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Abstract. We consider optimal transport problems where the cost for trans-
porting a given probability measure µ0 to another one µ1 consists of two parts:
the first one measures the transportation from µ0 to an intermediate (pivot) mea-
sure µ to be determined (and subject to various constraints), and the second one
measures the transportation from µ to µ1. This leads to Wasserstein interpolation
problems under constraints for which we establish various properties of the opti-
mal pivot measures µ. Considering the more general situation where only some
part of the mass uses the intermediate stop leads to a mathematical model for the
optimal location of a parking region around a city. Numerical simulations, based
on entropic regularization, are presented both for the optimal parking regions and
for Wasserstein constrained interpolation problems.
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1. Introduction

We consider optimal transport problems where a given probability measure µ0 in
Rd has to be transported to a given probability measure µ1 with minimal transporta-
tion cost. This cost consists of two parts: the first one measures the transportation
from µ0 to an intermediate measure µ, to be determined, and the second one mea-
sures the transportation from µ to µ1. This situation occurs in some applications,
where the transport of µ0 to µ1 is not directly made but the possibility of an inter-
mediate stop is taken into account. The two parts are described by the Wasserstein
functionals Wc0(µ0, µ) and Wc1(µ, µ1) respectively, where for every pair of probabil-
ities ρ0, ρ1 we set

Wc(ρ0, ρ1) = inf
{∫

Rd×Rd
c(x, y) dγ(x, y) : γ ∈ Π(ρ0, ρ1)

}
. (1.1)

Here

Π(ρ0, ρ1) :=
{
γ ∈ P(Rd × Rd) : π#

i γ = ρi, i = 0, 1
}

is the set of transport plans between ρ0 and ρ1, denoting by πi : Rd × Rd → Rd

(i = 0, 1) the projections on the first and second factor respectively, π#
i γ are the

marginals of γ, so that a probability measure γ on Rd × Rd belongs to Π(ρ0, ρ1)
when {

π#
0 γ(A) = γ(A× Rd) = ρ0(A),

π#
1 γ(A) = γ(Rd × A) = ρ1(A)

for all Borel set A ⊂ Rd.
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Some extra constraints on the pivot measure µ can be added, as for instance:

• location constraints, where the support of µ, sptµ, is required to be contained
in a given region K ⊂ Rd;
• density constraints, where the measure µ is required to be absolutely contin-

uous and with a density not exceeding a prescribed function φ.

Without additional constraint on the measure µ, the minimization of Wc0(µ0, .) +
Wc1(., µ1), or its generalizations to more than two prescribed measures, arise in dif-
ferent applied settings such as multi-population matching [5] or Wasserstein barycen-
ters [1]. In particular, in the quadratic case where c0(x, y) = c1(x, y) = |x − y|2,
minimizers of Wc0(µ0, .) + Wc1(., µ1) are the midpoints of McCann’s displacement
interpolation [11] between µ0 and µ1 i.e. geodesics for the quadratic Wasserstein
metric. A first goal of the present paper is to investigate the effect of location and
density constraints on such Wasserstein interpolation problems. Let us also mention
that the minimization of Wc0(µ0, µ) with respect to µ in a class of measures which
are singular with respect to µ0 was addressed in [3].

A second goal of the paper is to investigate a more general class of problems as
a mathematical model for the optimal location of a parking region around a city.
In this context, one is given two probability measures ν0 and ν1, which may be
interpreted as a distribution of residents and a distribution of services respectively.
A resident living at x0 reaching a service located at x1 may either walk directly to
x1 for the cost c1(x0, x1) or drive to an intermediate parking location x and then
walk from x to x1 paying the sum c0(x0, x) + c1(x, x1). In this model, detailed in
Section 6, the pivot/parking measure µ may have total mass less than 1, and one
may decompose ν0 and ν1 as νi = νi − µi + µi with 0 ≤ µi ≤ νi denoting the
driving part of νi and the unknowns µ0, µ and µ1 (with same total mass) should
minimize the overall cost Wc1(ν0 − µ0, ν1 − µ1) + Wc0(µ0, µ) + Wc1(µ, µ1) subject
to possible additional location and density constraints on µ. Let us remark that if
(µ0, µ1, µ) solves this parking problem, then µ solves the corresponding Wasserstein
interpolation problem i.e. minimizes Wc0(µ0, .) + Wc1(., µ1) so that the qualitative
properties established in Sections 4 and 5 will be directly applicable to optimal
parking measures.

In Section 2, we consider the general optimization problem (2.1) and after solv-
ing an explicit example, we prove existence and discuss uniqueness of solutions.
Dual formulations are introduced in Section 3. In Section 4, the particular case of
distance-like costs is studied, while Section 5 deals with the case of strictly convex
cost functions, in these sections we study various qualitative properties of the solu-
tions, in particular their integrability. In Section 6, we study a problem related to
the optimization of a parking area. Finally, in Section 7, we present some numerical
simulations thanks to an entropic approximation scheme and compare the solutions
of interpolation and parking problems.

2. Wasserstein interpolation with constraints

Let µ0, µ1 ∈ P(Rd) be two probabilities with compact support, and let c0, c1 :
Rd × Rd → R+ be two continuous cost functions. For a class A ⊂ P(Rd) we are
interested in solving the optimization problem

inf
{
Wc0(µ0, µ) +Wc1(µ, µ1) : µ ∈ A

}
. (2.1)
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Here Wci(ρ0, ρ1) denotes the value of the optimal transport problem between two
measures ρ0, ρ1 ∈ P(Rd), obtained by means of the Wasserstein functionals defined
in (1.1). In order to simplify the presentation, by an abuse of notation, if ρ is a
measure and φ is a nonnegative Lebesgue integrable function, by ρ ≤ φ we mean
that ρ is is absolutely continuous and its density, again denoted ρ, satisfies ρ ≤ φ
Lebesgue a.e. ; also, all the integrals with no domain of integration explicitly defined
are intended on the whole Rd.

Typical cases for the class A of admissible choices are:

(i) no constraint, that is A = P(Rd);
(ii) location constraints, that is A = P(K) for a nonempty compact subset K

of Rd;
(iii) density constraints, that is A = {ρ ∈ Pac(Rd) : ρ ≤ φ} for an L1-function

φ : Rd → R+ with compact support and
∫
φ dx > 1.

2.1. Explicit one-dimensional examples. Before going to the general case, let
us illustrate our problem in a simple one-dimensional case.

Example 2.1. Consider the one-dimensional case and the measures

µ0(x) = 1[0,1](x), µ1(x) = 1[5,6](x).

We first look at the case where the cost functions are given by distances:

c0(x, y) = (1− t)|x− y|, c1(x, y) = t|x− y| with t ∈]0, 1[.

The following results can be easily seen by rephrasing the problem in terms of the
distribution functions f, f0, f1 of the probabilities µ, µ0, µ1 (see for instance Chapter
2 of [17]):

min

{∫ 6

0

(1− t)|f0 − f |+ t|f − f1| dx : f nondecreasing, f(0) = 0, f(6) = 1

}
with the constraints

(i) no additional constraint;
(ii) spt f ′ ⊂ [2, 4];

(iii) f ′ ≤ θ1[2,4].

Since f0 ≤ f1, it is easy to see that in the minimization above, one can always
assume that f0 ≤ f ≤ f1 and then remove the absolute values and minimize under
the constraint that f is nondecreasing and f0 ≤ f ≤ f1. We then have:

(i) In the absence of constraints, this becomes the problem of finding the Wasser-
stein median between µ0 and µ1 (see [4] for more on Wasserstein medians).
In particular, the optimal solutions µ are characterized as follows:
• if t > 1/2 (respectively t < 1/2), the unique solution is given by µ = µ1

(respectively µ = µ0);
• if t = 1/2, any probability µ whose distribution function f is between

the two distribution functions f0 and f1 of µ0 and µ1, in the sense that

f0(x) ≤ f(x) ≤ f1(x) for all x ∈ R,

is a minimizer.
(ii) In the case of the location constraint K = [2, 4], we observe a similar thresh-

old effect:
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• if t > 1/2 (respectively t < 1/2), the unique solution is given by µ = δ4

(respectively µ = δ2);
• if t = 1/2, then any probability measure supported on K is a solution.

(iii) In the case of density constraint φ(x) := θ1[2,4](x) with θ > 1/2 we have:
• if t > 1/2 (respectively t < 1/2), the unique solution is given by µ =
θ1[4−1/θ,4] (respectively µ = θ1[2,2+1/θ]);
• if t = 1/2 any probability measure satisfying the constraint is a solution.

The example above relies on the fact that for distance-like costs, optimality some-
how forces the triangular inequality to be saturated in dimension 1. We will inves-
tigate this phenomenon further in Section 4.

We consider now strictly convex cost functions: as a prototype we take, with the
same measures µ0 and µ1 above,

c0(x, y) = (1− t)|x− y|2, c1(x, y) = t|x− y|2 with t ∈ (0, 1).

Also this case can be rephrased in terms of the so-called pseudo-inverse g, g0, g1 of
the distribution functions f, f0, f1 as:

min

{∫ 1

0

(1− t)(g − g0)2 + t(g1 − g)2ds : g nondecreasing

}
with the constraints

(i) no additional constraint;
(ii) g([0, 1]) ⊂ [2, 4];
(iii) g′ ≥ 1/θ and g([0, 1]) ⊂ [2, 4].

This implies:

(i) In the unconstrained case the solution simply corresponds to the Wasserstein-
geodesic from µ0 to µ1 at time t ∈ (0, 1), or equivalently the weighted
barycenter. It is given by

µt(x) := 1[5t,1+5t](x).

(ii) Take the constraint K = [2, 4], as above. Here the solution depends on the
location of the unconstrained geodesic µt. We present a few cases (the other
ones are clear by symmetry)
• if t ≤ 1

5
the support of µt is contained in [0, 2], hence the optimal solution

is δ2;
• if 1

5
< t < 2

5
the optimal solution is µ = (2− 5t)δ2 + 1[2,1+5t];

• if 2
5
≤ t ≤ 3

5
the support of µt is contained in [2, 4], hence the solution

is simply µt.
(iii) Take the function φ(x) := θ1[2,4](x) with 1 > θ > 1

2
. The solution depends

again on the location of the unconstrained geodesic µt. We have the following
cases (remaining cases are again obtained by symmetry)
• if t ≤ 1

5
the support of µt is contained in [0, 2], hence the optimal solution

is θ1[2,2+1/θ];
• if 1

5
< t < 2

5
the optimal solution is still µ = θ1[2,2+1/θ];

• if 2
5
≤ t ≤ 3

5
the support of µt is contained in [2, 4], but by the density

constraint µt is not even feasible this time. So the solution is of the form
θ1[a,b] with 2 ≤ a < b ≤ 4 and b− a = 1/θ.
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2.2. Reformulation, existence, uniqueness. Let us now come back to the con-
strained Wasserstein interpolation problem (2.1) assuming that the measures µ0 and
µ1 are compactly supported and the costs c0 and c1 are continuous and nonnegative,
then by the direct method one directly gets:

Lemma 2.2. Assume either (ii): A = P(K) with K compact or (iii) A := {ρ ∈
P(Rd) : ρ ≤ φ} with φ ∈ L1 compactly supported and

∫
φ dx ≥ 1. Then problem

(2.1) admits a solution.

Proof. In both cases, one is left to optimize over probabilities over a fixed compact
set, the sum of two Wasserstein terms which are weakly* lsc. �

In the unconstrained case where A := P(Rd), one of course needs some coercivity
in the problem. We shall therefore assume that there exists a compact subset of Rd,
denoted (again) by K, such that for every (x0, x1) ∈ spt(µ0)× spt(µ1) one has

argmin
x∈Rd

{c0(x0, x) + c1(x, x1)} is nonempty and included in K. (2.2)

We then define, for (x0, x1) ∈ spt(µ0)× spt(µ1)

c(x0, x1) := inf
x∈Rd
{c0(x0, x) + c1(x, x1)} = min

x∈K
{c0(x0, x) + c1(x, x1)}.

In the following proposition, we show that the optimization problem (2.1), with
A = P(Rd), is equivalent to the standard transport problem with cost c:

inf
γ∈Π(µ0,µ1)

∫
Rd×Rd

c(x0, x1) dγ(x0, x1) (2.3)

which clearly admits a solution, since c ∈ C(spt(µ0) × spt(µ1)). We easily deduce
the existence of a solution to (2.1) when A = P(Rd) as well as the fact that all
solutions are supported by K.

We will denote by Π(µ0, µ, µ1) the set of transport plans in the variables (x0, x, x1)
with marginals µ0, µ, µ1, and we denote by π0,piv, πpiv,1, π0,1 the projections on the
first and second, second and third, first and third factors respectively.

Proposition 2.3. Assume (2.2). Let γ ∈ Π(µ0, µ1) solve (2.3) and let T : spt(µ0)×
spt(µ1)→ Rd be measurable and such that

T (x0, x1) ∈ argmin
x∈K

{c0(x0, x) + c1(x, x1)} ∀(x0, x1) ∈ spt(µ0)× spt(µ1).

Then

• T#γ is a solution of (2.1) with A = P(Rd) and the optimal values of (2.1)
and (2.3) coincide;
• conversely, for any optimal solution µ of (2.1), consider optimal transport

plans γ0 ∈ Π(µ0, µ) with respect to the cost c0 and γ1 ∈ Π(µ, µ1) with respect

to the cost c1. Then there exists a plan γ̃ ∈ Π(µ0, µ, µ1) with π#
0,pivγ̃ = γ0 and

π#
piv,1γ̃ = γ1 such that π#

0,1γ̃ is optimal for (2.3) and c0(x0, x) + c1(x, x1) =
c(x0, x1) on spt(γ̃) so that µ is supported by K.

The previous equivalence also holds between (2.1) with A = P(K) (with K a given
compact subset of Rd) and (2.3) with c given by c(x0, x1) = minx∈K{c0(x0, x) +
c1(x, x1)}.
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Proof. Let µ ∈ P(Rd), γ0 ∈ Π(µ0, µ) and γ1 ∈ Π(µ, µ1); by the gluing Lemma

(see Lemma 7.6 in [18]), there is a plan γ̃ ∈ Π(µ0, µ, µ1) with π#
0,pivγ̃ = γ0 and

π#
piv,1γ̃ = γ1. Hence, since γ solves (2.3) and π#

0,1γ̃ ∈ Π(µ0, µ1), we have∫
Rd×Rd

c0 dγ0 +

∫
Rd×Rd

c1 dγ1 =

∫
Rd×Rd×Rd

{c0(x0, x) + c1(x, x1)} dγ̃(x0, x, x1)

≥
∫
Rd×Rd×

c dπ#
0,1γ̃ ≥

∫
Rd×Rd

c dγ

=

∫
Rd×Rd

{c0(x0, T (x0, x1)) + c1(T (x0, x1), x1)} dγ(x0, x1)

≥ Wc0(µ0, T
#γ) +Wc1(T

#γ, µ1)

which, taking the infimum with respect to γ0 ∈ Π(µ0, µ) and γ1 ∈ Π(µ, µ1), enable
us to deduce that T#γ solves (2.1) as well as the equality of the optimal values of
(2.1) and (2.3).

Assume now that µ solves (2.1) and consider optimal transport plans γ0 ∈ Π(µ0, µ)
with respect to the cost c0 and γ1 ∈ Π(µ, µ1) with respect to the cost c1. Using again

the gluing lemma we find γ̃ ∈ Π(µ0, µ, µ1) with π#
0,pivγ̃ = γ0 and π#

piv,1γ̃ = γ1, and
we then have

inf (2.3) = inf (2.1) =

∫
Rd×Rd×Rd

{c0(x0, x) + c1(x, x1)} dγ̃(x0, x, x1)

≥
∫
Rd×Rd×Rd

c(x0, x1) dγ̃(x0, x, x1) =

∫
Rd×Rd×

c dπ#
0,1γ̃.

Therefore π#
0,1γ̃ is optimal for (2.3) and c0(x0, x)+c1(x, x1) = c(x0, x1) on spt(γ̃). �

In other words, the coercivity condition (2.2) ensures that we can replace A =
P(Rd) by A = P(K) in (2.1) and therefore always optimize over probabilities over
a fixed compact subset of Rd.

Remark 2.4. If µ0 is absolutely continuous and c0 is locally Lipschitz and satisfies
the twist condition, i.e. it is differentiable in the first coordinate and for every
x0 ∈ spt(µ0)

y 7→ ∇x0c0(x0, y) is injective,

then (2.1) has a unique minimizer. Indeed, the conditions above imply that

µ 7→ Wc0(µ, µ0) is strictly convex.

The proof follows along the lines of Proposition 7.19 of [17] once one observes that,
thanks to the twist condition and the regularity assumptions on c0 and µ0, the
optimal transport problem between µ0 and µ has a unique transport plan induced
by a map, see Proposition 1.15 of [17] and discussion after. This gives uniqueness
for smooth and strictly convex costs. Note that this also gives uniqueness for (ii)
and (iii) in the case of concave costs, i.e. when c0(x, y) = l(|x− y|) for l : R+ → R+

strictly concave, increasing and differentiable on (0,+∞), if we assume µ0 absolutely
continuous and for (ii) K ∩ sptµ0 = ∅, or for (iii) spt(φ)∩ sptµ0 = ∅ (see [10] or [16]
for refinements and weaker conditions). All these arguments for uniqueness of course
remain true if we replace the assumptions on µ0 and c0 by similar assumptions on
µ1 and c1.
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3. Dual formulations

3.1. Location constraints. Thanks to the coercivity condition (2.2) any solution
µ to (2.1) with A = P(Rd) is necessarily concentrated on the compact set K,
hence both cases (i) and (ii) can be formulated over P(K). In this case, it can be
convenient, to characterize solutions of the convex minimization problem (2.1) by
duality as follows. Given ϕ ∈ C(K), define the c0-transform of ϕ, ϕc0 ∈ C(spt(µ0))
by

ϕc00 (x0) := min
x∈K
{c0(x0, x)− ϕ(x)} ∀x0 ∈ spt(µ0), (3.1)

and similarly define the c1-transform of ϕ, ϕc1 ∈ C(spt(µ1)) by

ϕc11 (x1) := min
x∈K
{c1(x, x1)− ϕ(x)} ∀x1 ∈ spt(µ1). (3.2)

Then the minimum in (2.1) coincides with the value of the dual:

sup

{∫
ϕc00 dµ0 +

∫
ϕc11 dµ1 : ϕ0, ϕ1 ∈ C(K), ϕ0 + ϕ1 = 0

}
, (3.3)

and the supremum in (3.3) is achieved, see for instance Theorem 3 in [5] (where the
more general multi-marginal case is considered). Moreover, if ϕ0 and ϕ1 solve (3.3),
then µ ∈ P(K) solves (2.1) if and only if ϕ0 is a Kantorovich potential between µ0

and µ and ϕ1 is a Kantorovich potential (see [18] and [17] for more on Kantorovich
duality) between µ and µ1 i.e. there exist (γ0, γ1) ∈ Π(µ0, µ)× Π(µ, µ1) such that

ϕ0(x) + ϕc00 (x0) = c0(x0, x) ∀(x0, x) ∈ spt(γ0),

ϕ1(x) + ϕc11 (x1) = c1(x, x1) ∀(x, x1) ∈ spt(γ1).

Defining the c0-concave envelope of ϕ0 and the c1-concave envelope of ϕ1 by

ϕ̃0(x) := min
x0∈spt(µ0)

{c0(x0, x)− ϕc00 (x0)},

ϕ̃1(x) := min
x1∈spt(µ1)

{c1(x, x1)− ϕc11 (x1)},

one has ϕ̃0 ≥ ϕ0 and ϕ̃1 ≥ ϕ1 with an equality on spt(µ) so that ϕ̃0 + ϕ̃1 ≥ 0 with
an equality on spt(µ).

3.2. Density constraint. We now consider case (iii) where there is a constraint
on the density µ ≤ φ, one can characterize minimizers by duality as follows:

Proposition 3.1. Consider (2.1) in the case (iii) where there is a constraint on
the density µ ≤ φ with φ ∈ L1(Rd), φ ≥ 0,

∫
φ dx > 1 and spt(φ) compact (as

well as spt(µ0) and spt(µ1)). Then the value of (2.1) coincides with the value of its
(pre-)dual formulation

sup
ϕ0,ϕ1∈C(spt(φ))2

∫
ϕc00 dµ0 +

∫
ϕc11 dµ1 +

∫
min(ϕ0 + ϕ1, 0)φ dx (3.4)

(where ϕcii are as in formulae (3.1)-(3.2) with K replaced by spt(φ)). Moreover, the
supremum in (3.4) is attained. If (ϕ0, ϕ1) solves (3.4), then µ solves (2.1) under the
constraint µ ≤ φ if and only if there exist γ0 ∈ Π(µ, µ0) and γ1 ∈ Π(µ, µ1) such that

ϕ0(x) + ϕc00 (x0) = c0(x0, x), ∀(x0, x) ∈ spt(γ0), (3.5)

ϕ1(x) + ϕc11 (x1) = c1(x, x1), ∀(x, x1) ∈ spt(γ1) (3.6)
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(so that γ0 and γ1 are optimal plans and ϕ0 and ϕ1 are Kantorovich potentials) and

ϕ0 + ϕ1 ≥ 0 on spt(φ− µ), ϕ0 + ϕ1 ≤ 0 on spt(µ). (3.7)

Proof. The fact that the concave maximization problem (3.4) is the dual of (2.1)
under the constraint µ ≤ φ follows directly from the Fenchel-Rockafellar duality
theorem and the Kantorovich duality formula.

Let us prove now that (3.4) admits a solution. To see this we remark that the
objective is unchanged when one replaces (ϕ0, ϕ1) by (ϕ0 + λ, ϕ1 − λ) where λ is a
constant. Moreover, replacing ϕ0 and ϕ1 by their c0/c1-concave envelopes defined
for every x ∈ spt(φ) by:

ϕ̃0(x) := min
x0∈spt(µ0)

{c0(x0, x)− ϕc00 (x0)},

ϕ̃1(x) := min
x1∈spt(µ1)

{c1(x, x1)− ϕc11 (x1)}
(3.8)

it is well-known that ϕ̃i ≥ ϕi and ϕ̃cii = ϕcii for i = 0, 1 so that replacing ϕi by
ϕ̃i is an improvement in the objective of (3.4), moreover the functions ϕ̃i have a
uniform modulus of continuity inherited from the uniform continuity of ci. From
these observations, we can find a uniformly equicontinuous maximizing sequence
(ϕn0 , ϕ

n
1 )n for which minspt(φ) ϕ

n
0 = 0 so that ϕn0 is also uniformly bounded. Since

min(ϕn1 +ϕn0 , 0) ≤ 0, the fact that (ϕn0 , ϕ
n
1 )n is a maximizing sequence together with

the uniform bounds on ϕn0 we get a uniform lower bound on
∫

(ϕn1 )c1dµ1 from which
we easily derive a uniform upper bound on ϕn1 thanks to (3.8). To show that ϕn1 is
also uniformly bounded from below, we observe that the quantity∫

(ϕn1 )c1dµ1 +

∫
min(ϕn1 + ϕn0 , 0)φ dx

is bounded from below and bounded from above by C + (
∫
φ dx− 1) minspt(φ) ϕ

n
1 for

some constant C. Since
∫
φ dx > 1 this gives the desired lower bound. Having thus

found a uniformly bounded and equicontinuous maximizing sequence, we deduce the
existence of a solution to (3.4) from Arzelà-Ascoli theorem.

Let us now look at the optimality conditions which follow from the above duality.
If (ϕ0, ϕ1) solves (3.4), then µ solves (2.1) under the constraint µ ≤ φ if and only if

Wc0(µ0, µ) +Wc1(µ, µ1) =

∫
ϕc00 dµ0 +

∫
ϕc11 dµ1 +

∫
min(ϕ0 + ϕ1, 0)φ.

If γ0 (respectively γ1) is an optimal plan for c0 (resp. c1) between µ0 and µ (resp. µ
and µ1), we thus have∫

ϕc00 dµ0 +

∫
ϕc11 dµ1 +

∫
min(ϕ0 + ϕ1, 0)φ =

∫
c0 dγ0 +

∫
c1 dγ1

≥
∫

(ϕc00 (x0) + ϕ0(x)) dγ0(x0, x) +

∫
(ϕc11 (x1) + ϕ1(x)) dγ1(x, x1)

=

∫
ϕc00 dµ0 +

∫
ϕc11 dµ0 +

∫
(ϕ0 + ϕ1) dµ

≥
∫
ϕc00 dµ0 +

∫
ϕc11 dµ0 +

∫
min(ϕ0 + ϕ1, 0) dµ

≥
∫
ϕc00 dµ0 +

∫
ϕc11 dµ0 +

∫
min(ϕ0 + ϕ1, 0)φ dx
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where we have used that µ ≤ φ in the last line. All the inequalities above should
therefore be equalities which together with the continuity of ϕ0 and ϕ1 is easily seen
to imply (3.5)-(3.6)-(3.7). This shows the necessity of these conditions, the proof of
sufficiency by duality is direct and therefore left to the reader. �

Corollary 3.2. Under the same assumptions as in Proposition 3.1, assume that µ is
optimal for (2.1) under the constraint µ ≤ φ and let γ0 and γ1 be optimal transport
plans. Then, whenever x0, x, x1 are such that (x0, x) ∈ spt(γ0), (x, x1) ∈ spt(γ1),
x ∈ spt(φ− µ), we have

c0(x0, x) + c1(x, x1) = min
y∈spt(φ−µ)

{
c0(x0, y) + c1(y, x1)

}
.

Proof. Let (ϕ0, ϕ1) solve (3.4). By construction, for every (x0, x1, y) ∈ spt(µ0) ×
spt(µ1)× spt(φ) one has

c0(x0, y) + c1(y, x1) ≥ ϕc00 (x0) + ϕc11 (x1) + (ϕ0 + ϕ1)(y).

Together with (3.7) this implies that for every (x0, x1) ∈ spt(µ0)× spt(µ1)

min
y∈spt(φ−µ)

{c0(x0, y) + c1(y, x1)} ≥ ϕc00 (x0) + ϕc11 (x1).

But now if x ∈ spt(µ)∩ spt(φ−µ), by (3.7) again we have ϕ0(x)+ϕ1(x) = 0. Hence
by (3.5)-(3.6) whenever (x0, x) ∈ spt(γ0), (x, x1) ∈ spt(γ1) and x ∈ spt(φ − µ) we
have

ϕc00 (x0) + ϕc11 (x1) = c0(x0, x) + c1(x, x1) ≥ min
y∈spt(φ−µ)

{c0(x0, y) + c1(y, x1)},

which yields the desired result. �

In the discrete case, we can easily deduce an bang-bang result stating that the
constraint µ ≤ φ is always binding when µ > 0 under mild conditions on the cost.
We will give similar bang-bang results for distance-like costs in Section 4.

Corollary 3.3. Assume that µ0 and µ1 are discrete, that for every (x0, x1) ∈
spt(µ0)× spt(µ1), c0(x0, .) and c1(., x1) are C1 and M-Lipschitz on spt(φ) (for some
M that does not depend on x0 and x1) and that the set

{x ∈ spt(φ) : ∇xc0(x0, x) +∇xc1(x, x1) = 0} (3.9)

is Lebesgue negligible. Then if µ is optimal for (2.1) under the constraint µ ≤ φ
there exists a measurable subset E of spt(φ) such that µ = φ1E.

Proof. Let (ϕ0, ϕ1) solve (3.4), As seen in the proof of Proposition 3.1, we may
assume that, for every x ∈ spt(φ)

ϕ0(x) := min
x0∈spt(µ0)

{c0(x0, x)− ϕc00 (x0)},

ϕ1(x) := min
x1∈spt(µ1)

{c1(x, x1)− ϕc11 (x1)},

so that ϕ0 and ϕ1 are Lipschitz hence differentiable a.e. on spt(φ). Since ϕ0 +ϕ1 = 0
on spt(µ) ∩ spt(φ− µ), we then have

∇ϕ0 +∇ϕ1 = 0 a.e. on {0 < µ < φ}
but if ϕ0 (respectively ϕ1) is differentiable at x and (x0, x) ∈ spt(γ0) (resp. (x, x1) ∈
spt(γ1)), where γ0 and γ1 are optimal plans, then

∇ϕ0(x) = ∇xc0(x0, x), ∇ϕ1(x) = ∇xc1(x, x1).
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Hence, denoting by Ai the countable concentration set of µi (i = 0, 1), a.e. x such
that 0 < µ(x) < φ(x) belongs to⋃

(x0,x1)∈A0×A1

{x ∈ spt(φ) : ∇xc0(x0, x) +∇xc1(x, x1) = 0},

which is negligible by assumption. The desired bang-bang conclusion then readily
follows. �

Remark 3.4. In some cases, for instance when the costs c0 and c1 depend quadrat-
ically or more generally as a p-th power of the distance (with p > 1), the set in
(3.9) reduces to a single point which depends in a Lipschitz way on x0 and x1. The
conclusion of Corollary 3.3 then still holds under the weaker assumption that one
between µ0 and µ1 is discrete and the other one is singular with respect to the
Lebesgue measure. More precisely, this still holds if the Hausdorff dimension of the
support of µ0 is h0, and the Hausdorff dimension of the support of µ1 is h1, with
h0 + h1 < d.

4. Distance like costs

In this section, we pay special attention to the case of distance-like costs:

c0(x0, x) := |x0 − x|α, c1(x, x1) := λ|x− x1|α, (4.1)

with 0 < α ≤ 1 and λ > 0.

4.1. Location constraint, concentration and integrability on the boundary.
Let us start with the case of a location constraint of type (ii): µ ∈ P(K) for some
nonempty compact subset K of Rd.

Lemma 4.1. Assume K is a compact subset of Rd and that one of the following
assumption holds:

• α = 1, λ > 1 and the interior of K is disjoint from spt(µ1),
• α ∈ (0, 1) and the interior of K is disjoint from spt(µ0) ∪ spt(µ1).

Then any solution µ of (2.1) under the constraint µ ∈ P(K) is supported by ∂K.

Proof. For (x0, x1) ∈ spt(µ0)× spt(µ1), set

c(x0, x1) := min
x∈K
{|x0 − x|α + λ|x− x1|α},

T (x0, x1) := argmin
x∈K

{|x0 − x|α + λ|x− x1|α}.

We know from Proposition 2.3 that µ is supported by T (spt(µ0) × spt(µ1)). In
particular, if x ∈ spt(µ) is an interior point of K then it is a local minimizer of
c0(x0, ·) + c1(·, x1) for some (x0, x1) ∈ spt(µ0) × spt(µ1). In the case α = 1, λ > 1,
since x 6= x1, this is clearly impossible. In the case α < 1, our assumption implies
that x /∈ {x0, x1}, so that x has to be a critical point of c0(x0, ·) + c1(·, x1). One
should have

α|x− x0|α−2(x− x0) + λα|x− x1|α−2(x− x1) = 0,

so that x0 6= x1 and x ∈ [x0, x1]. But c0(x0, ·)+c1(·, x1) is strictly concave on [x0, x1]
which contradicts x being a local minimizer. �

Remark 4.2. If α = λ = 1 the previous result is false: if d = 1, µ0 = δ0 and µ1 = δ1,
and K = [1/4, 3/4], then it follows from the triangle inequality that any probability
supported by K is actually optimal.
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Now that we know that minimizers are supported by ∂K, one may wonder, if
K and µ1 are regular enough, whether these minimizers are absolutely continuous
with respect to the (d − 1)-Hausdorff measure on ∂K, the answer is positive if µ0

is discrete, i.e. is concentrated on a countable set, µ0(K) = 0 and µ1 is absolutely
continuous with support disjoint from int(K) (see Proposition 4.4 below). A first
step consists in the following result.

Lemma 4.3. Assume that c0 and c1 are as in (4.1) (with α ∈ (0, 1] and λ > 1
if α = 1), and that K is compact. Then for every x0 and (Lebesgue-)almost every
x1 ∈ Rd \K, the set

Tx0(x1) := argmin
x∈K

{
|x0 − x|α + λ|x− x1|α

}
is a singleton.

Proof. Fix x0, set

cx0(x1) := min
x∈K

{
|x0 − x|α + λ|x− x1|α

}
,

and observe that cx0 is locally Lipschitz on Rd\K. It thus follows from Rademacher’s
theorem that almost every x1 ∈ Rd \K is a point of differentiability of cx0 , and for
such a point, if x ∈ Tx0(x1), we have

∇cx0(x1) = λα|x1 − x|α−2(x1 − x) 6= 0.

If α ∈ (0, 1) this immediately gives the claim with

Tx0(x1) = {x1 + (λα)
1

1−α |∇cx0(x1)|
2−α
α−1∇cx0(x1)}.

If α = 1 and λ > 1, if both x and x′ belong to Tx0(x1) then x1, x and x′ are aligned, so
that the triangle inequality between their differences is saturated. But if x ∈ [x1, x

′),
by the definition of Tx0(x1) and λ > 1, we should also have

cx0(x1) = |x− x0|+ λ|x− x1| = |x′ − x0|+ λ|x′ − x1|
= |x′ − x0|+ λ(|x− x1|+ |x′ − x|)
> |x′ − x0|+ |x′ − x|+ λ|x− x1|,

which is impossible by the triangle inequality, yielding the a.e. single-valuedness of
Tx0 in this case as well. �

Proposition 4.4. Assume that either α = 1, λ > 1 or α ∈ (0, 1) and

• K is the closure of an open, bounded set in Rd with a boundary of class C1,1,
• µ0 is discrete and µ0(K) = 0,
• µ1 is absolutely continuous and int(K) ∩ sptµ1 = ∅.

Then, any solution µ of (2.1) under the constraint µ ∈ P(K) is absolutely continu-
ous with respect to the (d− 1)-Hausdorff measure on ∂K.

Proof. Since µ0 is discrete, we can write µ0 =
∑

x0∈A0
px0δx0 , with A0 at most

countable, disjoint from K and px0 > 0 for every x0 ∈ A0. It follows from Proposition
2.3 and Lemma 4.3 that there exists a transport plan γ between µ0 and µ1, which
can be written as

γ =
∑
x0∈A0

px0δx0 ⊗ µx01 ,
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such that defining Tx0 as in Lemma 4.3 and T (x0, x1) = Tx0(x1) one has

µ = T#γ =
∑
x0∈A0

px0T
#
x0
µx01 .

Since the second marginal of γ is µ1, we also have

µ1 =
∑
x0∈A0

px0µ
x0
1 ,

so that all the measures µx01 are dominated by 1/px0µ1 hence absolutely continuous.
We are thus left to show that for each fixed x0 in the countable set A0, the measure
T#
x0
µx01 (which is supported by ∂K by Lemma 4.1) is absolutely continuous with

respect to the (d − 1)-Hausdorff measure on ∂K which from now on we denote by
σ(d−1),∂K . We now fix x0 ∈ A0 and a Borel subset A of ∂K and our aim is to bound

(T#
x0
µx01 )(A) = µx01 (T−1

x0
(A)).

To this end, let us distinguish the two cases α = 1, λ > 1 and α ∈ (0, 1).

Assume α = 1 and λ > 1. Since µ1(K) = 0 (because ∂K being a smooth
hypersurface, it is Lebesgue negligible and µ1(int(K)) = 0), we have

µx01 (T−1
x0

(A) \K) = µx01 (T−1
x0

(A)).

Now take x = Tx0(x1) ∈ ∂K with x1 /∈ K which is µ1-a.e. the case (so that
x /∈ {x0, x1}). By optimality, there exists β ≥ 0 such that

x̂− x0 + λx̂− x1 + βn(x) = 0,

where for ξ ∈ Rd \{0}, we have set ξ̂ = ξ/|ξ|, and where n(x) is the outward normal

to ∂K at x. Using the fact that λx̂− x1 has norm λ yields

λ2 = β2 + 1 + 2βn(x) · x̂− x0

whose only nonnegative root is

β = βx0(x) := −n(x) · x̂− x0 +

√
λ2 − 1 + (n(x) · x̂− x0)2,

so that

λx̂1 − x = βx0(x)n(x) + x̂− x0

and the right hand side is a Lipschitz function of x thanks to our assumptions (∂K
being C1,1 and x0 being at a positive distance from K, hence from x). Using again

that λx̂− x1 has norm λ, this shows that if x = Tx0(x1) then for some r ∈ [0, R]
with R = λ−1 diam(sptµ1 −K) there holds

x1 = Fx0(r, x) := x+ r[βx0(x)n(x) + x̂− x0].

Hence

µx01 (T−1
x0

(A)) ≤ µx01 (Fx0([0, R]× A)).

If σ(d−1),∂K(A) = 0, the smoothness of K and the fact that Fx0 is Lipschitz on [0, R]×
∂K, readily imply that Fx0([0, R]×A) is Lebesgue negligible. Hence µx01 (T−1

x0
(A)) = 0

and since this holds for any x0 ∈ A0, we also have µ(A) = 0, which implies the
absolute continuity of µ with respect to σ(d−1),∂K .
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Let us now assume that α ∈ (0, 1). To cope with the fact that c1(x, x1) is not
differentiable if x = x1, it will be convenient to fix ε > 0 and to consider x1 ∈ Aε1,
where

Aε1 := {x1 ∈ spt(µ1) ; d(K, x1) ≥ ε}
and

d(K, x) := min
y∈K
|x− y|

is the Euclidean distance to K. If x1 ∈ Aε1 ∩ T−1
x0

(x) with x ∈ A, it follows from the
first-order optimality condition, there is some r ≥ 0 such that

x1 = Gx0(r, x) := x+ |Hx0(r, x)|
2−α
α−1Hx0(r, x),

where
Hx0(r, x) = rn(x) + λ−1|x− x0|α−2(x− x0).

Now, note that
|Hx0(r, x)| = |x1 − x|α−1.

This shows that

|r| ≤ |x1 − x|α−1 + λ−1|x− x0|α−1

≤ εα−1 + λ−1 max
x∈K
|x− x0|α−1 =: Rε(x0).

Hence, Aε1 ∩ T−1
x0

(x) is included in the image by Gx0 of the set {(r, x), x ∈ A, r ∈
[0, Rε(x0)]}. Since Gx0 is Lipschitz (with a Lipschitz constant depending on ε) on
this set we obtain as soon as σ(d−1),∂K(A) = 0

µx01 (T−1
x0

(A)) = µx01 (T−1
x0

(A) \K) = lim
ε↘0

µx01 (T−1
x0

(A) ∩ Aε1)

≤ lim
ε↘0

µx01 (Gx0([0, Rε(x0)]× A)) = 0.

Thus we can conclude as before that µ is absolutely continuous. �

Proposition 4.5. Suppose in addition to the assumptions of Proposition 4.4 that
µ0 has finite support, µ1 has a bounded density with respect to the d-dimensional
Lebesgue measure. If α ∈ (0, 1), further assume that K ∩ sptµ1 = ∅. Then µ has a
bounded density with respect to the (d− 1)-Hausdorff measure on ∂K.

Proof. In the case α = 1, λ > 1 we can continue using the same notation and
Lipschitz mapping Fx0 and R as in the proof of Proposition 4.4 to conclude for any
Borel subset A of ∂K

µ(A) =
∑

x0∈spt(µ0)

px0µ
x0
1 (T−1

x0
(A))

≤
∑

x0∈spt(µ0)

px0µ
x0
1 (Fx0([0, R]× A))

≤
∑

x0∈spt(µ0)

‖µ1‖L∞Ld(Fx0([0, R]× A))

≤ Ccard(sptµ0)‖µ1‖L∞Rσ(d−1),∂K(A)

where C is a constant that only depends on the C1,1 smoothness of ∂K and the
maximal Lipschitz constant of Fx0 over [0, R] × ∂K, with respect to x0 ∈ spt(µ0).
This way we deduce that µ ∈ L∞(∂K, σ(d−1),∂K).
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For the case α ∈ (0, 1) we need in addition K ∩ sptµ1 = ∅ to ensure that, again
using the same arguments and notation as in the proof of Proposition 4.4, there is
an ε0 > 0 such that Aε01 = spt(µ1). In this way, all the analysis from the previous
proof can be carried through on Aε01 and we obtain

µ(A) =
∑

x0∈spt(µ0)

px0µ
x0
1 (T−1

x0
(A) ∩ Aε01 )

≤
∑

x0∈spt(µ0)

px0µ
x0
1 (Gx0([0, Rε0(x0)]× A))

≤
∑

x0∈spt(µ0)

‖µ1‖L∞Ld(Gx0([0, Rε0(x0)]× A))

≤ Ccard(sptµ0)‖µ1‖L∞Rε0(x0)σ(d−1),∂K(A),

where C is a constant that only depends on the C1,1 smoothness of ∂K and the
maximal with respect to x0 ∈ spt(µ0) Lipschitz constant of Gx0 over [0, Rε0(x0)] ×
∂K. �

One might also be interested in the case that the distribution of residents rep-
resented by µ0 is absolutely continuous and µ1 is discrete. The case α ∈ (0, 1) is
completely symmetric as we have not assumed λ > 1 in the previous proofs. However
for the case α = 1, λ > 1, the proof slightly differs as we shall see below. Arguing
as for the proof of Lemma 4.3, we have:

Lemma 4.6. Assume that c0 and c1 are as in (4.1) (with α ∈ (0, 1] and λ > 1 if
α = 1), and that K is compact. Then for (Lebesgue-)almost every x0 ∈ Rd \K and
every x1, the set

Tx1(x0) := argmin
x∈K

{
|x0 − x|α + λ|x− x1|α

}
is a singleton.

The analogue of Proposition 4.4, then reads

Proposition 4.7. Assume that either α = 1, λ > 1 or α ∈ (0, 1) and

• K is the closure of an open, bounded set in Rd with a boundary of class C1,1,
• µ0 is absolutely continuous and int(K) ∩ sptµ0 = ∅,
• µ1 is discrete and µ1(K) = 0.

Then, any solution µ of (2.1) under the constraint µ ∈ P(K) is absolutely continu-
ous with respect to the (d− 1)-Hausdorff measure on ∂K.

Proof. As already explained, the case α > 1 can be handled exactly as for Propo-
sition 4.4, we shall therefore assume that α = 1 and λ > 1. We write µ1 =∑

x1∈A1
px1δx1 , with A1 countable and px1 > 0. It follows from Proposition 2.3 and

Lemma 4.6 that there exists a transport plan γ between µ0 and µ1, which can be
written as

γ =
∑
x1∈A1

µx10 ⊗ px1δx1 ,

such that defining Tx1 as in Lemma 4.3 and T (x0, x1) = Tx1(x0) one has

µ = T#γ =
∑
x1∈A1

px1T
#
x1
µx10 .
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Since the first marginal of γ is µ0, µx10 is absolutely continuous for every x1 ∈ A1.
We are thus left to show that for each fixed x1 in the countable set A1, the measure
T#
x1
µx10 is absolutely continuous with respect to the (d − 1)-Hausdorff measure on

∂K which from now on we denote by σ(d−1),∂K . We now fix x1 ∈ spt(µ1) and a Borel
subset A of ∂K and our aim is to bound

(T#
x1
µx10 )(A) = µx10 (T−1

x1
(A)).

Since µ0(K) = 0, we have µx10 (T−1
x1

(A)\K) = µx10 (T−1
x1

(A)). Now take x = Tx1(x0) ∈
∂K with x0 /∈ K. By optimality, there exists β ≥ 0 such that

x̂− x0 + λx̂− x1 + βn(x) = 0 where for ξ ∈ Rd \ {0}, we have set ξ̂ = ξ/|ξ|
where n(x) is the outward normal to ∂K at x. This time our aim is to write, for
fixed x1, x0 as a Lipschitz function of x and a length factor, so we proceed as follows.
Using the fact that λx̂− x1 has norm λ yields

1 = β2 + λ2 + 2βλn(x) · x̂− x1.

This time, it is possible that there are two positive solutions for β. We denote them

β+
x1

(x) := −λn(x) · x̂− x1 +

√
(λn(x) · x̂− x1)2 + 1− λ2,

β−x1(x) := −λn(x) · x̂− x1 −
√

(λn(x) · x̂− x1)2 + 1− λ2.

Hence, we have one of the following equalities is satisfied by (x0, x, x1)

x0 = x+ r(λx̂− x1 + β+
x1

(x)n(x)) =: F+
x1

(r, x),

x0 = x+ r(λx̂− x1 + β−x1(x)n(x)) =: F−x1(r, x),

where r ∈ [0, R] and R = diam(sptµ0 −K).
Consider now a Borel set A ⊂ ∂K with σ(d−1),∂K(A) = 0. We distinguish the cases

where the discriminant (λn(x) · x̂− x1)2 + 1− λ2 is zero or positive

A0 :=
{
x ∈ A : (λn(x) · x̂− x1)2 + 1− λ2 = 0

}
,

A> :=
{
x ∈ A : (λn(x) · x̂− x1)2 + 1− λ2 > 0

}
=

⋂
δ>0

{
x ∈ A : (λn(x) · x̂− x1)2 + 1− λ2 ≥ δ

}
︸ ︷︷ ︸

=:Aδ

.

Since F+
x1

and F−x1 agree with Lipschitz functions on [0, R]× A0 and [0, R]× Aδ for
δ > 0 fixed, we obtain

µx10 (T−1
x1

(A)) ≤ µx10 (T−1
x1

(A0)) + lim
δ↘0

µx10 (T−1
x1

(Aδ))

≤ µx10 (F+
x1

([0, R]× A0)) + lim
δ↘0

(
µx10 (F+

x1
([0, R]× Aδ)) + µx10 (F−x1([0, R]× Aδ))

)
= 0,

as required. �

It is unclear whether an L∞-bound can be obtained with the same proof strategy
since the Lipschitz constant of the maps F+

x1
and F−x1 may blow up as δ → 0+. In

addition, in Proposition 4.4 the smoothness of K is crucial, as the example below
shows.



16 GIUSEPPE BUTTAZZO, GUILLAUME CARLIER, AND KATHARINA EICHINGER

Example 4.8. In the two-dimensional case take as K the square {|x|+ |y| ≤ 1} and
consider the distance-like cost of Proposition 4.4 with α = 1 and λ > 1. Take as µ0

the Lebesgue measure on the disc B(x0, r) and as µ1 the Lebesgue measure on the
disc B(x1, r), with x0 = (−a, 0) and x1 = (a, 0) as in Figure 1. The optimal pivot
measure µ has in this case a part proportional to the Dirac mass δ(1,0) and in some
cases, when λ is large, a is large, and r is small, actually reduces to the Dirac mass
δ(1,0).

µ0 K µ1

Figure 1. A nonsmooth constraint set K may provide a singular
optimal pivot measure.

4.2. Density constrained solutions are bang-bang. We end this section by
observing that in the case of a density constraint µ ≤ φ, for distance-like costs
minimizers are of bang bang type.

Proposition 4.9. Assume that c0 and c1 are as in (4.1) with λ > 1 if α = 1, that
φ ∈ L1(Rd) is nonnegative with compact support, that

∫
φ dx > 1, and that both

spt(φ) ∩ spt(µ0) and spt(φ) ∩ spt(µ1) are Lebesgue negligible. Then any solution µ
of (2.1) under the constraint µ ≤ φ is of the form µ = φ1E for some measurable
subset E of spt(φ).

Proof. Let us start with the case α = 1, λ > 1 and define A := {0 < µ < φ}, we
then consider (Lipschitz) potentials ϕ0 and ϕ1 as in the proof of Corollary 3.3. A.e.
point of A is a differentiability point of ϕ0 and ϕ1, satisfies ∇ϕ0 +∇ϕ1 = 0 and lies
in Rd \ (spt(µ0) ∪ spt(µ1)). Hence arguing as in the proof of Corollary 3.3, for a.e.
x in A one can find x0 ∈ spt(µ0) \ {x} and x1 ∈ spt(µ1) \ {x} such that

0 = ∇ϕ0(x) + λ∇ϕ1(x) =
x− x0

|x− x0|
+ λ

x− x1

|x− x1|
which is impossible since λ > 1. This shows that A is negligible and ends the proof
for this case.

Consider now the slightly more complicated case where α ∈ (0, 1), since x 7→
|x− x0|α is Lipschitz only away from x0, it is convenient for δ > 0 to introduce the
set

Bδ := {x ∈ spt(φ) : d(x, spt(µ0) ∪ spt(µ1)) ≥ δ}
on Bδ the potentials ϕ0 and ϕ1 are Lipschitz and we can find a subset B̃δ of Bδ with

Bδ \ B̃δ negligible such that ϕ0 and ϕ1 are differentiable on B̃δ. Consider now for
ε > 0

Aε := {ε < µ < φ− ε}



WASSERSTEIN INTERPOLATION AND PARKING PROBLEM 17

and let Ãε be the subset (of full Lebesgue measure) consisting of its points of density

1 (so that Ãε ⊂ spt(φ − µ)). Arguing as before for a.e. x ∈ Ãε ∩ B̃δ, we can find
(x0, x1) ∈ spt(µ0)× spt(µ1) such that

∇ϕ0(x) +∇ϕ1(x) = ∇fx0,x1(x) = 0,

where fx0,x1(x) := |x − x0|α + λ|x − x1|α. Moreover we know from Corollary 3.2

that spt(φ− µ) (hence also Ãε) is included in the level set fx0,x1 ≥ fx0,x1(x). Since
x /∈ {x0, x1} is a critical point of fx0,x1 we have x1 6= x0 and x belongs to [x0, x1]

e := x̂− x0 = x̂1 − x = x̂1 − x0.

And then the Hessian D2fx0,x1 at x takes the form

D2fx0,x1(x) = (α|x− x0|α−2 + λα|x− x0|α−2)(id +(α− 2)e⊗ e)
which shows that x is a saddle-point of fx0,x1 , its hessian having a negative eigenvalue
with eigenvector e and being positive definite on e⊥.

Hence for small r > 0, Ãε should lie in the intersection of B(x, r) with a certain

strict quadratic cone of Rd contradicting the fact that x is a point of density 1 of Ãε.
This shows that Aε ∩ Bδ is negligible, letting δ → 0+ we find that Aε is negligible
and since this is true for every ε > 0, the desired conclusion follows. �

5. The case of strictly convex costs with a convex location
constraint

We now consider (2.1) in the case of the location constraint A = P(K) where K
is a compact convex subset of Rd with nonempty interior and c0 and c1 satisfy the
strong convexity and smoothness assumptions:

ci(x, y) := Fi(y − x), Fi ∈ C2(Rd), λ id ≤ D2Fi ≤ Λ id, i = 0, 1 (5.1)

for some constants 0 < λ ≤ Λ. Since these costs are twisted, (2.1) in the case of
the location constraint A = P(K) admits a unique solution as soon as µ0 (or µ1) is
absolutely continuous, see Remark 2.4.

Example 5.1. Consider the two dimensional case with a location constraint given
by the square K of Example 4.8; take µ0 = δ(−2,0), µ1 uniform on the ball of radius
1 centered at (3, 0), c0(x, y) = |x − y|2 and c1(x, y) = 2|x − y|2. Then by a direct
application of Proposition 2.3, the (unique) solution of (2.1) is explicit: it is the
image of the uniform measure on the ball B of radius 2/3 centered at (4/3, 0) by the
projection onto K. It has an atom at (1, 0), an absolutely continuous part, uniform
on B∩K and a one dimensional part corresponding to the points of B which project
onto the segments [(0, 1), (1, 0)] and [(0,−1), (1, 0)].

This shows that, contrary to the case of distance like costs, one should expect
that µ in general decomposes into a (nonzero) interior part and a boundary part:

µ = µint + µbd where µint(A) := µ(A ∩ int(K)), µbd(A) := µ(A ∩ ∂K) (5.2)

for every Borel subset A of Rd. Regarding µbd, arguing as in Proposition 4.4, one
can show that if µ0 is absolutely continuous, µ1 is discrete and K is of class C1,1,
µbd is absolutely continuous with respect to the (d − 1)-Hausdorff measure on ∂K
(and has a bounded density if in addition µ0 ∈ L∞ and µ1 is finitely supported, see
Proposition 4.5). As for the regularity of µint, we have:
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Proposition 5.2. Assume c0 and c1 are of the form (5.1), that µ0 and µ1 are
compactly supported, with µ0 ∈ L∞ and that K is a compact convex subset of Rd

with nonempty interior. Decomposing the solution µ of (2.1) in the case of the
location constraint A := P(K) as in (5.2), we have µint ∈ L∞ and more precisely
(identifying µint with its density), we have

‖µint‖L∞ ≤ ‖µ0‖L∞2dλ−dΛd (5.3)

where λ and Λ are the positive constants appearing in (5.1).

To establish the L∞ bound in (5.3), we shall use a penalization strategy, detailed
in the next paragraph, the proof by a standard Γ-convergence argument is postponed
to the end of this section.

5.1. Penalization. Given g ∈ C2(Rd), with g convex and nonnegative, let us con-
sider

inf
µ∈P(Rd)

T (µ) +

∫
Rd
gµ with T (µ) := Wc0(µ0, µ) +Wc1(µ1, µ) (5.4)

then we have:

Proposition 5.3. Assuming (5.1) and µ0 ∈ L∞, (5.4) admits a unique solution µg.
Moreover µg is absolutely continuous with respect to the Lebesgue measure and its
density (still denoted µg) satisfies for a.e. x ∈ Rd, the bound

µg(x) ≤ ‖µ0‖L∞λ−d det(D2g(x) + 2Λ id) (5.5)

where λ and Λ are the positive constants appearing in (5.1).

Proof. The coercivity of c0, c1 and g ≥ 0 easily give the existence of a minimizer as
in Proposition 2.3 (incorporating g in one of the costs considered there), whereas
uniqueness is guaranteed by twistedness of the costs and the absolute continuity of
µ0, see Remark 2.4. Also Proposition 2.3 ensures there is some ball B which contains
a neighbourhood of spt(µg). Then, Theorem 3.3 from Pass [13] guarantees that the
minimizer µg is absolutely continuous. The optimality condition derived from the
dual formulation of (5.4), (see (3.3)) gives the existence of potentials ϕ0 and ϕ1 such
that

ϕ0 + ϕ1 + g = 0 on B (5.6)

and

Wc0(µ0, µg) =

∫
Rd
ϕc00 µ0 +

∫
Rd
ϕ0µg, Wc1(µg, µ1) =

∫
Rd
ϕc11 µ1 +

∫
Rd
ϕ1µg

so that defining the ci-concave potentials

ϕ̃0(x) := inf
x0∈spt(µ0)

{c0(x0, x)− ϕc00 (x0)},

ϕ̃1(x) := inf
x1∈spt(µ1)

{c1(x, x1)− ϕc11 (x)},

one should have

ϕi ≤ ϕ̃i on B and ϕi = ϕ̃i on spt(µg). (5.7)

Now observe that thanks to (5.1), ϕ̃0 and ϕ̃1 are semi-concave and more precisely

D2ϕ̃i ≤ Λ id, i = 0, 1. (5.8)

In particular ϕ̃0 and ϕ̃1 are everywhere superdifferentiable, but on spt(µg), thanks
to (5.6) and (5.7), ϕ̃0 + ϕ̃1 + g is minimal and since g is differentiable this implies
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that ϕ̃0 + ϕ̃1 is also subdifferentiable on spt(µg). This readily implies that ϕ̃0 and
ϕ̃1 are differentiable on spt(µg) and that

∇ϕ̃0 +∇ϕ̃1 +∇g = 0 on spt(µg).

By Alexandrov’s Theorem (see Theorem 6.9 in [8]) , ϕ̃0 and ϕ̃1 are also twice differ-
entiable µg-a.e. and minimality of ϕ̃0 + ϕ̃1 + g on spt(µg) also gives

D2ϕ̃0 +D2ϕ̃1 +D2g ≥ 0 µg-a.e.. (5.9)

The optimal transport S0 for the cost c0 between µg and µ0 (see Theorem 3.7 in
[10]) is then given by

S0(x) = x−∇F ∗0 (∇ϕ̃0(x)), x ∈ spt(µg),

where F ∗0 is the Legendre transform of F0. The absolute continuity of µg enables
us to use Theorem 4.8 of Cordero-Erausquin [6] to get the existence of a set of full
measure for µg for which one has the Jacobian equation

µg = µ0 ◦ S0 det(id−D2F ∗0 (∇ϕ̃0)D2ϕ̃0), (5.10)

where D2ϕ̃0(x) is to be understood in the sense of Alexandrov and the matrix
id−D2F ∗0 (∇ϕ̃0)D2ϕ̃0 which is diagonalizable with real and nonnegative eigenvalues
can be rewritten as

id−D2F ∗0 (∇ϕ̃0)D2ϕ̃0 = D2F ∗0 (∇ϕ̃0)(D2F0(x− S0(x))−D2ϕ̃0(x)).

Together with (5.10), since D2F ∗0 ≤ λ−1 id and D2F0(x− S0(x))−D2ϕ̃0(x) is semi-
definite positive, this gives for µg a.e. x:

µg(x) ≤ ‖µ0‖L∞λ−d det(D2F0(x− S0(x))−D2ϕ̃0(x))

by (5.9) and (5.8), we then have

−D2ϕ̃0(x) ≤ D2g(x) +D2ϕ̃1(x) ≤ D2g(x) + Λ id

but since D2F0 ≤ Λ id, the bound (5.5) follows. �

5.2. Proof of the bound by Γ-convergence. Recall that we have assumed thatK
is a convex compact subset with nonempty interior, for ε > 0, setting Kε := K+εB
(where B is the unit Euclidean ball of Rd); consider the mollifiers ηε = ε−dη( ·

ε
) with

η a smooth probability density supported on B, consider the smooth and convex
function

gε := ηε ? ε
−1d2

Kε

where dKε is the distance to Kε. Defining T as in (5.4) and for every ν ∈ P(Rd):

Jε(ν) := T (ν) +

∫
Rd
gεν, J(ν) :=

{
T (ν) if ν ∈ P(K)

+∞ otherwise

it is easy to see that Jε Γ-converges to J as ε → 0+ for the narrow topology.
Hence the tight sequence of minimizers of Jε, µε := µgε converges narrowly to µ the
minimizer of J i.e. the solution of (2.1) with A = P(K). Since D2gε = 0 on int(K),
we deduce from (5.5) that for every open Ω such that Ω b int(K)

‖µε‖L∞(Ω) ≤ ‖µ0‖L∞2dλ−dΛd

from which one deduces (5.3) by letting ε→ 0+.



20 GIUSEPPE BUTTAZZO, GUILLAUME CARLIER, AND KATHARINA EICHINGER

6. A parking location model

In this section, we introduce a mathematical model for the optimal location of a
parking area in a city. We fix:

• a compactly supported probability measure on Rd, ν0 which represents the
distribution of residents in a given area;
• a a compactly supported probability measure on Rd, ν1 which represents the

distribution of services.

The goal is to determine a measure µ which represents the density of parking places,
in order a suitable total transportation cost be minimized. All the residents travel
to reach the services, but some of them may simply walk (which will cost c1(x, y) to
go from x to y), while some other ones may use their car to reach a parking place
(which will cost c0(x, y) to go from x to the parking place y) and then walk from
the parking place to the services (which will cost c1(y, z) to go from y to z). We
consider two cost functions c0 and c1 and the corresponding Wasserstein functionals
Wc0 and Wc1 , defined as in (1.1), respectively representing the cost of moving by car
and the cost of walking. It may be natural to assume that walking is more costly
than driving i.e. c1 ≥ c0, for instance we may take p ≥ 1 and

c0(x, y) = |x− y|p, c1(x, y) = λ|x− y|p with λ ≥ 1. (6.1)

Assuming that µ0 ≤ ν0 denotes the distribution of driving residents and µ1 ≤ ν1 the
corresponding services they reach for, the total cost we consider is

F (µ0, µ1, µ) = Wc1(ν0 − µ0, ν1 − µ1) +Wc0(µ0, µ) +Wc1(µ, µ1). (6.2)

The optimization problems we consider are then the minimization of F (µ0, µ1, µ),
subject to the constraints

0 ≤ µ0 ≤ ν0, 0 ≤ µ1 ≤ ν1,

∫
dµ0 =

∫
dµ1 =

∫
dµ,

and additional constraints as:

• no other constraints on the parking density µ;
• location constraints, that is sptµ ⊂ K, with a compact set K ⊂ Rd a priori

given;
• density constraints, that is µ ≤ φ, for a given nonnegative and integrable

function φ.

This optimization problem in the case of a location constraint can also be reformu-
lated as a linear program in the following way

inf
γ, γ̃ ≥ 0,

γ + π#
0,1γ̃ ∈ Π(ν0, ν1)

∫
Rd×Rd

c1(x0, x1) dγ(x0, x1)+

∫
Rd×Rd×K

(c0(x0, x)+c1(x, x1)) dγ̃(x0, x, x1).

(6.3)
It is indeed easy to see that the optimal solution to minimizing the functional in (6.2)

is given by π#
pivγ̃. Hence to incorporate a density constraint in the formulation (6.3)

one needs to add the constraint π#
pivγ̃ ≤ φ. The problem with location constraint is

actually equivalent to a standard optimal transport problem with cost function

C(x0, x1) := min

{
c1(x0, x1), inf

x∈K
{c0(x0, x) + c1(x, x1)}

}
.



WASSERSTEIN INTERPOLATION AND PARKING PROBLEM 21

More precisely, consider

inf
β∈Π(ν0,ν1)

∫
Rd×Rd

C(x0, x1) dβ(x0, x1). (6.4)

Then both (6.3) and (6.4) admit solutions and they are equivalent in the following
sense

• min (6.3) = min (6.4),

• if γ, γ̃ are optimal for (6.3), then β := γ + π#
0,1γ̃ is optimal for (6.4),

• if β is optimal for (6.4), then defining

V1 :=
{

(x0, x1) ∈ Rd × Rd : c1(x0, x1) = C(x0, x1)
}

γ := β|V1 and P : Rd × Rd → Rd (measurable)

P (x0, x1) ∈ argmin
x∈K

{c0(x0, x) + c1(x, x1)},

and
dγ̃(x0, x1, x) := δP (x0,x1)(x)⊗ dβ|Rd\V1(x0, x1),

then γ and γ̃ are optimal for (6.3).

Remark 6.1. Note that the solutions (µ0, µ, µ1) to minimizing (6.2), (respectively the
solutions γ and γ̃ to (6.3)) are not necessarily probability measures. The optimal
common total mass of γ̃, µ0 and µ1 represents the fraction of ν0 which uses the
parking. Thus, the parking problem is a generalization of the interpolation problem
from Section 2, which corresponds to imposing that the parking measure is of full
mass.

6.1. Examples. We first solve a simple particular example in R2 before giving some
numerical simulations. This example shows that in some cases the optimal choices
for µ0, µ1, µ are not of unitary mass, that corresponds to the cases where it is more
efficient for some residents to walk from their residence to the services without using
their car.

Example 6.2. Let ν0 = δx0 and ν1 = δ0 be two Dirac masses in R2; with x0 6= 0. We
consider the costs c0 and c1 as in (6.1) with p ≥ 1 and λ > 1. Then µ0 = αδx0 and
µ1 = αδ0, for some α ∈ [0, 1], and the optimization problems for the functional F in
(6.2) become the minimization of the quantity

λ(1− α)|x0|p +

∫ (
|x− x0|p + λ|x|p

)
dµ

= λ|x0|p +

∫ (
|x− x0|p + λ|x|p − λ|x0|p

)
dµ.

Since λ|x0|p is fixed we are reduced to minimize the quantity∫ (
|x− x0|p + λ|x|p − λ|x0|p

)
dµ

with the constraint
∫
dµ ≤ 1 and possibly other location and density constraints on

µ, as illustrated above. Setting

f(x) = |x− x0|p + λ|x|p − λ|x0|p (6.5)

it is clear that µ has to be concentrated on the set where f ≤ 0. The optimization
problem with no other constraints on µ has then the trivial solution α = 1 and
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µ = δargmin f (for instance µ = δ0 if p = 1 and µ = δ(1+λ)−1x0 if p = 2). The situation
becomes more interesting when other constraints on µ are present. If we impose
sptµ ⊂ K let x̄ ∈ K be a minimum point of the function f in (6.5). If f(x̄) < 0
then α = 1 and µ = δx̄ is a solution; if f(x̄) ≥ 0 then α = 0 and µ = 0 is a solution.

We consider now the more realistic case when a density constraint on µ is imposed,
we take µ ≤ 1. The optimal measure µ for the cost (6.2) is then the characteristic
function 1Ac of a suitable level set Ac = {f ≤ c} with c ≤ 0. Thus the following
situations may occur.

• If |{f ≤ 0}| ≥ 1 then α = 1 and µ = 1Ac , where the level c ≤ 0 is such
that |Ac| = 1. Note that, since the function f is convex, the set Ac is convex
too. This happens when x0 is far enough from the origin, and all people then
drive to the parking area Ac.
• If |{f ≤ 0}| < 1 then α = |{f ≤ 0}| and µ = 1A0 .

For instance, when p = 2 it is easy to see that the set A0 is the ball centered at
x0/(1 + λ) with radius λ|x0|/(1 + λ). Therefore:

• if |x0| ≥ π−1/2(λ + 1)/λ we have α = 1 and µopt = 1A, where A is the disk
centered at x0/(1 + λ) of unitary area;
• if |x0| < π−1/2(λ + 1)/λ we have α = π|x0|2λ2/(λ + 1)2 and µopt = 1A0 . In

this case only the fraction α of people drive to reach a parking, while the
rest of residents walk up to the services.

In Figure 2 the two situations are graphically represented in the cases p = λ = 2,
while in Figure 3 we plot the two optimal parking areas when p = 1 and λ = 2.

Figure 2. The case p = λ = 2. On the left |x0| = 1 gives |Aopt| = 1;
on the right |x0| = 1/2 gives |Aopt| ' 0.35.

7. Numerical simulations

For the numerical simulation of examples in the case of interpolation between
measures (2.1) and the parking problem (6.2) we replace the optimal transportation
costs by their entropically regularized versions. This will enable us to apply some
variants of the celebrated Sinkhorn’s algorithm, popularized in the context of optimal
transport and matching by [7] and [9]. For an introduction to this rapidly developing
subject and convergence results, we refer the reader to [14] and [12].
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Figure 3. The case p = 1 and λ = 2. On the left |x0| = 1 gives
|Aopt| ' 0.97; on the right |x0| = 1/2 gives |Aopt| ' 0.24.

7.1. Description of the Sinkhorn-like algorithm. The entropically regularized
optimal transport cost for a cost function c, a regularizing parameter ε > 0 and a
fixed reference measure Q ∈ P(Rd × Rd) is given by

inf

{∫
Rd×Rd

c(x, y) dγ(x, y) + εH(γ|Q) : γ ∈ Π(µ0, µ1)

}
, (7.1)

where the relative entropy H(P |Q) between two nonnegative finite measures P,Q
on Rd is defined by

H(P |Q) :=

{∫
Rd

(
log
(

dP
dQ

)
− 1
)

dP if P � Q,

+∞ otherwise.

Note that, by setting R = e−c/εQ, we have

εH(γ|R) =

∫
Rd×Rd

c(x, y) dγ(x, y) + εH(γ|Q)

so that (7.1) amounts to minimizing H(.|R) among transport plans between µ0 and
µ1. As already observed in [2] in Section 3.2 the entropically regularized version of
(2.1) becomes for two suitably chosen reference measures R0, R1

inf
{
H(γ0|R0) +H(γ1|R1) : µ ∈ A, γ0 ∈ Π(µ0, µ), γ1 ∈ Π(µ, µ1)

}
. (7.2)

The cases (i) with no additional constraint and (ii) with location constraint K can
be treated by choosing the reference measures to enforce the support of µ being
included in K. Namely we choose

R0 = e−c0/εµ0 ⊗ 1K , R1 = e−c1/ε1K ⊗ µ1, (7.3)

where for case (i) we choose K large enough (yet still compact) as before. The
resulting Sinkhorn iterations are standard, see for instance Proposition 1 and 2 in
[2]. The case (iii) of a density constraint φ requires performing a suitable projection
of the estimated interpolation, as specified in Proposition 4.1 in [15] in the case of
φ ≡ κ. We write the corresponding Sinkhorn iterations including the projection for
the density constraint for sake of completeness in its dual form where the algorithm
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essentially becomes alternate gradient ascent. For this, note that the dual of (7.2)
with Ri as in (7.3) in the case of a density constraint µ ≤ φ (sptφ ⊂ K) is given by

sup
ϕ0,ϕ1,
ψ0,ψ1

{
−

1∑
i=0

∫
R2d

exp (ϕi + ψi) dRi +
1∑
i=0

∫
Rd
ϕi dµi +

∫
Rd

(ψ0 + ψ1)φ dx : ψ0 + ψ1 ≤ 0

}
.

Sinkhorn iterations are given by the explicit coordinate ascent updates for this dual
formulation:

exp
(
ϕl+1
i (xi)

)
=

(∫
K

exp
(
−ci
ε

+ ψli(x)
)

dx

)−1

,

exp
(
ψl+1
i (x)

)
= min

{
µl, φ

}(∫
Rd

exp
(
−ci
ε

+ ϕl+1
i (xi)

)
dµi(xi)

)−1

,

where µl is the current approximate interpolation which is given by the geometric
mean formula (see Proposition 2 of [2]):

µl =
1∏
j=0

(∫
exp

(
−cj
ε

+ ϕl+1
j + ψlj

)
dµj(xj)

) 1
2

.

Regularizing the parking problem (6.2) in a similar way leads to

inf
γ,γ̃0,γ̃1,γ̃∈M

{H (γ|R) +H (γ̃0|R0) +H (γ̃1|R1)} , (7.4)

where

M =
{
γ, γ̃0, γ̃1, γ̃ ∈M+(R2d)3 ×M+(R3d) :

γ + π#
0,1γ̃ ∈ Π(ν0, ν1), π#

0,pivγ̃ = γ̃0, π
#
piv,1γ̃ = γ̃1

}
.

As before, a location constraint on a given set K can be encoded in the choice of
the reference measures:

R = e−c1/εν0 ⊗ ν1, R0 = e−c0/εν0 ⊗ 1K , R1 = e−c1/ε1K ⊗ ν1.

For the density constraint, we have to add the condition π#
1 γ̃0 ≤ φ. The dual of

(7.4) in the case of a density constraint is then given by

sup
ϕ0,ϕ1,
ψ0,ψ1

{
−
∫
R2d

exp (ϕ0 + ϕ1) dR−
1∑
i=0

∫
R2d

exp (ϕi + ψi) dRi

+
1∑
i=0

∫
Rd
ϕi dνi +

∫
Rd

(ψ0 + ψ1)φ dx : ψ0 + ψ1 ≤ 0

}
.

The Sinkhorn iterations (density constraint included) in the dual variables then
become

exp
(
ϕl+1
i (xi)

)
=

(∫
exp

(
−c1

ε
+ ϕli+1 mod 2(x)

)
dx+

∫
exp

(
−ci
ε

+ ψli(x)
)

dx

)−1

,

exp
(
ψl+1
i (x)

)
= min

{
µl, φ

}(∫
exp

(
−ci
ε

+ ϕl+1
i (xi)

)
dµi(xi)

)−1

,

and µl, the current approximate parking measure, is again given by an explicit
geometric mean expression.
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7.2. Numerical results: comparison of the optimal interpolation and the
optimal parking. We now present some numerical results based on the iterative
schemes described in the previous paragraph. In all our examples (presented in
Figures 4 to 7), we compare the solutions of the interpolation and parking problems
with a constant density constraint on the unit square K = [0, 1]2. We always take
as distribution of services µ1 = ν1 = δ(0.5,0.5), the Dirac at the center of the square
and as distribution of residents, we take a symmetric sum of four Dirac masses:

µ0 = ν0 =
1

4

(
δ(0.5,0.1) + δ(0.5,0.9) + δ(0.1,0.5) + δ(0.9,0.5)

)
We consider power-like costs

c0(x, y) = |x− y|p, c1(x, y) = 1.5 c0(x, y)

for several values of p corresponding to concave, linear or convex costs and various
constant threshold values for the density constraints φ. In this setting, we know
(Corollary 3.3 for p > 1 and Proposition 4.9 for p ≤ 1) that the optimal inter-
polation and the optimal parking are of bang-bang type. Even with the entropic
regularization (which has the effect of blurring the true solution) this is clearly what
we observe in these figures with a small regularization ε = 5.10−4. Since the optimal
parking may have total mass less than 1 (it can even be 0, see Figure 4), we have
indicated its total mass on each figure, of course if the total mass of the parking is
1 it coincides with the interpolation, a case which is more likely to occur when the
threshold level is high. Finally, one can see the influence of the exponent p on the
shape of the support of the optimal measure and in particular recognize for p = 1
(Figure 6) the drop-like shape which was explicitly computed and plotted in Figure
3 and balls for p = 2 (Figure 7).
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l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Is-
tituto Nazionale di Alta Matematica (INdAM); his work is part of the project
2017TEXA3H “Gradient flows, Optimal Transport and Metric Measure Structures”
funded by the Italian Ministry of Research and University. This work was initiated
during a visit of GC and KE at the Dipartimento di Matematica of the University of
Pisa, the hospitality of this institution is gratefully acknowledged as well as the sup-
port from the Agence Nationale de la Recherche through the project MAGA (ANR-
16-CE40-0014). G.C. acknowledges the support of the Lagrange Mathematics and
Computing Research Center. KE acknowledges that this project has received fund-
ing from the European Union’s Horizon 2020 research and innovation programme
under the Marie Sk lodowska-Curie grant agreement No 754362.

References

[1] Martial Agueh and Guillaume Carlier. Barycenters in the Wasserstein space. SIAM J. Math.
Anal., 43(2):904–924, 2011.

[2] Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré.
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Figure 5. concave cost p = 0.75
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Figure 6. Linear cost p = 1
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Figure 7. Convex cost p = 2


