.1 (Wasserstein velocity field). Let (μt)t∈J ⊂ P2(Rd) be a locally absolutely 
continuous curve defined in an open interval J ⊂ R. There exists a Borel vector field 
v : J ×Rd → Rd and a set A((μt)t∈J ) ⊂ J with L 1(J \A((μt)t∈J )) = 0 such that for 
every t ∈ A((μt)t∈J )

vt ∈ Tanμt
P2(Rd),

ˆ

Rd

|vt|2 dμt = |μ̇t|2 = lim
h→0

W 2
2 (μt+h, μt)

h2 ,

and the continuity equation

∂tμt + ∇ · (vtμt) = 0
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holds in the sense of distributions in J × Rd. Moreover, vt is uniquely determined in 
L2(Rd, μt; Rd) for t ∈ A((μt)t∈J ) and

lim
h→0

W2((iRd + hvt)	μt, μt+h)
|h| = 0 for every t ∈ A((μt)t∈J ), (3.3)

where iRd is the identity map on Rd.

3.1. Kantorovich duality and estimates for Kantorovich potentials

The Kantorovich duality for the Wasserstein distance states that

W 2
2 (μ, ν) = sup

⎧⎨⎩
ˆ

X

u dμ +
ˆ

X

v dν | (u, v) ∈ Adm2(X)

⎫⎬⎭ for every μ, ν ∈ P2(X),

(3.4)
where Adm2(X) is the set of pairs (u, v) ∈ Cb(X) × Cb(X) such that

u(x) + v(y) ≤ d2(x, y) for every x, y ∈ X.

It is easy to check that for every f ∈ Lip(X, d)
ˆ

X

f d(μ− ν) ≤ Lip(f,X)W2(μ, ν), (3.5)

since choosing μ ∈ Γo(μ, ν) and setting L := Lip(f, X),
ˆ

X

f d(μ− ν) =
ˆ

(f(x) − f(y)) dμ(x, y) ≤ L

ˆ
d dμ ≤ L

(ˆ
d2 dμ

)1/2
= LW2(μ, ν).

When X = Rd, we denote by Pr
2 (Rd) the subset of P2(Rd) of probability measures 

that are absolutely continuous w.r.t. the d-dimensional Lebesgue measure. We also set

m2
2(μ) :=

ˆ

Rd

|x|2 dμ(x) = W 2
2 (μ, δ0). (3.6)

The next result uses the celebrated Brenier-Knott-Smith Theorem [48, Section 3] to 
collect various useful properties of the optimal potentials realizing the supremum in (3.4)
in a particular geometric situation. We will use the elementary property that

if u : B(0, R) → [−∞,+∞) is concave with u(0) > −∞ then sup
B(0,R)

u = sup
B(0,R)

u,

(3.7)
which follows by the fact that for every y0 ∈ ∂B(0, R) the concavity of t 	→ u(ty0) in 
[0, 1] yields u(y0) ≤ sup0≤t<1 u(ty0).
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Theorem 3.2. Let μ, ν ∈ Pr
2 (Rd) with supp ν = B(0, R) for some R > 0. Then there 

exists a unique pair of continuous and convex functions

ϕ = Φ(ν, μ) : B(0, R) → R, ϕ∗ = Φ∗(ν, μ) : Rd → R (3.8)

such that

(i) ϕ∗ is R-Lipschitz and

ϕ∗(y) = sup
x∈B(0,R)

〈x, y〉 − ϕ(x) for every y ∈ Rd, (3.9)

ϕ(x) = sup
y∈Rd

〈y, x〉 − ϕ∗(y) for every x ∈ B(0, R), (3.10)

(ii) ϕ∗(0) = inf
B(0,R)

ϕ = 0,

(iii)
ˆ

B(0,R)

ϕ dν +
ˆ

Rd

ϕ∗ dμ = 1
2m2

2(ν) + 1
2m2

2(μ) − 1
2W

2
2 (ν, μ).

Moreover the pair (ϕ, ϕ∗) satisfies

W 2
2 (μ, ν) =

ˆ

B(0,R)

|x−∇ϕ(x)|2 dν(x) =
ˆ

Rd

|y −∇ϕ∗(y)|2 dμ(y). (3.11)

Proof. Let us set D := B(0, R). We know (see e.g. [48, Theorem 2.9, Lemma 2.10]) that 
there exists a pair (φ, φ∗) of lower semicontinuous proper conjugate functions such that 
φ ∈ L1(D, ν; (−∞, +∞]), φ∗ ∈ L1(Rd, μ; (−∞, +∞]) and it holds

ˆ

D

φ dν +
ˆ

Rd

φ∗ dμ = 1
2m2

2(ν) + 1
2m2

2(μ) − 1
2W

2
2 (ν, μ), (3.12)

where

φ∗(y) := sup
x∈D

〈x, y〉 − φ(x) = max
x∈D

〈x, y〉 − φ(x). (3.13)

Recalling that φ is bounded from below by an affine mapping (and thus it is uniformly 
bounded from below in D) we immediately see that φ∗ takes values in R and it is R-
Lipschitz. Up to adding a suitable constant to φ we can also suppose that φ∗(0) = 0.

We want to show that the restriction ϕ of φ to B(0, R) combined with φ∗ satisfies 
conditions (i), (ii), and (iii).

(i): Since 
´
D
φ dν < +∞ and ν has full support, we deduce that the proper domain 

of φ {x ∈ D : φ(x) < +∞} is dense in D; since the proper domain of a l.s.c. and convex 
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function is convex and contains the interior of its closure, we deduce that φ(x) < +∞
for every x ∈ D and ϕ := φ|D is continuous in D.

(3.7) shows that the supremum defining φ∗ in (3.13) can be restricted to D

φ∗(y) = sup
x∈D

〈x, y〉 − ϕ(x), (3.14)

so that (3.9) holds. (3.10) is just an application of Fenchel-Moreau Theorem φ = φ∗∗.
(ii): simply follows by (3.9) and the fact that φ∗(0) = 0.
(iii) It is sufficient to notice that the first integral in (3.12) can be restricted to D

since ν(∂D) = 0. The equality (3.11) follows by [48, Theorem 2.12].
Let us show that points (i)-(iii) are also sufficient to get uniqueness. If (ϕ0, ϕ∗

0) is 
another pair as in the statement satisfying points (i)-(iii), then [48, Theorem 2.12]
yields that both ∇ϕ and ∇ϕ0 are optimal transport maps from ν to μ, implying that 
∇ϕ0 = ∇ϕ L d-a.e. in B(0, R) by the a.e. uniqueness of the optimal transport map. 
Since infB(0,R) ϕ = infB(0,R) ϕ0 = 0 by (ii), we get that ϕ = ϕ0 in B(0, R) and therefore 
ϕ∗ = ϕ∗

0 in Rd by (3.9). �
The next Lemma collects useful estimates on convex functions; we set ωd :=

L d
(
B(0, 1)

)
.

Lemma 3.3. Let R, I > 0 and let ϕ : B(0, R) → R, ψ : Rd → R, be two (continuous and) 
convex functions satisfying

|ψ(y)| ≤ R|y| for every y ∈ Rd,

ϕ(x) = sup
y∈Rd

〈x, y〉 − ψ(y) for every x ∈ B(0, R),
ˆ

B(0,R)

ϕ(x) dx ≤ I. (3.15)

Then ϕ is nonnegative and satisfy the uniform bounds

sup
|x|≤r

ϕ(x) ≤ I

ωd(R− r)d , Lip
(
ϕ,B(0, r)

)
≤ 2d+1I

ωd(R− r)d+1 0 < r < R, (3.16)

and

ψ is R-Lipschitz, ψ(y) = sup
x∈B(0,R)

〈y, x〉 − ϕ(x) for every y ∈ Rd. (3.17)

Proof. Notice that ψ(0) = 0 yields ϕ ≥ 0; the integral estimate of (3.15) and Jensen 
inequality yield for every x ∈ B(0, R) with � := R− |x|

ϕ(x) ≤ 1
ωd�d

ˆ
ϕ(z) dz ≤ I

ωd�d
, so that max

|x|≤r0
ϕ(x) ≤ I

ωd(R− r0)d
(3.18)
B(x,
)
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for every 0 < r0 < R. Still using the fact that ϕ is nonnegative, (3.18) with r0 := 1
2R+ 1

2r

and the estimate of [22, Corollary 2.4] yield the Lipschitz bound of (3.16).
The Legendre transform of ψ defined by ψ∗(x) := supy∈Rd 〈x, y〉 − ψ(y) coincides 

with ϕ in B(0, R) (in particular it is finite in B(0, R)) and takes the value +∞ for every 
x ∈ Rd with |x| > R, since

ψ∗(x) ≥ sup
y∈Rd

〈x, y〉 −R|y| = +∞ if |x| > R.

Fenchel-Moreau Theorem and (3.7) then yield

ψ(y) = sup
x∈Rd

〈x, y〉 − ψ∗(x) = sup
x∈B(0,R)

〈x, y〉 − ψ∗(x) = sup
x∈B(0,R)

〈x, y〉 − ψ∗(x)

= sup
x∈B(0,R)

〈x, y〉 − ϕ(x)

thus showing (3.17); in particular we get that that ψ is R-Lipschitz. �
We conclude this part with the study of the stability properties of pairs of potentials.

Lemma 3.4. Let R, I > 0 and let ϕn : B(0, R) → R, ψn : Rd → R, n ∈ N, be two 
sequences of (continuous and) convex functions satisfying for every n ∈ N:

|ψn(y)| ≤ R|y| for every y ∈ Rd,

ϕn(x) = sup
y∈Rd

〈x, y〉 − ψn(y) for every x ∈ B(0, R),
ˆ

B(0,R)

ϕn(x) dx ≤ I. (3.19)

Then there exist a subsequence j 	→ n(j) and two convex and continuous functions ϕ :
B(0, R) → R and ψ : Rd → R such that

(i) ϕn(j) → ϕ locally uniformly on B(0, R);
(ii) ψn(j) → ψ locally uniformly in Rd;
(iii) ψ is R-Lipschitz and ∇ψn(j) → ∇ψ L d-a.e. on Rd.

Moreover the pair (ϕ, ψ) satisfies (3.15), (3.16), and (3.17).

Proof. Thanks to (3.19) and Lemma 3.3, the sequence of pairs (ϕn, ψn) satisfies the 
equicontinuity estimates (3.16) and (3.17) with constants R, I independent of n.

By Arzelà-Ascoli Theorem, we can find a subsequence j 	→ n(j) and convex and 
continuous functions ϕ : B(0, R) → R and ψ : Rd → R such that ϕn(j) → ϕ and 
ψn(j) → ψ locally uniformly in their respective domains.

In particular, ψn(j) Mosco converges (see e.g. [10, Definition 3.17, Proposition 3.19]) 
to ψ and therefore the sequence of its Legendre transforms ψ∗ Mosco converges to ψ∗
n(j)



M. Fornasier et al. / Journal of Functional Analysis 285 (2023) 110153 33
([10, Theorem 3.18]). Since ψ∗
n coincides with ϕn in B(0, R) and ϕn(j) converge locally 

uniformly to ϕ, we deduce that ϕ coincides with ψ∗ in B(0, R):

ϕ(x) = sup
y∈Rd

〈x, y〉 − ψ(y) for every x ∈ B(0, R).

By Fatou’s Lemma ϕ also satisfies the integral bound of (3.15). A further application of 
Lemma 3.3 yields (3.16) and (3.17).

Finally, the local uniform convergence of ψn(j) to ψ gives [40, Theorem 24.5] the 
pointwise convergence of ∇ψn(j)(x) to ∇ψ(x) at every point x ∈ Rd where all the ψn(j)
and ψ are differentiable. This proves (iii) and concludes the proof of the Lemma. �
4. The Wasserstein Sobolev space H1,2(P2(Rd), W2, m)

In this section we consider the metric space P2(Rd), endowed with the L2-Wasserstein 
distance d = W2 and a finite positive Borel measure m. We will denote by W2 =
W2(Rd, m) the metric-measure space (P2(Rd), W2, m) and we want to study the Wasser-
stein Sobolev space H1,2(W2).

We will show that H1,2(W2) is Hilbertian (and therefore the metric space (P2(Rd), W2)
is infinitesimally Hilbertian) and its functions admit a nice approximation in terms of 
the distinguished algebra of cylinder functions.

4.1. The algebra of C1-cylinder functions

We denote by C1
b(Rd) the space of bounded and Lipschitz C1 functions φ : Rd → R. 

This in particular implies that supx∈Rd |φ(x)| + |∇φ(x)| < +∞ if φ ∈ C1
b(Rd). Every 

φ ∈ C1
b(Rd) induces the function Lφ on P(Rd)

Lφ : μ →
ˆ

Rd

φ dμ (4.1)

which clearly belongs to Lipb(P2(Rd), W2) thanks to (3.5). More generally, if φ =
(φ1, · · · , φN ) ∈

(
C1

b(Rd)
)N , we denote by Lφ := (Lφ1 , · · · , LφN

) the corresponding map 
from P2(Rd) to RN .

Our construction is based on the algebra of C1- cylinder functions generated by (4.1)
via composition with C1 functions and it is quite similar to the one of [17, Section 2]
(see also [50]). Working in the flat space Rd allows for a further simplification in the 
structure of the tangent bundle and of corresponding vector fields.

Definition 4.1 (C1-Cylinder functions). We say that a function F : P2(Rd) → R is a C1-
cylinder function if there exist N ∈ N, ψ ∈ C1

b(RN ) and φ = (φ1, . . . , φN ) ∈ (C1
b(Rd))N

such that
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F (μ) = ψ(Lφ(μ)) = ψ
(
Lφ1(μ), · · · , LφN

(μ)
)

for every μ ∈ P2(Rd). (4.2)

We denote the set of such functions by C1
b

(
P2(Rd)

)
.

Remark 4.2. Notice that C1
b

(
P2(Rd)

)
is a unital subalgebra of Lipb(P2(Rd), W2). One 

could also consider the smaller algebra FC1
b

(
P2(Rd)

)
(resp. FC∞

c

(
P2(Rd)

)
) generated 

by functions as in (4.1) (resp. by functions as in (4.1) where φ ∈ C∞
c (Rd)), thus restrict-

ing ψ to be a polynomial in (4.2). This means that every element F ∈ FC1
b

(
P2(Rd)

)
(resp. FC∞

c

(
P2(Rd)

)
) can be written as

F = ψ ◦ Lφ

for some ψ polynomial in RN , φ ∈ (C1
b(Rd))N (resp. (C∞

c (Rd)N ) and N ∈ N, N ≥ 1. We 
prefer at this stage the choice of C1

b

(
P2(Rd)

)
, since it simplifies some technical points. 

However, Proposition 4.19 shows that using FC1
b

(
P2(Rd)

)
or FC∞

c

(
P2(Rd)

)
will lead to 

the same conclusions.

Remark 4.3. Since for every φ ∈
(
C1

b(Rd)
)N the range of Lφ is always contained in 

the bounded set [−M, M ]N where M := maxi=1,...,d ‖φi‖∞, also functions F = ψ ◦ Lφ

with ψ ∈ C1(RN ) belong to C1
b

(
P2(Rd)

)
. Indeed it is enough to consider a function 

ψ̃ ∈ C1
b(RN ) coinciding with ψ on [−M, M ]N and equal to 0 outside [−M − 1, M + 1]N

so that F = ψ̃ ◦ Lφ. In particular every function of the form Lφ, φ ∈ C1
b(Rd), belongs to 

C1
b

(
P2(Rd)

)
.

Let us consider the set

D :=
{

(μ, x) ∈ P2(Rd) ×Rd : x ∈ supp(μ)
}
. (4.3)

The set D is a Borel set (in fact it is a Gδ): if (rn)n = Q ∩ (0, +∞) we have that 
D = ∩nDn, where

Dn :=
{
(μ, x) ∈ P2(Rd) ×Rd : μ(B(x, rn)) > 0

}
,

and each Dn is open in P2(Rd) × Rd, being the inverse image of (0, +∞) through the 
lower semicontinuous map (μ, x) 	→ μ(B(x, r)).

Definition 4.4. If F = ψ ◦ Lφ ∈ C1
b

(
P2(Rd)

)
as in (4.2) for some N ∈ N, ψ ∈ C1

b(RN )
and φ ∈ (C1

b(Rd))N , then the Wasserstein differential of F , DF : D → Rd, is defined by

DF (μ, x) :=
N∑

n=1
∂nψ (Lφ(μ))∇φn(x), (μ, x) ∈ D. (4.4)

We will also denote by DF [μ] the function x 	→ DF (μ, x) and we will set
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�

‖DF [μ]‖2
μ :=

ˆ

Rd

|DF [μ](x)|2dμ(x), μ ∈ P2(Rd). (4.5)

Remark 4.5. It is not difficult to check that

DF is continuous in D (4.6)

with respect to the natural product (narrow and euclidean) topology of P(Rd) ×Rd.
In principle DF (and thus ‖DF [μ]‖μ) may depend on the choice of N ∈ N, ψ ∈

C1
b(RN ) and φ ∈ (C1

b(Rd))N used to represent F . In Proposition 4.9 we show that for 
every μ ∈ P2(Rd) the function DF [μ] is uniquely characterized in supp(μ) and ‖DF [μ]‖μ
is well defined, so that DF is uniquely characterized by F in D. By (4.6), DF is also 
uniquely characterized by F on D.

We have seen that the Wasserstein differential DF can be considered as a map from 
D with values in Rd. It is natural to introduce the measure m =

´
δμ ⊗ μ dm(μ) ∈

P(P2(Rd) ×Rd) obtained integrating the measures μ w.r.t. m: for every bounded Borel 
function H : P2(Rd) ×Rd → R we have

ˆ
H(μ, x) dm(μ, x) =

ˆ

P2(Rd)

( ˆ
Rd

H(μ, x) dμ(x)
)

dm(μ). (4.7)

Since supp(m) ⊂ D, it is then clear that DF belongs to L2(P2(Rd) ×Rd, m; Rd) and

‖DF‖2
L2(P2(Rd)×Rd,m;Rd) =

ˆ

P2(Rd)

‖DF [μ]‖2
μ dm(μ) =

ˆ

D

|DF (μ, x)|2 dm(μ, x). (4.8)

Lemma 4.6. Let Y be a Polish space and let G : P(Y ) × Y → [0, +∞) be a bounded 
and continuous function. If (μn)n∈N is a sequence in P(Y ) narrowly converging to μ as 
n → +∞, then

lim
n→∞

ˆ

Y

G(μn, y)dμn(y) =
ˆ

Y

G(μ, y)dμ(y).

Proof. We set gn(x) := G(μn, x), g(x) := G(μ, x). Since G is continuous, gn converge 
uniformly to g on compact subsets of Y as n → ∞. Thanks to [4, Lemma 5.2.1] (gn)	μn

converge narrowly to g	μ in P(R). On the other hand, the support of (gn)	μn is uniformly 
bounded because G is bounded so that

lim
n→∞

ˆ
G(μn, y)dμn(y) = lim

n→∞

ˆ
r d((gn)	μn)(r) =

ˆ
r d(g	μ)(r) =

ˆ
G(μ, y) dμ(y).
Y R R Y



36 M. Fornasier et al. / Journal of Functional Analysis 285 (2023) 110153
Lemma 4.7. Let F = ψ ◦ Lφ ∈ C1
b

(
P2(Rd)

)
as in (4.2) and let (μt)t∈[0,1] be an absolutely 

continuous curve in P2(Rd). Then

F (μ1) − F (μ0) =
1ˆ

0

ˆ

Rd

〈DF [μt](x), vt(x)〉dμt(x) dt, (4.9)

where vt ∈ L2(Rd, μt; Rd) is the Wasserstein velocity field (cf. Theorem 3.1) of (μt)t∈[0,1]
at time t and DF is as in (4.4).

In case the curve (μt)t∈[0,1] admits the parametrization

μt :=
(
xt

)
	
μ, t ∈ [0, 1],

for some Borel probability measure μ in a Polish space Ω and some map x ∈
C1([0, 1]; L2(Ω, μ; Rd)), then F ◦ μ ∈ C1([0, 1]) and

d
dtF (μt) =

ˆ

Ω

〈DF (μt,xt(ω)), ẋt(ω))〉 dμ(ω) for every t ∈ [0, 1]. (4.10)

Proof. Observe that, since F is Lipschitz continuous and t 	→ μt is absolutely continuous, 
the map t 	→ F (μt) is absolutely continuous and thus it holds

F (μ1) − F (μ0) =
1ˆ

0

d
dtF (μt)dt.

It is then enough to prove that

d
dtF (μt) =

ˆ

Rd

〈DF (μt, x), vt(x)〉dμt(x) for a.e. t ∈ (0, 1). (4.11)

We have, for every t ∈ A((μt)t∈[0,1]) ⊂ (0, 1) (cf. Theorem 3.1), that

d
dtF (μt) =

N∑
i=1

∂iψ(Lφ(μt))
d
dt

ˆ

Rd

φi dμt

=
N∑
i=1

∂iψ(Lφ(μt))
ˆ

Rd

〈∇φi, vt(x)〉dμt(x)

=
ˆ

Rd

〈DF (μt, x), vt(x)〉 dμt(x),

where we used Theorem 3.1. A completely analogous argument yields (4.10). �
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Remark 4.8. Consider the case in which the curve (μt)t∈[0,1] has the simple form

μt := (iRd + tu)	μ, t ∈ [0, 1]

for some map u ∈ L2(Rd, μ; Rd), where iRd denotes the identity map on Rd. Then (4.10)
yields

d
dtF (μt) =

ˆ

Rd

〈DF (μt, x), u(x)〉dμt(x) for every t ∈ [0, 1],

and, in particular, we get

lim
t↓0

F (μt) − F (μ)
t

=
ˆ

Rd

〈DF (μ, x), u(x))〉 dμ(x). (4.12)

Proposition 4.9. Let F = ψ ◦ Lφ ∈ C1
b

(
P2(Rd)

)
as in (4.2). Then

‖DF [μ]‖μ = lipF (μ) for every μ ∈ P2(Rd).

In particular ‖DF [μ]‖μ does not depend on the choice of the representation of F and 
DF just depends on F on D.

Proof. Let μ ∈ P2(Rd) and let (μ′
n, μ

′′
n) ∈ P2(Rd)2 with μ′

n �= μ′′
n be such that (μ′

n, μ
′′
n) →

(μ, μ) in W2 and

lim
n

|F (μ′
n) − F (μ′′

n)|
W2(μ′

n, μ
′′
n) = lipF (μ).

Let us define, for every t ∈ [0, 1], the map xt : Rd ×Rd → Rd as

xt(x0, x1) := (1 − t)x0 + tx1, (x0, x1) ∈ Rd ×Rd.

Using (4.10) along μt
n := xt	μn for plans μn ∈ Γo(μ′

n, μ
′′
n) (it is easy to check that 

(μt
n)t∈[0,1] is Lipschitz continuous), we get

|F (μ′
n) − F (μ′′

n)| =

∣∣∣∣∣∣∣
1ˆ

0

ˆ

Rd×Rd

〈DF (μt
n, xt(x0, x1)), x1 − x0〉 dμn(x0, x1) dt

∣∣∣∣∣∣∣
≤

⎛⎜⎝ 1ˆ

0

ˆ
d d

∣∣DF (μt
n, xt(x0, x1)))

∣∣2 dμn dt

⎞⎟⎠
1
2
⎛⎜⎝ 1ˆ

0

ˆ
d d

|x1 − x0|2 dμn dt

⎞⎟⎠
1
2

R ×R R ×R
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= W2(μ′
n, μ

′′
n)

⎛⎝ 1ˆ

0

ˆ

Rd

∣∣DF (μt
n, x)

∣∣2 dμt
n(x) dt

⎞⎠
1
2

,

where we used Theorem 3.1. Dividing both sides by W2(μ′
n, μ

′′
n), we obtain

|F (μ′
n) − F (μ′′

n)|
W2(μ′

n, μ
′′
n) ≤

⎛⎝ 1ˆ

0

ˆ

Rd

∣∣DF (μt
n, x)

∣∣2 dμt
n dt

⎞⎠
1
2

.

Observe that μn → μ := (iRd , iRd)	μ narrowly in P(Rd × Rd) as n → +∞ so that 
μt
n → μ narrowly in P(Rd) as n → +∞ for every t ∈ [0, 1]. We can pass to the limit as 

n → +∞ the above inequality using the dominated convergence Theorem and Lemma 4.6
with

G(μ, x) :=

∣∣∣∣∣
N∑

n=1
∂nψ (Lφ(μ))∇φn(x)

∣∣∣∣∣
2

, μ ∈ P(Rd), x ∈ Rd,

which provides a continuous and bounded extension (depending on the particular choice 
of ψ and φ) of |DF |2 to P(Rd) ×Rd. We hence get

lipF (μ) ≤

⎛⎝ 1ˆ

0

ˆ

Rd

|DF (μ, x)|2 dμ(x) dt

⎞⎠
1
2

= ‖DF [μ]‖μ .

This proves one inequality. In order to prove the opposite one, it is not restrictive to 
assume ‖DF [μ]‖μ > 0. Let us now consider the map T : supp(μ) → Rd defined as

T (x) := DF [μ](x), x ∈ supp(μ).

By definition of Tanμ(P2(Rd)), we have that T ∈ Tanμ(P2(Rd)) so that, by [4, Proposi-
tion 8.5.6], we have

lim
ε↓0

W2(μ, (iRd + εT )	μ)
ε

= ‖T‖L2(Rd,μ;Rd) = ‖DF [μ]‖μ .

Moreover, if we apply (4.12) to the curve με := (iRd + εT )	μ, ε ∈ [0, 1], we get

lim
ε↓0

F (με) − F (μ)
ε

=
ˆ

Rd

〈DF (μ, x), T (x))〉dμ(x) = ‖DF [μ]‖2
μ ,

thus

lipF (μ) ≥ lim F (με) − F (μ) = ‖DF [μ]‖μ .

ε↓0 W2(με, μ)
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This shows the other inequality and concludes the proof. �
4.2. The density result

Recall that for a bounded Lipschitz function F : P2(Rd) → R the pre-Cheeger energy 
(cf. (2.15)) associated to m is defined by

pCE2(F ) =
ˆ

P2(Rd)

(
lipF (μ)

)2 dm(μ). (4.13)

Thanks to Proposition 4.9, if F is a cylinder function in C1
b

(
P2(Rd)

)
, we have a nice 

equivalent expression

pCE2(F ) =
ˆ

P2(Rd)

‖DF [μ]‖2
μ dm(μ) =

ˆ
|DF (μ, x)|2 dm(μ, x), (4.14)

which shows that the restriction of pCE2 to C1
b

(
P2(Rd)

)
is a quadratic form (thus satis-

fying (2.59)) induced by the bilinear form

pCE2(F,G) :=
ˆ

DF (μ, x) · DG(μ, x) dm(μ, x), F,G ∈ C1
b

(
P2(Rd)

)
(4.15)

and coincides with the typical bilinear forms on cylinder functions used in [50,47,17,18]. 
It is therefore important to prove that C1

b

(
P2(Rd)

)
is dense in energy and therefore 

H1,2(W2) is a Hilbert space: this is precisely the object of our main result.

Theorem 4.10. The algebra C1
b

(
P2(Rd)

)
is dense in 2-energy: for every F ∈ D1,2(W2)

there exists a sequence Fn ∈ C1
b

(
P2(Rd)

)
, n ∈ N, such that

Fn → F m-a.e., lip(Fn) → |DF |� in L2(P2(Rd),m); (4.16)

if moreover F ∈ Lp(P2(Rd), m), p ∈ [1, +∞), then we can find a sequence Fn ∈
C1
b

(
P2(Rd)

)
as in (4.16) and converging to F in Lp(P2(Rd), m).

Corollary 4.11. H1,2(W2) is a separable Hilbert space and C1
b

(
P2(Rd)

)
is strongly dense 

in H1,2(W2). If 
(
pCE2, C

1
b

(
P2(Rd)

))
is closable (recall Remark 2.19) then its smallest 

closed extension coincides with (CE2, H1,2(W2)).

According to the terminology introduced in [24] (see also [7]) we can say that 
(P2(Rd), W2, m) is infinitesimally Hilbertian for every positive Borel measure m.
We devote the remaining part of this subsection to the proof this result, using Theo-
rem 2.13.

We adopt the notation A := C1
b

(
P2(Rd)

)
.
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We start with a preliminary lemma, which provides a simple gradient estimate for the 
distance from the Dirac mass centered at 0, i.e. the quadratic moment of a measure.

Lemma 4.12. Let ϑ ∈ Lip(Rd) be a L-Lipschitz function which is continuously differen-
tiable in the open set Ωϑ :=

{
x ∈ Rd : ϑ(x) �= 0

}
. Then the map

F : μ →
(
Lϑ2(μ)

)1/2 =
( ˆ
Rd

ϑ2(x) dμ(x)
)1/2

(4.17)

is L-Lipschitz and belongs to D1,2(W2, A ), in particular its (2, A )-relaxed gradient is 
bounded above by L and satisfies

|DF |2�,A (μ) ≤ 1
F 2(μ)

ˆ

Rd

ϑ2|∇ϑ|2 dμ for m-a.e. μ ∈ P2(Rd) with F (μ) > 0. (4.18)

Proof. Let T ∈ C∞(R) be an odd, nondecreasing truncation function satisfying

T (x) = x if |x| ≤ 1/2, |T (x)| = 1 if |x| ≥ 2, |T ′(x)| ≤ 1, (4.19)

and let us set Tn(x) := nT (x/n), ϑn := Tn◦ϑ, so that ϑn is L-Lipschitz and continuously 
differentiable in Ωϑ, so that ϑ2

n ∈ C1
b(Rd).

We define ψn(r) := (r + 1/n)1/2 and Fn := ψn ◦ Lϑ2
n
. By construction Fn ∈ A with

DFn(μ, x) = 1
Fn(μ)ϑn(x)∇ϑn(x),

(
lipFn(μ)

)2 = ‖DFn[μ]‖2 = 1
F 2
n(μ)

ˆ

Rd

ϑ2
n(x)|∇ϑn(x)|2 dμ(x) ≤ L2. (4.20)

Since (P2(Rd), W2) is a length space we deduce that Fn is L-Lipschitz. On the other 
hand limn→∞ Fn(μ) = F (μ) pointwise everywhere, so that F is L-Lipschitz as well, it 
belongs to D1,2(W2, A ) and |DF |�,A ≤ L. Passing eventually to the limit as n → ∞ in 
(4.20) for μ in the open set {μ ∈ P2(Rd) : F (μ) > 0} we get (4.18). �

Selecting ϑ(x) := |x| and applying the first part of Lemma 4.12 we immediately get 
the following corollary.

Corollary 4.13. The function m2(·) as in (3.6) belongs to D1,2(W2, A ) with

|Dm2|�,A (μ) ≤ 1 for m-a.e. μ ∈ P2(Rd). (4.21)

We now use m2 for localizing gradient estimates in P2(Rd).
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Lemma 4.14. Let Fn be a sequence of functions in D1,2(W2, A ) ∩ L∞(P2(Rd), m) such 
that Fn and |DFn|�,A are uniformly bounded in every bounded set of P2(Rd) and let F, G
be Borel functions in L2(P2(Rd), m), G nonnegative. If

lim
n→∞

Fn(μ) = F (μ), lim sup
n→∞

|DFn|�,A (μ) ≤ G(μ) m-a.e. in P2(Rd), (4.22)

then F ∈ H1,2(W2, A ) and |DF |�,A ≤ G.

Proof. Let us consider a smooth nonincreasing function θ ∈ C∞[0, +∞) such that

θ(r) = 1 if 0 ≤ r ≤ 1, θ(r) = 0 if r ≥ 2, |θ′(r)| ≤ 2 (4.23)

and set

χn(μ) := θ
(
m2(μ)/n

)
. (4.24)

By Corollary 4.13 we have

χn ∈ H1,2(W2,A ), |Dχn|�,A ≤ 2/n, |Dχn|�,A (μ) = 0 if m2(μ) ≤ n or m2(μ) ≥ 2n.
(4.25)

Thanks to the Leibniz rule, setting Fn,m(μ) := Fn(μ)χ2
m(μ) and Gn := |DFn|�,A , we 

have

Fn,m ∈ D1,2(W2,A ), |DFn,m|�,A (μ) ≤ Gn(μ)χ2
m(μ) + 4/mFn(μ)χm(μ). (4.26)

Since for every m ∈ N the sequence n 	→ Gnχ
2
m is uniformly bounded, we can find 

an increasing subsequence k 	→ n(k) such that k 	→ Gn(k)χ
2
m is weakly∗ convergent in 

L∞(P2(Rd), m) and we denote by G̃m is weak∗ limit. By Fatou’s lemma, for every Borel 
set B ⊂ P2(Rd) we get

ˆ

B

G̃m dm = lim
k→∞

ˆ

B

Gn(k)(μ)χ2
m(μ) dm(μ)

≤
ˆ

B

lim sup
k→∞

(
Gn(k)(μ)χ2

m(μ)
)

dm(μ)

≤
ˆ

B

G2χ2
m dm

so that we deduce

G̃m ≤ G2χ2
m m-a.e. in P2(Rd), for every m ∈ N. (4.27)
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On the other hand, passing to the limit in (4.26) along the subsequence n(k) and recalling 
that limk→∞ Fn(k),m = Fχ2

m m-a.e. we get

|D(Fχ2
m)|�,A (μ) ≤ G̃m(μ) + 4

m
F (μ)χm(μ) ≤ G(μ)χ2

m(μ) + 4
m
F (μ)χm(μ)

for m-a.e. μ ∈ P2(Rd).
(4.28)

We eventually pass to the limit as m → ∞ concluding the proof of the Lemma. �
We now derive a natural estimate, extending (4.4) to the case of quadratically coercive 

functions whose gradient has a linear growth.

Lemma 4.15. Let φ ∈ C1(Rd) be satisfying the growth conditions

φ(x) ≥ A|x|2 −B, |∇φ(x)| ≤ C(|x| + 1) for every x ∈ Rd (4.29)

for given positive constants A, B, C > 0 and let ζ : R → R be a C1 nondecreasing function 
whose derivative has compact support. Then the function F (μ) := ζ ◦ Lφ is Lipschitz in 
P2(Rd), it belongs to H1,2(W2, A ), and

|DF |�,A (μ) ≤ ζ ′(Lφ(μ))
( ˆ
Rd

|∇φ(x)|2 dμ(x)
)1/2

. (4.30)

Proof. We set ζa(z) := (z + a)1/2 and ϑa := ζa ◦ φ, with a := A + B, so that

ϑa ∈ C1(Rd), ϑa ≥
(
A(|x|2+1)

)1/2
, |∇ϑa(x)| = |∇φ(x)|

2(φ(x) + a)1/2
≤ L, L := A−1/2C

for every x ∈ Rd.
We can then apply Lemma 4.12, observing that(

Lϑ2
a
(μ)
)1/2 = ζa

(
Lφ(μ)

)
;

we deduce that Fa = ζa◦Lφ is L-Lipschitz, it belongs to D1,2(W2, A ) and satisfies (recall 
(4.18))

|DFa|�,A (μ) ≤ 1
2Fa(μ)

( ˆ
Rd

|∇(ϑ2
a)|2 dμ

)1/2
= 1

2Fa(μ)

( ˆ
Rd

|∇φ|2 dμ
)1/2

. (4.31)

We eventually observe that F = ψa ◦ Fa, where ψa(z) = ζ(z2 − a) is a C1 Lipschitz 
function since ζ ′ has compact support. By the chain rule in Theorem 2.3(7) we get that

|DF |�,A = |ψ′
a ◦ Fa||DFa|�,A = 2Faζ

′(Lφ)|DFa|�,A .

Then (4.31) yields (4.30). �
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We collect in the following definition some useful tools and notation we will extensively 
use.

Definition 4.16. We denote by κ ∈ C∞
c (Rd) a smooth function satisfying suppκ = B(0, 1), 

κ(x) ≥ 0 for every x ∈ Rd and κ(x) > 0 for every x ∈ B(0, 1), 
´
Rd κdL d = 1 and 

κ(−x) = κ(x) for every x ∈ Rd.
For every 0 < ε < 1 we define the family of associated mollifiers

κε(x) := 1
εd

κ(x/ε) x ∈ Rd, (4.32)

and for every σ ∈ P2(Rd) we define

σε := σ ∗ κε, (4.33)

σ̂ε := σε B(0, 1/ε) + εd+3L d B(0, 1/ε)
σε(B(0, 1/ε)) + εd+3L d(B(0, 1/ε)) . (4.34)

For every ν ∈ P2(Rd) we eventually define the continuous functions Wν , W ε
ν , F

ε
ν :

P2(Rd) → R as

Wν(μ) := W2(μ, ν), W ε
ν (μ) := Wν̂ε

(με), F ε
ν (μ) := 1

2(W ε
ν (μ))2, μ ∈ P2(Rd).

(4.35)

Notice that σε, ̂σε ∈ Pr
2 (Rd), supp σ̂ε = B(0, 1/ε) and W2(σε, σ) → 0, W2(σ̂ε, σ) → 0

as ε ↓ 0. Moreover, if σ, σ′ ∈ P2(Rd), we have

W2(σε, σ
′
ε) ≤ W2(σ, σ′) for every 0 < ε < 1 (4.36)

and it is easy to check that, if we set

Cε := m2(κεL
d), (4.37)

then we have

m2(με) ≤ m2(μ) + Cε for every 0 < ε < 1. (4.38)

Proposition 4.17. Let ν ∈ P2(Rd), ε ∈ (0, 1) and let ζ : R → R be a C1 nondecreasing 
function whose derivative has compact support. With the notation of Definition 4.16 we 
have

|D(ζ ◦ F ε
ν )|�,A (μ) ≤ ζ ′(F ε

ν (μ))
( ˆ
Rd

|x−∇(ϕ∗
ε ∗ κε)(x)|2 dμ(x)

)1/2

d

(4.39)
for m-a.e. μ ∈ P2(R ),
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where ϕ∗
ε = Φ∗(ν̂ε, με) as in Theorem 3.2.

Proof. Let G := {μh}h∈N be a dense and countable set in P2(Rd) and let us set, for 
every h ∈ N, ϕε,h := Φ(ν̂ε, μh

ε ), ϕε,h
∗ := Φ∗(ν̂ε, μh

ε ) (see Theorem 3.2),

aε,h :=
ˆ

B(0,1/ε)

(
1
2 |y|

2 − ϕε,h(y)
)

dν̂ε(y), uε,h(x) := 1
2 |x|

2 − ϕε,h
∗(x) + aε,h, x ∈ Rd

and

Gε,k(μ) := max
1≤h≤k

ˆ

Rd

uε,hdμε, μ ∈ P2(Rd).

We first observe that ϕ∗
ε,h(x) is 1/ε-Lipschitz (cf. Theorem 3.2), so that |ϕ∗

ε,h(x)| ≤
|x|/ε and

uε,h(x) ≥ 1
2 |x|

2 − 1
ε
|x| + aε,h ≥ 1

4 |x|
2 − 1

ε2 + aε,h, (4.40)

uε,h(x) ≤ |x|2 + 1
ε2 + aε,h. (4.41)

Claim 1. It holds

lim
k→+∞

Gε,k(μ) = F ε
ν (μ) for every μ ∈ P2(Rd).

Proof of claim 1. Since Gε,k+1(μ) ≥ Gε,k(μ) for every μ ∈ P2(Rd), we have that

lim
k→+∞

Gε,k(μ) = sup
k

Gε,k(μ) = sup
h

ˆ

Rd

uε,hdμε for every μ ∈ P2(Rd).

By the definition of ϕε,h and ϕε,h
∗ (see (3.9)) we have that

1
2 |x|

2 − ϕ∗
ε,h(x) + 1

2 |y|
2 − ϕε,h(y) ≤ 1

2 |x− y|2 for every x ∈ Rd, y ∈ B(0, 1/ε),

so that for every μ ∈ P2(Rd) and h ∈ N, we get
ˆ

Rd

uε,hdμε =
ˆ

Rd

(
1
2 |x|

2 − ϕ∗
ε,h(x)

)
dμε +

ˆ

B(0,1/ε)

(
1
2 |y|

2 − ϕε,h(y)
)

dν̂ε(y)

≤ 1
2

ˆ

Rd×Rd

|x− y|2 dγ(x, y)

= 1
W 2

2 (με, ν̂ε)
2
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= F ε
ν (μ),

where γ ∈ Γo(με, ̂νε). This proves that supk Gε,k(μ) ≤ F ε
ν (μ) for every μ ∈ P2(Rd). If 

μ ∈ G, then we can find h ∈ N such that μ = μh so that, by definition of ϕε,h and ϕ∗
ε,h, 

we obtain that
ˆ

Rd

uε,hdμε =
ˆ

Rd

(
1
2 |x|

2 − ϕ∗
ε,h(x)

)
dμε +

ˆ

B(0,1/ε)

(
1
2 |y|

2 − ϕε,h(y)
)

dν̂ε(y)

= 1
2W

2
2 (μh

ε , ν̂ε).

Hence, if μ ∈ G, then supk Gε,k(μ) = F ε
ν (μ).

Let now μ, μ′ ∈ P2(Rd) and h ∈ N and observe that
ˆ

Rd

uε,hdμε −
ˆ

Rd

uε,hdμ′
ε = 1

2m2
2(με) −

1
2m2

2(μ′
ε) −

ˆ

Rd

ϕε,h
∗d(με − μ′

ε)

≤ 1
2

(
m2(με) + m2(μ′

ε)
)
W2(με, μ

′
ε) + 1

ε
W2(με, μ

′
ε)

≤ 1
2

(
m2(μ) + m2(μ′) + 2Cε

)
W2(μ, μ′) + 1

ε
W2(μ, μ′)

≤
(
m2(μ) + m2(μ′) + Cε + 1

ε

)
W2(μ, μ′),

where we used (4.36), (4.38), the fact that ϕ∗
ε,h is 1/ε-Lipschitz continuous and (3.5). 

We hence deduce that for every k ∈ N

|Gε,k(μ) −Gε,k(μ′)| ≤
(

m2(μ) + m2(μ′) + 1
ε

+ Cε

)
W2(μ, μ′)

for every μ, μ′ ∈ P2(Rd).
(4.42)

Choosing μ′ ∈ G and passing to the limit as k → +∞ we get from (4.42)∣∣∣∣ lim
k→+∞

Gε,k(μ) − F ε
ν (μ′)

∣∣∣∣ ≤ (m2(μ) + m2(μ′) + Cε + 1
ε

)
W2(μ, μ′)

for every μ ∈ P2(Rd), μ′ ∈ G.

Using the density of G and the continuity of μ′ 	→ F ε
ν (μ′) we deduce that

lim
k→+∞

Gε,k(μ) = F ε
ν (μ) for every μ ∈ P2(Rd)

proving the first claim.
Claim 2. If Hε,k := ζ ◦Gε,k and ũε,h := uε,h ∗ κε ∈ C1(Rd) it holds
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|DHε,k|2�,A (μ) ≤
(
ζ ′(Gε,k(μ))

)2 ˆ
Rd

|∇ũε,h|2 dμ(x)

=
(
ζ ′(Gε,k(μ))

)2 ˆ
Rd

|x−∇(ϕε,h
∗ ∗ κε)(x)|2 dμ(x),

for m-a.e. μ ∈ Bε,h
k, where Bε,h

k := {μ ∈ P2(Rd) | Gε,k(μ) =
´
Rd uε,hdμε}, h ∈

{1, . . . , k}.
Proof of claim 2. For every h ∈ N, (4.40) yields

ũε,h(x) ≥ 1
4 |x|

2 − 1
ε2 + aε,h, |∇ũε,h(x)| ≤ |x| + 1

ε
; (4.43)

where we used that

|x|2 ∗ κε ≥ |x ∗ κε|2 = |x|2, ∇uε,h(x) = x−∇ϕε,h
∗(x), ∇uε,h ∗ κε = x−∇ϕε,h

∗ ∗ κε.

Since the map �ε,h : P2(Rd) → R defined as �ε,h(μ) :=
´
Rd uε,hdμε satisfies

�ε,h(μ) =
ˆ

Rd

(uε,h ∗ κε)dμ = Lũε,h
(μ), μ ∈ P2(Rd),

Lemma 4.15 and the above estimates yield

|D(ζ ◦ �ε,h)|�(μ) ≤ ζ ′(�ε,h(μ))
( ˆ
Rd

|∇ũε,h|2 dμ
)1/2

for m-a.e. μ ∈ P2(Rd).

Since ζ is nondecreasing, Hε,k can be written as

Hε,k(μ) = max
1≤h≤k

(ζ ◦ �ε,h)(μ), μ ∈ P2(Rd),

so that we can apply Theorem 2.3 (8) and conclude the proof of the second claim.

Claim 3. Let (hn)n ⊂ N be a non-decreasing sequence and let μ ∈ P2(Rd). If 
limn

´
Rd uε,hn

dμε = F ε
ν (μ), then

lim
n

ˆ

Rd

|x−∇(ϕε,hn

∗ ∗ κε)(x)|2 dμ(x) =
ˆ

Rd

|x−∇(ϕ∗
ε ∗ κε)(x)|2 dμ(x),

where ϕ∗
ε = Φ∗(ν̂ε, με).

Proof of claim 3. Let us set for every n ∈ N

φε,n := ϕε,hn
, ψε,n = φ∗

ε,n := ϕ∗
ε,h .
n
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We will show that from any (non relabeled) increasing subsequence it is possible to 
extract a further subsequence j 	→ n(j) such that

lim
j

ˆ

Rd

∣∣∣x−∇(φ∗
ε,n(j) ∗ κε)(x)

∣∣∣2 dμ(x) =
ˆ

Rd

|x−∇(ϕ∗
ε ∗ κε)(x)|2 dμ(x).

By Theorem 3.2, we have that, for every n ∈ N, φ∗
ε,n : Rd → R is convex and 1/ε-

Lipschitz continuous with φ∗
ε,n(0) = 0, φε,n : B(0, 1/ε) → R is convex and continuous 

and

φε,n(x) = sup
y∈Rd

〈x, y〉 − φ∗
ε,n(y) for every x ∈ Rd.

Moreover, since F ε
ν ≥ 0 and |φ∗

ε,n(x)| ≤ ε−1|x|, for n sufficiently large we have

aε,hn
=
ˆ

Rd

(
uε,hn

(x) + φ∗
ε,n(x) − 1

2 |x|
2
)

dμε(x) ≥ −C(ε, μ) (4.44)

with C(ε, μ) := 1 + 1
2m2

2(με) + 1
εm2(με). It follows that

ˆ

B(0,1/ε)

φε,n dν̂ε = 1
2m2(ν̂ε) − aε,hn

≤ C ′(ε, μ, ν)

where C ′(ε, μ, ν) := C(ε, μ) + 1
2m2

2(ν̂ε). Since ν̂ε ≥ εd+3

1+ε3ωd
L d B(0, 1/ε) we can find a 

constant I = I(ε, μ, ν) such that 
´
B(0,1/ε) φε,n dx ≤ I for sufficiently large n.

Thus by Lemma 3.4, we get the existence of a subsequence j 	→ n(j) and two convex 
continuous functions φ∗

ε : Rd → R and φε : B(0, 1/ε) → R such that points (i), (ii), (iii) 
and conclusions of Lemma 3.4 hold. By points (i) and (ii) we can use Fatou Lemma and 
the dominated convergence Theorem to conclude that

lim inf
j

ˆ

B(0,1/ε)

φε,n(j)dν̂ε ≥
ˆ

B(0,1/ε)

φεdν̂ε, lim
j

ˆ

Rd

φ∗
ε,n(j)dμε =

ˆ

Rd

φ∗
εdμε.

We thus deduce that
ˆ

Rd

(
1
2 |x|

2 − φ∗
ε(x)

)
dμε(x) +

ˆ

B(0,1/ε)

(
1
2 |y|

2 − φε(y)
)

dν̂ε(y) ≥ lim sup
j

ˆ

Rd

uε,hn(j)dμε

= F ε
ν (μ)

proving that
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ˆ

B(0,1/ε)

φε dν̂ε +
ˆ

Rd

φ∗
ε dμε = 1

2m2
2(ν̂ε) + 1

2m2
2(με) −

1
2W

2
2 (ν̂ε, με).

By the uniqueness part of Theorem 3.2 we deduce that φε = ϕε = Φ(ν̂ε, με) and φ∗
ε =

ϕ∗
ε = Φ∗(ν̂ε, με). Finally, the a.e. convergence of the gradient of φ∗

ε,n to the gradient of 
φ∗
ε given by point (iii) in Lemma 3.4 gives that ∇(φ∗

ε,n(j) ∗ κε) → ∇(φ∗
ε ∗ κε) pointwise 

everywhere. Moreover, since for every x ∈ Rd we have x ∗ κε = x and∣∣∣x−∇(ϕ∗
ε,n(j) ∗ κε)(x)

∣∣∣2 ≤
(
|x| + 1/ε

)2 ∈ L1(Rd, μ),

we can use the dominated convergence Theorem to conclude that

lim
j

ˆ

Rd

∣∣∣x−∇(φ∗
ε,n(j) ∗ κε)(x)

∣∣∣2 dμ(x) =
ˆ

Rd

|x−∇(φ∗
ε ∗ κε)(x)|2 dμ(x).

This concludes the proof of the third claim.
Claim 4. It holds

lim sup
k

|DHε,k|�,A (μ) ≤ ζ ′(F ε
ν (μ))

( ˆ
Rd

|x−∇(ϕ∗
ε ∗ κε)(x)|2 dμ(x)

)1/2

for m-a.e. μ ∈ P2(Rd),

where ϕ∗
ε = Φ∗(ν̂ε, με).

Proof of claim 4. Let Bε ⊂ P2(Rd) be defined as

Bε :=
⋂
k

k⋃
h=1

Ak
ε,h,

where Ak
ε,h is the full m-measure subset of Bε,h

k where claim 2 holds. Notice that Bε has 
full m-measure. Let μ ∈ Bε be fixed and let us pick a non-decreasing sequence k 	→ hk

such that

Gε,k(μ) =
ˆ

Rd

uε,hk
dμε.

By claim 1 we know that Gε,k(μ) → F ε
ν (μ) so that we can apply claim 4 and conclude 

that

ζ ′(F ε
ν (μ))

ˆ

Rd

|x−∇(ϕ∗
ε ∗ κε)(x)|2 dμ(x)

= lim
k

ζ ′(Gε,k(μ))
ˆ ∣∣x−∇(ϕ∗

ε,hk
∗ κε)(x)

∣∣2 dμ(x).
(4.45)
Rd
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By claim 2, the right hand side is greater than lim supk |DHε,k|2�,A (μ); this concludes the 
proof of the fourth claim.

Conclusion. We conclude the proof applying Lemma 4.14 with (Hε,k)k in the role of 
(Fn)n, F := ζ ◦ F ε

ν and G given by

G(μ) := ζ ′(F ε
ν (μ))

( ˆ
Rd

|x−∇(ϕ∗
ε ∗ κε)(x)|2 dμ(x)

)1/2
, μ ∈ P2(Rd).

We check that the hypotheses of Lemma 4.14 are satisfied: by Claim 2 we have that 
Hε,k ∈ D1,2(W2, A ) and it is also in L∞(P2(Rd), m) since ζ is uniformly bounded. 
Notice that, by (4.43), for every R > 0 it holds that

( ˆ
Rd

|∇ũε,h(x)|2 dμ(x)
)1/2

≤ R + 1/ε whenever m2(μ) ≤ R. (4.46)

This gives, also using Claim 2, that |DHε,k|�,A is uniformly bounded on bounded subsets 
of P2(Rd) (recall that ζ ′ is uniformly bounded). It is also clear that Hε,k is uniformly 
bounded on bounded subsets of P2(Rd) since it is uniformly bounded by the infinity 
norm of ζ.

The function F , being bounded again by the infinity norm of ζ, belongs to 
L2(P2(Rd), m). The same holds for G: using (4.45) and passing to the limit the esti-
mate in (4.46) we see that G is uniformly bounded, having ζ ′ compact support.

By Claim 1 and Claim 4 we have

lim
k→+∞

Hε,k(μ) = F (μ), lim sup
k→+∞

|DHε,k|�,A (μ) ≤ G(μ) for m-a.e. μ ∈ P2(Rd).

By Lemma 4.14 we get (4.39). �
We still keep the notation of Definition 4.16.

Corollary 4.18. Let ν ∈ P2(Rd). Then

|DWν |�,A (μ) ≤ 1 for m-a.e. μ ∈ P2(Rd). (4.47)

Proof. First of all we prove that for every 0 < ε < 1, it holds
ˆ

Rd

|x−∇(ϕ∗
ε ∗ κε)(x)|2 dμ(x) ≤ W 2

2 (με, ν̂ε) for every μ ∈ P2(Rd), (4.48)

where ϕ∗
ε = Φ∗(ν̂ε, με) as in Theorem 3.2. Since

|x−∇(ϕ∗
ε ∗ κε)(x)|2 ≤ |x−∇ϕ∗

ε(x)|2 ∗ κε(x) for every x ∈ Rd,
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we get that
ˆ

Rd

|x−∇(ϕ∗
ε ∗ κε)(x)|2 dμ(x) ≤

ˆ

Rd

(
|x−∇ϕ∗

ε(x)|2 ∗ κε(x)
)

dμ(x)

=
ˆ

Rd

|x−∇ϕ∗
ε(x)|2 dμε(x)

= W 2
2 (με, ν̂ε),

for every μ ∈ P2(Rd), where the last equality comes from Theorem 3.2. This proves 
(4.48). It follows from Proposition 4.17 that, for every nondecreasing function ζ ∈ C1(R)
whose derivative has compact support, it holds

|D (ζ ◦ F ε
ν )|�,A (μ) ≤ ζ ′(F ε

ν (μ))
√

2F ε
ν (μ) for m-a.e. μ ∈ P2(Rd). (4.49)

Let us now consider a sequence of continuous and compactly supported functions αn :
R → R such that

0 ≤ αn(s) ↑
χ(0,+∞)(s)

1 + s2 ≤ 1, for every s ∈ R

and let us define ζn(s) : R → R as

ζn(s) =
sˆ

0

αn(r)dr, s ∈ R.

Then, for every n ∈ N, ζn : R → R is a C1 nondecreasing function whose derivative has 
compact support so that we can plug it into (4.49) in place of ζ and we see that

|D (ζn ◦ F ε
ν )|�,A (μ) ≤ ζ ′n(F ε

ν (μ))
√

2F ε
ν (μ) for m-a.e. μ ∈ P2(Rd). (4.50)

Observe that ζn(s) → arctan(s)χ(0,+∞) and ζ ′n(s) → χ(0,+∞)(s)
1+s2 for every s ∈ R and the 

r.h.s. of (4.50) is uniformly bounded. Using Theorem 2.3(1)-(3) we can thus pass to the 
limit as n → +∞ and we obtain

|D(ϑ ◦W ε
ν )|�,A (μ) ≤ ϑ′(W ε

ν (μ)) for m-a.e. μ ∈ P2(Rd),

where ϑ : R → R is defined as ϑ(s) := arctan(s2/2)χ(0,+∞)(s), s ∈ R. We can thus apply 
Lemma 2.11 and conclude that

|DW ε
ν |�,A ≤ 1 m-a.e. and for every 0 < ε < 1 . (4.51)

Choosing ε = 1/k, we have limk→+∞ W
1/k
ν (μ) = Wν(μ) for every μ ∈ P2(Rd); using 

Theorem 2.3 (1)-(3), we obtain (4.47). �
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The proof of Theorem 4.10 then easily follows by Corollary 4.18 and Theorem 2.13.

We conclude this section with a simple but useful density property, which shows the 
possibility to use smaller algebra of cylinder functions to operate in H1,2(W2).

Proposition 4.19. Let F be a subset of C1
b(Rd) satisfying the following property: for every 

f ∈ C1
b(Rd) there exists a sequence fn ∈ F , n ∈ N, such that

sup
n

‖fn‖∞ + ‖∇fn‖∞ < ∞, lim
n→∞

ˆ

Rd

|fn − f | + |∇(fn − f)|dμ = 0

for m-a.e. μ ∈ P2(Rd).

(4.52)

Then the algebra A ⊂ C1
b

(
P2(Rd)

)
generated by the set of cylinder functions 

{
Lf :

f ∈ F
}

is dense in H1,2(W2) and satisfies the strong approximation property of Theo-
rem 4.10.

In particular the algebra FC∞
b

(
P2(Rd)

)
generated by 

{
Lf : f ∈ C∞

c (Rd)
}

is strongly 
dense in H1,2(W2) and satisfies the approximation property of Theorem 4.10.

Proof. Thanks to Theorem 4.10 and a simple diagonal argument, it is sufficient to prove 
that for every cylinder function F ∈ C1

b

(
P2(Rd)

)
there exists a sequence Fn ∈ A such 

that

Fn → F in L2(P2(Rd),m) and pCE2(Fn − F ) → 0 as n → ∞. (4.53)

In the case F = Lf with f ∈ C1
b(Rd), (4.52) and Lebesgue Dominated Convergence 

Theorem show that we can find a sequence fn ∈ F such that, setting Fn := Lfn , we 
have

ˆ

P2(Rd)

|Fn − F |2 dm =
ˆ

P2(Rd)

∣∣∣ ˆ
Rd

(fn(x) − f(x)) dμ(x)
∣∣∣2 dm(μ) → 0 as n → ∞,

pCE2(Fn − F ) =
ˆ

P2(Rd)

ˆ
|∇fn(x) −∇f(x)|2 dμ(x) dm(x) → 0 as n → ∞.

Let us now consider a general F = ψ ◦ Lf as in (4.2), where f = (f1, · · · , fN ) is a 
vector of functions in C1

b(Rd) and ψ ∈ C1
b(RN ). If we consider f̃ := (1, f1, . . . , fN ) and 

ψ̃ ∈ C1
b(RN+1) defined as

ψ̃(x0, x1, . . . , xn) := ψ(0)x0 − ψ(0) + ψ(x1, x2, . . . , xN ), (x0, x1, . . . , xN ) ∈ RN+1,

we have that ψ̃(0) = 0 and ψ̃ ◦ Lf̃ = F . For this reason we can always suppose that 
f1 ≡ 1 and ψ(0) = 0. It is also not restrictive to assume that ψ is a polynomial with 
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ψ(0) = 0: in fact, setting R := supRd, 1≤k≤N

(
|fk| + |∇fk|

)
, we can find a sequence of 

polynomials (Ph)h in RN such that

Ph(0) = 0, sup
|z|≤R

|Ph(z) − ψ(z)| + |∇Ph(z) −∇ψ(z)| → 0 as h → ∞. (4.54)

It follows that Fh := Ph ◦ Lf satisfies

lim
h→∞

sup
P2(Rd)

(
|Fh(μ) − F (μ)| + ‖DFh[μ] − DF [μ]‖μ

)
= 0. (4.55)

Let us consider sequences (fk,n)n∈N , k = 1, · · · , N , approximating fk as in (4.52). In 

particular, there exists R > 0 such that supRd

(
|fk,n| + |∇fk,n| + |fk| + |∇fk|

)
≤ R for 

every n ∈ N, k ∈ {1, · · · , N}. If ψ is a polynomial in RN with ψ(0) = 0 then the function 
Fn := ψ◦Lfn

belongs to A (cf. Remark 4.3), where fn = (f1,n, f2,n, . . . , fN,n). Denoting 
by L the maximum of the Lipschitz constants of ψ and ∂kψ in the cube [−R, R]N with 
respect to the ∞-norm, it is easy to see that

|Fn(μ) − F (μ)| =
∣∣∣ψ(Lfn

(μ)) − ψ(Lfn
(μ)))

∣∣∣ ≤ L sup
k

|Lfk,n
(μ) − Lfk(μ)| → 0,

‖DFn[μ] − DF [μ]‖μ =
∥∥∥∑

k

(
∂kψ(Lfn

(μ))∇fk,n − ∂kψ(Lf (μ))∇fk

)∥∥∥
μ

≤
∑
k

∥∥∥∂kψ(Lfn
(μ))∇fk,n − ∂kψ(Lfn

(μ))∇fk

∥∥∥
μ

+
∑
k

∥∥∥(∂kψ(Lfn
(μ)) − ∂kψ(Lf (μ))

)
∇fk

∥∥∥
μ

≤ L
∑
k

(∥∥∥∇fk,n −∇fk

∥∥∥
μ

+ R
∣∣∣〈fk,n − fk, μ〉

∣∣∣) .

Both terms are uniformly bounded w.r.t. μ and n, and converge to 0 as n → ∞. We 
deduce that (4.53) holds. �
Remark 4.20 (Polynomials). If there exists a radius R > 0 such that supp(μ) ⊂ B(0, R)
for m-a.e. μ then we can also choose subsets F of C1(Rd) in Proposition 4.19. An 
interesting example is provided by the collection F of all the polynomials. In this case 
the algebra A is the set of functionals

μ 	→
ˆ
d k

P (x1, · · · , xk) dμ⊗k(x1, · · · , xk), P polynomial in (Rd)k, k ∈ N.
(R )
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5. Calculus rules

We now show that the Cheeger energy can be expressed in terms of an appropriate no-
tion of (relaxed) Wasserstein gradient, also depending on m, which enjoys useful calculus 
rules.

Theorem 5.1 (m-Wasserstein differential). For every F ∈ D1,2(W2) there exists a unique 
vector field DmF ∈ L2(P2(Rd) × Rd, m; Rd) (the m-Wasserstein differential of F ) such 
that for every sequence Fn ∈ C1

b

(
P2(Rd)

)
, n ∈ N, satisfying (4.16) we have

DFn → DmF strongly in L2(P2(Rd) ×Rd,m;Rd). (5.1)

Moreover:

(a) The map F 	→ DmF from D1,2(W2) to L2(P2(Rd) × Rd, m; Rd) is linear and for 
every F, G ∈ D1,2(W2) we have

CE2(F,G) =
ˆ

DmF (μ, x) · DmG(μ, x) dm(μ, x),

CE2(F ) =
ˆ

|DmF (μ, x)|2 dm(μ, x),
(5.2)

where CE2(·, ·) denotes the quadratic form associated to CE2(·) as in Remark 2.18.
(b) The map F 	→ (F, DmF ) is a linear isometric (thus continuous) immersion of 

H1,2(W2) into L2(P2(Rd), m) × L2(P2(Rd) ×Rd, m; Rd).
(c) The graph of Dm in L2(P2(Rd), m) ×L2(P2(Rd)×Rd, m; Rd) is (weakly) closed: for 

every sequence Fn ∈ H1,2(W2)

Fn ⇀ F in L2(P2(Rd),m)

DmFn ⇀ G in L2(P2(Rd) ×Rd,m;Rd)

}
⇒ F ∈ H1,2(W2), G = DmF. (5.3)

Proof. The proof uses well known arguments of the theory of quadratic forms. If Fn, 
n ∈ N, is a sequence in C1

b

(
P2(Rd)

)
, then for every m, n ∈ N we have

1
4pCE2(Fm − Fn) = 1

2

(
pCE2(Fm) + pCE(Fn)

)
− pCE2

(1
2(Fm + Fn)

)
. (5.4)

If (4.16) holds, we can pass to the limit as m, n → ∞, observing that limm,n→∞
1
2 (Fm +

Fn) = F , and therefore by (2.16) lim infm,n→∞ pCE2

(
1
2 (Fm + Fn)

)
≥ CE2(F ); we thus 

obtain

lim sup 1pCE2(Fm − Fn) = lim sup 1 ˆ
|DFm(μ, x) − DFn(μ, x)|2 dm(μ, x) ≤ 0 (5.5)
m,n→∞ 4 m,n→∞ 4
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which shows that m 	→ DFm is a Cauchy sequence in L2(P2(Rd) × Rd, m; Rd) and 
therefore converges to some element V .

If F̃n is another sequence satisfying (4.16), we can use the identity

1
4pCE2(Fn − F̃n) = 1

2

(
pCE2(Fn) + pCE(F̃n)

)
− pCE2

(1
2(Fn + F̃n)

)
(5.6)

and the same argument to conclude that limn→∞ pCE2(Fn − F̃n) = 0, so that the limit 
V is independent of the approximating sequence and we are authorized to call it DmF .

Concerning claim (a), the linearity of Dm follows immediately from the linearity of D
as a map from C1

b

(
P2(Rd)

)
to L2(P2(Rd) ×Rd, m; Rd).

If F, G ∈ D1,2(W2) and (Fn)n, (Gn)n ⊂ C1
b

(
P2(Rd)

)
are sequences satisfying (4.16)

for F and G respectively, we can see that pCE2(Fn, Gn) → CE2(F, G); indeed

pCE2(Fn, Gn) = 1
2pCE2(Fn + Gn) − 1

2pCE2(Fn) − 1
2pCE2(Gn),

= −1
2pCE2(Fn −Gn) + 1

2pCE2(Fn) + 1
2pCE2(Gn).

Passing the first equality to the lim infn, the second one to the lim supn and using 
(2.16), we get that pCE2(Fn, Gn) → CE2(F, G). Passing then to the limit in (4.15) we 
immediately see that

CE2(F,G) =
ˆ

DmF (μ, x) · DmG(μ, x) dm(μ, x) (5.7)

which, together with (2.61), shows that F 	→ (F, DmF ) is an isometry from H1,2(W2)
into L2(P2(Rd), m) × L2(P2(Rd) ×Rd, m; Rd) (claim (b)).

Claim (c) then follows by claim (b) and the fact that H1,2(W2) is a Hilbert space. �
Let us now collect a few properties of DmF , which follow by the corresponding metric 

versions of Theorem 2.3 and the approximation property of Theorem 5.1.

Proposition 5.2 (Calculus properties of DmF ). The m-Wasserstein differential satisfies 
the following properties:

(a) (Minimal relaxed gradient and pointwise Lipschitz constant) For every F ∈ D1,2(W2)
we have

‖DmF [μ]‖2
μ =

ˆ
|DmF (μ, x)|2 dμ(x) = |DF |2�(μ) for m-a.e. μ ∈ P2(Rd). (5.8)

In particular we have the pointwise Rademacher property: for every F ∈
Lipb(P2(Rd))
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‖DmF [μ]‖2
μ =

ˆ
|DmF (μ, x)|2 dμ(x) ≤

∣∣DF
∣∣2(μ) for m-a.e. μ ∈ P2(Rd), (5.9)

and if F ∈ C1
b

(
P2(Rd)

)
ˆ

|DmF (μ, x)|2 dμ(x) ≤
ˆ

|DF (μ, x)|2 dμ(x) for m-a.e. μ ∈ P2(Rd). (5.10)

(b) (Leibniz rule) If F, G ∈ L∞(P2(Rd), m) ∩D1,2(W2), then H := FG ∈ D1,2(W2) and

DmH(μ, x) = F (μ)DmG(μ, x) + G(μ)DmF (μ, x) for m-a.e. (μ, x) ∈ P2(Rd) ×Rd.

(5.11)
(c) (Locality) If F ∈ D1,2(W2) then for any L 1-negligible Borel subset N ⊂ R we have

DmF [μ] = 0 in L2(Rd, μ;Rd) m-a.e. on F−1(N). (5.12)

(d) (Truncations) If Fj ∈ D1,2(W2), j = 1, · · · , J , then also the functions

F+ := max(F1, · · · , FJ) and F− := min(F1, · · · , FJ)

belong to D1,2(W2) and

DmF+ = DmFj m-a.e. on {(μ, x) ∈ P2(Rd) ×Rd : F+(μ) = Fj(μ)}, (5.13)

DmF− = DmFj m-a.e. on {(μ, x) ∈ P2(Rd) ×Rd : F−(μ) = Fj(μ)}. (5.14)

(e) (Chain rule) If F ∈ D1,2(W2) and φ ∈ Lip(R) then φ ◦ F ∈ D1,2(W2) and

Dm(φ ◦ F ) = φ′(F ) DmF m-a.e. on P2(Rd) ×Rd. (5.15)

Remark 5.3. Notice that the product in (5.15) is well defined since there exists a L 1-
negligible Borel set N ⊂ R such that φ is differentiable in R \ N and DmF vanishes 
m-a.e. in F−1(N) thanks to the locality property (5.12).

Proof. Claim (a) is an immediate consequence of the fact that (4.16) yields lipFn →
|DF |� strongly in L2(P2(Rd), m); up to extracting a suitable (not relabeled) subsequence 
we get 

´
|DFn[μ]|2 dμ → |DF |2�(μ) for m-a.e. μ. On the other hand since by (5.1) DFn →

DmF in L2(P2(Rd)×Rd, m; Rd), then |DFn|2 → |DmF |2 in L1(P2(Rd)×Rd, m); indeed
ˆ ∣∣∣|DFn(μ, x)|2 − |DmF (μ, x)|2

∣∣∣ dm(μ, x) ≤
ˆ

((|DFn| + |DmF |)|DFn − DmF |) dm

≤
(ˆ

(|DFn| + |DmF |)2 dm
)1/2

· ‖DFn − DmF‖L2(P2(Rd)×Rd,m;Rd)
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so that
ˆ ∣∣∣|DFn(μ, x)|2 − |DmF (μ, x)|2

∣∣∣ dm(μ, x) → 0 as n → +∞. (5.16)

Hence Fubini’s Theorem yields, up to extracting a suitable subsequence,
ˆ

|DFn(μ, x)|2 dμ →
ˆ

|DmF (μ, x)|2 dμ for m-a.e.μ ∈ P2(Rd). (5.17)

(5.9) and (5.10) then follows by the general properties of the minimal relaxed gradients 
(recall Remark 2.8).

Claim (c) follows by (2.8) and (5.8).
Claim (d) is just a consequence of the locality property (5.12).
Claim (e) is true if φ ∈ C1

b(R) just by passing to the limit in the corresponding formula 
for a cylinder function. In fact if Fn ∈ C1

b

(
P2(Rd)

)
is a sequence as in (4.16) and (5.1)

we have

D(φ ◦ Fn) = (φ′ ◦ Fn)DFn in D. (5.18)

Since φ′ is bounded and continuous we get

D(φ◦Fn) → G = (φ′◦F )DmF strongly in L2(P2(Rd)×Rd,m;Rd) as n → ∞. (5.19)

Integrating w.r.t. m and recalling (5.8) and Theorem 2.3(7) we get

ˆ
|G|2 dm =

ˆ
|φ′(F (μ))|2|DmF (μ, x)|2 dm(μ, x) =

ˆ
|φ′(F (μ))| |DF |2� dm = CE2(φ◦F )

so that

lim
n→∞

pCE2(φ ◦ Fn) = CE2(φ ◦ F ).

We conclude by Theorem 5.1 that G = (φ′ ◦ F )DmF coincides with Dm(φ ◦ F ).
Let us now consider the case of a general Lipschitz function φ; by truncation and 

Claim (d) it is not restrictive to assume that φ is also bounded. We can find a sequence 
φn ∈ C1

b(R) such that supR |φn| + |φ′
n| ≤ L < ∞, φn → φ uniformly, and φ′

n(x) → φ′(x)
for every x ∈ R \N for a Borel set N with L 1(N) = 0. We have

Dm(φn ◦ F ) = φ′
n(F )DmF m-a.e. in P2(Rd). (5.20)

Setting Ñ := {(μ, x) ∈ D : F (μ) ∈ N}, Fubini’s Theorem and the locality property (5.12)
yield DmF (μ, x) = 0 for m-a.e. (μ, x) ∈ Ñ . On the other hand φ′

n(F (μ)) → φ′(F (μ)) for 
every (μ, x) ∈ D \ Ñ ; since φ′

n is uniformly bounded, we deduce that
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φ′
n(F )DmF → φ′(F )DmF strongly in L2(P2(Rd) ×Rd,m;Rd). (5.21)

We conclude by Theorem 5.1(b) that Dm(φ ◦ F ) = φ′(F )DmF .
Claim (b) follows by claim (e); indeed, since F, G ∈ L∞(P2(Rd), m), we can find a 

constant M > 0 such that

|F |(μ) ≤ M, |G|(μ) ≤ M, |F + G|(μ) ≤ M for m-a.e. μ ∈ P2(Rd).

Let φ ∈ Lip(R) be such that φ(x) = x2 for every x ∈ [−M − 1, M + 1]; then we have

DmFG = 1
2Dm((F + G)2) − 1

2Dm(F 2) − 1
2Dm(G2)

= 1
2Dm(φ ◦ (F + G)) − 1

2Dm(φ ◦ F ) − 1
2Dm(φ ◦G)

= 1
2φ

′(F + G)Dm(F + G) − 1
2φ

′(F )DmF − 1
2φ

′(G)DmG

= (F + G)Dm(F + G) − FDmF −GDmG

= FDmG + GDmF

for m-a.e. (μ, x) ∈ P2(Rd) ×Rd. �
Corollary 5.4. CE2 is a local Dirichlet form in L2(P2(Rd), m) [13, 3.1.1] enjoying Γ-
calculus with Carré du champs Γ given by

Γ(F,G)[μ] :=
ˆ

DmF (μ, x) · DmG(μ, x) dμ(x) for m-a.e. μ ∈ P2(Rd). (5.22)

In particular, for every F, G ∈ H1,2(W2) we have

CE2(F,G) =
ˆ

P2(Rd)

Γ(F,G)[μ] dm(μ) =
ˆ

DmF (μ, x) · DmG(μ, x) dm(μ, x),

CE2(F ) =
ˆ

P2(Rd)

Γ(F, F ) dm(μ) =
ˆ

|DmF (μ, x)|2 dm(μ, x).
(5.23)

Proof. The fact that CE2 is a Dirichlet form follows by the truncation property (5.15)
with φ(r) := r ∧ 1. Since CE2(1) = 0, the same property with φ(r) = |r| also shows that 
CE2 is local (see [13, Corollary 5.1.4]).

Using the Leibniz rule (5.11) one can also easily show that the Γ-operator (5.22) is 
the Carré du champ associated to 1CE2 [13, Definition 4.1.2]. �
2
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5.1. Tangent bundle, residual differentials and relaxation

In general we cannot guarantee that CE2(F ) coincides with pCE2(F ) if F ∈
C1
b

(
P2(Rd)

)
, or, equivalently, that DmF = DF : this property corresponds to the clos-

ability of pCE2. We can however investigate the relations between DF and DmF : two 
useful tools are represented by the closure of the graph of D and by the collection of all 
the weak limits of Wasserstein differentials along vanishing sequences.

Definition 5.5 (Multivalued gradient). We denote by G ⊂ L2(P2(Rd), m) ×L2(P2(Rd)×
Rd, m; Rd) the closure of the linear space 

{
(F, DF ) : F ∈ C1

b

(
P2(Rd)

)}
. The multivalued 

gradient Dm : H1,2(W2) ⇒ L2(P2(Rd) ×Rd, m; Rd) is the operator whose graph is G.

It is clear that G is a closed vector subspace of L2(P2(Rd), m) × L2(P2(Rd) ×
Rd, m; Rd), which can also be obtained as the weak closure of 

{
(F, DF ) : F ∈

C1
b

(
P2(Rd)

)}
. Thus V ∈ DmF if and only if there exists a sequence Fn ∈ C1

b

(
P2(Rd)

)
such that

Fn → F in L2(P2(Rd),m), DFn ⇀ V in L2(P2(Rd) ×Rd,m;Rd). (5.24)

Definition 5.6 (Residual gradients). The set of residual gradients G0 ⊂ L2(P2(Rd) ×
Rd, m; Rd) is defined as

G0 :=
{
V ∈ L2(P2(Rd) ×Rd,m;Rd) : there exists (Fn)n∈N ⊂ C1

b

(
P2(Rd)

)
:

Fn → 0 in L2(P2(Rd),m), DFn ⇀ V in L2(P2(Rd) ×Rd,m;Rd)
}
.

(5.25)

The notion of residual gradient is known in the literature, see e.g. [30, Section 1.2]. 
Notice that pCE2 is closable if and only if G0 is trivial and that G0 contains all the 
vector fields that are limits of gradients of vanishing sequence of functions (see also 
Lemma 5.9(1)). A third important space is the L2 tangent bundle of P2(Rd). In the 
following, given a Borel map G ∈ L2(P2(Rd) × Rd, m; Rd), we denote, for every μ ∈
P2(Rd), by G[μ] the map x 	→ G(μ, x).

Definition 5.7. We denote by Tan(P2(Rd), m) the subspace of L2(P2(Rd) × Rd, m; Rd)
of vector fields V satisfying

V [μ] ∈ Tanμ P2(Rd) for m-a.e. μ ∈ P2(Rd). (5.26)

Lemma 5.8. Tan(P2(Rd), m) is a closed subspace of L2(P2(Rd) ×Rd, m; Rd) which is a 
L∞(P2(Rd), m) module:

for every V ∈ Tan(P2(Rd),m), H ∈ L∞(P2(Rd),m) : HV ∈ Tan(P2(Rd),m).
(5.27)
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For every F ∈ H1,2(W2) (resp. F ∈ C1
b

(
P2(Rd)

)
) DmF ∈ Tan(P2(Rd), m) (resp. DF ∈

Tan(P2(Rd), m)). Finally, if C ⊂ C∞
c (Rd) is a countable set dense in C∞

c (Rd) with 
respect to the Lipschitz norm ‖ζ‖Lip := supRd |ζ| + |∇ζ| and L is a countable set dense 
in L2(P2(Rd), m) then the set

T = span
{
H∇ζ : H ∈ L , ζ ∈ C

}
is dense in Tan(P2(Rd),m). (5.28)

Proof. Let (V n)n∈N be a sequence in Tan(P2(Rd), m) strongly converging to V in L2; it 
is not restrictive to assume that V n are Borel maps satisfying V n[μ] ∈ Tanμ P2(Rd) for 
every μ ∈ P2(Rd) \ N for a m-negligible set of P2(Rd). Up to extracting a suitable sub-
sequence, we can also assume that 

∑∞
n=1 ‖V n−V ‖2

L2 < ∞. Applying Fubini’s Theorem 
it follows that

ˆ

P2(Rd)

( ∞∑
n=1

ˆ

Rd

|V n[μ](x) − V [μ](x)|2 dμ(x)
)

dm < +∞

so that there exists a m-negligible set N ′ ⊃ N such that

∞∑
n=1

ˆ

Rd

|V n[μ](x) − V [μ](x)|2 dμ(x) < ∞ for every μ ∈ P2(Rd) \ N ′;

and this implies that V n[μ] → V [μ] strongly in L2(P2(Rd), μ; Rd), so that V [μ] ∈
Tanμ P2(Rd) for every μ ∈ P2(Rd) \ N ′.

(5.27) is obvious. Since for every F = Lφ, φ ∈ C1
b DF [μ] = ∇φ ∈ Tanμ P2(Rd) for 

every μ ∈ P2(Rd), it is immediate to check that DF ∈ Tan(P2(Rd), m) for every cylinder 
function. The closure property of Tan(P2(Rd), m) then yields the analogous conclusion 
for the Wasserstein differential of DmF of a Sobolev function F ∈ H1,2(W2).

Let us eventually consider (5.28): it is sufficient to prove that any V ∈ T ⊥ belongs to (
Tan(P2(Rd), m)

)⊥, where ⊥ denotes the orthogonal complement in the Hilbert space 
L2(P2(Rd) ×Rd, m; Rd). If V ∈ T ⊥ is a Borel vector field, then

ˆ

P2(Rd)

( ˆ
〈∇ζ,V (μ, x)〉 dμ(x)

)
H(μ) dm(μ) = 0

for every ζ ∈ C , H ∈ L . Since L is dense in L2(P2(Rd), m) we have for every ζ ∈ C

ˆ
〈∇ζ,V (μ, x)〉 dμ(x) = 0 for m-a.e. μ ∈ P2(Rd)

Since C is countable, we can find a m-negligible set N ⊂ P2(Rd) such that
ˆ
〈∇ζ,V (μ, x)〉 dμ(x) = 0 for every ζ ∈ C and every μ ∈ P2(Rd) \ N
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which shows that V [μ] ∈
(

Tanμ P2(Rd)
)⊥

for every μ ∈ P2(Rd) \ N , so that for every 

W ∈ Tan(P2(Rd), m)
ˆ

〈V (μ, x),W (μ, x)〉 dm =
ˆ

P2(Rd)

( ˆ
Rd

〈V [μ](x),W [μ](x)〉 dμ(x)
)

dm(μ) = 0. �

Let us collect a few simple properties of G0.

Lemma 5.9. Let G0 be as in (5.25).

(1) G0 is a closed subspace of L2(P2(Rd) ×Rd, m; Rd) and coincides with the set

Dm0 =
{
V ∈ L2(P2(Rd) ×Rd,m;Rd) : (0,V ) ∈ G

}
. (5.29)

(2) For every V ∈ G0 there exists a sequence Fn ∈ C1
b

(
P2(Rd)

)
, n ∈ N, such that

Fn → 0 in L2(P2(Rd),m), DFn → V strongly in L2(P2(Rd) ×Rd,m;Rd). (5.30)

Every element V ∈ G0 is therefore characterized by the property

∀ ε > 0 ∃F ∈ C1
b

(
P2(Rd)

)
:

‖F‖L2(P2(Rd),m) ≤ ε, ‖DF − V ‖L2(P2(Rd)×Rd,m;Rd) ≤ ε.
(5.31)

(3) G0 satisfies the locality property

for every V ∈ G0, H ∈ L∞(P2(Rd),m) : HV ∈ G0. (5.32)

Proof. We have already observed that G is a closed vector space, coinciding with the 
weak closure of 

{
(F, DF ) : F ∈ C1

b

(
P2(Rd)

)}
; in view of (5.24), (5.25) precisely charac-

terizes the elements V for which (0, V ) ∈ G. Therefore the first two claims are obvious.
Let us eventually prove the last claim. We first consider the case when H ∈

C1
b

(
P2(Rd)

)
. If V ∈ G0 we can find a sequence Fn ∈ C1

b

(
P2(Rd)

)
such that (5.30)

holds. Setting Gn := HFn, since H is bounded we clearly have Gn → 0 strongly in 
L2(P2(Rd), m); moreover, by the Leibniz rule we get

DGn = HDFn + FnDH → HV (5.33)

since DH ∈ L∞(P2(Rd)×Rd, m; Rd) and Fn → 0 strongly in L2(P2(Rd), m). We deduce 
that HV ∈ G0 as well.

If now H is a function in L∞(P2(Rd), m) we can find by (2.3) a uniformly bounded 
sequence Hn ∈ C1

b

(
P2(Rd)

)
converging to H m-a.e. in P2(Rd), so that HnV → HV in 

L2(P2(Rd) × Rd, m; Rd). Being G0 a closed subspace and HnV ∈ G0 by the previous 
step, we deduce that HV ∈ G0. �
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We now define

T := Tan(P2(Rd),m) ∩ G⊥
0

=
{
V ∈ Tan(P2(Rd),m) : 〈V ,W 〉L2 = 0 for every W ∈ G0

}
,

(5.34)

where ⊥ denotes the orthogonal complement in the Hilbert space L2(P2(Rd)×Rd, m; Rd). 
We can now obtain our main structure result.

Theorem 5.10. For every F ∈ H1,2(W2) we have DmF ∈ T and for every V ∈ G0 we 
have the pointwise orthogonality property

ˆ

Rd

DmF (μ, x) · V (μ, x) dμ(x) = 0 for m-a.e. μ ∈ P2(Rd). (5.35)

If V ∈ DmF then V −DmF ∈ G0. In particular for every F ∈ C1
b

(
P2(Rd)

)
DF −DmF ∈

G0 and for every G ∈ H1,2(W2)
ˆ

Rd

DmF (μ, x) · DmG(μ, x) dμ(x) =
ˆ

Rd

DF (μ, x) · DmG(μ, x) dμ(x)

for m-a.e. μ ∈ P2(Rd).

(5.36)

Finally, for every F ∈ H1,2(W2), DmF is the element of minimal L2-norm in DmF .

Proof. Let us first observe that if Fn ∈ C1
b

(
P2(Rd)

)
satisfies (5.30) and F̃n ∈ C1

b

(
P2(Rd)

)
satisfies (5.1), we have Fn + F̃n → F strongly in L2(P2(Rd), m), with D(Fn + F̃n) →
DmF + V , so that the lower semicontinuity of the Cheeger energy with respect to L2

convergence yields together with (5.2) that

CE2(F ) =
ˆ

|DmF |2 dm ≤
ˆ

|DmF + V |2 dm. (5.37)

Since V is arbitrary in G0 we deduce that
ˆ

DmF · V dm = 0 for every V ∈ G0.

Replacing V with HV , H ∈ L∞(P2(Rd), m) we get
ˆ

P2(Rd)

( ˆ
Rd

DmF · V dμ(x)
)
H(μ) dm(μ) = 0 for every V ∈ G0, H ∈ L∞(P2(Rd),m),

(5.38)
which yields (5.35).
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If now Fn ∈ C1
b

(
P2(Rd)

)
converges strongly to F with DF ⇀ G, selecting F̃n as 

above, we have Fn − F̃n → 0 strongly in L2(P2(Rd), m) and D(Fn − F̃n) ⇀ G − DmF

weakly in L2(P2(Rd) ×Rd, m; Rd), so that G− DmF ∈ G0. By (5.37) we conclude that 
DmF is the element of minimal norm in DmF = DmF + G0. �

We can give a “pointwise” interpretation of the orthogonality properties of the pre-
vious Theorem. Let us select an orthonormal set O0 := {V n : n ∈ N} ⊂ L2(P2(Rd) ×
Rd, m; Rd) dense in G0 (we are thus assuming that V n are Borel vector fields everywhere 
defined). Since

ˆ

P2(Rd)

( ˆ
Rd

|V n(μ, x)|2 dμ(x)
)

dm(μ) = 1

we deduce that there exists a m-negligible set N ⊂ P2(Rd) such that

ˆ

Rd

|V n(μ, x)|2 dμ(x) < ∞ for every n ∈ N, μ ∈ P2(Rd) \ N . (5.39)

We thus define G0[μ] := span{V n[μ] : n ∈ N} ⊂ L2(Rd, μ; Rd) for every μ ∈ P2(Rd) \N
and T[μ] :=

(
G0[μ]

)⊥ ∩Tanμ P2(Rd), where here ⊥ denotes the orthogonal complement 
in the Hilbert space L2(Rd, μ; Rd).

Theorem 5.11. Let F ∈ H1,2(W2) and V ∈ L2(P2(Rd) ×Rd, m; Rd).

(1) V belongs to G0 if and only if, for m-a.e. μ, V [μ] ∈ G0[μ].
(2) V belongs to T if and only if, for m-a.e. μ, V [μ] ∈ T[μ].
(3) DmF [μ] ∈ T[μ] for m-a.e. μ.
(4) If F ∈ C1

b

(
P2(Rd)

)
then, for m-a.e. μ ∈ P2(Rd), DmF [μ] is the L2(Rd, μ)-orthogonal 

projection of DF [μ] on T[μ].

Proof. If V ∈ G0 we can write V = limN→∞ V N in L2(P2(Rd) × Rd, m; Rd) where 
V N =

∑N
n=1 unV n is the orthogonal projection of V on the space generated by 

{V 1, · · · , V N}, with un := 〈V, Vn〉. Clearly V N [μ] ∈ G0[μ] for every N ∈ N and 
μ ∈ P2(Rd) \ N . Moreover we can find a subsequence, not relabeled, and a m-negligible 
set N ′ ⊃ N such that V N [μ] → V [μ] in L2(Rd, μ; Rd) for every μ ∈ P2(Rd) \ N ′, so 
that V [μ] ∈ G0[μ] for every μ ∈ P2(Rd) \ N ′.

Let now V ∈ L2(P2(Rd) × Rd, m; Rd) be a vector field such that V [μ] ∈ G0[μ] for 
m-a.e. μ ∈ P2(Rd). Since G0 is a closed subspace, in order to show that V ∈ G0 it is 
sufficient to prove that the scalar product with every element W ∈ G⊥

0 vanishes.
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If W ∈ G⊥
0 then for every H ∈ L∞(P2(Rd), m) and every n ∈ N we get

ˆ

P2(Rd)

( ˆ
Rd

W · V n dμ(x)
)
H(μ) dm(μ) = 0,

since HV n ∈ G0 by (5.32). Being H arbitrary, we find that there exists a m-negligible 
set N ′′ ⊂ P2(Rd) such that

ˆ

Rd

W [μ] · V n[μ] dμ = 0 for every n ∈ N, μ ∈ P2(Rd) \ N ′′,

so that W [μ] ∈
(
G0[μ]

)⊥ for m-a.e. μ ∈ P2(Rd). We then deduce that

ˆ

Rd

W [μ] · V [μ] dμ = 0 for m-a.e. μ ∈ P2(Rd),

and therefore

〈W ,V 〉L2 =
ˆ

P2(Rd)

( ˆ
Rd

W · V dμ(x)
)

dm(μ) = 0.

The previous argument also shows that a vector field V belongs to G⊥
0 if and only if 

V [μ] ∈
(
G0[μ])⊥ for m-a.e. μ ∈ P2(Rd). This fact, together with the very definition of 

Tan(P2(Rd), m) (5.26), yields claim (2).
Claim (3) just follows by Theorem 5.10, since (5.35) shows that, for every F ∈

H1,2(W2), DmF [μ] ∈ T[μ] for m-a.e. μ ∈ P2(Rd).
If F ∈ C1

b

(
P2(Rd)

)
, combining claim 1 and Theorem 5.10, we see that DF [μ] −

DmF [μ] ∈ G0[μ] ⊂
(
T[μ]

)⊥
m-a.e., so that DmF [μ] is the L2(Rd, μ; Rd)-orthogonal 

projection of DF [μ] on T[μ], as stated in Claim (4). �
We can now interpret the above results in terms of the nonsmooth tangent and cotan-

gent structures introduced and developed by Gigli in [25]. Since we are in the Hilbertian 
case, we can identify the cotangent module L2(T ∗P2(Rd)) and dual tangent module 
L2(TP2(Rd)) with the Hilbert space T defined by (5.34). Let us report a useful char-
acterization of the cotangent module L2(T ∗X) [26, Theorem 4.1.1] for a general metric 
measure space (X, d, m).

Theorem 5.12. Let (X, d, m) be a metric measure space. Then there exists a unique pair 
((M, ‖ · ‖M, ·M, | · |M), diff) such that (M, ‖ · ‖M, ·M, | · |M) is a L2(X, m)-normed 
L∞(X, m) module (cf. [26, Definition 3.1.1]) and diff : D1,2(X, d, m) → M is a lin-
ear operator such that
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(i) |diff(f)|M = |Df |� m-a.e. in X for every f ∈ D1,2(X, d, m).
(ii) M is generated by 

{
diff(f) : f ∈ D1,2(X, d,m)

}
.

Uniqueness is intended in the following sense: if ((M̃, ‖ · ‖M̃, ·M̃, | · |M̃), ˜diff) is another 
pair with the above properties, then there exists a unique module isomorphism J : M →
M̃ such that ˜diff = J ◦ diff.

We thus have the following result.

Theorem 5.13. There exists a unique module isomorphism I : T → L2(T ∗P2(Rd)) ∼=
L2(TP2(Rd)) such that I ◦ Dm coincides with the abstract differential operator taking 
values in L2(T ∗P2(Rd)) as in [25, Definition 2.2.2].

Proof. It is enough to show that T (with an appropriate module structure) and the map 
Dm satisfy the properties listed in Theorem 5.12.
If as ‖ ·‖T we take the L2(P2(Rd) ×Rd, m; Rd) norm, it is clear that (T, ‖ ·‖T) is a Banach 
space, being closed by Lemma 5.8. The pointwise product ·T : L∞(P2(Rd), m) × T →
T is well defined by (5.27) and (5.32), bilinear and associative in L∞(P2(Rd), m) by 
definition. Defining the pointwise norm | · |T as the map sending V ∈ T to ‖V [μ]‖μ, 
we immediately have that ‖V ‖T = ‖|V |T‖L2(P2(Rd),m) and |H ·T V |T = |H||V |T m-
a.e. in P2(Rd) for every V ∈ T and every H ∈ L∞(P2(Rd), m). This shows that (T, ‖ ·
‖T, ·T, | · |T) is a L2(P2(Rd), m)-normed L∞(P2(Rd), m) module. Taking as diff the map 
Dm : D1,2(P2(Rd), W2, m) → T, we see that it is well defined and linear by Theorem 5.1
and Theorem 5.10. Property (i) of Theorem 5.12 follows by (5.8). Finally property (ii) of 
Theorem 5.12, meaning that ([26, Definition 3.1.13]) T coincides with the ‖ · ‖T-closure 
of

T0 := span
{
HDmF : H ∈ L∞(P2(Rd),m), F ∈ D1,2(P2(Rd),W2,m)

}
,

follows by (5.28) and the definition of T. Indeed, let L ⊂ L∞(P2(Rd), m) be a dense 
subset of L2(P2(Rd), m) and C be a dense subset of C∞

c (Rd) with respect to the Lipschtiz 
norm as in Lemma 5.8. If V ∈ T, in particular V ∈ Tan(P2(Rd), m) so that we can 
find by (5.28) numbers (Nn)n ⊂ N, ({αi

n}Nn
i=1)n ⊂ R and functions ({Hi

n}Nn
i=1)n ⊂ L , 

({ζin}Nn
i=1)n ⊂ C such that the sequence

V n(μ, x) :=
Nn∑
i=1

αi
nH

i
n(μ)∇ζin(x), (μ, x) ∈ P2(Rd) ×Rd n ∈ N

converges to V in L2(P2(Rd) × Rd, m; Rd). Consider now the functions F i
n := Lζi

n
and 

the sequence

V ′
n(μ, x) :=

Nn∑
αi
nH

i
n(μ)DmF

i
n, (μ, x) ∈ P2(Rd) ×Rd n ∈ N.
i=1
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It is clear that (V ′
n)n ⊂ T0; by Theorem 5.11, V ′

n is the orthogonal projection of V n

on T for every n ∈ N, so that V ′
n converges to V in L2(P2(Rd) ×Rd, m; Rd).

Theorem 5.12 gives thus the existence of a unique module isomorphism I : T →
L2(T ∗P2(Rd)).
Finally, notice that L2(T ∗P2(Rd)) ∼= L2(TP2(Rd)) since (P2(Rd), W2, m) is infinitesi-
mally Hilbertian by Corollary 4.11 (see also [26, Theorem 4.3]). �
5.2. Examples

Isometric embedding of Euclidean Sobolev spaces
Let Ω be a Lipschitz bounded open set in Rd. For every ω ∈ Ω let us consider the 

Dirac mass δω concentrated at ω. The map ι : ω 	→ δω is an isometry between Rd

and ι(Rd) ⊂ P2(Rd). Setting m := ι	L
d Ω we easily see that H1,2(P2(Rd), W2, m) is 

isomorphic to H1,2(Ω).
In this case only Dirac masses are involved and cylinder functions are of the form 

F (δω) = ψ(φ(ω)), so that the Wasserstein gradient reduces to the usual gradient of 
ψ ◦ φ.

Another isometric embedding is also possible: we fix a reference measure λ ∈ P2(Rd)
symmetric w.r.t. the origin and we consider the map ι : Ω → P2(Rd) given by

ι(ω) := λ(· − ω) = (tω)	λ, tω(x) := x + ω, ω ∈ Ω. (5.40)

To every function F : P2(Rd) → R corresponds a map F̂ : Ω → R defined as

F̂ (ω) := F ((tω)	λ). (5.41)

In the case of a cylinder function as in (4.2) we get

F̂ (ω) = ψ
(ˆ

φ1(x+ω) dλ(x), · · · ,
ˆ

φN (x+ω) dλ(x)
)

= ψ
(
φ1 ∗λ(ω), · · · , φN ∗λ(ω)

)
.

(5.42)
In this case (identifying ι(ω) with ω) we have

DF (ω, x) =
N∑
j=1

∂ψj(φ1 ∗ λ(ω), · · · , φN ∗ λ(ω))∇φj(x) (5.43)

and

‖DF [ω]‖2
ω =

ˆ

Rd

∣∣∣ N∑
j=1

∂ψj(φ1 ∗ λ(ω), · · · , φN ∗ λ(ω))∇φj(x + ω)
∣∣∣2 dλ(x). (5.44)

On the other hand, ι is an isometry of Rd into P2(Rd), so that the space H1,2(P2(Rd),
W2, m) is still isomorphic to H1,2(Ω). It follows that the m-Wasserstein gradient of F is
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DmF (ω, x) =
N∑
j=1

∂ψj(φ1 ∗ λ(ω), · · · , φN ∗ λ(ω))∇φj ∗ λ(ω) (5.45)

independent of x and the minimal relaxed gradient is

|DmF |2�(ω) =
∣∣∣ N∑
j=1

∂ψj(φ1 ∗ λ(ω), · · · , φN ∗ λ(ω))∇φj ∗ λ(ω)
∣∣∣2 (5.46)

Gaussian distributions
Let now κ = N(ω, Σ) := (det(2πΣ))−1/2e− 1

2 〈ω,Σ−1ω〉L d be a Gaussian measure with 
mean ω and covariance matrix Σ ∈ Sym+(d), the space of symmetric and positive definite 
d × d-matrices; we consider the set

N d :=
{
N (ω,Σ) : ω ∈ Rd, Σ ∈ Sym+(d)

}
, (5.47)

endowed with the Wasserstein distance and a finite positive Borel measure m concen-
trated on N d. Since

W 2
2 (N(ω1,Σ1), N(ω2,Σ2)) = |ω1 − ω2|2 + trΣ1 + trΣ2 − 2tr

(
Σ1/2

1 Σ2Σ1/2
1

)1/2
, (5.48)

H1,2(P2(Rd), W2, m) is isometric to H1,2(U, d, m̂) where U = Rd×Sym+(d) ⊂ Rd×Rd×d

endowed with the distance d induced by the formula (5.48) and m̂ is the measure induced 
by m.

The closable case
Following [17] (here in the simpler setting of the Euclidean space, but see Section 6.2

below), we assume that m has no atoms and the following integration by parts formula: 
for every G ∈ FC∞

c

(
P2(Rd)

)
and w ∈ C∞

c (Rd; Rd) there exists D∗
wG ∈ L2(P2(Rd), m)

such that for every F ∈ FC∞
c

(
P2(Rd)

)
it holds

ˆ

P2(Rd)

⎛⎝ˆ
Rd

DF (μ, x) · w(x) dμ(x)

⎞⎠G(μ) dm(μ) =
ˆ

P2(Rd)

D∗
wG(μ)F (μ) dm(μ).

This equality implies that G0 = {0} i.e. that pCE2 is closable. We notice that the measure 
m induced by the immersion in the space of delta measures considered at the beginning of 
this section satisfies the integration by parts formula above (see also Example 5.4 in [17]). 
In [17], in case the base space is a compact Riemannian manifold, are reported important 
examples of measures m satisfying the (Riemannian analogue of the) integration by parts 
formula: the normalized mixed Poisson measure (Example 5.11 in [17] and [1,41]), the 
entropic measure over S1 (Example 5.15 in [17] and [50], see also the multidimensional 
case [47]) and the Malliavin–Shavgulidze image measure (Example 5.18 in [17] and [33]).
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6. Extensions to Riemannian manifolds and Hilbert spaces

The aim of this Section is to extend the density result stated in Theorem 4.10 from 
the finite dimensional and flat space Rd to Riemannian manifolds and (possibly infi-
nite dimensional) Hilbert spaces. Our first step deals with manifold embedded in some 
Euclidean space Rd and in fact we will consider more general closed subsets of Rd.

6.1. Intrinsic Wasserstein spaces on closed subsets of Rd

In this subsection we denote by � the Euclidean distance on Rd. P2(Rd) still denotes 
the subset of Borel probability measures on Rd with finite second �-moment and W2 is 
the Wasserstein distance on P2(Rd) induced by �.

We assume that C ⊂ Rd is a closed set and that σ is a distance on C such that (C, σ)
is a complete and separable metric space and

�(x1, x2) ≤ σ(x1, x2) ≤ �C,�(x1, x2) for every x1, x2 ∈ C, (6.1)

where �C,� is defined as in (2.65) with respect to the distance d := �. Since the topology 
induced by σ is stronger than the Euclidean topology and they are both Polish topolo-
gies, the Borel sets of (C, σ) coincide with the Borel sets of C as a subset of the Euclidean 
space Rd. This means that every Borel probability measure on Rd with support contained 
in C can be identified with a Borel probability measure in (C, σ). Conversely any prob-
ability measure on (C, σ) extends to a probability measure on Rd. We can thus denote 
unambiguously by P(C) the set of Borel probability measures on C and by P2,σ(C) the 
elements of P(C) with finite second σ-moment.

P2,σ(C) can be identified with the subset of P2(Rd)⎧⎨⎩μ ∈ P2(Rd) : supp(μ) ⊂ C,

ˆ

C

σ2(x0, x) dμ(x) < +∞ for some x0 ∈ C

⎫⎬⎭ .

We will denote by ι : C → Rd the inclusion map; ι : P2,σ(C) → P2(Rd) is the corre-
sponding continuous injection given by ι(μ) := ι	μ, which may be identified with the 
inclusion map of P2,σ(C) into P2,σ(Rd).

Since (P2(C), W2,σ) is a complete and separable metric space and the topology induced 
by W2,σ is stronger than the topology induced by W2, we deduce that P2,σ(C) is a Lusin 
(and therefore Borel) subset of P2(Rd).

If m is a finite and positive Borel measure on P2,σ(C), ι	m is the Borel measure in 
P2(Rd) which is concentrated on P2,σ(C) and satisfies ι	m(Z) = m(Z ∩ P2,σ(C)) for 
every Borel set Z ⊂ P2(Rd).

In a similar way, if F : P2(Rd) → R is a Borel (or ι	m- measurable) map, we will set 
ι∗F := F ◦ ι : P2,σ(C) → R.
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Theorem 6.1. We have H1,2(P2,σ(C), W2,σ, m) ∼= H1,2(P2(Rd), W2, ι	m) with equal min-
imal relaxed gradient, meaning that

|D(ι∗F )|� = ι∗ (|DF |�) for every F ∈ H1,2(P2(Rd),W2, ι	m). (6.2)

In particular H1,2(P2,σ(C), W2,σ, m) is a Hilbert space and the algebra of cylinder func-
tions ι∗

(
C1
b

(
P2(Rd)

))
is dense in H1,2(P2,σ(C), W2,σ, m) in the sense of (4.16).

Proof. We want to apply Theorem 2.24 where X := P2(Rd), d := W2, Y := P2,σ(C), 
and δ := W2,σ. The first assumption of Condition (A), ι	m(P2(Rd) \ P2,σ(C)) = 0, is 
clearly satisfied by construction.

In order to prove (2.71) we consider a W2-Lipschitz curve μ : [0, �] → P2(Rd)
parametrized by the W2-arc-length such that μs ∈ P2,σ(C) for L 1-a.e. s ∈ [0, �]. Since 
the map μ is continuous in P2(Rd), C is a closed set, and μs(Rd \ C) = 0 for L 1-
a.e. s ∈ [0, �], we conclude that μs(Rd \ C) = 0 for every s ∈ [0, �].

By [4, Theorem 8.2.1, Theorem 8.3.1]) there exists a measure η ∈ P(C([0, �]; Rd))
concentrated on absolutely continuous curves such that (et)	(η) = μt for every t ∈ [0, �]
and

ˆ
|γ′(t)|2 dη(γ) =

ˆ
|γ̇|2
(t) dη(γ) = 1 for a.e. t ∈ [0, �]. (6.3)

Let us also consider the function ζ(x) := dist(x, C) ∧ 1, x ∈ Rd, where dist(x, C) :=
minz∈C �(x, z). ζ is a bounded Lipschitz function which vanishes precisely on C. Fubini’s 
Theorem yields

ˆ ( �ˆ

0

ζ(γ(t)) dt
)

dη(γ) =
�ˆ

0

ˆ
ζ(et(γ)) dη(γ) dt =

�ˆ

0

ˆ

Rd

ζ dμt dt = 0

since 
´
ζ(x) dμt = 0 for L 1-a.e. t ∈ (0, �).

It follows that 
´ �

0 ζ(γ(t)) dt = 0 for η-a.e. γ, so that the set of t ∈ [0, �] for which 
γ(t) ∈ C is dense in [0, �]. Being C closed, we conclude that γ takes values in C for 
η-a.e. γ.

We can now estimate the W2,σ distance between the two measures μt0 and μt1 , where 
0 ≤ t0 < t1 ≤ �:

W 2
2,σ(μt0 , μt1) ≤

ˆ
σ2(γ(t0), γ(t1)) dη(γ)

≤
ˆ ( t1ˆ

|γ̇|σ(s) ds
)2

dη(γ)

t0
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=
ˆ ( t1ˆ

t0

|γ̇|
(s) ds
)2

dη(γ)

≤ (t1 − t0)
ˆ t1ˆ

t0

|γ̇|2
 dsdη(γ)

= (t1 − t0)
t1ˆ

t0

ˆ
|γ̇|2
 dη(γ) ds

= (t1 − t0)2,

where we have used that (et0 , et1)	η ∈ Γ(μt0 , μt1), (6.1) and Remark 2.23 to say that 
|γ̇|
(s) = |γ̇|σ(s).

Choosing t0 ∈ [0, �] such that μt0 ∈ P2,σ(C) we deduce that μt1 ∈ P2,σ(C) as well for 
every t1 ∈ [0, �]. This concludes the proof of property (A).

Condition (B) corresponds to

W2(μ0, μ1) ≤ W2,σ(μ0, μ1) ≤ (W2)Y,�(μ0, μ1) for every μ0, μ1 ∈ Y = P2,σ(C), (6.4)

where (W2)Y,�(μ0, μ1) is defined as in (2.65) with W2 in place of d. The first inequality 
immediately follows by (6.1); to prove the second one, we use (2.66) and the above 
estimate with t0 = 0 and t1 = � for a W2-Lipschitz curve μ : [0, �] → Y such that 
|μ̇|W2 = 1 a.e. in [0, �] with μ|t=0 = μ0 and μ|t=� = μ1. Taking the infimum w.r.t. � we 
obtain (6.4). �
6.2. Wasserstein Sobolev space on complete Riemannian manifolds

In this subsection, we will briefly discuss the case of the Sobolev space H1,2(P2(M),
W2,dM

, m) where (M, dM) is a smooth and complete Riemannian manifold endowed with 
the canonical Riemannian distance dM (inducing the Wasserstein distance W2,dM

) and m
is a finite and positive Borel measure on P2(M). We will denote by A the unital algebra 
generated by 

{
Lf : f ∈ C1

c(M)
}
.

Theorem 6.2. H1,2(P2(M), W2,dM
, m) is a Hilbert space and the algebra A is (strongly) 

dense: for every F ∈ H1,2(P2(M), W2,dM
, m) there exists a sequence Fn ∈ A , n ∈ N

such that

Fn → F, lip(Fn) → |DF |� strongly in L2(P2(M),m). (6.5)

Proof. By Nash isometric embedding Theorem [36] we can find a dimension d, and an 
isometric embedding j : M → j(M) ⊂ Rd. On M := j(M) we can define the (Rieman-
nian) metric dM inherited by dM: dM (j(x), j(y)) = dM(x, y) so that j is an isometry and 
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(M, dM ) is a complete and separable metric space. We denote by j := j	 the correspond-
ing isometry between (P2(M), W2,dM

) and (P2(M), W2,dM
) and we also set m̃ := j	m

which is a positive and finite Borel measure on P2(M).
It is clear that the map j∗ : F 	→ F ◦j induces a linear isometric isomorphism between 

H1,2(P2(M), W2,dM
, m̃) and H1,2(P2(M), W2,dM

, m).
Since M is complete and j is an embedding, M is a closed subset of Rd and dM induces 

on M the relative topology of Rd. Since j is isometric, we also have

�(y1, y2) ≤ dM (y1, y2) = �M,�(y1, y2) for every y1, y2 ∈ M, (6.6)

where �M,� is as in (2.65) and � denotes the Euclidean distance on Rd.
As in Section 6.1, we can introduce the inclusion map ι : M → Rd and the cor-

responding ι = ι	 : P2,dM
(M) → P2(Rd). By Theorem 6.1 we have that the map 

ι∗ : F 	→ F ◦ ι provides a linear isometric isomorphism between H1,2(P2(Rd), W2, ι	m̃)
and H1,2(P2,dM

(M), W2,dM
, m̃) satisfying (6.2); we conclude that the map κ∗ := j∗◦ι∗ =

(ι ◦ j)∗ is a linear isometric isomorphism between H1,2(P2(Rd), W2, κ	m) (notice that 
κ	 = ι	 ◦ j	) and H1,2(P2,dM

(M), W2,dM
, m) satisfying

|D(κ∗F )|� = κ∗ (|DF |�) for every F ∈ H1,2(P2(Rd),W2,κ	m). (6.7)

This property in particular yields the Hilbertianity of H1,2(P2(M), W2,dM
, m).

In order to prove that A is dense in H1,2(P2(M), W2,dM
, m) we consider the al-

gebra Ã generated by 
{
Lf̃ : f̃ ∈ C∞

c (Rd)
}
; Proposition 4.19 shows that Ã is 

strongly dense in H1,2(P2(Rd), W2, m̃), so that A ′ := κ∗(Ã ) is strongly dense in 
H1,2(P2,dM

(M), W2,dM
, m).

A ′ is generated by functions of the form κ∗Lf̃ , f̃ ∈ C∞
c (Rd). Since

κ∗Lf̃ (μ) = Lf̃ (κ(μ)) =
ˆ

Rd

f̃(κ(x)) dμ(x) for every μ ∈ P2,dM
(M),

where κ = ι ◦ j, we see that A ′ is generated by functions of the form Lf̃◦κ, so that 
A ′ ⊂ A and a fortiori A is strongly dense in H1,2(P2,dM

(M), W2,dM
, m) as well.

To prove (6.5) (involving the asymptotic Lipschitz constants of functions in A with 
respect to the Riemannian metric) we observe that for every F̃ ∈ Ã [44, Lemma 3.1.14]

κ∗F̃ ∈ A ′ ⊂ A , κ∗(lipW2
F̃ ) ≥ lipW2,dM

κ∗F̃ . (6.8)

Let now F = κ∗F̃ ∈ H1,2(P2(M), W2,dM
, m) with F̃ ∈ H1,2(P2(Rd), W2, m̃); there exists 

a sequence F̃n ∈ Ã such that

F̃n → F̃ , lipW F̃n → |DF̃ |� in L2(P2(Rd), m̃).

2
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Applying the linear isometric isomorphism κ∗, we deduce that the sequence κ∗Fn ∈ A ′

satisfies

κ∗F̃n → F, κ∗( lipW2
F̃n

)
→ κ∗(|DF̃ |�

)
= |DF |� in L2(P2,dM

(M),m). (6.9)

Up to extracting a suitable (not relabeled) subsequence and using (6.8), we can 
suppose that lipW2,dM

κ∗F̃n converges weakly in L2(P2(M), W2,dM
) to some G ∈

L2(P2(M), W2,dM
) relaxed gradient of F . (6.8) and (6.9) also yield

ˆ
G2 dm ≤ lim sup

n→∞

ˆ
(lipW2,dM

κ∗Fn)2 dm ≤ lim sup
n→∞

ˆ (
κ∗(lipW2

F̃n)
)2

dm

=
ˆ

|DF |2� dm,

showing that G = |DF |� and lipW2,dM
κ∗Fn → |DF |� strongly in L2(P2,dM

(M), m). �
Remark 6.3. Arguing as in Section 4.1 it is immediate to see that the restriction of 
pCE2 to the algebra FC∞

c (P2(M)) is a quadratic form and coincides with the pre-
Dirichlet forms considered in [50,47,17,18]. If 

(
pCE2, FC∞

c (P2(M))) is closable then (
CE2, H1,2(P2(M), W2,dM

, m)
)

is a Dirichlet form which coincides with the smallest closed 
extension of 

(
pCE2, FC∞

c (P2(M))), it satisfies the so-called Rademacher property (see 
Proposition 5.2 and [17]) and it is quasi-regular (see Remark 2.19).

In particular it is possible to improve the result [17, Theorem 2.10]. Referring to 
the notation and the formula enumeration of that paper, one can immediately obtain 
that Lipschitz functions belong to F0 and the estimate (2.16) holds just assuming that (
pCE2, FC∞

c (P2(M))
)

is closable.

6.3. Wasserstein Sobolev space on Hilbert spaces

In this last section we will consider the case of a separable Hilbert space (H, | · |); 
as usual, the space P2(H) will be endowed with the Wasserstein distance W2 induced 
by the Hilbertian norm of H and we will assume that m is a finite and positive Borel 
measure on P2(H).

We select a complete orthonormal system E := (en)n∈N and the collection of maps 
πd : H → Rd, d ∈ N, given by

πd(x) :=
(
〈x, e1〉, · · · , 〈x, ed〉

)
. (6.10)

The adjoint map πd∗ : Rd → H is given by

πd∗(y1, · · · , yd) :=
d∑

yj ej . (6.11)

j=1
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The map π̂d := πd∗ ◦πd is the orthogonal projection of H onto span{e1, · · · , ed}. We say 
that a function φ : H → R belongs to C1

b(H, E) if it can be written as

φ := ϕ ◦ πd for some d ∈ N, ϕ ∈ C1
b(Rd). (6.12)

If φ ∈ C1
b(H, E) then it belongs to C1

b(H) and its gradient ∇φ can be written as

∇φ = πd∗ ◦ ∇ϕ ◦ πd, ∇φ(x) =
d∑

j=1
∂jϕ(πd(x))ej . (6.13)

We then consider the algebra FC1
b (P2(H)) generated by 

{
Lφ : φ ∈ C1

b(H, E)
}
. For every 

F ∈ FC1
b (P2(H)) we can find N ∈ N, a polynomial ψ : RN → R and functions φn ∈

C1
b(H, E), n = 1, · · · , N , such that

F (μ) = (ψ ◦ Lφ)(μ). (6.14)

As in (4.4) we can set

DF (μ, x) :=
N∑

n=1
∂nψ(Lφ(μ))∇φn(x). (6.15)

It is also easy to check that a function F belongs to FC1
b (P2(H)) if and only if there 

exists d ∈ N and F̃ ∈ FC1
b

(
P2(Rd)

)
such that

F (μ) = F̃ (πd
	 (μ)) for every μ ∈ P2(H), (6.16)

so that

DF (μ, x) = πd∗
(
DF̃ (πd

	μ, π
d(x))

)
, ‖DF [μ]‖μ = ‖DF̃ (πd

	μ)‖πd
�μ
. (6.17)

By Proposition 4.9 and using (6.17) it is not difficult to check that

‖DF [μ]‖μ = lipF (μ) for every μ ∈ P2(H). (6.18)

Adapting in an obvious way the definitions in (4.14) and (4.15) to the Hilbertian frame-
work, we have the following result.

Theorem 6.4. H1,2(P2(H), W2, m) is a Hilbert space and the algebra FC1
b (P2(H)) is 

(strongly) dense: for every F ∈ H1,2(P2(H), W2, m) there exists a sequence Fn ∈
FC1

b (P2(H)), n ∈ N such that

Fn → F, lip(Fn) → |DF |� strongly in L2(P2(H),m). (6.19)
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Proof. Let us set A := FC1
b (P2(H)); we use Theorem 2.13 and we want to prove that 

for every ν ∈ P2(H) the function

F (μ) := W2(ν, μ) satisfies |DF |�,A ≤ 1 m-a.e.. (6.20)

We split the proof in two steps.
Step 1: it is sufficient to prove that, for every h ∈ N, the function Fh : P2(H) → R

Fh(μ) := W2(π̂h
	 ν, π̂

h
	 μ) satisfies |DFh|�,A ≤ 1 m-a.e. (6.21)

In fact, using the continuity property of the Wasserstein distance, it is clear that for 
every μ ∈ P2(H)

lim
h→∞

Fh(μ) = F (μ), (6.22)

so that it is enough to apply Theorem 2.3(1)-(3) to obtain (6.20).
Step 2: Let h ∈ N be fixed and let us denote by W2,h the Wasserstein distance on 

P2(Rh); it is easy to check that

W2,h(πh
	 μ0, π

h
	 μ1) = W2(π̂h

	 μ0, π̂
h
	 μ1) for every μ0, μ1 ∈ P2(H).

Thus, if we define the function F̃h : P2(Rh) → R as

F̃h(μ) := W2,h(πh
	 ν, μ)

we get that

Fh(μ) = F̃h(πh
	 μ).

We also introduce the measure mh on P2(Rh) given by the push-forward of m through 
the (1-Lipschitz) map Ph : P2(H) → P2(Rh) defined as Ph(μ) := πh

	 μ. By Theorem 4.10
applied to H1,2(P2(Rh), W2,h, mh), we can find a sequence of cylinder functions F̃h,n ∈
FC1

b

(
P2(Rh)

)
, n ∈ N, such that

F̃h,n → F̃h in mh-measure, (6.23)

lipP2(Rh) F̃h,n → gh in L2(P2(Rh),mh) with gh ≤ 1 mh-a.e. (6.24)

We thus consider the functions Fh,n ∈ FC1
b (P2(H)) defined as in (6.16) by

Fh,n(μ) := F̃h,n(πh
	 μ) = F̃h,n(Ph(μ)) for every μ ∈ P2(H). (6.25)

Since for every ε > 0
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m

({
μ : |Fh,n(μ) − Fh(μ)| > ε

})
= m

({
μ : |F̃h,n(Ph(μ)) − F̃h(Ph(μ))| > ε

})
= mh

({
μ : |F̃h,n(μ) − F̃h(μ)| > ε

})
,

(6.23) yields that Fh,n → Fh in m-measure as n → ∞.
On the other hand, (6.17) yields

lipFh,n(μ) = lipP2(Rh) F̃h,n(Ph(μ))

so that

lipFh,n → gh ◦ Ph in L2(P2(H),m)

and gh ◦ Ph ≤ 1 m-a.e. in P2(H). By Theorem 2.3(1)-(3), we obtain (6.21), concluding 
the proof. �
Remark 6.5. We observe that the results in Sections 4.2 and 5.1 can be extended to 
P2(M) and P2(H) in an analogous way.
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