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ABSTRACT. We show an improvement of Bray sharp mass–capacity inequality and Bray–
Miao sharp upper bound of the capacity of the boundary in terms of its area, for three–
dimensional, complete, one–ended asymptotically flat manifolds with compact, connected
boundary and with nonnegative scalar curvature, under appropriate assumptions on the topol-
ogy and on the mean curvature of the boundary. Our arguments relies on two monotonicity
formulas holding along level sets of a suitable harmonic potential, associated to the boundary
of the manifold. This work is an expansion of the results contained in the PhD thesis of the
author.
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1. INTRODUCTION

Monotonicity formulas play an important role in geometric analysis, some well–known
examples are given by the monotonicity formula for minimal submanifolds and the clas-
sical Bishop–Gromov volume comparison theorem in the context of comparison geometry,
while Huisken monotonicity formula for the mean curvature flow [33], Perelman entropy
formula for the Ricci flow [42], or Geroch monotonicity of the Hawking mass along the in-
verse mean curvature flow [27, 34] are extremely relevant for geometric flows. Analogously
to the fact that Perelman monotonicity is closely related to the sharp gradient estimate for
the heat kernel of Li and Yau, in a series of works [22,23,25], Colding and Minicozzi obtained
some monotonicity formulas along the level sets of the minimal positive Green function in
nonparabolic Riemannian manifolds with nonnegative Ricci curvature, as a consequence of
a new sharp gradient estimate for such function and used them to prove the uniqueness
of tangent cones for Einstein manifolds [24]. Afterwards, the same monotone quantities
were used to obtain new Willmore–type geometrical inequalities in [1] (see also [5] for the
Euclidean setting) and generalized to prove an optimal version of the Minkowski inequal-
ity in [10] (see also [2] for the Euclidean setting) for nonparabolic Riemannian manifolds
with nonnegative Ricci curvature. With the same idea some new monotonicity formulas
(even with non–harmonic functions) were then found to study static and sub–static metrics
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in general relativity [4, 7, 11–13]. Recently, this level set approach with harmonic functions
applied to certain nonparabolic Riemannian 3–manifolds with nonnegative scalar curvature
have produced several results, we mention the sharp comparisons about the rate of decay of
an energy–like quantity and the area of the level sets of the minimal positive Green function,
obtained by Munteanu and Wang in [41] which, as an application, allowed Chodosh and
Li [20] to prove a conjecture of Schoen on the stable minimal hypersurfaces in the Euclidean
space R4 and some new proofs of the well–known positive mass theorem [6, 16]. Then, con-
sidering linearly growing harmonic functions (similarly to [16], which was influenced by a
pioneering work of Stern [43]), some asymptotically flat versions of the spacetime positive
mass theorem have been proven in [15, 31], while the monotonicity formula in [6] has been
extended in [3] to the nonlinear potential theoretic setting, replacing the harmonic functions
by p–harmonic functions, to obtain a simpler proof of the Riemannian Penrose inequality
with a single black hole.

With an argument similar to the one [6], we show here a sharp inequality involving the
ratio between the ADM mass and the capacity of the boundary and a sharp upper bound
on this latter in terms of the area of the boundary, for asymptotically flat Riemannian 3–
manifolds with a single end, with a connected, compact boundary and nonnegative scalar
curvature, under appropriate assumptions on the topology and on the mean curvature of the
boundary. One of the reasons for the interest in these mass–capacity inequalities is to apply
them to obtain generalizations of Bunting and Masood–ul–Alam rigidity theorem [19, The-
orem 2], as in [39] and [7, Section 5] (based on results in [14, 32]).
Our first inequality is an extension of the cases of validity and a refinement, if certain topo-
logical assumptions are satisfied, of the one obtained by Bray by means of the positive mass
theorem in [14], while our upper bound on the capacity of the boundary is an improvement,
if an appropriate assumption on the mean curvature of the boundary is fulfilled, of the one
proved by Bray and Miao in [17] through the technique of the weak inverse mean curva-
ture flow, developed by Huisken and Ilmanen in [34]. Being our inequalities consequence
of two “elementary” monotonicity formulas holding along the level sets of an appropriate
harmonic function, the proofs are more direct and self–contained.
We mention that during the preparation of this paper, Miao [40] obtained similar inequalities
with the same approach.

In order to state precisely our main results, we recall the definition of one–ended asymp-
totically flat manifold and of ADM mass (after the names of R. Arnowitt, S. Deser and
C. W. Misner, who introduced it in [8]).

Definition 1.1. A 3–dimensional Riemannian manifold (M, g) (with or without boundary)
is said to be one–ended asymptotically flat if there exists a closed and bounded subset K and a
diffeomorphism Φ : M \K → R3\Br(0) such that in the (coordinate) chart (M \K,Φ = (xi)),
called asymptotically flat (coordinate) chart, setting g = gij dx

i ⊗ dxj , there holds

gij = δij +O2(|x|−τ ) , (1.1)

for some constant τ > 1/2 (the order of decay of g in the asymptotically flat chart (M \K, (xi)),
briefly the order), where δ is the Kronecker delta function.

Here and in the rest of this work, the (exterior spatial) Schwarzschild manifold of mass m > 0
is the 3–dimensional Riemannian manifold with boundary given by the couple(

R3 \Bm
2
(0),

(
1 +

m

2|x|

)4
geucl

)
, (1.2)
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which will sometimes be denoted by (MSch(m), gSch(m)). This space is easily seen to be a
(model) nontrivial example of a one–ended asymptotically flat, 3–dimensional Riemannian
manifold with minimal boundary.

Definition 1.2. Let (M, g) be a one–ended asymptotically flat manifold having integrable
or nonnegative scalar curvature and let

(
E, (x1, x2, x3)

)
be an asymptotically flat chart. The

limit

mADM = lim
r→+∞

1

16π

ˆ

{|x|= r}

(∂jgij − ∂igjj)
xi

|x|
dσeucl ,

where g = gijdx
i ⊗ dxj , exists (possibly equal to +∞) and it is independent of the asymptot-

ically flat chart (proved first by Bartnik [9] and then independently by Chruściel [21]).
This geometric invariant is called ADM mass of (M, g).

This paper presents the current state of the work (in progress) in generalizing and extend-
ing the results contained in the PhD thesis of the author, under the supervision of Virginia
Agostiniani, Carlo Mantegazza and Lorenzo Mazzieri. Precisely, we will show the following
conclusions.

Theorem (Theorem 4.4, Theorem 4.18 and Corollary 4.6). Let (M, g) be a 3–dimensional, com-
plete, one–ended asymptotically flat manifold with compact, connected boundary and with nonnega-
tive scalar curvature. We consider the solution u ∈ C∞(M) of the Dirichlet problem

∆u = 0 inM

u = 0 on ∂M

u → 1 at ∞
(1.3)

and the boundary capacity of ∂M in (M, g), defined as

C =
1

4π

ˆ

∂M

|∇u|dσ =
1

4π

ˆ

M

|∇u|2dµ . (1.4)

Assume that H2(M,∂M ;Z) = 0, then,

mADM

C
≥ 5

4
+

1

64π

ˆ

∂M

H2 dσ − 1

4π

ˆ

∂M

(
|∇u| + H

4

)2

dσ , (1.5)

with equality if and only if (M, g) is isometric to a (exterior spatial) Schwarzschild manifold of mass
m > 0. Moreover, if there exists α ∈

(
− (2C)−1, (2C)−1

]
such that H ≤ α

(
1 − 4C|∇u|

)
on ∂M ,

the term on the right hand side of the inequality is greater or equal than 1, hence

mADM ≥ C ,

with equality if and only if (M, g) is isometric to a (exterior spatial) Schwarzschild manifold of mass
m > 0.

Theorem (Theorem 4.3). Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat
manifold with compact, connected boundary and with nonnegative scalar curvature. Let u ∈ C∞(M)
be the solution of Dirichlet problem (1.3) and let C > 0 be the boundary capacity of ∂M in (M, g),
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given by formula (1.4). Assume that H2(M,∂M ;Z) = 0 and that there exists α ∈
(
−(2C)−1, (2C)−1

]
such that H ≤ α

(
1− 4C|∇u|

)
on ∂M , then,√

Area(∂M)

16π
≥ C ,

with equality if and only if (M, g) is isometric to a (exterior spatial) Schwarzschild manifold of mass
m > 0.
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precious discussions. We also want to deeply thank Virginia Agostiniani, Carlo Mantegazza and
Lorenzo Mazzieri for their interest and support in the present work and for the useful suggestions
and comments about this manuscript. The author is member of the Gruppo Nazionale per l’Analisi
Matematica, la Probabilità e le loro Applicazioni (GNAMPA), which is part of the Istituto Nazionale
di Alta Matematica (INdAM).

2. PRELIMINARIES

For the convenience of the readers, in this small section we collect some basic facts about
the solution u ∈ C∞(M) of Dirichlet problem (1.3) in (M, g), defined as above, and its level
sets.

By the maximum principle,

Int(M) = M \ ∂M = {0 < u < 1} .
It follows then ∂M = {u = 0} and from the Hopf lemma that zero is a regular value of u.

The last condition in system (1.3) implies that u : M → [0, 1) is proper. Then, some
consequences are the compactness of each level set of u, which leads to the finiteness of their
2–dimensional Hausdorff measure of (M, g) (see [29, Theorem 1.7]), and the fact that the set
of the regular values of u is an open set of [0, 1). Hence, the set of the critical values of u is a
closed set of [0, 1) and has zero Lebesgue measure, by Sard theorem.

It is known that in a generic asymptotically flat chart (x1, x2, x3) of order τ , τ > 1/2, one
has

u = 1− C
|x|

+O2(|x|−1−β) (2.1)

for some 1/2 < β < min{τ, 1}, as 1 − u is the boundary capacity potential, [37, Lemma A.2].
Here, C is the boundary capacity of ∂M in (M, g), given by formula (1.4) and which also
satisfies ˆ

{u= s}

|∇u| dσ = 4πC (2.2)

for a.e. s ∈ [0, 1), in particular, any s regular value for u, by the divergence theorem and Sard
theorem. A consequence of formula (2.1) is the compactness of Crit(u), therefore, Crit(u)
has finite 1–dimensional Hausdorff measure (see [28, Theorem 1.1]). Also, it follows from
formula (2.1) that the level sets {u = t} are diffeomorphic to the sphere S2 for every t ∈ [0, 1)
sufficiently close to 1, once it is proved that they are connected. For these last two facts we
refer to [7, Remark 2.1].

Finally, since the boundary ∂M of M is connected, if M has a simple topology, namely
H2(M,∂M ;Z) = 0, then all regular level sets of u are closed, connected surfaces. A proof of
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this result can be found in [3, Subsection 1.3], but, in Appendix A, one is presented based on
the fact that the first Betti number b1(M) is zero. Indeed, for this type of manifolds the two
conditions H2(M,∂M ;Z) = 0 and b1(M) = 0 are equivalent and they also imply that M is
orientable and ∂M is a 2–sphere (up to diffeomorphism).

3. FIRST MONOTONICITY FORMULA

In this section we are going to prove our first monotonicity formula. It is a natural version
with boundary and for the comparison with the (exterior spatial) Schwarzschild manifold of
mass C (see formula (1.4)) of the one shown in [6]. The main difficulty amounts to ensure that
the monotonicity survives the critical values of u (solution of Dirichlet problem (1.3)), that,
as already recalled in Section 2, form a set of zero Lebesgue measure. The approach followed
to overcome this difficulty is the same of [6], namely via a sequence of appropriate cut–off
functions. This monotonicity formula and the analysis of when it is constant play a key role
in obtaining inequality (1.5) with the equality case and are the subject of the following two
propositions.

Proposition 3.1. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat manifold
with compact, connected boundary and with nonnegative scalar curvature. Let u ∈ C∞(M) be the
solution of Dirichlet problem (1.3) and let C > 0 be the boundary capacity of ∂M in (M, g) given by
formula (1.4). Consider the function F : [C/2,+∞) → R defined as

F (t) = 4πt +
t3

C2

(
1 +

C
2t

)3(
1− 3C

2t

)ˆ
Σt

|∇u|2 dσ − t2

C

(
1 +

C
2t

)2ˆ
Σt

|∇u|H dσ , (3.1)

where Σt is the level set of u, given by

Σt :=
{
u =

(
1− C

2t

)
/
(
1 +

C
2t

)}
, (3.2)

H is the mean curvature of Σt \ Crit(u) with respect to the ∞–pointing unit normal vector field
ν = ∇u/|∇u | and σ is the 2–dimensional Hausdorff measure of (M, g). Then, if all regular level
sets of u are connected, F is nondecreasing on the set T , defined by

T :=
{
t ∈ [C/2,+∞) :

(
1− C

2t

)
/
(
1 +

C
2t

)
is a regular value of u

}
. (3.3)

Notice that the function F is well defined, indeed, all level sets have finite σ–measure, as
already observed in Section 2, and the integrand functions are σ–a.e. bounded on each level
set of u. Indeed, one has ∣∣|∇u|H

∣∣ ≤ |∇du(ν, ν)| ≤ |∇du|
wherever |∇u| ≠ 0, since

H = −∇du(∇u,∇u)

|∇u|3
= −g(∇|∇u|,∇u)

|∇u|2
,

as u is harmonic.
Observe also that the set T differs from [C/2,+∞) only for a negligible set and is a disjoint

countable union of open intervals and of only one interval of type [a, b), with a = C/2, since
the set of the regular values of u is an open set of [0, 1) and ∂M = {u = 0} is a regular level
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set of u, as explained in Section 2. In T the function F is continuously differentiable, with
first derivative given by

F ′(t) = 4π −
ˆ

Σt

RΣt

2
dσ +

ˆ

Σt

[
|∇Σt |∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
4u

1− u2
|∇u| −H

)2 ]
dσ . (3.4)

Indeed,

d

dt

ˆ

Σt

|∇u|2 dσ = − C
t2

(
1 +

C
2t

)−2 ˆ

Σt

|∇u|H dσ , (3.5)

d

dt

ˆ

Σt

|∇u|H dσ = − C
t2

(
1 +

C
2t

)−2 ˆ

Σt

|∇u|
[
∆Σt

(
1

|∇u|

)
+

|h|2 +Ric(ν, ν)

|∇u|

]
dσ

= − C
t2

(
1 +

C
2t

)−2 ˆ

Σt

[
|∇Σt |∇u||2

|∇u|2
+

R

2
− RΣt

2
+

|
◦
h|2

2
+

3H2

4

]
dσ ,

where ∇Σt , ∆Σt are the Levi–Civita connection and the Laplace–Beltrami operator of the
induced metric gΣt , respectively, RΣt is the scalar curvature of Σt and finally, h,

◦
h denote

the second fundamental form of Σt and its traceless version with respect to ν = ∇u/|∇u|,
respectively. Here, the first and second equality follow from the normal first variation of the
volume measure and of the mean curvature, whereas the last one is obtained with the help
of the traced Gauss equation and the divergence theorem. Notice that the last integral of the
right hand side of equality (3.4) is always nonnegative, as R ≥ 0 (by assumption), and if Σt

is connected, then the first two summands also give a nonnegative contribution, by virtue of
Gauss–Bonnet theorem, thus F ′(t) ≥ 0.

Let us now prove Proposition 3.1, where the difficulty lies in the possible presence of
critical values for the function u.

Proof. We consider on M \ Crit(u) the vector field X , given by

X :=
1 + u

2(1− u)
∇u+

C
(1− u)2

∇|∇u|+ 2C(2u− 1)

(1 + u)(1− u)3
|∇u|∇u . (3.6)

With the help of Bochner formula,

1

2
∆ |∇f |2 = |∇df |2 +Ric(∇f,∇f) + g(∇∆f,∇f) (3.7)

for every f ∈ C∞(M), and being u a harmonic function, the divergence of X can be ex-
pressed as

div(X) =
C|∇u|
(1− u)2

[
|∇u|
C

+
12u2

(1− u2)2
|∇u|2 + 6u

1− u2
g(∇|∇u|,∇u)

|∇u|
(3.8)

+
|∇du|2 − |∇|∇u||2 +Ric(∇u,∇u)

|∇u|2

]
.
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Notice that an equivalent expression for div(X), adapted to the (regular portions of the) level
sets of u, namely

div(X) =
C|∇u|
(1− u)2

[
|∇u|
C

− RΣ

2
+

|∇Σ|∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
4u

1− u2
|∇u| −H

)2 ]
, (3.9)

can be obtained by the traced Gauss equation and the identity

|∇du|2 = |∇u|2|h|2 + |∇|∇u||2 + |∇Σ|∇u||2 . (3.10)

Above, h,H,RΣ and ∇Σ are all the ones associated to the (regular portions of the) level set
of u that passes for the point where div(X) is computed.
Let us now show that F (t) ≤ F (T ) whenever t, T ∈ T satisfy t < T . To simplify the
exposition, we introduce the diffeomorphism f : [C/2,+∞) → [0, 1), defined by

f(t) :=
(
1− C

2t

)
/
(
1 +

C
2t

)
. (3.11)

We treat the non–trivial case in which the open interval
(
f(t), f(T )

)
contains critical values

of u. In this case, the vector field X is no longer well defined in {f(t) ≤ u ≤ f(T )} and to
overcome this difficulty, we consider a pointwise nondecreasing sequence of cut–off func-
tions {ηk}k∈N+ such that, for every k ∈ N+, the functions ηk : [0,+∞) → [0, 1] are smooth,
nondecreasing and satisfy

ηk(τ) ≡ 0 in
[
0 ,

1

2k

]
, 0 ≤ η′k(τ) ≤ 2k in

[
1

2k
,
3

2k

]
, ηk(τ) ≡ 1 in

[
3

2k
,+∞

)
.

Using these cut–off functions, we define for every k ∈ N+, the vector fields

Xk :=
1 + u

2(1− u)
∇u+ ηk

(
|∇u|

(1− u)(1 + u)3

)[
C

(1− u)2
∇|∇u|+ 2C(2u− 1)

(1 + u)(1− u)3
|∇u|∇u

]
.

Notice that the vector fields Xk are well defined in M and they coincide with the vector
field X in formula (3.6), whenever restricted to a compact subset of M \ Crit(u), for k large
enough. Moreover, they have divergence given by the following formula,

div(Xk) =
C|∇u|
(1− u)2

{
ηk

(
|∇u|

(1− u)(1 + u)3

)[
6u

1− u2
g(∇|∇u|,∇u)

|∇u|
+

Ric(∇u,∇u)

|∇u|2

]
+ηk

(
|∇u|

(1− u)(1 + u)3

)[
12u2

(1− u2)2
|∇u|2 + |∇du|2 − |∇|∇u||2

|∇u|2

]
+

|∇u|
C

}
+

C
(1− u2)3

η′k

(
|∇u|

(1− u)(1 + u)3

) ∣∣∣∣2(2u− 1)

1− u2
|∇u|∇u+∇|∇u|

∣∣∣∣2 .

Since the last summand of the above expression is nonnegative and since, for large enough k,
the vector field Xk coincides with X on the boundary of {f(t) < u < f(T )}, the divergence
theorem, applied to Xk on {f(t) < u < f(T )}, gives

F (T )− F (t) =

ˆ

{f(t)<u<f(T )}

div(Xk) dµ ≥
ˆ

{f(t)<u<f(T )}̂

Pk dµ+

ˆ

{f(t)<u<f(T )}̂

Dk dµ , (3.12)
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where we set

P̂k :=
C|∇u|
(1− u)2

[
|∇u|
C

+ ηk

(
|∇u|

(1− u)(1 + u)3

)
P̂

]
,

D̂k :=
C|∇u|
(1− u)2

ηk

(
|∇u|

(1− u)(1 + u)3

)
D̂ ,

with

P̂ :=
12u2

(1− u2)2
|∇u|2 + |∇du|2 − |∇|∇u||2

|∇u|2
,

D̂ :=
6u

1− u2
g(∇|∇u|,∇u)

|∇u|
+

Ric(∇u,∇u)

|∇u|2
.

Notice that the functions P̂ and D̂ are µ–a.e. well defined and smooth as well as div(X),
being µ

(
Crit(u)

)
= 0 (see Section 2). Furthermore,

(1) one has

0 ≤ Pk ↗ C|∇u|
(1− u)2

[
|∇u|
C

+ P̂ IM\Crit(u)

]
pointwise on M as k → +∞ ,

where IM\Crit(u) denotes the characteristic function of M \ Crit(u);
(2) one gets

D̂k → C|∇u|
(1− u)2

D̂ IM\Crit(u) pointwise on M as k → +∞ ,

where there hold µ–a.e. the following inequalities

|D̂k| ≤
C|∇u|
(1− u)2

|D̂| and |D̂| ≤
[

6u

1− u2
|∇du|+ |Ric|

]
∈ L1

loc(M) ;

(3) finally, one observes

div(X) =
C|∇u|
(1− u)2

[
|∇u|
C

+ P̂ + D̂

]
in M \ Crit(u), by identity (3.8).

By point (2), the dominated convergence theorem implies

lim
k→+∞

ˆ

{f(t)<u<f(T )}

D̂k dµ =

ˆ

{f(t)<u<f(T )}

C|∇u|
(1− u)2

D̂ dµ , (3.13)

whereas, by point (1) and the monotone convergence theorem, it follows

lim
k→+∞

ˆ

{f(t)<u<f(T )}

P̂k dµ =

ˆ

{f(t)<u<f(T )}

C|∇u|
(1− u)2

[
|∇u|
C

+ P̂

]
dµ . (3.14)

As a consequence of inequality (3.12) with the existence of limit (3.13) finite, the sequence of
nonnegative real numbers given by the integrals of the functions Pk is bounded from above,
then

C|∇u|
(1− u)2

[
|∇u|
C

+ P̂

]
∈ L1

(
{f(t) < u < f(T )}

)
.
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Thus, passing to the limit, as k → +∞, in inequality (3.12), by limits (3.13) and (3.14) together
with point (3) above, we get

F (T )− F (t) ≥
ˆ

{f(t)<u<f(T )}

div(X) dµ

=

ˆ

[f(t),f(T )]\N

C ds

(1− s)2

{ ˆ

{u=s}

[
|∇Σ|∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2

]
dσ

+
3

4

ˆ

{u=s}

(
4u

1− u2
|∇u| −H

)2
dσ

+ 4π −
ˆ

{u=s}

RΣ

2
dσ

}
,

where N is the set of the critical values of u. Here, the equality follows first by using the
coarea formula, then by applying equality (3.9) for the divergence of X and finally by Sard
theorem. Since we are integrating only along the regular level sets of u and since every reg-
ular level set is a connected (by assumption) closed surface, we can invoke Gauss–Bonnet
theorem to deduce that the last two summands also give a nonnegative contribute, while
the other summands are always nonnegative, as R ≥ 0 (by assumption). The claimed mono-
tonicity of F hence follows. □

Proposition 3.2 (Rigidity – I). Let (M, g) be a 3–dimensional, complete, one–ended asymptotically
flat manifold with compact, connected boundary and with nonnegative scalar curvature. Let u ∈
C∞(M) be the solution of Dirichlet problem (1.3) and let C > 0 be the boundary capacity of ∂M in
(M, g), given by formula (1.4). Consider the function F : [C/2,+∞) → R defined by equality (3.1).
Then, F is constant on the set T , given by equality (3.3), if and only if (M, g) is isometric to a
(exterior spatial) Schwarzschild manifold (MSch(m), gSch(m)) of mass m > 0, see formula (1.2).

Proof. If (M, g) is the Schwarzschild manifold (MSch(m), gSch(m)) with mass m > 0,

u =
1− m

2|x|

1 + m
2|x|

, |∇u| =
(
1 +

m

2|x|

)−4 m

|x|2
, H =

2

|x|
1− m

2|x|(
1 + m

2|x|
)3 . (3.15)

Notice that u has no critical points. By a straightforward computation, one has

C :=
1

4π

ˆ

∂M

|∇u| dσ = m and F ≡ 0 .

Now, we assume that F is constant on the set T . We know that there exists a maximal time
T ∈ (C/2,+∞] such that ∇u ̸= 0 in MT :=

{
0 ≤ u < (1 − C

2T )/(1 + C
2T )
}

, since T ⊇ [a, b)

with a = C/2. Then,
[C
2 , T

)
⊆ T and F is continuously differentiable in

[C
2 , T

)
, with F ′ given

by formula (3.4). Observe that for every t ∈
[C
2 , T

)
, each level set {u = (1 − C

2t)/(1 + C
2t)},

being diffeomorphic to the boundary ∂M (as ∂M = {u = 0}), is a connected and closed
surface, then, F ′(t) ≥ 0, as explained before the proof of Proposition 3.1, but at the same time
F ′(t) = 0, by assumption. Consequently, all the nonnegative summands in formula (3.4)
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are forced to vanish for every t ∈ [C/2, T ). This fact gives ∇Σt |∇u| = ∇⊤|∇u| = 0 and
H = 4u

1−u2 |∇u|, which in turn imply

∇|∇u| = ∇⊥|∇u| = −H∇u = − 4u

1− u2
|∇u| ∇u . (3.16)

Then,

∇
[
log

(
|∇u|

(1− u2)2

)]
= 0 ,

hence, the function |∇u|/
(
1− u2

)2 is constant on every connected component of MT , but MT

is connected since it is diffeomorphic to
[
0, (1− C

2T )/(1 +
C
2T )
)
×∂M and ∂M is connected. In

conclusion, |∇u| = a(1− u2)2, where a ∈ R is a positive constant, therefore, being 0 ≤ u < 1
on the whole manifold, T = +∞ and |∇u| ̸= 0 everywhere. Then, F is of class C1 on
[C/2,+∞) and all the level sets of u are regular and diffeomorphic to each other, which
clearly implies that they are all connected, hence F ′(t) can be written as sum of nonnegative
terms, which are forced to vanish, as F is constant, as before. Concerning the constant a,
from formulas (2.1) and (3.22), it follows

C = lim
|x|→+∞

|x|2|∇u| = a lim
|x|→+∞

|x|2 (1− u2)2 = 4aC2 ,

as a result, a = (4C)−1. Now, up to an isometry, we have that M = [0, 1) × ∂M , every slice
{t} × ∂M is the level set {u = t} and the metric g can be written as

g =
(4C)2

(1− u2)4
du⊗ du+ gαβ(u,ϑ) dϑ

α ⊗ dϑβ ,

where gαβ(u,ϑ) dϑ
α ⊗ dϑβ represents the metric induced by g on the level sets of u. By the

vanishing of the traceless second fundamental form of the level sets in formula (3.4), i.e.
hαβ = (H/2) gαβ , in combination with equality hαβ = ∇duαβ/|∇u|, it turns out that the
coefficients gαβ(u,ϑ) satisfy the following first order system of PDE’s

∂gαβ
∂u

=
4u

1− u2
gαβ ,

from which we can deduce

gαβ(u,ϑ) dϑ
α ⊗ dϑβ = (1− u2)−2cαβ(ϑ) dϑ

α ⊗ dϑβ .

At the same time, for every u0 ∈ [0, 1), we also have

1

2
R{u=u0} =

(1− u20)
2

4C2
, (3.17)

indeed, from the traced Gauss equation together with Bochner formula (3.7) (coupled with
the fact that u is harmonic), it follows

R{u=u0} = R+ |∇u|−2
[
−∆|∇u|2 + 2 |∇du|2

]
− |h|2 +H2 .

This equality, by using the vanishing of the scalar curvature of M and of the traceless sec-
ond fundamental form of the level sets in equality (3.4), along with the consequence of the
vanishing of this latter in identity (3.10) (take into account also formula (3.16)) given by

|∇du|2 = 3

2
|∇u|2H2 ,
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becomes

R{u=u0} = −|∇u|−2∆|∇u|2 + 7H2

2
,

but, being

|∇u| = a(1− u2)2 and H =
4u

1− u2
|∇u| = 4au(1− u2) ,

with a = (4C)−1, as already explained, one obtains identity (3.17). Then, ∂M has constant
sectional curvature (equal to 1/(4C2) ), with the Riemannian metric induced by (M, g), and
it is diffeomorphic to a 2–sphere, see Section 2. Consequently, (∂M, g∂M ) is isometric to
(S2, 4C2 gS2), by [26, Section 3.F], thus, up to an isometry, one has M = [0, 1)× S2 and

g =
(4C)2

(1− u2)4
du⊗ du+

4C2

(1− u2)2
gS2 ,

therefore, the map

(u, ϑ) ∈ (M, g) 7→ C
2

1 + u

1− u
ϑ ∈

(
MSch(C), gSch(C)

)
is an isometry, see formula (1.2). □

The natural next step, after the monotonicity formula has been proven and the case of
when it is constant has been studied, is to compute and then to compare the limit of the
function F (t) as t → +∞ with its value at t = C/2, indeed, ∂M is a regular value of u and the
existence of the limit is a consequence of the fact that F is nondecreasing in a neighborhood
of +∞, because the level sets Σt, given by equality (3.2), are regular (that is t ∈ T ) and
connected (namely, they are diffeomorphic to a 2–sphere) for each t sufficiently large, see the
notes before the proof of Proposition 3.1 and Section 2. These computations are contained in
the following lemma.

Lemma 3.3. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat manifold with
compact, connected boundary and with nonnegative scalar curvature. Let u ∈ C∞(M) be the solu-
tion of Dirichlet problem (1.3) and let C > 0 be the boundary capacity of ∂M in (M, g), given by
formula (1.4). Consider the function F : [C/2,+∞) → R defined by equality (3.1). Then, there hold

F (C/2) = C

[
2π − 2

ˆ

∂M

|∇u|2 dσ −
ˆ

∂M

|∇u|H dσ

]
, (3.18)

lim
t→+∞

F (t) ≤ 8π (mADM − C) . (3.19)

Proof. The function F is easily seen to satisfy equality (3.18), now, we check formula (3.19).
As already explained above, there exists t0 ∈ [C/2,+∞) such that [t0,+∞) ⊆ T , therefore,
from now on the variable t ranges in [t0,+∞). We break F in two pieces,

F1(t) = 4πt +
t3

C2

(
1 +

C
2t

)3 ˆ
Σt

|∇u|2 dσ − t2

C

(
1 +

C
2t

)2 ˆ
Σt

|∇u|H dσ ,

F2(t) = − 3t2

2C

(
1 +

C
2t

)3 ˆ
Σt

|∇u|2 dσ ,
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where the function F2 satisfies
lim

t→+∞
F2(t) = −6πC . (3.20)

Indeed, once the function F2 is rewritten as

F2(t) = − 3C
2

(
1 +

C
2t

)ˆ
Σt

|∇u|2

(1− u)2
dσ , (3.21)

one observes
|∇u| = C

|x|2
[
1 +O

(
|x|−β

) ]
, (3.22)

from the expansion (2.1) of u in an asymptotically flat chart, fixed from now on, thus,

lim
|x|→+∞

|∇u|
(1− u)2

= C−1 .

Then, using this fact in combination with formula (2.2), one obtains that the integral term in
expression (3.21) of F2(t) converges to 4π, as t → +∞, consequently, the limit (3.20) holds.
Regarding the function F1, we introduce the auxiliary function ρ : M → [C/2,+∞), given as

ρ :=
C
2

1 + u

1− u

and called Euclidean fake distance, due to the fact that

ρ = |x|+O2(|x|1−β) . (3.23)

Observe that Σt = {ρ = t} and the function F1, expressed in terms of ρ as following

F1(t) =
t

4

(
1 +

C
2t

){
16π

(
1 +

C
2t

)−1

−
ˆ

{ρ=t}

H2 dσ +

ˆ

{ρ=t}

[
g(∇|∇ρ|,∇ρ)

|∇ρ|2

]2
dσ

}
,

can then be broken in three pieces,

F11(t) = −2πC ,

F12(t) =
t

4

(
1 +

C
2t

)[
16π −

ˆ

{ρ=t}

H2 dσ

]
,

F13(t) =
t

4

(
1 +

C
2t

) ˆ
{ρ=t}

[
g(∇|∇ρ|,∇ρ)

|∇ρ|2

]2
dσ =

1

4

(
1 +

C
2t

) ˆ
{ρ=t}

ρ

[
∇dρ(∇ρ,∇ρ)

|∇ρ|3

]2
dσ .

By expansion (2.1) of u, there exist positive constants A1, A2, B1, B2 such that
A1

|x|
≤ 1− u ≤ A2

|x|
and

B1

|x|2
≤ |∇u| ≤ B2

|x|2
.

for |x| large enough. Then, for t sufficiently large, one has
A1t

C
≤ |x(p)| ≤ 2A2t

C
(3.24)

for every q ∈ Σt, consequently, integrating |∇u| on Σt, by equality (2.2) one gets

4πA2
1

B2C
t2 ≤ Area(Σt) ≤ 16πA2

2

B1C
t2 . (3.25)
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Hence, we have

0 ≤
ˆ

{ρ=t}

ρ

[
∇dρ(∇ρ,∇ρ)

|∇ρ|3

]2
dσ ≤ Ct1−2β

for t large enough, since
∇dρ(∇ρ,∇ρ)

|∇ρ|3
= O(|x|−1−β) ,

as a consequence of the behavior near infinity of ρ, described by formula (3.23). Then, being
β > 1/2, one gets the convergence of F13(t) to zero, as t → +∞.
We remark that a key point is the knowledge that the error term in formula (2.1) is O2(|x|−1−β),
with β > 1/2. Indeed, if this error term was only o2(|x|−1), then the limit of F13(t) would be
a indeterminate form.
Concerning the function F12, observe that

lim
t→+∞

F12(t) ≤ lim sup
t→+∞

t

4

[
16π −

ˆ

{ρ=t}

H2 dσ

]
,

therefore, in the same spirit as in [34] and similarly to [3, Lemma 2.5], we are going to show
for completeness that the upper limit to the right hand side of the inequality above is less or
equal than 8πmADM.
Our first aim is to obtain an expansion for the mean curvature of Σt in terms of its Euclidean
mean curvature. In order to do this, it is convenient to write the subscript g for the quantities
that are referred to the original metric, and without subscripts the quantities that are referred
to the Euclidean metric. We underline that this convention will be followed only in this
proof. Finally, the Levi–Civita connection with respect to g will continue to be denoted by
∇, whereas the symbol D will indicate the Euclidean one. As the unit normal vectors to a
regular level set Σt are given by

νg =
∇ρ

|∇ρ|g
and ν =

Dρ

|Dρ|
,

the mean curvatures are

Hg =
(
gij − νigν

j
g

) ∇i∇jρ

|∇ρ|g
and H =

(
δij − νiνj

) DiDjρ

|Dρ|
, (3.26)

respectively. According to formula (1.1), one has

gij = δij − γij +O(|x|−2τ )

where γij = gij − δij and γij = δiℓδkjγkℓ, hence, the g–unit normal is related to the Euclidean
one through the formula

νig =
(
1 +

γ(ν, ν)

2

)
νi − γik ν

k +O(|x|−2τ ) ,

where γik = δijγjk. It follows then

gij − νigν
j
g = ηij − ηik γkℓ η

jℓ + O(|x|−2τ ) ,

where ηij = δij − νiνj . A straightforward computation leads to

∇i∇jρ

|∇ρ|g
=
(
1 +

γ(ν, ν)

2

) DiDjρ

|Dρ|
− 1

2

(
∂igjℓ + ∂jgiℓ − ∂ℓgij

)
νℓ + O(|x|−1−2τ ) ,
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where we employ expansion (3.23), to ensure that |DDρ|/|Dρ| = O(|x|−1), indeed,

DDρ/|Dρ| = 1

|x|

[
ηij +O(|x|−β)

]
dxi ⊗ dxj , (3.27)

setting ηij = δij − δik δjℓ ν
k νℓ . We then arrive at

Hg =
(
1 +

γ(ν, ν)

2

)
H− ηij

(
∂jgik −

1

2
∂kgij

)
νk − ηikηjℓγkℓ

DiDjρ

|Dρ|
+O(|x|−1−2τ ) ,

which implies

H2
g =

(
1 + γ(ν, ν)

)
H2 − 2H ηij

(
∂jgik −

1

2
∂kgij

)
νk − 2H ηikηjℓγkℓ

DiDjρ

|Dρ|
+O(|x|−2−2τ ) .

As the metric induced on Σt by g can be written as g − dρ ⊗ dρ/|∇ρ|2g, the area element can
be expressed as

dσg =
[
1 +

1

2
ηijγij +O(|x|−2τ )

]
dσ . (3.28)

Putting all together, the Willmore energy integrand then satisfies

H2
g dσg =

[(
1 + γ(ν, ν) +

ηijγij
2

)
H2

− 2H ηij
(
∂jgik −

1

2
∂kgij

)
νk − 2H ηikηjℓγkℓ

DiDjρ

|Dρ|
+O(|x|−2−2τ )

]
dσ. (3.29)

By equalities (3.26) and (3.27) and by using again expansion (3.23), we obtain

H =
2

|x|
(
1 +O(|x|−β)

)
(3.30)

which implies

2H ηikηjℓγkℓ
DiDjρ

|Dρ|
=

4

|x|2
ηkℓγkℓ +O(|x|−2−2β) . (3.31)

Plugging this information in formula (3.29), we obtain

H2
g dσg =

[
H2 +

4

|x|2
γ(ν, ν) − 2

|x|2
ηijγij − 4

|x|
ηij
(
∂jgik −

1

2
∂kgij

)
νk +O(|x|−2−2β)

]
dσ .

To proceed, we now claim that

4

|x|2
γ(ν, ν) − 2

|x|2
ηijγij =

2

|x|
(
ηij∂igjkν

k − divΣtX
⊤ ) + O(|x|−2−2β) , (3.32)

where X is the vector field defined by X = δijγjkν
k∂i and X⊤ denotes its tangential compo-

nent. To prove the claim, let us first observe that

X = X⊤ + γ(ν, ν)ν and ∂iν
k = ηkℓ

DiDℓρ

|Dρ|
.
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By means of the expansions (3.30) and (3.31), we compute

ηij∂igjkν
k = ηij∂iγjkν

k = ηij δjk ∂iX
k − ηikηjℓγkℓ

DiDjρ

|Dρ|

= divX − δjk∂iX
kνiνj − 1

|x|
ηijγij +O(|x|−1−2β)

= divΣtX − 1

|x|
ηijγij +O(|x|−1−2β)

= divΣtX
⊤ + γ(ν, ν)H− 1

|x|
ηijγij +O(|x|−1−2β)

= divΣtX
⊤ +

2

|x|
γ(ν, ν)− 1

|x|
ηijγij +O(|x|−1−2β) .

Claim (3.32) then follows with the help of some simple algebra. As a consequence, the ex-
pression for the Willmore energy integrand becomes

H2
g dσg =

[
H2 − 2

|x|
divΣtX

⊤ +
2

|x|
ηij∂igjkν

k − 4

|x|
ηij∂jgikν

k +
2

|x|
ηij∂kgijν

k +O(|x|−2−2β)

]
dσ

=

[
H2 − 2

|x|
divΣtX

⊤ − 2

|x|
δij
(
∂igjk − ∂kgij

)
νk +O(|x|−2−2β)

]
dσ .

Hence, one gets

t

4

(
16π −

ˆ

{ρ=t}

H2
g dσg

)
=

t

4

(
16π −

ˆ

{ρ=t}

H2 dσ

)

+
1

4

ˆ

{ρ=t}

ρ

[
2

|x|
divΣtX

⊤ +
2

|x|
δij
(
∂igjk − ∂kgij

)
νk +O(|x|−2−2β)

]
dσ .

By virtue of equation (3.28), the same estimates of formula (3.25) hold for the Euclidean
area Area(Σt), up to a different choice of the constants. In view of this consideration and
employing the expansion (3.23) with formula (3.24), one has

t

4

(
16π −

ˆ

{ρ=t}

H2
g dσg

)
=

t

4

(
16π −

ˆ

{ρ=t}

H2 dσ

)

+
1

2

ˆ

{ρ=t}

divΣtX
⊤ dσ +

1

2

ˆ

{ρ=t}

δij
(
∂igjk − ∂kgij

)
νk dσ +O(t1−2β) .

The first summand in the right hand side is nonpositive by the Euclidean Willmore inequality
(see [44]), the second summand vanishes by the divergence theorem and it is well known
(see [9, Proposition 4.1]) that the third summand tends to 8πmADM, as t → +∞. The starting
statement then follows, as β > 1/2. In conclusion

F = F11(t) + F12(t) + F13(t) + F2(t) ,
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where

F11(t) = −2πC , lim
t→+∞

F12(t) ≤ 8πmADM , lim
t→+∞

F13(t) = 0 , lim
t→+∞

F2(t) = −6πC ,

hence formula (3.19) is proved. □

We are now in the position to state and prove the main result of this section.

Theorem 3.4. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat manifold with
compact, connected boundary and with nonnegative scalar curvature. Assume that H2(M,∂M ;Z) =
0. Let u ∈ C∞(M) be the solution of Dirichlet problem (1.3) and let C > 0 be the boundary capacity
of ∂M in (M, g), given by formula (1.4). Then,

mADM

C
≥ 5

4
+

1

64π

ˆ

∂M

H2 dσ − 1

4π

ˆ

∂M

(
|∇u| + H

4

)2

dσ , (3.33)

with equality if and only if (M, g) is isometric to a (exterior spatial) Schwarzschild manifold of mass
m > 0, see formula (1.2).

Proof. The assumption H2(M,∂M ;Z) = 0 implies that all regular level sets of u are con-
nected, as said at the end of Section 2, therefore, the function F : [C/2,+∞) → R, defined
by formula (3.1), is nondecreasing on the set T , given by equality (3.3), by Proposition 3.1.
Hence, comparing the limit of the function F (t) as t → +∞ with its value at t = C/2, from
Lemma 3.3 with the help of a small manipulation we obtain

mADM

C
− 1 ≥ 1

4
− 1

4π

[ ˆ
∂M

|∇u|2 dσ +
1

2

ˆ

∂M

|∇u|H dσ

]
. (3.34)

By adding and subtracting the term (1/16)
´
∂MH2 dσ in the square brackets, one gets in-

equality (3.33). Finally, the equivalence, i.e. the last part of the statement, follows from
Proposition 3.2. □

4. SECOND MONOTONICITY FORMULA

The main result of the previous section provides an improvement of Bray sharp mass–
capacity inequality when the term on the right hand side of inequality (3.33) is greater or
equal to 1, or equivalently, the right term of inequality (3.34) is nonnegative. In order to
prove the latter, we find a second monotonicity formula, which, however, does not hold in
the same setting of Theorem 3.4, indeed, an assumption involving the mean curvature of the
boundary is required. A key point of the followed strategy is to obtain, starting from our
first monotonicity formula, a certain inequality along the regular values of u, therefore, also
in this case, the main difficulty consists in ensuring that this inequality holds in presence of
the critical values of u, but this time the problem is overcome by means of a regularity result.
This regularity result and the proof of our second monotonicity formula are contained in the
following proposition, while in the next we analyze the case of when the latter is constant.

Proposition 4.1. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat manifold
with compact, connected boundary and with nonnegative scalar curvature. Let u ∈ C∞(M) be the
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solution of Dirichlet problem (1.3) and let C > 0 be the boundary capacity of ∂M in (M, g), given by
formula (1.4). Consider the function G : [C/2,+∞) → R defined as

G(t) = − πC2

t
+

t

4

(
1 +

C
2t

)4 ˆ
Σt

|∇u|2 dσ , (4.1)

where Σt is the level set of u, given by

Σt :=
{
u =

(
1− C

2t

)
/
(
1 +

C
2t

)}
,

and σ is the 2–dimensional Hausdorff measure of (M, g). Then, the function G satisfies

G (C/2) = − 2C

[
π −
ˆ

∂M

|∇u|2 dσ

]
, (4.2)

lim
t→+∞

G(t) = 0 . (4.3)

It is continuously differentiable on the set T , given by identity (3.3), with

G′(t) =
πC2

t2
+

1

4

(
1 +

C
2t

)3(
1− 3C

2t

)ˆ
Σt

|∇u|2 dσ − C
4t

(
1 +

C
2t

)2ˆ
Σt

|∇u|H dσ (4.4)

for every t ∈ T , and admits a locally absolutely continuous representative in [C/2,+∞), (coinciding
with it on T ). Finally, if all the regular level sets of u are connected and there exists

α ∈
(
− (2C)−1, (2C)−1

]
such that

H ≤ α
(
1− 4C|∇u|

)
on ∂M , (4.5)

then G is nondecreasing on the set T .

Notice that the function G is well defined, as the integrand function is bounded on each
level set of u and each level set of u has finite σ–measure.

Proof. The function G is easily seen to satisfy equality (4.2). Concerning limit (4.3), it is con-
venient to define the function G1 as the second summand in definition (4.1) of the function
G, and to rewrite it as

G1(t) =
C
4

(
1 +

C
2t

)3 ˆ
{u=f(t)}

|∇u|
1− u

|∇u| dσ ,

where f : [C/2,+∞) → [0, 1) is the diffeomorphism defined by equality (3.11). By formu-
las (2.1) and (3.22), we have

lim
|x|→+∞

|∇u|
1− u

= 0 ,

therefore, G1(t) tends to zero for t → +∞, by applying an argument similar to the one
leading to limit (3.20), thus, limit (4.3) follows.
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In absence of critical points, the function G is everywhere continuously differentiable in its
interval of definition, with first derivative given by

G′(t) =
πC2

t2
+

1

4

(
1 +

C
2t

)3(
1− 3C

2t

)ˆ
Σt

|∇u|2 dσ − C
4t

(
1 +

C
2t

)2ˆ
Σt

|∇u|H dσ ,

keeping into account formula (3.5).
In presence of critical points, G is continuously differentiable only on the set T , with first
derivative given as above. In order to obtain the existence of its locally absolutely continuous
representative, let us then show that G1 ∈ W 1,1

loc (C/2,+∞). Notice that G1 ∈ L1
loc(C/2,+∞),

for instance by the coarea formula. Let χ ∈ C∞
c

(
(C/2,+∞)

)
. Then, one has

+∞ˆ

C/2

χ′(t)G1(t)dt =

+∞ˆ

C/2

dt

[
χ′(t)

t

4

(
1 +

C
2t

)4 ˆ
{u=f(t)}

|∇u|2 dσ
]

=

1ˆ

0

ds

ˆ

{u=s}

χ′
(
C
2

1 + u

1− u

)
2C2

(1− u2)3
|∇u|2 dσ

=

ˆ

M

χ′
(
C
2

1 + u

1− u

)
2C2

(1− u2)3
|∇u|3 dµ

= lim
k→+∞

ˆ

M

χ′
(
C
2

1 + u

1− u

)
2C2

(1− u2)3
ηk(|∇u|2) |∇u|3 dµ

= lim
k→+∞

ˆ

M

g

(
∇
[
χ

(
C
2

1 + u

1− u

)]
,

2C|∇u|
(1− u)(1 + u)3

ηk(|∇u|2)∇u

)
dµ

= − lim
k→+∞

ˆ

M

χ

(
C
2

1 + u

1− u

)
div

(
2C|∇u|

(1− u)(1 + u)3
ηk(|∇u|2)∇u

)
dµ . (4.6)

Here, the third equality is a consequence of the coarea formula, the fourth follows by the
dominate convergence theorem, since the sequence of the functions ηk(|∇u|2) converges
pointwise on M to the function IM\Crit(u) and

∣∣∣∣χ′
(
C
2

1 + u

1− u

)
2C2

(1− u2)3
ηk(|∇u|2) |∇u|3

∣∣∣∣ ≤ 2C2 ∥χ′ ∥L∞(C/2,+∞)

(1− u2)3
|∇u|3 ∈ L1

loc(M) ,

finally, the last equality is obtained by the properties of the divergence operator combined
with the divergence theorem applied to the vector field

χ
(C
2

1 + u

1− u

) 2C|∇u|
(1− u)(1 + u)3

ηk(|∇u|2)∇u
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in the domain Eb
a := {f(a) < u < f(b)}, for a, b ∈ T such that suppχ ⊆ (a, b). We observe

that
ˆ

M

χ

(
C
2

1 + u

1− u

)
div

(
2C|∇u|

(1− u)(1 + u)3
ηk(|∇u|2)∇u

)
dµ

=

ˆ

Eb
a

χ

(
C
2

1 + u

1− u

)
ηk(|∇u|2) C|∇u|

(1− u)2

[
4(2u− 1)

(1 + u)4
|∇u|2 + 2(1− u)

(1 + u)3
g(∇|∇u|,∇u)

|∇u|

]
dµ

+

ˆ

Eb
a

χ

(
C
2

1 + u

1− u

)
η′k(|∇u|2) 4C|∇u|2

(1− u)(1 + u)3
g(∇|∇u|,∇u) dµ , (4.7)

where∣∣∣∣ ˆ
Eb

a

χ

(
C
2

1 + u

1− u

)
η′k(|∇u|2) 4C|∇u|2

(1− u)(1 + u)3
g(∇|∇u|,∇u) dµ

∣∣∣∣ ≤ C√
2k

−→ 0 for k → +∞ ,

(4.8)
as

∣∣∣ η′k(|∇u|2) |∇u|2 g(∇|∇u|,∇u)
∣∣∣ ≤ η′k(|∇u|2) |∇u|3 |∇du| I{ 1

2k
≤|∇u|2≤ 3

2k
} ≤

33/2√
2k

|∇du| ,

and

lim
k→+∞

ˆ

Eb
a

χ

(
C
2

1 + u

1− u

)
ηk(|∇u|2) C|∇u|

(1− u)2
Qdµ =

ˆ

M

χ

(
C
2

1 + u

1− u

)
C|∇u|
(1− u)2

Qdµ , (4.9)

having set

Q :=
4(2u− 1)

(1 + u)4
|∇u|2 + 2(1− u)

(1 + u)3
g(∇|∇u|,∇u)

|∇u|
,

by the dominate convergence theorem, indeed, ηk(|∇u|2) → IM\Crit(u) pointwise on M for
k → +∞ and

|Q| ≤ 4|2u− 1|
(1 + u)4

|∇u|2 + 2(1− u)

(1 + u)3
|∇du| ∈ L1

loc(M) ,

∣∣∣∣χ(C
2

1 + u

1− u

)
ηk(|∇u|2) C|∇u|

(1− u)2
Q

∣∣∣∣ ≤ C∥χ∥L∞(C/2,+∞)

(1− u)2
|∇u| |Q| ∈ L1

loc(M) .

Notice that above, the function Q is well defined in M \Crit(u), hence, these last inequalities
hold µ–a.e., as µ(Crit(u)) = 0.
Then, from formula (4.6), by virtue of equality (4.7) together with limits (4.8) and (4.9), it
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follows
+∞ˆ

C/2

χ′(t)G1(t) dt

= −
ˆ

M

χ

(
C
2

1 + u

1− u

)
C|∇u|
(1− u)2

[
4(2u− 1)

(1 + u)4
|∇u|2 + 2(1− u)

(1 + u)3
g(∇|∇u|,∇u)

|∇u|

]
dµ

= −
+∞ˆ

C/2

dt χ(t)

[
1

4

(
1 +

C
2t

)3(
1− 3C

2t

)ˆ
Σt

|∇u|2 dσ − C
4t

(
1 +

C
2t

)2ˆ
Σt

|∇u|H dσ

]
,

where the second equality is obtained by the coarea formula. In this way, we conclude that
G1 has a weak derivative in the open interval (C/2,+∞), which is in L1

loc(C/2,+∞), as a
consequence of the fact that each summand of CQ/(1 − u)2 is in L1

loc(M) and of the coarea
formula. Then, G1 ∈ W 1,1

loc (C/2,+∞). Consequently, G admits a locally absolutely continu-
ous representative in [C/2,+∞), as G(t) = −πC2/t+G1(t), coinciding with G on T .
Being the function G continuously differentiable on T , with first derivative given by for-
mula (4.4), it follows easily the equality

F (t) =
4t3

C2
G′(t) (4.10)

for every t ∈ T . We set

A := 2C

[
π−
ˆ

∂M

|∇u|2 dσ

]
and B := C

[
2π−2

ˆ

∂M

|∇u|2 dσ−
ˆ

∂M

|∇u|H dσ

]
,

therefore,
G (C/2) = −A and F (C/2) = B , (4.11)

by formulas (4.2) and (3.18), respectively, and

B = A− C
ˆ

∂M

|∇u|H dσ .

Then, as a result of this last equality,

B ≥
(
1− 2Cα

)
A , (4.12)

since assumption (4.5) implies ˆ

∂M

|∇u|H dσ ≤ 2αA

by identity (2.2). The monotonicity of F , proved in Proposition 3.1 under the assumption
that all regular level sets of u are connected, implies

4t3

C2
G′(t)− B = F (t)− F (C/2) ≥ 0

for every t ∈ T , hence,

G′(t) ≥ C2

4t3
B (4.13)
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for all t ∈ T . Notice that this inequality is true a.e. in [C/2,+∞), as T differs from [C/2,+∞)
only for a negligible set, by Sard theorem. Then, integrating between C/2 and t ∈ T and
since G admits a locally absolutely continuous representative in [C/2,+∞) coinciding with
it on T , it follows

G(t)−G (C/2) ≥ −C2B
8t2

+
B
2

for every t ∈ T , consequently,

G(t) ≥ −C2B
8t2

− (1 + 2Cα)A
2

(4.14)

for all t ∈ T , by formula (4.11) and inequality (4.12). As explained before Lemma 3.3, there
exists t0 ∈ [C/2,+∞) such that [t0,+∞) ⊆ T , therefore, passing in inequality (4.14) to the
limit for t → +∞, we get (1+2Cα)A ≥ 0 from limit (4.3). Being α ∈

(
− (2C)−1, (2C)−1

]
, then

A ≥ 0, from which it follows B ≥ 0, by inequality (4.12). Thus, G′(t) ≥ 0 for every t ∈ T , by
inequality (4.13), and this implies that G is nondecreasing on the set T (since T differs from
[C/2,+∞) for a negligible set and G admits a locally absolutely continuous representative in
[C/2,+∞), coinciding with it on T ). □

Proposition 4.2 (Rigidity – II). Let (M, g) be a 3–dimensional, complete, one–ended asymptotically
flat manifold with compact, connected boundary and with nonnegative scalar curvature. Let u ∈
C∞(M) be the solution of Dirichlet problem (1.3) and let C > 0 be the boundary capacity of ∂M in
(M, g), given by formula (1.4). Consider the function G : [C/2,+∞) → R defined by equality (4.1).
Then, G is constant on the set T , given by equality (3.3), if and only if (M, g) is isometric to the
(exterior spatial) Schwarzschild manifold (MSch(m), gSch(m)) of mass m > 0, see formula (1.2).

Proof. If (M, g) is the (exterior spatial) Schwarzschild manifold with mass m > 0, then, by
the equalities (3.15) along with the observation m = C, one obtains directly that G ≡ 0
in [m/2,+∞). Now, we assume that G is constant on the set T , then, as in the proof of
Proposition 3.2, there exists a maximal time T ∈ (C/2,+∞] such that ∇u ̸= 0 in MT :=

{
0 ≤

u < (1 − C
2T )/(1 + C

2T )
}

, since T ⊇ [a, b) with a = C/2. Hence, in
[C
2 , T

)
the function G is

of class C2, with G′(t) given by formula (4.4) and at same time with G′(t) = 0, while F is
of class C1, with F ′ given by formula (3.4) and at the same time F ′(t) = 0, as F ≡ 0 due
to equality (4.10). Consequently, arguing as in the proof of Proposition 3.2, one obtains that
T = +∞ and |∇u| ≠ 0 everywhere. Then, the conclusion follows from Proposition 3.2. □

We are now ready to state and to prove the two main results of this section.

Theorem 4.3. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat manifold
with compact, connected boundary and with nonnegative scalar curvature. Let u ∈ C∞(M) be the
solution of Dirichlet problem (1.3) and let C > 0 be the boundary capacity of ∂M in (M, g), given by
formula (1.4). Assume that H2(M,∂M ;Z) = 0 and there exists α ∈

(
− (2C)−1, (2C)−1

]
such that

H ≤ α
(
1− 4C|∇u|

)
on ∂M . Then,

4π t2
(
1 +

C
2t

)4
≤ Area

({
u =

1− C
2t

1 + C
2t

})
for every t ∈ T , where the set T is given by equality (3.3). Thus,

C ≤
√

Area(∂M)

16π
, (4.15)
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with equality if and only if (M, g) is isometric to a (exterior spatial) Schwarzschild manifold of mass
m > 0, see formula (1.2).

This theorem provides a sharp comparison between the area of the level sets of the func-
tion u and of the analogue of u in the Schwarzschild manifold of mass C.

Proof. The assumption H2(M,∂M ;Z) = 0 implies that all regular level sets of u are con-
nected, as already explained at the end of Section 2. Then, the function G, defined by for-
mula (4.1), is nondecreasing on the set T , by Propositions 4.1. Thus, for every t ∈ T

G(C/2) ≤ G(t) ≤ lim
t→+∞

G(t) = 0 , (4.16)

by limit (4.3). The last inequality and definition (4.1) of G implyˆ

Σt

|∇u|2 dσ ≤ 4πC2

t2

(
1 +

C
2t

)−4

,

where Σt is the level set of u given by formula (3.2). As a consequence,

4πC =

ˆ

Σt

|∇u| dσ ≤

[ ˆ
Σt

|∇u|2 dσ

]1/2
[Area(Σt)]

1/2 ≤ (4π)1/2
C
t

(
1 +

C
2t

)−2

[Area(Σt)]
1/2 ,

(4.17)
where the equality is known from formula (2.2) and the first inequality follows from Hölder
inequality. Then,

Area(Σt) ≥ 4π t2
(
1 +

C
2t

)4
for every t ∈ T . In particular, for t = C/2 ∈ T , one has

Area(∂M) ≥ 16π C2 ,

from which it follows

C ≤
√

Area(∂M)

16π
.

Finally, if we assume that the equality holds, then, for t = C/2, the chain of inequalities (4.17)
is a chain of equalities, therefore, G(C/2) = 0. Thus, G is constant on T , by formula (4.16), as
a consequence, (M, g) is isometric to (MSch(C), gSch(C)), by Proposition 4.2. On other side, in
a (exterior spatial) Schwarzschild manifold with mass m > 0, the equality in formula (4.15)
can be checked directly. □

Theorem 4.4. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat manifold
with compact, connected boundary and with nonnegative scalar curvature. Let u ∈ C∞(M) be the
solution of Dirichlet problem (1.3) and let C > 0 be the boundary capacity of ∂M in (M, g), given by
formula (1.4). Assume that H2(M,∂M ;Z) = 0 and there exists α ∈

(
− (2C)−1, (2C)−1

]
such that

H ≤ α
(
1− 4C|∇u|

)
on ∂M . Then,

mADM

C
≥ 5

4
+

1

64π

ˆ

∂M

H2 dσ − 1

4π

ˆ

∂M

(
|∇u| + H

4

)2

dσ ≥ 1, (4.18)

with the equality in the first inequality if and only if (M, g) is isometric to a (exterior spatial)
Schwarzschild manifold of mass m > 0, see formula (1.2).
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Proof. Notice that everything is already known by Theorem 3.4, except the fact that the cen-
tral term of inequality (4.18) is greater or equal to 1, but it follows from the proof of Proposi-
tion 4.1, since this term is equal to 1 + B/(8πC). □

Under the hypothesis of the previous theorem with the difference of assuming the exis-
tence of α ∈

(
− (2C)−1, (2C)−1

)
such that H ≤ α

(
1 − 4C|∇u|

)
on ∂M , the term to the right

hand side of inequality (3.34) is nonnegative, as it is equal to B/(8πC), and it is zero (or,
equivalently, the central term of inequality (4.18) is equal to 1) if and only if (M, g) is isomet-
ric to a (exterior spatial) Schwarzschild manifold of mass m > 0, indeed, the equality holds
if and only if B = 0, which is equivalent to have A = 0, as B ≥

(
1−2Cα

)
A ≥ 0 (see the proof

of Proposition 4.1). This in turn is equivalent to say that G is constant on the set T , thus, the
conclusion follows by Proposition 4.2.

Remark 4.5. If H ≤ 0, the condition of the existence of a real number α ∈
(
− (2C)−1, (2C)−1

)
,

such that H ≤ α
(
1− 4C|∇u|

)
on ∂M , is naturally satisfied, indeed, one can take α = 0.

As an immediate corollary of the above theorem, we have the following extension of the
cases of validity of the mass–capacity inequality obtained by Bray in [14].

Corollary 4.6. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat manifold
with compact, connected boundary and with nonnegative scalar curvature. Let u ∈ C∞(M) be the
solution of Dirichlet problem (1.3) and let C > 0 be the boundary capacity of ∂M in (M, g), given by
formula (1.4). Assume that H2(M,∂M ;Z) = 0 and there exists α ∈

(
− (2C)−1, (2C)−1

]
such that

H ≤ α
(
1− 4C|∇u|

)
on ∂M . Then,

mADM ≥ C ,

with the equality if and only if (M, g) is isometric to a (exterior spatial) Schwarzschild manifold of
mass m > 0, see formula (1.2).

Notice that all results contained in this section continue to be true if we replace the as-
sumption of existence of α ∈

(
− (2C)−1, (2C)−1

]
(resp. α ∈ (−(2C)−1, (2C)−1)) such that

H ≤ α
(
1 − 4C|∇u|

)
on ∂M , with the assumption of existence of α ∈

(
− (2C)−1, (2C)−1

]
(resp. α ∈ (−(2C)−1, (2C)−1)) such that inequality (4.12) holds.

APPENDIX A. SOME TOPOLOGICAL REMARKS

In this appendix, we provides an alternative approach to prove that the regular level sets
of the solution u of Dirichlet problem (1.3), in a 3–dimensional, complete, one–ended asymp-
totically flat manifold (M, g) with compact, connected boundary, are connected. With this
aim, we show some topological results involving smooth manifolds with boundary and re-
fer the reader to [18, 30, 36, 38] for the basic ones. For completeness, we also treat the case of
smooth manifolds without boundary. First let us start with the following lemma.

Lemma A.1. Let N be a 3–dimensional, compact, smooth manifold with or without connected bound-
ary ∂N . Then the first Betti number of N , which is the rank of H1(N ;Z), is zero if and only of
H2(N, ∂N ;Z) = 0.

Proof. We divide the discussion into six cases.
(1) N is orientable and ∂N = ∅.
(2) N is nonorientable and ∂N = ∅.
(3) N is orientable and ∂N ̸= ∅.
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(4) N is nonorientable and ∂N is a 2–sphere.
(5) N is nonorientable and ∂N is a connected sum of k tori, k ∈ N+.
(6) N is nonorientable and ∂N is a connected sum of 2k projective planes, k ∈ N+.

Note that the case where N is nonorientable and ∂N is a connected sum of 2k + 1 projective
planes, with k ∈ N, is not possible because χ(∂N) = 2χ(N) is even, by using the odd
dimension of N . Here, χ(∂N) and χ(N) are the Euler–Poincarè characteristic of ∂N and N ,
respectively.
In case (1), the equivalence is a consequence of the Poincarè duality theorem and the fact that
H2(N ;Z) is a torsion–free group. In case (2), the torsion subgroup of H2(N ;Z) is Z2 and the
first Betti number of N is nonzero, indeed, b1(N) = 1 + b2(N). This last equality is obtained
by combining χ(N) = 0 and H3(N ;Z) = 0, which hold true due to the odd dimension and
the nonorientability of N , respectively. In case (3), similarly to case (1), the equivalence is
a consequence of the Poincarè duality theorem and the fact that H2(N, ∂N ;Z) is a torsion–
free group. Concerning case (4), using the Mayer–Vietoris sequence for reduced homology
and the assumption that ∂N is a 2-sphere, one obtains 2b1(N) = b1(D(N)), where D(N) is
the double of N . As a result, b1(N) > 0, since the manifold D(N) lays in case (2). This
implies b2(N) > 0 due to the equality b2(N) = b1(N), which is gotten by exploiting in the
identity χ(∂N) = 2χ(N) the assumption that ∂N is a 2-sphere together with the equalities
b0(N) = 1, b3(N) = 0. More precisely, H0(N ;Z) is Z and H3(N ;Z) is zero. Notice that these
equalities hold in general when N is connected and has boundary, respectively. Suppose, by
contradiction, that H2(N, ∂N ;Z) is zero. Then, one has the following exact short sequence(

H3(N ;Z) =
)
0 → H3(N, ∂N ;Z) → H2(∂N ;Z) → H2(N ;Z) → 0

(
= H2(N, ∂N ;Z)

)
,

hence H3(N, ∂N ;Z) is torsion–free and

1 = b2(∂N) = b3(N, ∂N) + b2(N) , (A.1)

since H2(∂N ;Z) is torsion–free and equal to Z, respectively. As a consequence of formula (A.1)
with the result b2(N) > 0, one has b3(N, ∂N) = 0, but then H3(N, ∂N ;Z) is zero because it
is also torsion–free. Thus, by the universal coefficient theorem for homology, H3(N, ∂N ;Z2)
is zero, but this is no possible because H3(N, ∂N ;Z2) = Z2. In the remaining cases, one has
immediately b1(N) > 0, by using in the identity χ(∂N) = 2χ(N) the assumption that ∂N is
the connected sum of k tori or 2k projective planes. Concerning case (5), by Mayer–Vietoris,
one gets the following long exact sequence

· · · →
(
H3(D(N);Z) =

)
0 → H2(∂N ;Z) → H2(N ;Z)⊕H2(N ;Z) → . . . ,

hence b2(N) > 0, being H2(∂N ;Z) = Z in this case. Then, the conclusion that H2(N, ∂N ;Z)
is not zero follows in the same way of case (4). Case (6) is simpler than cases (4) and (5).
Indeed, if by contradiction H2(N, ∂N ;Z) is zero, then one has the following short exact se-
quence (

H3(N ;Z) =
)
0 → H3(N, ∂N ;Z) → 0

(
= H2(∂N ;Z)

)
,

which implies trivially that H3(N, ∂N ;Z) is zero, but this is not possible, as argued at the
end of case (4). □

We emphasize that if N is a smooth manifold as considered in the preceding lemma and
meets one of the previous equivalent conditions, then N is always orientable. Moreover, if
∂N ̸= ∅, then ∂N is a 2-sphere. This follows using the exact long sequence

· · · → H2(N ;Z) → H2(N, ∂N ;Z) → H1(∂N ;Z) → H1(N ;Z) → . . . ,
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together with the characterization theorem of the closed, connected surfaces.
In the following lemma, we extend the previous result to the noncompact cases of our

interest.

Proposition A.2. Let M be a 3–dimensional, noncompact, smooth manifold with or without con-
nected, compact boundary ∂M . Assume that there exists a compact subset K ⊆ M such that M \K
is diffeomorphic to R3 minus a closed ball. Then, the first Betti number of M is zero if and only if
H2(M,∂M ;Z) = 0.

Proof. We treat the cases ∂M = ∅ and ∂M ̸= ∅ separately. In the first case, i.e. M is with-
out boundary, as a consequence of the made assumption, firstly, M is diffeomorphic to a
3–dimensional, closed, smooth manifold N minus its point P , and secondly, one has the
following exact short sequence

0 → H3(N ;Z) → Z → H2(M ;Z) → H2(N ;Z) → 0 , (A.2)

by Mayer–Vietoris. Thus, if H2(M ;Z) is zero, then H2(N ;Z) is zero too. Consequently, we
know by Lemma A.1 that b1(N) = 0, which implies b1(M) = 0, since H1(M ;Z) and H1(N ;Z)
are isomorphic groups. This last statement is true because M is diffeomorphic to N \ {P}.
Therefore, if b1(M) = 0, then b1(N) = 0 and again by Lemma A.1, one has H2(N ;Z) = 0.
Notice that N is orientable, as emphasized before, hence H3(N ;Z) = Z. Using these last
results in exact short sequence (A.2), one obtains before that H2(M ;Z) is a finitely generated
Abelian group and after the equality

1 = 1 + b2(M) ,

which implies b2(M) = 0. Then, the conclusion H2(M ;Z) = 0 follows, since H2(M ;Z) is
torsion–free due to the fact that M is noncompact. Let us treat the second case, namely
when M is with boundary. Again by virtue of the made assumption, M is diffeomorphic to
a 3–dimensional, compact, smooth manifold N having ∂M as boundary, minus its point P .
Moreover, one has the following exact short sequence

0 → H3(M,∂M ;Z) → H3(N, ∂M ;Z) → Z → H2(M,∂M ;Z) → H2(N, ∂M ;Z) → 0 , (A.3)

by relative Mayer–Vietoris. Therefore, if H2(M,∂M ;Z) is zero, then H2(N, ∂M ;Z) is zero,
which implies b1(N) = 0, by Lemma A.1, consequently, b1(M) = 0, since H1(M ;Z) and
H1(N ;Z) are isomorphic groups. Vice versa, due to this isomorphism, if b1(M) = 0, also
b1(N) = 0, from which it follows that N is orientable, ∂M is a 2–sphere and H2(N, ∂M ;Z) =
0, by Lemma A.1. The orientability of N ensures that H3(N, ∂M ;Z) = Z and also the ori-
entability of M , from which one obtains H3(M,∂M ;Z) = 0, by the duality for noncompact
manifolds. Using all this information in exact short sequence (A.3), similarly to the case
∂M = ∅, one obtains b2(M,∂M) = 0. Then, the statement H2(M,∂M ;Z) = 0 will follow
once we show that H2(M,∂M ;Z) is torsion–free. We suppose, by contradiction, that there
exists a nontrivial element of order m. As a result, Tor

(
H2(M,∂M ;Z),Zm

)
is nonzero, but

this is impossible since H3(M,∂M ;Zm) and Tor
(
H2(M,∂M ;Z),Zm

)
are isomorphic, as a

consequence of the universal coefficient theorem for homology together with the equality
H3(M,∂M ;Z) = 0, and H3(M,∂M ;Zm) = 0, thanks to the duality for noncompact mani-
folds. □

We point out that, if M is a (smooth) manifold satisfying the assumptions of Proposi-
tion A.2 and one of the previous equivalent conditions, then M is always orientable and ∂M is
a 2–sphere if the boundary is present.
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We are now ready to present an alternative proof, with respect to the one presented in [3, at
the end of Subsection 1.3], of the connectedness of the regular level sets of u ∈ C∞(M) solu-
tion of Dirichlet problem (1.3) in a 3–dimensional, complete, one–ended asymptotically flat
manifold with compact, connected boundary and having H2(M,∂M ;Z) = 0. It is inspired
by [35, Lemma 4.46] and [41, Lemma 2.3].

Proposition A.3. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat manifold
with compact, connected boundary. Let u ∈ C∞(M) be the solution of Dirichlet problem (1.3).
Assume that H2(M,∂M ;Z) = 0, then, all regular level sets of u are connected.

Proof. Let t ∈ (0, 1) be a regular value of u. It is obvious that {u ≥ t} = {u > t} and {0 ≤ u ≤
t} = {0 < u < t}, we want to see that they are connected. First, we show the connectedness
of {0 ≤ u ≤ t}. Supposing it is not connected, it must have a connected, compact component
K disjoint from ∂M . Then, ∂K ⊆ {u = t} and, since {0 ≤ u ≤ t} = {0 < u < t}, the interior
of K must be nonempty and contain some points where 0 < u < t, which is not possible,
by the maximum principle. On the other side, similarly, if {u ≥ t} is not connected, it must
have a connected, compact component K, because there exists a compact set K̃ of M such
that M \ K̃ is contained in {u ≥ t}, as a consequence of u → 1 at ∞. Then, ∂K ⊆ {u = t}
and, since {u ≥ t} = {u > t}, the interior of K must be nonempty and contain some points
where u > t, which is not possible, by the maximum principle. Hence, {u ≥ t} and {u ≤ t}
are connected. Let now ε > 0 such that [t − ε, t + ε] doesn’t contain critical values of u, we
consider the reduced Mayer–Vietoris exact sequence of the pair {0 ≤ u ≤ t+ ε} and {u ≥ t},

· · · → H1(M ;Z) → H̃0 ({t ≤ u ≤ t+ ε};Z) → H̃0 ({0 ≤ u ≤ t+ ε};Z)⊕H̃0 ({u ≥ t};Z) →· · · .

Then, as a consequence of the connectedness of the sets {0 ≤ u ≤ t+ ε} and {u ≥ t}, the last
space, H̃0 ({0 ≤ u ≤ t+ ε};Z)⊕H̃0 ({u ≥ t};Z), is trivial, therefore, H̃0 ({t ≤ u ≤ t+ ε};Z) is
the image of H1(M ;Z), but this image is trivial. Indeed, the assumption H2(M,∂M ;Z) = 0
implies that the first Betti number of M is zero, by Proposition A.2, hence H1(M ;Z) coincides
with its torsion subgroup, while H̃0 ({t ≤ u ≤ t+ ε};Z) is torsion–free (since H0(X;Z) is
isomorphic to H̃0(X;Z)⊕ Z and H0(X;Z) is isomorphic to a direct sum of Z’s, one for each
path–connected component of any topological space X). Thus, H̃0 ({t ≤ u ≤ t+ ε};Z) = 0
and, consequently, {t ≤ u ≤ t+ ε} is connected, but, being {t ≤ u ≤ t+ ε} diffeomorphic to
{u = t} × [t, t+ ε], the number of the connected components of {t ≤ u ≤ t+ ε} and {u = t}
is the same. □
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