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Abstract. We investigate the connection between maximal directional deriva-

tives and differentiability for Lipschitz functions defined on Laakso space. We

show that maximality of a directional derivative for a Lipschitz function im-
plies differentiability only for a σ-porous set of points. On the other hand, the

distance to a fixed point is differentiable everywhere except for a σ-porous set

of points. This behavior is very different to the previously studied settings of
Euclidean spaces and Carnot groups.

1. Introduction

Rademacher’s theorem states that each Lipschitz function between Euclidean
spaces is differentiable almost everywhere with respect to Lebesgue measure. Hence,
while Lipschitz functions are relatively flexible, they still have strong differentiabil-
ity properties. This important result has many consequences. For instance, it is
used to prove the area and coarea formulas and to study rectifiable sets [11, 17].

Rademacher’s theorem has been further studied in several directions. One direc-
tion of research extends Rademacher’s theorem to Lipschitz functions between more
general spaces. There are versions of Rademacher’s theorem for mappings between
infinite dimensional Banach spaces [3, 16], Carnot groups [19, 18, 21], and metric
measure spaces admitting a differentiable structure [5]. Interesting features arise
in each case. In infinite dimensional Banach spaces one must distinguish between
Gateaux differentiability (directional derivatives form a linear map) and full Frechet
differentiability (difference quotients also converge uniformly). In Carnot groups,
the derivatives are group linear mappings. In metric measure spaces, including the
Laakso space studied in the present paper, the notion of differentiability is with
respect to a collection of Lipschitz charts.

Another direction of research investigates to what extent Rademacher’s theorem
is optimal. Rademacher’s theorem can equivalently be stated as follows. Whenever
a Lipschitz mapping f : Rn → Rm fails to be differentiable at every point of a set
N ⊂ Rn, then the set N must have Lebesgue measure zero. The converse question
asks if N ⊂ Rn has Lebesgue measure zero, must there exist a Lipschitz map
f : Rn → Rm which fails to be differentiable at every point of N? The answer to
this question is yes if and only if n ≤ m and combines the work of several authors
[2, 6, 20, 25, 26]. In particular, if n > m then there exists a measure zero set
N ⊂ Rn with the following property. For every Lipschitz map f : Rn → Rm there
exists a point x ∈ N such that f is differentiable at x. Such a set N is called a
universal differentiability set. The size of such sets have been more widely studied
in the case m = 1. In particular, they can be made compact and Hausdorff or
Minkowski dimension one [7, 8, 9, 10].
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The key technique underlying the construction of universal differentiability sets
is the fact that in Euclidean spaces (and some other settings) maximality of a di-
rectional derivative for a Lipschitz function implies differentiability. More precisely,
if f : Rn → R is a Lipschitz function and |f ′(x, e)| = Lip(f) for some x ∈ Rn and
e ∈ Rn with |e| = 1, then f is differentiable at x [12]. Such a fact is also important
in proving several differentiability results in infinite dimensional Banach spaces [16].
In [15, 22, 24], the second and third authors extended this fact and the study of
universal differentiability sets to Lipschitz maps f : G → R where G is a Carnot
group. There they showed that the implication maximality implies differentiability
holds for directional derivatives Ef(x) in a horizontal direction E at a point x ∈ G
if and only if the distance to the origin is differentiable at the point reached by fol-
lowing the direction E. Notice maximality implies differentiability is independent
of the point x ∈ G due to the group translations. These equivalent statements are
true for every direction in Carnot groups of step two, but more generally depend on
the Carnot group and the direction considered. In particular, there exists a Carnot
group where they fail for every direction. These techniques were used to show that
measure zero universal differentiability sets exist in every Carnot group of step two
and in families of Carnot groups of arbitrarily high step.

The present paper investigates to what extent the connection between maximal-
ity implies differentiability and differentiability of the distance holds in the nonlinear
setting. We focus our attention on the Laakso space [14], one of the best known
examples of a metric measure space which admit a differentiable structure but not
a linear structure. Laakso space is defined beginning with I ×K where I = [0, 1]
and K is a Cantor set. One identifies components of K at suitable heights (jump
levels) in I in order to make a path connected space F = (I ×K)/ ∼ (see Section
2 for more details). The distance d is then the path distance between points. This
space was introduced by Laakso [14] to show that there exist metric measure spaces
which are Ahlfors Q-regular and support a Poincaré inequality for any Q > 1. As
a consequence of [5], such a space admits a differentiable structure.

Since Laakso space is a doubling metric measure space supporting a Poincaré
inequality [14], it admits a differentiable structure with respect to which Lipschitz
functions are differentiable almost everywhere [5]. The differentiable structure con-
sists of a single chart with projection onto I (Definition 2.6). This fact seems well
known to experts but we were unable to find an explicit reference. Hence we give
an explicit proof in Section 5. Next we define directional derivatives by considering
difference quotients along line segments in the I direction (Definition 2.5). This is
natural since geodesics consist of line segments in the I direction with at most a
countable number of jumps. We show that, as in the Euclidean and Carnot setting,
the Lipschitz constant of a Lipschitz map f : F → R is the supremum of directional
derivatives fI(x) (Proposition 3.2) over points x ∈ F . This motivates the definition
of maximal directional derivative given in Definition 2.7. With these ingredients in
place, we now state our first main theorem.

Theorem 1.1. Let M be the set of x ∈ F such that whenever f : F → R is Lipschitz
with directional derivative fI(x) = ±Lip(f) at x, then f is differentiable at x.

Then M = {[x1, x2] : x1 ∈ S}. In particular M is σ-porous.

The set S consists of those heights in I which see jump levels roughly equidistant
above and below on all sufficiently small scales (see Definition 2.8 for details).
The most striking part of the theorem is that the set where maximality implies
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differentiability is σ-porous. A set is porous if it has relatively large holes on
arbitrarily small scales and σ-porous if it is a countable union of σ-porous sets
(Definition 2.10). Such sets are extremely small in multiple ways. Every σ-porous
set is of first category and of measure zero. In summary, the set of points where
the implication maximality implies differentiability holds is very small.

We next look at differentiability of the distance. There is no distinguished origin
in Laakso space and the geometry around different points can look quite different.
Hence we study differentiability of the map y 7→ dp(y) := d(y, p) for each fixed
point p ∈ F . Our second main result is the following.

Theorem 1.2. Let p ∈ F and denote by Bp ⊂ F the set of points in F at which
dp is not differentiable. Then h(Bp) is countable, in particular Bp is σ-porous.

Theorem 1.2 states that the set of points where the distance is differentiable
is extremely large (complement of σ-porous set). On the other hand, Theorem
1.1 states that the set of points where maximality implies differentiability holds
is extremely small (it is σ-porous). Laakso space cannot be written as a union
of σ-porous sets. Hence maximality implies differentiable cannot be equivalent to
differentiability of the distance as in Euclidean spaces and Carnot groups.

We now summarize the organization of the paper. In Section 2 we give the basic
definitions. In Section 3 we prove some basic facts about directional derivatives and
prove Theorem 1.1. In Section 4 we prove Theorem 1.2. Finally in Section 5 we
prove Theorem 2.9 which verifies the notion of differentiability we have considered
is the natural one.
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The techniques and results in Section 5 should be known to experts. Some of
the ideas used in that section come from the paper [4] by David Bate and the third
author and from discussions of the third author with David Bate and David Preiss.

2. Preliminaries

2.1. Laakso Space. Let I = [0, 1] and let K ⊂ [0, 1] the standard middle third
Cantor set. We define K0 := (1/3)K and K1 := (1/3)K + (2/3) to be the left
and right similar copies of K. We then define K00 := (1/3)K0 = (1/9)K and
K01 := (1/3)K1 = (1/9)K + (2/9) to be the left and right similar copies of K0.
The set Ka is defined similarly when a is any finite string of 0’s and 1’s.

We define the height of a point (x1, x2) ∈ I×K by h(x1, x2) := x1. If n ∈ N and
mi ∈ {0, 1, 2} for 1 ≤ i ≤ n, we define w(m1, . . . ,mn) :=

∑n
i=1mi/3

i. A wormhole
level of order n is a set of the form

{w(m1, . . . ,mn)} ×K ⊂ I ×K, mn > 0.

The condition mn > 0 implies wormhole levels of different orders do not overlap.
We denote the set of wormholes of order n by Jn.
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Definition 2.1. We define an equivalence relation ∼ on I × K as follows. For
each n ∈ N and wormhole level {w(m1, . . . ,mn)} ×K of order n, identify pairwise
{w(m1, . . . ,mn)} × Ka0 and {w(m1, . . . ,mn)} × Ka1 for each binary string a of
length n−1. More precisely, a point (x1, x2) ∈ {w(m1, . . . ,mn)}×Ka0 is identified
with (x1, x2 + (2/3n)) ∈ {w(m1, . . . ,mn)}×Ka1. Such an identified point is called
a wormhole of order n.

Define F := (I × K)/ ∼. Let q : I × K → F be given by q(x1, x2) = [x1, x2],
where [x1, x2] denotes the equivalence class in F of (x1, x2) ∈ I × K. We define
the height h : F → I by h[x1, x2] = x1. Notice this is well defined because points
identified in the construction of F have the same coordinate in I. We define a
metric d on F by

d(x, y) = inf{H1(p) : q(p) is a path joining x and y},
where p ⊂ I ×K. In [14] it is shown that any pair of points can be connected by a
path and so the metric d is well defined. For p ∈ F we denote by dp the map from
F to R given by y 7→ dp(y) := d(y, p). Clearly this map is 1-Lipschitz for any p ∈ F .
The following proposition gives information about geodesics [14, Proposition 1.1].

Proposition 2.2. Fix x, y ∈ F with h(x) ≤ h(y). Let [a, b] ⊂ I be an interval of
minimum length that contains the heights of x and y and all the wormhole levels
needed to connect those points with a path. Let p be any path starting from x, going
down to height a, then up to height b, then down to y.

Then p is a geodesic connecting x and y. All geodesics from x to y are of that
form for some interval [a′, b′] such that b′ − a′ = b− a.

We will call the interval [a, b] in Proposition 2.2 a minimal height interval for
x and y. If h(x) ≥ h(y) we use the same terminology, but the geodesic will begin
at y, then go down to height a, then up to height b, then down to x. The follow-
ing Proposition is [14, Proposition 1.2]. It relates minimal height intervals to the
distance between points.

Proposition 2.3. Let x, y ∈ F with a minimal height interval [a, b]. Then

d(x, y) = 2b− 2a− |h(x)− h(y)|.

Let Q := 1 + (ln 2/ ln 3). It is shown in [14] that F is Ahflors Q-regular with
respect to the metric d. This means there exists a constant C ≥ 1 such that

C−1RQ ≤ HQ(B(x,R)) ≤ CRQ

for all x ∈ F and R > 0.

Definition 2.4. Laakso space is the set of equivalence classes F := (I × K)/ ∼
equipped with the metric d and Hausdorff dimension HQ.

2.2. Differentiability of Functions on the Laakso Space. We now define what
we mean by directional differentiability and differentiability.

Definition 2.5. Let f : F → R and x = [x1, x2] ∈ F .
Suppose x is not a wormhole. Whenever the limit exists, we define

(2.1) fI(x) := lim
t→0

f [x1 + t, x2]− f [x1, x2]

t
.

The limit is one-sided if x1 = 0 or 1.



MAXIMAL DIRECTIONAL DERIVATIVES IN LAAKSO SPACE 5

Suppose x is a wormhole of order n and (x1, x2) ∈ I ×K is the representative of
x with the smaller value of x2. Whenever the limit exists, we define

fL(x) := lim
t→0

f [x1 + t, x2]− f [x1, x2]

t

fR(x) := lim
t→0

f [x1 + t, x2 + (2/3n)]− f [x1, x2 + (2/3n)]

t
.

If fL(x) and fR(x) exist and are equal, we say that fI(x) exists and define it to be
the common value. The limits are one-sided if x1 = 0.

Definition 2.6. Let f : F → R and x ∈ F . We say that f is differentiable at x if
there exists Df(x) ∈ R such that

lim
y→x

f(y)− f(x)−Df(x)(h(y)− h(x))

d(y, x)
= 0.

We will study the relationship between directional derivatives and differentiabil-
ity in Laakso space. The following definition of maximal directional derivatives is
motivated by Proposition 3.2.

Definition 2.7. Let f : F → R be Lipschitz and x ∈ F . Suppose fI(x) exists and
|fI(x)| = Lip(f). Then we say that f has a maximal directional derivative at x.

We define M to be the set of x ∈ F for which the following implication holds
true. Suppose a Lipschitz map f : F → R has a maximal directional derivative at
x. Then f is differentiable at x.

The following definition will be helpful in investigating M . Recall inf ∅ =∞.

Definition 2.8. For any t ∈ (0, 1) and n ∈ N, we define

(2.2) D+
n (t) := inf{s > 0 : t+ s ∈ Jn},

(2.3) D−n (t) := inf{s > 0 : t− s ∈ Jn}.

We define S to be the set of t ∈ (0, 1) for which there is C(t) ≥ 1, N(t) ∈ N so that

(2.4) C(t)−1 ≤ D+
n (t)

D−n (t)
≤ C(t) for n ≥ N(t).

For any t ∈ (0, 1), D+
n (t) and D−n (t) are non-zero and are finite for sufficiently

large n. Notice that S 6= ∅; for instance Jn ⊂ S for all n ≥ 1.
Laakso space is a PI space, so admits a differentiable structure of charts with

respect to which Lipschitz functions are almost everywhere differentiable [5, 14].
It seems to be understood by researchers in the field that one can choose a single
chart consisting of the whole Laakso space together with the height map, giving
the definition of differentiability in Definition 2.6. However, we were unable to find
any clear proof in the literature. Since these ideas are important motivation for the
present paper, we justify this by proving the following theorem in the Section 5.

Theorem 2.9. Every Lipschitz function f : F → R is differentiable almost every-
where.

We do not claim that Theorem 2.9 is new or that the proof is original. Some of
the ideas for the proof used come from the paper [4] and from discussions of the
third author with David Bate and David Preiss.
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2.3. Porous Sets. We now define porous sets. They provide a way to say a set is
small or exceptional in a very strong sense.

Definition 2.10. A set P in a metric space (X, d) is porous if there exists 0 < ρ < 1
such that for all x ∈ P and δ > 0, there exists y ∈ X with d(y, x) < δ such that

B(y, ρd(y, x)) ∩ P = ∅.
A set is called σ-porous if it is a countable union of porous sets.

Clearly porosity is sensitive to the choice of metric. Unless otherwise stated, we
will use Euclidean distance on I and the metric d on F .

Recall that a subset of a metric space is of first category or meager if it is a
countable union of nowhere dense sets. A property of points in a metric space
holds for typical points if the set where it does not hold is of first category. Clearly
every porous set is nowhere dense and every σ-porous set is of first category. In
the case of a metric measure space (X, d, µ) equipped with a doubling measure µ,
including the Laakso space F , porous sets have measure zero. This is well known.
For an explicit proof one could follow the steps in [23], which do not rely on the
Carnot group structure in that paper.

3. Maximal Directional Derivatives and Differentiability

In this section we classify geometrically the set of points where maximality of a
directional derivative implies differentiability. We then show this set is σ-porous,
so intuitively the set is very small.

3.1. Directional Derivatives. We first show that differentiability is a stronger
requirement than directional differentiability as one would expect.

Lemma 3.1. If a function f : F → R is differentiable at a point x ∈ F with
derivative Df(x), then fI(x) exists and equals Df(x).

For any x ∈ F , there exists a Lipschitz function f : F → R such that fI(x) exists
but f is not differentiable at x.

Proof. For the first part, first suppose that f is differentiable at x = [x1, x2] ∈ F
with derivative Df(x) and assume that x is not a wormhole. Then we have

0 = lim
t→0

f [x1 + t, x2]− f(x)−Df(x)(h[x1 + t, x2]− h(x))

d([x1 + t, x2], x)

= lim
t→0

f [x1 + t, x2]− f(x)− t ·Df(x)

t

= lim
t→0

f [x1 + t, x2]− f(x)

t
−Df(x).

Hence fI(x) exists and equals Df(x). The case in which x is a wormhole is done
by computing fL and fR separately.

For the second part, first fix x ∈ F and assume x1 /∈ {0, 1}. Let V denote the line
through x in the I direction. Recall the definitions of D+

n and D−n from (2.2) and
(2.3). Fix N ∈ N sufficiently large that D+

n (x1), D−n (x1) are finite for all n ≥ N . If
x is a wormhole, so that x1 ∈ JM for some M , then we additionally choose N such
that N > M . Next, for each n ≥ N we define the following points:

• un is the point vertically above x at a vertical distance D+
n (x1),

• dn is the point vertically below x at a vertical distance D−n (x1),
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• yn is the point obtained by starting at x, travelling up to un, using the
wormhole to jump to the identified point, then travelling back down to the
point with the same height as x.

Let A = V ∪ {yn : n ≥ N} and define f : A→ R by

f |V = 0 and f(yn) = min(D+
n (x1), D−n (x1)) for n ≥ N.

Clearly the directional derivative fI(x) exists and equals 0.
Notice d(x, yn) = min(2D+

n (x1), 2D−n (x1)) for all n ≥ N . This gives

f(yn)− f(x)

d(yn, x)
=

min(D+
n (x1), D−n (x1))

min(2D+
n (x1), 2D−n (x1))

=
1

2
6→ 0.

Hence f is not differentiable at x.
To see that f is Lipschitz it will suffice to estimate the values of |f(yn)− f(un)|,

|f(yn)− f(dn)|, and |f(yn)− f(ym)| for n,m ≥ N . First notice that for n ≥ N .

|f(yn)− f(un)| = min(D+
n (x1), D−n (x1)) ≤ D+

n (x1) = d(yn, un)

and

|f(yn)− f(dn)| = min(D+
n (x1), D−n (x1)) ≤ D−n (x1) = d(yn, dn).

Now suppose n,m ≥ N . Notice that we can choose a geodesic from yn to ym which
passes either through un or through dn. Suppose one passes through un. Then

|f(yn)− f(ym)| ≤ |f(yn)− f(un)|+ |f(un)− f(ym)|
≤ d(yn, un) + d(un, ym).

= d(yn, ym).

A similar argument applies if the geodesic passes through dn rather than un. This
shows that f : A → R is 1-Lipschitz. Extending f to a Lipschitz function on F
proves the second part of the lemma in the case x1 /∈ {0, 1}. The proof is similar if
x1 = 0 or x1 = 1, with adjustments to make the construction one-sided. �

We next show the Lipschitz constant can be recovered as the supremum of di-
rectional derivatives. This justifies our definition of maximal directional derivative.

Proposition 3.2. Let f : F → R be Lipschitz. Then

Lip(f) = sup {|fI(x)| : x ∈ F and fI(x) exists} .

Proof. Temporarily define LipD(f) = sup{|fI(x)| : x ∈ F and fI(x) exists}. Fix
x = [x1, x2] ∈ F such that fI(x) exists. If x is not a wormhole, then

|fI(x)| =
∣∣∣∣limt→0

f [x1 + t, x2]− f(x)

t

∣∣∣∣
≤ lim sup

t→0

Lip(f) · d([x1 + t, x2], x)

t

= Lip(f).

The same argument applies when x is a wormhole, since fI(x) = fL(x) = fR(x).
This proves that LipD(f) ≤ Lip(f).

Next fix x, y ∈ F and let L = d(x, y). Choose a geodesic γ : [0, L] → F from
x to y which is a concatenation of countably many lines in the I-direction. More
precisely, there is a decomposition [0, L] = ∪∞i=1Ii so that for i ≥ 1:

• Ii ⊂ [0, L] are closed intervals overlapping only pairwise at endpoints.



8 MARCO CAPOLLI, ANDREA PINAMONTI, AND GARETH SPEIGHT

• There are ai ∈ [0, 1] and xi ∈ K so that γ|Ii(t) = [ai ± t, xi].
Since f ◦ γ is absolutely continuous, we can estimate as follows:

|f(y)− f(x)| = |f(γ(L))− f(γ(0))|

=

∣∣∣∣∣
∫ L

0

(f ◦ γ)′(s) ds

∣∣∣∣∣
≤ L sup{|(f ◦ γ)′(s)| : s ∈ (0, L) and (f ◦ γ)′(s) exists}
≤ LLipD(f).

Since L = d(x, y), this gives Lip(f) ≤ LipD(f) and completes the proof. �

3.2. Relationship Between M and S. Recall the set M from Definition 2.7 and
the set S from Definition 2.8. To begin studying the relationship between them,
we start with the following simple lemma.

Lemma 3.3. The following statements hold.

(1) For any t ∈ (0, 1), we have for all sufficiently large n

D+
n (t) ≤ 2/3n and D−n (t) ≤ 2/3n.

(2) For any t ∈ S, we have for all sufficiently large n

D+
n (t) ≥ c(t)/3n and D−n (t) ≥ c(t)/3n,

where c(t) = 1/(1 + C(t)).
(3) For any t ∈ (0, 1) \ S, we have

lim sup
n→∞

D+
n (t)

D−n (t)
=∞ or lim sup

n→∞

D−n (t)

D+
n (t)

=∞.

Proof. Statement (1) holds because adjacent elements of Jn are separated by at
most a distance 2/3n away from heights 0 and 1; the factor 2 is necessary because
of the requirement mn > 0 in the definition of Jn.

Statement (2) follows from the estimate

1/3n ≤ D+
n (t) +D−n (t) ≤ (1 + C(t))D+

n (t),

which yields D+
n (t) ≥ c(t)/3n with c(t) = 1/(1 + C(t)). A similar argument yields

the estimate for D−n (t).
Statement (3) follows from negating the definition of S. �

Proposition 3.4. Suppose x = [x1, x2] ∈ F with x1 ∈ S. Then x ∈ M . In other
words, every Lipschitz map f : F → R with a maximal directional derivative at the
point x is also differentiable at x.

Proof. Fix f : F → R Lipschitz with |fI(x)| = Lip(f). Without loss of generality
we assume fI(x) = Lip(f), otherwise replace f by −f . Let L := Lip(f). We show

(3.1) lim
y→x

f(y)− f(x)− L(h(y)− h(x))

d(y, x)
= 0.

Fix N(x1) ∈ N, C(x1) ≥ 1, and 0 < c(x1) < 1 such that (2.4) and Lemma 3.3(2)
hold with t = x1 for all n ≥ N(x1).

Case 1: Suppose x is not a wormhole. Fix ε > 0. Let y ∈ F be sufficiently close
to x in a sense to be made precise below. Assume y1 ≥ x1; the case y1 < x1 is
similar. Let N be the minimal n ∈ N for which every path connecting x and y must
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pass through a point of F whose height belongs to Jn. By making y sufficiently
close to x, we may assume that N ≥ N(x1). Since every path connecting x and y
must pass through a height in JN , it follows that

(3.2) d(x, y) ≥ min{D+
N (x1), D−N (x1)} ≥ c(x1)/3N ,

where the fact N ≥ N(x1) and Lemma 3.3(2) was used for the second inequality.
Let zN := [x1 − 2/3N , x2]. Using fI(x) = L and assuming y is sufficiently close

to x, which makes N sufficiently large, we can ensure

f(zN )− f(x) ≤ L(h(zN )− h(x)) + (ε/3N ).

Notice that

h(y)− h(zN ) ≥ h(x)− h(zN ) = 2/3N

and in any interval of length 2/3N we can find elements of Jn for all n ≥ N . Hence
d(y, zN ) = h(y)− h(zN ). Using (3.2) for the final line, we now estimate as follows

f(y)− f(x) = (f(y)− f(zN )) + (f(zN )− f(x))

≤ Ld(y, zN ) + L(h(zN )− h(x)) + (ε/3N )

= L(h(y)− h(zN )) + L(h(zN )− h(x)) + (ε/3N )

= L(h(y)− h(x)) + (ε/c(x1))d(x, y).

For the opposite inequality, let wN := [y1 + 2/3N , x2]. Provided y is sufficiently
close to x, which ensures y1 is close to x1 and N is sufficiently large, we may use
fI(x) = L to obtain

f(wN )− f(x) ≥ L(h(wN )− h(x))− ε(h(wN )− h(x)).

Since any interval of length 2/3N contains elements of Jn for all n ≥ N , we have
d(y, wN ) = h(wN )− h(y). Using (3.2) for the final line, we estimate as follows

f(y)− f(x) = (f(y)− f(wN )) + (f(wN )− f(x))

≥ −Ld(y, wN ) + L(h(wN )− h(x))− ε(h(wN )− h(x))

= L(h(y)− h(wN ) + h(wN )− h(x))− ε((h(y)− h(x) + (2/3N ))

≥ L(h(y)− h(x))− εd(x, y)(1 + 2/c(x1)).

Hence, for y sufficiently close to x,

−ε(1 + 2/c(x1)) ≤ f(x)− f(y)− L(h(x)− h(y))

d(x, y)
≤ ε/c(x1)

which proves the limit (3.1).
Case 2: Suppose x is a wormhole of order K ≥ 1, so x1 ∈ JK . The argument

is similar to that of Case 1, but we give the details for completeness. Let x2 be
the smaller of the two elements of K satisfying x = [x1, x2]. Fix ε > 0. Let y ∈ F
be sufficiently close to x in a sense to be made precise below. Assume y1 ≥ x1.
The case y1 < x1 is similar. Let N be the minimal n ∈ N for which every path
connecting x and y must pass through a height in Jn \JK . By making y sufficiently
close to x, we may assume that N ≥ N(x1). Since every path connecting x and y
must pass through a height in JN , it follows as before that

d(x, y) ≥ min{D+
N (x1), D−N (x1)} ≥ c(x1)/3N .
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Let zN = [x1 − 2/3N , x2]. Using fI(x) = L and assuming y is sufficiently close
to x, we have

f(zN )− f(x) ≤ L(h(zN )− h(x)) + (ε/3N ).

Notice that

h(y)− h(zN ) ≥ h(x)− h(zN ) = 2/3N

and in any interval of length 2/3N we can find elements of Jn for all n ≥ N . Hence
d(y, zN ) = h(y)− h(zN ), so we can estimate as follows

f(y)− f(x) = (f(y)− f(zN )) + (f(zN )− f(x))

≤ Ld(y, zN ) + L(h(zN )− h(x)) + (ε/3N )

= L(h(y)− h(zN )) + L(h(zN )− h(x)) + (ε/3N )

= L(h(y)− h(x)) + (ε/c(x1))d(x, y).

For the opposite inequality, fix p ⊂ I×K such that q(p) is a path joining x with
y and H1(p) = d(x, y). If (x1, x2) ∈ p we let wN := [y1 + 2/3N , x2]. Otherwise p
contains (x1, x2 + 2/3K) and we let wN := [y1 + 2/3N , x2 + 2/3K ]. With this choice
of wN , the points y and wN are separated only by jumps of level n ≥ N . Assuming
y is sufficiently close to x, we may use fI(x) = L to obtain

f(wN )− f(x) ≥ L(h(wN )− h(x))− ε(h(wN )− h(x)).

Since any interval of length 2/3N contains elements of Jn for all n ≥ N , we have
d(y, wN ) = h(wN )− h(y). Using (3.2) for the final line, we estimate as follows

f(y)− f(x) = (f(y)− f(wN )) + (f(wN )− f(x))

≥ −Ld(y, wN ) + L(h(wN )− h(x))− ε(h(wN )− h(x))

= L(h(y)− h(wN ) + h(wN )− h(x))− ε(h(y)− h(x) + (2/3N ))

≥ L(h(y)− h(x))− εd(x, y)(1 + (2/c(x1))).

Hence for y sufficiently close to x,

−ε(1 + 2/c(x1)) ≤ f(x)− f(y)− L(h(x)− h(y))

d(x, y)
≤ ε/c(x1)

which proves the limit (3.1) also for the case when x is a wormhole and y1 ≥ x1. �

Proposition 3.5. Suppose x = [x1, x2] ∈ F with x1 /∈ S. Then x /∈ M . In other
words, there exists a Lipschitz map f : F → R with a maximal directional derivative
at x which is not differentiable at x.

Proof. We give the proof in the case x1 ∈ (0, 1) \ S. If x1 ∈ {0, 1} the proof would
be largely the same, except the construction is made only on one side of x; vertically
above if x1 = 0 and vertically below if x1 = 1.

For simplicity let D+
n := D+

n (x1) and D−n := D−n (x1). It follows that either

lim sup
n→∞

D−n /D
+
n =∞ or lim sup

n→∞
D+
n /D

−
n =∞

We assume that lim supn→∞D−n /D
+
n =∞; the argument in the other case is similar

with the construction inverted in the I direction. Choose a strictly increasing
sequence nk such that D−nk

, D+
nk

are finite for all k ≥ 1 and D−nk
/D+

nk
→∞. Since
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D+
n → 0 and D−n → 0 as n → ∞, by taking a subsequence if necessary, we may

assume D−nk
and D+

nk
are each strictly decreasing and for every k ≥ 1,

2D−nk+1
/D−nk

< 1/nk and 2D+
nk
/D−nk

< 1/nk.

Fix a sequence 0 < θnk
< 1 which satisfies θnk

→ 1 as k →∞ and

(3.3) θnk
≤

(
1−

D+
nk

+D−nk+1

D−nk

)
/

(
1−

D−nk+1

D−nk

)
for all k ≥ 1.

Note that, since the right hand side converges to 1 as k →∞, these conditions on
θnk

can be realized. Let J := [x1 −D−n1
, x1 +D+

n1
] ⊂ R. Define ϕ : J → [0, 1] by

ϕ(t) = 1 if t ≥ x1

and

ϕ(t) = θnk
if x1 −D−nk

≤ t < x1 −D−nk+1
for some k ≥ 1.

Since x1 /∈ S, we know that x is not a wormhole level. For all k ≥ 1, let ynk
∈ F

be the endpoint of the path which starts at x, travels vertically up along the line
segment to height x1 +D+

nk
, jumps using the level Jnk

, then travels vertically down
along the line segment to height x1. Thus ynk

= [x1, x2 ± 2/3nk ] where the choice
of sign may depend on k. Since D+

nk
< D−nk

, we have d(ynk
, x) = 2D+

nk
. Now let

A := {[t, x2] ∈ F : t ∈ J} ∪ {ynk
: k ∈ N}.

Since x is not a wormhole level, the sets {[t, x2] ∈ F : t ∈ J} and {ynk
: k ∈ N} are

disjoint. Hence we may define f : A→ R by

f [t, x2] =

∫ t

x1

ϕ(s) ds for t ∈ J

and

f(ynk
) = D+

nk
for k ∈ N.

Notice that f(x) = 0.

Claim. f is 1-Lipschitz with respect to the restriction of d to A.

Proof of Claim. Suppose a = [t, x2] and b = [s, x2] for some t, s ∈ J . Then |ϕ| ≤ 1
implies

|f(a)− f(b)| ≤ |t− s| = d(a, b).

Hence f is 1-Lipschitz restricted to the set {[t, x2] ∈ F : t ∈ J}.
Next let unk

be the point reached by starting at x and travelling vertically up
along the line segment to height x1 + D+

nk
. Similarly let dnk

be the point reached
by starting at x and travelling vertically down along the line segment to height
x1 −D−nk

. It follows from the definition of f that

f(unk
) = D+

nk
= f(ynk

).
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On the other hand we have, using the definitions of f and ϕ,

f(ynk
)− f(dnk

) = f(unk
)− f(dnk

)

=

∫ x1+D+
nk

x1−D−nk

ϕ(s) ds

= θnk
(D−nk

−D−nk+1
) +

∫ x1

x1−D−nk+1

ϕ(s) ds+D+
nk
.

Using |ϕ| ≤ 1, d(dnk
, ynk

) = D−nk
, and the choice of θnk

in (3.3), we obtain

|f(ynk
)− f(dnk

)|
d(dnk

, ynk
)

≤ θnk

(
1−

D−nk+1

D−nk

)
+
D−nk+1

D−nk

+
D+
nk

D−nk

≤ 1.

Suppose a = [t, x2] for some t ∈ J and k ≥ 1. Every geodesic from ynk
to a must

pass through either unk
or dnk

. Denote such a point by znk
; the argument will be

the same in either case. Then we have

d(ynk
, a) = d(ynk

, znk
) + d(znk

, a).

Using also what was proved above, we have

|f(ynk
)− f(a)| ≤ |f(ynk

)− f(znk
)|+ |f(znk

)− f(a)|
≤ d(ynk

, znk
) + d(znk

, a)

= d(ynk
, a).

It remains to estimate |f(ynk
)−f(ynl

)| for k > l ≥ 1. Define points unl
, unk

and
dnl

, dnk
as before. A geodesic from ynl

to ynk
is obtained by the following curve:

(1) Start at ynl
,

(2) Travel vertically upward to the wormhole unl
,

(3) Jump using wormhole unl
and travel downwards to the wormhole unk

,
(4) Jump using wormhole unk

and travel downwards to the point ynk
.

Thus d(ynl
, ynk

) = 2D+
nl

for k > l. Hence we can estimate

|f(ynl
)− f(ynk

)| = |D+
nl
−D+

nk
|

= D+
nl
−D+

nk

≤ d(ynl
, ynk

).

This concludes the proof of the claim. �

Now extend f arbitrarily to a 1-Lipschitz function f : F → R.

Claim. The directional derivative fI(x) exists and equals 1.

Proof of Claim. If t ∈ [−D−n1
, D+

n1
] then

f [x1 + t, x2]− f [x1, x2]

t
= 1 +

1

t

∫ x1+t

x1

(ϕ(s)− 1) ds.

Since ϕ(s) = 1 for s ≥ x1 we obtain

f [x1 + t, x2]− f [x1, x2]

t
= 1 for all t ≥ 0.
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Fix ε > 0 and fix K large enough so that |θnk
− 1| < ε for all k ≥ K. Then for

0 > t > −D−nK
we obtain ∣∣∣∣1t

∫ x1+t

x1

(ϕ(s)− 1) ds

∣∣∣∣ ≤ ε.
This proves the claim. �

Claim. f is not differentiable at x.

Proof of Claim. Recall that f(x) = 0, f(ynk
) = D+

nk
and d(ynk

, x) = 2D+
nk

. Hence
for any λ ∈ R we have,

f(ynk
)− f(x)− λ(h(ynk

)− h(x))

d(ynk
, x)

=
f(ynk

)− f(x)

d(ynk
, x)

=
1

2
.

Since ynk
→ x as k →∞, this shows that f is not differentiable at x. �

This proves the proposition. �

3.3. Porosity. We have now shown that M = {[x1, x2] : x1 ∈ S}. We now study
the set S and show that it is σ-porous, hence a relatively small set.

Lemma 3.6. If A ⊂ I is porous (respectively σ-porous), then h−1(A) ⊂ F is also
porous (respectively σ-porous).

Proof. Since A is porous in I, there exists C > 0 such that for every t ∈ A there is
a sequence tn ∈ I with tn → t such that

(3.4) B(tn, C|tn − t|) ∩A = ∅ for every n ∈ N.

Fix [t, x] ∈ h−1(A). Then t ∈ A. Hence there exists a sequence tn ∈ I with tn → t
such that (3.4) holds. Consider the sequence [tn, x] ∈ F . Clearly [tn, x] → [t, x]
with respect to the natural metric on F . Let

Bn = B([tn, x], Cd([tn, x], [t, x])).

We claim that

(3.5) Bn ∩ h−1(A) = ∅. for every n ∈ N

To this end, fix n ∈ N and suppose [s, y] ∈ Bn. Then

|s− tn| ≤ d([s, y], [tn, x])

≤ Cd([tn, x], [t, x])

= C|tn − t|.

Hence s ∈ B(tn, C|tn − t|). By (3.4), this implies s /∈ A. Hence [s, y] /∈ h−1(A).
This shows (3.5), so h−1(A) is porous in F as required. �

We can now prove Proposition 3.7.

Proposition 3.7. The set S ⊂ I is σ-porous in I, hence first category and of
Lebesgue measure zero.

The set M ⊂ F is σ-porous in F , hence first category and of HQ measure zero.
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Proof. We can write

S =
⋃
C∈Q
C>1

⋃
N∈N

SC,N

where

SC,N =

{
t ∈ (0, 1) : D−n (t), D+

n (t) <∞ and C−1 ≤ D+
n (t)

D−n (t)
≤ C for all n ≥ N

}
.

Fix C ∈ Q with C > 1 and N ∈ N. We show that the set SC,N ⊂ (0, 1) is porous.
Fix 0 < λ < 1/2 such that (1 − λ)/λ > C. Let t ∈ Jn for some n ≥ N . We will
show that:

(3.6)

(
t, t+

λ

3n

)
∩ SC,N = ∅.

First fix s ∈ (t, t + λ/3n). Then D−n (s) ≤ λ/3n and D+
n (s) ≥ 1/3n − λ/3n. Com-

bining these inequalities gives

D+
n (s)

D−n (s)
≥ 1− λ

λ
> C.

Hence s /∈ SC,N , which establishes (3.6).
Next fix t0 ∈ SC,N and δ > 0. Choose n > N with 2/3n < δ and t ∈ Jn with

|t − t0| < 2/3n. Then (t, t + λ/3n) ∩ SC,N = ∅. This shows that SC,N is porous
and hence S is σ-porous.

The second part of the proposition follows by Lemma 3.6 and M = h−1(S).
Finally, for the implication in each case, we recall porous sets are nowhere dense
and have measure zero with respect to doubling measures. Hence σ-porous sets are
first category and measure zero with respect to doubling measures. �

Theorem 3.8 (Restatement of Theorem 1.1). Let M be the set of x ∈ F such that
whenever f : F → R is Lipschitz with directional derivative fI(x) = ±Lip(f) at x,
then f is differentiable at x.

Then M = {[x1, x2] : x1 ∈ S}. In particular M is σ-porous.

Proof. The theorem follows from combining Proposition 3.4, Proposition 3.5, and
Proposition 3.7. �

4. Differentiability of the Distance Function

In this section we study where the distance to a fixed point is differentiable. We
show the set where the distance to a fixed point is not differentiable is σ-porous.

4.1. Analysis of Distance. We begin by proving some simple properties of the
distance map y 7→ dp(y) := d(y, p) for each fixed point p ∈ F .

Lemma 4.1. Fix p = [p1, p2] ∈ F . Suppose x = [x1, x2] ∈ F \ {p} is not a
wormhole. Then there exists 0 < ∆ < 1 such that if |t| < ∆ and y2 ∈ K with
|y2 − x2| < ∆, then

dp[x1 + t, x2] = dp[x1 + t, y2].

Proof. We divide into cases depending on whether a wormhole is needed to connect
p to x. Suppose no wormhole level is needed to connect p to x, namely x2 = p2.
Choose 0 < ∆ < 1

2 |x1−p1| sufficiently small that if y2 ∈ K with |y2−x2| < ∆, then
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the wormhole levels required to join p2 to y2 can be found in (p1, p1 + 1
2 (x1 − p1))

if x1 > p1 or in (p1 − 1
2 (p1 − x1), p1) if x1 < p1. Then for every t ∈ (−∆,∆),

dp[x1 + t, x2] = dp[x1 + t, y2] = |(x1 + t)− p1|.
This proves the lemma in the case no wormholes are needed to connect p to x.

Now suppose wormholes are needed to connect p to x, namely x2 6= p2. Define

N := min{n ∈ N : a wormhole of level n is required to join p to x}.
Choose ∆ > 0 sufficiently small that for all y2 ∈ K with |y2 − x2| < ∆:

(1) If p1 < 1 and D+
N (p1) < ∞, every wormhole level needed to join x2 to y2

can be found at heights in (p1, p1 +D+
N (p1)).

(2) If p1 > 0 and D−N (p1) < ∞, every wormhole level needed to join x2 to y2

can be founded at heights in (p1 −D−N (p1), p1).
(3) A wormhole level in JN is required to connect p2 to y2.

Now fix t ∈ (−∆,∆) and y2 ∈ K with |y2 − x2| < ∆.
Let γ be a geodesic from p to [x1 + t, x2]. Using the definition of N , either

(a) p1 < 1, D+
N (p1) <∞, γ passes through all heights in (p1, p1 +D+

N (p1)), or

(b) p1 > 0, D−N (p1) <∞, γ passes through all heights in (p1 −D−N (p1), p1).

Using (1) and (2), we may modify γ without changing its length to obtain a curve
γ̃ connecting p to [x1 + t, y2]. This gives dp[x1 + t, y2] ≤ dp[x1 + t, x2].

Conversely, let η be a geodesic from p to [x1 + t, y2]. Using (3), it follows that (a)
or (b) hold again. Using (1) and (2), we can modify η without changing its length to
obtain a curve η̃ connecting p to [x1 +t, x2]. This gives dp[x1 +t, y2] ≥ dp[x1 +t, x2].

Combining the two inequalities concludes the proof. �

The proof of the following lemma is similar to that of Lemma 4.1.

Lemma 4.2. Fix p ∈ F . Suppose x ∈ F \ {p} is a wormhole. Fix x1 ∈ I and
x2, x

′
2 ∈ K with x2 < x′2 such that x = [x1, x2] = [x1, x

′
2]. Then there exists

0 < ∆ < 1 such that, for |t| < ∆:

• If y2 ∈ K with |y2 − x2| < ∆, then dp[x1 + t, x2] = dp[x1 + t, y2].
• If y2 ∈ K with |y2 − x′2| < ∆, then dp[x1 + t, x′2] = dp[x1 + t, y2].

Proposition 4.3. Fix p ∈ F . Then the map dp : F → R is differentiable at a point
x ∈ F \ {p} if and only if the directional derivative (dp)I(x) exists.

Proof. Clearly if dp is differentiable at a point x ∈ F , then the directional derivative
(dp)I(x) exists. We show the converse. Suppose x ∈ F and D := (dp)I(x) exists.

Assume x is not a wormhole and let ε > 0. Using the definition of the directional
derivative, we can find δ > 0 such that whenever t ∈ I with 0 < |t| < δ we have

|dp[x1 + t, x2]− dp[x1, x2]− tD| < ε|t|.
Fix ∆ > 0 as in Lemma 4.1. If 0 < |t| < min(δ,∆) and y2 ∈ K with |y2 − x2| < ∆,

|dp[x1 + t, y2]− dp[x1, x2]− tD| < ε|t|.
Every y ∈ F sufficiently close to x can be represented as y = [x1 + t, y2] where
0 < |t| < min(δ,∆) and y2 ∈ K with |y2 − x2| < ∆. In addition t = h(y) − h(x)
and |t| ≤ d(x, y). Hence for all y close enough to x we have

(4.1) |dp(y)− dp(x)−D(h(y)− h(x))| < εd(x, y).

Hence dp is differentiable at x with derivative D = (dp)I(x).
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If x is a wormhole the proof is similar, using Lemma 4.2 instead. �

Due to Proposition 4.3 we can reduce the study of the differentiability of dp(·)
to the study of the directional derivative. Before doing so we give two definitions.

Definition 4.4. For each point p = [p1, p2] ∈ F , we define the sets of points which
can be reached from p using different numbers of jumps as follows.

• We define V p0 to be the set of points which can be reached starting at p
with no additional jumps. If p is not a wormhole then V p0 is a single line in
the I direction through p. If p is a wormhole then V p0 consists of two lines.
• If N is a positive integer and p is not a wormhole of level N , we define V pN to

be the set of all points in F that can be reached from p by jumping exactly
once through a wormhole of level N . More explicitly, if p = [p1, p2] ∈ F is
not a wormhole then

V pN = {[t, p2 ± 2/3N ] : t ∈ [0, 1]},
where the choice of + or − is uniquely determined by p2 and N . Similarly
if p = [p1, p2] = [p1, p

′
2] with p2 6= p′2 is a wormhole of level M 6= N , then

V pN is composed of two vertical lines:

V pN = {[t, p2 ± 2/3N ] : t ∈ [0, 1]} ∪ {[t, p′2 ± 2/3N ] : t ∈ [0, 1]},
where the sign is determined by p and N .

• More generally, let N1 < N2 < . . . be positive integers and assume p is
not a wormhole of level Ni for any i. We define V p∆ to be the collection of
points in F which can be reached from p by jumping exactly once in each
wormhole of level N1, N2, · · · . More explicitly, let ∆ = ± 2

3N1
± 2

3N2
± . . .

where the signs are uniquely determined by p and N1, N2, · · · . If p is not a
wormhole, then

V p∆ = {[t, p2 + ∆] : t ∈ [0, 1]} .
Similarly if p = [p1, p2] = [p1, p

′
2] with p2 6= p′2 is a wormhole, then

V p∆ = {[t, p2 + ∆] : t ∈ [0, 1]} ∪ {[t, p′2 + ∆] : t ∈ [0, 1]} .

Definition 4.5. An upward going segment in F is a curve γ : [a, b]→ F of the form
γ(t) = [λ+ t, µ] for some λ ∈ [0, 1], µ ∈ K. Similarly a downward going segment is
a curve γ : [a, b]→ F of the form γ(t) = [λ− t, µ] for some λ ∈ [0, 1], µ ∈ K.

A curve γ : [a, b] → F is upward (downward) ending if there exists δ > 0 such
that the restriction of γ to [b− δ, b] is an upward (downward) going segment.

We divide the study of the directional derivative of dp(·) into four steps, depend-
ing on how many jumps are required to join p to the point under consideration.
The following proposition is immediate.

Proposition 4.6. Let p ∈ F . Then there is only one point in V p0 where the
directional derivative of dp(·) does not exist, namely the point p itself.

We now study differentiability at points reached from p by exactly one jump.
First we make the following observation.

Lemma 4.7. Let p ∈ F . Suppose for a point q 6= p ∈ F there exists both a
downward ending geodesic and an upward ending geodesic from p to q. Then dp is
not differentiable at q.
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Proof. Let p and q = [q1, q2] be as in the hypothesis. Let γu : [a, b] → F be the
upward ending geodesic and γd : [a, b] → F the downward ending one (we can
take the same starting interval up to parametrizations). From Definition 4.5 there
exists δ > 0 such that the restriction of both geodesics to the interval [b − δ, b] is
respectively an upward ending or downward ending segment. Take −δ < t < δ.
Then the point [q1 + t, q2] belongs to either γu([b− δ, b]) or γd([b− δ, b]) for t < 0 or
t > 0 respectively. To define a geodesic that connects p to [q1 + t, q2] we can use the
restriction of γu or γd to the interval [a, b− |t|]. By construction, the length of this
geodesic is the length of γu (or γd) minus |t|. Hence dp([q1 + t, q2])− dp(q) = −|t|
and the limit (2.1) does not exist. �

Proposition 4.8. Let p ∈ F and fix an integer N > 0, different from M if p is a
wormhole of level M . Then there are only a finite number of points in V pN where
the directional derivative of dp(·) does not exist.

Proof. Let p = [p1, p2] and N be as in the hypothesis. We prove the proposition in
the case p is not a wormhole. If p is a wormhole then the proof is similar except
the argument is repeated twice, once for each vertical line in V pN . We split the
argument into several cases.

Claim 4.9. Suppose D+
N (p1) exists but D−N (p1) does not. Then there is only one

point in V pN at which (dp)I does not exist. This point is x = [p1 +D+
N (p1), p2].

A similar statement holds if D−N (p1) exists and D+
N (p1) does not. Then the point

of non-differentiability is x = [p1 −D−N (p1), p2].

Proof. Suppose that only D+
N (p1) exists; the other case is similar. First we show

that dp(·) is not differentiable at the point x defined above. A point y ∈ V pN close to

x can be written as y = [p1 +D+
N (p1)+ t, p′2], where p′2 = p2± 2

3N with the choice of
+ or − uniquely determined by p2. Note that t can take both positive and negative
values. To go from p to y with a geodesic we must start from p, go up to height
p1 +D+

N (p1), jump to the line V pN through the wormhole x and then go up or down
by height t to the point y. This has the effect of adding a segment of length |t| to
the original geodesic that connected p to x. Since D−N (p1) does not exist, this new
path is clearly a geodesic that connects p to y and dp(y) − dp(x) = |t|. Hence the
limit (2.1) for the function dp(·) does not exists at x.

We are left to show that (dp)I exists at any other point y ∈ V pN . Take a point

y = [y1, p
′
2] ∈ V pN with y1 > p1 +D+

N (p1). For t such that p1 +D+
N (p1) < y1 + t ≤ 1

we have dp([y1 + t, p2]) − dp(y) = t so the limit (2.1) exists and is equal to 1.
Similarly, if y1 < p1 + D+

N (p1), we see that dp([y1 + t, p2]) − dp(y) = −t for t
sufficiently close to 0 so the limit (2.1) exists and is equal to −1. Hence dp(·) is
differentiable at any point y 6= x ∈ V pN . �

Claim 4.10. Suppose that both D+
N (p1) and D−N (p1) exist. In this case there are

exactly three points in V pN at which (dp)I does not exist:

• x1 := [p1 +D+
N (p1), p′2],

• x2 := [p1 −D−N (p1), p′2],

• x3 := [p1 + cN , p
′
2], where cN := D+

N (p1)−D−N (p1).

Proof. Note h(x1) > h(x3) > h(x2). The proof that (dp)I does not exist at the
points x1, x2 is similar to the proof of Claim 4.9. We show that (dp)I does not exist
at x3. To prove this we consider two paths γ1, γ2 from p to x3.
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The first path γ1 starts at p, goes up to height p1 + D+
N (p1), jumps in the

wormhole of level N x1, then goes down to height p1 + cN . The length of γ1 is
D+
N (p1)+(D+

N (p1)− cN ) = D+
N (p1)+D−N (p1). The second path γ2 starts at p, goes

down to height p1−D−N (p1), jumps in the wormhole of level N x2, then goes up to

height p1 + cN . The length of γ2 is D−N (p1) + (cN −D−N (p1)) = D−N (p1) +D+
N (p1).

Since both γ1 and γ2 have the same length and any geodesic from p to x3 must go
through at least the same heights as for γ1 or for γ2, it follows γ1 and γ2 are both
geodesics from p to x2. Since γ1 ends downwards and γ2 ends upwards, it follows
by Lemma 4.7 that dp is not differentiable at x3.

It remains to prove that dp(·) is differentiable at every point of V pN distinct from

x1, x2 and x3. If y = [y1, p
′
2] ∈ V pN with y1 > p1 +D+

N (p1) or y1 < p1 −D−N (p1), we
can use the same argument as in the previous claim. The remaining points are of
the type [y1, p

′
2] with p1 − D−N (p1) < y1 < p1 + D+

N (p1) and y1 6= p1 + CN . Take

y1 such that p1 + cN < y1 < p1 + D+
N (p1) (the other case works in the same way)

and consider t such that p1 + cN < y1 + t < p1 +D+
N (p1). Since the points [y1, p

′
2]

and [y1 + t, p′2] are both above x3, a geodesic from p to each point can be obtained
by shortening the same downward ending geodesic that connects p to x3 from the
previous step. Hence

dp([y1, p
′
2]) = dp(x3)− (y1 − p1 − cN )

and
dp([y1 + t, p′2]) = dp(x3)− (y1 + t− p1 − cN ).

Hence dp([y1 + t, p′2]) − dp([y1, p
′
2]) = −t, i.e. the limit (2.1) exists and dp(·) is

differentiable at y. �

This concludes the proof of the proposition. �

Now we can show what happens on vertical lines that two jumps away from p.

Proposition 4.11. Let p ∈ F and fix integers 0 < N < M , both different from W
if p is a wormhole of level W . Then there exists a finite number of points in V p∆,
where ∆ = ± 2

3N ± 2
3M and the signs are uniquely determined by p2, in which the

vertical derivative of dp(·) does not exist.

Proof. We prove the proposition under the assumption that p = [p1, p2] is not a
wormhole. When p is a wormhole we get twice as many points of non-differentiability
and a remark similar to that for Proposition 4.8 applies. Since we will only con-
sider jump levels relative to the point p, we use the simpler notation D±N , D

±
M for

D±N (p1), D±M (p1). There are several cases depending on which of D±N , D
±
M exist and

their relative positions. We first study the case when all four exist.

Suppose all four of D±N , D
±
M exist. Then we will have three possible cases.

Note that the case −D−M < −D−N < D+
N < D+

M cannot occur. Indeed, between
the height of any two wormholes of level N we can find the height of at least one
wormhole of level M for any M > N .

Case (a): −D−N < −D−M < D+
M < D+

N .
Given any x ∈ V p∆ consider a geodesic that connects p to x. Such a geodesic

must jump through a wormhole of level N and a wormhole of level M . However,
since we are in case (a), between p1 and the height of the first available wormhole
of level N there is always the height of a wormhole of level M . Suppose we follow
the same geodesic that connects p to x, except we jump only in the wormhole of
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level N and not the wormhole of level M . We arrive at a point x′ with the following
properties:

(1) x′ ∈ V pN ,
(2) h(x) = h(x′),
(3) dp(x) = dp(x

′).

Hence in V p∆ there are the same number of points at which dp is not differentiable
as there are in V pN , hence finitely many.

Case (b): −D−N < −D−M < D+
N < D+

M .

Let p′2 = p2 + ∆, cN := D+
N −D

−
N , and cM := D+

M −D
−
M . We will show that the

following are all the points of non-differentiability for dp on V p∆:

x1 = [p1 −D−N , p
′
2], x3 = [p1 −D−M , p

′
2],

x5 = [p1 +D+
N , p

′
2], x7 = [p1 +D+

M , p
′
2],

(4.2)

and

(4.3) x2 := [p1 + cN , p
′
2], x4 := [p1, p

′
2], x6 := [p1 + cM , p

′
2].

Roughly speaking, x1, x3, x5, x7 are points where geodesics split, while x2, x4, x6

are points which can be reached by both an upwards ending and downwards ending
geodesic.

Claim 4.12. The sequence h(xi) is increasing for 1 ≤ i ≤ 7.

Proof. The inequality h(x1) < h(x3) < h(x5) < h(x7) follows directly from the
definition of the points and the hypotheses of Case (b). Similarly the inequality
h(x3) < h(x4) < h(x5) follows immediately from the definition of x4. We are left
to prove h(x1) < h(x2) < h(x3) and h(x5) < h(x6) < h(x7). Clearly

h(x1) = p1 −D−N < p1 −D−N +D+
N = h(x2)

and
h(x6) = p1 +D+

M −D
−
M < p1 +D+

M = h(x7).

To prove h(x2) < h(x3) we need to show

(4.4) D+
N −D

−
N < −D−M .

Note D+
N +D−M = 1/3M since it represent the distance from a wormhole of level N

to one of the nearest wormhole of level M . Moreover, by construction, D−N > 1/3M ,

since the change in heights D−N −D
−
M is equal to 1/3M . Hence D+

N + D−M < D−N
as desired. This proves h(x2) < h(x3).

To prove h(x5) < h(x6) it suffices to show

(4.5) D+
N < D+

M −D
−
M ,

i.e. D+
N + D−M < D+

M . To see this note once again that D+
N + D−M = 1/3M and

D+
M > D+

M−D
+
N = 1/3M , from which we conclude D+

N +D−M < D+
M as desired. �

Claim 4.13. dp is not differentiable at x1, x3, x5, x7.

Proof. We first prove dp is not differentiable at x1. We will show that there exists
δ > 0 such that

dp([p1 −D−N + t, p′2])− dp(x1) = |t| for − δ < t < δ.

For 0 < t < p1 − D−N , a minimal height interval for p and [p1 − D−N − t, p′2] is

the interval [p1 − D−N − t, p1]. Hence dp([p1 − D−N − t, p′2]) = D−N + t and since
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dp(x1) = D−N , we conclude that dp([p1 − D−N − t, p′2]) − dp(x1) = t. Similarly, for

0 < t < D+
N a minimal height interval for the points p and [p1 −D−N + t, p′2] is still

the interval [p1−D−N , p1], whose length is D−N . Indeed if this were not the case then

the only other possible choice would be the interval [p1−D−N +t, p1 +D+
N ] (we recall

that a minimal height interval must contain the height of all the wormhole needed to
connect the two points) whose length is D−N+D+

N−t. This, together with our initial

choice 0 < t < D+
N , contradicts minimality since D−N + D+

N − t > D−N . Hence the

interval [p1−D−N , p1] is still the minimal height interval for p and [p1−D−N + t, p′2].

If we use this to compute the distance we get dp([p1 −D−N + t, p′2]) = D−N + t from

which we conclude that also in this case dp([p1−D−N + t, p′2])−dp(x1) = t. We now

define δ := min{p1 − D−N , D
+
N}. What we proved so far is that, for −δ < t < δ,

dp([p1 −D−N + t, p′2]) − dp(x1) = |t|, hence the limit (2.1) does not exist and dp(·)
is not differentiable at x1.

For the point x7 the proof is similar to that of x1 with minimal height interval
[p1, p1 +D+

M ].
We now show dp is not differentiable at x3. We claim the unique minimal height

interval for a geodesic from p to x3 is [p1 −D−M , p1 + D+
N ]. Comparing the length

of the geodesic from this minimal height interval with its competitors, it suffices to
check

(4.6) D+
N +D+

N +D−M < D−N +D−N −D
−
M .

Rearranging and simplifying, this is equivalent to D+
N +D−M < D−N which is exactly

(4.4). From this it follows that any geodesic from p to x3 starts at p, moves up
to height p1 +D+

N , jumps through the wormhole of level N , moves down to height

p1 −D−M , then jumps through the wormhole of level M . Any geodesic from p to a

point [p1−D−M +t, p′2] near x3 for sufficiently small t follows the same path followed

by a small movement in the I direction. Hence dp([p1−D−M + t, p′2])− dp(x3) = |t|,
leading to non-differentiability at x3.

For the point x5 the proof is similar to that of x3 and the minimal height interval
is again [p1 −D−M , p1 +D+

N ]. �

Claim 4.14. dp is not differentiable at x2, x4, x6.

Proof. We show x2, x4, x6 satisfy the hypotheses of Lemma 4.7. We begin with x2.
Note D+

N −D
−
N < −D−M from (4.4). Hence h(x2) < p1 −D−M . To get a downward

ending path γd (respectively upwards path γu), connecting p to x2, we proceed as
follows:

(1) start from p and we go up to height p1+D+
N (respectively down to p1−D−M ),

(2) jump with the wormhole of level N (respectively M) found there,
(3) go down to height p1 −D−M (respectively down to p1 −D−N ),
(4) jump with the wormhole of level M (respectively N) found there,
(5) go down (respectively up) to height p1 + cN .

To see the length of γu and γd are the same it suffices to check

D+
N +D+

N +D−M + (−D−M − cN ) = D−M + (−D−M +D−N ) + (cN +D−N )

or equivalently
2D+

N − cN = 2D−N + cN

which follows from the definition of cN . Any geodesic connecting p to x2 must pass
through either all the heights in γu or all the heights in γd. Hence γu and γd are
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both geodesics. Since γd ends downwards and γu ends upwards, it follows that dp
is non differentiable at x2.

For connecting p to x4 consider the downward (respectively upward) ending
paths obtained as follows:

(1) From p we go up to height p1 +D+
N (respectively down to p1 −D−M );

(2) we jump with the wormhole of level N (respectively M) found there;
(3) we go down to height p1 −D−M (respectively up to p1 +D+

N );
(4) we jump with the wormhole of level M (respectively N) we found there;
(5) we go up (respectively down) to height p1.

Both paths have equal length 2D+
N+2D−M . To see they are both geodesics, it suffices

to see 2D+
N + 2D−M < min(2D+

M , 2D
−
N ). However this follows from (4.4) and (4.5).

Since one path ends upwards and one path ends downward, non differentiability at
x4 then follows from Lemma 4.7.

The construction of the geodesics from p to x6 is omitted for brevity as it is
similar to the construction of the geodesics from p to x2. �

Claim 4.15. The points x1, · · · , x7 are the only points in V p∆ at which dp is not
differentiable.

Proof. If y = [y1, p
′
2] ∈ V p∆ with y1 < h(x1) or y1 > h(x7), we can use the same

argument used in the end of the proof of Claim 4.9 to show that (dp)I exists at y.
The remaining points are of the type y = [y1, p

′
2] with h(xi) < y1 < h(xi+1) for

i = 1 ≤ i ≤ 6.

Assume h(x1) < y1 < h(x2). We claim that a geodesic from p to y starts at p,
goes down to height p1−D−N , then goes up to height y1 with jumps where necessary.

The length of such a curve is 2D−N +y1−p1. To see it is a geodesic we must compare

with the competitor which starts at p, goes up to height p1 + D+
N , goes down to

height p1−D−M , then down to height y1 with jumps in between. The length of such

a curve is 2D+
N + p1 − y1. Hence we need

2D−N + y1 − p1 < 2D+
N + p1 − y1

which rearranges to

y1 < D+
N −D

−
N + p1.

This is guaranteed by the assumption y1 < h(x2). Hence dp(y) = 2D−N + y1 − p1

for all h(x1) < y1 < h(x2). It follows that (dp)I(y) = 1 in this case.

Assume h(x2) < y1 < h(x3). In this case a geodesic starts at p, goes up to height
p1 +D+

N , goes down to height p1−D−M , then goes down to height y1 with necessary
jumps in between. The natural competitor is the geodesic in the previous case and
the argument is the same with inequalities reversed. It follows that (dp)I(y) = −1
in this case.

Assume h(x3) < y1 < h(x4). We claim the natural geodesic starts at p, goes up
to height p1 +D+

N , goes down to height p1 −D−M , then up to height y1 with jumps

in between. The length of such a geodesic is 2D+
N + 2D−M + y1 − p1 so this would

imply (dp)I(y) = 1. That the proposed curve is already shorter than the one which
starts at p and goes down to height p1−D−N is contained in the previous cases. We

compare it with the curve which starts at p, goes up to height p1 +D+
M , then goes
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down to height y1 with necessary jumps in between. The length of such a curve is
2D+

M + p1 − y1. To see that the claimed geodesic is shorter we need

2D+
N + 2D−M + y1 − p1 < 2D+

M + p1 − y1

which rearranges to
D+
N +D−M −D

+
M < p1 − y1.

However we already know D+
N < D+

M − D
−
M so the required inequality is true as

long as y1 < p1 which is guaranteed by the assumption y1 < h(x4) in this case. A
similar argument applies in comparison to the curve which starts at p, goes down
to height p1 −D−M , goes up to height p1 +D+

N , then goes down to height y1.

Assume h(x4) < y1 < h(x5). We claim the geodesic in this case starts at p, goes
down to height p1 −D−M , goes up to height p1 +D+

N , then down to height y1. The

length of such a curve is 2D−M + 2D+
N + p1− y1. This can be compared to the curve

which starts at p, goes up to height p1 +D+
N , goes down to height p1 −D−M , then

goes up to height y1. This has length 2D+
N + 2D−M +y1−p1 which is clearly longer.

We can also compare to the curve which starts at p, goes up to height p1 + D+
M ,

then goes down to height y1. This has length 2D+
M + p1− y1. To see this is shorter

we need
2D−M + 2D+

N + p1 − y1 < 2D+
M + p1 − y1.

Rearranging gives D−M + D+
N < D+

M which was also established earlier. Hence
(dp)I(y) = −1 in this case.

Assume h(x5) < y1 < h(x6). We claim that the geodesic in this case starts at p,
goes down to height p1 − D−M , then goes up to height y1 with jumps in between.

The length of such a curve is 2D−M + y1− p1. This should be compared against the

curve which starts at p, goes up to height p1 + D+
M , then down to height y1 with

jumps in between. Such a curve has height 2D+
M + p1 − y1. It suffices to see

2D−M + y1 − p1 < 2D+
M + p1 − y1

which rearranges to
y1 < p1 +D+

M −D
−
M .

This in turn is guaranteed by the assumption y1 < h(x6). Hence dp(y) = 2D−M +
y1 − p1 and so (dp)I(y) = 1 in this case.

Assume h(x6) < y1 < h(x7). In this case the geodesic starts at p, goes up to
height p1 +D+

M , then down to height y1 with jumps in between. Such a curve has

height 2D+
M +p1−y1. That this is the shortest curve follows by a similar argument

to the previous case with signs reversed. Hence (dp)I(y) = −1 in this case.
�

This concludes the proof of Case (b).

Case (c): −D−M < −D−N < D+
M < D+

N .
This case works the same as in Case (b) with upwards and downwards directions

reversed and we find the same number of points.

Suppose one or more of D±N , D
±
M do not exist. Suppose p1 ≤ 1/2, the

case p1 > 1/2 is similar with up and down orientations reversed. Then D+
N and

D+
M both exist. The cases are whether D−M does not exist, D−N does not exist, or

both do not exist. Note that the case when only D−M does not exist cannot occur,
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because between height 0 and height p1−D−N there would exist a wormhole of level
M because 0 < N < M .

Case (a): Suppose neither D−M and D−N exist. Then it is easy to see that there

is one point of non-differentiability of dp on the line V p∆. If D+
N < D+

M then the

point is [p1 +D+
M , p2 + ∆], while if D+

M < D+
N then the point is [p1 +D+

N , p2 + ∆].

Case (b): Suppose D−M exists but D−N does not exist. We split into two cases

depending on whether D+
N or D+

M is larger.

Suppose D+
N > D+

M . In this case there is only one point of non-differentiability

at the point [p1 +D+
N , p2 + ∆]. This is because in order to jump across to the line

V p∆ from p every geodesic must go up from p to height p1 +D+
N .

Suppose D+
M > D+

N . In this case there are five points of non-differentiability:

x1 = [p1 −D−M , p
′
2], x3 = [p1 +D+

N , p
′
2], x5 = [p1 +D+

M , p
′
2]

x2 = [p1, p
′
2], x4 = [p1 +D+

M −D
−
M , p

′
2].

The points x1, x2, x3, x4, x5 are in order of increasing height. The points x1, x3, x5

are wormhole levels where geodesics split. The points x2, x4 are points where up
and down ending geodesics meet. The proof that x1, x2, x3, x4, x5 are exactly the
points of non-differentiability is analogous to the previous steps in the proof.

This concludes the proof of Proposition 4.11.
�

Finally we count the points of non differentiability on lines V p∆ where ∆ comes
from any sequence N1 < N2 < · · · of three or more wormhole levels. However, the
following lemma tells us that these points have already been accounted for.

Lemma 4.16. Let p ∈ F and fix integers 0 < N1 < N2 < · · · , each different from
M if p is a wormhole of level M .

Let p = [p1, p2], with the understanding there are two possible choices of p2 if
p is a wormhole and the following holds for both choices. Let ∆′ = ± 2

3N1
± 2

3N2

and ∆ =
∑
i±

2
3Ni

, where the signs are uniquely determined by p. Then for each

x = [t, p2 + ∆] ∈ V p∆, the point x = [t, p2 + ∆′] ∈ V p∆′ satisfies dp(x) = dp(x).
Consequently, for each x = [t, p2 + ∆] ∈ V p∆ the distance dp is differentiable at x

if and only if it is differentiable at x = [t, p2 + ∆′] ∈ V p∆′ .

Proof. Let p and the integers N1, N2, . . . be as in the hypotheses. Fix any point
x = [t, p2 + ∆] ∈ V p∆ with corresponding x = [t, p2 + ∆′] ∈ V p∆′ .

Suppose γ is a geodesic from p to x. Then we can form a curve γ from p to x
simply by modifying γ so as not to jump through any wormhole level other than
N1 and N2. This does not increase the length of γ, hence dp(x) ≤ dp(x).

Conversely, suppose γ is a geodesic from p to x. Then γ must pass through
wormhole levels of order N1 and order N2. However between any two wormhole
levels of order N1 and N2, we can find all wormhole levels of order N > N2. Hence
we can modify γ without increasing its length by adding some extra jumps to
construct a curve γ from p to x. Hence dp(x) ≤ dp(x) and so dp(x) = dp(x).

The conclusion follows immediately from the definition of differentiability.
�

Using Proposition 4.8, Proposition 4.11 and Lemma 4.16, we can finally prove
the main result of this section.
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Theorem 4.17 (Restatement of Theorem 1.2). Let p ∈ F and denote by Bp ⊂ F
the set of points in F at which dp is not differentiable. Then h(Bp) is countable, in
particular Bp is σ-porous.

Proof. Fix p ∈ F . As stated in Proposition 4.6, p is the only point in V p0 at which
dp is not differentiable. Now take any integer N > 0, different from M if p is a
wormhole of level M , and consider the vertical line V pN . By Proposition 4.8, there
are only a finite number of points of non-differentiability for dp in V pN . Hence

S1 := {x ∈ F : dp(x) does not exist and x ∈ V pN for some integer N > 0}
is countable.

Similarly, by Proposition 4.11, the set

S2 := {x ∈ F : dp(x) does not exist and x ∈ V p∆N1,N2
for some integer N1, N2 > 0},

where ∆N1,N2 = ± 2
3N1
± 2

3N2
with signs depending on p, is countable.

We are left to count the points of non-differentiability in vertical lines of the
form V p∆(Ni)

where ∆(Ni) =
∑
i±

2
3Ni

with signs depending on p comes from any

sequence N1 < N2 < . . . of three or more wormhole levels. In other words, the set

S3 := {x ∈ F : dp(x) does not exist and x ∈ V p∆(Ni)
for a sequence 0 < N1 < N2 < . . . }.

By Lemma 4.16, we have h(S3) ⊆ h(S2).
The points of non-differentiability of dp(·) can be decomposed as

Bp = p ∪ S1 ∪ S2 ∪ S3.

Since h(S3) ⊆ h(S2) it follows h(Bp) = h(p)∪ h(S1)∪ h(S2). Since both S1 and S2

are countable we conclude that h(Bp) is countable.
Finally, since h(Bp) is countable and singletons sets are porous, it follows that

h(Bp) is σ-porous. Hence Bp ⊂ h−1(h(Bp)) is contained inside the preimage under
h of a σ-porous set, hence is σ-porous.

�

5. Direct Proof of Rademacher’s Theorem in Laakso Space

While it is well known that the Laakso space is a PI space, hence supports a
differentiable structure, we were unable to find explicit justification in the literature
that the differentiable structure used in this paper is the correct one. In this final
section we provide this.

Theorem (Restatement of Theorem 2.9). Every Lipschitz function f : F → R is
differentiable almost everywhere.

We divide the proof of Theorem 2.9 into several steps.

5.1. Measure Theoretic Preliminaries. Let q : I × K → F be the quotient
map defined by q(t, x) = [t, x]. Denote by H1 and HQ−1 the Hausdorff measures
on I and K respectively with respect to the Euclidean distance. Define the push
forward measure µ = q∗(H1 ×HQ−1). Before giving properties of µ, we first note
the following simple lemma.

Lemma 5.1. Suppose x, y ∈ F with d(x, y) < 1. Let N ≥ 1 be the unique integer
satisfying 1/3N ≤ d(x, y) < 1/3N−1. Then any geodesic joining x to y can pass
through at most one wormhole of level less than or equal to N − 1.
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Proof. Any two wormholes of level at most N − 1 have heights which differ by at
least 1/3N−1. Since d(x, y) < 1/3N−1, a geodesic from x to y cannot pass through
more than one such wormhole. �

Lemma 5.2. The measure µ is Borel and Ahlfors Q-regular with respect to the
metric d on F .

Proof. That µ is Borel follows from continuity of q. Fix x = [x1, x2] ∈ F and
0 < r < 1/3. Fix N such that 1/3N ≤ r < 1/3N−1.

We first estimate µ(B(x, r)) from below. Without loss of generality we assume
x1 < 2/3, since otherwise one can apply a similar argument with up and down
reversed. For each M ≥ 1, wormholes of level M are spaced apart by a distance at
most 2/3M . If M ≥ N + 2 then r/2 ≥ 2/3M . Hence, starting at x, one can reach
by a curve of length at most r any point y = [y1, y2] satisfying both:

• x1 ≤ y1 ≤ x1 + r/2, and
• y2 is reached from x2 by wormholes of level M ≥ N + 2.

This shows that q−1(B(x, r)) contains a set of the form [x1, x1 +r/2]×KN+2, where
KN+2 ⊂ K is a piece of the middle third Cantor set obtained after splitting N + 2
times. In particular it has diameter 1/3N+2. Since HQ−1 on K is (Q− 1)-regular,

µ(B(x, r)) = (H1 ×HQ−1)(q−1(B(x, r))

≥ (r/2)HQ−1(KN+2)

≥ C−1r(1/3N+2)Q−1

≥ C−1rQ.

In the above estimates, C ≥ 1 denotes a constant independent of x and r.
We now estimate µ(B(x, r)) from above. By Lemma 5.1, at vertical distance

at most r above and below x, one can find at most one wormhole of any level
M ≤ N − 1. Hence q−1(B(x, r)) is contained in a set of the form(

[x1 − r, x1 + r]×K1
N−1

)
∪
(

[x1 − r, x1 + r]×K2
N−1

)
,

where K1
N−1,K

2
N−1 are pieces of the middle third Cantor set obtained after splitting

N − 1 times, each having diameter 1/3N−1. This leads to the estimate

µ(B(x, r)) = (H1 ×HQ−1)(q−1(B(x, r))

≤ Cr(1/3N−1)Q−1

≤ CrQ.

�

By [13, Exercise 8.11], since µ and HQ are both Ahlfors Q-regular on F there is
constant C ≥ 1 so that

C−1HQ(E) ≤ µ(E) ≤ CHQ(E) for all Borel sets E ⊂ F.

In particular, to show sets have measure zero we may use either µ or HQ on F .

Lemma 5.3. Suppose A ⊂ F is Borel with respect to the metric d and

L1{t ∈ I : [t, z] ∈ A} = 0 for every z ∈ K.

Then HQ(A) = 0.
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Proof. The hypothesis implies µ(A) = 0 by Tonelli’s theorem. Since µ and HQ are
comparable, it follows HQ(A) = 0. �

Lemma 5.4. The following statements hold for every Lipschitz map f : F → R.

(1) For every z ∈ K, the set

Dz := {t ∈ I : the directional derivative fI [t, z] exists}

is Borel with respect to the Euclidean metric on I and has full L1 measure.
(2) For every z ∈ K, the map from Dz to R defined by t 7→ fI [t, z] is Borel

measurable with respect to the Euclidean metric on I.
(3) The set

D := {x ∈ F : the directional derivative fI(x) exists}

is Borel measurable with respect to d on F and has full HQ measure.
(4) The map fI : D → R defined by x 7→ fI(x) is Borel measurable.

Proof. We first prove (1) and (2). Fix z ∈ K. The section I → R given by t 7→ f [t, z]
is Lipschitz with respect to the Euclidean metric. Differentiability of this section
is equivalent to existence of the directional derivative for f in F , except for points
identified at wormhole levels which form a countable set for each section. Hence
Rademacher’s theorem in I implies Dz has full L1 measure. The fact that Dz is
Borel and the section is Borel measurable with respect to the Euclidean metric on
I can be verified with standard elementary arguments, for instance as in [4]. This
proves (1) and (2).

We now prove (3) and (4). If p = [p1, p2] is not a wormhole, it is straightforward
to show that fI [p1, p2] exists and belongs to a closed interval J ⊂ R if and only if
for all ε ∈ Q+ there exists δ ∈ Q+ and q ∈ J ∩Q such that

sup
0<|t|<δ
t∈Q

|f [p1 + t, p2]− f [p1, p2]− qt|
t

< ε.

Since f is Borel measurable with respect to d and the set of wormholes is countable,
it follows that D is a Borel measurable subset of F and fI : D → R is Borel
measurable map. The fact that D has full HQ measure follows from Lemma 5.3,
because D is Borel and every section of F \D has Lebesgue measure zero. �

Recall that if g is a nonnegative locally integrable function on a doubling metric
measure space (X, ν), then limr→0 −

∫
B(x,r)

f dν = f(x) for almost every x ∈ X.

Applying this to the characteristic function of a Borel set of locally finite measure
gives a Lebesgue density theorem on (X, ν). It also follows that Borel measurable
functions on X are approximately continuous almost everywhere. This means that
if g : X → R is Borel measurable, then for almost every x ∈ X

lim
r→0

ν{y ∈ B(x, r) : |g(y)− g(x)| > ε}
ν(B(x, r))

= 0 for every ε > 0.

We will use these facts in R equipped with Euclidean distance and Lebesgue
measure and in F equipped with the metric d and Hausdorff measure HQ.
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5.2. Auxilliary Sets. Fix a constant CQ ≥ 1 such that

C−1
Q rQ ≤ HQ(B(x, r)) ≤ CQrQ for all x ∈ F and 0 < r ≤ 1.

Let f : F → R be a Lipschitz function and let D ⊂ F denote the set of points where
the directional derivative of f exists. Denote L = Lip(f).

Definition 5.5. Let D′ be the set of all points x ∈ D which are not a wormhole.
We define several sets as follows.

(1) For each ε > 0 and x ∈ D,

Dε(x) := {y ∈ D : |fI(y)− fI(x)| ≤ ε}.
(2) For each ε > 0 and integer k ≥ 1, let E1

k(ε) be the collection of all points
x = [x1, x2] ∈ D′ such that

L1{t ∈ (x1 − r, x1 + r) ∩ I : [t, x2] /∈ Dε(x)} ≤ εr
for every 0 < r < 1/k.

(3) For each ε > 0 and integer k ≥ 1, let E2
k(ε) be the collection of all points

x ∈ D′ for which

HQ
(
B(x, r) \ (Dε(x) ∩ E1

k(ε))
)
<
C−1
Q εQrQ

2Q+1

for every 0 < r < 1/k.

Lemma 5.6. For all ε > 0 and integer k ≥ 1, E1
k(ε) is Borel with respect to d and

HQ
(
F \

∞⋃
k=1

E1
k(ε)

)
= 0.

Proof. We first show that E1
k(ε) is Borel with respect to d. Clearly D′ is a Borel

measurable subset of F by Lemma 5.4. Reducing via countable intersections, it
suffices to show that for every r ∈ (0, 1/k)∩Q the set of x = [x1, x2] ∈ D′ for which

L1{t ∈ (x1 − r, x1 + r) ∩ I : |fI [t, x2]− fI(x)| > ε} ≤ εr
is Borel measurable. Equivalently, for every r ∈ (0, 1/k)∩Q and every fixed α > 0,
we must show the set

{x ∈ D′ : L1{t ∈ (x1 − r, x1 + r) ∩ I : |fI [t, x2]− fI(x)| > ε} > α}
is Borel measurable. However, this set can be decomposed as⋃
η>ε
η∈Q

∞⋂
n=1

⋃
q∈Q

(
{x ∈ D′ : |fI(x)− q| < 1/n}

∩ {x ∈ D′ : L1{t ∈ (x1 − r, x1 + r) ∩ I : |fI [t, x2]− q| > η} > α}
)
.

Clearly {x ∈ D′ : |fI(x)− q| < 1/n} is Borel by Lemma 5.4. We claim

(x1, x2) 7→ Φ(x1, x2) := L1{t ∈ (x1 − r, x1 + r) ∩ I : |fI [t, x2]− q| > η}
is a Borel function on I ×K. Indeed, it is a continuous function of x1 and is Borel
measurable in x2 by Fubini’s theorem. Hence it is Borel measurable on I×K which
is a product of separable spaces [1]. Finally we notice that

{x ∈ D′ : Φ(q−1(x)) > α} = q{x ∈ q−1(D′) : Φ(x) > α}.
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The Borel measurability with respect to d follows as q : q−1(D′) → D′ is bijective
and continuous with continuous inverse, hence maps Borel sets to Borel sets.

On each vertical line segment, the section of
⋃∞
k=1E

1
k(ε) has full measure with

respect to L1. This follows by combining Lemma 5.4 (1) and (2) with the fact that
Borel measurable functions on I are approximately continuous almost everywhere.
with respect to L1. Hence Lemma 5.3 gives the conclusion. �

Lemma 5.7. For ε > 0 and integer k ≥ 1, E2
k(ε) is Borel with respect to d and

HQ
(
F \

∞⋃
k=1

E2
k(ε)

)
= 0.

Proof. Fix ε > 0. We first show that E2
k(ε) is Borel with respect to d. It suffices

to show that the map D′ → R given by x 7→ HQ(B(x, r) \ (D(x) ∩ E1
k)) is Borel.

To do this we first notice that for every α > 0 the set

{x ∈ D′ : HQ{y ∈ B(x, r) : y /∈ E1
k or |fI(y)− fI(x)| > ε} > α

can be written as⋃
η>ε
η∈Q

∞⋂
n=1

⋃
q∈Q

(
{x ∈ D′ : |fI(x)− q| < 1/n}

∩ {x ∈ D′ : HQ{y ∈ B(x, r) : |fI(y)− q| > η or y /∈ E1
k} > α}

)
.

The first set inside the decomposition above is Borel by Lemma 5.4. The second is
an open subset of D′, hence Borel. Hence E2

k(ε) is Borel.
Using Lemma 5.6, almost every point of F is a density point of E1

k for some
k ≥ 1. Also, since fI is Borel, almost every point of F is a point of approximate
continuity of fI . Hence for almost every x there exists k ∈ N and R > 0 such that

HQ
(
B(x, r) \ (Dε(x) ∩ E1

k(ε))
)
< C−1

Q εQrQ/2Q+1

for every 0 < r < R. Choose K ∈ N such that K ≥ k and 1/K < R. Then using
the fact E1

k(ε) ⊂ E1
K(ε) it follows

HQ
(
B(x, r) \ (Dε(x) ∩ E1

K(ε))
)
< C−1

Q εQrQ/2Q+1

for every 0 < r < 1/K. Hence x ∈ E2
K(ε). This showsHQ(F \

⋃∞
k=1E

2
k(ε)) = 0. �

5.3. Choice of Suitable Line Segments. Fix 0 < ε < 1. Let x ∈
⋃∞
k=1E

2
k(ε)

and fix K ≥ 1 such that x ∈ E2
K(ε). Let y ∈ F with d(y, x) < 1/(2K). Let N ≥ 1

be the unique integer such that 1/3N ≤ d(x, y) < 1/3N−1.
Assume that infinitely many wormhole levels are needed to connect x to y by a

geodesic. It will be clear how the following argument can be simplified if only finitely
many wormhole levels or even no wormhole levels are needed. Denote T = d(x, y)
and choose γ : [0, T ]→ F such that

• γ is a geodesic from x to y with γ(0) = x and γ(T ) = y.
• γ is a concatenation of countably many lines in the I direction parameter-

ized at unit speed.
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By Lemma 5.1, any geodesic joining x to y must pass through at most one wormhole
of level less than or equal to N − 1. We enumerate the wormhole levels needed to
connect x to y by a strictly increasing sequence Ni for integer i ≥ 0, where possibly
N0 ≤ N − 1, but necessarily Ni ≥ N for i ≥ 1. Since N1 ≥ N and Ni are strictly
increasing, it follows that Ni ≥ N + i− 1 for i ≥ 1.

For each i ≥ 0, let λi be the I component of the point where γ jumps using
the wormhole of order Ni. Geodesics in F can be chosen so that they change their
direction (up or down) in the I component at most twice (Proposition 2.2). Hence,
during any subinterval of [0, T ] of length t, the geodesic spends at least a time t/3
following the same direction (either up or down but not changing between them)
in the I component. Since in any direction wormhole levels of order Ni are spaced
apart by at most a distance 2/3Ni , we can additionally choose γ so that it satisfies:

• λ0 ≤ d(x, y), and
• λi ≤ 2/3Ni−1 for i ≥ 1.

Using Ni ≥ N + i− 1 for i ≥ 1 and the definition of N , we estimate as follows:

∞∑
i=0

λi ≤ d(x, y) +

∞∑
i=1

2

3Ni−1

≤ d(x, y) +

∞∑
i=1

2

3N+i−2

= d(x, y) +
1

3N−2

≤ 10d(x, y).

Let (µi)
∞
i=0 be a strictly decreasing rearrangement of {λi : i ≥ 0} ∪ {T}. Thus

µ0 = T , µi → 0 as i→∞, γ|[µi+1,µi] is a line segment for each i ≥ 0, and

(5.1)

∞∑
i=0

µi =

∞∑
i=0

λi + T ≤ 11d(x, y).

Denote pi = γ(µi) for i ≥ 0. Notice p0 = y and pi → x as i→∞. It follows that

(5.2) f(y)− f(x) =

∞∑
i=0

(f(pi)− f(pi+1)).

Since γ|[µi+1,µi] is a line segment in the I direction, it follows pi is reached from
pi+1 by travelling a displacement h(pi)− h(pi+1) in the I direction.

5.4. Estimate Along Line Segments. Our aim is to show that f(pi)− f(pi+1)
is well approximated by fI(x)(h(pi) − h(pi+1)) for every i ≥ 0. Fix i ≥ 0 until
otherwise stated.

Lemma 5.8. There exist points qi, qi+1 ∈ F with the following properties:

(1) d(qi+1, pi+1) ≤ εµi+1,
(2) d(qi, pi) ≤ 6εµi+1,
(3) qi+1 ∈ E1

K(ε) ∩Dε(x),
(4) qi is reached from qi+1 by travelling a vertical displacement h(pi)−h(pi+1)

in the I direction.
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Proof. Fix integer B ≥ 1 such that 1/3B ≤ εµi+1 < 1/3B−1. This implies that
within vertical distance εµi+1 above and below pi+1, there is at most one wormhole
level of order less than or equal to B − 1.

By Ahlfors Q-regularity of HQ,

HQ(B(pi+1, εµi+1)) ≥ C−1
Q εQµQi+1.

Using 0 < ε < 1 and µi+1 ≤ B < 1/2K gives µi+1 + εµi+1 < 1/K. Hence the fact
that x ∈ E2

K(ε) gives,

HQ
(
B(x, µi+1 + εµi+1) \ (Dε(x) ∩ E1

K(ε))
)
<
C−1
Q εQ(µi+1 + εµi+1)Q

2Q+1
.

Recalling 0 < ε < 1, these imply

HQ
(
B(x, µi+1 + εµi+1) \ (Dε(x) ∩ E1

K(ε))
)
<
HQ(B(pi+1, εµi+1))

2
.

Since γ is a geodesic, d(x, pi+1) = d(γ(0), γ(µi+1)) = µi+1. Hence

B(pi+1, εµi+1) ⊂ B(x, µi+1 + εµi+1).

This implies

HQ
(
B(pi+1, εµi+1) \ (Dε(x) ∩ E1

K(ε))
)
<
HQ(B(pi+1, εµi+1))

2
.

At least half in measure of the points in B(pi+1, εµi+1) are accessible from the line
segment joining pi+1 to pi without using a wormhole level of order at most B − 1.
Hence we can choose qi+1 accessible from the line segment joining pi+1 to pi by
jump levels of order n ≥ B with

qi+1 ∈ B(pi+1, εµi+1) ∩Dε(x) ∩ E1
K(ε).

Clearly this choice of qi+1 satisfies (1) and (3).
Next define qi from qi+1 as stated in (4). Then qi can be reached from pi from

a vertical displacement at most 2εµi+1 and wormhole levels of order n ≥ B. Such
jump levels are spaced by at most 2/3B in the vertical direction. Hence

d(pi, qi) ≤ 2εµi+1 + (4/3B) ≤ 6εµi+1.

This shows that qi satisfies (2) and completes the proof. �

Note that the points qi, qi+1 in Lemma 5.8 may not be consistent as i varies.
This will not be an issue as i will remain fixed while we estimate f(pi) − f(pi+1).
Denote qi = [ti, z] and qi+1 = [ti+1, z]. The fact that qi+1 ∈ E1

K(ε) gives

L1{t ∈ (ti+1 − r, ti+1 + r) ∩ I : [t, z] /∈ Dε(qi+1)} ≤ εr for every 0 < r < 1/K.

Since f is Lipschitz, hence absolutely continuous along lines in the I direction,

|f(qi)− f(qi+1)− fI(qi+1)(h(qi)− h(qi+1))| ≤

∣∣∣∣∣
∫ ti

ti+1

(fI [s, z]− fI(qi+1)) ds

∣∣∣∣∣ .
We divide the right side into two pieces which we estimate separately. Firstly, using
the definition of Dε(qi+1) gives∣∣∣∣∣

∫ ti

ti+1

(fI [s, z]− fI(qi+1))χ{s:[s,z]∈Dε(qi+1)}(s) ds

∣∣∣∣∣ ≤ ε|ti − ti+1|.
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Secondly, the fact that qi+1 ∈ E1
K(ε) and T < 1/K yields∣∣∣∣∣

∫ ti

ti+1

(fI [s, z]− fI(qi+1))χ{s:[s,z]/∈Dε(qi+1)}(s) ds

∣∣∣∣∣ ≤ 2Lε|ti − ti+1|.

Combining the two estimates yields.

|f(qi)− f(qi+1)− fI(qi+1)(h(qi)− h(qi+1))| ≤ (2L+ 1)ε|ti − ti+1|.
Using Lemma 5.8 together with the fact that

h(pi)− h(pi+1) = h(qi)− h(qi+1) = ti − ti+1

yields

|f(pi)− f(pi+1)− fI(x)(h(pi)− h(pi+1))|(5.3)

≤ (2L+ 2)ε|h(pi)− h(pi+1)|+ 7Lεµi+1.

5.5. Conclusion of the Proof. Adding (5.3) over all integers i ≥ 0 using (5.1),
(5.2) and the triangle inequality gives

|f(y)− f(x)− fI(x)(h(y)− h(x))|

≤ (2L+ 2)ε

∞∑
i=0

|h(pi)− h(pi+1)|+ 7Lε

∞∑
i=0

µi+1

≤ (2L+ 2)εd(x, y) + 77Lεd(x, y).

To summarize, we have shown the following. Given 0 < ε < 1, for almost every
x ∈ F there exists δ > 0 such that d(x, y) < δ implies

|f(y)− f(x)− fI(x)(h(y)− h(x))| ≤ (79L+ 2)εd(x, y).

For each integer n ≥ 2, let Dn be the set of x ∈ F such that

lim sup
y→x

|f(y)− f(x)− fI(x)(h(y)− h(x))|
d(x, y)

>
(79L+ 2)

n
.

We have shown that HQ(Dn) = 0 for each integer n ≥ 2. Hence HQ(∪∞n=1Dn) = 0.
Since (∪∞n=1Dn)c = ∩∞n=1D

c
n is the set of points where f is differentiable, it follows

that f is differentiable almost everywhere. This proves Theorem 2.9.
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