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Abstract. In this note we show non-degeneracy and uniqueness results for solu-
tions of Toda systems associated to general simple Lie algebras with multiple sin-
gular sources on bounded domains. The argument is based on spectral properties
of Cartan matrices and eigenvalue analysis of linearized Liouville-type problems.
This seems to be the first result for this class of problems and it covers all the Lie
algebras of any rank.
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1. Introduction

Let Ω ⊂ R2 be smooth and bounded and let A = (aij) be the Cartan matrix of a
general simple Lie algebra. In this note we consider the following Toda system with
multiple singular sources in mean field form−∆ui =

n∑
j=1

aijλj
hje

uj∫
Ω
hjeuj

in Ω,

ui = 0 on ∂Ω,

(1.1)

for i = 1, 2, · · · , n, where ∆ is the Laplace operator, λj are nonnegative parameters
and hj = eσj with σj a singular subharmonic function having the form

σi = fi − 4π

mi∑
j=1

α
(i)
j G(x, p

(i)
j ), (1.2)
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with fi subharmonic and continuous in Ω, and {p(i)
1 , · · · , p

(i)
mi} ⊂ Ω and {α(i)

1 , · · · , α
(i)
mi} ⊂

(0,+∞), where {
−∆G(x, y) = δx=y for x ∈ Ω,

G(x, y) = 0 for x ∈ ∂Ω.

Here, δp stands for the Dirac delta function at the point p.

All the simple Lie algebras are classified as

An, Bn, Cn, Dn,

which are called classical Lie algebras and

G2, F4, E6,E7,E8,

which are called exceptional Lie algebras. Here, the subscript indicates the rank
of the Lie algebra. For readers’ convenience we explicitly write down here just the
most known Cartan matrix An related to SU(n+ 1) Toda system which is given by

An =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
...

... · · · ...
0 · · · · · · −1 2 −1
0 · · · · · · 0 −1 2

 (1.3)

and refer for example to the appendix of [27] or [17, 21, 26] for a complete list of
Cartan matrices and further basic Lie theory.

Observe that for the Lie algebra A1 the Cartan matrix is just (aij) = (2) and the
Toda system reduces to the standard Liouville equation−∆u = 2λ

heu∫
Ω
heu

in Ω,

u = 0 on ∂Ω,
(1.4)

which is related to turbulent Euler flows, abelian Chern-Simons theory [34, 35, 37]
or the prescribed Gaussian curvature problem (with conic singularities), see [9, 10,
25, 36], and has been intensively studied.

The Toda system also plays an important role in geometry and mathematical
physics. For example, it appears in the study of holomorphic curves in projec-
tive spaces, Plücker formulas, harmonic maps, W-algebras and it is a model for
non-abelian Chern-Simons theory, see [2, 8, 11, 15, 16, 18, 19, 34, 37].
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For what concerns blow-up analysis, classification issues and existence results for
Toda system we refer to [7, 22, 23, 29, 30, 31] and the references therein.

We are interested here in non-degeneracy and uniqueness of solutions to general
singular Toda systems. Here, by non-degeneracy we mean that the first eigenvalue
of the corresponding linearized problem is strictly positive. Up to know, this topic
has been investigated only for the standard Liouville case (1.4) in various settings
[4, 5, 6, 12, 33]. In our context, by using Alexandrov-Bol inequality and by a quite
delicate eigenvalues analysis of linearized singular Liouville-type problems it was
proven that if λ ≤ 4π (1.4) admits at most one solution which is non-degenerate,
see in particular [5]. We also point out that this is sharp and that uniqueness does
not hold in general if λ > 4π [3, 12]. We will not focus here on the existence of
such solution since this is always granted at least in the so-called coercive regime
λ < 4π where one can just minimize the associated energy functional by means of
Moser-Trudinger-type inequalities (the same being true also for the system case).

On the other hand, it is hard to extend this kind of analysis to the Toda system
and there are basically no results in this direction. The only result we are aware of
is [20] where a very special case with n = 2 is treated by using the sphere covering
inequality. In this note we present a simple strategy to show non-degeneracy and
uniqueness of solutions for Toda systems associated to general simple Lie algebras
with multiple singular sources. We stress we can cover all the Lie algebras of any
rank.

To state our result we first need to distinguish between symmetric and non-symmetric
Lie algebras. The latter are more delicate to handle but we will take advantage of a
symmetric reformulation. More precisely, we will decompose the Cartan matrix A
of a Lie algebra as

A = DAs, (1.5)

where D is a diagonal matrix and As a symmetric matrix. Letting di be the diagonal
entries of the matrix D we will also denote

λsi = diλi, i = 1, . . . , n. (1.6)

For the symmetric Lie algebras An,Dn,E6,E7,E8 we clearly have As = A and
λsi = λi. The decomposition of the non-symmetric Bn,Cn,G2,F4 is postponed to
subsection 3.4.

We next recall that the spectral radius of a square matrix A is

ρ(A) = max
{
|ξ| : ξ is an eigenvalue of A

}
. (1.7)
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Observe that the known non-degeneracy and uniqueness threshold for the standard
Liouville case (1.4) (Lie algebra A1) can be written as

λ ≤ 8π

ρ(A1)
.

We are going to extend the latter formula to any Lie algebra and obtain the follow-
ing.

Theorem 1.1. Let A be the Cartan matrix of a general simple Lie algebra and let
As, λsi be as in (1.5), (1.6). Suppose

λsi ≤
8π

ρ(As)
, i = 1, . . . , n. (1.8)

Then, the Toda system (1.1) admits at most one solution which is non-degenerate.
In particular, the same holds true if

λsi ≤ 2π, i = 1, · · · , n.

The above result holds for more general positive-definite matrices as far as some a
priori estimates for solutions to the system (1.1) are available.

Just to make an example, take now the Lie algebra A2 which has been studied by
many authors. We have ρ(A2) = 3 and thus the threshold is given by

λi ≤
8π

3
, i = 1, 2.

At this point let us comment about the sharpness of our result. Observe that,
contrary to the standard Liouville case (1.4), the threshold in (1.8) is strictly smaller
than the coercivity threshold related to the Moser-Trudinger constant and one may
wonder if it is possible to extend the uniqueness property in all the coercivity regime.
Actually, this is not possible for example for affine Toda systems, in particular sinh-
Gordon equations, see [32], where the authors exhibit multiple solutions below the
coercivity threshold. Moreover, the already mentioned results in [20] (even if valid
just for a special case) suggest the uniqueness threshold in (1.8) might be sharp, at
least in some cases. This remains an interesting open problem.

The idea behind the proof of Theorem 1.1 is first to notice that a solution of the
Toda system (1.1) is a subsolution of the singular Liouville-type equation{

−∆ui − 2Kie
ui = 0 in Ω,

ui = 0 on ∂Ω,
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for i = 1, . . . , n, where

Ki = λi
hi∫

Ω
hieui

,

for which we have a good understanding, in particular concerning eigenvalues of
its linearized problem, see for example [5] or the discussion in the sequel. We will
then exploit the structure of the Toda system to derive some estimates of such
eigenvalues, which are expressed in terms of the spectral radius of the associated
Cartan matrix.

This argument will lead to the proof of non-degeneracy first. Then, the uniqueness
of solutions will follow by standard arguments using the implicit function theorem
and some uniform estimates for solutions to (1.1).

The organization of this paper is as follows. In section 2 we introduce the linearized
problem and collect some useful information and in section 3 we provide the proof
of the non-degeneracy and uniqueness of solutions.

2. The linearized problem

In this section we introduce the linearized problem which will be studied in the next
section when proving non-degeneracy of solutions.

We start by collection some useful results about the eigenvalue analysis of linearized
problems of subsolutions to singular Liouville equations. Although not stated in this
generality, the following Lemmas have been proved in [5].

Lemma 2.1 ([5] Theorem 2.3 and Proposition 3.2). Let K = eσ with σ taking the
form (1.2) and v be a smooth subsolution for{

−∆v −Kev = 0 in Ω,
v = 0 on ∂Ω.

(2.1)

If
∫

Ω
Kev ≤ 4π, then the first eigenvalue ν1 for the linear problem{

−∆φ−Kevφ = νKevφ in Ω,
φ = 0 on ∂Ω,

is strictly positive.

Moreover, if
∫

Ω
Kev ≤ 8π, then the second eigenvalue ν2 is strictly positive.
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Lemma 2.2 ([5] Proposition 3.3). Let K = eσ with σ taking the form (1.2) and v
be a smooth subsolution for (2.1). If

∫
Ω
Kev ≤ 8π and φ solves −∆φ−Kevφ = νKevφ in Ω,

φ = c on ∂Ω,∫
Ω
Kevφ = 0,

for some c ∈ R, then ν is strictly positive.

We next consider the linearized problem of the Toda system−∆ui =
n∑
j=1

aijλj
hje

uj∫
Ω
hjeuj

in Ω,

ui = 0 on ∂Ω,

with i = 1, · · · , n, which reads−∆φ̃i =
n∑
j=1

aijλj
hje

uj∫
Ω
hjeuj

(
φ̃j −

∫
Ω
hje

uj φ̃j∫
Ω
hjeuj

)
in Ω,

φ̃i = 0 on ∂Ω,

for i = 1, · · · , n. Putting

Vj = λj
hje

uj∫
Ω
hjeuj

,

then we have ∫
Ω

Vj = λj,

and the functions

φj = φ̃j −
∫

Ω
hje

uj φ̃j∫
Ω
hjeuj

,

satisfy 
−∆φi =

n∑
j=1

aijVjφj, in Ω,

φi = ci ∈ R, on ∂Ω,∫
Ω
Viφi = 0,

(2.2)

for i = 1, · · · , n.

Let now Hn = H1
0 (Ω) × H1

0 (Ω) · · · × H1
0 (Ω) and let A−1 = (aij) be the inverse

matrix of A. We say that φ = (φ1, φ2, · · · , φn) is a weak solution for (2.2) if φ −
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(c1, c2, · · · , cn) = (φ1, φ2, · · · , φn)− (c1, c2, · · · , cn) ∈ Hn satisfies∫
Ω

[
n∑

i,j=1

aij∇φj · ∇ψi −
n∑
i=1

Viφiψi

]
= 0, ∀ψ ∈ Hn, (2.3)

where ψ = (ψ1, · · · , ψn) and φ1, φ2, · · · , φn satisfy the integral constraints in (2.2).

3. The proof of Theorem 1.1

In this section we derive the main Theorem 1.1, starting from the symmetric Lie
algebras. We divide the proof into three parts, showing first non-degeneracy and
then uniqueness of solutions. We discuss about the spectral radius of Cartan ma-
trices in the third part, proving the last assertion of Theorem 1.1. The discussion
of the non-symmetric case is postponed to the last subsection.

3.1. Non-degeneracy. The proof of the non-degeneracy of solutions is performed
in two steps. We consider here the symmetric case As = A and λsi = λi in (1.5),
(1.6).

Step 1. We start by considering (2.2) with ci = 0 for all i = 1, . . . , n, that is
−∆φi =

n∑
j=1

aijVjφj, in Ω,

φi = 0, on ∂Ω,∫
Ω
Viφi = 0,

(3.1)

for i = 1, · · · , n. We claim that if

λi ≤
4π

ρ(A)
, i = 1, . . . , n,

then, (3.1) admits only the trivial solution.

We prove the claim by contradiction. To avoid repetitions, we work out an argument
which will be then also exploited in Step 2 when treating the general problem
(2.2). Consider a non-trivial weak solution of (2.2), that is Hn 3 (φ1, φ2, · · · , φn)−
(c1, c2, · · · , cn) 6= (0, · · · , 0) satisfying (2.3). Taking

(ψ1, · · · , ψn) = (φ1, φ2, · · · , φn)− (c1, c2, · · · , cn)

as a test function in (2.3) and using also that∫
Ω

Viφi = 0, i = 1 · · · , n,
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we get ∫
Ω

[
n∑

i,j=1

aij∇φj · ∇φi −
n∑
i=1

Viφ
2
i

]
= 0. (3.2)

Observe now that A is a positive-definite symmetric matrix and thus, recalling the
spectral radius ρ(A) defined in (1.7) we clearly have

n∑
i,j=1

∫
Ω

aij∇φj · ∇φi ≥
1

ρ(A)

n∑
i=1

∫
Ω

|∇φi|2

and then, by (3.2) we get

n∑
i=1

[∫
Ω

|∇φi|2 − ρ(A)

∫
Ω

Viφ
2
i

]
≤ 0. (3.3)

This argument clearly works whenever (φ1, φ2, · · · , φn) ∈ Hn is a weak solution of
(3.1). Therefore, for any such solution, (3.3) holds true. Define now

I(i)(φ) :=

∫
Ω

|∇φ|2 − ρ(A)

∫
Ω

Viφ
2. (3.4)

The estimate in (3.3) implies necessarily that

I(i)(φi) ≤ 0 for some i ∈ {1, · · · , n}. (3.5)

This gives an estimate about the sign of the first eigenvalue related to (3.4), that
is (recall ci = 0 in (3.1))

µ̂
(i)
1 = inf

{
J (i) (φ ) : φ ∈ H1

0 (Ω) \ {0}
}
, (3.6)

where

J (i) (φ ) =
I(i) (φ )∫

Ω
Viφ2

.

By (3.5) we derive that

min
i=1,··· ,n

µ̂
(i)
1 ≤ 0.

Hence, without out loss of generality, let us assume that µ̂
(1)
1 ≤ 0 and let Φ be the

corresponding minimizer, which therefore satisfies{
−∆Φ− ρ(A)V1Φ = µ̂

(1)
1 V1Φ in Ω,

Φ = 0 on ∂Ω,
(3.7)

This, jointly with λi ≤
4π

ρ(A)
, will lead to a contradiction.
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Indeed, we first claim that ρ(A) ≥ 2 for a Cartan matrix A associated to any simple
Lie algebra. This will be proved in subsection 3.3.
We then observe that any solution of the Toda system (1.1) satisfies

−∆ui − ρ(A)Kie
ui ≤ −∆ui − 2Kie

ui ≤ 0, i = 1, · · · , n,

and hence ui are smooth subsolutions of{
−∆ui − ρ(A)Kie

ui = 0 in Ω,

ui = 0 on ∂Ω.
(3.8)

for i = 1, · · · , n, where

Ki = λi
hi∫

Ω
hieui

.

Moreover, by our assumption λi ≤
4π

ρ(A)
we have

ρ(A)

∫
Ω

Kie
ui = ρ(A)λi ∈ [0, 4π], i = 1, · · · , n.

Therefore, it follows from Lemma 2.1 that the first eigenvalues ν̂
(i)
1 of the linearized

problems {
−∆φ− ρ(A)Viφ = ν̂(i)Viφ in Ω,

φ = 0 on ∂Ω,

are strictly positive, for i = 1, · · · , n, which is in contradiction to (3.7) with µ̂
(1)
1 ≤ 0.

Step 2. We consider now the general linearized system
−∆φi =

n∑
j=1

aijVjφj, in Ω,

φi = ci ∈ R, on ∂Ω,∫
Ω
Viφi = 0,

for i = 1, · · · , n, with ci non necessarily zero and claim that it admits only the
trivial solution if

λi ≤
8π

ρ(A)
, i = 1, . . . , n.

Indeed, reasoning as in Step 1, we have (3.5) which yields

min
i=1,··· ,n

µ̂
(i)
2 ≤ 0.



10 D. BARTOLUCCI, A. JEVNIKAR, J. JIN, C.S. LIN, S. LIU

where, with the same definition of I(i) and J (i) as above, we let

µ̂
(i)
2 = inf

{
J (i) (φ ) ; φ− ci ∈ H1

0 (Ω),

∫
Ω

Viφ = 0

}
. (3.9)

Again, let us assume that µ̂
(1)
2 ≤ 0 and let Φ be the corresponding minimizer

satisfying  −∆Φ− ρ(A)V1Φ = µ̂
(1)
2 V1Φ in Ω

Φ = c1 on ∂Ω∫
Ω
V1Φ = 0.

Finally, as in Step 1 this is in contradiction to Lemma 2.2 which states that µ̂
(i)
2 > 0

for any i = 1, · · · , n since ui are smooth subsolutions of (3.8) with

ρ(A)

∫
Ω

Kie
ui = ρ(A)λi ∈ [0, 8π], i = 1, · · · , n,

by our assumption. Thus, we are done.

3.2. Uniqueness. We finally prove here the solutions to the Toda system (1.1) are
unique for

λi ≤
8π

ρ(A)
, i = 1, . . . , n,

still in the symmetric case As = A and λsi = λi in (1.5), (1.6).

Once we have the non-degeneracy, uniqueness of solutions follows by standard argu-
ments so we will be sketchy, referring for example to [5] for further details. Indeed,
at this point we know that the linearized operator for (1.1) has strictly positive first
eigenvalue for λi ≤ 8π

ρ(A)
. By standard bifurcation theory, for any λi small enough,

there exists a unique solution, bifurcating from the trivial solution (ui, λi) = (0, 0),
i = 1, · · · , n. Since the linearized operator has strictly positive first eigenvalue we
can apply the implicit function theorem to extend uniquely this branch of solutions
for any λi ≤ 8π

ρ(A)
.

Suppose for a moment the solutions of (1.1) are uniformly bounded for λi ≤ 8π
ρ(A)

.

Now, if by contradiction there would exist a second non-bending branch of solutions,
then the uniform estimates of such solutions would force the latter branch to end
up into the trivial solution (ui, λi) = (0, 0), i = 1, · · · , n, which is not possible.

We are thus left with the a priori estimates for solutions to (1.1) for λi ≤ 8π
ρ(A)

. Since

the rank 1 case is fully understood, let us consider higher rank Lie algebras. We
remark that

λi ≤
8π

ρ(A)
< 4π,
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i.e. we are in a subcritical (coercive) regime. The above estimate is discussed in the
next subsection 3.3. Now, the uniform bound for solutions to (1.1) inside Ω has been
derived in [30] for An,Bn,Cn and G2, while D4,F4 has been discussed in [24] for
some special cases. However, as far as we are concerned just with uniform estimates
in the subcritical regime and neglect the fine blow-up analysis, [24] can be extended
to the general case using the classification result for general Toda systems in [27].
The same consideration holds for E-type Lie algebras.

Once we have uniform estimates inside Ω, the boundary blow-up is excluded exactly
as in [1, 28]. This concludes the proof.

3.3. Spectral radius of Cartan matrices. Finally, we discuss here ρ(A) in the
particular case where A is a Cartan matrix associated to a symmetric simple Lie
algebra.

The eigenvalues of A are closely related to Chebyshev polynomials and have been
explicitly computed in [14]. We will focus here on the An case. The approach for
other classical Lie algebras is similar, while the exceptional Lie algebras are finitely
many and everything can be computed explicitly, see [14] for further details about
eigenvalue analysis. The eigenvalues ξi of An are given by the formula

ξi = 4 sin2

(
iπ

2(n+ 1)

)
, i = 1, · · · , n.

It is then easy to see that

ρ(An) ∈ [2, 4],

for any n ≥ 2. This yields the last assertion of Theorem 1.1 and completes its proof.

3.4. The non-symmetric case. We show here the main steps to carry out the
argument for non-symmetric Lie algebras A, that are

Bn =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
...

... · · · ...
0 · · · · · · −1 2 −2
0 · · · · · · 0 −1 2

 , Cn =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
...

... · · · ...
0 · · · · · · −1 2 −1
0 · · · · · · 0 −2 2

 ,

G2 =

(
2 −1
−3 2

)
, F4 =


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

 .
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We start by considering the following symmetric decomposition:

A = DAs,

where D is a diagonal matrix with entries di and As is a symmetric matrix. We
have, respectively

di =

{
1, i = n,

2, i = 1, · · · , n− 1,
Bs
n =



1 −1
2

0 0 · · · 0
−1

2
1 −1

2
0 · · · 0

0 −1
2

1 −1
2
· · · 0

...
...

...
... · · · ...

0 · · · · · · −1
2

1 −1
0 · · · · · · 0 −1 2

 ,

di =

{
1, i = 1, · · · , n− 1,

2, i = n,
Cs
n =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
...

... · · · ...
0 · · · · · · −1 2 −1
0 · · · · · · 0 −1 1

 ,

di =

{
1, i = 1,

3, i = 2,
Gs

2 =

(
2 −1
−1 2

3

)
,

di =

{
1, i = 3, 4,

2, i = 1, 2,
Fs

4 =


1 −1

2
0 0

−1
2

1 −1 0
0 −1 2 −1
0 0 −1 2

 .

We then also let

λsi = diλi, i = 1, . . . , n.

Now, letting

As = (asij), divi = ui, i = 1, . . . , n,

the system (1.1) can be rewritten as−∆vi =
n∑
j=1

asijλj
hje

djvj∫
Ω
hjedjvj

in Ω,

vi = 0 on ∂Ω,
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for which the linearization leads to a problem similar to (2.2), that is
−∆φi =

n∑
j=1

asijV
s
j φj, in Ω,

φi = ci ∈ R, on ∂Ω,∫
Ω
Viφi = 0,

for i = 1, · · · , n, where V s
j takes now the form

V s
j = λsj

hje
uj∫

Ω
hjeuj

.

Since As is a symmetric matrix we can then run the argument as in the previous
subsections by using the spectral radius ρ(As) and replacing λj by λsj . As for the
symmetric case, to complete the proof we need to show that

ρ(As) ∈ [2, 4],

for any n ≥ 2.

Case 1. We consider As = Bs
n. Let

Xn = |λEn −Bs
n|

=

∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 1
2

0 0 · · · 0
1
2

λ− 1 1
2

0 · · · 0
0 1

2
λ− 1 1

2
· · · 0

...
...

...
... · · · ...

0 · · · · · · 1
2

λ− 1 1
0 · · · · · · 0 1 λ− 2

∣∣∣∣∣∣∣∣∣∣∣∣
.

We have

Xn = (λ− 1)Xn−1 −
1

4
Xn−2.

Take λ ≥ 2. By a straightforward computation we have

Xn − aXn−1 = (λ− 1− a) (Xn−1 − aXn−2) ,

with

a =
λ− 1−

√
(λ− 1)2 − 1

2
> 0.

Thus, we obtain

Xn = aXn−1 + (λ− 1− a)n−2 (X2 − aX1) .

Now, for λ ≥ 3 we have
X2 − aX1 > 0

and then, by induction we deduce Xn > 0 for any n ≥ 2. Therefore, ρ(Bs
n) < 3.



14 D. BARTOLUCCI, A. JEVNIKAR, J. JIN, C.S. LIN, S. LIU

On the other hand, for λ = 2 we have

X2 − aX1 < 0

and then, again by induction we can get Xn < 0 for any n ≥ 2 and hence ρ(Bs
n) > 2.

Case 2. We consider now As = Cs
n. Let

Xn = |λEn −Cs
n|

=

∣∣∣∣∣∣∣∣∣∣∣∣

λ− 2 1 0 0 · · · 0
1 λ− 2 1 0 · · · 0
0 1 λ− 2 1 · · · 0
...

...
...

... · · · ...
0 · · · · · · 1 λ− 2 1
0 · · · · · · 0 1 λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Take λ ≥ 4. A straightforward computation yields

Xn − aXn−1 = (λ− 2− a) (Xn−1 − aXn−2) ,

with

a =
λ− 2−

√
λ2 − 4λ

2
> 0.

Thus, we obtain

Xn = aXn−1 + (λ− 2− a)n−2 (X2 − aX1) .

Similarly as before, one can prove that ρ(Cs
n) ≤ 4 for any n ≥ 2.

On the other hand, for λ = 2, looking at the principal minors it is easy to see that
the matrix (λEn − Cs

n) is not positive-definite. Therefore, we conclude ρ(Cs
n) > 2

for any n ≥ 2.

Case 3. Finally, the spectral radius of Gs
2 and Fs

4 can be computed explicitly.
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2008.

[35] G. Tarantello, Analytical, geometrical and topological aspects of a class of mean field equations
on surfaces, Discrete Contin. Dyn. Syst., 28 (3) (2010), 931-973.

[36] M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans.
Amer. Math. Soc. 324 (1991), 793-821.

[37] Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathe-
matics, Springer-Verlag, New York, 2001.

Daniele Bartolucci, Department of Mathematics, University of Rome ”Tor Vergata”,
Via della Ricerca Scientifica 1, 00133 Roma, Italy.
Email address: bartoluc@mat.uniroma2.it

Aleks Jevnikar, Department of Mathematics, Computer Science and Physics, Uni-
versity of Udine, Via delle Scienze 206, 33100 Udine, Italy.
Email address: aleks.jevnikar@uniud.it

Jiaming Jin, School of Mathematics, Hunan University, Changsha, Hunan 410082,
PR China.
Email address: jinjiaminghu@163.com

Chang-Shou Lin, Taida Institute for Mathematical Sciences and Center for Ad-
vanced Study in Theoretical Sciences, National Taiwan University, Taipei, Taiwan.
Email address: cslin@math.ntu.edu.tw



UNIQUENESS FOR TODA SYSTEMS 17

Senli Liu, School of Mathematics and Statistics, Central South University, Chang-
sha, Hunan 410083, PR China.
Email address: mathliusl@csu.edu.cn


