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Abstract We deal with a wide class of nonlinear integro-differential problems in the
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1 Introduction

We deal with a very general class of nonlinear nonlocal operators, which include, as a
particular case, the fractional subLaplacian. Precisely, let {2 be a bounded domain in the
Heisenberg-Weyl group H", and let g be in the fractional Sobolev space W#P? ("), for
any s € (0, 1) and any p > 1. We shall prove general Harnack inequalities for the weak
solutions to the following class of nonlinear integro-differential problems,

Lu=f in §2,

(1.1)
u=g in H” \ 2,

where f = f(-,u) belongs to L (H™) uniformly in (2, and L is the operator defined by

[u(€) — u(m) P2 (w(€) — u(n))

n do(n=to&)@tsp

Lu(§) = P. V./ dn, e 0", (1.2)
with d, being a homogeneous norm on H", and @ = 2n + 2 the usual homogeneous
dimension of H”. The symbol P.V. in the display above stands for “in the principal value
sense”. We immediately refer the reader to Section 2 below for the precise definitions of
the involved quantities and related properties, as well as for further observations in order
to relax some of the assumptions listed in the present section.

Integral-differential operators in the form as in (1.2) do arise as a generalization of
the fractional subLaplacian on the Heisenberg group, naturally defined in the fractional
Sobolev space H*(H") for any s € (0, 1) as follows

(fAwa@r:cmﬁuzv/ _ule) —ulm)_,

_dp,  em (1.3)
| o g[

where | - |g= is the standard homogeneous norm of H”, and C(n, s) is a positive constant
which depends only on n and s. In this fashion, the prototype of the wide class of problems
in (1.1) reads as follows,

. .
(—Apn)’u=0 in {2, (1.4)
u=gq in H” \ 02,
In the last decades, a great attention has been focused on the study of problems involving
fractional equations, both from a pure mathematical point of view and for concrete
applications since they naturally arise in many different contexts. Despite its relatively
short history, the literature is really too wide to attempt any comprehensive treatment in
a single paper; we refer for instance to the paper [19] for an elementary introduction to
fractional Sobolev spaces and for a quite extensive (but still far from exhaustive) list of
related references. For what concerns specifically the family of equations in (1.1) and the
corresponding energy functionals, both in the nonlocal and in the local framework, the
link with several concrete models arises from many different contexts in Probability (e.g.,
in non-Markovian coupling for Brownian motions [5]), in Physics (e. g., in group theory
in quantum mechanics [46], in ferromagnetic trajectories [34], in image segmentation
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models [13], in phase transition problems described by Ising models [38], and many
others), where the analysis in sub-Riemannian geometry revealed to be decisive. In this
respect, as proven in the literature, Harnack-type inequalities constitute a fundamental
tool of investigation.

Let us focus now merely on regularity and related results in the fractional panorama
in the Heisenberg group. It is firstly worth stressing that one can find various definitions of
the involved operator and related extremely different approaches. In the linear case when
p = 2, an explicit integral definition can be found in the relevant paper [41], where several
Hardy inequalities for the conformally invariant fractional powers of the sublaplacian are
proven, and [11] for related Hardy and uncertainty inequalities on general stratified Lie
groups involving fractional powers of the Laplacian; we also refer to [2], where, amongst
other important results, Morrey and Sobolev-type embeddings are derived for fractional
order Sobolev spaces. Still in the linear case when p = 2, very relevant results have been
obtained based on the construction of fractional operators via a Dirichlet-to-Neumann
map associated to degenerate elliptic equations, as firstly seen for the Euclidean frame-
work in the celebrated Caffarelli-Silvestre s-harmonic extension. For this, we would like
to mention the very general approach in [23]; the Liouville-type theorem in [12]; the
Harnack and Holder results in Carnot groups in [20]; the connection with the fractional
perimeters of sets in Carnot group in [21].

For what concerns the more general situation as in (1.2) when a p-growth exponent is
considered, in our knowledge, a regularity theory is very far from be complete; nonethe-
less, very interesting estimates have been recently proven, as, e.g., in [26,45], and in our
recent paper [33] where local boundedness and Holder estimates have been proven for
the weak solutions to (1.1).

In order to state our main results, we need to introduce a special quantity which
plays a central role when dealing with nonlocal operators. Namely, we define the nonlocal
tail Tail(u; &y, R) of a function u centered in & € H" of radius R > 0,

1

Tail(u; §o, R) := <R5p/ u(m) P~ ™" o ol dﬁ) : (1.5)
]Hn’\BR(fo)

We immediately notice that the quantity above is finite whenever v € L%(TH"), with
q > p — 1. The nonlocal tail in (1.5) can be seen as the natural generalization in the
Heisenberg setting of that originally introduced in [18,17], and subsequently revealed to
be decisive in the analysis of many different nonlocal problems when a fine quantitative
control of the long-range interactions is needed; see for instance the subsequent results
proven in [30,28,31,29] and the references therein.

Our main result reads as follows,

Theorem 1 (Nonlocal Harnack inequality) For any s € (0,1) and any p € (1,00), let
u € WP(H™) be a weak solution to (1.1) such that w > 0 in Br = Bgr(&) C §2. Then,
for any B, such that Bg,. C Bpg, it holds

1

1

. r % . 5P -1
ngpu < 61§fu+c(ﬁ) Tail(u—; &, R) + er>- 1| fI7< 5, » (1.6)

where Tail(+) is defined in (1.5), u_ := max{—wu, 0} is the negative part of the function u,
and ¢ depends only on n, s, p, and the structural constant A defined in (2.2).
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Notice that in the case when u is nonnegative in the whole H", the formulation in (1.6)
does reduce to that of the classical Harnack inequality.

In the particular situation when u is merely a weak supersolution to Problem (1.1),
still in analogy with the classical case when s = 1, a weak Harnack inequality can be
proven, as stated in the following

Theorem 2 (Nonlocal weak Harnack inequality) For any s € (0,1) and any p € (1, 00),
let w e WP(H") be a weak supersolution to (1.1) such that w > 0 in Br C 2. Then, for
any B, such that Bg, C Bp, it holds

Sp

<]Z utd§> < cinfu+e <1> . Tail(u_; &, R) + ex, (1.7)
B, B: R

3r

2

where

_Qsp % -1 .
rH@—sm ||f||z<§g(32) fort < —Qélisp) if sp <@,
Qs—2)

ot ”f”z%oo(BR) for anys—Q/p<€<sandt<@ if sp> Q,

Tail(-) is defined in (1.5), and u_ := max{—u,0} is the negative part of the function u.
The constant ¢ depends only on n, s, p, and the structural constant A defined in (2.2).

As expected, a nonlocal tail contribution should be still taken into account, and,
again, such a contribution in (1.7) will disappear in the case when the function u is
nonnegative in the whole H".

It is now worth noticing that the main difficulty into the treatment of the equation
n (1.1) lies in the very definition of the leading operator £ defined in (1.2), which
combines the typical issues given by its nonlocal feature together with the ones given by
its monlinear growth behaviour and with those naturally arising from the non-Euclidean
geometrical structure.

For this, some very important tools recently introduced in the nonlocal theory and
successfully applied in the fractional sublaplacian on the Heisenberg group, as the afore-
mentioned Caffarelli-Silvestre s-harmonic extension, and the approach via Fourier rep-
resentation, as well as other successful tools, like for instance the commutator estimates
in [43], the pseudo-differential commutator compactness in [36], and many others, seem
not to be adaptable to the framework we are dealing with. However, even in such a
nonlinear non-Euclidean framework, we will be able to extend part of the strategy devel-
oped in [17] where nonlocal Harnack inequalities have been proven for the homogeneous
version of the analogue of problem (1.1) in the Euclidean framework. Further efforts are
also needed due to the presence of the non homogeneous datum f, as well as in order to
deal with the limit case when sp = @), both of them are novelty even with respect to the
results proven in the Euclidean framework in [17].

Let now focus on the linear case when p = 2 when the datum f in the right-hand side
of the equation in (1.1) is zero. It is worth mentioning that the necessity of the presence
of the tail term in the Harnack inequalities stated above is a very recent achievement.
Indeed, during the last decades, the validity of the classical Harnack inequality without
extra positivity assumptions on the solutions has been an open problem in the nonlocal
setting, and more in general for integro-differential operators of the form in (1.1) even
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in the Euclidean framework. An answer has been eventually given by Kassmann in his
breakthrough papers [24,25], where a simple counter-example is provided in order to
show that positivity cannot be dropped nor relaxed even in the most simple case when £
does coincide with the fractional Laplacian operator (—A)*; see Theorem 1.2 in [24]. The
same author proposed a new formulation of the Harnack inequality without requiring
the additional positivity on solutions by adding an extra term, basically a natural tail-
type contribution on the right-hand side, in accordance with the result presented here;
see Theorem 3.1 in [25], where the robustness of the estimates as s goes to 1 is also
presented. In the same spirit, we also investigate the special linear case in which £ does
reduce to the pure fractional subLaplacian, namely problem (1.4). Firstly, as expected,
we prove that the fractional subLaplacian (—Agn)® effectively converges to the standard
subLaplacian —Apn» as s goes to 1, as stated in Proposition 1 below. For this, we shall
carefully estimate the weighted second order integral form of the fractional subLaplacian
with the aim of a suitable Mac-Laurin-type expansion in the Heisenberg group.

Proposition 1 For any v € C3°(H™) the following statement holds true
lim (—A]Hn)su = _A]Hnu, (18)

s—1—
where (—Apn)?® is defined by (1.3), and Apn is the classical subLaplacian in H™.

Notice that a proof of the result above for fractional subLaplacian on Carnot groups
can be found in the relevant paper [21], via heat kernel characterization.

Secondly, we revisit the proofs of Theorems 1-2 by taking care of the dependance of
the differentiability exponent s in all the estimates, so that we are eventually able to
obtain the results below in clear accordance with the analogous ones in the Euclidean
framework [25], by proving that the nonlocal tail term will vanish when s goes to 1, in
turn recovering the classical Harnack formulation.

Theorem 3 For any s € (0,1) let w € H*(H™) be a weak solution to (1.4) such that u > 0
in Br(&) C 2. Then, the following estimate holds true for any B, such that Bg, C Bg,

2s

supu < cinfu+ c(1—s) (1) Tail(u_; &, R), (1.9)
B, B, R

where Tail(+) is defined in (1.5) by taking p = 2 there, u_ := max{—u, 0} is the negative

part of the function u, and ¢ = ¢(n,s).

Theorem 4 For any s € (0,1) let w € H*(H") be a weak supersolution to (1.4), such
that uw > 0 in Br(&) C 2. Then, the following estimate holds true for any B, such that
B, C Bg, and any t < Q/(Q — 2s),

% 2s
<][ ut dE) <cinfu+e(l-—s) (i) Tail(u—_; &, R), (1.10)
B, B% R

where Tail(+) is defined in (1.5) by taking p = 2 there, u_ := max{—u, 0} is the negative
part of the function u, and ¢ = ¢(n,s).

Further developments. Starting from the results proven in the present paper, several
questions naturally arise.
e Firstly, it is worth remarking that we treat general weak solutions, namely by
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truncation and dealing with the resulting error term as a right hand-side, in the same
flavour of the papers [17,18,29], in the spirit of De Giorgi-Nash-Moser. However, one
could approach the same family of problems by focusing solely to bounded viscosity
solutions in the spirit of Krylov-Safonov.

e Still in clear accordance with the FEuclidean counterpart, one would expect self-
improving properties of the solutions to (1.1). For this, one should extend the recent
nonlocal Gehring-type theorems proven in [30,43,44].

e One could expect nonlocal Harnack inequalities and other regularity results for
the solutions to a strictly related class of problems; that is, by adding in (1.1) a sec-
ond integral-differential operators, of differentiability exponent ¢ > s and summability
growth g > 1, controlled by the zero set of a modulating coefficient: the so-called nonlocal
double phase problem, in the same spirit of the Euclidean case treated in [16,7], starting
from the pioneering results in the local case, when s = 1, by Colombo and Mingione; see
for instance [14,15] and the references therein.

In the same spirit, it could be interesting to understand if our methods do apply in
non-Fuclidean setting for even more general nonlocal nonstandard growth equations, as
the one recently considered in [10,40].

e Recently, mean value properties for solutions to fractional equations have been of
great interest. It could be interesting to generalize such an investigation in a fractional
non-Euclidean framework as the one considered in the present paper; we refer to the
relevant results in [8,9] and the references therein.

e Moreover, to our knowledge, nothing is known about Harnack inequalities and more
in general about the regularity for solutions to parabolic nonlocal integro-differential
equations involving the nonlinear operators in (1.2).

e Finally, by starting from the estimates proven in the present paper, in [39] regularity
results up to the boundary have been proven for very general boundary data, and for the
related obstacle problem. As expected, a tail contribution naturally appears in those es-
timates in order to control the nonlocal contributions coming from far. Many subsequent
related problems are still open, and not for free because of the possible degeneracy and
singularity of £, as for instance boundary Harnack inequalities or Carleson estimates for
the homogeneous case. The boundary Holder estimates and the comparison results in
the aforementioned paper [39] together with the Harnack estimates presented here could
be a starting point for such a delicate investigation. Still for what concerns boundary
Harnack inequalities, we also refer the reader to [42] for general strategy for equations
with possibly unbounded right hand-side data.

To summarize. The results in the present paper seem to be the first ones concerning
Harnack estimates for nonlinear nonlocal equations in the Heisenberg group. We prove
that one can extend to the Heisenberg setting the strategy successfully applied in the
fractional Euclidean case ([17,18,30]), by attacking even a more general equation which
applies to non-zero data and also to the case when sp > . From another point of
view, our results can be seen as the (nonlinear) nonlocal extension of the Heisenberg
counterpart of the celebrated classical Harnack inequality ([1,6,32]). Moreover, since we
derive all our results for a general class of nonlinear integro-differential operators, via
our approach by taking into account all the nonlocal tail contributions in a precise way,
we obtain alternative proofs that are new even in the by-now classical case of the pure
fractional sublaplacian operator (—Ag=n)?; also, in such a case, we are able to prove the
robustness of the Harnack estimates with respect to s in the limit as s goes to 1.
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We would guess that our estimates will be important in a forthcoming nonlinear
nonlocal theory in the Heisenberg group.

The paper is organized as follows. In Section 2 below we set up notation, and we
briefly recall our underlying geometrical structure, by also recalling the involved func-
tional spaces, and providing a few remarks on the assumptions on the data. A few classical
technical tools are also stated. In Section 3 we present very recent results for fractional
equations in the Heisenberg group. In Section 4, we firstly carry out a suitable positivity
expansion and some tail estimate. Then we complete the proof of the Harnack inequality
with tail, and the weak Harnack inequality with tail, respectively. Section 5 is devoted
to the asymptotic of the fractional subLaplacian operator, and the robustness of the
Harnack inequalities in the linear case.

2 Preliminaries

In this section we state the general assumptions on the quantity we are dealing with.
We keep these assumptions throughout the paper. Firstly, notice that we will follow the
usual convention of denoting by ¢ a general positive constant which will not necessarily
be the same at different occurrences and which can also change from line to line. For the
sake of readability, dependencies of the constants will be often omitted within the chains
of estimates, therefore stated after the estimate. Relevant dependencies on parameters
will be emphasized by using parentheses.

2.1 The Heisenberg-Weyl group

We start by very briefly recalling a few well-known facts about the Heisenberg group; see
for instance [6] for a more exhaustive treatment.

We denote points in R?"*! by € := (2,t) = (¥1, -+ -, Tn, Y15 - - -, Yn, 1)-
For any &,&' € R?"*!, consider the group multiplication o defined by

ol = (a4, y+y, t+t' +2(y,2") —2(z,y))

n
1=1

For any A > 0, the automorphism group (®)x>0 on R?"*! is defined by & +— &, (€) :=
(Az, Ay, A\’t), and, as customary, Q = 2n + 2 is the homogeneous dimension of R*"+1
with respect to (©x)x>0, so that the Heisenberg-Weyl group H" := (R?"*! o0, ®,) is a
homogeneous Lie group.

The Jacobian base of the Heisenberg Lie algebra h™ of H™ is given by

Xji=0qy; +2y;0y, Xpyj:=0,, —2x;0;, 1<j<n, T:=0.

Since [X;, X,4;] = —40, for every 1 < j < n, it plainly follows that

rank <Lie{X1, oo X, THO, 0)> = 2n+1,
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so that H™ is a Carnot group with the following stratification of the algebra
h" = span{X;y,..., Xon} ® span{T}.
We have now the following

Definition 1 A homogeneous norm on H" is a continuous function (with respect to the
Euclidean topology ) d, : H™ — [0, +00) such that:

(1) do(Pr(&)) = Ado(&), for every A > 0 and every £ € H™;

(i) do(&) =0 if and only if £ = 0.

A homogeneous norm d,, is symmetric if do(§71) = dy(€), for all £ € H™,

If d, is a homogeneous norm on H", then the function ¥ defined by

W(E,n) = do(n~" 0 &)

is a pseudometric on H™. We recall that the standard homogeneous norm |- |g» on H™ is

given by
1€ [pn = (|z|4 + tQ)Z . VE = (z,t) € R2HL (2.1)

For any fixed & € H™ and R > 0 we denote with Br(&) the ball with center & and
radius R defined by

Br(&) = {g CH": |67 o élpn < R} .

It is now worth noticing that for any homogeneous norm d, on H™ one can prove the
existence of a positive constant A such that

AN < do(€) < Alélun,  VEE€H™ (2.2)

As a consequence, in most of the estimates in the forthcoming proofs, one can simply
take into account the pure homogeneous norm defined in (2.1) with no modifications at
all.

In the analysis of the special case when the integro-differential operator (1.2) does
reduce to the standard fractional subLaplacian, we will need to obtain fine estimates by
taking into account the differentiability exponent s near 1, and thus several modifications
with respect to the proof of similar estimates in the Euclidean framework are needed. In
particular, in order to obtain the desired characterization of the asymptotic behaviour
as s goes to 1 of the fractional subLaplacian, and consequently proving the consistency
of our Harnack estimates with tail in the limit (see Section 5), we are able to overcome
some difficulties coming from the non-Euclidean structure considered here by making use
of a suitable MacLaurin-type expansion.

Definition 2 Let u € C°°(H";R).Then, for any m € NU {0} there exists a unique poly-
nomial P being @\-homogeneous of degree at most m such that

(X1,..., X2, T)PP(0) = (X1,..., Xo,,T)u(0)

for any multi-index 8 = (81, ..., Bang1) with [Blan = B1 4 -+ + Ban + 2P2nr1 < m. We
say that P := P, (u,0)(&) is “the MacLaurin polynomial of @y-degree m associated to

2

u-.
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In the case of the Heisenberg group one can explicitly write the MacLaurin polynomial
of @y-degree 2; we have

1 x
~(z, D5iu(0) - z),

Py(u,0)(x1, ..., T2, t) = w(0) + Vinu(0) - z + du(0) - t + 2(

where the subgradient Vgnu is given by Vygau() := (Xlu(f), . ,Xgnu(f)), and D%’i
is the symmetrized horizontal Hessian matrix; that is,

DEiu©) = (5 (X006 + X,%0() ) (23)

Definition 3 Let v € C*®(H™;R), & € H", and m € N U {0}. Let us consider the
MacLaurin polynomial Py, (u (50 0+),0) of the function £ — u(&p o &) The polynomial

Pm(u,«fo)(«f) = Pm(u(é-O © ')a 0)(561 © 6))
is the Taylor polynomial of H™-degree m centered at &, associated to u.
One can prove the following

Proposition 2 (see for instance [6, Corollary 20.3.5]). For every u € C™H1(H"; R), & €
H" and m € NU {0}, we have that

u(§) = P (u,£0)(€) + o(€5 " o E[H).

2.2 The fractional framework

We now introduce the natural fractional framework; we point out that our setup is in
align with Section 2 in [33].
Let p > 1 and s € (0, 1), the Gagliardo seminorm of a measurable function v : H* — R

is given by )
P P
Ws p = (/ / ) Q-‘r)s|p dfd?’]) 5 (24)
nJan |77 o &g

and the fractional Sobolev space W*P(IH") given by
WS,p(]Hn) = {u c Lp(]Hn) : [U]Ws,p(]Hn) < +OO}, (25)
is equipped with the natural norm

lullwsany = (Il + [lfes) " Vo€ WoP(HP). (2.6)

Similarly, given a domain (2 C ", the fractional Sobolev space W*?({2) is given by

WeP(02) = u e LP(02) : (/Q Mdg@) "< 4o (2.7)

2 [np~tog|Gtr
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endowed with the norm

u(€) — u(n)l? ’

lallwesgay = | Il + / [l Zul)” qeqn) . vuewe o). (@)
R PO g o o g

We denote by W (£2) the closure of C§°(£2) in WP (H").

We conclude this section by recalling the natural definition of weak solutions to the
class of problem we are deal with; that is,

Lu=f 2 cH”,
u=g H™ N 02,

(2.9)

where the datum f = f(-,u) € LS (H") uniformly in {2, the nonlocal boundary datum g
belongs to W*P(H"), and the leading operator £ is an integro-differential operator of

differentiability exponent s € (0, 1) and summability exponent p > 1 given by

[u(€) — w(n)P~>(w(§) — uln)
£u(§) =P V/n do(n*1 og()QJrSp ) dn, £ e H,

with d, being an homogeneous norm according to Definition 1.
For any g € W*P(IH"), consider the classes of functions

Kﬂny{vewmmmﬂ:@miemﬁwnﬁ,

g

and
Kyg(2) :=KI(2)nK; (2)= {v eWP(H"):v—g € Wos’p(.Q)}.
We have the following

Definition 4 A function u € K (£2) (respectively, KF (£2)) is a weak subsolution (respec-
tively, supersolution) to (2.9) if

[u(€) — u(n) P> (u(€) — u(n)) (P (E) —¥(n))
/n /n ORI dédn

< Guresp) [ fleu(e)ule,

for any nonnegative ¢ € W5*(£2).
A function u is a weak solution to problem (2.9) if it is both a weak sub- and supersolution.

Remark 1 The requirement on the boundary datum g to be in the whole W*?(H") can
be weakened by assuming a local fractional differentiability, namely g € W ”(£2), in
addition to the boundedness of its nonlocal tail; i. e., Tail(g;&p, R) < oo, for some
& € H" and some R > 0. This is not restrictive, and it does not bring modifications
in the rest of the paper. For further details on the related “Tail space”, we refer the

interested reader to papers [28,29].
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2.3 Classical technical tools

As in the classical variational approach to local Harnack estimates, the following well-
known iteration lemmata are needed.

Lemma 1 Let § > 0 and let {A;}jen be a sequence of real positive numbers such that
Ajp < cobjA;JrB with ¢g > 0 and b > 1.

1 1 .
If Ag < ¢, °b 3%, then we have A; < b~ 5 Ay, which in particular yields lim A; = 0.

J—0o0

Lemma 2 Let g = g(t) be a nonnegative bounded function defined for 0 < Ty < t < T7.
Suppose that for Ty <t < 7 <Ty we have

g(t) < er(r —t)7% + e2 + Cg(7),

where ¢1,¢2,0 and ( < 1 are nonnegative constant. Then, there exists a constant c
depending only on 6 and (, such that for every p, R, Ty < p < R < T}, we have

g(p) < e(er(R=p) "+ c2).

3 Some recent results on fractional operators in the Heisenberg group

Similarly to what happens in the Euclidean case, a fractional Sobolev embedding can be
proved in the non-Euclidean setting of the Heisenberg group. Indeed, the following result
holds true,

Theorem 5 Let p > 1 and s € (0,1) such that sp < Q. For any measurable compactly
supported function u : H® — R there exists a positive constant ¢ = ¢(n,p, s) such that

ol g0y < el

where p* 1= Q?’;p

1s the critical Sobolev exponent.

For the proof of the previous statement we refer to Theorem 2.5 in [26], where the
authors extend the same strategy used in [19,37] in order to prove the fractional Sobolev
embedding in the Euclidean setting.

Before proving the weak Harnack inequality, namely Theorem 2, we also need to recall

a boundedness estimate and a Caccioppoli-type one for the weak sub- and super-solution
to (1.1).

1) and p € (1,50),

Theorem 6 (Local boundedness) [Theorem 1.1 in [33]]. Let s € (0
= B, (&) C 2. Then the

let w € WoP(H") be a weak subsolution to (1.1), and let B,
following estimate holds true, for any 6 € (0,1],

B =

sup u < 0 Tail(uy;&,r/2) + 6% <]Z uﬁdf) , (3.1)
B

B,z

where Tail(uy; o, 7/2) is defined in (1.5), uy := max{u, 0} is the positive part of the

function u, v = (p;12)Q, and the constant ¢ depends only on n,p,s, || f|r=s,) and the

structural constant A defined in (2.2).




12 Giampiero Palatucci, Mirco Piccinini

Theorem 7 (Caccioppoli estimates with tail) [Theorem 1.3 in [33]]. Let p > 1, ¢ € (1,p),
d >0 and let u € WP(H") be a weak supersolution to problem (1.1) such that u > 0 in
Br(&) C £2. Then, for any B, = B,(&) C Br(&) and any nonnegative ¢ € C5°(By),
the following estimate holds true

/ / " 0 €152 () () — w(n)é(n)|P dédn
B, J B,

: “/BT /B 7t o €l 2™ (max {w(©), win }) 16) - oG decdy (32)

+ c< sup / I~ o &|g? P dn + dl_pR_s”[Taﬂ(u_;fO,R)]p_1>
H"» B,

£€supp ¢

x / W ()67 (€) A€ + cd 19| f | e 30
B,

p—q
p

where w := (u+d) 7 , and the constant c depends only on n, p, q, |||l L= (suppg) and
the structural constant A defined in (2.2).

4 Proofs of the Harnack estimates with tail

For the sake of readability, from now on we adopt the following notation,

dv :=do(n~ ' o £)"975P dedn. (4.1)

4.1 Expansion of positivity

In this section we prove a careful estimate of the weak supersolutions to (1.1), by general-
izing the original strategy applied in the local framework as well as that in the fractional
Euclidean one. Clearly, we have to take into account the needed modifications to handle
the difficulties given in the fractional Heisenberg framework; also, the presence of the
nonhomogeneous datum f would require further care when some iterative argument will

be called.

Lemma 3 Let with s € (0,1) and p € (1,00), and let u € WP(H") be a weak supersolu-
tion to problem (1.1) such that w> 0 in Br = Br(&) C 2. Let k > 0, and suppose that
there exists o € (0,1] such that

‘BGT N {u > kH > 0| Ber|, (4.2)

for somer > 0 such that Bg, C Br. Then there exists a constant ¢ = E(n,p, 8, | fllzee(BR)> A)
such that

1 T ¢
BerNdu<20k—=(2)" Tail(u_:6,R) S| < —E—_|Bq, 43
: {u_ 5 (7)) mitse >} A s e

holds for all 6 € (0,1/4), where Tail(-) is defined in (1.5).
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Proof. We firstly notice that with no loss of generality one can suppose Tail(u—; &y, R) >0,
otherwise (4.3) plainly follows from (4.2) by choosing the constant ¢ large enough.
Take a smooth function ¢ € C§°(By,) such that
0<¢p<1, ¢=1 inBg, and |Vmno|<c/r,

an set

1 PT
d:= - (%) Tail(u_;&, R), and a:=u+d. (4.4)

Now, choose 1 := @' P@P as a test function in Definition 4 by making use of the fact
that u is a supersolution. It follows

F(&w)a' P (§)¢" (€)dg
Hn»

< [ [ 10w (10 - aw) (€ - o) av
" / B /B |a(€) — a(n)[P~* (a@) - ﬂ(n))ﬂl’p(é)aﬁp(&) dv
- /Bsr /”\BST [a(€) — alm) P2 (@(€) — aln) )~ (n)¢* (n) dv
TR (4.5)
where we have also used the definition of 4 and the translation invariant property of the

fractional seminorms.

We start by estimating the integral contribution in the left-hand side. Thanks to the
hypothesis on f and in view of the definition of ¥, we have get

fenar©e©d = [ (few) B @ ad s,
H™ Bgr +

Now, we focus on the terms on the right-hand side. We can treat the first integral I; as
in the proof of the Logarithmic Lemma 1.4 in [33], so that

wetf f G

We now proceed to estimating the second integral I in (4.5), in turn obtaining an
estimate for I3 as well. We split I3 as follows,

dv + cr@=sr .

e /IH"\Bsm{ﬁ(nko} /B () — an) P~ (#(€) — ) )a' (9" () v

' /JH"\Bsm{ﬂ(n)ZO} /BST (6) — atml~* (ale) - alm ' (e7(€) dv

= 12,1 + 12,2. (46)
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The contribution in I ; can be estimated as follows

o= [ [ g+ )P e

p—1
< CTQ/ <1 + M) |77*1 o &0|£{975p dn
H" \ Bg, d

< er?7 4 erQd P R™*PTail(u_; &, R)P~!
= c(”? S?p, A)TQiSp )
where we have used that, for any £ € Bz, and any n € H" \ Bs,,

[n~! o &olun _ (In”" o &Jun + 1€ 0 Lolurn)
In=to&lun ~ =1 o &lmn

r
<1+ < 8. 4.7
In=to&lmr — |71 0 &olmn ( )

For I 2, notice that @ > 0 in By,. Then, (&) — a(n) < a(&), for every n € H™ \ Bg, N
{ﬁ(n) > 0} and every £ € Br,; we get

Iy < cr@ep, (4.8)
Thus, by combining (4.6) with (4.7) and (4.8), we arrive at
L+1Iy < er@ P,

for a constant ¢ depending only on n, p, s and A. All in all,

// §)

. P

U 1 s _

g (S| avt [ (s6) a7 < @ er Ty
U(n) Begr +

Now, recalling the particular choice of d in (4.4), one can deduce the existence of a

constant ¢ := ¢(n,p, s, || f|| L~ (BR), A4) such that

Lt

For any § € (0,1/4), define

v = (min{log ! log k+d}>
o 26’ a '
+

Since v is a truncation of log(k + d) — log(@), the estimate in (4.9) yields

/B /B 10l — ) v < /B /B o (%) p

By the fractional Poincaré inequality (see, e.g., Section 2.2 in [3]), we have

o) @ ’ v w))o P cr@—sp
1g(a(n))‘ s [ (e < a9 @9

dv < r@—sp

[ wo-@ara <ar | [ po-mpre < e @)
Ber Ber

Be-
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Notice that, in view of the definitions of v and u, we have

S )
Therefore, the inequality in (4.2) yields
‘Bw N {v - o}‘ > 0| Be,|.

Also, notice that

1 1 1
logmor= —————— log — —wv d
825 = [Boy {0 =0]| Bﬁm{y_o}< 855 “’) :
1 1
= [mg% - <v>BGT] |

which integrated on Bg, N {v = log(1/20)} gives

Bgr N {v =log <%>} log (%) < é/BGT [v(§) — (v) B, | A€
| Barl? ( JRLGE <v>BGT|Pds>

C
_|BGT| )
(o

=

IN

IN

where we also used (4.10) and the Holder inequality.
From all the previous estimates we finally arrive at

c 1
— 1
o log 55

B {a <26k + )} < | Ber |

so that the desired inequality plainly follows by inserting the definition of d given in (4.4).
O

We are now in the position to refine the estimates in order to prove the main result
of this section; i.e.,

Lemma 4 Let s € (0,1) and p € (1,00) and let u € W*P(H") be a weak supersolution to
problem (1.1) such that u > 0 in Br(&) C 0.
Let k > 0 and suppose that there exists o € (0,1] such that

|BG7‘ N {’U, Z k}' Z U|Bﬁr|a
for some r satisfying 0 < 6r < R. Then, there exists a constant 6 € (0,1/4) depending
onn,s,p, o and A, such that
_Sp_

infu > ok — (%) Tail(u_; &, R) . (4.11)

By,
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Proof. We immediately notice that in the case when k& = 0, the inequality (4.11) does
trivially hold, since u > 0 in Bg. Also, with no loss of generality, we can assume that for
6>0

<E> Tail(u_; &, R) < dk. (4.12)
Now, for any r < p < 6r, take a smooth function ¢ € C(‘)’O(Bp) such that 0 < ¢ < 1,

and consider the test function 9 := w_¢P, where w_ := (£ —u)4, for any ¢ € (0k, 20k).
Testing Definition 4 with such a smooth function v yields

[, s um@we
/ / Ol 2(u<«s>—u<n>) (w-(©)97(©) — w- ()" (m)) dv
/ n, / )P~ (u() — uln) )w-()¢" (€) dv
_/Bp /n\BP [u(8) —U(W)IP‘Q(U(E) — u(n) )w- ()¢ (n) dv
=1+ Jo+ Js. (4.13)

We begin to estimate the term on the left-hand side. As done in our proof of Lemma 3,
we obtain that

/ F€ upw— (€6 (€) d€ = / FEw) 0 ()67 (€)de — / £ w)-w_ ()¢ (€)de
2 =l fllpee(sr)| By N {u < £}].
Now we focus on the right-hand side of (4.13). It is convenient to split J» as follows
2= [ [ (@) = w2 w@) - ut)o- 07 (©) dv
H"”~B,N{u(n)<0}
+ [ @) = w2 @) - ut)w_ 07 (©) dv
H™»~B,N{u(n)>0}
=: Jo1 + Jopo.
Now, notice that
" o €l () — w2 (u(©) — uln) )uw- ()¢ (©)
1
< (€+ (U(n))f)p 4 ( S O§|IH"QSP> XB,n{u<e} (&)

§Esupp ¢

which yields

s E( swp [ <f+<u<n>>_>p-1|n-1osm?‘”d”) B0 {u<d}].
§esupp ¢ JH\ B,
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For Js 2, since u > 0 in B,, we can write

" 0 €l u(€) — w2 (u(©) — uln) )w- ()¢ (©)
< P < sup [n~"o §|£1nQ_Sp> XB,n{u<e} (&) -
§esupp ¢
By reasoning as above for the integral Js, we finally arrive at
Bt Js < f ( swp [ (e () o lpd dn> 1B, {u < 1}].
£esupp ¢ JH™\ B

It remains to estimate the contribution .J;, and for this one can proceed as seen in
the Euclidean setting (see Theorem 1.4 in [18]); it follows

Jl—*C/ / - ( w_ (o) P dv
* /B /B max {w_(€), w_()}) 16(€) — s(m)IP dv.

Combining all the above estimates, we get

/ / w_(E)6(€) — w_ (M) P dv
B, /B,

<o [ a0 )rIo - ot an (414)

+c€IBm{u<€}|( swp [ (e () e gl
§esupp ¢ JH"\ B

+||f||Lw(BR>>-

At this point an iteration argument is needed. To this aim, define
C=10; =0k + 270745k, p= pji=4r+ 2179 and pj = w Vj=0,1,..
Note that both 4r < p;, p; < 67 and

O — Ly = 279726k > 277734,

Moreover, in view of (4.12), we have

Sp

3 1 /r\rt
= —_— < - - — i ;
fo 26/{/’ < 20k 5 (R) Taﬂ(u—y €03 R) )

which yields

{u < zo} c {u < 26k — % <%>MTaﬂ(u;§o,R)} . (4.15)

We are now in the position to apply the estimate in Lemma 3; we arrive at

[Ber N{u<tlo}| _ _ ¢
| Be. | - olog2—16

(4.16)
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Now

wo=w; = (li—u)y > (G—Lig1)XB,n{u<t;n) = 277 2 UXB, A{u<t;anys Vi =0,1, ...
Denote by B; := B, (&) and let ¢; € C5°(Bj,) be such that
0<¢; <1  ¢;=1on Bjy1, |V ;| < 2973 /e,

We have

2

|Bj1 N {u< 1} \ "
|Bjt1]

(; —Lj41)? (

D

< <][ wt o d§>
Bj1

2

< (]i“ub d§>p

<arf [ u©6,€) = w o, v (417)

where in the last inequality we have used the Sobolev embedding with p* = Qp/(Q — sp).
Let us estimate (4.17) with the aid of (4.14). Firstly, by the particular choice of ¢,
we have

/B /B (max {uw; (), wim })"16;(€) = é5n)1” dv
< e /B | /B - ! o €[22 dedn

< cij€§r*5p|Bj N{u <},

where, proceeding as in the proof of the Logarithmic Lemma 1.4 in [33], we have that

/ [~ 0 €fn? P dy < er?

J

Now, notice that, for any n € H" \ B; and any § € supp ¢; C Bp,, it holds

In~t o & lpn - I~ o &lmn + €71 o &olmn

< e,
In~to&lmn =1 o &lmn

Thus

)

sup [ o gl < O T o o[, Wy e H' N By,
£E supp ¢;

which yields

swp [+ ) e el
§€supp ¢; JH"\B;

sp
< cQj(Q“p)E?_lr*Sp + 21(@+sp)pmsp (%) [Tail(u_; &, R)]P~

< ¢ (@Fsp)p syl (4.18)
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where we have also used the fact that u > 0 in Bp, the estimate in (4.12), and the fact
that 0k < fj.

From (4.14), (4.17), and (4.18), we arrive at

<|Bj+1 m{u<fj+1}|>7*

| Bjt1]

. max{/¢% (;} |B; N {u < €}
< I @tptep) I I (1 4 5P| f|| peo iy ) L
(6 = €j)" Byl

We are finally in the position to apply the classic iteration Lemma 1. We set

_ 1Bin{u < 4}

A
’ |Bj

the previous estimate can be rewritten as follows

2 27(@+p+sp) max {Eé-), Ej}
ATn < (477 e () ) A -
(fj — )P
Also, since
max{/’ (, . 3 .
# < 2P max{1, =(6k)' 7P} < 277,
(6] €]+1)p 2
it follows
Ajp < 012j(%+2p*+8p*)A;+ﬁv with § = 0 P )
—sp
and ¢f” = c(l + rsp”f”Loo(BR)). Choosing 6 > 0 as follows,
Q—sp Q@ s Q(R—sp)
s 1 ce, 7 2T |
= —expy — -
1P o 1
and using the estimate in (4.16), we arrive at
B N{u < ¢ —Q=sp Q1 9)QQ5p)
Ay = | Bs “é:;' o}l < o g G
which gives
hm Aj = 0,
j—o0

so that infp, u > dk, and hence (4.11) plainly follows.

We consider now the case when sp = Q. For this, we choose 0 < ¢ < s and, call-
ing s, := s — ¢, we have that s.p < Q. Then, for p < ¢ < p} := Q?gp, we apply the
Sobolev inequality in Theorem 5; it follows

) B B
4 4 (€ —0p_p Pt pe rSep p: ot g
wy ijdg < |Bj| e ! wy ij d¢ <c 9] w; ij d¢ .
B; B; T B,

J
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Thus, by the inequality above we get

B. , “
(l; = €jp1)” D1 0w < Gl s¢ ][ wig]dé
|Bj+1l B,

Tssp p P
= wfqbfdg
e ;

lw; (€ ¢ w;(n)o; ()P
creP <][ 5ol dg (4.19)
lw; (§ w;(n)p; ()P
][ / J |n 1o§|Q“”J dgdn)’

where in the last inequality we have split the seminorm [w;¢;]}} .. ,» in the following way

| w; (n)é; ()P

/ / w] —1 ° §|Q+sgp 27 d§d77
[5(©)65(6) = wi s I 4 g
/ /B ﬂ{|77 Of\m>1} |77 1 O§|Q+Sap 6 n

[0 (©)9(&) —w; e PP .
/ /B iN{|n—1o&|mn <1} | -1 O§|Q+55p 5 7,

and we have estimated the two integrals above as done in [33, Proposition 2.8].
The first term on the right-hand side of (4.19) can be treated as follows
|[Bj N {u < 4}
|Bj

Q3

| /\

IN

IN

crsfp][ w? dé < crseP E?
Bj
On the other hand, using the same techniques applied in the subcritical case when sp < @,
we have that the second term on the right-hand side in (4.19) becomes

ot L[ 1 ©065€) — wsmos Pl o €lad " asay
B; JB;

epai s BiNn{u<y¥;
< erm P 2O s {, (0141  e) =
J

Setting, as before,
L Bl
! | B;]|
we get
i(Qa

with ¢f = cr=? (1 + 79 + 19| f|| 1o(By)) and B := 4>E. Choosing now

2
1 ccl p2( tet2 )(q p)?
0<6::Zexp —

| =

g
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from (4.16) we get that

_ |Ber N {u < Lo} ﬁQ—(%-‘ﬂq-i-sq)ip2

Ag < C_ (a—p)? |
|B6T| !
Then, Lemma 1, with
— 9% 42q+sq
co =01 and b:=27r ,
yields
lim A; = 0;
J—o0

which implies inf g, © > dk and hence (4.11) when sp = Q.

The case when sp > @ can be deduced as in the latter, without relevant modifications,
choosing the parameter € > (s—Q/p). With such a choice in hand, we can use the Sobolev
embedding for W =P in Theorem 5 and the desired result plainly follows as in the previous
case when sp = Q. O

4.2 Proof of Theorem 1

In order to derive the Harnack inequalities with tail, we firstly need the estimate (4.20)
below, which is a straightforward consequence of the refined positivity expansion proven
in the previous section, together with the classical Krylov-Safonov covering lemma (whose
proof can be found for instance in [27, Lemma 7.2]), which can be adjusted to our
framework thanks to the role of the nonlocal tail, as shown in the Euclidean framework
in the proof of [17, Lemma 4.1].

Lemma 5 Lets € (0,1), p € (1,00) and letu € WP (H") be a weak supersolution to (1.1)
such that u > 0 in Bgp = Br(&) C (2. Then, for any B, = Be (&) C Br, there exist
constants o € (0,1) and ¢ = ¢(n,s,p, A) > 1 such that

1 sp

a T
<][ ue d£> < cinfu+ ¢ (ﬁ> Tail(u_; &, R), (4.20)
B, B R

where Tail(-) is defined in (1.5).

In the next lemma, we prove that the tail of the positive part of the weak solutions
to (1.1) can be controlled in a precise way.

Lemma 6 Let s € (0,1), p € (1,00) and uw € W*P(H") be a weak solution to (1.1) such
that uw > 0 in Br(&) C 2. Then, for any 0 < r < R,

Sp

p—1 sp _1
Tail(ut;&o,7) < esupu—+ c (%) Tail(u—; &, R) + cre-1 ||f||z;}(BR), (4.21)
By

where Tail(+) is defined in (1.5) and ¢ = e(n, s, p, A).
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Proof. Set k :=supp u and choose a cut-off function ¢ € C§°(B,) such that 0 < ¢ <1,
¢ =1on B,/; and |Vun¢| < 8/r. Take now the test function v := (u — 2k)¢”. We have

| 1o - 200
-/ [ IU(é)*U(n)Ip_Q(U(é)*U(n))((U(S)*%)fb’)(f)*(U(n)*%)#(n))dv

/"\B / n)[P—2 (u(é) - u(n)) (u(g) — 2k)¢P(€) dv
_ /BT /n\BT [u(€) — u(n)P—? (u(g) - u(n)) (U(n) _ 2k)¢p(n) dy

::H1+H2+H3. (422)

The last two integral in the identity above can be estimated as in the proof of Lemma 4.2
n [17]; we have

Hy + Hz > ck|B.|r~*P[Tail(uy; &, 7)]P~" — ckPr—*P| B, (4.23)
—ck|B,|R™*P[Tail(u_; &, R)]P~*

For what concerns the contribution H; in (4.22), we have

—ckPr— p/ / 7lo€|p Q- sPd{dn

—ckPr~P|B,|, (4.24)

H,

Y

Y

where we argued as in the proof of Lemma 1.4 in [33].
The contribution given by the datum f can be easily estimated as follows,

/B F(6 u) (&) — 2K)P(€) A€ < (B, || fll (). (4.25)

Finally, combining (4.22) with (4.23), (4.24), and (4.25), we obtain

Tail(us; &, 7) < k+(§) * Tail(u_; €03 R) + e | £ )

which gives the desired inequality by recalling the definition of & . O

Armed with the tail estimate in Lemma 6, and the interpolative inequality given
by Theorem 6, we are ready to complete the proof of the Harnack inequality with tail
n (1.6). The strategy does generalize that successfully applied in [17] in the analysis of
the homogeneous case in the Euclidean framework.

Proof of Theorem 1. Combining the supremum estimate (3.1) in Theorem 6 with the tail
estimate (4.21), we get

sup u < ¢d ! ][ uf A | +cdsupu
B2 B, B

=

P
sp

T8 <%> Tail(u_; &, R) + cdpiT ||f||L°° (Br)"
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We now set p := (0 — o’)r, with 1/2 < ¢’ < 0 <1, so that

1
<][ u® dE) + cdsupu
By Bor

r\r1 .
+ ¢6 (E) Tail(u_; &, R) + corit 1||f||Loo(BR)a

p—a

6—V P
sup u < c———5 | supu
B,/, (o’ — O'/)? By

Where a € (0,1) is the one given by Lemma 5. We choose the interpolation parameter 6 =
(4c¢)~1, and we obtain

1 o
supu < —supu + % ]Z u®d€ (4.26)
B, 2 B, (0 —0o')a \UB.

sp

+c(%) B Tail(u_; &, R) + cro-1 leHLoc (Br)

where we also used a suitable Young inequality. Note that by Jensen’s inequality, recalling
that the exponent « given by Lemma 5 is in (0, 1), we have that

<]i uo‘d§>%<]{3 ur? d¢ %§<]{9 upd§>%<oo,

since u € LP(B,). Thus the right-hand term in ( 26) is ﬁmte Fmally, the classic iteration

Lemma 2, with g(t) := supg, u, 7 = or, t := o'r, 0 := =, and ¢ := 3, L yields
1 o
* p—1
S (J[ “ df) teg) i o, R) + e S
B, B, R r)
which gives the desired inequality (1.6) thanks to the result in Lemma 5. O

4.3 Proof of Theorem 2

Let 1/2 < 0o/ < 0 < 3/4, and let ¢ € C§°(Byyr) be such that ¢ = 1lon By, and
Vi g| <4/(c —a')r.

We firstly deal with the case when sp < Q In such a case one can apply Theorem 5
to the function we, with w := v = = (u+ d) , to get

( / |w<«s>¢<s>|p*dg>p < g [ [ w©e© —wmempan @2

Now, notice that, by the very definition of ¢, it follows

16(€) — dIP < el 0 &l sup [VimgP < ————|n " o€l
Bor (0 — U’)r)

which yields

/| T / (max{w(©).wm}) 10(€) ~stiPav <

cr—°P

/ wP(n)dn,  (4.28)
Bor
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where we have also used the estimate below
[ oy mirdg < e,
B,

Collecting the estimates (4.27) and (4.28) with the Caccioppoli inequality of Theorem 7,
we obtain

( ]{3 |w<£>¢(§)|p*ds>p

<ec <m 4 di-r <E) [Tail(u_; &, R)]P~ ) ]ZB wP(§)¢P(§) dg (4.29)

+cd || f1| Lo (B) »

where we have used the fact that

sup / do(77_1 o f)_Q_s”dn < er—*P,
fesupp ¢ JH"\ B,

Now, we choose d as in the proof of Lemma 3; see (4.4) there. It follows

(f

where ¢ depends only on n, p, s and the structural constant A defined in (2.2).
Let t = (p — ¢)Q/(Q — sp) for any ¢ € (1,p). Thanks to a standard finite Moser
iteration, the inequality in (4.30) becomes

Q—sp

ﬁ(p—q) 9951) dg) S ;][ uP 4 df + CTSp”f”Loo(BR) , (430)
BO"V‘

7=y

0',7‘

1

t 7

o

, p _Q
][ utdé <ec ][ atae |+ eresim LI » (4.31)
Br B3, "
2 T
forany 0 < t' <t < (p—1)Q/(Q— sp). Since 6r < R, we can apply Lemma 5 with o = ¢/
there; it follows
1
tae| < cimfute(Z) Tail(u_; &, R) + cri@im ||f||7“9(gs”)
Biu < cg;{u c\ 3 il(u_; &, cr Lo(Ba)
which provides the desired inequality, up to relabelling r.

We investigate now the case when sp = Q. Fix 0 < ¢ < s, and set s, := s — €.
Since s.p < sp = @, we can make use of the Sobolev inequality for the function we, to

get
( f oo dg) N
B,

¢ Ts;p /B /B [w(©)(€) — w(n)d(m)[PIn~" o &2~ dédn

<
,

< e ( ][ [ (€)B(E)]? de (4.32)

B,
+ [ @00 - wotrl o dgdn> |
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where we have obtained the last inequality by following by the same argument used at
the end of the proof of Lemma 4. Now, we choose d as in (4.4), so that the inequality
in (4.32) becomes

( f oo dg) N
B,

P 1—p (L N il (1 p=1 4 ,Q w P
< <( srd(§) Mg R+ )fBTI( DIGIR

o—o'

+ed TP fl L (B

c

< f (W) ©IF dé + er™]| fll i -
B,

(=)

Thus, recalling the definition of w and that of the cut-off function ¢, we have that

(£

Set t = (p — q)s/e, for any ¢ € (1,p); a standard application of the finite Moser iteration
yields

s

e c o o
i) = o e

L
27

P

4 Q(s—e) i
][ wde| < e ][ ade |+ e N oy -
B B3,

r
2

forany 0 <t' <t < (p—1)s/e.

Finally, we can conclude as in the proof in the case when sp < @Q; that is, it suffices
to apply Lemma 5, with o = t’ there, in order to get

. TP Qaze) |, =
]{3 utdé < cinfu+e (E) Tail(u—; &, R) + cr™ = ||f||fm(BR) )

B3y
4

z
which provides the desired inequality, up to relabelling r.

The case when sp > @) can be deduced as in the latter, without relevant modifications,
choosing the parameter £ > (s — Q/p). With such a choice in hand, it plainly follows
that s.p < @, and thus one can use the Sobolev embedding in Theorem 5 and proceed
as done in the limit case when sp = Q. O

5 The fractional subLaplacian case

In this section we focus our attention on the case when p = 2 in the particular situation
in which the operator £ defined in (1.2) does coincide with the fractional subLapla-
cian (—Apgn)® on H", so that problem (1.1) does reduce to

(—=Apn)’u=0 in 2 C H",

(5.1)
u=gq in H" \ £2,
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where g € H*(H") = W*2(H").

We now recall the precise definition of the fractional subLaplacian operator; that is,

(—Agn)*u(€) = C(n, s) P.V./]H %
n 0] Hr

where | - [pg» is the norm defined in (2.1), and C(n, s) is given by

dn,  VeEe W, (5.2)

Cln, 5) = CL8)won (5.3)
neca(n, s)
with

- cos(en) ) :

— cos(zy a7
ci(n,s) = ————=dp and co(n,s) = / —5 5 do(n), (5.4)

(m.2) (/R [EEGE ) = o, e 70

for n:= (21, -+, x2,,t). In the display above, we denote by | - || the standard Euclidean

norm on R?"*! and by o the surface measure on dB; see, e.g., Proposition 1.15 in [22].

5.1 Asymptotics of the fractional subLaplacian

Proof of Proposition 1. For the sake of readability, we denote the points £ in H™ as
follows,

&= (21,...,Tan,t).
Also, it is convenient to use the weighted second order integral definition of the fractional
sublaplacian,

o op~ 1) —
(~Aueyu(e) = ~3C(ns) [ 1 ””Téfml ) =210 4 veemr
. 7

see, e.g., [21, Proposition 1.4] and [19, Proposition 3.2]. We also recall that, given D2 u(€)
in (2.3), one has

2n
Agnu = Tr(Djiiu) = ZXE’U,
i=1

As the computation below shows, we have no contribution outside the unit ball in
the limit as s goes to 17,

u(€omn) +u(€ont) —2u(f) 1
. dn | < 4flullpe(an) —oras dn
‘ /]H”\Bl |77|]$1j2 H" By |77|§:r2

< def|ul| oo gun).-
Hence, recalling (5.3) and (5.9), it follows

C(n,s) u(gom) +u§on~) —2u(§)
/]H”\Bl(o) |77|ng8 dn = 0. (5.5)

lim —
s—1— 2

It remain to estimate the integral contribution in the unit ball. In view of Proposition 2,
for any n = (z,t), one get

w(on ™) =Po(u,&)(Eon™ ) +o(|nli) as [nlum — 0, (5.6)
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where P (u,§) is the Taylor polynomial of H™-degree 2 associated to u and centered at &
presented in Section 2.1.
Also, by the very definition of Taylor polynomial, it follows

Po(u,€)(€on™") = o (u(€0),0) (™) = u(€)~ (Varnu(€), du(€)) -+ 5

2($,D%’2u(§)-x).

Thus, inequality (5.6) yields

u(€on™) =u(©) ~ (Varul©), 0u©)) -+ 5

Using again the result in Proposition 2, we arrive at

/ w(€on) +ul€on) — 2u(€) — (o, Digru(®) @) |

2
|t

(2, Dijnu(€) - x) +o(lnff) as [nlem — 0.

o(|nl#n)
< / dn
By |77|Q+2S

1
S/ —o—1 = c(n).
By nlgia
The preceeding estimate yields
Clno) [ ulEom) uleen ) -
B1

[ luon) =PiuEe ) 00 volie)

|2

i
o1 2 || &2 g
Diku(€) -
i = E9) / (. Dy u(f) D ay. (5.7)
s1- 2 Jp |22
Now, notice that for any i # j it holds
1
By
1 - .-
= —/B (Q(XinU(E) + XinU(E))) Ty - Iy di,
where Z; = x;, for i # j, and &; = —x;. Therefore,
1 . .
/B <§(X1Xju(§) + Xinu(é))) x; - x;dn =0, for i # j. (5.8)

Moreover, for any fixed index 7, making using of the polar coordinates, namely Proposi-
tion 1.15 in [22], we get that there exists a unique Borel measure o on By such that, up
to permutations,

(f) 2 / / 7 irott
ZiS)T; dn = X u do(n)dr
B, | |Q+25 0B, |qf) Q+25 ( )

1
1
:X?U(S)/ ﬁdo(n)/ e dr
0B, |77|]H o T

_ca(n,s) o
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where ca(n, s) is defined in (5.4).

Hence, recalling the result in [19, Corollary 4.2] which shows that

4
i CL(m29) _ An (5.9)
s—1- 8(1—38)  wap
where wa,, denotes the (2n)-dimensional Lebesgue measure of the unit sphere S?*, we

finally obtain that

lim (—Age)*u(€) = lim C(”vs)/ﬂ (v, Dijru() @)

s—1- s—1— 2 |77|]H+2S
Cn,s) o~ [ XPu(§)a?
= lim —————~ 7ld77
s—1— 2 zzl Bq | |H+2S
. C1 n,s wzn 2 _
=1 — Xiu = —Agn
) Z o (6),
as desired. O

5.2 Robustness of the nonlocal Harnack estimates

The proofs of Theorem 3 and Theorem 4 can be plainly deduced from the ones in Section 4
for the subcritical case, by taking there p = 2, f = 0, and the Korani-Folland norm in
place of the generic homogeneous norm d,. Below we stated the related needed lemmata,
by indicating only the modifications in the estimates where a special care on the involved
quantities is needed in order to successfully obtaining the desired robustness in the limit
as s goes to 1.

Firstly, we need the related positivity expansion, which can be condensed in the
following two lemmata.

Lemma 7 Let u € H?(H™), with s € (0,1), be a weak supersolution to problem (5.1) such
that uw > 0 in Br(&) C 2. Let k > 0. Suppose that there exists o € (0,1] such that

|Ber N {u > k}| = o|Bs,l, (5.10)

for some r > 0 such that Bs, = Bg,(§0) C Br(&o). Then there exists a constant ¢ = ¢ (n)
such that

11— 2s —
BerNQu<20k——— (=) Tail(u_;&,R)y| < ———|Be| (5.11)
2 R olog 5=

20

holds for all 6 € (0,1/4), where Tail(-) is defined in (1.5) taking p = 2 there.

Proof. Tt suffices to repeat the proof of Lemma 3 by choosing the parameter d in (4.4)

as fOHOWS7
= ! 5 — - Tal( 5 R)
U{u_—; .
R S0

2
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Lemma 8 Let s € (0,1) and let w € H*(H™) be a weak supersolution to problem (5.1)
such that w > 0 in Br(&) C 2.
Let k > 0 and suppose that there exists o € (0,1] such that

|BG7‘ N {’U, Z k}' Z U|Bﬁr|a
for some r satisfying 0 < 6r < R. Then, there exists a constant 6 € (0,1/4) depending

onn and o for which

2s
infu > ok — (1—s) (%) Tail(u_; &, R) . (5.12)

By

Proof. The proof is basically contained in that of Lemma 4. It suffices to replace for-
mula (4.12) with

(1-s) (%)25 Tail(u_; &, R) < ok, (5.13)

so that the same iterative process will give

3 1—s(r\*
lo = 50k < 20k 5 < R> Tail(u_; &o, R),

which in turn yields the following estimate (in place of (4.15) in Lemma 4)

2s
1
{u<to}C {u <20k — — i (%) Taﬂ(u_;gO,R)} .
The proof will then follow with no further modifications at all. O

As well as in the proof in the general nonlinear framework presented in Section 4,
we can obtain for the pure subLaplacian case the analogue of the estimate in Lemma 5
and that of the Tail control estimate stated in Lemma 6. For the sake of the reader, we
prefer to restate these results by stressing the novelty of the dependance on s here. No
modifications in the related proofs are essentially needed, thanks to the results obtained
in Lemma 7 and Lemma 8.

Lemma 9 Let uw € H*(H™) be a weak supersolution to (5.1) such that w > 0 in Br =
Br(&) C 2. Then, for any Bs, = Ber(&o) C Br, there exist constants o € (0,1) such

that
é r 2s
<][ uo‘d§> <cinfu+ec(l—s) (—) Tail(u—_; &, R).
B, B R

where ¢ depends only on n.

Lemma 10 Let s € (0,1) and u € H*(H™) be a weak solution to (5.1) such that u >0 in
Br(&) C 2. Then, for any 0 <r < R,

2s
Tail(uy;&o,7) < esupu+ ¢(1 —s) (%) Tail(u_; &, R) ,

™

where ¢ depends only on n.
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