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Abstract. In this paper we study two different weighted isoperimetric inequalities.

First we prove a sharp stability result for the isoperimetric inequality with a log-convex

weight. Then we analize the behavior of a negative power weight for the perimeter thus

providing a complete picture of the isoperimetric problem in this context.

1. Introduction

In recent years weighted isoperimetric inequalities have attracted the attention of

many authors ([31],[36],[10],[32],[34],[35]) also in view of their applications to different

fields of Analysis. They play an important role in dealing with Gamow type energies, see

for instance [26], [5], [27], [25], [20], [29] and in shape optimization problems involving

eigenvalues, see [7],[19],[24],[16] and the references therein.

Due to the relevance of the topic for applications, it would be important to understand

stability properties of such inequalities. Isoperimetric inequalities in quantitative form

have a long history, see [23], [21], [14], and [22] for a complete overview on the subject.

In this paper we focus our attention on two types of weighted isoperimetric problems:

first we study the case of a log-convex density ew(|x|) and then we consider a power density

|x|p with p negative. While for the Gaussian isoperimetric inequality, where the density

e−|x|
2

is log-concave, it is well known that isoperimetric sets are half spaces ([6]) and that

they are stable ([13],[2], see also [33, 18, 11] for the non local extension), the case of a

log-convex weight has been only recently settled by G.R. Chambers in [12]. In that paper

he proved that if w is a C3 even convex function, then balls centered at the origin are the

unique minimizers of the weighted perimeter under a weighted volume constraint. Note

that in the Gaussian case it can be proved that balls with small weighted mass are local

minimizers while this property fails if the mass is sufficiently large, see [28].

In this paper we study the stability of the isoperimetric problem with density ew(|x|).

For a set E of locally finite perimeter we denote by |E|w and Pw(E) respectively

|E|w =

�
E
ew(|x|) dx and Pw(E) =

�
∂∗E

ew(|x|) dHn−1,

where ∂∗E is the so called reduced boundary of E, see [30]. We prove that the aforemen-

tioned isoperimetric inequality is actually stable. To be precise, our main theorem reads

as follows. Here and in the following we denote the ball of radius r centered at x by Br(x)

or simply by Br when the center is the origin.
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Theorem 1.1. Let n ≥ 2. Given an even convex function w ∈ C3(R) and r > 0 such that

w′′(r) > 0, there exists a constant κ = κ(n, r, w) such that, for any measurable set E ⊂ Rn
with |E|w = |Br|w,

(1.1) Pw(E)− Pw(Br) ≥ κ|E4Br|2w.

We stress that although the constant in (1.1) might not be optimal, the exponent

is sharp as can be seen by computing the value of the weighted perimeter on suitable

ellipsoids, see for instance a similar example in Section 4 of [22]. Note also that differently

from the quantitative isoperimetric inequality for the standard Euclidean perimeter, in our

case we have no scaling properties and this explains why on the right hand side of (1.1)

the constant depends on r and we have |E4Br|w instead of the usual Fraenkel asymmetry.

We now give a brief overview of the proof. Inspired by [14], we use the so called

selection principle. We first prove that (1.1) holds true for a special class of sets, namely

sets which are sufficiently close to the ball centered at the origin with the same weighted

volume. This first step of the proof is achieved by a Fuglede type argument. Then we

reduce by a compactness argument to the case where the set E is close to such a ball in

the L∞ sense. Precisely we argue by contradiction assuming that there exists a sequence

{Eh}h∈N such that |Eh|w = |Br|w for all h and (1.1) fails for a suitably small constant.

Following an idea of [1] we construct a sequence of functionals Jh whose minimizers Fh
also satisfy the opposite inequality in (1.1) with a small constant and converge in C1,α to

Br, thus getting a contradiction with the estimate proved in the first part of the proof.

Although this type of argument has become more or less standard, one of the key difficulties

here, due to the fact that the density diverges at infinity, is to show that the functionals Jh
do admit a minimizer and to get suitable a priori estimate ensuring the C1,α convergence

of Fh.

Another difficulty in this context, maybe the most challanging one, comes from the

fact that neither the weighted volume nor the weighted perimeter are invariant under

translations. This would make a Fuglede type estimate for nearly spherical sets E useless,

since it usually requires that the barycenter of E is at the origin. However, an interesting

feature of our problem is that the assumption w′′(r) > 0 yields such a Fuglede type

estimate without any further hypothesis on the barycenter, see (3.1). Even more, this

assumption turns out to be necessary for the validity of the quantitative inequality (1.1).

More precisely, the following result holds.

Proposition 1.2. Let w ∈ C2(R) be a convex function such that w′′(r) = 0 for some r > 0.

Then

lim
ε→0+

Pw(Bρ(ε)(εe1))− Pw(Br)

|Bρ(ε)(εe1)4Br|2w
= 0 ,

where ρ(ε) > 0 is such that |Bρ(ε)(εe1)|w = |Br|.

The last part of the paper is devoted to another weighted isoperimetric inequality.

This time we do not deal with a log-convex density. Instead, the weight is given by |x|p,
with p negative. While for p > 0 the characterization of the balls centered at the origin

as the unique isoperimetric sets and their stability is well known, see [3], [17], [15],[8] and

the references therein, the case p < 0 is less understood. First of all, notice that when
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−n+ 1 < p < 0 then the problem becomes trivial since for any fixed mass the infimum of

the weighted perimeter under the mass constraint is 0. On the other hand, it is known (see

[17]) that if p ≤ 1 − n and E is a bounded open set with Lipschitz boundary containing

the origin, then

(1.2)

�
∂∗E
|x|p dHn−1 ≥

�
∂Br

|x|p dHn−1,

where Br has the same volumeof E. Moreover, if equality holds in (1.2), E coincides with

Br. Note that the assumption that the origin belongs to the interior of E is crucial, since

it can be easily checked that (1.2) may fail when the origin belongs to the interior of the

complement of E. In the last section of the paper we extend (1.2) to the case of a set E

of locally finite perimeter such that 0 ∈ int(E(1)), where E(1) is the set of points where E

has density 1. Note that if 0 ∈ ∂∗E (1.2) becomes trivial because in this case the left hand

side is infinite, see Remark 6.2. Note also that the assumption that 0 ∈ int(E(1)) is sharp

in the sense that one may construct a set of finite perimeter E such that 0 ∈ ∂E(1) \ ∂∗E
for which the inequality fails. Finally we prove that (1.2) also holds in a quantitative form.

2. Notation and Preliminary Results

Throughout all the paper we will assume that w : R→ R is a C3 even convex function.

In the sequel by C, c we denote positive constants whose value may change from line to

line and occasionally we highlight the dependence of these constants by other parameters.

The dependence of the constants on w will be always tacitly understood. For n ≥ 2 let

E ⊂ Rn be a measurable set and Ω ⊂ Rn an open set. We say that E has finite weighted

perimeter with respect to ew(x) in Ω if

Pw(E; Ω) = sup
‖X‖L∞(Rn)≤1

{�
Ω

div(ew(x)X(x)) dx, X ∈ C1
c (Rn;Rn)

}
.

From this definition it follows that if a set has finite weighted perimeter in Ω then

P (E; Ω) <∞, where P (E; Ω) denotes the standard Euclidean perimeter in Ω. If Ω = Rn
we simply write Pw(E) or P (E) in place of Pw(E;Rn) and P (E;Rn). For the definitions

and properties of sets of finite perimeter we refer to [30]. Note that if ∂∗E is the reduced

boundary of E from the definition above we have

Pw(E; Ω) =

�
∂∗E∩Ω

ew(x) dHn−1,

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. We recall that at ev-

ery point x ∈ ∂∗E the exterior generalized normal νE(x) is defined and the following

generalized Gauss-Green formula holds�
E

divX dx =

�
∂∗E
〈X, νE〉 dHn−1

for every vector field X ∈ C1
c (Ω,Rn). We now introduce the notion of quasiminimizer of

the perimeter.

Definition 2.1. Let E ⊂ Rn be a set of locally finite perimeter, ω ≥ 0 and let Ω be an

open subset of Rn. We say that E is an ω-minimizer of the perimeter in Ω if for every
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ball Bρ(x) ⊂⊂ Ω with ρ < 1 and for any set F of locally finite perimeter such that

E4F ⊂⊂ Bρ(x) it holds

(2.1) P (E;Bρ(x)) ≤ P (F ;Bρ(x)) + ωρn

The following theorem is a consequence of the classical De Giorgi’s ε-regularity the-

orem, see for instance [37, Theorem 1.9] and also the argument of the proof of [16,

Lemma 3.6]. Before stating it we recall that if Eh and E are measurable sets of Rn
and Ω is an open set, one says that Eh → E in measure in Ω if |Eh4E ∩ Ω| → 0. The

local convergence in measure is defined in the obvious way.

Theorem 2.2. Assume that Eh, E are equibounded ω-minimizers of the perimeter in Rn

such that Eh → E in measure. If E is of class C2 then for h large Eh is of class C1, 1
2 and

there exists a function vh : ∂E → R such that

∂Eh = {x+ vh(x)νE(x), x ∈ ∂E}.

Moreover, ‖vh‖C1,α(∂E) → 0 for 0 < α < 1
2 .

3. A first stability estimate

In this section we give a Fuglede type result for nearly spherical sets under the as-

sumption that w′′(r) > 0. The interesting feature of this result is that this assumption

allows to prove the quantitative estimate (3.1) without any assumption on the barycenter

of E. We start with the definition of nearly spherical sets.

Definition 3.1. Let n ≥ 2. We say that a set E is nearly spherical if there exist r > 0 and

a Lipschitz function u : Sn−1 → (−1, 1) such that

E = {y : y = rx(1 + u(x)), x ∈ Sn−1}.

Proposition 3.2. Given 0 < r1 < r2 such that w′′(r) > 0 for all r ∈ [r1, r2], there exist

ε, c > 0 such that if E is a nearly spherical set as in Definition 3.1 with ‖v‖W 1,∞(Sn−1) < ε,

|Br|w = |E|w, r ∈ [r1, r2], then

(3.1) Pw(E)− Pw(Br) ≥ crn−1ew(r)‖∇τu‖2L2(Sn−1),

where ∇τu stands for the tangential gradient of u.

Remark 3.3. Note that by the Poincaré inequality on the sphere, (3.1) implies

(3.2) Pw(E)− Pw(Br) ≥ crn−1ew(r)‖u‖2L2(Sn−1) ≥ c
′rn−1ew(r)|E4Br|2w.

However (3.1) is clearly stronger than the quantitative inequality (1.1).

Proof of Lemma 3.2. Given r ∈ [r1, r2] we consider the Lipschitz map Ψ : B → E defined

by Ψ(x) = rx
(

1 + u
(
x
|x|

))
. A straightforward computation shows that for every x ∈ B

the Jacobian JΨ at x is given by

(3.3) JΨ(x) = rn
(

1 + u

(
x

|x|

))n
while for x ∈ Sn−1 the tangential Jacobian is

JτΨ(x) = rn−1(1 + u(x))n−2
√

(1 + u)2 + |∇τu|2.
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From this last equality, using the area formula, we get

Pw(E) = rn−1

�
Sn−1

(1 + u(x))n−1

√
1 +

|∇τu|2
(1 + u)2

ew(r(1+u(x))) dHn−1

and recalling (3.3)

|E|w = rn
�
Sn−1

(1 + u(x))n
� 1

0
tn−1ew(rt(1+u(x)) dt dx.

Hence

Pw(E)− Pw(Br) =rn−1

�
Sn−1

(
(1 + u(x))n−1

√
1 +

|∇τu|2
(1 + u)2

ew(r(1+u(x))) − ew(r))

)
dHn−1

=rn−1

�
Sn−1

(1 + u(x))n−1

(√
1 +

|∇τu|2
(1 + u)2

− 1

)
ew(r(1+u(x))) dHn−1

+ rn−1

�
Sn−1

(1 + u(x))n−1ew(r(1+u(x))) − ew(r) dHn−1 := rn−1(I1 + I2)

Using the hypothesis ‖u‖W 1,∞ < ε we can control the term I1 by

I1 ≥
(

1

2
− Cε

)
ew(r)

�
Sn−1

|∇τu|2dHn−1,

for some constant C > 0 uniformly bounded for r ∈ [r1, r2]. To estimate I2, by a second

order Taylor expansion we have

(1 + u(x))n−1ew(r(1+u(x))) − ew(r)

ew(r)
= (n− 1 + rw′(r))u

+
1

2
((n− 1)(n− 2) + 2(n− 1)rw′(r) + r2w′′(r) + r2w′(r)2)u2 + o(u2).

From this equality and the estimate on I1 we get

Pw(E)− Pw(Br)

rn−1ew(r)
≥
(

1

2
− Cε

) �
Sn−1

|∇τu|2dHn−1 + (n− 1 + rw′(r))

�
Sn−1

udHn−1

+
1

2
((n− 1)(n− 2) + 2(n− 1)rw′(r) + r2w′′(r) + r2w′(r)2 − Cε)

�
Sn−1

u2dHn−1,

(3.4)

for a constant C uniformly bounded for r ∈ [r1, r2]. Since |E|w = |Br|w we have

�
Sn−1

(1 + u(x))n
� 1

0
tn−1ew(rt(1+u(x)) dt dHn−1 =

�
Sn−1

� 1

0
tn−1ew(rt) dt dHn−1

which in turn gives

� 1

0
tn−1

�
Sn−1

(
(1 + u(x))new(rt(1+u(x))) − ew(rt)

)
dHn−1 dt = 0.
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By a second order Taylor expansion of the functions (1 + ·)n and ew(rt(1+·)), using again

the smallness assumption on u, we get

(nan + rbn)

�
Sn−1

u dHn−1 dt ≥− 1

2
(n(n− 1)an + 2nrbn + r2cn + r2dn)

�
Sn−1

u2 dHn−1 dt

− Cε
�
Sn−1

u2 dHn−1,

(3.5)

where

an =

� 1

0
tn−1ew(rt) dt, bn =

� 1

0
tnw′(rt)ew(rt) dt, cn =

� 1

0
tn+1w′′(rt)ew(rt) dt

and

dn =

� 1

0
tn+1(w′(rt))2ew(rt) dt.

Integrating by parts we have the following identities

rbn = ew(r) − nan, r2(cn + dn) = rw′(r)ew(r) − (n+ 1)(ew(r) − nan),

which in turn imply that (3.5) can be rewritten as

(3.6) (n− 1 + rw′(r))

�
Sn−1

u dHn−1 ≥ −
(

(n− 1 + rw′(r))2

2
− Cε

)�
Sn−1

u2 dHn−1,

where again C depends only on r1, r2.

Note that if
�
Sn−1 u dHn−1 ≥ 0 then (3.1) follows at once from (3.4) with c = 1

4 ,

provided ε is small enough. Assume instead that

(3.7)

�
Sn−1

u dHn−1 < 0.

Collecting all the previous inequalities we have

Pw(E)− Pw(B)

rn−1ew(r)
≥
(

1

2
− Cε

)
‖∇u‖2L2(Sn−1)

+
1

2

(
1− n+ r2w′′(r)− Cε

)
‖u‖2L2(Sn−1).

(3.8)

For k ∈ N and i ∈ {1, . . . , G(n, k)} let Yk,i be the spherical harmonics of order k, i.e., the

restrictions to Sn−1 of the homogeneous harmonic polynomials of degree k, normalized

so that ‖Yk,i‖L2(Sn−1) = 1. Note that {Yk,i}k∈N,i≤G(n,k) forms an orthonormal system for

L2(Sn−1) and that for every k, i

−∆Sn−1Yk,i = k(k + n− 2)Yk,i,

where ∆Sn−1 is the Laplace-Beltrami operator on Sn−1. Hence, we may represent u with

respect to this orthonormal system as

u =
∞∑
k=0

G(n,k)∑
i=1

ak,iYk,i, where ak,i =

�
Sn−1

uYk,i dHn−1,
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thus getting

‖u‖2L2(Sn−1) =
∑
k≥0

G(n,k)∑
i=1

a2
k,i and ‖∇τu‖L2(Sn−1) =

∑
k≥1

G(n,k)∑
i=1

k(k + n− 2)a2
k,i.

Note that condition (3.6), together with (3.7), implies that

a2
0,1 ≤ Cε‖u‖2L2(Sn−1).

Observe that if 1 − n + r2w′′(r) > 0 the conclusion holds with c = 1/4 and ε sufficiently

small. Otherwise,

‖∇τu‖2L2(Sn−1) =
∑
k≥1

G(n,k)∑
i=1

k(k + n− 2)a2
k,i ≥ (n− 1)‖u‖2L2(Sn−1) − Cε‖u‖

2
L2(Sn−1).

Employing the latter in (3.8) we infer

Pw(E)− Pw(B) ≥ 1

2
rn−1ew(r)

(
r2w′′(r)− Cε

)
‖∇τu‖L2(Sn−1)

which concludes the proof of (3.1) taking ε small enough. �

Note that a suitable modification of the above proof, see for instance the proof of [22,

Th. 3.1] immediately yields that if w′′(r) = 0 then (3.1) still holds under the assumption

that the barycenter of E is at the origin. However, if this condition is not satisfied and

w′′(r) = 0, then not only (3.1), but even (1.1) is not longer true, see Proposition 1.2.

In order to prove this, given r > 0, for any ε > 0 we denote by ρ(ε) the unique positive

number such that

|Br|w = |B%(ε)(εe1)|w.
Since w is of class C2, it is easily checked that ρ ∈ C2(0,∞).

Proof of Proposition 1.2. To simplify the notation we assume, without loss of generality,

that r = 1 and set B = B1. For ε > 0 let ρ = ρ(ε) such that

(3.9) |B|w = |Bρ(ε)(εe1)|w.

Clearly, ρ(0) = 1. Differentiating (3.9) with respect to ε we get

0 =
d

dε
|Bρ(ε)(εe1)|w =

d

dε

(
ρ(ε)n

�
B
ew(|ρ(ε)x+εe1|) dx

)
=nρ(ε)n−1ρ′(ε)

�
B
ew(|ρ(ε)x+εx1|) dx

+ ρ(ε)n
�
B
ew(|ρ(ε)x+εe1|)w′(|ρ(ε)x+ εe1|)

〈 ρ(ε)x+ εe1

|ρ(ε)x+ εe1|
, ρ′(ε)x+ e1

〉
dx.

(3.10)

By symmetry �
B
ew(|x|)w′(|x|)x1

|x|
dx = 0.

Therefore, evaluating (3.10) at ε = 0, we get

ρ′(0)

(
n|B|w +

�
B
ew(|x|)|x|w′(|x|) dx

)
= 0
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which implies ρ′(0) = 0. Differentiating (3.10) again with respect to ε and evaluating the

second derivative at ε = 0 we also get

ρ′′(0)

(
n|B|w +

�
B
ew(|x|)|x|w′(|x|) dx

)
+

�
B
ew(|x|) x

2
1

|x|2
w′2(|x|) dx

+

�
B
ew(|x|) x

2
1

|x|2
w′′(|x|) dx+

�
B
ew(|x|)w

′(|x|)
|x|

dx−
�
B
ew(|x|) x

2
1

|x|3
w′(|x|) dx = 0.

Thus after some simplifications

(3.11) ρ′′(0) = − 1

n

�
B
ew(|x|)

(
w′2(|x|) + w′′(|x|) + (n− 1)

w′(|x|)
|x|

)
dx

n|B|w +

�
B
ew(|x|)|x|w′(|x|) dx

.

A similar calculation shows that d
dε

(
Pw(Bρ(ε)(εe1))

)∣∣
ε=0

= 0 and

d2

dε2

(
Pw(Bρ(ε)(εe1))

)∣∣
ε=0

= Pw(B)
[
ρ′′(0)(n− 1 + w′(1)) +

1

n

(
w′2(1) + w′′(1) + (n− 1)w′(1)

)]
.

From this equation, using (3.11), we get, recalling that w′′(1) = 0,

1

Pw(B)

d2

dε2

(
Pw(Bρ(ε)(εe1))

)∣∣
ε=0

=
1

n

(
w′2(1) + (n− 1)w′(1)

)

− (n− 1 + w′(1))

n

�
B
ew(|x|)

(
w′2(|x|) + w′′(|x|) + (n− 1)

w′(|x|)
|x|

)
dx

n|B|w +

�
B
ew(|x|)|x|w′(|x|) dx

.

(3.12)

Observe that by divergence theorem

(n− 1)

�
B
ew(|x|)w

′(|x|)
|x|

dx =

�
B
ew(|x|)w′(|x|) div

( x
|x|

)
dx

= w′(1)Pw(B)−
�
B
ew(|x|)(w′2(|x|) + w′′(|x|)

)
dx

and similarly�
B
ew(|x|)|x|w′(|x|) dx =

�
B

div(xew(|x|)) dx− n|B|w = Pw(B1)− n|B|w.

Plugging these identities in (3.12) we have that d2

dε2

(
Pw(Bρ(ε)(εe1))

)∣∣
ε=0

= 0. Thus

Pw(Bρ(ε)(εe1)) = Pw(B) + o(ε2) and the conclusion follows. �

4. Preliminary Lemmas

We start this section by recalling the result of [12] on the uniqueness of balls as

isoperimetric sets for the log-convex isoperimetric inequality. We recall this result for the

reader’s convenience.
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Theorem 4.1. If w is a convex even function of class C3 with w(r) > w(0) for r > 0 the

only isoperimetric regions are balls centered at the origin.

Next lemma shows the continuity of Pw(·) at Br with respect to the convergence in

measure.

Lemma 4.2. Let r > 0 such that w(r) > w(0). Given ε > 0 there exists δ > 0 such

that for every set of finite perimeter E with |E|w = |Br|w, if Pw(E) − Pw(Br) < δ then

|E4Br|w < ε.

Proof. Assume by contradiction that there exists ε0 > 0 such that for every k ∈ N there

exists a set Ek with |Ek|w = |Br|w = m and such that Pw(Ek) − Pw(Br) ≤ 1
k , but

|Ek4Br|w ≥ ε0. Since w is increasing on R+, for k sufficienlty large we have

ew(0)P (Ek) ≤ Pw(Ek) ≤ 2Pw(Br).

Hence {Ek}k∈N is a sequence of sets with equibounded perimeters and thus, up to a not

relabeled subsequence, we have that there exists a set E such that χEk → χE in L1
loc(Rn)

and

Pw(E) ≤ lim inf
k

Pw(Ek) = Pw(Br).

We claim that |E|w = m.

To this aim it is enough to show that given σ > 0 there exists R > 0 such that

|Ek \BR|w < σ for all k. Indeed, if there exists k0 such that |Ek0 \BR| > σ then

(4.1) |Ek0 \BR|w =

� ∞
R
Hn−1(Ek0 ∩ ∂Bt)ew(t) dt > σ.

Recall that, for a.e. t > 0, Ek0 ∩ ∂Bt is a set of finite perimeter on the sphere such

that ∂∗Ek ∩ ∂Bt coincides up to a set of zero Hn−2-measure with the reduced boundary

of Ek0 ∩ ∂Bt relative to ∂Bt, see for instance [9, Theorem 3.7]. If G ⊂ Sn−1 is a set of

finite perimeter denote by ∂Sn−1G the boundary of G relative to Sn−1 and by ∂∗Sn−1G the

corresponding reduced boundary relative to Sn−1. Then, the isoperimetric inequality on

the sphere (see [4]) states that

(4.2) Hn−2(∂∗Sn−1G) ≥ Hn−2(∂Sn−1Sθ)

where Sθ is the spherical cap with geodesic radius θ such that Hn−1(Sθ) = Hn−1(G). Since

Hn−1(Sθ) = (n− 1)ωn−1

� θ

0
sinn−2 ϕdϕ, Hn−2(∂Sn−1Sθ) = (n− 1)ωn−1 sinn−2 θ,

a straightforward computation shows that (4.2) implies that there exists cn > 0 such that

(4.3) Hn−2(∂∗Sn−1G) ≥ cn
(
Hn−1(G)

)n−2
n−1 whenever Hn−1(G) ≤ 1

2
Hn−1(Sn−1).

Since for R > 0 sufficiently large and for a.e. t > R we have

(4.4) Hn−1(Ek0 ∩ ∂Bt) ≤ P (Ek0 ;Rn \Bt) ≤
1

ew(R)
Pw(Ek0) ≤ 1

2
Hn−1(Sn−1),
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from (4.3), using the coarea formula, we get

Pw(Ek0) ≥
� ∞
R
Hn−2(∂∗Ek0 ∩ ∂Bt) dt ≥ cn

� ∞
R

(
Hn−1(Ek0 ∩ ∂Bt)

)n−2
n−1 ew(t) dt

=cn

� ∞
R

Hn−1(Ek0 ∩ ∂Bt)
Hn−1(Ek0 ∩ ∂Bt)

1
n−1

ew(t) dt.

From this inequality, using (4.4) again and recalling (4.1) we conclude that

Pw(Ek0) ≥ cnσ

(
ew(R)

Pw(Ek0)

) 1
n−1

that is Pw(Ek0) ≥ cσ
n−1
n e

w(R)
n which is impossible if R is sufficiently large. This proves

the claim, hence by Theorem 4.1 E must coincide with a ball Br, which is a contradiction

since |Ek4Br|w → 0. �

Next simple lemma is a useful tool in the proof of the main theorem.

Lemma 4.3. Let r > 0 such that w(r) > w(0), Λ1 ≥ 0 and Λ2 ≥ 2(4n+1
r + w′(2r)). Then

Br is the only minimizer of the functional defined for a measurable set E ⊂ Rn as

JΛ1,Λ2(E) = Pw(E) + Λ1 ||E|w − |Br|w|+ Λ2|E4Br|w.

The same conclusion holds if Λ2 = 0 and Λ1 ≥ n− 1 + rw′(r).

Proof. Let η : R → [0, 1] be a smooth cut-off function such that η(t) = 1 for t ∈
[
r
2 ,

3r
2

]
,

η(t) = 0 outside of the interval [ r4 ,
7r
4 ] and ‖η′(t)‖L∞ ≤ 8/r. Consider the smooth vector

field X(x) = η(|x|) x
|x| . It is readily checked that ‖X‖L∞ = 1 and ‖divX‖L∞ ≤ (4n+ 4)/r

By definition of reduced boundary we get�
∂∗E

ew(|x|) dHn−1 ≥
�
∂∗E

ew(|x|)〈X, νE〉 dHn−1 =

�
E

div(ew(|x|)X) dx

=

�
E

(
divX + w′(|x|)〈X,x〉

|x|

)
ew(|x|)dx

while for the ball it holds�
∂Br

ew(|x|) dHn−1 =

�
Br

(
divX + w′(|x|)〈X,x〉

|x|

)
ew(|x|) dx.

Hence we find

JΛ1,Λ2(E)− JΛ1,Λ2(Br) ≥
(
Λ2 − ‖ divX‖L∞(Rn) − ‖w′(|x|)X‖L∞(Rn)

)
|E4Br|w

≥
(

Λ2 −
4n+ 4

r
− w′(2r)

)
|E4Br|w.

Taking in mind the definition of Λ2 we immediately get the desired result.

If Λ2 = 0 by the uniqueness result stated in Theorem 4.1 we immediately get that the

minimizers of JΛ1,Λ2 are given by balls centered at the origin. On such balls the value of

the functional is given by

JΛ1,Λ2(B%) = nωn%
n−1ew(%) + nωnΛ1

∣∣∣∣� r

%
ew(t)tn−1 dt

∣∣∣∣ = f(%).
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By an elementary computation we get that under the assumption on Λ1 the function f(%)

attains its unique minimum when % = r. �

5. Proof of theorem 1.1

This section will be devoted to the proof of Theorem 1.1 which is achieved by a

contradiction argument which makes use of suitable energy functionals. One problem here

is to show the existence of minimizers for such functionals. This fact is achieved by showing

that there exists a minimizing sequence made up by equibouded sets.

To this aim we introduce the functions Φ,Ψ : R+ → R+ defined for s, t ≥ 0 as

(5.1) Φ(s) = nωn

� s

0
tn−1ew(t) dt, Ψ(t) = Φ−1(t).

Note that Ψ is well defined since Φ is a strictly increasing function. Note also that Ψ(t) is

equal to the radius r of the ball centered at the origin such that |Br|w = t. The following

lemma contains a few useful properties of Ψ whose elementary verification is left to the

reader.

Lemma 5.1. Let Ψ be the function defined in (5.1). Then Ψ ∈ C∞(0,∞) and for t > 0 we

have

Ψ′(t) =
1

nωnΨn−1(t)ew(Ψ(t))
,

t ≤ nωnΨ(t)new(Ψ(t)).

(5.2)

Lemma 5.2. Let E ⊂ Rn be a set of finite perimeter such that |E \ Br|w ≤ η < 1. There

exists RE ∈ [r, r + 4Ψ(η)] such that

Pw(E) ≤ Pw(E ∩BRE )− |E \BRE |w
2Ψ(η)

.

Proof. We argue by contradiction assumig that for any r ≤ t ≤ r + 4Ψ(η) it holds

(5.3) Pw(E ∩Bt) > Pw(E)− |E \Bt|w
2Ψ(η)

.

Set v(t) = |E \Bt|w. Then for a.e. t > 0

v′(t) = −ew(t)Hn−1(E ∩ ∂Bt).

Since Pw(E) ≥ Pw(E ∩Bt) + Pw(E \Bt) + 2v′(t), inequality (5.3) implies that

2v′(t) + Pw(E \Bt) <
v(t)

2Ψ(η)
.

The weighted isoperimetric inequality hence gives

2v′(t) + nωnΨ(v(t))n−1ew(Ψ(v(t))) <
v(t)

2Ψ(η)
.

We now use the second inequality in (5.2) to infer

v(t)

Ψ(η)
≤ nωnΨ(v(t))n−1ew(Ψ(v(t))),
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which gives

Ψ(v(t))n−1ewΨ(v(t)) < − 4

nωn
v′(t) for all t ∈ [r, r + 4Ψ(η)].

Integrating the latter inequality we get by a change of variable and using the first equality

in (5.2)

4Ψ(η) < − 4

nωn

� r+4Ψ(η)

r

v′(t)

Ψ(v(t))n−1eΨ(v(t))
dt

=
4

nωn

� v(r)

v(r+4Ψ(η))

1

Ψ(s)n−1eΨ(s)
ds

= 4(Ψ(v(r))−Ψ(v(r + 4Ψ(η))),

which is impossible. �

We are now ready to state the following existence result.

Lemma 5.3. Let r > 0 such that w(r) > w(0), Λ1 ≥ n − 1 + rw′(r) and Λ2 > 0. There

exist 0 < α1 <
Λ2

2Λ2+1 such that for any α ∈ [0, α1] the functional

JΛ1,Λ2,α(F ) = Pw(F ) + Λ1 ||F |w − |Br|w|+ Λ2||F4Br|w − α|, F ⊂ Rn,

has always a minimizer E ⊂ BR0 where

(5.4) R0 = r + 4Ψ(1).

Proof. Let Fh a minimizing sequence such that

JΛ1,Λ2,α(Fh) ≤ inf
F⊂Rn

JΛ1,Λ2,α(F ) +
α1

h
≤ Pw(Br) + Λ2α+

α1

h
.

By the second part of Lemma 4.3 and from the previous inequality we have

Pw(Br) + Λ2||Fh4Br|w − α| ≤ JΛ1,Λ2,α(Fh) ≤ Pw(Br) + Λ2α+
α1

h
.

In turn this inequality implies that

|Fh \Br|w ≤ |Fh4Br|w ≤
(

2 +
1

hΛ2

)
α1.

Set η := (2Λ2+1
Λ2

)α1 < 1. Thus Lemma 5.2 implies that there exists rh ∈ [r, r+ 4Ψ(η)] such

that

Pw(Fh ∩Brh) ≤ Pw(Fh)− |Fh \Brh |w
2Ψ(η)

Hence if we set Gh = Fh ∩Brh we get

JΛ1,Λ2,α(Gh) ≤Pw(Fh)− |Fh \Brh |w
2Ψ(η)

+ Λ1 ||Gh|w − |Br|w|+ Λ2||Gh4Fh|w − α|

≤JΛ1,Λ2,α(Fh) +

(
Λ1 −

1

2Ψ(η)

)
|Fh \Brh |w + Λ2|Gh4Fh|w

=JΛ1,Λ2,α(Fh) +

(
Λ1 + Λ2 −

1

2Ψ(η)

)
|Fh \Brh |w.

Therefore, taking η, hence α1, sufficiently small we have that Gh is a minimizing sequence

such that Gh ⊂ BR0 , where R0 = is as in (5.4). The conclusion then follows observing
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that the sets Gh have all equibounded perimeters and using the well known properties of

compactness and lower semicontinuity of the perimeter. �

Lemma 5.4. Given Λ1,Λ2 ≥ 0, there exists ω ≥ 0 such that if E ⊂ BR0 is a minimizer of

JΛ1,Λ2,α with α ≥ 0, then E is an ω-minimizer of the perimeter in B2R0.

Proof. Let F be a set of finite perimeter with F4E ⊂⊂ Bρ(x) ⊂⊂ B2R0 . If |Bρ(x)∩E| = 0

then (2.1) is trivially satisfied.

Hence we may assume without loss of generality that |Bρ(x)∩E| > 0. Since F4E ⊂⊂
Bρ(x) we have that Pw(F ;Rn \Bρ(x)) = Pw(E,Rn \Bρ(x)). Moreover,

||F |w − |E|w| ≤ ew(2R0)ωnρ
n.

Similarly,

||F4Br|w − |E4Br|w| ≤ |F4E|w ≤ ew(2R0)ωnρ
n.

The above inequalities and the minimality of E yield

min
z∈Bρ(x)

ew(|z|)P (E;Bρ(x)) ≤Pw(E;Bρ(x)) ≤ Pw(F,Bρ(x)) + C0ρ
n

≤ max
z∈Bρ(x)

ew(|z|)P (F,Bρ(x)) + C0ρ
n.

(5.5)

for a constant C0 depending only on Λ1,Λ2, r, n. Observe now that there exists another

constant C > 0, still indipendent of E, α1 and ρ, such that

(5.6) P (E,Bρ(x)) ≤ Cρn−1.

Indeed, if we first apply (5.5) with F replaced by E ∪ Bρ′(x) with 0 < ρ′ < ρ such that

Hn−1(∂∗E ∩ ∂Bρ′(x)) = 0 and then let ρ′ ↑ ρ, we get

min
z∈B̄ρ(x)

ew(|z|)P (E;Bρ(x)) ≤ nωnρn−1 max
z∈B̄ρ(x)

ew(|z|) + C0ρ
n

which gives (5.6) since ρ ≤ 2R0. Observe also that there exists another constant, still

denoted by C and depending only on R0, such that

osc
z∈Bρ(x)

ew(|z|) ≤ Cρ.

The conclusion easily follows from this estimate using (5.5) and (5.6). �

Lemma 5.5. Let r > 0 such that w(r) > w(0), let Λ1, Λ2 satisfy the assumptions of

Lemma 4.3 and let εi → 0. Let Fi be a sequence of equibounded minimizers of JΛ1,Λ2,εi.

Then, up to a not relabeled subsequence, Fi → Br in C1,α for all α < 1
2 . Precisely, for all

i there exists ψi ∈ C1, 1
2 (Sn−1) such that

∂Fi = {rx(1 + ψi(x)), x ∈ Sn−1} with ‖ψi‖C1,α(Sn−1) → 0 for any α ∈ (0,
1

2
).

Proof. By the minimality of Fi we have

ew(0)P (Fi) ≤ Pw(Fi) ≤ JΛ1,Λ2,εi(Fi) ≤ Pw(Br) + εi.
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Since εi → 0 and the sets Fi are equibounded, we get that there exists a bounded set of

finite perimeter F such that up to a not relabelled subsequence |Fi4F | → 0. Since for

any set E of finite weighted perimeter and for every i ∈ N we have

JΛ1,Λ2,εi(Fi) ≤ JΛ1,Λ2,εi(E),

sending i to infinity and using the semicontinuity of the weighted perimeter and the con-

tinuity of αw(·) with respect to the convergence in meausure we infer

JΛ1,Λ2(F ) ≤ JΛ1,Λ2(E).

Hence, F is a minimizer for the functional JΛ1,Λ2 and thus from Lemma 4.3 Fi → Br in

measure. The conclusion then follows from Lemma 5.4 and from Theorem 2.2.

�

Proof of the Main Theorem. In order to prove (1.1) it is enough to show that for any r > 0

such that w′′(r) > 0 there exists δ > 0 such that if |Br4E|w < δ and |E|w = |Br|w then

(5.7) Pw(E)− Pw(Br) ≥ c1|Br4E|2w,

where c1 is a constant whose explicit value will be given later. Indeed, by Lemma 4.2

there exists σ > 0 such that if |E4Br|w ≥ δ then Pw(E)− Pw(Br) ≥ σ and thus we may

conclude that in this case

Pw(E)− Pw(Br) ≥
σ

4|Br|2w
|E4Br|2w.

In order to prove (5.7) we argue by contradiction assuming that there exists a sequence

Ei such that |Ei|w = |Br|w, |Ei4Br|w → 0 as i→∞ and

Pw(Ei) ≤ Pw(Br) + c1|Ei4Br|2w.

We now set εi = |Ei4Br|w. Let Λ1 ≥ n − 1 + rw′(r) and Λ2 > 0 to be chosen. By

Lemma 5.3 we have that for i sufficiently large the functional JΛ1,Λ2,εi has a minimizer

Fi with Fi ⊂ BR0 , R0 = r + 4Ψ(1). Note that by Lemma 5.5, passing possibly to a

subsequence, we have that Fi → Br in C1,α for all α ∈ (0, 1/2). By the minimality of Fi
we have that for i large

(5.8) JΛ1,Λ2,εi(Fi) ≤ JΛ1,Λ2,εi(Ei) = Pw(Ei) ≤ Pw(Br) + c1ε
2
i .

From this inequality, if Λ2 is chosen such that Λ2 > 4(4n+1
r + w′(2r)), by applying

Lemma 4.3 with Λ2 replaced by Λ2/2 and Λ1 = 0, we have

Pw(Fi) + Λ2||Fi4Br|w − εi| ≤ Pw(Br) + c1ε
2
i

≤ Pw(Fi) +
Λ2

2
|Fi4Br|w + c1ε

2
i

from which it follows that for i large

(5.9) |Fi4Br|w ≥
εi
2
.
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Assume now that Λ1 ≥ 2(n − 1 + rw′(r)). By (5.8) and Lemma 4.3 with Λ1 replaced by

Λ1/2 and Λ2 = 0 we have

Pw(Fi) + Λ1||Fi|w − |Br|w| ≤ Pw(Br) + c1ε
2
i

≤ Pw(Fi) +
Λ1

2
||Fi|w − |Br|w|+ c1ε

2
i .

From this in particular we deduce that

(5.10) ||Fi|w − |Br|w| ≤ 2c1ε
2
i .

Denote by ri the radius such that |Bri |w = |Fi|w. From the inequality above we have

|Fi4Br|w ≤ |Fi4Bri |w + |Br4Bri |w ≤ |Fi4Bri |w + 2c1ε
2
i

and thus for i large, using (5.9), we have

|Fi4Br|w ≤ 2|Fi4Bri |w.

In turn, this inequality together with (5.10) and (5.9) implies

Pw(Br) ≤ Pw(Bri) + C|r − ri| ≤ Pw(Bri) + Cc1ε
2
i ≤ Pw(Bri) + C̃c1|Fi4Bri |2w.

which is a contradiction to (3.8) if we choose c1 < c0/C̃, where c0 is the constant provided

by Proposition 3.2.

�

6. Negative power weights

Given a measurable set E ⊂ Rn and a ∈ [0, 1] we denote by E(a) the set of points in

Rn where E has density equal to a, that is the set of points x ∈ Rn such that

lim
r→0

|E ∩Br(x)|
ωnrn

= a .

Note that E(1) and E coincide up to a set of zero measure. If E ⊂ Rn is a set of locally

finite perimeter and p ∈ R we set

Pp(E) =

�
∂∗E
|x|p dHn−1.

As already mentioned in the introduction it is well known that for p > 0 the only isoperi-

metric sets with respect to the weight |x|p are balls centered at the origin and moreover

they are stable. On the contrary, when 1− n < p < 0 there are no isoperimetric sets. We

recall also that if p ≤ 1− n the isoperimetric inequality

(6.1) Pp(E) ≥ Pp(Br)

where |E| = |Br| is true whenever E is an open set containing the origin (see for instance

[17]). The condition 0 ∈ E is clearly necessary for (6.1) to holds since Pp(Br(x)) → 0 as

|x| → ∞. Next theorem shows that a quantitative version of (6.1) is also true.

Theorem 6.1. Let n ≥ 2 and p < −n − 1. There exists a constant c > 0 such that if

r > 0 and E is a set of finite perimeter with |E| = |Br| such that the origin belongs to the

interior of E(1), then

Pp(E) ≥ Pp(Br) + c|E4Br|2.
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Proof. Since 0 ∈ int(E(1)) that there exists r0 > 0 such that E(1) ∩ Br0 = Br0 . Thus, we

note that

Pp(E)− Pp(Br) =

�
∂∗E
|x|p dHn−1 −

�
∂Br

|x|p dHn−1

≥
�
∂∗E
|x|p〈 x

|x|
, νE〉 dHn−1 −

�
∂Br

|x|p〈 x
|x|
, νBr〉 dHn−1

=

�
∂∗(E\Br0 )

|x|p〈 x
|x|
, νE〉 dHn−1 −

�
∂∗(Br\Br0 )

|x|p〈 x
|x|
, νBr〉 dHn−1.

By applying the divergence theorem to E \Br0 and B \Br0 we get

Pp(E)− Pp(Br) ≥ (n− 1 + p)

(�
E\Br0

|x|p−1 dx−
�
Br\Br0

|x|p−1 dx

)

≥ (n− 1 + p)

(�
Br̄\Br

|x|p−1 dx

)
where r̄ is such that |Br̄ \Br| = |E \Br|. The conclusion then follows as in Lemma 6.1 in

[29]. �

As mentioned before inequality (6.1) does not hold if 0 6∈ Rn \E(1). Thus in order to

get a complete picture it remains to analyze the case 0 ∈ ∂E(1). To this aim we recall that

if E is a set of locally finite perimeter then

(6.2) ∂∗E = ∂E(1) .

The above inequality is well known to the experts, however for the reader’s convenience

we provide its simple proof. Recall that given any set of locally finite perimeter E the

reduced boundary ∂∗E is always contained in the topological boundary ∂E and does not

change if one modifies E by a set of zero Lebesgue measure. Therefore

(6.3) ∂∗E = ∂∗E(1) ⊂ ∂E(1) .

To show the opposite inclusion, let x 6∈ ∂∗E. Then, there exists Br(x) such that ∂∗E ∩
Br(x) = ∅. Thus P (E;Br(x)) = Hn−1(∂∗E ∩ Br(x)) = 0. Then by the relative isoperi-

metric inequality in a ball we have

min{|E \Br(x)|, |E ∩Br(x)|}
n−1
n ≤ c(n)P (E;Br(x)) = 0 .

Therefore, if |E \ Br(x)| = 0 then Br(x) ⊂ E(1) and so x belongs to the interior of E(1).

If instead |E ∩ Br(x)| = 0, then Br(x) ⊂ E(0) and so x is in the interior of Rn \ E(1). In

both cases x 6∈ ∂E(1). Therefore, recalling (6.3) we get (6.2).

Lemma 6.2. Let p < −n+ 1 and E a set of finite perimeter. If 0 ∈ ∂∗E then Pp(E) =∞.

Proof. Assume by contradiction that Pp(E) <∞. Given a ball Br centered at 0 we would

have

P (E;Br)r
p ≤

�
∂∗E∩Br

|x|p dHn−1 ≤ Pp(E)

and thus
P (E;Br)

rn−1
≤ Pp(E)

rn−1+p
.
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Since n− 1 + p < 0, from this inequality we get

lim
r→0

P (E;Br)

rn−1
= 0

thus 0 6∈ ∂∗E which is a contradiction. �

It remains to examine the case 0 ∈ ∂E(1) \∂∗E. Next example shows that in this case

the isoperimetric inequality may be false.

Example 6.3. Fix α > 1. Let {ph}h=0,1,..., a dense sequence in B1, with ph 6= 0 for all h

and set

ri =
r

2
i
n

for all i = 0, 1, . . . , with 0 < r <
1

2α

to be chosen later. We now rearrange the elements of the sequence {ph} as follows. First

we set q0 = ph0 , where h0 is the smallest integer such that |ph0 |α > 2αr0. Notice that this

is always possible since 2αr0 < 1. Then, for all i = 1, 2, . . . we set qi = phi , where hi is

the smallest integer different from h0, h1, . . . , hi−1 such that

(6.4) |qi|α = |phi |
α > 2αri .

Notice that since ri → 0 as i → ∞, all the elements of the sequence {ph} will be chosen

once and only once. Finally we set

E =

∞⋃
i=0

Bri(qi) .

Then |E| ≤
∑

i |Bri(qi)| = 2ωnr
n. Therefore, if BE is the ball centered at the origin such

that |E| = |BE | we have

Pp(BE) ≥ Pp(B
2

1
n r

) = 2
n−1+p
n nωnr

n−1+p .

Observe now that if x ∈ ∂Bri(qi) then |x| ≥ |qi|− ri and by (6.4) |qi|− ri > 2r
1
α
i − ri > r

1
α
i .

Therefore for all i �
∂Bri (qi)

|x|p dHn−1 ≤ nωnr
n−1+ p

α
i

and thus

Pp(E) ≤
∞∑
i=0

�
∂Bri (qi)

|x|p dHn−1 ≤ C(n, α, p)rn−1+ p
α < nωn2

n−1+p
n rn−1+p ≤ Pp(BE) ,

provided r is sufficiently small.

Let us now show that 0 ∈ ∂∗E. Since B1 ⊂ E(1) ∪ ∂E(1) it is enough to show that

0 ∈ E(0). To this end we estimate for 0 < % < r

(6.5)
|E ∩B%|
ωn%n

≤ 1

%n

∑
{i:Bri (qi)∩B% 6=∅}

rni .
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Note that if Bri(qi) ∩ B% 6= ∅ then |qi| − ri < % and thus, recalling (6.4), ri < %α. Thus,

from (6.5) we have, denoting by b·c the integer part of a real number,

|E ∩B%|
ωn%n

≤ rn

%n

∑
{i: 2

i
n>r/%α}

1

2i
=
rn

%n

∞∑
i=1+bn log2(r/%α)c

1

2i

=
rn

%n
1

2bn log2(r/%α)c ≤
rn

%n
2

2n log2(r/%α)
= 2

%nα

%n
.

Then we conclude that

lim
r→0

|E ∩B%|
ωn%n

= 0 ,

thus proving that 0 ∈ ∂∗E. Finally observe that, thanks to Remark 6.2 we have indeed

that 0 ∈ ∂∗E \ ∂∗E.
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	1. Introduction
	2. Notation and Preliminary Results
	3. A first stability estimate
	4. Preliminary Lemmas
	5. Proof of theorem ??
	6. Negative power weights
	7. Aknowledgment
	References

