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Abstract. We study the sub-Finsler prescribed mean curvature equation, associated to a
strictly convex body K0 ⊆ R2n, for t-graphs on a bounded domain Ω in the Heisenberg group
Hn. When the prescribed datum H is constant and strictly smaller than the Finsler mean
curvature of ∂Ω, we prove the existence of a Lipschitz solution to the Dirichlet problem for the
sub-Finsler CMC equation by means of a Finsler approximation scheme.

1. Introduction

The aim of this work is to study the prescribed mean curvature equation for t-graphs in
the Heisenberg group Hn with a sub-Finsler structure. In the Heisenberg group, which can be
identified with R2n+1 endowed with a suitable non-Euclidean group law, a sub-Finsler structure
is defined by means of an asymmetric left-invariant norm ∥·∥K0 on the horizontal distribution of
Hn associated to a convex body K0 ⊆ R2n containing the origin in its interior. Let Ω ⊆ R2n be
a bounded open set, H ∈ L∞(Ω), F ∈ L1(Ω,R2n) and u ∈ W 1,1(Ω). We consider the functional

(1.1) I(u) =
∫
Ω

∥∇u+ F∥K0,∗ dxdy +

∫
Ω

Hudxdy,

where ∥ · ∥K0,∗ denotes the dual norm of ∥ · ∥K0 . In particular, when F (x, y) = (−y, x) the first
term in (1.1) coincides with the sub-Finsler area of the t-graph of u, see [50, 22]. Moreover, if
K0 is the Euclidean unit ball centered at the origin and H = 0 then (1.1) boils down to the
classical area functional for t-graphs in Heisenberg group, see [11, 35] and references therein.
We say that the graph of u has prescribed K0-mean curvature H in Ω if u is a minimizer of I.
Indeed, the Euler-Lagrange equation associated to I out of the singular set Ω0, i.e. the set of
points where ∇u+ F vanishes, is given by

(1.2) div(πK0(∇u+ F )) = H,

where πK0 is a suitable 0-homogeneous function defined in (2.5). When we fix a boundary
datum φ ∈ W 1,1(Ω), a solution to the Dirichlet problem for the prescribed K0-mean curvature
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equation is a minimizer u of I such that u−φ belongs to the Sobolev space W 1,1
0 (Ω). Our main

result is Theorem 5.1, where we prove, under suitable regularity assumptions on the data, that
there exists a Lipschitz solution to the Dirichlet problem for the prescribed K0-mean curvature
equation when H is constant, it satisfies

(1.3) |H| < HK0,∂Ω(z0)

for each z0 = (x0, y0) ∈ ∂Ω and

(1.4)

∣∣∣∣∫
Ω

Hv dxdy

∣∣∣∣ ⩽ (1− δ)

∫
Ω

∥∇v∥K0,∗ dxdy

for each non-negative function v ∈ C∞
c (Ω) and a suitable δ = δ(K0,Ω, H) ∈ (0, 1]. Here

HK0,∂Ω denotes the Finsler mean curvature of the boundary ∂Ω ⊆ R2n. Notice that the mean
curvature of the graph of u is computed with respect to the downward pointing unit normal
and the Finsler mean curvature of ∂Ω is computed with respect to the inner unit normal. The
upper bound (1.3) of H in terms of the Finsler mean curvature of the boundary is the Finsler
analogous of the standard assumption for the solution to the Dirichlet problem for the classical
mean curvature equation in the Euclidean setting as stated in [56], [26] or [25] (see also [27,
Theorem 16.11]). On the other hand, (1.4) is a standard sufficient condition for the estimates
of the supremum of |u| (see [25] or [27]). It is worth noting that, in the Euclidean setting (cf.
e.g. [31]), the weaker condition

(1.5)

∣∣∣∣∫
Ω

Hv dxdy

∣∣∣∣ ⩽ ∫
Ω

∥∇v∥K0,∗ dxdy

for each v ∈ C∞
c (Ω) is actually a necessary condition for the existence of a solution to the

Euclidean prescribed mean curvature equation. Moreover, the Euclidean version of (1.5) suffices
to guarantee existence of solutions to the Euclidean prescribed mean curvature equation as long
as no boundary conditions are imposed (cf. [31, 38]). Remarkably, as we will show in Section
4 and 6, there are particular settings in which Theorem 5.1 continues to hold even without
imposing (1.4), such as the first sub-Finsler Heisenberg group H1 (cf. Theorem 5.2) and any
sub-Riemannian Heisenberg group Hn (cf. Theorem 6.2). The Dirichlet problem for constant
mean curvature in the first Riemannian Heisenberg group has been studied in [1] under the
same condition on the mean curvature. It is worth mentioning that this is the first time that
the existence of Lipschitz solutions to the sub-Finsler Dirichlet problem has been studied when
H ̸= 0, even in the particular case in which K0 is the unit disk centered at 0, where the
sub-Finsler and the sub-Riemannian frameworks coincide. Indeed, as far as we know, the sub-
Riemannian Dirichlet problem has been studied in [47, 12, 11, 10, 19, 49] only in the case of
minimal surfaces under the bounded slope condition or the p-convexity assumption on Ω, and in
[44] when H ̸= 0 is small enough and in a weaker functional framework. In particular, we point
out that when n = 1 our assumption (1.3) implies that Ω ⊆ R2 is strictly convex, see Remark
4.9. It is easy to check that our sub-Finsler functional I for H = 0 satisfies the hypothesis of
the area functional considered in [19]. Thus, assuming the bounded slope condition we directly
obtain the existence of Euclidean Lipschitz minimizers for Plateau’s problem. The approach of
the present paper, based on the Schauder fixed-point theory, follows the scheme developed in
[12] and extends its results both to the case of prescribed constant mean curvature H ̸= 0 and
to the sub-Finsler setting. In Theorem 5.1 we cannot expect better regularity than Lipschitz.
Indeed, even in the sub-Riemannian Heisenberg group H1 there are several examples of non-
smooth area minimizers. For instance, S.D. Pauls [48] exhibited a solution of low regularity
for Plateau’s problem with smooth boundary datum, while in [12, 51, 32] the authors provided
solutions to the Bernstein problem in H1 that are only Euclidean Lipschitz. These examples
have been recently generalized to the sub-Finsler setting in [28]. We refer the interested reader
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to [30] for a positive result to the sub-Finsler Bernstein problem for (X, Y )-Lipschitz surfaces,
which can be seen as a regularity result for global perimeter minimizers.

Since equation (1.2) is sub-elliptic degenerate and it is singular next to the singular set,
inspired by [12, 47], we first introduce a family of desingularized approximating equations
given by

(1.6) div

(
πK0(∇u+ F )

∥∇u+ F∥2∗
(ε3 + ∥∇u+ F∥3∗)

2
3

)
= H

for each 0 < ε < 1. A similar approximation scheme was considered in the sub-Riemannian
setting in [6, 5] to study the Lipschitz regularity for non-characteristic minimal surfaces. For a
detailed analysis of this approach, we refer to [4]. This family of equations can be obtained by
considering a (2n + 1)-dimensional convex body Kε containing the origin in its interior, that
converges in the Hausdorff sense to the 2n-dimensional convex body K0 as ε → 0. The choice
of the convex body Kε is not arbitrary. Indeed, we need a specific shape in order to obtain an
approximating equation well-defined in the classical sense in the singular set. It is interesting
to point out that the Riemannian approximation of [12, 47, 6, 5] produces an approximation of
the unit disk D ⊆ R2n by ellipsoids in the sub-Riemannian setting, and this approximation does
not work in the greater sub-Finsler generality. Indeed, if instead of (1.6) we were to consider
the more natural equation

(1.7) div

(
πK0(∇u+ F )

∥∇u+ F∥∗√
ε2 + ∥∇u+ F∥2∗

)
= H,

reminiscent of the Riemannian approximation scheme of [12] (cf. Remark 2.9), we would have
to require certain assumptions on K0 for (1.7) to be well-defined in the classical sense. We
refer to Section 6 for a more careful analysis in this regard. On the other hand, while (1.6) is
always well-defined, it still tends to degenerate close to the singular set, so that it could fail to
be elliptic. Therefore, we need to regularize (1.6) by perturbing it with an Euclidean curvature
term. More precisely, we consider the family of equations given by

(1.8) div

(
π(∇u+ F )

∥∇u+ F∥2∗
(ε3 + ∥∇u+ F∥3∗)

2
3

)
+ η div

(
∇u+ F√

1 + |∇u+ F |2

)
= H.

for any ε ∈ (0, 1) and any η > 0 sufficiently small, whose associated Finsler variational func-
tional is given by

Iε,η(u) =

∫
Ω

(
ε3 + ∥∇u+ F∥3K0,∗

) 1
3 dxdy + η

∫
Ω

√
1 + |∇u+ F |2 dxdy +

∫
Ω

Hudxdy.

A direct computation (cf. Section 4) will show that (1.8) is in fact a classical, quasi-linear
second-order elliptic equation. Therefore, given a boundary datum φ ∈ C2,α(Ω̄), the solvability
of the Dirichlet problem associated to (1.6) is reduced by [27, Theorem 13.8] to a priori esti-
mates in C1(Ω) of a related family of problems. As usual the a priori estimates in C1(Ω) consist
of three parts: estimates of the supremum of |u|, boundary estimates of the gradient of u and
interior estimates of the gradient of u. While the estimates of the supremum rely on assumption
(1.4), the boundary estimates of the gradient are obtained by a barrier argument that depends
on the Finsler distance from the boundary ∂Ω. Due to technical reasons in the construction of
the barriers we need to assume the strict inequality in (1.3), avoiding the optimal case when
H coincides with HK0,∂Ω(z0) at a given point z0 ∈ ∂Ω. We emphasize that these results hold
even if the prescribed curvature H is non-constant and Lipschitz. The only crucial step where
we need H to be constant is the maximum principle for the gradient of the solution that allows
us to reduce the interior estimates of the gradient to its boundary estimates. Finally, once we
realize that C1 estimates are independent of the approximation parameters ε and η, passing
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to the limit as ε, η → 0 and using Arzelà-Ascoli Theorem we get the existence of a Lispchitz
minimizer for the sub-Finsler Dirichlet problem.

In the last decades, variational problems related to the sub-Riemannian area introduced by
Capogna, Danielli and Garofalo [7], Garofalo and Nhieu [24] and Franchi, Serapioni and Serra
Cassano [23] have received great interest, see also [24, 15, 12, 11, 8, 16, 3, 2, 33, 34, 35, 53, 36,
21, 5, 14, 37, 13, 9, 11]. The monograph [8] provides a quite complete survey of progresses on
the subject.

In particular, the analysis of the Dirichlet problem with H ̸= 0 constant for t-graphs is
essential since it is strictly related to the isoperimetric problem in Hn. In [46], P. Pansu con-
jectured that the boundaries of isoperimetric sets in H1 are given by the surfaces now called
Pansu’s spheres, obtained as the union of all sub-Riemannian geodesics of a fixed curvature
joining two points in the same vertical line. This conjecture has been solved only assuming a
priori some regularity of the minimizers of the area with constant prescribed mean curvature,
such as the C2 regularity of the minimizers [53], the axial symmetry of the minimizers [41],
the Euclidean convexity of minimizers [42] and when the isoperimetric set both contains a hor-
izontal disk Dr and is contained in a vertical cylinder Cr for some r > 0 (cf. [52] for a more
accurate statement). Recently, in [50, 22], the notion of Pansu’s spheres has been generalized
to the Pansu-Wulff spheres in the sub-Finsler setting. We refer to [54] for earlier research in
this direction. Consequently, the results presented in [53] and [52] have been generalized in
[22] and [50] respectively. Finally, in [29] the C2 regularity of the characteristics curves for
the prescribed K0-mean curvature equation with continuous datum H is established when the
boundary of the set is Euclidean Lispchitz and H-regular. Hence our existence result in the
class of Lispchitz t-graphs provides an important contribution to the understanding of the sub-
Finsler isoperimetric problem. Recently, similar results concerning CMC graphs and surfaces
in the Euclidean setting with an anisotropic norm have been obtained by [18, 17].

The manuscript is organized as follows. In Section 2 we introduce some preliminary defini-
tions and results, such as the Minkowski norm, the Finsler geometry of a hypersurface in R2n,
the Heisenberg group, the sub-Finsler perimeter and the sub-Finsler functional I. Section 3
is dedicated to the Finsler approximation by the Kε convex body of the sub-Finsler convex
body K0. Section 4 deals with the a priori estimates for the C1 norm of the solution to the
approximating elliptic equations (1.8). In particular, Proposition 4.6 deals with the a priori
estimates of |u| when H is Lispchitz and verifies the integral condition (1.4), in Proposition 4.8
we deduce the boundary estimates of the gradient when H is Lispchitz, in Proposition 4.7 we
establish the maximum principle for the gradient for H constant, and finally, in Proposition
4.10 we achieve a priori estimates of |u| when H is constant and n = 1. Section 5 contains the
main Theorems 5.1 and 5.2. Finally, in Section 6 we prove Theorem 6.2 in the sub-Riemannian
setting by means of the approximation scheme associated to (1.7).

Acknowledgement. The authors warmly thank Manuel Ritoré for his advice and for stimulating
discussions and YanYan Li for fruitful conversations about the content of the present paper. The
authors would also like to thank the anonymous referees for giving such constructive comments
which substantially helped improve the quality of the paper.

2. Preliminaries

2.1. Notation. Unless otherwise specified, we let n, d ∈ N, n, d ⩾ 1. Given two open sets
A,B ⊆ Rd, we write A ⋐ B whenever A ⊆ B. We say that a set K is a convex body if it is
convex, compact and has non-empty interior. We say that a convex body K is (in) Ck,α

+ , for
k ∈ N and α ∈ [0, 1], if ∂K is of class Ck,α with strictly positive principal curvatures.
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2.2. Minkowski norms. We follow the approach developed in [50, 55]. We say that ∥ · ∥ :
Rd → [0,+∞) is a norm if it verifies:

1. ∥v∥ = 0 ⇔ v = 0,
2. ∥sv∥ = s∥v∥ for any s > 0,
3. ∥v + u∥ ⩽ ∥v∥+ ∥u∥

for any u, v ∈ Rd. We stress the fact that we are not assuming the symmetry property ∥−v∥ =
∥v∥. It is well known that any norm is equivalent to the Euclidean norm | · |, that is, given a
norm ∥ · ∥ in Rd there exist constants 0 < c < C such that

(2.1) c| · | ⩽ ∥ · ∥ ⩽ C| · |.

Associated to a given a norm ∥ · ∥ we have the set F = {u ∈ Rd : ||u|| ⩽ 1}, which, thanks to
(2.1) and the properties of ∥ · ∥, is compact, convex and includes 0 in its interior. Reciprocally,
given a convex body K with 0 ∈ int(K), the function

||u||K = inf{λ ⩾ 0 : u ∈ λK}

defines a norm so that K = {u ∈ Rd : ||u||K ⩽ 1}. In the following we let

BK(v, r) := {w ∈ Rd : ∥w − v∥K ⩽ r}

for any v ∈ Rd and r > 0. It is easy to check that ∥v∥K = ∥ − v∥−K for any v ∈ Rd, so that

(2.2) B−K(v, r) := {w ∈ Rd : ∥v − w∥K ⩽ r}

for any v ∈ Rd and r > 0. Given a norm ∥ · ∥ and a scalar product ⟨·, ·⟩ in Rd, we consider the
dual norm ∥ · ∥∗ of ∥ · ∥ with respect to ⟨·, ·⟩, defined by

∥u∥∗ = sup
∥v∥⩽1

⟨u, v⟩.(2.3)

The dual norm is the support function of the unit ball F with respect to the scalar product
⟨·, ·⟩. Moreover, thanks to the above definitions the following Cauchy-Schwarz formula holds:

(2.4) ⟨u, v⟩ ⩽ ∥u∥∗∥v∥

for any u, v ∈ Rd. If in addition we assume K to be strictly convex and u ̸= 0, then the
compactness and strict convexity of K guarantee the existence of a unique vector πK(u) in ∂K
where the supremum in (2.3) is attained, i.e.

(2.5) ∥u∥K,∗ = ⟨u, πK(u)⟩.

It is easy to see that πK is a positively 0-homogeneous map, i.e. πK(λu) = πK(u) for any λ > 0
and u ∈ Rd \ {0}, and that ∥πK(u)∥K = 1 for any u ∈ Rd \ {0}. Moreover, if we assume that
K is C2

+, then πK |Sd−1 : Sd−1 −→ ∂K is a C1 diffeomorphism whose inverse is the Gauss map
NK of ∂K with respect to the outer unit normal. In particular,

(2.6) DπK(u) is positive definite

for any u ∈ Rd \ {0}. Furthermore, we have that the norms ∥ · ∥K and ∥ · ∥K,∗ belong to
Ck,α(Rd \ {0}) if and only if ∂K is Ck,α for k ∈ N and 0 ⩽ α ⩽ 1. For further details see [55,
Section 2.5]. The relation between the dual norm and the map πK is given by

(2.7) ∇∥u∥K,∗ = πK(u).

Indeed, for any u ∈ Rd \ {0}

∇∥u∥K,∗ = ∇⟨u, πK(u)⟩ = πK(u) + u ·DπK(u) = πK(u),

where the last equality follows from the fact that 0-homogeneous functions are radial.
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2.3. Finsler geometry of hypersurfaces in the Euclidean space. LetK ⊆ Rd be a convex
body in C2

+, 0 ∈ intK and Ω ⊆ Rd be a bounded domain with boundary ∂Ω = Σ of class C2.
Let N be the inner unit normal to Σ. Then the derivative map (WK,Σ)p = −dp(πK ◦ N) :
TpΣ → TπK(N(p))∂K, being πK as in (2.5), is called the K-Weingarten map. Let γ ⊆ ∂K be a
differentiable curve with γ(0) = πK(N(p)) and γ′(0) ∈ TπK(N(p))∂K. By definition of πK , the
function

f(t) = ⟨γ(t), N(p)⟩
has a maximum at 0 and therefore ⟨γ′(0), N(p)⟩ = f ′(0) = 0, which gives TπK(N(p))∂K =
TN(p)Sd−1. Moreover it is well known that (dN)q is an endomorphism of TqΣ and therefore
(WK,Σ)p is an endomorphism of TpΣ. We define the K-mean curvature of Σ as

HK,Σ = Trace(WK,Σ) = − divΣ(πK ◦N),

where divΣ is the divergence in the tangent directions to Σ. We remark that WK,Σ is neither
necessarily self-adjoint nor symmetric. Let us check that WK,Σ is anyway diagonalizable. In-
deed, given a parametrization X of Σ, dN has a symmetric matrix representation S in the basis
B = {∂x1X, . . . , ∂xd−1

X}. On the other hand, πK = N−1
K and, since K is in C2

+, the matrix A

which represents d(N−1
K ) with respect to B is positive definite. Therefore, there exists an in-

vertible matrix P such that A = P tP . Notice that the matrices P tPS and PSP t have the same
spectrum, and equal to the spectrum of WK,Σ. Since S is symmetric we can apply Sylvester’s
criterion to obtain that all the eigenvalues of PSP t are real. The eigenvalues of WK,Σ are called
K-principal curvatures and the eigenvectors of WK,Σ are called K-principal directions.

2.3.1. Finsler distance from the boundary and the Eikonal equation. In this and the following
section we want to rely on some results by [40, 39], and so we assume that K is in C∞

+ , i.e. ∂K
is of class C∞ with strictly positive principal curvatures. Let Ω ⊆ Rd be a bounded domain
with boundary ∂Ω = Σ of class C2,α, for 0 < α ⩽ 1, and inner unit normal N . We shall adapt
Theorem 4.26 in [43] and the remarks at the end of Section 4.5 in [43] to prove existence of a
tubular neighborhood of Σ and compute the K-mean curvature of parallel hypersurfaces. The
interior signed K-distance to Σ is the function dK,Σ : Rd → R given by

dK,Σ(p) =

{
min{∥p− q∥K : q ∈ Σ} if p ∈ Ω

−min{∥p− q∥K : q ∈ Σ} if p /∈ Ω.

Consider the map F : Σ× R → Rd given by

F (q, t) = q + t(πK ◦N)(q).

For any v ∈ TqΣ, we have (dF )(q,t)(v, 0) = v + td(πK ◦N)(v) and (dF )(q,t)(0, 1) = (πK ◦N)(q).
Since K contains the origin,

⟨πK(N), N⟩ > 0

and dF is invertible at t = 0. Thus F is locally a diffeomorphism and, being Σ a compact
hypersurface, F is a diffeomorphism in a domain Σ× (−δ, δ). The set F (Σ× (−δ, δ)) is called
a tubular neighborhood of Σ. Notice that if p = F (q, t), then

(2.8) p− q = t(πK ◦N)(q)

and, taking the K-norm, we obtain that dK,Σ(p) = t. We know (cf. [40]) that, under our
assumptions, there exists δ̄ > 0 such that

dK,Σ ∈ C2,α(F (Σ× (−δ, δ))).

for any δ < δ̄. Given |t| < δ, we let

(2.9) Σt = {p ∈ Rd : p = F (q, t) for some q ∈ ∂Σ}.
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Proposition 2.1. Let Ω ⊆ Rd be a bounded domain with boundary ∂Ω = Σ of class C2 and let
F (Σ× (−δ, δ)) be a tubular neighborhood of Σ. The K-mean curvature of Σt at p ∈ Σt is given
by

(2.10) HK,Σt(p) =
d−1∑
i=1

κi(q)

1− tκi(q)
,

where q ∈ Σ satisfies p = F (q, t) and κ1(q), . . . , κd−1(q) are the K-principal curvatures of Σ at
q.

Proof. Let {e1, . . . , ed−1} be a basis of K-principal directions of Σ. Then (dF )(q,t)(ei, 0) =
(1− tκi)ei. Therefore a basis of principal directions in Σt is { e1

1−tκ1
, . . . , ed−1

1−tκd−1
}. Since we have

−d(πK ◦N)q

(
ei

1− tκi

)
=

κi

1− tκi

ei

for each i = 1, . . . , d− 1 we get the conclusion. □

Remark 2.2. From (2.10), we obtain that the K-mean curvature is increasing in t. In partic-
ular, given q ∈ Σ and p = F (q, t) for t > 0, it holds that

(2.11) HK,Σt(p) ⩾ HK,Σ(q).

The following Eikonal equation can be deduced using classical arguments. We include the
proof for the sake of completeness.

Proposition 2.3. It holds that

(2.12) ∥∇dK,Σ(p)∥K,∗ = 1

for any p where dK,∂Ω is differentiable.

Proof. It is clear that, for any p, p′ in Rd, we have

dK,Σ(p
′) ⩽ ∥p′ − p∥K + dK,Σ(p).

Taking p′ = p+ tv where t > 0, we get

dK,Σ(p+ tv)− dK,Σ(p) ⩽ ∥tv∥K .

Therefore,

(2.13) ⟨v,∇dK,Σ(p)⟩ ⩽ ∥v∥K .

Taking v = πK(∇dK,Σ(p)) in (2.13), we obtain

∥∇dK,Σ(p)∥K,∗ ⩽ 1.

On the other hand, let γ(t) = F (q0, t). By (2.8) we have that

dK,Σ(γ(t)) = t.

Taking derivatives in the previous equation, we obtain

⟨γ′(t),∇dK,Σ(γ(t))⟩ = 1.

Since γ′(t) = (πK ◦N)(q0), we get that ∥γ′(t)∥K = 1. Using (2.4), we get

∥∇dK,Σ(γ(t))∥K,∗ ⩾ 1. □
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Given a tubular neighborhood O of ∂Ω and p = F (q, t) ∈ Ω, we denote by Nt(p) the inner
unit normal to Σt at p. Let us explicitly compute div(πK ◦ Nt)(p). Let us recall that, to the
0-homogeneity of πK , we get that

q ·DπK(q) = 0

for any q ∈ Rd. In particular, taking q = Nt, we obtain

Nt ·D(πK ◦Nt) = Nt ·DπK(Nt) ·DNt = 0,

which implies that

(2.14) − div(πK ◦Nt)(p) = − divΣ(πK ◦Nt)(p) = HK,Σt(p) ⩾ HK,∂Ω(q).

With the next result, we better understand the relationship between the Finsler mean cur-
vature of Σ, the Euclidean curvature of Σ and the Euclidean principal curvatures of K.

Proposition 2.4. Let K be a convex body in C2
+, 0 ∈ intK. Let Ω ⊆ Rd be a bounded domain

with ∂Ω = Σ of class C2 and let Nq be the inner unit normal to Σ at q. Then we have

(2.15) HK,Σ(q) = −
d−1∑
i=1

⟨DeiNq, ei⟩
kK
i (πK(Nq))

where kK
i are the Euclidean principal curvatures of ∂K and e1, . . . , ed−1 is an orthonormal basis

of Euclidean principal directions of ∂K.

Proof. We shall drop the subscript for πK . Let q in Σ and e1, . . . , ed−1 be an orthonormal basis
of Rd−1 = Tπ(Nq)∂K such that

(dNK)π(Nq)ei = kK
i (π(Nq))ei.

By hypothesis, kK
i > 0 for i = 1, . . . , d− 1. Here NK denotes the Gauss map of ∂K. Then we

have

HK,Σ(q) = − divΣ(π(Nq)) = −
d−1∑
i=1

⟨Deiπ(Nq), ei⟩,

where D is the Levi-Civita connection in Rd. We claim that Deiπ(Nq) = dπ(DeiNq). Indeed,
let γ : (ϵ, ϵ) → Σ such that γ(0) = q and γ̇(0) = ei for i = 1, . . . , d− 1. Then we have

Deiπ(Nq) =
D

ds

∣∣∣
s=0

π(Nγ(s)) =
d∑

j=1

d

ds

∣∣∣
s=0

πj(Nγ(s))
∂

∂xj

=
d∑

j=1

∇πj(Nq)
D

ds

∣∣∣
s=0

Nγ(s)
∂

∂xj

= (dπ)NqDeiNq.

Moreover, since dπ is a symmetric matrix we gain

(2.16) HK,Σ(q) = −
d−1∑
i=1

⟨(dπ)NqDeiNq, ei⟩ = −
d−1∑
i=1

⟨DeiNq, (dπ)Nqei⟩.

Since π = N−1
K we obtain dπ = (dNK)

−1 and

ei = dN−1
K dNK(ei) = dN−1

K (kK
i (π(Nq))ei) = kK

i (π(Nq))dπ(ei),

by linearity. Therefore, we have dπ(ei) = (kK
i (π(Nq)))

−1ei. Hence, plugging this last equality
in (2.16) we gain (2.15). □
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2.3.2. The Ridge of the Finsler distance. In the previous section we obtained some regularity
and geometric properties of dK,∂Ω in a tubular neighborhood of ∂Ω. We shall see that some
of these properties persist outside a tubular neighborhood. We fix a convex body K ∈ C∞

+

and a bounded domain Ω ⊆ Rd with C2,1 boundary. For any p ∈ Ω, we let D(p) := {q ∈
∂Ω : dK,∂Ω(p) = ∥p − q∥K}. Since dK,∂Ω is continuous, then clearly D(p) ̸= ∅ for any p ∈ Ω.
Accordingly, we define the set

(2.17) Ω1 := {p ∈ Ω : D(p) is a singleton},
and we define the Ridge of Ω by

R := Ω \ int Ω1.

We know, again thanks to [40], that, under our assumptions on K and Ω,

(2.18) dK,∂Ω ∈ C2,1(intΩ1 ∪ ∂Ω).

Moreover, in [39, Corollary 1.6] it is proven that the Hausdorff dimension of R is at most d− 1.
This fact implies that R has empty interior, so that

(2.19) ∂(intΩ1) = ∂Ω ∪R.

The following result is inspired partially by [20, Lemma 3.4].

Proposition 2.5. Let p ∈ Ω, let q ∈ D(p) and let

(p, q) := {tp+ (1− t)q : t ∈ (0, 1)}.
Then (p, q) ⊆ int Ω1 and

(2.20) D(γ) = {q}
for any γ ∈ (p, q).

Proof. Let p, q be as in the statement, and fix γ ∈ (p, q). We already know that D(γ) ̸= ∅.
On the other hand, assume that there exists q′ ̸= q such that q′ ∈ D(γ). Let us notice that
p, q, q′ cannot lie on the same line. Indeed, if by contradiction this was the case, then the only
possibility is that p is a convex combination of γ and q′. But then the strict convexity of K
would imply that

∥γ − q′∥K ⩽ ∥γ − q∥K < ∥p− q∥K ⩽ ∥p− q′∥K < ∥γ − q′∥K ,
which is absurd. This in particular implies that p, γ, q′ do not lie on the same line. Therefore,
thanks again to the strict convexity of K, we get that

∥p− q′∥K < ∥p− γ∥K + ∥γ − q′∥K ⩽ ∥p− γ∥K + ∥γ − q∥K = ∥p− q∥K ,
a contradiction to q ∈ D(p). Hence (2.20) is proved. Assume by contradiction that γ ∈ R. By
Corollary 4.11 in [39], any point of the form q + λ(γ − q) with λ > 1 has a point in ∂Ω closer
than q. On the other hand, taking w the midpoint of p and γ, then by (2.20) it holds that
D(w) = {q}, which is impossible. □

Let us take a point p ∈ int Ω1, and let q ∈ D(p). Thanks to Proposition 2.5, we know that

dK,∂Ω(z) = ∥z − q∥K
for any z in (p, q). Recalling that (p, q) ⊆ int Ω1, together with (2.18), and Proposition 2.3 it is
easy to see that ∇dK,∂Ω(z) ̸= 0. Thus, at least locally, the level set ΣdK ,∂Ω(p) is a well-defined
C2 hypersurface. Reasoning as in Section 2.3.1 we conclude that

(2.21) − div(πK ◦NdK ,∂Ω)(p) ⩾ HK0,∂Ω(q)

for any p ∈ int Ω1, where q ∈ D(p).
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2.4. The Heisenberg group. Let n ⩾ 1. We denote by Hn the Heisenberg group, defined
as the (2n+ 1)-dimensional Euclidean space R2n+1 endowed with the non-abelian group law ∗
given by

(2.22) (x, y, t) ∗ (x̄, ȳ, t̄) =

(
x+ x̄, y + ȳ, t+ t̄+

n∑
i=1

(x̄iyi − xiȳi)

)
,

where x = (x1, . . . , xn), x̄ = (x̄1, . . . , x̄n), y = (y1, . . . , yn) and ȳ = (ȳ1, . . . , ȳn). A basis of
left-invariant vector fields is given by

Xi =
∂

∂xi

+ yi
∂

∂t
, Yi =

∂

∂yi
− xi

∂

∂t
, T =

∂

∂t
,

for i = 1, . . . , n. For p = (x, y, t) ∈ Hn, the left translation by p is the diffeomorphism
Lp(q) = p ∗ q. We denote by H the horizontal distribution whose fiber at p ∈ Hn is the
2n-dimensional space

Hp = span{Xi(p), Yi(p) | i = 1, . . . , n}.
From now on we will always identify H0 with R2n. We shall consider on Hn the left-invariant
Riemannian metric g = ⟨·, ·⟩, so that the vector fields {X1, . . . , Xn, Y1, . . . , Yn, T} form an
orthonormal basis at every point, and we let D be the Levi-Civita connection associated to
the Riemannian metric g. The Riemannian volume of a set E is, up to a constant, the Haar
measure of the group and can be identified with the (2n+ 1)−dimensional Lebesgue measure.
We denote it by |E|. The integral of a function f with respect to the Riemannian measure is
denoted by

∫
f dHn.

2.5. Sub-Finsler norms and perimeter. Let K0 ⊆ H0 ≡ R2n be a convex body in C2
+ (cf.

Subsection 2.1), 0 ∈ intK0 and let ∥ · ∥K0 be the associated norm in R2n. In the following we
shall write ∥ · ∥, ∥ · ∥∗ and π instead of ∥ · ∥K0 , ∥ · ∥K0,∗ and πK0 respectively. For any p ∈ Hn,
we define a left-invariant norm ∥ · ∥p on Hp by means of the equality

∥v∥p = ∥dL−1
p (v)∥ v ∈ Hp

where dLp denotes the differential of Lp. In particular, for a horizontal vector field
∑n

i=1 fiXi+
giYi its norm at a point p ∈ Hn is given by∥∥∥ n∑

i=1

fi(p)Xi(0) + gi(p)Yi(0)
∥∥∥ = ∥(f(p), g(p))∥,

where f = (f1, . . . , fn) and g = (g1, . . . , gn). Similarly, we extend the dual norm ∥ · ∥∗ and the
projection π to each fiber of the horizontal bundle. When ∥ · ∥ is C l with l ⩾ 2, all norms ∥ · ∥p
are C l. Given a horizontal vector field U of class C1, we define π(U) as the C1 horizontal vector
field satisfying

∥U∥∗ = ⟨U, π(U)⟩.
Proceeding as in § 2.3 of [50], it is easy to see that the projection satisfies

π

(
n∑
i

fiXi + giYi

)
= N−1

K0

(
(f, g)√
|f |2 + |g|2

)
,

where |f |2 = ⟨f, f⟩.

Definition 2.6. Given a measurable set E ⊆ Hn we say that E has finite horizontal K0-
perimeter if

PK0,H(E) = sup

{∫
E

div(U) dHn, U ∈ H1
0(Hn), ∥U∥K0,∞ ⩽ 1

}
< +∞,
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where H1
0(Hn) is the space of C1 horizontal compactly supported vector fields in Hn and

∥U∥K0,∞ = supp∈Hn ∥Up∥p.

Remark 2.7. The perimeter associated to the Euclidean norm | · | is the sub-Riemannian
perimeter as it is defined in [23, 24]. A set has finite perimeter for a given norm if and only
if it has finite perimeter for the standard sub-Riemannian perimeter. Hence all known results
in the standard case apply to the sub-Finsler perimeter. Moreover, if E has C1 boundary ∂E,
then

PK0,H(E) =

∫
∂E

∥Nh∥∗dσ =: AK0,H(∂E),

where Nh is the projection on the horizontal distribution H of the Riemannian normal N with
respect to the metric g and dσ is the Riemannian measure of ∂E. For more details see § 2.4 in
[50] when n = 1.

As a significant example, we consider a bounded open set Ω ⊆ R2n and a C1 function
u : Ω → R. Let Gr(u) = {(x, y, t) ∈ Hn : u(x, y)− t = 0} be the graph of u. Then we have

Nh =

∑n
i=1(uxi

− y)Xi + (uyi + x)Yi√
1 + |∇u+ F |2

and dσ =
√

1 + |∇u+ F |2 dxdy,

where ∇u(x, y) is the Euclidean gradient of u(x, y) and F (x, y) = (−y, x). Therefore we get

AK0,H(Gr(u)) =

∫
Ω

∥∇u+ F∥∗ dxdy.

2.6. The Sub-Finsler prescribed mean curvature equation. Inspired by the previous
computation and the sub-Riemannian problem studied by [12] we consider the following prob-
lem. Let Ω ⊆ R2n be a bounded open set and let F ∈ L1(Ω,R2n), φ ∈ W 1,1(Ω) and H ∈ L∞(Ω).
Then we set

(2.23) I(u) =
∫
Ω

∥∇u+ F∥∗ dxdy +
∫
Ω

Hudxdy

for each u ∈ W 1,1(Ω) such that u− φ ∈ W 1,1
0 (Ω). We say that u ∈ W 1,1(Ω) is a minimizer for

I if

I(u) ⩽ I(v)

for all v ∈ W 1,1(Ω) such that v − φ ∈ W 1,1
0 (Ω). In [12, Section 3] the authors investigate the

first variation of the functional I when ∥ · ∥K0,∗ is the Euclidean norm | · |, taking into account
the bad beaviour of the singular set

(2.24) Ω0 = {(x, y) ∈ Ω : (∇u+ F )(x, y) = 0}.

In the next result we derive the Euler-Lagrange equation associated to I for C2 minimizers.

Proposition 2.8. Let K0 be a C2
+ convex body such that 0 ∈ int(K0). Let u ∈ C2(Ω) be a

minimizer for I defined in (2.23). Assume that F ∈ C1(Ω,R2n). Let Ω0 be the singular set
defined in (2.24). Then u satisfies

(2.25) div(π(∇u+ F )) = H in Ω \ Ω0.
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Proof. Given v ∈ C∞
c (Ω \ Ω0), by [50, Lemma 3.2] the first variation is given by

d

ds

∣∣∣
s=0

I(u+ sv) =

∫
Ω\Ω0

d

ds

∣∣∣
s=0

∥∇(u+ sv) + F∥∗ dxdy +

∫
Ω\Ω0

Hv dxdy

=

∫
Ω\Ω0

d

ds

∣∣∣
s=0

∥∇u+ F + s∇v∥∗ dxdy +

∫
Ω\Ω0

Hv dxdy

=

∫
Ω\Ω0

⟨∇v, π(∇u+ F ))⟩ dxdy +
∫
Ω\Ω0

Hv dxdy

=

∫
Ω\Ω0

v (H − div(π(∇u+ F ))) dxdy. □

Remark 2.9. When K0 is the unit disk D0 ⊆ R2n centered at 0 of radius 1 we have

πD0(∇u+ F ) =
∇u+ F

|∇u+ F |
and (2.25) is equivalent to

div

(
∇u+ F

|∇u+ F |

)
= H.

3. The Finsler approximation problem

In this section we develop the Finsler approximation scheme in order to get rid of the singular
nature of equation (2.25). To this aim, given K0 a convex body in C2

+ such that 0 ∈ intK0 and
ε ∈ (0, 1), we denote by Kε the set

(3.1) Kε :=

{
(x, y, t) ∈ R2n+1 :

(
|t|
ε

) 3
2

+ ∥(x, y)∥
3
2 ⩽ 1

}
.

Notice that Kε ⊆ R2n+1 ≡ T0Hn (here T0Hn denotes the tangent space of Hn at p = 0) is a
strictly convex body with 0 ∈ int(Kε). Moreover ∂Kε is of class C

1. Indeed it is a level set of

the C1 function gε(x, y, t) :=
(

|t|
ε

) 3
2
+ ∥(x, y)∥ 3

2 , whose gradient never vanishes on ∂Kε. Hence,

the projection πKε is well-defined and continuous. We shall write ∥ · ∥ε, ∥ · ∥ε,∗ and πε instead
of ∥ · ∥Kε , ∥ · ∥Kε,∗ and πKε respectively. The map πh

ε is defined as the first 2n components of
πε. By abuse of notation, we write πh

ε (x, y) = πh
ε (x, y,−1) when there is no confusion.

Proposition 3.1. Let K0 be a convex body in C2
+ such that 0 ∈ intK0, and let Kε ⊆ R2n+1 be

the set defined in (3.1). Then the following assertions hold:

(i) The map πh
ε : R2n ∖ {0} → R2n satisfies

πh
ε (x, y) = π(x, y)

∥(x, y)∥2∗
(ε3 + ∥(x, y)∥3∗)

2
3

.

(ii) The map πh
ε can be extended to a C1 map in R2n by setting πh

ε (0, 0) = (0, 0).

(iii) ∥(x, y,−1)∥Kε,∗ = (ε3 + ∥(x, y)∥3∗)
1
3 .

Proof. Let us prove that

(3.2) πε(x, y,−1) = (απ(x, y),−ε(1− α3/2))2/3

for some 0 < α(x, y) < 1. Given (x, y) in R2n \ {0}, we denote by t0 the (2n+ 1)-th coordinate
of πε(x, y,−1) and we let Kt0 ⊆ R2n be the convex set defined by

Kt0 := {(x′, y′) : (x′, y′, t0) ∈ Kε}.
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Then we have

Kt0 × {t0} =
{( |t0|

ε

) 3
2
+ ∥(x′, y′)∥

3
2 ⩽ 1

}
=

∥(x′, y′)∥ ⩽

(
1−

(
|t0|
ε

) 3
2

) 2
3

 .

Hence it follows that πt0 = (1 − ( |t0|
ε
)
3
2 )

2
3π. On the other hand, since πε is the inverse of the

Gauss map, we can see that (x, y,−1) is normal to ∂Kε at πε(x, y,−1) and so (x, y) is normal

to ∂Kt0 at πh
ε (x, y), where 0 < t0 < 1 satisfies ∥πh

ε (x, y)∥
3
2 + ( |t0|

ε
)
3
2 = 1. Since Kt0 is strictly

convex, the projection is unique and πh
ε (x, y) = πt0(x, y). Hence (3.2) follows. Taking the scalar

product of (x, y,−1) with the curve β(s) = (sπ(x, y),−ε(1− s3/2)2/3), we get

⟨(x, y,−1), β(s)⟩ = s∥(x, y)∥∗ + ε(1− s3/2)2/3.

Notice that β is in ∂Kε and β(α) is πε. Hence in s = α the maximum of the scalar products of
(x, y,−1) with an element of Kε is attained. Thus we can take derivatives in s = α, set them
equal to 0 and get

0 = ∥(x, y)∥∗ − ε
α

1
2

(1− α3/2)
1
3

.

Then we obtain

α =
∥(x, y)∥2∗

(ε3 + ∥(x, y)∥3∗)2/3

and we get (i). Since ∥(x, y,−1)∥Kε,∗ = ⟨(x, y,−1), πε(x, y,−1)⟩, a straightforward computation
shows (iii). Finally, (ii) follows from (i) and the 2-homogeneity of the map π(·)∥ · ∥2∗. □

Lemma 3.2. Let u, v ∈ T0Hn and s ∈ R. Then we have

(3.3)
d

ds

∣∣∣
s=0

∥u+ sv∥ε,∗ = ⟨v, πε(u)⟩.

Proof. Let f(s) = ∥u + sv∥ε,∗ and g(s) = ⟨u + sv, πε(u)⟩. Notice that f(s) ⩾ g(s) for each
s ∈ R, since by definition ∥u + sv∥ε,∗ ⩾ ⟨u + sv, πε(u)⟩ and f(0) = ∥u∥ε,∗ = ⟨u, πε(u)⟩ = g(0).
Therefore, by a standard argument f ′(0) = g′(0), and the thesis follows. □

Given a convex body K0 ⊆ R2n in C2
+ with 0 ∈ int(K0), and Kε defined as in (3.1), we extend

the reasoning of the previous section to define a left-invariant norm ∥ · ∥ε on TH by means of
the equality ∥∥∥ n∑

i=1

fiXi + giYi + hT
∥∥∥
ε,p

= ∥(f(p), g(p), h(p))∥ε,

for any p ∈ Hn with f = (f1, . . . , fn) and g = (g1, . . . , gn). Again, ∥·∥ε,∗ and πε can be extended
to the tangent bundle in the usual way.

Definition 3.3. Given a measurable set E ⊆ Hn we say that E has finite Kε-perimeter if

PKε(E) = sup

{∫
E

div(U) dHn, U ∈ X0(Hn), ∥U∥Kε,∞ ⩽ 1

}
< +∞,

where ∥U∥Kε,∞ = supp∈Hn ∥Up∥ε and X0(Hn) is the space of C1 compactly supported vector
fields in Hn.

Remark 3.4. If E has C1 boundary ∂E, then

PKε(E) =

∫
∂E

∥N∥ε,∗dσ = Aε(∂E),
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where N is the Riemannian normal with respect to the metric g and dσ is the Riemannian
measure of ∂E. Indeed by the divergence theorem we have

PKε(E) = sup

{∫
E

div(U) dHn, U ∈ X0(Hn), ∥U∥Kε,∞ ⩽ 1

}
= sup

{∫
∂E

⟨U,N⟩ dHn, U ∈ X0(Hn), ∥U∥Kε,∞ ⩽ 1

}
=

∫
∂E

∥N∥ε,∗dσ,

where the last equality can be proved proceeding exactly as in [23, 24].

3.1. The Finsler prescribed mean curvature equation. We are ready to derive the Finsler
prescribed mean curvature equation, essentially in the same way as in the previous section. To
this aim, let Ω ⊆ {t = 0} be a bounded open set and u : Ω → R be a C2 function. Then we
have

N =

∑n
i=1(uxi

− y)Xi + (uyi + x)Yi − T√
1 + |∇u+ F |2

and dσ =
√
1 + |∇u+ F |2 dxdy,

where F (x, y) = (−y, x). Therefore we get

AKε(Gr(u)) =

∫
Ω

∥(∇u+ F,−1)∥ε,∗ dxdy.

Hence, inspired by this computation and thanks to Proposition 3.1, given F ∈ L1(Ω,R2n),
φ ∈ W 1,1(Ω) and H ∈ L∞(Ω), we define the approximating Finsler functional Iε by

(3.4) Iε(u) =

∫
Ω

(
ε3 + ∥(∇u+ F )∥3∗

) 1
3 dxdy +

∫
Ω

Hudxdy,

for any u ∈ W 1,1(Ω) such that u−φ ∈ W 1,1
0 (Ω). Arguing as in the previous section, and thanks

to Lemma 3.2, we are able to deduce the Euler-Lagrange equation associated to (3.4). Indeed,
given v ∈ C∞

c (Ω), by Lemma 3.2, the first variation is given by:

d

ds

∣∣∣
s=0

Iε(u+ sv) =

∫
Ω

d

ds

∣∣∣
s=0

∥(∇(u+ sv) + F,−1)∥ε,∗ dxdy +

∫
Ω

Hv dxdy

=

∫
Ω

d

ds

∣∣∣
s=0

∥(∇u+ F,−1) + s(∇v, 0)∥ε,∗ dxdy +

∫
Ω

Hv dxdy

=

∫
Ω

⟨(∇v, 0), πε((∇u+ F,−1))⟩ dxdy +
∫
Ω

Hv dxdy

=

∫
Ω

⟨∇v, πh
ε (∇u+ F )⟩ dxdy +

∫
Ω

Hv dxdy

=

∫
Ω

v(H − div(πh
ε (∇u+ F ))) dxdy.

Then the Finsler prescribed mean curvature equation for the graph of u is given by

(3.5) div(πh
ε (∇u+ F )) = H in Ω.

As already pointed out in the introduction, (3.5) is only degenerate elliptic in the singular set
(cf. the computations of Section 4). Therefore, in the next section, we will perturb (3.5) as
in (1.8) in order to apply the aforementioned classical Schauder fixed-point theory for elliptic
equations.
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4. A priori estimates for the Finsler Prescribed Mean Curvature Equation

In this section we want to find classical solutions to the regularized Finsler approximating
Dirichlet problem associated to (1.8), that is

(4.1)

div
(
πh
ε (∇u+ F )

)
+ η div

(
∇u+F√

1+|∇u+F |2

)
= H in Ω

u = φ in ∂Ω,

where ε, η ∈ (0, 1), Ω ⊆ R2n is a bounded domain with C2,α boundary for 0 < α < 1, K0

is a convex body in C2,α
+ with 0 ∈ intK0, H ∈ Lip(Ω), F = (F1, . . . , F2n) ∈ C1,α(Ω,R2n)

and φ ∈ C2,α(Ω). To this aim, let us fix some notation. It is easy to see that the map
G : R2n \ {0} → R2n defined by G(p) = π(p)∥p∥2∗ can be extended to a 2-homogeneous and C1

map setting G(0) = 0. Moreover, for any i = 1, . . . , 2n

Di(∥ · ∥3∗) = 3Gi(·),

where G = (G1, . . . , G2n). Thanks to Proposition 3.1, we can write the first equation of (4.1)
in the form

(4.2) div

(
π(∇u+ F )

∥∇u+ F∥2∗
(ε3 + ∥∇u+ F∥3∗)

2
3

)
+ η div

(
∇u+ F√

1 + |∇u+ F |2

)
= H.

An easy computation yields

1

(ε3 + ∥∇u+ F∥3∗)
5
3

(
(ε3 + ∥∇u+ F∥3∗) div(G(∇u+ F ))

− 2G(∇u+ F )(D2u+DF )G(∇u+ F )T
)

+
η

(1 + |∇u+ F |2) 3
2

(
(1 + |∇u+ F |2) div

(
∇u+ F

)
− (∇u+ F )(D2u+DF )(∇u+ F )T

)
= H.

Therefore, we can write (4.2) in the familiar form

2n∑
i,j=1

Aε,η
i,j (z,∇u;F )Di,ju+Bε,η(z,∇u;F ) = H,

where the coefficients Aε,η
i,j and Bε,η are defined by

Aε,η
i,j (z, p;F ) :=

1

(ε3 + ∥p+ F∥3∗)
2
3

DjGi(p+ F )− 2

(ε3 + ∥p+ F∥3∗)
5
3

Gi(p+ F )Gj(p+ F )

+
η√

1 + |p+ F |2
δij −

η

(1 + |p+ F |2) 3
2

(pi + Fi)(pj + Fj)
(4.3)

and

Bε,η(z, p;F ) :=
1

(ε3 + ∥p+ F∥3∗)
2
3

2n∑
i,j=1

DjGi(p+ F )DiFj

− 2

(ε3 + ∥p+ F∥3∗)
5
3

G(p+ F )DF G(p+ F )T

+
η√

1 + |p+ F |2
divF − η

(1 + |p+ F |2) 3
2

(p+ F )DF (p+ F )T



16 G. GIOVANNARDI, A. PINAMONTI, J. POZUELO, AND S. VERZELLESI

for any z ∈ Ω and p = (p1, . . . , p2n) ∈ R2n. Therefore (4.2) is a second-order quasi-linear
equation. Moreover, thanks to the computations of the previous section and (iii) in Proposition
3.1, we know that (4.2) is the Euler-Lagrange equation associated to the functional

u 7→
∫
Ω

(
ε3 + ∥∇u+ F∥3∗

) 1
3 + η

√
1 + |∇u+ F |2 + uH dz.

Notice that the matrix Aε,η is symmetric. Moreover, observing that

(4.4) Dj(Gi(p)) =

{
2∥p∥∗πj(p)πi(p) + ∥p∥2∗Diπj(p) if p ̸= 0

0 if p = 0,

we infer that (4.2) is an elliptic equation. Indeed, assume first that p+ F = 0. Then, by (4.3)
and (4.4)

2n∑
i,j=1

Aε,η
i,j (z, p;F )ξiξj = η|ξ|2

for any ξ ∈ R2n. From the other hand, when p + F ̸= 0, (2.6), (4.4) and the Cauchy-Schwarz
inequality imply that

2n∑
i,j=1

Aε,η
i,j (z, p;F )ξiξj =

2n∑
i,j=1

2∥p+ F∥∗πi(p+ F )πj(p+ F )ξiξj + ∥p+ F∥2∗Diπj(p+ F )ξiξj

(ε3 + ∥p+ F∥3∗)
2
3

−
2n∑

i,j=1

2∥p+ F∥4∗πi(p+ F )πj(p+ F )ξiξj

(ε3 + ∥p+ F∥3∗)
5
3

+ η
(1 + |p+ F |2)|ξ|2 − ⟨p+ F, ξ⟩2

(1 + |p+ F |2) 3
2

⩾
∥p+ F∥2∗

(ε3 + ∥p+ F∥3∗)
2
3

(
ξ Dπ(p+ F ) ξT

)
+ η

|ξ|2

(1 + |p+ F |2) 3
2

> η
|ξ|2

(1 + |p+ F |2) 3
2

(4.5)

for any ξ ∈ R2n, so that we conclude that

(4.6)
2n∑

i,j=1

Aε,η
i,j (z, p;F )ξiξj ⩾

η

(1 + |p+ F |2) 3
2

|ξ|2

for any z ∈ Ω and any p, ξ ∈ R2n. We remark that, by (4.5), equation (3.5) is elliptic outside
the singular set. In view of (4.6), we are in position to apply the classical theory for quasi-linear
elliptic equations of [27]. In particular, we wish to rely on the following fundamental result,
which is a direct consequence of [27, Theorem 13.8] and subsequent remarks.

Proposition 4.1. Let Ω ⊆ R2n be a bounded domain with C2,α boundary, for some 0 < α < 1,
and let φ ∈ C2,α(Ω). Let us assume that Aε,η

i,j (·, ·;σF ), Bε,η(·, ·;σF ) ∈ Cα(Ω × R2n) for any
σ ∈ [0, 1], and that the maps

σ 7→ Aε,η
i,j (·, ·;σF ), σ 7→ Bε,η(·, ·;σF )

are continuous as maps from [0, 1] to Cα(Ω×R2n). If there exists a constant M > 0 such that,
for any σ ∈ [0, 1], any solution u ∈ C2,α(Ω) to the problem

(4.7)

div(πh
ε (∇u+ σF )) + η div

(
∇u+σF√

1+|∇u+σF |2

)
= σH in Ω

u = σφ in ∂Ω
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satisfies
∥u∥C1(Ω) ⩽ M,

then

(4.8)

div(πh
ε (∇u+ F )) + η div

(
∇u+F√

1+|∇u+F |2

)
= H in Ω

u = φ in ∂Ω

admits a solution in C2,α(Ω).

Remark 4.2. Notice that the constant M > 0 in Proposition 4.1 depends a priori on ε, η ∈
(0, 1) and may blow up as ε, η → 0. However, in the sequel (cf. Propositions 4.6, 4.7 and 4.8)
we will show that the estimates for the C1 norm of solutions to (4.7) can be made uniform
in ε ∈ (0, 1) and η ∈ (0, η0) for a sufficiently small constant η0 ∈ (0, 1). That would provide
a constant M > 0 a posteriori independent of ε and η, thus allowing to pass to the limit as
ε, η → 0 (see Theorem 5.1).

We shall need also the following weak maximum principle stated in [27, Theorem 8.1].

Theorem 4.3. Let Ω ⊆ Rd be a bounded domain. Let L be the uniformly elliptic linear operator

Lw = div(ai,jDjw) + ciDiw

where the coefficients ai,j and ci are bounded measurable functions on Ω. Let w ∈ W 1,2(Ω)
satisfy Lw ⩾ 0 in Ω in distributional sense. Then

sup
Ω

w ⩽ sup
∂Ω

w+,

where the value of w+ = max{0, w} in ∂Ω is understood in the sense of traces.

First of all we need to guarantee the requested regularity for the coefficients of the equation.

Lemma 4.4. Let K0 be a convex body in C2,α
+ with 0 ∈ intK0. Let F ∈ C1,α(Ω,R2n). Then

there exists 0 < β < 1 such that Aε,η
i,j (·, ·;σF ), Bε,η(·, ·;σF ) ∈ Cβ(Ω × R2n) for any σ ∈ [0, 1].

Moreover, the maps
σ 7→ Aε,η

i,j (·, ·;σF ), σ 7→ Bε,η(·, ·;σF )

are continuous as maps from [0, 1] to Cβ(Ω× R2n).

Proof. The second statement easily follows from the definition of the coefficients. Let us prove
the first statement. It is clear, thanks to our assumptions on K0 and F , that Aε,η

i,j (·, ·, σF ) and

Bε,η(·, ·, σF ) belong to C0(Ω × R2n) for any σ ∈ [0, 1]. Moreover, in view of (4.4), DjGi is
Cα(R2n \ 0) for any i, j = 1, . . . , 2n, since ∂K0 is C2,α. Finally, we get

lim
p→0

|DjGi|(p)
|p|α

= 0.

Indeed, we have

|DjGi|(p)
|p|α

= 2
∥p∥∗
|p|α

|πj(p)πi(p) + ∥p∥2∗Diπj(p)|

⩽ 2
∥p∥α∗
|p|α

∥p∥1−α
∗ (|πj(p)πi(p)|+ ∥p∥∗|Diπj(p)|)

⩽ C∥p∥1−α
∗ → 0

as p → 0, since ∥p∥α∗
|p|α is bounded and the last factor in the previous inequality is 0-homogeneous,

thus in particular bounded. Then DjGi belongs to Cα(R2n). Since Aε,η
i,j and Bε,η are obtained

as composition, sum and product of Hölder functions, the conclusion follows. □
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Therefore we are in position to apply Proposition 4.1. First of all we want to obtain estimates
for the C0 norm of solutions to (4.7). In order to do this, inspired by [26], we assume that there
exists δ = δ(K0,Ω, H) ∈ (0, 1] such that

(4.9)

∣∣∣∣∫
Ω

Hvdz

∣∣∣∣ ⩽ (1− δ)

∫
Ω

∥∇v∥∗dz

for any non-negative function v ∈ C∞
c (Ω). To justify this assumption, assume that we have a

function u ∈ C2(Ω) which solves (4.1). Then, multiplying (4.1) by a test function v ∈ C∞
c (Ω),

integrating over Ω and letting η → 0, by Proposition 3.1 we get that∣∣∣∣∫
Ω

Hv dz

∣∣∣∣ ⩽ ∣∣∣∣∫
Ω

v div(πh
ε (∇u+ F )) dz

∣∣∣∣+ η

∣∣∣∣∣
∫
Ω

v div
( ∇u+ σF√

1 + |∇u+ σF |2
)
dz

∣∣∣∣∣
⩽
∫
Ω

|⟨πh
ε (∇u+ F ),∇v⟩| dz + η

∫
Ω

∣∣∣∣∣〈∇v,
∇u+ σF√

1 + |∇u+ σF |2
〉∣∣∣∣∣ dz

⩽
∫
Ω

∥∇v∥∗dz + η

∫
Ω

|∇v| dz

→
∫
Ω

∥∇v∥∗dz.

(4.10)

Notice that, as already pointed out in the introduction, (4.9) is slightly stronger than (4.10).
We begin by proving a technical lemma.

Lemma 4.5. Let σ ∈ [0, 1] and ε ∈ (0, 1). Then

(4.11) ⟨p, πh
ε (p+ σF )⟩ ⩾ ∥p∥∗ − 1− ∥F∥∗ − ∥ − F∥∗

for any p ∈ R2n and z ∈ Ω.

Proof. Let us fix z ∈ Ω and p ∈ R2n. If p = 0 or p + σF = 0, then the assertion is trivial.
Therefore, assume p, p + σF ̸= 0. It is clear, recalling Proposition 3.1 and using the Cauchy
-Schwarz formula (2.4), that

⟨p, πh
ε (p+ σF )⟩ = ⟨p+ σF, πh

ε (p+ σF )⟩ − ⟨σF, πh
ε (p+ σF )⟩

⩾
∥p+ σF∥3∗

(ε3 + ∥p+ σF∥3∗)
2
3

−
(

∥p+ σF∥3∗
ε3 + ∥p+ σF∥3∗

) 2
3

∥σF∥∗

⩾
∥p+ σF∥3∗

(ε3 + ∥p+ σF∥3∗)
2
3

− ∥F∥∗.

Hence, noticing that

∥p+ σF∥∗ ⩾ ∥p∥∗ − ∥ − σF∥∗ ⩾ ∥p∥∗ − ∥ − F∥∗
by the triangle inequality, it suffices to prove that

(4.12)
∥p+ σF∥3∗

(ε3 + ∥p+ σF∥3∗)
2
3

⩾ ∥p+ σF∥∗ − 1.

When ∥p + σF∥∗ ⩽ 1 (4.12) is trivial. Therefore let us assume ∥p + σF∥∗ > 1. Notice that
(4.12) is equivalent to

∥p+ σF∥
9
2
∗ ⩾ (∥p+ σF∥∗ − 1)

3
2 (ε3 + ∥p+ σF∥3∗).

Since ap − bp ⩾ (a− b)p when 0 < b < a and p > 1, it is enough to check that

∥p+ σF∥9/2∗ ⩾ (∥p+ σF∥3/2∗ − 1)(ε3 + ∥p+ σF∥3∗)
= ε3∥p+ σF∥3/2∗ + ∥p+ σF∥9/2∗ − ε3 − ∥p+ σF∥3∗,
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which is clearly true since ∥p+ σF∥∗ > 1 and ε < 1. □

Proposition 4.6. Let α ∈ (0, 1) and K0 be a convex body in C2,α
+ with 0 ∈ intK0. Let

Ω ⊆ R2n be a bounded open set, φ ∈ C2(Ω), H ∈ L∞(Ω) and F ∈ C0(Ω,R2n). If condition
(4.9) is satisfied then there exist a constant η0 = η0(K0, δ) ∈ (0, 1) and a constant C1 =
C1(n,K0,Ω, φ, F, δ) > 0, independent of σ ∈ [0, 1], ε ∈ (0, 1) and η ∈ (0, η0), such that, for any
solution u ∈ C2(Ω) to (4.7) with η ∈ (0, η0) it holds that

∥u∥L∞(Ω) ⩽ C1.

Proof. Let us notice that (4.11), the equivalence between ∥ ·∥∗ and the Euclidean norm and the
boundedness of F allow to find constants a0, a2 > 0, independent of σ ∈ [0, 1] and ε ∈ (0, 1),
such that

⟨p, πh
ε (p+ σF )⟩ ⩾ a0|p| − a2

for any z ∈ Ω and p ∈ R2n. This fact, together with the boundedness of H, suggests to rely
on [27, Lemma 10.8] to limit ourselves to estimate ∥u∥L1(Ω). Indeed, it is not difficult to show
that [27, Lemma 10.8] remains true when condition (10.23) of [27] allows a positive coefficient
multiplying |p|. Moreover, its proof can be easily adapted to achieve estimates from above of
supΩ −u in terms of ∥u−∥L1(Ω) for any solution of Qu = 0 where Q is defined in (10.5) of [27].
In the end it suffices to estimate ∥u+∥L1(Ω) and ∥u−∥L1(Ω). We only estimate ∥u+∥L1(Ω), being
the other case analogous. Moreover, up to replacing u by u − ∥φ∥∞,∂Ω, we can assume that

u ⩽ 0 in ∂Ω. Let us set v = u+. Then it is clear that v ∈ W 1,∞(Ω) ∩W 1,1
0 (Ω), and moreover

∇v exists in the classical sense for almost every z ∈ Ω. Therefore, since u is in particular a
weak solution to

div(πh
ε (∇u+ σF )) + η div

(
∇u+ σF√

1 + |∇u+ σF |2

)
= σH,

it follows that∫
Ω

⟨∇v, πh
ε (∇u+ σF )⟩+ η

〈
∇v,

∇u+ σF√
1 + |∇u+ σF |2

〉
dz = −

∫
Ω

vσHdz.(4.13)

We claim that

(4.14) ⟨∇v, πh
ε (∇u+ σF )⟩ ⩾ ∥∇v∥∗ − 1− ∥F∥∗ − ∥ − F∥∗

holds in any point where ∇v exists in the classical sense. Indeed, in such points ∇v is either
0 or ∇u. In the first case (4.14) is trivial, while in the second case it follows from Lemma 4.5.
It is well known that, since v ⩾ 0 and v ∈ W 1,1

0 (Ω), there exists a sequence of non-negative
functions (vk)k ⊆ C∞

c (Ω) converging to v strongly in W 1,1
0 (Ω). Moreover, thanks to (4.9) it

holds that ∣∣∣∣∫
Ω

Hvkdz

∣∣∣∣ ⩽ (1− δ)

∫
Ω

∥∇vk∥∗ dz.

Hence, passing to the limit in the previous equation, and recalling that ∥·∥∗ is equivalent to the
Euclidean norm, we conclude that (4.9) holds for v. Combining this information with (4.13)
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and (4.14) we get that

0 =

∫
Ω

−⟨∇v, πh
ε (∇u+ σF )⟩ − η

〈
∇v,

∇u+ σF√
1 + |∇u+ σF |2

〉
dz −

∫
Ω

vσH dz

⩽
∫
Ω

−∥∇v∥∗ + 1 + ∥F∥∗ + ∥ − F∥∗ + η|∇v| dz +
∣∣∣∣∫

Ω

vH dz

∣∣∣∣
⩽
∫
Ω

−∥∇v∥∗ + 1 + ∥F∥∗ + ∥ − F∥∗ + Cη∥∇v∥∗ + (1− δ)∥∇v∥∗ dz

=

∫
Ω

1 + ∥F∥∗ + ∥ − F∥∗ + (Cη − δ)∥∇v∥∗ dz,

where C = C(K0) is a positive constant as in (2.1). Hence, choosing η0 ∈ (0, 1) such that
δ − Cη0 > 0, we conclude that

(δ − Cη0)

∫
Ω

∥∇v∥∗ dz ⩽ (δ − Cη)

∫
Ω

∥∇v∥∗ dz ⩽
∫
Ω

1 + ∥F∥∗ + ∥ − F∥∗ dz

for any η ∈ (0, η0). Thanks to the Poincaré inequality and the equivalence between ∥ · ∥∗ and
the Euclidean norm, we conclude that there exists a constant c1, independent of σ ∈ [0, 1],
ε ∈ (0, 1) and η ∈ (0, η0), such that ∫

Ω

u+ dz ⩽ c1.

Since in the same way we can achieve an estimate for u−, the thesis follows. □

The next step is to achieve gradient estimates, again in the C0 norm, for solutions to (4.7).
As customary in this framework, we want to reduce ourselves to boundary gradient estimates
via a suitable maximum principle. To this aim, arguing as in [12], we need to assume the
existence of scalar functions f1, . . . , f2n ∈ C1(Ω) such that

(4.15) DkFi = Difk for any i, k = 1, . . . , 2n.

We stress that interior gradient estimates usually depend on the bounds of the coefficients and
the ellipticity nature of the equation (cf. e.g. [27, Chapter 15]). Consequently, since by (4.6)
the ellipticity constant tends to vanish as η → 0, the right way to achieve estimates which are
uniform in ϵ, η ∈ (0, 1) is to rely on a suitable maximum principle argument. Indeed, thanks to
(4.15), the following maximum principle, which is the Finsler counterpart of [12, Proposition
4.3], holds.

Proposition 4.7. Let K0 be a convex body in C2,α
+ for 0 < α < 1 with 0 ∈ intK0. Let Ω ⊆ R2n

be a bounded domain. Let F ∈ C1(Ω,R2n) be such that (4.15) holds. Let H be a constant. Let
u ∈ C2(Ω) be a solution to (4.7). Then

(4.16) ∥∇u∥∞,Ω ⩽ ∥∇u∥∞,∂Ω + 2∥f∥∞,Ω,

where f = (f1, . . . , f2n) is as in (4.15).

Proof. Fix σ ∈ [0, 1], ε ∈ (0, 1) and η ∈ (0, 1). Let v ∈ C2
c (Ω) and fix k ∈ {1, . . . , 2n}. Then,

multiplying (4.7) by Dkv, using Proposition 3.1, integrating over Ω, integrating by parts and
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exploiting the properties of F , it holds that

0 =

∫
Ω

(
div

(
π(∇u+ σF )

∥∇u+ σF∥2∗
(ε3 + ∥∇u+ σF∥3∗)

2
3

+ η
∇u+ σF√

1 + |∇u+ σF |2

)
− σH

)
Dkv dz

=

∫
Ω

div

(
π(∇u+ σF )

∥∇u+ σF∥2∗
(ε3 + ∥∇u+ σF∥3∗)

2
3

+ η
∇u+ σF√

1 + |∇u+ σF |2

)
Dkv dz

= −
2n∑
i=1

∫
Ω

(
πi(∇u+ σF )

∥∇u+ σF∥2∗
(ε3 + ∥∇u+ σF∥3∗)

2
3

+ η
Diu+ σFi√

1 + |∇u+ σF |2

)
DiDkv dz

= −
2n∑
i=1

∫
Ω

(
πi(∇u+ σF )

∥∇u+ σF∥2∗
(ε3 + ∥∇u+ σF∥3∗)

2
3

+ η
Diu+ σFi√

1 + |∇u+ σF |2

)
DkDiv dz

=
2n∑
i=1

∫
Ω

Dk

(
πi(∇u+ σF )

∥∇u+ σF∥2∗
(ε3 + ∥∇u+ σF∥3∗)

2
3

+ η
Diu+ σFi√

1 + |∇u+ σF |2

)
Div dz

=
2n∑

i,j=1

∫
Ω

Aε,η
i,j (z,∇u;σF )Dk(Dju+ σFj)Div dz

=
2n∑

i,j=1

∫
Ω

Aε,η
i,j (z,∇u;σF )Dj(Dku+ σfk)Divdz,

being Aε,η
i,j as in (4.3). Therefore we proved that

(4.17)
2n∑

i,j=1

∫
Ω

Aε,η
i,j (z,∇u;σF )Dj(Dku+ σfk)Div dz = 0

for any v ∈ C2
c (Ω). Arguing as in [12, Proposition 4.3] it is easy to show that (4.17) actually

holds for any v ∈ C1
c (Ω). Therefore, recalling (4.6), we proved that Dku+σfk is a weak solution

to the linear uniformly elliptic equation

div(aε,ηi,j Djw) = 0,

where

aε,ηi,j (z) := Aε,η
i,j (z,∇u;σF (z)).

Hence, being aε,ηi,j (z) bounded in Ω, thanks to Theorem 4.3 with bi, ci, d = 0 we conclude that

∥∇u+ σf∥∞,Ω ⩽ ∥∇u+ σf∥∞,∂Ω,

which in particular implies that

□(4.18) ∥∇u∥∞,Ω ⩽ ∥∇u∥∞,∂Ω + 2∥f∥∞,Ω.

Finally we are left to provide boundary gradient estimates for solutions to (4.7). Therefore,
inspired by [26], we have to impose some constraints on the values of H depending on the
Finsler mean curvature of ∂Ω. More precisely, we require that

(4.19) |H|(z0) < HK0,∂Ω(z0)

for any z0 ∈ ∂Ω, where HK0,∂Ω is the K0-mean curvature as defined in Subsection 2.3. Here
and in the rest of this section we assume that K0 is a convex body in C∞

+ such that 0 ∈ intK0,
since we need to apply the results of Section 2.3.1 and Section 2.3.2.
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Proposition 4.8. Let K0 be a convex body in C∞
+ with 0 ∈ intK0. Let Ω ⊆ R2n be an

open and bounded set with C2,α boundary, for some 0 < α < 1. Let φ ∈ C2(Ω), F ∈
C0(Ω,R2n) and H ∈ Lip(Ω) satisfying (4.19). Finally, assume that there exist a constant
η0 = η0(n,K0,Ω, φ, F,H) ∈ (0, 1) and a constant C̃1 = C̃1(n,K0,Ω, φ, F,H) > 0, independent
of σ ∈ [0, 1], ε ∈ (0, 1) and η ∈ (0, η0), such that, for any solution u ∈ C2(Ω) to (4.7) it holds
that

(4.20) ∥u∥∞,Ω ⩽ C̃1.

Then, up to choosing a smaller η0 = η0(n,K0,Ω, φ, F,H) ∈ (0, 1), there exist a constant C2 =
C2(n,K0,Ω, φ, F, C̃1, H) > 0, independent of σ ∈ [0, 1], ε ∈ (0, 1) and η ∈ (0, η0), such that any
solution u ∈ C2(Ω) to (4.7) with η ∈ (0, η0) satisfies

(4.21) ∥∇u∥∞,∂Ω ⩽ C2.

Proof. First of all we notice that, being ∂Ω compact and HK0,∂Ω continuous, (4.19) implies the
existence of a positive constant C3 = C3(K0,Ω, H) such that

(4.22) |H(z0)| ⩽ HK0,∂Ω(z0)− 3C3

for any z0 ∈ ∂Ω. In order to prove this result we use a barrier argument as in [27, Chapter 14].
Therefore, for any z0 ∈ ∂Ω, we have to find a neighborhood N of z0 in Ω and two functions
w+, w− ∈ C2(N ), called upper barrier and lower barrier respectively, such that

w+(z0) = w−(z0) = σφ(z0),

w−(z) ⩽ u(z) ⩽ w+(z)

for any z ∈ ∂N ,

div(πh
ε (∇w+ + σF )) + η div

(
∇w+ + σF√

1 + |∇w+ + σF |2

)
< σH

for any z ∈ N and

div(πh
ε (∇w− + σF )) + η div

(
∇w− + σF√

1 + |∇w− + σF |2

)
> σH

for any z ∈ N . In this proof we deal only with the upper barrier, being the other case
analogous. In order to find an upper barrier, we consider a tubular neighborhood O of ∂Ω and
we let Γµ := {x ∈ Ω : dK0,∂Ω(x) < µ}, where dK0,∂Ω is the Finsler distance from the boundary,
µ ∈ (0, µ0) and µ0 > 0 is small enough to ensure that Γµ ⊆ Γµ0 ⋐ O for any µ ∈ (0, µ0). Let
us denote by HΣd(z)

(z) the Euclidean mean curvature of Σd(z) at any z ∈ Γµ0 . Being HΣd(z)

continuous on Γµ0 , there exists a constant C4 = C4(Ω, K0) > 0 such that

(4.23) |HΣd(z)
(z)| ⩽ C4

for any z ∈ Γµ0 . We fix µ ∈ (0, µ0) and we define w+ : Γµ −→ R by w+(z) := kdK0,∂Ω(z)+σφ(z),
where k > 0 has to be chosen. First, thanks to (2.18), w+ ∈ C2(Γµ), and for any z ∈ Γµ

there exists a unique z0 ∈ ∂Ω such that dK0,∂Ω(z) = ∥z − z0∥. Moreover, it is clear that
w+(z0) = σφ(z0) for any z0 ∈ ∂Ω. Thanks to (4.20), if we choose

k ⩾
C̃1 + ∥φ∥∞,Ω

µ
,

it follows that w+(z) ⩾ u(z) for any z ∈ Ω with dK0,∂Ω(z) = µ, and so we conclude that
u(z) ⩽ w+(z) for any z ∈ ∂Γµ. We are left to show that w+ is a subsolution to (4.7). Therefore
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it suffices to show that

(ε3 + ∥∇w+ + σF∥3∗)
5
3

(
div(πh

ε (∇w+ + σF )) + η div
( ∇w+ + σF√

1 + |∇w+ + σF |2
)
− σH

)
< 0

on Γµ. Taking k > supΩ ∥ − F∥∗, (2.12) ensures that k∇dK0,∂Ω(z) + σF (z) ̸= 0 for any z ∈ Γµ

and σ ∈ [0, 1]. Let us notice that Proposition 3.1 and a simple computation imply that

(ε3+∥∇w+ + σF∥3∗)
5
3 div(πh

ε (∇w+ + σF ))

=(ε3 + ∥∇w+ + σF∥3∗)
5
3 div

(
π(∇w+ + σF )∥∇w+ + σF∥2∗

(ε3 + ∥∇w+ + σF∥3∗)
2
3

)
=(ε3 + ∥∇w+ + σF∥3∗) div(π(∇w+ + σF )∥∇w+ + σF∥2∗)︸ ︷︷ ︸

A

+ (ε3 + ∥∇w+ + σF∥3∗)
5
3 ∥∇w+ + σF∥2∗⟨π(∇w+ + σF ),∇

(
(ε3 + ∥∇w+ + σF∥3∗)−

2
3

)
⟩︸ ︷︷ ︸

B

.

We estimate separately A and B. In the following computations we let d := dK0,∂Ω and
Rσ := σ∇φ+ σF . We are going to exploit the fact that, thanks to the homogeneity properties
of the equation, the contribution of Rσ as k → ∞ is negligible. Let us notice that by (2.12)
and (2.7) we get

(4.24) π(∇dK0,∂Ω) ·D2dK0,∂Ω = 0.

Hence, thanks to (2.12), (4.24), the 1-homogeneity of ∥ · ∥∗, the 0-homogeneity of π, the −1-
homogeneity of Dπ and the properties of ∥ · ∥∗, it holds that

A =∥k∇d+Rσ∥2∗
2n∑
i=1

Di (πi(k∇d+Rσ)) +
2n∑
i=1

πi(k∇d+Rσ)Di

(
∥k∇d+Rσ∥2∗

)
=∥k∇d+Rσ∥2∗

2n∑
i,j=1

Diπj(k∇d+Rσ)(kDijd+DiRσ,j)

+ 2∥k∇d+Rσ∥∗π(k∇d+Rσ) · (kD2d+DRσ) · π(k∇d+Rσ)
T

=k2

∥∥∥∥∇d+
Rσ

k

∥∥∥∥2
∗

2n∑
i,j=1

Diπj

(
∇d+

Rσ

k

)(
Dijd+

DiRσ,j

k

)

+ 2k2

∥∥∥∥∇d+
Rσ

k

∥∥∥∥
∗
π

(
∇d+

Rσ

k

)
·
(
D2d+

DRσ

k

)
· π
(
∇d+

Rσ

k

)T

=k2(1 + o(1))(div(π(∇d)) + o(1)) + 2k2(1 + o(1))(π(∇d) ·D2d · π(∇d)T + o(1))

=k2 div(π(∇d)) + o(k2),

which allows to infer that

(ε3 + ∥∇w+ + σF∥3∗)A = k5 div(π(∇d)) + o(k5)
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as k → ∞, where o(k2) is uniform with respect to z ∈ Γµ, ε ∈ (0, 1) and σ ∈ [0, 1]. Now,
exploiting the same properties as above, we estimate B:

(ε3 + ∥k∇d+Rσ∥3∗)
5
3B = −2∥k∇d+Rσ∥4∗⟨π(k∇d+Rσ),∇(∥k∇d+Rσ∥∗)⟩

= −2∥k∇d+Rσ∥4∗π(k∇d+Rσ) · (kD2d+DRσ) · π(k∇d+Rσ)
T

= −2k5

∥∥∥∥∇d+
Rσ

k

∥∥∥∥4
∗
π

(
∇d+

Rσ

k

)
·
(
D2d+

DRσ

k

)
· π
(
∇d+

Rσ

k

)T

= −2k5(1 + o(1))(π(∇d) ·D2d · π(∇d)T + o(1))

= −2k5(1 + o(1))o(1)

= o(k5).

as k → ∞ and uniformly with respect to ε ∈ (0, 1), σ ∈ [0, 1] and z ∈ Γµ. From a similar
computation, it follows that

div

(
∇w+ + σF√

1 + |∇w+ + σF |2

)
=

div(∇d) + divRσ

k√
1
k2

+
∣∣∇d+ Rσ

k

∣∣2 −
(
∇d+ Rσ

k

)
·
(
D2d+ DRσ

k

)
·
(
∇d+ Rσ

k

)T(
1
k2

+
∣∣∇d+ Rσ

k

∣∣2)3/2
=

div(∇d)

|∇d|
− ∇d ·D2d · ∇dT

|∇d|3
+ o(1)

= div

(
∇d

|∇d|

)
+ o(1)

as k → ∞ and uniformly with respect to σ ∈ [0, 1] and z ∈ Γµ. Finally, it is easy to see that

−(ε3 + ∥∇w+ + σF∥3∗)
5
3σH ⩽ (ε3 + ∥∇w+ + σF∥3∗)

5
3 |H| = k5|H|+ o(k5)

as k → ∞ and uniformly with respect to ε ∈ (0, 1), σ ∈ [0, 1] and z ∈ Γµ. In the end we get
that

(ε3 + ∥∇w+ + σF∥3∗)
5
3

(
div(πh

ε (∇w+ + σF )) + η div

(
∇w+ + σF√

1 + |∇w+ + σF |2

)
− σH

)

⩽ k5

(
div(π(∇d)) + η div

(
∇d

|∇d|

)
+ |H|

)
+ o(k5)

as k → ∞ and uniformly with respect to ε ∈ (0, 1), σ ∈ [0, 1] and z ∈ Γµ.
Now, let z ∈ Γµ and let z0 ∈ ∂Ω be such that d(z) = ∥z − z0∥. Thanks to the Lipschitz

continuity of H and the equivalence between ∥ · ∥ and the Euclidean norm, there exists a
constant C5 = C5(K0) such that

|H|(z) = |H|(z0) + |H|(z)− |H|(z0) ⩽ |H|(z0) + C5d(z) ⩽ |H|(z0) + C5µ.(4.25)

Hence, thanks to (2.10), (2.14), (4.22) and (4.23), we conclude that

div(π(∇d))(z) + η div

(
∇d

|∇d|

)
+ |H|(z0) + C5µ = −HK0,Σd(z)

(z)− ηHΣd(z)
(z) + |H|(z0) + C5µ

⩽ −HK0,∂Ω(z0) + ηC4 + |H|(z0) + C5µ

⩽ −C3 < 0,

(4.26)

provided that µ ⩽ C3

C5
and η ⩽ C3

C4
. Hence we found an upper barrier, from which the thesis

follows. □
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Remark 4.9. Assume that n = 1, let Ω ⊆ R2 and K0 ∈ C2
+ be a convex body of R2. If (4.19)

holds then Ω is strictly convex. Indeed, by Proposition 2.4 we have

0 ⩽ |H| < −⟨De1Nz0 , e1⟩
kK0(π(Nz0))

=
k∂Ω(z0)

kK0(π(Nz0))
,

where kK0 and k∂Ω are the the Euclidean geodesic curvatures of ∂K and ∂Ω. Since kK0 is
strictly positive we obtain k∂Ω(z0) > 0, hence Ω is strictly convex.

To conclude this section, inspired by [56] we want to show that, in the particular case in
which H is constant and n = 1, then we can exploit (4.19) in order to obtain uniform estimates
of the function, without requiring the validity of (4.9). Again, in order to apply the results of
Section 2.3.1 and Section 2.3.2, we assume that K0 is a convex body in C∞

+ such that 0 ∈ intK0

and ∂Ω belongs to C2,1.

Proposition 4.10. Assume that n = 1. Let K0 be a convex body in C∞
+ with 0 ∈ intK0. Let

Ω ⊆ R2 be a bounded domain with C2,1 boundary, let φ ∈ C2(Ω) and let H be a constant which
satisfies (4.19). There exists a constant C1 = C1(K0,Ω, φ,H, F ) > 0, independent of σ ∈ [0, 1],
ε ∈ (0, 1) and η ∈ (0, 1), such that, for any solution u ∈ C2(Ω) to (4.7), it holds that

∥u∥∞,Ω ⩽ C1.

Proof. Let kK0 be the geodesic curvature of K0. Since K0 ∈ C∞
+ , then in particular kK0(p) > 0

for any p ∈ ∂K0. Let C3 = C3(K0,Ω, H) be as in (4.22). Let us define the function v :
int Ω1 −→ R by

(4.27) v(z) := sup
∂Ω

|φ|+ kdK0,∂Ω(z)

for any z ∈ Ω1, where k > 0 has to be chosen and Ω1 is the set defined in (2.17). We already
know (cf. (2.18)) that v ∈ C2(intΩ1). We repeat verbatim the computations of the proof of
Proposition 4.8 up to (4.26), with the difference that, being H constant, we can choose C5 = 0
in (4.25). Since n = 1, we exploit Proposition 2.4 to infer that

div(π(∇d))(z) + η div

(
∇d

|∇d|

)
+ |H| = −HK0,Σd(z)

(z)− ηHΣd(z)
(z) + |H|

= −HK0,Σd(z)
(z)− ηkK0 (πK(Nz))HK0,Σd(z)

(z) + |H|
⩽ −HK0,∂Ω(z0) + |H|
⩽ −3C3 < 0.

(4.28)

Hence there exists k > 0, independent of ε ∈ (0, 1), η ∈ (0, 1), σ ∈ [0, 1] and z ∈ Ω1, such that
v is a subsolution to (4.7) on intΩ1. Therefore, arguing as in the proof of [27, Theorem 10.7],
it follows that w := u− v is a weak supersolution on intΩ1 to a linear elliptic equation of the
form

2n∑
i,j=1

Di(ai,j(z)Djw(z)) +
2n∑
i=1

ci(z)Diw(z) = 0.

Hence, thanks to Theorem 4.3 and recalling (2.19), it follows that

sup
Ω1

(u− v) ⩽ sup
∂Ω∪R

((u− v)+).

Noticing that u− v ⩽ 0 on ∂Ω and that intΩ1 = Ω, we obtain that

u(z)− v(z) ⩽ sup
Ω
(u− v) = sup

Ω1

(u− v) ⩽ sup
∂Ω1

((u− v)+) = sup
R

((u− v)+)
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for any z ∈ Ω. We are left to show that supR((u− v)+) ⩽ 0. Indeed, assume by contradiction
that supR((u− v)+) > 0. Since R is compact, there exists z0 ∈ R such that

u(z0)− v(z0) = sup
R

((u− v)+) = sup
R

(u− v).

Moreover, z0 is a maximum point for u − v on Ω. Let us fix y0 ∈ ∂Ω such that dK0,∂Ω(z0) =
∥z0 − y0∥. Then, thanks to Proposition 2.5, it is easy to see that

(4.29) dK0,∂Ω(z) = ∥z − y0∥
for any z belonging to (y0, z0), the segment connecting y0 and z0. Let now ν := y0−z0

|y0−z0| . By

(4.29) it holds that v(z) < v(z0) for any z ∈ (y0, z0), and moreover

(4.30) D+
ν v(z0) := lim

h→0+

v(z0 + hν)− v(z0)

h
< 0.

Since z0 is a maximum point of u − v, it holds in particular that D+
ν u(z0) ⩽ D+

ν v(z0), which
implies, together with (4.30), that D+

ν u(z0) = Dνu(z0) < 0. This proves that Du(z0) ̸= 0.
Since then z0 is a regular point for u, the level set {z ∈ Ω : u(z) = u(z0)} is locally a C2

hypersurface. Therefore there exists a small Euclidean ball B such that B is tangent to the
level set at z0 and moreover B ⊆ {z ∈ Ω : u(z) ⩾ u(z0)}. Now, since by our assumptions the
Finsler balls relative to −K0 are uniformly convex and C2, there exists ϱ > 0 and x0 ∈ Ω such
that

(4.31) B−K0(x0, ϱ) ⊆ {z ∈ Ω : u(z) ⩾ u(z0)}
and B−K0(x0, ϱ) is tangent to B at z0. Indeed, fix a Finsler ball tangent to B at z0 relative to
−K0, say BF . On one hand, the principal curvatures of ∂B at z0 are fixed. On the other hand,
noticing that the principal curvatures of a C2

+ convex set admit a positive lower bound, we can
dilate and translate BF to make the curvature of BF as big as we want to ensure that (4.31)
holds. Notice that

(4.32) dK0,∂Ω(z) ⩾ dK0,∂Ω(z0)

for any z ∈ B−K0(x0, ϱ). Indeed, if by contradiction there exists z ∈ B−K0(x0, ϱ) such that
dK0,∂Ω(z) < dK0,∂Ω(z0), then (4.31) would imply

u(z)− kdK0,∂Ω(z) ⩾ u(z0)− kdK0,∂Ω(z) > u(z0)− kdK0,∂Ω(z0),

a contradiction to the maximality of z0. Let now w0 ∈ ∂Ω be such that dK,∂Ω(x0) = ∥x0 −w0∥,
and let b0 be the unique point of intersection between ∂B−K0(x0, ϱ) and the segment joining w0

and x0. Then by (2.2), (4.29), (4.32), the choice of b0 and the strict convexity of K0, it holds
that

dK0,∂Ω(x0) = ∥x0 − w0∥ = ∥x0 − b0∥+ ∥b0 − w0∥ = ϱ+ dK0,∂Ω(b0) ⩾ ϱ+ dK0,∂Ω(z0).

On the other hand, (2.2) and the triangle inequality imply

dK0,∂Ω(x0) ⩽ ∥x0 − y0∥ ⩽ ∥x0 − z0∥+ ∥z0 − y0∥ = ϱ+ dK0,∂Ω(z0).

Putting together the previous inequalities we get that

(4.33) dK0,∂Ω(x0) = ∥x0 − y0∥ = ∥x0 − z0∥+ ∥z0 − y0∥,
from which in particular we conclude, exploiting again the strict convexity of K0, that x0 lies
on (y0, x0). Therefore, thanks to this fact, the first equality in (4.33) and Proposition 2.5, we
conclude that z0 ∈ int Ω1, which is a contradiction. In the end we proved that

sup
Ω

u ⩽ sup
∂Ω

|φ|+ kmax
Ω

dK0,∂Ω.

Since the converse estimate can be obtained in a similar way, the thesis is proved. □
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Remark 4.11. We point out that the proof of Proposition 4.10 does not hold for n ⩾ 2.
Indeed, when n ⩾ 2, the Euclidean mean curvature HΣd

in equation (4.28) may blow down to
−∞ close to the ridge R even though the Finsler mean curvature HK0,Σd

is strictly positive on
Ω1.

5. Existence of Lipschitz minimizers for the sub-Finsler functional I

Thanks to the a priori estimates of the previous section, together with Proposition 4.1 and
the uniformity of the estimates with respect to ε ∈ (0, 1) and η ∈ (0, η0), we are in position to
pass to the limit and find a solution to the sub-Finsler Prescribed Mean Curvature equation.

Theorem 5.1. Let K0 ∈ C∞
+ be a convex body such that 0 ∈ intK0. Let Ω ⊆ R2n be a bounded

domain with C2,1 boundary. Let φ ∈ C2,α(Ω), for 0 < α < 1, and let F ∈ C1,α(Ω,R2n) be such
that (4.15) is satisfied. Assume that H is a constant such that (4.9) and (4.19) hold. Then,
there exists η0 ∈ (0, 1) such that for any ε ∈ (0, 1) and any η ∈ (0, η0), there exists a function
uε,η ∈ C2,α(Ω) which solves (4.1). Moreover, there exists a constant M > 0, independent of
ε ∈ (0, 1) and η ∈ (0, η0), such that any solution uε,η to (4.1) satisfies

(5.1) sup
Ω

|uε,η|+ sup
Ω

|∇uε,η| ⩽ M.

Finally, there exists a Lipschitz continuous minimizer u0 ∈ Lip(Ω) for the functional I defined
in (2.23) with u0 = φ on ∂Ω.

Proof. By Proposition 4.6, Proposition 4.7 and Proposition 4.8, there exists a constant M > 0
such that, for any σ ∈ [0, 1], any 0 < ε < 1 and any η ∈ (0, η0) with η0 > 0 small enough, then
any solution u ∈ C2,α(Ω) to the problem (4.7) satisfies

sup
Ω

|u|+ sup
Ω

|∇u| ⩽ M.

Then by Proposition 4.1 there exists a solution uε,η ∈ C2,α(Ω̄) todiv(πh
ε (∇u+ F )) + η div

(
∇u+σF√

1+|∇u+σF |2

)
= H in Ω

u = φ in ∂Ω.

Again by Proposition 4.6, Proposition 4.7 and Proposition 4.8, we have that

(5.2) sup
Ω

|uε,η|+ sup
Ω

|∇uε,η| ⩽ M,

where the constant M > 0 is uniform in 0 < ε < 1 and η ∈ (0, η0). Let {εj}j∈N ⊆ (0, 1) and
{ηj}j∈N ⊆ (0, η0) be sequences such that εj → 0 and ηj → 0 as j → ∞. Since M is uniform in
ε and η by (5.2) we gain that supΩ |uεj ,ηj | ⩽ M and that for any z1, z2 ∈ Ω

(5.3) |uεj ,ηj(z1)− uεj ,ηj(z2)| ⩽ M |z1 − z2|.

Then, by Ascoli-Arzelà theorem there exists u0 ∈ C(Ω) such that uεj ,ηj → u0 uniformly in Ω.
It is clear that u = φ on ∂Ω. Moreover, taking the limit as j → 0 in (5.3), we gain that

sup
z1 ̸=z2

|u0(z1)− u0(z2)|
|z1 − z2|

⩽ M,

thus u0 is Lipschitz. We claim that u0 is a minimizer for I defined in (2.23). Indeed, we have
that ∥uεj ,ηj∥W 1,1(Ω) ⩽ M |Ω|, ∥u0∥W 1,1(Ω) ⩽ M |Ω| and uεj ,ηj converge to u0 in L1(Ω). Moreover,
the function (p, (x, y)) → ∥p + F (x, y)∥∗ is positive, continuous and convex in p. Therefore,
by [45, Theorem 4.1.2], I is lower semicontinuous with respect to the strong L1-topology, from
which we have that

(5.4) I(u0) ⩽ lim inf
j→∞

I(uεj ,ηj).
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For each v ∈ W 1,1(Ω) such that v − φ ∈ W 1,1
0 (Ω), it follows that

(5.5)

I(uεj ,ηj) =

∫
Ω

∥∇uεj ,ηj + F∥∗ dz +
∫
Ω

Huεj ,ηj dz

⩽
∫
Ω

(ε3j + ∥∇uεj ,ηj + F∥3∗)
1
3 dz +

∫
Ω

Huεj ,ηj dz + ηj

∫
Ω

√
1 + |∇uεj ,ηj + F |2 dz

⩽
∫
Ω

(ε3j + ∥∇v + F∥3∗)
1
3 dz +

∫
Ω

Hv dz + ηj

∫
Ω

√
1 + |∇v + F |2 dz

⩽ εj|Ω|+
∫
Ω

∥∇v + F∥∗ dz +
∫
Ω

Hv dz + ηj

∫
Ω

√
1 + |∇v + F |2 dz,

where we have used the fact that the Dirichlet solution uεj ,ηj ∈ C2α(Ω̄) is a minimizer for the

functional v →
∫
Ω
(ε3j + ∥∇v + F∥3∗)

1
3 +

∫
Ω
Hv + ηj

∫
Ω

√
1 + |∇v + F |2 dz for each v ∈ W 1,1(Ω)

s.t. v − φ ∈ W 1,1
0 (Ω). Passing to the liminf in (5.5) and taking into account (5.4), we obtain

I(u0) ⩽ I(v) for each v ∈ W 1,1(Ω) s.t. v − φ ∈ W 1,1
0 (Ω). □

We now apply the same argument of the previous proof in H1, using the height estimate
provided by Proposition 4.10 instead of the one given in Proposition 4.6 to avoid condition
(4.9), to obtain the following sharp result in the first Heisenberg group.

Theorem 5.2. Let n = 1 and K0 ∈ C∞
+ be a convex body such that 0 ∈ intK0. Let Ω ⊆ R2 be a

bounded domain with C2,1 boundary. Let φ ∈ C2,α(Ω), for 0 < α < 1, and let F ∈ C1,α(Ω,R2)
be such that (4.15) is satisfied. Assume that H is a constant such that (4.19) holds. Then,
there exists η0 ∈ (0, 1) such that for any ε ∈ (0, 1) and any η ∈ (0, η0), there exists a function
uε,η ∈ C2,α(Ω) which solves (4.1). Moreover, there exists a constant M > 0, independent of
ε ∈ (0, 1) and η ∈ (0, η0), such that any solution uε,η to (4.1) satisfies

(5.6) sup
Ω

|uε,η|+ sup
Ω

|∇uε,η| ⩽ M.

Finally, there exists a Lipschitz continuous minimizer u0 ∈ Lip(Ω) for the functional I defined
in (2.23) with u0 = φ on ∂Ω.

To conclude this section, according to [12] we point out that the Dirichlet problem for the
prescribed K0-mean curvature equation can be equivalently stated by means of a weak formula-
tion which takes into account the presence of the singular set. Indeed, given a bounded domain
Ω ⊆ R2n, φ ∈ W 1,1(Ω), H ∈ L∞(Ω) and F ∈ L1(Ω), we say that u ∈ W 1,1(Ω) is a weak solution
to the Dirichlet problem for the prescribed K0-mean curvature equation if u−φ ∈ W 1,1

0 (Ω) and

(5.7)

∫
Ω0

∥∇ϕ∥∗ dz +
∫
Ω\Ω0

⟨π(∇u+ F ),∇ϕ⟩ dz +
∫
Ω

Hϕdz ⩾ 0

for any ϕ ∈ W 1,1
0 (Ω), where we recall that Ω0 = {∇u + F = 0}. The equivalence between the

two formulations is proved in [12] for the sub-Riemannian setting and can be carried out for
the sub-Finsler setting with slight modifications.

Remark 5.3. A deeper look to [40, 39] suggests that it should be possible to prove that the
aforementioned results still hold only assuming thatK0 is a convex body in C2,α

+ with 0 ∈ intK0,
for some 0 < α < 1. Accordingly, it is reasonable that in Theorem 5.1 the regularity of ∂K0

can be weakened to C2,α, for some 0 < α < 1.

6. A sharp existence result of Lipschitz minimizers in the sub-Riemannian
setting

As pointed out in the introduction, a Finsler approximation scheme for (1.2) cannot be
arbitrarily chosen, since one needs to guarantee classical regularity of the resulting equations.
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Nevertheless, for a particular class of Finsler metrics, it is possible to choose a more natural
approximation scheme. More precisely, let us consider the one-parameter family of differential
equations defined formally by

(6.1) div

(
πK0(∇u+ F )

∥∇u+ F∥∗√
ε2 + ∥∇u+ F∥2∗

)
= H.

We point out that, when K0 is the Euclidean unit ball centered at the origin, (6.1) reduces
to the well-known elliptic approximating equation considered for instance in [12] (cf. Remark
2.9). In order to give to equation (6.1) a pointwise meaning, we must impose a priori that the
function G̃(p) := ∥p∥∗πK0(p), which is C1 outside the origin, admits a C1 extension to the whole
R2n. This regularity hypothesis turns out to be equivalent to the fact that the left-invariant
sub-Finsler structure induced by K0 comes from an underlying left-invariant sub-Riemannian
metric on the distribution H (cf. [57]), or equivalently that K0 is an ellipsoid centered at 0.
More precisely, it is easy to check that, if G̃ ∈ C1(R2n,R2n), then DG̃ is necessarily a constant,
symmetric and positive definite matrix, and moreover

(6.2) ∥p∥∗ =
√

p ·DG̃ · pT and πK(p) =
DG̃ · pT

∥p∥∗
for any p ∈ R2n. When (6.2) holds, a direct computation shows that (6.1) is a well-defined,
quasi-linear elliptic equation, so that in this setting a Euclidean regularization term as in (4.2)
is no longer needed. In order to solve the Dirichlet problem associated to (6.1) it is then
possible to replicate almost word-by-word the computations of Section 4, with the advantage
that the absence of the Euclidean curvature term makes the process easier. The main benefit
of this new approximation is that, due to the absence of the Euclidean curvature term, a result
analogous to Proposition 4.10 actually holds for any n ⩾ 1. We include the proof for the sake
of completeness.

Proposition 6.1. Assume that K0 ∈ C∞
+ induces a left-invariant sub-Riemannian metric

on Hn. Let Ω ⊆ R2n be a bounded domain with C2,1 boundary, let φ ∈ C2(Ω) and let H
be a constant which satisfies (4.19). There exists a constant C1 = C1(K0,Ω, φ,H, F ) > 0,
independent of σ ∈ [0, 1] and ε ∈ (0, 1), such that, for any solution u ∈ C2(Ω) to

(6.3)

div

(
πK0(∇u+ σF ) ∥∇u+σF∥∗√

ε2+∥∇u+σF∥2∗

)
= σH in Ω

u = σφ in ∂Ω

it holds that
∥u∥∞,Ω ⩽ C1.

Proof. Let C3 = C3(K0,Ω, H) be as in (4.22). Let us define the function v : int Ω1 −→ R as in
(4.27), that is

v(z) := sup
∂Ω

|φ|+ kdK0,∂Ω(z)

for any z ∈ Ω1, where k > 0 has to be chosen and Ω1 is the set defined in (2.17). Again
we know (cf. (2.18)) that v ∈ C2(intΩ1). We repeat again, with minor modifications, the
computations of the proof of Proposition 4.8 up to (4.26). As in the proof of Proposition 4.10,
being H constant, we can choose C5 = 0 in (4.25). Moreover, since η = 0, the analogous of
(4.26) becomes

div(π(∇d))(z) + |H|(z0) = −HK0,Σd(z)
(z) + |H|(z0)

⩽ −HK0,∂Ω(z0) + |H|(z0)
⩽ −3C3 < 0.
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Hence there exists k > 0, independent of ε ∈ (0, 1), σ ∈ [0, 1] and z ∈ Ω1, such that v is a
subsolution to (6.3) on intΩ1. The thesis then follows verbatim as in the proof of Proposition
4.10. □

Therefore, in the sub-Riemannian setting, we can exploit Proposition 6.1 to avoid condition
(4.9), so that the following sharper analogous to Theorem 5.1 holds.

Theorem 6.2. Assume that K0 ∈ C∞
+ induces a left-invariant sub-Riemannian metric on Hn.

Let Ω ⊆ R2n be a bounded domain with C2,1 boundary. Let φ ∈ C2,α(Ω), for 0 < α < 1, and let
F ∈ C1,α(Ω,R2n) be such that (4.15) is satisfied. Assume that H is a constant such that (4.19)
holds. Then, for any ε ∈ (0, 1), there exists a function uε ∈ C2,α(Ω) which solves the Dirichlet
problem associated to (6.1) with boundary datum φ. Moreover, there exists a constant M > 0,
independent of ε ∈ (0, 1), such that any solution uε to (6.1) satisfies

sup
Ω

|uε|+ sup
Ω

|∇uε| ⩽ M.

Finally, there exists a Lipschitz continuous minimizer u0 ∈ Lip(Ω) for the functional I defined
in (2.23) with u0 = φ on ∂Ω.
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