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ABSTRACT. In this paper we prove that any complete locally conformally flat quasi-Einstein man-
ifold of dimension n ≥ 3 is locally a warped product with (n − 1)–dimensional fibers of constant
curvature. This result includes also the case of locally conformally flat gradient Ricci solitons.

1. INTRODUCTION

Let (Mn, g), for n ≥ 3, be a complete quasi–Einstein Riemannian manifold, that is, there exist
a smooth function f : Mn → R and two constants µ, λ ∈ R such that

(1.1) Ric +∇2f − µdf ⊗ df = λg .

When µ = 0, quasi–Einstein manifolds correspond to gradient Ricci solitons and when f is
constant (1.1) gives the Einstein equation and we call the quasi–Einstein metric trivial. We also
notice that, for µ = 1

2−n , the metric g̃ = e−
2

n−2 fg is Einstein. Indeed, from the expression of the
Ricci tensor of a conformal metric, we get

Riceg = Ricg +∇2f + 1
n−2df ⊗ df + 1

n−2

(
∆f − |∇f |2

)
g

= 1
n−2

(
∆f − |∇f |2 + (n− 2)λ

)
e

2
n−2 f g̃ .

In particular, if g is also locally conformally flat, then g̃ has constant curvature.
Quasi–Einstein manifolds have been recently introduced by J. Case, Y.-S. Shu and G. Wei in [5].

In that work the authors focus mainly on the case µ ≥ 0. The case µ = 1
m for some m ∈ N

is particularly relevant due to the link with Einstein warped products. Indeed in [5], following
the results in [11], it is proved a characterization of these quasi–Einstein metrics as base metrics
of Einstein warped product metrics (see also [15, Theorem 2]). This characterization on the one
hand enables to translate results from one setting to the other and on the other hand permits to
furnish several examples of quasi–Einstein manifolds (see [1, Chapter 9], [12]). Observe also that,
in case 1

2−n ≤ µ < 0, the definition of quasi–Einstein metric was used by D. Chen in [7] in the
context of finding conformally Einstein product metrics onMn×Fm for µ = 1

2−m−n ,m ∈ N∪{0}.
As a generalization of Einstein manifolds, quasi–Einstein manifolds exhibit a certain rigidity.

This is well known for µ = 0, but we have evidence of this also in the case µ ≥ 0. This is expressed
for example by triviality results and curvature estimates; see [4, 5, 15]. For instance it is known
that, according to Qian version of Myers’ Theorem, if λ > 0 and µ > 0 in (1.1) thenMn is compact
(see [14]). Moreover in [11], analogously to the case µ = 0, it is proven that if λ ≤ 0, compact
quasi–Einstein manifolds are trivial. A generalization to the complete non-compact setting of
this result is obtained in [15] by means of an Lp–Liouville result for the weighted Laplacian
which relies upon estimates for the infimum of the scalar curvature (extending the previous work
in [5]). These latter are achieved by means of tools coming from stochastic analysis such as the
weak maximum principle at infinity combined with Qian’s estimates on weighted volumes (see
[14] and also [13, Section 2]).

The Riemann curvature operator of a Riemannian manifold (Mn, g) is defined as in [9] by

Riem(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z .

In a local coordinate system the components of the (3, 1)–Riemann curvature tensor are given by
Rd
abc

∂
∂xd = Riem

(
∂
∂xa ,

∂
∂xb

)
∂
∂xc and we denote by Rabcd = gdeRe

abc its (4, 0)–version.

Date: February 3, 2011.
1



2 GIOVANNI CATINO, CARLO MANTEGAZZA, LORENZO MAZZIERI, AND MICHELE RIMOLDI

In all the paper the Einstein convention of summing over the repeated indices will be adopted.

With this choice, for the sphere Sn we have Riem(v, w, v, w) = Rabcdv
awbvcwd > 0. The Ricci

tensor is obtained by the contraction Rac = gbdRabcd and R = gacRac will denote the scalar
curvature. The so called Weyl tensor is then defined by the following decomposition formula
(see [9, Chapter 3, Section K]) in dimension n ≥ 3,

(1.2) Wabcd = Rabcd+
R

(n− 1)(n− 2)
(gacgbd−gadgbc)−

1
n− 2

(Racgbd−Radgbc+Rbdgac−Rbcgad).

The Weyl tensor satisfies all the symmetries of the curvature tensor and all its traces with the
metric are zero, as it can be easily seen by the above formula.
In dimension three W is identically zero for every Riemannian manifold, it becomes relevant in-
stead when n ≥ 4 since its vanishing is a condition equivalent for (Mn, g) to be locally conformally
flat, that is, around every point p ∈Mn there is a conformal deformation g̃ab = efgab of the origi-
nal metric g, such that the new metric is flat, namely, the Riemann tensor associated to g̃ is zero in
Up (here f : Up → R is a smooth function defined in a open neighborhood Up of p). In dimension
n = 3, on the other hand, locally conformally flatness is equivalent to the vanishing of the Cotton
tensor

Cabc = ∇cRab −∇bRac − 1
2(n−1)

(
∇cR gab −∇bR gac

)
.

When n ≥ 4 note that one can compute, (see [1]), that

∇dWabcd = −n− 3
n− 2

Cabc.

Hence if we assume that the manifold is locally conformally flat, the Cotton tensor is identically
zero also in this case.

In this paper we will consider a generic µ ∈ R and we will prove the following

Theorem 1.1. Let (Mn, g), n ≥ 3, be a complete locally conformally flat quasi–Einstein manifold. Then
(i) if µ = 1

2−n , then (Mn, g) is globally conformally equivalent to a spaceform.
(ii) if µ 6= 1

2−n , then, around any regular point of f , the manifold (Mn, g) is locally a warped product
with (n− 1)-dimensional fibers of constant sectional curvature.

Remark 1.2. This result was already known in the case where µ = 0, i.e. for gradient Ricci solitons
(see [3] and [6]). Nevertheless, the strategy of the proof is completely new and can be used as the
main step to classify locally conformally flat shrinking and steady gradient Ricci solitons.

Remark 1.3. Very recently, similar results have been obtained by C. He, P. Petersen and W. Wylie [10]
in the case when 0 < µ < 1, assuming a slightly weaker condition than locally conformally flat-
ness.

2. PROOF OF THEOREM 1.1

As observed in the introduction, if µ = 1
2−n , (Mn, g) is globally conformally equivalent to a

space form.

From now on, we will consider the case µ 6= 1
2−n .

Lemma 2.1. Let (Mn, g) be a quasi–Einstein manifold. Then the following identities hold

R + ∆f − µ|∇f |2 = nλ(2.1)
∇bR = 2Rab∇af + 2µR∇bf − 2µ2|∇f |2∇bf − 2nµλ∇bf + µ∇b|∇f |2(2.2)

∇cRab −∇bRac = −Rcabd∇df + µ
(
Rab∇cf − Rac∇bf

)
− λµ

(
gab∇cf − gac∇bf

)
(2.3)

Proof. Equation (2.1): we simply contract equation (1.1).

Equation (2.2): we take the divergence of the equation (1.1)

div Ricb = −∇a∇a∇bf + µ∇a∇af∇bf + µ∇a∇bf∇af
= −∇b∆f − Rab∇af + µ∆f∇bf + 1

2µ∇b|∇f |
2 ,
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where we interchanged the covariant derivatives. Now, using equation (2.1), we get

div Ricb = ∇bR− µ∇b|∇f |2 − Rab∇af − µR∇bf + µ2|∇f |2∇bf + nµλ∇bf + 1
2µ∇b|∇f |

2

= ∇bR− Rab∇af − µR∇bf + µ2|∇f |2∇bf + nµλ∇bf − 1
2µ∇b|∇f |

2

Finally, using Schur’s Lemma∇R = 2 div Ric, we obtain equation (2.2).

Equation (2.3): taking the covariant derivative of (1.1) we obtain

∇cRab −∇bRac = −
(
∇c∇b∇af −∇b∇c∇af

)
+µ
(
∇c∇af∇bf +∇c∇bf∇af −∇b∇af∇cf −∇b∇cf∇af

)
= −Rcabd∇df + µ

(
Rab∇cf − Rac∇bf

)
− µλ

(
gab∇cf − gac∇bf

)
,

where we interchanged the covariant derivatives and we have used again equation (1.1). �

In any neighborhood, where |∇f | 6= 0, of a level set Σρ = {p ∈ Mn | f(p) = ρ} of a regular
value ρ of f , we can express the metric g as

(2.4) g = 1
|∇f |2 df ⊗ df + gij(f, θ) dθi ⊗ dθj ,

where θ = (θ1, . . . , θn−1) denotes intrinsic coordinates for Σρ. In the following computations we
will agree that ∂0 = ∂

∂f , ∂j = ∂
∂θj , ∇0 = ∇∂0 , R00 = Ric(∂0, ∂0), R0j = Ric(∂0, ∂j) and so on.

According to (2.4), we compute easily that

(2.5) ∇jf = 0, ∇0f = |∇f |2, g00 = |∇f |2 .
In this coordinate system, we have the following formulae:

Lemma 2.2. If (Mn, g) is a quasi–Einstein manifold. Then, for j = 1, . . . , n− 1, we have

∇j |∇f |2 = −2|∇f |4R0j(2.6)

∇0|∇f |2 = −2|∇f |4R00 + 2µ|∇f |4 + 2λ|∇f |2(2.7)
∇jR = 2(1− µ

)
|∇f |4R0j(2.8)

∇0R = 2(1− µ
)
|∇f |4R00 − 2(n− 1)µλ|∇f |2 + 2µR|∇f |2(2.9)

∇0Rj0 −∇jR00 = µ|∇f |2 R0j .(2.10)

Moreover, if (Mn, g) has W = 0, for i, j = 1, . . . , n− 1, we have

∇0Rij −∇jRi0 = µ(n−2)+1
n−2 Rij |∇f |2 + 1

n−2R00|∇f |4gij +(2.11)

− 1
(n−1)(n−2)R|∇f |2gij − λµ|∇f |2gij .

Proof. Equation (2.6): we compute

∇j |∇f |2 = 2 g00∇j∇0f∇0f + 2gkl∇j∇kf∇lf.
Using (1.1) and (2.5) we thus obtain

∇j |∇f |2 = 2g00 (−R0j + µdf (∂j) df (∂0) + λg0j)∇0f

= −2|∇f |4R0j + 2µ|∇f |2∇jf∇0f∇0f + 2λ|∇f |2g0j∇0f

= −2|∇f |4R0j .

Equation (2.7): we have as before,

∇0|∇f |2 = 2|∇f |4∇2
00f

= 2|∇f |4 (−R00 + µdf(∂0)df(∂0) + λg00)
= −2|∇f |4R00 + 2µ|∇f |4 + 2λ|∇f |2.

Equation (2.8): using equation (2.2) and equation (2.6) one has

∇jR = 2|∇f |4R0j − 2µ|∇f |4R0j = 2(1− µ)|∇f |2R0j .
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Equation (2.9): it follows as before from equations (2.2) and (2.7).

Equation (2.10): using equation (2.3), we have

∇0Rj0 −∇jR00 = −g00R0j00∇0f + µ
(
R0j∇0f − R00∇jf

)
− λ

(
g0j∇0f − g00∇jf

)
= µ|∇f |2R0j .

Equation (2.11): using again equation (2.3), we have

∇0Rij −∇jRi0 = −g00R0ji0∇0f + µ
(
Rij∇0f − Ri0∇jf

)
− λµ

(
gij∇0f − gi0∇jf

)
= −|∇f |4

[
1

n−2

(
Ri0gj0 + Rj0gi0 − R00gij − Rijg00

)
− R

(n−1)(n−2)

(
gj0gi0 − gijg00

)]
+µ|∇f |2Rij − λµ|∇f |2gij

= µ(n−2)+1
n−2 Rij |∇f |2 + 1

n−2R00|∇f |4gij − 1
(n−1)(n−2)R|∇f |2gij − λµ|∇f |2gij .

where in the second equality we have used the decomposition formula for the Riemann ten-
sor (1.2) and the fact that the Weyl curvature part vanishes. �

Now, if we assume that the manifold is locally conformally flat, the Cotton tensor is identically
zero. Locally around every point where |∇f | 6= 0, from Lemma 2.2, we obtain

C0j0 = ∇0Rj0 −∇jR00 − 1
2(n−1)

(
∇0R gj0 −∇jR g00

)
= µ|∇f |2R0j + 1−µ

n−1 |∇f |
2 R0j

= µ(n−2)+1
n−1 |∇f |2 R0j .

Hence if (Mn, g) is locally conformally flat, we have that R0j = 0 for every j = 1, . . . , n−1, hence
also

(2.12) ∇jR = ∇j |∇f |2 = 0 ,

where we have used again the previous lemma. Hence, one has

Γ0
0j =

1
2
gl0(∂0gjl + ∂jg0l − ∂lg0j)

=
1
2
g00(∂0gj0 + ∂jg00) = 0 ,

Γj00 =
1
2
glj(∂0g0l + ∂0g0l − ∂lg00)

=
1
2
gij(−∂ig00) = 0 ,

since ∂jg00 = ∂j(|∇f |−2) = 0. An easy computation shows that ∂jR00 = 0. Indeed,

∂jR00 = ∇jR00 + 2Γ0
j0R00 = ∇jR00 = ∇0Rj0 = ∂0R0j − Γi00Rij − Γ0

0jR00 = 0 ,

where we used equations (2.10) and (2.12). Now we want to show that the mean curvature of the
level set Σρ is constant on the level set. We recall that, since∇f/|∇f | is the unit normal vector to
Σρ, the second fundamental form h verifies

(2.13) hij = −
∇2
ijf

|∇f |
=

Rij − λgij
|∇f |

,

for i, j = 1, . . . , n− 1. Thus, the mean curvature H of Σρ satisfies

H = gij hij =
R− R00|∇f |2 − (n− 1)λ

|∇f |
,(2.14)

which clearly implies that the mean curvature is constant on Σρ, since all the quantities on the
right hand side do. Now we want to compute the components Cij0 of the Cotton tensor. Using



LOCALLY CONFORMALLY FLAT QUASI–EINSTEIN MANIFOLDS 5

equations (2.9), (2.11) and (2.12), we have

Cij0 = ∇0Rij −∇jRi0 − 1
2(n−1)

(
∇0R gij −∇jR gi0

)
= ∇0Rij −∇jRi0 − 1

2(n−1)∇0R gij

= µ(n−2)+1
n−2 Rij |∇f |2 + 1

n−2R00|∇f |4gij − 1
(n−1)(n−2)R|∇f |2gij − λµ|∇f |2gij +

− 1
2(n−1)

[
2(1− µ

)
|∇f |4R00 − 2(n− 1)µλ|∇f |2 + 2µR|∇f |2

]
gij

= µ(n−2)+1
n−2

(
Rij + 1

n−1R00|∇f |2gij − 1
n−1R gij

)
|∇f |2 .

Finally, using the expression (2.13) and (2.14), we obtain

Cij0 = µ(n−2)+1
n−2

(
hij − 1

n−1H gij
)
|∇f |3 .

Again, since all the components of the Cotton tensor vanish and we are assuming that µ 6= 1
2−n ,

we obtain that

hij = 1
n−1H gij .(2.15)

For any given p ∈ Σρ, we suppose now to take orthonormal coordinates centered at p, still de-
noted by θ1, . . . , θn−1. From the Gauss equation (see also [3, Lemma 3.2] for a similar argument),
one can see that the sectional curvatures of (Σρ, gij) at p with the induced metric gij , are given by

RΣ
ijij = Rijij + hiihjj − h2

ij

= 1
n−2

(
Rii + Rjj

)
− 1

(n−1)(n−2)R + 1
(n−1)2 H2

= 2
n−2Rii − 1

(n−1)(n−2)R + 1
(n−1)2 H2

= 2
(n−1)(n−2)H|∇f |+ 2

n−2λ−
1

(n−1)(n−2)R + 1
(n−1)2 H2 ,

for i, j = 1, . . . , n − 1, where in the second equality we made use of the decomposition formula
for the Riemann tensor (1.2), the locally conformally flatness of g and of (2.15). Since all the terms
on the right hand side are constant on Σρ, we obtain that the sectional curvatures of (Σρ, gij) are
constant, which implies that (Mn, g) is locally a warped product metric with fibers of constant
curvature. �

Remark 2.3. Consider the manifold (Mn, g̃) with the conformal metric g̃ = e−
2

n−2 fg. Since the
locally conformally flat property is conformally invariant this is a still locally conformally flat
metric, hence its Cotton tensor is zero. Thus, from equations (2.1) and (2.12) (this latter saying
that the modulus of the gradient of f is constant along any regular level set of f ), it follows that
its Ricci tensor has only two eigenvalues of multiplicities one and (n − 1), which are constant
along the level sets of f . Indeed,

Riceg = Ricg +∇2f + 1
n−2df ⊗ df + 1

n−2

(
∆f − |∇f |2

)
g

=
(

1
n−2 + µ

)
df ⊗ df + 1

n−2

(
∆f − |∇f |2 + (n− 2)λ

)
e

2
n−2 f g̃ .

Then, arguing as in [6] by means of splitting results for manifolds admitting a Codazzi tensor
with only two distinct eigenvalues, we can conclude that (Mn, g̃) is locally a warped product
with (n− 1)–dimensional fibers of constant curvature which are the level sets of f .
By the structure of the conformal deformation this conclusion also holds for the original Rie-
mannian manifold (Mn, g).

It is well known that, if (Mn, g) is a compact locally conformally flat gradient shrinking Ricci
soliton, then it has constant curvature (see [8]). As pointed out to us by the anonymous referee
such a conclusion cannot be extended to quasi–Einstein metrics. Indeed, C. Böhm in [2] has found
Einstein metrics on Sk+1 × Sl for k, l ≥ 2 and k + l ≤ 8 and these induce a quasi–Einstein metric
on Sk+1 with µ = 1

l and with the metric on Sk+1 being conformally flat (see also [10]).
In the complete, noncompact, case one would like to use Theorem 1.1 to have a classification of

LCF quasi–Einstein manifolds (see [3] and [16] for steady and shrinking gradient Ricci solitons,
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respectively). Possibly one has to assume some curvature conditions as the nonnegativity of the
curvature operator or of the Ricci tensor.
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