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Abstract: We study the energy of a ferromagnetic/antiferromagnetic frustrated spin system where the
spin takes values on two disjoint circles of the 2-dimensional unit sphere. This analysis will be carried
out first on a one-dimensional lattice and then on a two-dimensional lattice. The energy consists of the
sum of a term that depends on nearest and next-to-nearest interactions and a penalizing term related
to the spins’ magnetic anisotropy transitions. We analyze the asymptotic behaviour of the energy, that
is when the system is close to the helimagnet/ferromagnet transition point as the number of particles
diverges. In the one-dimensional setting we compute the Γ-limit of scalings of the energy at first and
second order. As a result, it is shown how much energy the system spends for any magnetic anistropy
transition and chirality transition. In the two-dimensional setting, by computing the Γ-limit of a scaling
of the energy, we study the geometric rigidity of chirality transitions.
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1. Introduction

Lattice systems are discrete variational models, whose energy depends on a spin field defined in a
lattice. In frustrated lattice systems, spins cannot find an orientation that simultaneously minimizes the
nearest-neighbor (NN) and the next-nearest-neighbor (NNN) interactions. Such interactions are said
to be ferromagnetic or antiferromagnetic if they favour alignment or anti-alignment (we address the
reader to [13] for a complete dissertation).

Three-dimensional frustrated magnets generally exist in the magnetic diamond and pyrochlore
lattices (see [14]) and edge-sharing chains of cuprates provide a natural example of frustrated lattice
systems (see [16]). Furthermore, jarosites are the prototype for a spin-frustrated magnetic structure,
because these materials are composed exclusively of kagomé layers (see [20]).
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A different frustration mechanism can also be caused by magnetic anisotropy, as it is common in
spin ices (see [17]). Magnetic anisotropy refers to the dependence of the magnetization of a material
on the direction of the applied magnetic field, which acts as a potential barrier (we address the reader
to [23] for a comprehensive overview of magnetism, including a chapter on magnetic anisotropy and the
energy barrier). The interplay between the two frustration mechanisms may result in very complicated
Hamiltonians (see [22]). Most recently, the physics community attempts to find new fundamental
effects such as the magnetization plateaus and the magnetization jumps which represent a genuine
macroscopic quantum effect. For example, kagomé staircases have been of particular interest because
of the concurrent presence of both highly frustrated lattice and strong quantum fluctuations (see [24]).

In this paper we study a frustrated lattice spin system whose spins take values on the unit sphere of
R3. More precisely, a spin of the system u is a vectorial function whose codomain is the union of two
fixed disjoint circles, S 1 and S 2, of the unit sphere, which have the same radius R and are identified by
two versors, v1 and v2, Figure 1. We set the problem in one and two dimensions: in the one-dimensional
case (Section 3) spin fields are parametrized over the points of the discrete set [0, 1] ∩ λnZ and satisfy
a periodic boundary condition; in the two-dimensional case (Section 4) they are parametrized over the
points of the discrete set Ω ∩ λnZ

2, where Ω ⊂ R2 is an open bounded regular domain. In both cases
{λn}n∈N is a vanishing sequence of lattice spacings. In the first setting, the energy of a given spin of the
system u : λni ∈ [0, 1] ∩ λnZ→ ui ∈ S 1 ∪ S 2 is

En(u) = En(u) + Pn(u),

with
En(u) =

∑
i∈[0,1]∩λnZ

λn

[
−αui · ui+1 + ui · ui+2

]
and Pn(u) = λnkn|DA(u)|(I),

where α ∈ (0,+∞) is the frustration parameter of the system that rules the NN and NNN interactions
and {kn}n∈N is a divergent sequence of positive numbers. The term A(u) indicates the spins’
magnetization direction (the so-called magnetic anisotropy) in the two circles. If the number of
magnetic anisotropy transitions, i.e., the number of the jumps between the two circles, is finite,A(u) is
a BV function and |DA(u)|(I) counts them. According to physical considerations, we require that the
energy Pn gives a penalizing contribution to the total energy.

Figure 1. S 1 and S 2 circles of anisotropy transitions.

It is easy to see that while the first term of the energy En is ferromagnetic and favors the alignment
of neighboring spins, the second one, being antiferromagnetic, frustrates it as it favors antipodal next-

Mathematics in Engineering Volume 5, Issue 6, 1–37.



3

to-nearest neighboring spins. A more refined analysis, contained in Proposition 3.5 and Remark 3.6,
shows that, for n sufficiently large, the ground states of the system take values on one of the two circles
and for α ≥ 4 are ferromagnetic (the spins are made up of aligned vectors), while for 0 < α ≤ 4 they
are helimagnetic (the spins consists in rotating vectors with a constant angle φ = ± arccos(α/4)). The
property of the latter case is known in literature as chirality simmetry: the two possible choices for the
angle correspond to either clockwise or counterclockwise spin rotations, or in other words to a positive
or a negative chirality.

In this paper, we address a system close to the ferromagnet/helimagnet transition point (see [15]),
that is when α is close to 4 from below. We also require that λnkn is close to some positive value (that
can be also infinite). This assumption is reasonable, since from a physical point of view the change of
the spin’s polarization involves a larger amount of energy. Our aim is to provide a careful description of
the admissible states and compute their associated energy. In particular, we find the correct scalings to
detect the following two phenomena: the spins’ magnetic anistropy transitions and chirality transitions
that break the rigid simmetry of minimal configurations.

In [12], the authors studied a one-dimensional ferromagnetic/antiferromagnetic frustrated spin
system with nearest and next-to-nearest interactions close to the helimagnet/ferromagnet transition
point as the number of particles diverges. In that case, spin fields take values in the unit circle. The
proposed model is different from that one, where no anisotropy functional Pn was introduced. In [12]
the presence of a periodic boundary condition allowed manipulating En in such a way that it can be
recast as a discrete version of a Modica-Mortola type energy, whose Γ-convergence is well-known
in literature (see [18] and [19]). Indeed, expanding the functional at the first order, under a suitable
scaling, spin fields can make a chirality transition on a scale of order λn√

δn
, when λn√

δn
approaches to a

finite nonnegative value, as n→ +∞ (otherwise no chirality transitions emerge).
To set up our problem, we let the ferromagnetic interaction parameter α depend on n and be close

to 4 from below, that is, we substitute α by αn = 4(1 − δn) for some positive vanishing sequence
{δn}n∈N. As in [12], the Γ-limit of En (with respect to the weak? convergence in L∞) does not provide a
detailed description of the phenomena (as a consequence of Theorem 3.12) and suggests that, in order
to get further information on the ground states of the system, we need to consider higher order Γ-limits
(see [6] and [7]).

The two phenomena can be detected at different orders. At the first order we are led to normalize
the energy En of the system and study the asymptotic behavior of (a rescaling of) the new functional
Gn defined by

Gn = En −minEn.

Rescaling Gn by λn, we prove that magnetic anisotropy transitions can be captured when λnkn is close
to any positive finite value, for n large enough (see Theorem 3.16). At the scale value λn, the energy
spent for spin’s magnetic anisotropy transitions is equal to the minimal energetic value corresponding
to the sum of all the interactions in proximity of the transition points. In Figure 2 it can be seen an
occurrence of the phenomenon that we are analyzing.

Chirality transitions can be detected at the next order by means of a technical decomposition of the
energy Gn. The idea behind the construction in Subsection 3.6 is to split the problem set in the sphere
into finitely many problems set in one of the two circles each. We associate each spin field u with a
unique and finite partition of [0, 1] containing intervals I j such that u|I j takes values only in one circle.
We note that the intervals I j depend on n because u is defined on the lattice [0, 1] ∩ λnZ. We modify
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such restrictions u|I j in such a way that they still satisfy a similar periodic boundary condition on I j,
denoting them as ũI j . In Lemma 3.13 we decompose the functional Gn as follows:

Gn(u) =
∑

j

MMn(̃uI j) +
∑

j

(Rn) j(u)+(Rn)M(u)(u) + Rn(u).

Figure 2. Magnetic anisotropy transitions.

The energy MMn is of discrete Modica-Mortola type and collects the pairwise interactions of spins’
vectors pointing to the same circle; the functionals (Rn) j and (Rn)M(u) gather the interactions between
consecutive spins’ vectors that point to different circles. Rn is a correction addend. The first sum and
the other addend in the right-hand side of the previous formula need to be rescaled in different ways,
the first sum being a higher order term. Thus, at the second order we deal with the energy

Gn(u) = Gn(u) −
∑

j

(Rn) j(u)−(Rn)M(u)(u) − Rn(u) =
∑

j

MMn(̃uI j).

In Theorem 3.18 we apply the Γ-convergence result contained in [12] to each functional MMn, rescaled
by λnδ

3/2
n . It turns out that different scenarios may occur, depending on the value of limn λn/

√
δn :=

l ∈ [0,+∞]. If l = +∞, chirality transitions are forbidden. Otherwise a spin field can make a chirality
transition on a lenght-scale λn/

√
δn. In particular, if l > 0, it may have diffuse and regular macroscopic

(on an order one scale) chirality transitions in each S j whose limit energy is finite on H1(I j) (provided
some boundary conditions are taken into account); if l = 0, chirality transitions on a mesoscopic scale
are allowed. In this case, the continuum limit energy is finite on BV(I j) and counts the number of
jumps of the chirality of the spin field.

Systems defined in planar structures are much more difficult to study, due to the higher dimensional
setting (see [1,4,5,10,11]). We address here the two-dimensional analogue of the frustrated spin chain
studied in the first part of the paper. The energy of a given spin of the system u : (i, j) ∈ Ω ∩ λnZ

2 →

ui, j ∈S 1 ∪ S 2 is
En(u; Ω) = En(u; Ω) + Pn(u; Ω),

where
En(u; Ω) = −α

∑
(i, j)

λ2
n(ui, j · ui+1, j + ui, j · ui, j+1) +

∑
(i, j)

λ2
n(ui, j · ui+2, j + ui, j · ui, j+2)

and
Pn(u; Ω) := λnkn|DA(u)|(Ω).
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We assume that the functional Pn(·; Ω) is bounded. The number α > 0 is the frustration parameter of
the system and {kn}n∈N is a divergent sequence of positive numbers. The term |DA(u)|(Ω) is related to
magnetic anistropy transitions. In the two-dimensional setting, they occur on the edges of the lattice
Ω ∩ λnZ

2 and the natural number |DA(u)|(Ω)
λn |v1−v2 |

is an upper bound on the spins’ transitions from a circle to
the other in Ω.

Motivated by the variational analysis of the one-dimensional problem, we assume that the frustation
parameter depend on n and is close to the helimagnet/ferromagnet transition point as the number of
particles diverges, i.e., αn → 4−. In view of detecting spins’ chirality transitions, which cannot be
captured by means of the Γ-limit of the energy at the zero order, we are interested in the functional
defined by

Hn(u; Ω) :=
1

√
2λnδ

3
2
n

1
2
λ2

n

∑
(i, j)

[∣∣∣∣∣ui+2, j −
αn

2
ui+1, j + ui, j

∣∣∣∣∣2 +

∣∣∣∣∣ui, j+2 −
αn

2
ui, j+1 + ui, j

∣∣∣∣∣2] ,
which is the two-dimensional analogue of Gn, up to additive constants.

In [10] the authors studied a similar frustrated spin chain whose spin fields take values in the unit
circle of R2. In [10, Theorem 2.1] they proved the emergence of spins’ chirality transitions by means
of the Γ-convergence of the functional Hn with respect to the local L1-convergence of two chirality
parameters.

In view of applying their result in our setting, we employ an idea that recalls the construction carried
out in the one-dimensional problem. We restrict every spin u to connected open sets Cs that partition
Ω in such a way that u|Cs takes values only in one circle. In order to avoid more complicated notation,
we do not impose boundary conditions on ∂Ω and we state the result by means of a local convergence.
We note that the sets Cs depend on n because u is defined on the lattice Ω ∩ λnZ

2.
We decompose

Hn(u; Ω) =
∑

s

[
Hn(u; Cs) + (Rn)Cs(u)

]
,

where Hn collects the interactions of spins’ vectors pointing to the same circle and (Rn)Cs gathers the
interactions between spins’ vectors that point to different circles.

While in the one-dimensional setting the partition associated with a spin contains intervals, which
guaranty the compactness results stated, in this case the sets Cs could be very wild, as the spacing of
the lattice shrinks. Therefore, we require as additional regularity condition for the components Cs, that
is the BVG regularity. Its definition can be found in [21] and is recalled in Definition 4.1.

With this regularity assumption, we can apply the Γ-convergence result proved in [9] to each addend
of the functional

Gn(h; Ω) = Hn(h,Ω) −
∑

s

(Rn)Cs(h) =
∑

s

Hn(h; Cs),

as it is shown in Theorem 4.5, that is the main result of Section 4. It turns out that chirality transitions
are possible and they can take place both in the vertical and horizontal slices of Cs.

2. Basic notation

Given x ∈ R, we denote by bxc the integer part of x. For a set K we denote by co(K) the convex
hull of K, by #K the number of its elements and χK its characteristic function. We write v · w for the
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Euclidean scalar product of the vectors v,w ∈ R3 and by S 2 the unit sphere of R3. For all v ∈ R3 we
denote by πv the Euclidean projection on v and by πv⊥ the projection on the orthogonal complement of
v. If A is a subset of the Euclidean space we denote by A its closure respect the Euclidean topology.
We denote by C a generic constant that may vary from line to line in the same formula and between
formulas. Relevant dependencies on parameters and special constants will be suitably emphasized
using parentheses or subscripts.

If I ⊂ R is an interval and all w ∈ BV(I;R3), we denote by Dw ∈ Mb(I;R3) the distributional
differential of w, and by |Dw| ∈ Mb(I) the total variation measure of Dw. We say that a sequence
{un}n∈N converges weakly? in BV(I;R3) to a function u ∈ BV(I;R3) if and only if

un → u in L1(I;R3) and sup
n∈N
|Dun|(I) < +∞,

(see [3, Definition 3.11 and Proposition 3.13]). We denote it by un
?
⇀BVu.

Fixing v1, v2 ∈ S 2 and R ∈ (0, 1), we define the set

S i :=
{
w ∈ S 2 : |πv⊥i

(w)| = R, 〈w, vi〉 > 0
}
, for i ∈ {1, 2}.

It is easy to observe that the set S i is a circle centered in vi

√
1 − R2 and it can be easily verified that

for R < RMax :=
√

1−v1·v2
2 the sets S 1 and S 2 are disjoint. Throughout the paper we assume that

R ∈ (0,RMax).
If S is an open set of RN and C is a collection of open subsets of S , we say that C is an open partition

of S if C does not contain empty sets and

S =
⋃
C∈C

C, C1 ∩C2 = ∅, ∀C1,C2 ∈ C.

Given two vectors w = (w1,w2), w = (w1,w2) of R2, we define the function

χ[w,w] := sign(w1w2
− w2w1),

with the convention that sign(0) = −1.

3. Analysis of the one-dimensional model

3.1. Further notation and definitions

We let I = (0, 1) and we consider a sequence {λn}n∈N ⊂ R
+ that vanishes as n→ +∞. It represents a

sequence of spacings of the lattice I ∩ λnZ.
We introduce the class of functions valued in S 1 ∪ S 2 which are piecewise constant on the edges of

the lattice I ∩ λnZ and satisfy a periodic boundary condition:

PCλn :=
{
u : I → S 1 ∪ S 2 : u(t) = u(λni) for t ∈ λn[i + [0, 1)]∩I and λni ∈ I ∩ λnZ,

u0 · u1 = u
⌊

1
λn

⌋
−1
· u

⌊
1
λn

⌋}
. (3.1)
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We will identify a piecewise constant function u : I → S 1 ∪ S 2 with the function defined on the points
of the lattice given by λni ∈ I ∩ λnZ 7→ ui := u(λni). Conversely, given values ui ∈ S 1 ∪ S 2 for
λni ∈ I ∩ λnZ, we define u : I → S 1 ∪ S 2 by u(t) := ui for t ∈ λn[i + [0, 1)].

There exists a natural projection mapA : L∞(I; S 1 ∪ S 2)→ L∞(I; {v1, v2}) defined as follows:

A(u)(t) =

v1 if u(t) ∈ S 1,

v2 if u(t) ∈ S 2,
∀t ∈ I. (3.2)

For each spin u, the functionA(u) indicates the spins’ magnetization direction and its jumps correspond
the the spins’ magnetic anisotropy transitions. In general,A can be defined analogously on L∞(I; K1 ∪

K2), if K1 and K2 are two disjoint subsets of R3 containing, respectively, S 1 and S 2. In this case,
we remark that if a spin field u ∈ L∞(I; K1 ∪ K2) switches from K1 to K2 a finite number of times,
i.e., A(u) ∈ BV(I; {v1, v2}) and so |DA(u)|(I) < +∞, the interval I can be partitioned in finitely many
regions where the function u takes values only in one of the two sets K1 and K2. In other words, there
exist M(u) ∈ N and a collection of open intervals, {I j} j∈{1,...,M(u)}, such that

{I j} j∈{1,...,M(u)} is an open partition of I, (3.3)

either u(I j) ⊂ K1 or u(I j) ⊂ K2, for any j ∈ {1, . . . ,M(u)}, (3.4)

u(I j) × u(I j+1) ⊂ (K1 × K2) ∪ (K2 × K1), for any j ∈ {1, . . . ,M(u) − 1}. (3.5)

The last two properties imply that this partition is unique. We observe that, if u ∈ L∞(I; S 1 ∪ S 2) and
A(u) ∈ BV(I; {v1, v2}) (or, in particular, if u ∈ PCλn), then

M(u) =
|DA(u)|(I)
|v1 − v2|

+ 1.

The following definition will be useful throughout the section.

Definition 3.1. Let u ∈ L∞(I; S 1 ∪ S 2) be such thatA(u) ∈ BV(I; {v1, v2}). We say that Cn(u) = {I j | j ∈
{1, . . . ,M(u)}} is the open partition associated with u if M(u) =

|DA(u)|(I)
|v1−v2 |

+ 1 and the collection of open
intervals {I j} j∈{1,...,M(u)} satisfies (3.3), (3.4) and (3.5).

3.2. Some properties of L∞ functions with values in a compact set

In this subsection we recall some classical properties of the Lebesgue space L∞(I; K), where K ⊂ R3

is a compact set. The statements and the proofs are fully analogous if the setting is a N-dimensional
Euclidean space.

Proposition 3.2. Let { fn}n∈N ⊂ L∞(I; K). Then, up to subsequences, fn
?
⇀ f ∈ L∞(I; co(K)) in the

weak? topology of L∞(I;R3). Moreover, for all u ∈ L∞(I; co(K)) there exists a sequence {un}n∈N ⊂

L∞(I; K) of piecewise constant functions such that un
?
⇀ u.

Proof. Since the set K is bounded then, up to a subsequence, there exists f ∈ L∞(I;R3) such that
fn

?
⇀ f . Now we prove that f (t) ∈ co(K) for almost every t ∈ I. For every ξ < co(K) there exist an

affine function hξ : RN → R and α < 0 such that

hξ(ξ) > 0 > α > hξ(x), ∀x ∈ co(K).

Mathematics in Engineering Volume 5, Issue 6, 1–37.



8

By the weak? convergence of { fn}n∈N we have that for any measurable set A ⊂ I∫
A

hξ( f (t))dt = lim
n→+∞

∫
A

hξ( fn(t))dt ≤ |A|α < 0.

Hence, by the arbitrariness of A, we obtain

hξ( f (t)) < 0, for a.e. t ∈ I. (3.6)

Recalling that
co(K) =

⋂
j∈N

{
y ∈ R3 : hξ j(y) < 0, ξ j ∈ Q

N \ co(K)
}
,

by formula (3.6) we obtain
f (t) ∈ co(K), for a.e. t ∈ I.

Now we prove the second statement of the proposition. Let u ∈ L∞(I; co(K)). There exists a
sequence {un}n∈N ⊂ L∞(I; co(K)) such that un =

∑m
j=1 a jχI j , where a j ∈ co(K) and I j ⊂ I is an interval,

for any j ∈ {1, . . . ,m}, and un converges to u in L1(I;R3). Hence, un
?
⇀ u. Therefore, without loss of

generality, we may prove the statement for u = a ∈ co(K).
We define the following function:

h(t) :=

a1 if t ∈ (0, λ),
a2 if t ∈ [λ, 1),

where a = λa1 + (1 − λ)a2 with a1, a2 ∈ K and for some λ ∈ [0, 1]. Then the sequence un(t) := h(nt)
converges to u in the weak? topology of L∞ by Riemann-Lebesgue’s lemma. �

Corollary 3.3. The closure of the set L∞(I; K) with respect to the weak? topology of L∞(I;R3) is the
set L∞(I; co(K)).

Proof. Since the space L1(I;R3) is separable, every bounded subset of L∞(I;R3) is metrizable with
respect to the weak? topology of L∞(I;R3). Hence the set L∞(I; K) is metrizable. Therefore, by
Proposition 3.2, we have that the set L∞(I; co(K)) is the weak? closure of the set L∞(I; K). �

3.3. A useful abstract result

In this subsection we cite an abstract Γ-convergence result proved in [2] that will be applied in
Subsection 3.5. For this purpose, we introduce the following notation. Let K ⊂ RN be a compact set
and for all ξ ∈ Z let f ξ : R2N → R be a function such that

(H1) f ξ(x, y) = f −ξ(y, x),
(H2) for all ξ ∈ Z, f ξ(x, y) = +∞ if (x, y) < K2,
(H3) for all ξ ∈ Z there exists Cξ ≥ 0 such that

sup
(x,y)∈K2

| f ξ(x, y)| ≤ Cξ and
∑
ξ∈Z

Cξ < +∞.
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For any n ∈ N we define the functional space

Dn(I;RN) : =
{
u : R→ RN : u is constant in λn(i + [0, 1)) for all λni ∈ I ∩ λnZ

}
.

With the notation already used, we denote the value of the function u in the interval λn(i + [0, 1)) by ui

for all λni ∈ I ∩ λnZ. We introduce the sequence of functionals Fn : L∞(I;RN)→ (−∞,+∞] defined as
follows:

Fn(u) :=


∑
ξ∈Z

∑
i∈Rξn(I)

λn f ξ(ui, ui+ξ) for u ∈ Dn(I;RN),

+∞ for u ∈ L∞(I;RN) \ Dn(I;RN),

where Rξ
n(I) := {λni ∈ I ∩ λnZ : λni + ξ ∈ I ∩ λnZ}, for ξ ∈ Z. For any open and bounded set A ⊂ R

and for every u : Z→ RN , we define the discrete average of u in A as

(u)1,A :=
1

#(Z ∩ A)

∑
i∈Z∩A

ui.

Theorem 3.4 (See [2]). Let { f ξ}ξ∈Z be a family of functions that satisfies H1, H2, H3. Then the
sequence Fn Γ-converges, as n→ +∞, with respect to the weak? topology of L∞(I;RN), to

F(u) :=


∫

I
fhom(u(t)) dt for u ∈ L∞(I; co(K)),

+∞ for u ∈ L∞(I;RN) \ L∞(I; co(K)),

where fhom : RN → R is given by the following homogenization formula

fhom(z) = lim
ρ→0

lim
k→+∞

1
k

inf


∑
ξ∈Z

∑
β∈Rξ1((0,k))

f ξ(u(β), u(β + ξ))
∣∣∣∣∣ u s.t. (u)1,(0,k) ∈ B(z, ρ)

 .
3.4. The energy model and its ground states

This subsection is devoted to the mathematical formulation of the model and the characterization of
its ground states.

Let α > 0 be a fixed parameter and let {kn}n∈N⊂R
+ be a divergent sequence of positive numbers.

Denoting

In(I) := (I ∩ λnZ) \
{
λn

(⌊
1
λn

⌋
− 1

)
, λn

⌊
1
λn

⌋}
,

and in general if J = (a, b) ⊂ I we define

In(J) := (J ∩ λnZ) \
{
λn

(⌊
b
λn

⌋
− 1

)
, λn

⌊
b
λn

⌋}
.

We define the energy of the system as the sum of two addends. The first addend is a bulk scaled energy
of a frustrated F-AF spin chain, En : PCλn → (−∞,+∞), having the following form:

En(u) := λn

∑
i∈In(I)

[
−αui · ui+1 + ui · ui+2

]
.
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The second addend of the energy, Pn : PCλn → [0,+∞), is a term of confinement in S 1 ∪ S 2 and is
defined as follows:

Pn(u) := λnkn |DA(u)| (I),

where A is the function defined in formula (3.2). We consider the family of energies En : PCλn →

(−∞,+∞) defined by
En(u) = En(u) + Pn(u).

Furthermore, we define the functional Hn : PCλn → [0,+∞) by

Hn(u) :=
1
2
λn

∑
i∈In(I)

∣∣∣∣∣ui+2 −
α

2
ui+1 + ui

∣∣∣∣∣2 .
If u ∈ PCλn , since |ui| = 1 for all λni ∈ I ∩ λnZ, thanks to the boundary condition contained in the
definition of PCλn (see (3.1)), we compute:

Hn(u) =
1
2
λn

∑
i∈In(I)

(
2 +

α2

4
+ 2ui · ui+2 − αui · ui+1 − αui+1 · ui+2

)
=

1
2

∑
i∈In(I)

λn

[
− α(ui · ui+1 + ui+1 · ui+2) + 2ui · ui+2

]
+ λn

(
1 +

α2

8

)
#In(I)

= En(u) + λn

(
1 +

α2

8

)
#In(I). (3.7)

Thus we gain a new expression for En:

En = Hn + Pn − λn

(
1 +

α2

8

)
#In(I). (3.8)

Thanks to this decomposition, we characterize the ground states of En.

Proposition 3.5 (Characterization of the ground states of En). Let 0 < α ≤ 4. Then, for n ∈ N
sufficiently large, it holds

min
u∈PCλn

En(u) = −λn#In(I)
[
R2

(
1 +

α2

8

)
+ (α − 1)(1 − R2)

]
.

Furthermore, a minimizer un of En over PCλn takes values only in one circle S `, with ` ∈ {1, 2}, and
satisfies

πv⊥
`
ui

n · πv⊥
`
ui+1

n = R2α

4
and πv⊥

`
ui

n · πv⊥
`
ui+2

n = R2
(
α2

8
− 1

)
, ∀i ∈ In(I).

Proof. Let us postpone the proof of the following equality:

min
u∈PCλn

u(I)⊂S 1 or u(I)⊂S 2

En(u) = −λn#In(I)
[
R2

(
1 +

α2

8

)
+ (α − 1)(1 − R2)

]
(3.9)
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after the next claim. We claim that, for n sufficiently large, if u ∈ PCλn is a minimizer of En, then
u(I) ⊂ S 1 or u(I) ⊂ S 2. We may assume that the open partition associated with u is {I1, I2}, i.e., M = 2,
and u(I1) ⊂ S 1, u(I2) ⊂ S 2. The general case M ∈ N can be proved similarly. We have that

En(u) = En(u) + λnknc = λn

∑
i∈In(I1)∪In(I2)

[
−αui · ui+1 + ui · ui+2

]
+ λn

∑
i∈In(I)\(In(I1)∪In(I2))]

[
−αui · ui+1 + ui · ui+2

]
+ λnknc,

(3.10)

where c := |v1 − v2|. We observe that #[In(I) \ (In(I1) ∪ In(I2))] ≤ 2. We define

L := min {−αu · v + u · w − αv · w + v · z : u, v ∈ S 1, w, z ∈ S 2}

and we observe that
L ≤

∑
i∈In(I)\(In(I1)∪In(I2))

[
−αui · ui+1 + ui · ui+2

]
.

Therefore by the formula (3.10) we have that

min
u∈PCλn
u(I1)⊂S 1

En(u) + min
u∈PCλn
u(I2)⊂S 2

En(u) + λn(L + knc) ≤ En(u). (3.11)

In order to prove the claim we are left to show that, for n ∈ N sufficiently large,

min
u∈PCλn

u(I)⊂S 1 or u(I)⊂S 2

En(u) < min
u∈PCλn
u(I1)⊂S 1

En(u) + min
u∈PCλn
u(I2)⊂S 2

En(u) + λn(L + knc), (3.12)

which is equivalent to prove that

− λn#In(I)
[
R2

(
1 +

α2

8

)
+ (α − 1)(1 − R2)

]
< −λn(#In(I1) + #In(I2))

[
R2

(
1 +

α2

8

)
+ (α − 1)(1 − R2)

]
+ λn(L + knc),

where we used formula (3.9). Since #In(I)− #In(I1)− #In(I2) ≤ 2, R ≤ 1 and α ≤ 4, we have that, for
n sufficiently large,

−λn(#In(I) − #In(I1) − #In(I2))
[
R2

(
1 +

α2

8

)
+ (α − 1)(1 − R2)

]
≤ 12λn < λn(L + knc),

because kn → +∞. We have proved the validity of (3.12). Thus, combining (3.12) and (3.11), we get

min
u∈PCλn

En(u) = min
u∈PCλn

u(I)⊂S 1 or u(I)⊂S 2

En(u).

We prove that

min
u∈PCλn

u(I)⊂S 1 or u(I)⊂S 2

En(u) = −λn#In(I)
[
R2

(
1 +

α2

8

)
+ (α − 1)(1 − R2)

]
.
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We fix ` ∈ {1, 2} and consider u ∈ PCλn such that u(I) ⊂ S `. By geometric and trigonometric identities
we deduce that

ui · ui+1 = 1 − R2 + πui · πui+1,

where πui := πv⊥
`
ui. Of course an analogous statement holds for ui · ui+2. Thus

En(u) =
∑

i∈In(I)

λn[−απui · πui+1 + πui · πui+2] − (α − 1)(1 − R2)λn#In(I)

= Ẽn(u) − (α − 1)(1 − R2)λn#In(I), (3.13)

where we have defined
Ẽn(u) :=

∑
i∈In(I)

λn[−απui · πui+1 + πui · πui+2].

Now we are led to minimize Ẽn. We find its minimum by following the same argument in [12]. With
an easy computation similar to the one in (3.7), we remark that

Ẽn(u) =
1
2
λn

∑
i∈In(I)

∣∣∣∣∣πui+2 −
α

2
πui+1 + πui

∣∣∣∣∣2− R2
(
1 +

α2

8

)
λn#In(I)

= H̃n(u) − R2
(
1 +

α2

8

)
λn#In(I), (3.14)

where

H̃n(u) :=
1
2
λn

∑
i∈In(I)

∣∣∣∣∣πui+2 −
α

2
πui+1 + πui

∣∣∣∣∣2 .
We fix φ ∈

[
− π

2 ,
π
2

]
so that cos φ = α

4 . We may assume for simplicity of notation that v` = en. Let

ui := (R cos(φi),R sin(φi),
√

1 − R2) ∈ S `, ∀i ∈ I ∩ λnZ,

so that πui = (R cos(φi),R sin(φi), 0). By trigonometric identities, we have that

πui + πui+2 = 2 cos(φ)πui+1 =
α

2
πui+1, ∀i ∈ In(I).

Remarking that H̃n(u) = 0, we combine the previous identity with (3.14) to get that

min
u∈PCλn

u(I)⊂S 1 or u(I)⊂S 2

Ẽn(u) = −R2
(
1 +

α2

8

)
λn#In(I).

The computation of the minimum follows from (3.13).
Now we consider a minimizer u ∈ PCλn of En. For n sufficently large, it must hold that u(I) ⊂ S `,

for some ` ∈ {1, 2}, and

Ẽn(u) = −R2
(
1 +

α2

8

)
λn#In(I),

thus implying that H̃n(u) = 0. It follows that

πui+1 =
2
α

(
πui + πui+2), ∀i ∈ In(I).
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Squaring the modulus of both sides in the previous equality, we infer

πui · πui+2 = R2
(
α2

8
− 1

)
.

Hence
πui · πui+1 =

2
α

(
πui · πui + πui · πui+2) =

2
α

(
R2 + πui · πui+2) = R2α

4
,

which concludes the proof. �

From now on we assume that n is sufficiently large to satisfy the thesis of the above proposition.

Remark 3.6. The case α > 4 is trivial and the ground states of En are all ferromagnetic, i.e., ui = u,
for all i ∈ I ∩ λnZ and for some u ∈ S 1 ∪ S 2. Indeed, denoting by E(α=4)

n the energy of formula (3.8)
for α = 4, we have that

En(u) = E(α=4)
n (u) − λn(α − 4)

∑
i∈In(I)

ui · ui+1,

for all u ∈ PCλn . By the above proposition, the energy E(α=4)
n is minimized on ferromagnetic states,

which trivially also holds true for the second term in the above sum. The minimal value of En is

min
u∈PCλn

En(u) = −λn(α − 1)#In(I).

3.5. Zero order Γ-convergence of En

In this subsection we study the Γ-convergence of En at the zero order. With a slight abuse of notation,
we extend the energies En, Pn, En and Hn to the space L∞(I; co(S 1)∪ co(S 2)), setting their value as +∞

in L∞(I; co(S 1) ∪ co(S 2)) \ PCλn . With a slight abuse of notation, we extend the projection map A to
the space L∞(I; co(S 1) ∪ co(S 2)) by setting

A(u)(t) =

v1 if u(t) ∈ co(S 1),
v2 if u(t) ∈ co(S 2),

for u ∈ L∞(I; co(S 1) ∪ co(S 2)). Furthermore we define

D :=
{
u ∈ L∞(I; co(S 1) ∪ co(S 2)) : A(u) ∈ BV(I; co(S 1) ∪ co(S 2))

}
= A−1(BV(I; co(S 1) ∪ co(S 2))).

(3.15)

It is natural to extend Definition 3.1 to any spin field u ∈ D. The following notion of convergence will
be used.

Definition 3.7. Let {un}n∈N ⊂ L∞(I; co(S 1) ∪ co(S 2)) and u ∈ D. We say that un D-converges to u (we

write un
D
→ u) if and only if un

?
⇀ u in the weak? topology of L∞(I;R3) and A(un) converges to A(u)

weakly? in BV(I; {v1, v2}).

Remark 3.8. We observe that the notion of convergence introduced in the previous definition is
induced by the smallest topology on D containing the set{

A : A is an open set of the weak? topology of L∞(I; co(S 1) ∪ co(S 2))
or A = A−1(U), where U is an open set of the weak? topology of BV(I; co(S 1) ∪ co(S 2))

}
.

For further details about the weak? topology of a BV space we address the reader to [3, Remark 3.12].
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We prove the following proposition, which relies on the properties contained in Subsection 3.2 and
will be useful in this subsection.

Proposition 3.9. Let {un}n∈N ⊂ L∞(I; S 1 ∪ S 2) be such thatA(un) ∈ BV(I; {v1, v2}), for any n ∈ N, and
let Cn(un) = {In

j | j ∈ {1, . . . ,M(un)}} be the open partition associated with un. We assume that

sup
n∈N

M(un) < +∞. (3.16)

Then there exists u ∈ D such that, up to subsequences, un
D
→u.

Proof. By Proposition 3.2 it follows that, up to a subsequence, un
?
⇀ u ∈ L∞(I; co(S 1 ∪ S 2)). Thanks

to (3.16), up to the extraction of a subsequence, M = M(un) is independent of n ∈ N. Up to
subsequence, In

j → I j in the Hausdorff sense, for some intervals I j and for any j ∈ {1, . . . ,M}. Note
that some I j could be empty. Let us fix j ∈ {1, · · · ,M}. For all ε > 0 there exists n0 ∈ N such that

(I j)ε = {t ∈ I j : dist(t, ∂I j) > ε} ⊂ In
j ∀n ≥ n0.

We define the following two sets:

A1 =
{
n ≥ n0 : un(t) ∈ S 1 for a.e. t ∈ (I j)ε

}
,

A2 =
{
n ≥ n0 : un(t) ∈ S 2 for a.e. t ∈ (I j)ε

}
.

One of the following three alternatives may occur:

1. #A1 = ∞, #A2 < ∞; 2. #A1 < ∞, #A2 = ∞; 3. #A1 = ∞, #A2 = ∞.

In the first case we have that un ∈ L∞((I j)ε; S 1) for all n ≥ n0, up to finitely many indices of the

sequence. Thus, by Proposition 3.2, un
?
⇀ u ∈ L∞((I j)ε; co(S 1)) and hence, by the arbitrariness of

ε > 0, we obtain that u ∈ L∞(I j; co(S 1)). The second case is fully analogous to the first case. If we

repeat the above argument for all j ∈ {1, . . .,M}, we deduce that un
?
⇀ u.

Finally, we get the thesis by remarking that

lim
n→+∞

∫
I
|A(un) −A(u)| dt = lim

n→+∞

M∑
j=1

∫
I j

|A(un) −A(u)| dt = 0.

The third alternative leads to a contradiction. Indeed, if it holds true, we can find two subsequences
{n(1)

k }k∈N and {n(2)
k }k∈N such that un(1)

k
∈ L∞((I j)ε; S 1) and un(2)

k
∈ L∞((I j)ε; S 2), for all k ∈ N. By

Proposition 3.2, there exist u1 ∈ L∞((I j)ε; co(S 1)) and u2 ∈ L∞((I j)ε; co(S 2)) such that un(1)
k

?
⇀ u1

and un(2)
k

?
⇀ u2. On the other hand, applying again Proposition 3.2, we infer that un

?
⇀ u ∈

L∞(I; co(S 1 ∪ S 2)). Then, by the uniqueness of the limit in the weak? topology, we infer that
u1(t) = u2(t) = u(t) for almost every t ∈ (I j)ε, which is a contradiction since co(S 1) ∩ co(S 2) = ∅. �

Firstly, we study the Γ-convergence of En. The following theorem relies on a straightforward
application of Theorem 3.4.
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Theorem 3.10. The sequence En Γ-converges to the functional

E(u) :=


∫

I
fhom(u(t)) dt if u ∈ L∞(I; co(S 1 ∪ S 2)),

+∞ otherwise,

with respect to the weak? topology of L∞(I;R3), where fhom : co(S 1 ∪ S 2)→ R is defined by

fhom(z) = lim
ρ→0

lim
k→+∞

1
k

inf

 k−2∑
i=1

[
−αui · ui+1 + ui · ui+2

] ∣∣∣∣∣ u s.t. (u)1,(0,k) ∈ B(z, ρ)

 . (3.17)

Proof. The result immediately follows by applying Theorem 3.4 to

f ξ(u, v) =


−α2 u · v if |ξ| = 1,
1
2u · v if |ξ| = 2,
0 otherwise,

where u, v ∈ K := S 1 ∪ S 2, extended to +∞ outside K. �

Remark 3.11. The function fhom defined in (3.17) does not depend on the parameter λn. Therefore, in
the theorem above the Γ-limit does not depend on the choice of λn.

Furthermore, an analogous statement of Theorem 3.10 above can be obtained if the functional En

is defined only in L∞(I; S `) for some ` ∈ {1, 2} (see [12, Theorem 3.4]). Its Γ-limit has the same form
and it is finite on L∞(I; co(S `)).

The following theorem is the main result of this subsection.

Theorem 3.12 (Zero order Γ-convergence of En). Assume that there exists lim
n→+∞

λnkn =: η ∈ (0,+∞].
Then the following Γ-convergence and compactness results hold true.

(i) If η ∈ (0,+∞), then En Γ-converges to the functional

E(u) =


∫

I
fhom(u(t)) dt + η|DA(u)|(I) if u ∈ D,

+∞ if u ∈ L∞(I; co(S 1) ∪ co(S 2)) \D,

with respect to the D-convergence of Definition 3.7, where fhom and D are defined in (3.17) and
(3.15) respectively. Moreover if {un}n∈N ⊂ L∞(I; co(S 1) ∪ co(S 2)) satisfies

sup
n∈N
En(un) < +∞,

then, up to a subsequence, un
D
→ u ∈ D.

(ii) If η = +∞, then En Γ-converges to the functional

E(u) :=


∫

I
fhom(u(t)) dt if u ∈ L∞(I; co(S 1))∪L∞(I; co(S 2)),

+∞ if u ∈ L∞(I; co(S 1) ∪ co(S 2)) \ (L∞(I; co(S 1)) ∪ L∞(I; co(S 2))),
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with respect to the weak? topology of L∞(I;R3), where fhom is defined in (3.17). Moreover if
{un}n∈N ⊂ L∞(I; co(S 1) ∪ co(S 2)) satisfies

sup
n∈N
En(un) < +∞

then, up to a subsequence, un
?
⇀ u for some u ∈ L∞(I; co(S 1))∪L∞(I; co(S 2)).

Proof. We first deal with case (i). We start by proving the compactness result. Let {un}n∈N ⊂

L∞(I; co(S 1) ∪ co(S 2)) be such that
sup
n∈N
En(un) < C, (3.18)

for some C > 0. Thus we have that {un}n∈N ⊂ PCλn . Let us consider the open partition Cn(un) =

{(I j)n | j ∈ {1, . . . ,M(un)}} associated with un, where M(un) − 1 =
|DA(un)|(I)
|v1−v2 |

∈ N. By formula (3.8) and
by the definition ofA, we compute

En(un) = Hn(un) + Pn(un) − λn

(
1 +

α2

8

)
#In(I) ≥ Pn(un) − λn

(
1 +

α2

8

)
#In(I)

= knλn |DA(un)| (I) − λn

(
1 +

α2

8

)
#In(I)

= knλn(M(un) − 1)|v1 − v2| − λn

(
1 +

α2

8

)
#In(I)

≥ −C(α) + knλn(M(un) − 1)|v1 − v2|,

(3.19)

for some constant C = C(α) > 0, where the last inequality is obtained by observing that λn#In(I) =

λn

⌊
1
λn

⌋
− λn → 1, as n → +∞, and thus it is bounded. Therefore by formulae (3.18) and (3.19) we

obtain that
sup
n∈N

M(un) < C(η,C, α, |v1 − v2|).

Hence, the sequence {un}n∈N satisfies the hypotheses of Proposition 3.9 and so we deduce the existence

of u ∈ D such that, up to a subsequence, un
D
→ u.

Now we prove the liminf inequality. Let {un}n∈N ⊂ L∞(I; co(S 1) ∪ co(S 2)) be such that un
D
→ u ∈ D.

It is not restrictive to assume that {un}n∈N ⊂ PCλn . By the liminf inequality of Theorem 3.10 we have

lim inf
n→+∞

En(un) ≥
∫

I
fhom(u(t)) dt. (3.20)

On the other hand, by the lower semicontinuity of the total variation respect the weak? convergence in
BV(I; {v1, v2}), we have

lim inf
n→+∞

Pn(un) = lim inf
n→+∞

knλn|DA(un)|(I) ≥ η|DA(u)|(I). (3.21)

Hence by formulae (3.20) and (3.21) we obtain

lim inf
n→+∞

En(un) ≥ lim inf
n→+∞

En(un) + lim inf
n→+∞

Pn(un) ≥
∫

I
fhom(t) dt + η|DA(u)|.
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We finally prove the limsup inequality. Let u ∈ L∞(I; co(S 1)∪ co(S 2)). We may assume that u ∈ D.
SinceA(u) ∈ BV(I; co(S 1)∪co(S 2)), it is not restrictive to suppose that the number of jumps of u from
one circle to the other is one, i.e., |DA(u)|(I) = |v1 − v2|. Furthermore, by the same density argument
exploited in Proposition 3.2 and the locality of the construction, we may assume that

u(t) =

a1 if t ∈
[
0, 1

2

]
,

a2 if t ∈
(1

2 , 1
]
,

where a1 ∈ co(S 1) and a2 ∈ co(S 2). Let {v j
n}n∈N ∈ L∞(I; S j) be the recovery sequence for the constant

function a j obtained by the Γ-convergence result in Remark 3.11 with 2λn as the spacing of the lattice,

i.e., v j
n

?
⇀ a j and

fhom(a j) = lim
n→+∞

En(v j
n) = lim

n→+∞
2λn

⌊
1

2λn

⌋
−2∑

i=0

[
−α(v j

n)i · (v j
n)i+1 + (v j

n)i · (v j
n)i+2

]
. (3.22)

We define

un(t) =

v1
n(2t) if t ∈

[
0, 1

2

]
,

v2
n(2t − 1) if t ∈

( 1
2 , 1

]
.

Remarking that, for all n ∈ N,

A(un)(t) = A(u)(t) =

v1 if t ∈
[
0, 1

2

]
,

v2 if t ∈
(1

2 , 1
]
,

we deduce that un
D
→ u. We compute

En(un) =
1
2

⌊
1

2λn

⌋
−2∑

i=0

2λn

[
−α(v1

n)i · (v1
n)i+1 + (v1

n)i · (v1
n)i+2

]

+
1
2

⌊
1

2λn

⌋
−2∑

i=0

2λn

[
−α(v2

n)i · (v2
n)i+1 + (v2

n)i · (v2
n)i+2

]

+

⌊
1

2λn

⌋∑
i=

⌊
1

2λn

⌋
−1

λn

[
−αui

n · u
i+1
n + ui

n · u
i+2
n

]
.

(3.23)

We observe that ∣∣∣∣∣∣∣∣∣
⌊

1
2λn

⌋∑
i=

⌊
1

2λn

⌋
−1

λn

[
−αui

n · u
i+1
n + ui

n · u
i+2
n

]∣∣∣∣∣∣∣∣∣ ≤ C(α)λn → 0, (3.24)

as n→ +∞. By formulae (3.22), (3.23), (3.24), we obtain that

lim
n→+∞

En(un)=
fhom(a1) + fhom(a2)

2
=

∫
I

fhom(u(t)) dt. (3.25)
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Since |DA(un)| (I) = |DA(u)| (I) = |v1 − v2| we get

lim
n→+∞

Pn(un) = lim
n→+∞

λnkn |v1 − v2| = η |v1 − v2| . (3.26)

Combining (3.25) and (3.26), we deduce the limsup inequality.
Now we deal with case (ii). Firstly, we prove the compactness result. Let {un}n∈N ⊂

L∞(I; co(S 1) ∪ co(S 2)) be such that
sup
n∈N
En(un) < C,

for some constant C > 0. Thus we have that {un}n∈N ⊂ PCλn . With the same compactness argument

used in the previous case, we deduce the existence of u ∈ D such that un
D
→ u. In particular un

?
⇀ u.

By the lower semicontinuity of the total variation respect the weak? convergence in BV(I; {v1, v2}),
remarking that En ≥ −C(α), for some positive constant C(α), we get

0 = lim inf
n→+∞

C
λnkn
≥ lim inf

n→+∞

1
λnkn

[En(un) + λnkn|DA(un)|(I)]

≥ lim inf
n→+∞

(
−

C(α)
λnkn

+ |DA(un)|(I)
)
≥ |DA(u)|(I),

hence u ∈ L∞(I; co(S 1)) ∪ L∞(I; co(S 2)).
Let us prove the liminf inequality. Let {un}n∈N ⊂ L∞(I; co(S 1) ∪ co(S 2)) be such that un

?
⇀ u ∈

L∞(I; co(S 1) ∪ co(S 2)) and suppose that

lim inf
n→+∞

En(un) < +∞.

Up to the extraction of a subsequence, we may assume that the previous lower limit is actually a limit.
By compactness, we infer that un

?
⇀u ∈ L∞(I; co(S 1)) ∪ L∞(I; co(S 2)). Hence, by Theorem 3.10, we

obtain

lim inf
n→+∞

En(un) ≥ lim inf
n→+∞

En(un) ≥
∫

I
fhom(u(t)) dt.

We finally prove the limsup inequality. Let u ∈ L∞(I; co(S 1)), the case u ∈ L∞(I; co(S 2)) being
fully analogous. The recovery sequence obtained from Remark 3.11, {un}n∈N ⊂ L∞(I; S 1), satisfies the
limsup inequality. �

3.6. First order Γ-convergence of En

In this subsection and in the following one we study the system when it is close to the
helimagnet/ferromagnet transition point as the number of particles diverges. In what follows we let
α = αn and we assume that αn → 4−, as n → +∞, and that n is sufficiently large so that Proposition
3.5 holds true.

Once again, with a slight abuse of notation, we extend the energies En, Pn and En to the space
L∞(I;R3), setting their value as +∞ in L∞(I;R3) \ PCλn . Similarly, we extend A from L∞(I; co(S 1) ∪
co(S 2)) to L∞(I;R3).

Mathematics in Engineering Volume 5, Issue 6, 1–37.



19

The main result of this subsection, Theorem 3.16, concerns the phenomenon of magnetic anisotropy
transitions. Having in mind Proposition 3.5 and (3.9), we define the functional

Gn := En − min
w∈PCλn

En(w) = En − λn#In(I)
[
R2

(
1 +

α2
n

8

)
+ (αn − 1)(1 − R2)

]
.

At this point we need to introduce modified spin fields in order to understand better the asymptotic
behaviour of the energy Gn. Let u ∈ PCλn and let Cn(u) = {I j | j ∈ {1, . . . ,M(u)}} be the open partition
associated with u, with I j = (t j, t j+1), for j ∈ {1, . . . ,M(u) − 1}, and IM(u) = (tM(u), 1). We set tM(u)+1 :=
λn

⌊
1
λn

⌋
. Since u is piecewise constant on the edges of the lattice [0, 1] ∩ λnZ, we have that t1 = 0 and

t2, · · · , tM(u)+1 are multiples of λn, so that t j

λn
∈ N, for any j ∈ {2, . . . ,M(u) + 1}.

We define the auxiliary spin ũI j : I j → S 1 ∪ S 2 by

ũI j(t) =

u(t) if t ∈ [t j, t j+1),
w j if t = t j+1,

and we set ũIM(u)(t) = wM(u) for t ∈ (tM(u)+1, 1], where w j ∈ S 1 ∪ S 2 is a vector such that the following
boundary condition is satisfied in I j:

u
t j+1
λn
−1
· w j = u

t j
λn · u

t j
λn

+1. (3.27)

We prove the following decomposition lemma.

Lemma 3.13 (Decomposition of Gn). Let u ∈ PCλn and let Cn(u) = {I j | j ∈ {1, . . . ,M(u)}} be the open
partition associated with u. We have

Gn(u) =

M(u)∑
j=1

MMn(̃uI j) +

M(u)−1∑
j=1

(Rn) j(u) + (Rn)M(u)(u) + Rn(u), (3.28)

where, for all j ∈ {1, . . . ,M(u)},

MMn(̃uI j) := λn

∑
i∈In(I j)

(
−αnũi

I j
· ũi+1

I j
+ ũi

I j
· ũi+2

I j

)
+ λnR2

(
1 +

α2
n

8

)
#In(I j)

+ λn(αn − 1)(1 − R2)
(#In(I) − M(u) + 1)

M(u)
,

and, for all j ∈ {1, . . . ,M(u) − 1},

(Rn) j(u) := λn

(
− αnu

t j+1
λn
−1
· u

t j+1
λn + u

t j+1
λn
−1
· u

t j+1
λn

+1 + u
t j+1
λn
−2
· u

t j+1
λn − u

t j+1
λn
−2
· w j

)
,

(Rn)M(u)(u) := λn

(
u

tM(u)+1
λn
−2
· u

tM(u)+1
λn − u

tM(u)+1
λn
−2
· wM(u)

)
,

Rn(u) := λnR2
(
1 +

α2
n

8

)
(M(u) − 1) + λn(αn − 1)(1 − R2)(M(u) − 1).
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Proof. Remarking that

In(I j) =

{
t j

λn
,

t j

λn
+ 1, . . . ,

t j+1

λn
− 2

}
, ∀ j ∈ {1, . . . ,M(u)},

we may write

Gn(u) + min
w∈PCλn

En(w) = λn

M(u)−1∑
j=1

∑
i∈In(I j)

(
−αnui · ui+1 + ui · ui+2

)
+

M(u)−1∑
j=1

(
− αnu

t j+1
λn
−1
· u

t j+1
λn + u

t j+1
λn
−1
· u

t j+1
λn

+1
)

+
∑

i∈In(IM(u))

(
−αnui · ui+1 + ui · ui+2

)
.

After adding and subtracting the terms u
t j+1
λn
−2
·w j, for any j ∈ {1, . . . ,M(u)}, we interchange u

t j+1
λn
−2
·w j

and u
t j+1
λn
−2
· u

t j+1
λn in the first and the third sums, for any j ∈ {1, . . . ,M(u)}, obtaining

Gn(u) + min
w∈PCλn

En(w)

= λn

[ M(u)∑
j=1

∑
i∈In(I j)

(
−αnũi

I j
· ũi+1

I j
+ ũi

I j
· ũi+2

I j

)
+

M(u)−1∑
j=1

(
− αnu

t j+1
λn
−1
· u

t j+1
λn + u

t j+1
λn
−1
· u

t j+1
λn

+1 + u
t j+1
λn
−2
· u

t j+1
λn − u

t j+1
λn
−2
· w j

)
+

(
u

tM(u)+1
λn
−2
· u

tM(u)+1
λn − u

tM(u)+1
λn
−2
· wM(u)

)]
=

M(u)∑
j=1

MMn(̃uI j) +

M(u)−1∑
j=1

(Rn) j(u) + (Rn)M(u)(u) − λnR2
(
1 +

α2
n

8

) M(u)∑
j=1

#In(I j)

− λn(αn − 1)(1 − R2)(#In(I) − M(u) + 1).

We conclude the proof by computing

− min
w∈PCλn

En(w) − λnR2
(
1 +

α2
n

8

) M(u)∑
j=1

#In(I j)

− λn(αn − 1)(1 − R2)(#In(I) − M(u) + 1)

= λnR2
(
1 +

α2
n

8

) [
#In(I) −

M(u)∑
j=1

#In(I j)
]

+ λn(αn − 1)(1 − R2)(M(u) − 1)

= λnR2
(
1 +

α2
n

8

)
(M(u) − 1) + λn(αn − 1)(1 − R2)(M(u) − 1) = Rn(u),

where we used
M∑
j=1

#In(I j) = #In(I) − M(u)+1. (3.29)

�
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Remark 3.14. In the decomposition (3.28) of Gn(u) the functional MMn(̃uI j) represents the energy
of the j-th modified spin field ũI j , which is localized in one circle. The remainders for such
modifications, (Rn) j(u) and (Rn)M(u)(u), consist of the interactions between spins with values in two
neighboring intervals, I j and I j+1. Furthermore, they contain an additional term linked to the boundary
condition (3.27). The term Rn(u) contains a corrective addend.

Remark 3.15. Following the same computations done in (3.7), we infer that MMn(̃uI j) ≥ 0, for all
j ∈ {1, . . . , M(u)} and u ∈ PCλn .

The next theorem shows that the correct scaling of the energy to capture spin fields’ magnetic
anisotropy transitions is λn. To this end, for M ∈ N, we set

RM := inf
{

lim inf
n→+∞

1
λn

[ M−1∑
j=1

(Rn) j(un) + (Rn)M(un) + Rn(un)
]∣∣∣∣∣{un}n∈N ⊂ PCλn such that

A(un)
?
⇀BV v ∈ BV(I; {v1, v2}), with M =

|Dv|(I)
|v1 − v2|

+ 1 ∈ N
}
.

Theorem 3.16 (First order Γ-convergence of En). Assume that there exists lim
n→+∞

λnkn =: η ∈ (0,+∞).
Then the following compactness and Γ-convergence results hold true:

(i) (Compactness) If for {un}n∈N ⊂ L∞(I;R3) there exists a constant C > 0 independent of n such that

sup
n∈N

Gn(un) ≤ λnC and sup
n∈N

Pn(un) ≤ C, (3.30)

then, up to subsequences,A(un)
?
⇀BVv ∈ BV(I; {v1, v2}).

(ii) (liminf inequality) For all v ∈ BV(I; {v1, v2}) and {un}n∈N ⊂ PCλn such thatA(un)
?
⇀BVv and (3.30)

holds for some constant C > 0, then

lim inf
n→+∞

Gn(un)
λn

≥ RM,

where M =
|Dv|(I)
|v1−v2 |

+ 1 ∈ N.

(iii) (limsup inequality) For all v ∈ BV(I; {v1, v2}) there exists {un}n∈N ⊂ PCλn such that A(un)
?
⇀BVv,

(3.30) holds for some constant C > 0 and

lim
n→+∞

Gn(un)
λn

= RM,

where M =
|Dv|(I)
|v1−v2 |

+ 1 ∈ N.

Proof. We start by proving (i). Let {un}n∈N ⊂ L∞(I;R3) be such that (3.30) holds true. It follows
that {un}n∈N ⊂ PCλn . Since η ∈ (0,+∞), by the second inequality of formula (3.30), we deduce that
the sequence {|DA(un)|(I)}n∈N is bounded and so the sequence {A(un)}n∈N is bounded in the space
BV(I; {v1, v2}). Thus, up to a subsequence, {A(un)}n∈N converges to a function v ∈ BV(I; {v1, v2})
weakly? in BV(I; {v1, v2}).
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We prove (ii). Let v ∈ BV(I; {v1, v2}) and {un}n∈N ⊂ PCλn be such that A(un)
?
⇀BV v and (3.30)

holds. By assumption, {|DA(un)|(I)}n∈N is bounded. Let Cn(un) = {(I j)n | j ∈ {1, . . . ,M(un)}} be the
open partition associated with un. Up to subsequences, we may assume that M = M(un) is independent
of n. By Lemma 3.13, Remark 3.15 and the definition of RM we have

lim inf
n→+∞

Gn(un)
λn

≥ lim inf
n→+∞

M∑
j=1

MMn(̃un(I j)n)
λn

+ lim inf
n→+∞

[ M−1∑
j=1

(Rn) j(un)
λn

+
(Rn)M(un) + Rn(un)

λn

]

≥ lim inf
n→+∞

[ M−1∑
j=1

(Rn) j(un)
λn

+
(Rn)M(un) + Rn(un)

λn

]
≥ RM.

We finally prove (iii). Let v ∈ BV(I; {v1, v2}). It is not restrictive to assume that v = v1χ[0, 1
2 ]+v2χ( 1

2 ,1]
and thus we can choose u ∈ PCλn such thatA(u) = v. By the definition ofRM and by [12, Theorem 4.2],
we gain the existence of {un}n∈N such that A(un)

?
⇀BVA(u), unχ[0, 1

2 ] ∈ S 1, unχ( 1
2 ,1] ∈ S 2 and the

following formulae are satisfied:

lim
n→+∞

1
λn

[ M−1∑
j=1

(Rn) j(un) + (Rn)M(un) + Rn(un)
]

= RM,

(
1 −

αn

4

)− 3
2 MMn

(
unχ[0, 1

2 ]
)

λn
< C,

(
1 −

αn

4

)− 3
2 MMn

(
unχ( 1

2 ,1]
)

λn
< C.

Therefore
lim

n→+∞

Gn(un)
λn

= RM.

�

3.7. Second order Γ-convergence of En

We let α = αn := 4(1 − δn), where {δn}n∈N is a positive vanishing sequence.
At the second order we split the global functional on the 2-dimensional sphere into finitely many

functionals localized in circles, where we repeat the analysis lead in [12]. For each circle S ` we define
a convenient order parameter.

Let u ∈ PCλn . According to the notation introduced in Subsection 3.6, for j ∈ {1, . . . ,M(u)} and
i ∈

{ t j

λn
,

t j

λn
+ 1, . . . , t j+1

λn
− 1

}
, we consider the pair

(̃
ui

I j
, ũi+1

I j

)
of vectors that take values in S `, for some

` = ` j ∈ {1, 2}. We associate each pair with the corresponding oriented angle θi
I j
∈ [−π, π) with vertex

in the center of the circle S ` given by

θi
I j

:= χ
[
πv⊥

`
(̃ui

I j
), πv⊥

`
(̃ui+1

I j
)
]

arccos
(
πv⊥

`
(̃ui

I j
) · πv⊥

`
(̃ui+1

I j
)
)
.

We set

wi
I j

:=

√
8

4 − αn
sin

θi
I j

2
=

√
2
δn

sin
θi

I j

2
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and

w(t) = wi
I j

for t ∈ λn{i + [0, 1)}, i ∈
{

t j

λn
, . . . ,

t j+1

λn
− 1

}
, j ∈ {1, . . . ,M(u)}.

We extend w(t) = w
t j+1
λn
−1

IM(u)
, for t ∈ [tM(u)+1, 1], so that w is well-defined in the whole interval I. Note that

we can define a map Tn by setting

Tn(u) := (w,A(u)), ∀u ∈ PCλn ,

and we denote P̃Cλn := Tn(PCλn). We observe that if h = Tn(u) = Tn(v) then u(t) and v(t) belong to
the same circle, for any t ∈ I, and u, v differ by a constant rotation. Furthermore, Gn(u) = Gn(v) and
Pn(u) = Pn(v). The same identity holds for the functionals defined in Lemma 3.13. Therefore, with a
slight abuse of notation, we now set

Gn(h) :=

Gn(u) if h ∈ P̃Cλn ,
+∞ otherwise,

Pn(h) :=

Pn(u) if h ∈ P̃Cλn ,
+∞ otherwise,

MMn(h|I j) :=

MMn(̃uI j) if h ∈ P̃Cλn ,
+∞ otherwise,

(Rn) j(h) :=

(Rn) j(u) if h ∈ P̃Cλn ,
+∞ otherwise,

(Rn)M(u)(h) :=

(Rn)M(u)(u) if h ∈ P̃Cλn ,
+∞ otherwise,

Rn(h) :=

Rn(u) if h ∈ P̃Cλn ,
+∞ otherwise,

for j ∈ {1, . . . ,M(h)}, where h ∈ L1(I;R × {v1, v2}), h = Tn(u) and M(h) := M(u).
We want to study the convergence of the functional

Gn(h) =


Gn(h) −

M(h)−1∑
j=1

(Rn) j(h) + (Rn)M(h)(h) + Rn(h) if h ∈ P̃Cλn ,

+∞ otherwise,

=

M(h)∑
j=1

MMn(̃h|I j)

for h ∈ L1(I;R × {v1, v2}). In order to establish the related result, we need a notion of convergence.

Definition 3.17. Let {hn}n∈N ⊂ P̃Cλn and h ∈ L1(I;R × {v1, v2}). We say that hn θ-converges to h (we

write hn
θ
−→ h) if and only if the following conditions are satisfied:
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• there exist {un}n∈N ⊂ PCλn and a positive constant C such that if Cn(un) = {(I j)n | j ∈
{1, . . . ,M(un)}} is the open partition associated with un, then

– hn = Tn(un) and Pn(hn) < C,
– M(un)→ M ∈ N as n→ +∞,
– (I j)n → I j in the Hausdorff sense, as n→ +∞, for any j ∈ {1, . . . ,M}.

• hnχ(I j)n → hχI j in L1(I;R × {v1, v2}), for all j ∈ {1, . . . ,M}.

We point out that the intervals I j of the previous definition may be also empty.
The next theorem shows that the correct scaling of the energy to capture spin fields’ chirality

transitions is
√

2λnδ
3
2
n .

Theorem 3.18 (Second order Γ-convergence of En). Assume that there exist lim
n→+∞

λnkn =: η ∈ (0,+∞)

and l := lim
n→+∞

λn

(2δn)
1
2

∈ [0,+∞]. Then the following statements are true:

(i) (Compactness) If for {hn}n∈N ⊂ L1(I;R × {v1, v2}) there exists a constant C > 0 such that

sup
n∈N
G

n
(hn) ≤

√
2λnδ

3
2
n C and sup

n∈N
Pn(hn) ≤ C, (3.31)

then, up to a subsequence, hn
θ
−→ h, where

– if l = 0, h ∈ BV(I; {−1, 1} × {v1, v2});
– if l ∈ (0,+∞), h|I j ∈ H1

|per|(I j;R × {v1, v2}) for all j ∈ {1, . . . ,M(h)};
– if l = +∞, h is piecewise constant with values in R × {v1, v2}.

The space H1
|per|((a, b);R × {v1, v2}) is equal to{

h ∈ H1((a, b);R × {v1, v2}) : |w(a)| = |w(b)| where h = (w,A(u))
}
.

(ii) (liminf inequality)

– If l = 0, for all h = (w,A(u)) ∈ BV(I; {−1, 1} × {v1, v2}) and for all {hn}n∈N ⊂ P̃Cλn such that

hn
θ
−→ h and (3.31) holds true for some constant C > 0, then

lim inf
n→+∞

Gn(hn)
√

2λnδ
3
2
n

≥
4
3

R2
M(h)∑
j=1

|Dw| (I j).

– If l ∈ (0,+∞), for all h = (w,A(u)) ∈ L1(I;R × {v1, v2}) such that h|I j ∈ H1
|per|(I j;R × {v1, v2}),

for every j ∈ {1, . . . ,M(h)}, and for all {hn}n∈N ⊂ P̃Cλn such that hn
θ
−→ h and (3.31) holds

true for some constant C > 0, then

lim inf
n→+∞

Gn(hn)
√

2λnδ
3
2
n

≥

M(h)∑
j=1

R2
[
1
l

∫
I j

(w2(x) − 1)2 dx + l
∫

I j

(w′(x))2 dx
]
.
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– If l = +∞, for all piecewise constant functions h : I → R × {v1, v2} and for all {hn}n∈N ⊂ P̃Cλn

such that hn
θ
−→ h, and (3.31) holds true for some constant C > 0, then

lim inf
n→+∞

Gn(hn)
√

2λnδ
3
2
n

≥ 0.

(iii) (limsup inequality)

– If l = 0, for all h = (w,A(u)) ∈ BV(I; {−1, 1} × {v1, v2}) there exists {hn}n∈N ⊂ P̃Cλn such that

hn
θ
−→ h, (3.31) holds true for some constant C > 0 and

lim
n→+∞

Gn(hn)
√

2λnδ
3
2
n

=
4
3

R2
M∑
j=1

|Dw| (I j).

– If l ∈ (0,+∞), for all h = (w,A(u)) ∈ L1(I;R × {v1, v2}) such that h|I j ∈ H1
|per|(I j;R × {v1, v2})

for all j ∈ {1, . . . ,M(h)}, there exists {hn}n∈N ⊂ P̃Cλn such that hn
θ
−→ h, (3.31) holds true for

some constant C > 0 and

lim
n→+∞

Gn(hn)
√

2λnδ
3
2
n

=

M∑
j=1

R2
[
1
l

∫
I j

(w2(x) − 1)2 dx + l
∫

I j

(w′(x))2 dx
]
.

– If l = +∞, for all piecewise constant functions h : I → R×{v1, v2} there exists {hn}n∈N ⊂ P̃Cλn

such that hn
θ
−→ h, (3.31) holds true for some constant C > 0 and

lim
n→+∞

Gn(hn)
√

2λnδ
3
2
n

= 0.

Proof. We prove the statement only in the case l = 0, the other cases being fully analogous. We start
by proving (i). Let {hn}n∈N ⊂ L1(I;R × {v1, v2}) be such that (3.31) holds true for some constant C > 0.
By formula and Remark 3.15, we infer that

MMn(hn|In
j
) ≤ λnδ

3
2
n C, for all j ∈ {1, . . . ,M(hn)} and n ∈ N.

It is easy to see that, up to subsequences, M = M(hn) is independent of n ∈ N and the interval
(I j)n → I j = (t j−1, t j), in the Hausdorff sense, for every j ∈ {1, . . . ,M(hn)} (it may happen that I j = ∅,
for some j). In the following computations we drop for simplicity the dependence on n writing I j in
place of (I j)n.

Reasoning as in Proposition 3.5, thanks to (3.29), we compute

Gn(hn) =

M∑
j=1

λn

∑
i∈In(I j)

(
−αnπũi

nI j
· πũi+1

nI j
+ πũi

nI j
· πũi+2

nI j

)
+ λnR2

(
1 +

α2
n

8

) M∑
j=1

#In(I j)

+ λn(αn − 1)(1 − R2)(#In(I) − M + 1) − λn(αn − 1)(1 − R2)
M∑
j=1

#In(I j)
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=

M∑
j=1

λn

∑
i∈In(I j)

(
−αnπũi

nI j
· πũi+1

nI j
+ πũi

nI j
· πũi+2

nI j

)
+ λnR2

(
1 +

α2
n

8

)
(#In(I) − M + 1),

where we set πũi
nI j

:= πv⊥
`
ũi

nI j
, with ` = ` j ∈ {1, 2} such that ũi

nI j
∈ S `.

By the definition of ũi
nI j

and geometric and trigonometric identities, we observe that

R2 − πũi
nI j
· πũi+1

nI j
= 2R2 sin2

(θi
I j

2

)
,

R2 − πũi
nI j
· πũi+2

nI j
= R2[1 − cos(θi

I j
+ θi+1

I j
)],

where, for simplicity of notation, we have dropped the dependence on n of the angles θi
I j

. Taking into
account the previous formulae, we gain

Gn(hn) = λn

M∑
j=1

∑
i∈In(I j)

{
αn

[
R2 − πũi

nI j
· πũi+1

nI j

]
−

[
R2 − πũi

nI j
· πũi+2

nI j

]}
+ λnR2

(
1 +

α2
n

8

)
(#In(I) − M + 1) + λnR2(1 − αn)

M∑
j=1

#In(I j)

= λnR2
M∑
j=1

∑
i∈In(I j)

2αn sin2
(θi

I j

2

)
−

[
1 − cos(θi

I j
+ θi+1

I j
)
]

+ λnR2
(
2 − αn +

α2
n

8

)
(#In(I) − M + 1). (3.32)

The proof can be carried out as in [12, Theorem 4.2]. For reader’s convenience we give here its sketch.
By trigonometric identities, it holds

8 sin2
(θi

I j

2

)
− 2 sin2(θi

I j
) = 8 sin4

(θi
I j

2

)
.

Moreover, taking into account the boundary condition (3.27), we can find a vanishing sequence
{γn}n∈N ⊂ R such that ∑

i∈In(I j)

[
2 sin2(θi

I j
) − 1 + cos(θi

I j
+ θi+1

I j
)
]

≥ 2(1 − γn)
∑

i∈In(I j)

(
sin

(θi+1
I j

2

)
− sin

(θi
I j

2

))2

.

We insert the previous two formulae in (3.32) and compute

Gn(hn)

= λnR2
M∑
j=1

∑
i∈In(I j)

{
8 sin2

(θi
I j

2

)
− (8 − 2αn) sin2

(θi
I j

2

)
+ 2

(
1 −

αn

4

)2}
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− λnR2
M∑
j=1

∑
i∈In(I j)

[
1 − cos(θi

I j
+ θi+1

I j
)
]

− 2λnR2
(
1 −

αn

4

)2

(#In(I) − M + 1) + λnR2
(
2 − αn +

α2
n

8

)
(#In(I) − M + 1)

= λnR2
M∑
j=1

∑
i∈In(I j)

{
8 sin2

(θi
I j

2

)
− 2 sin2(θi

I j
) − (8 − 2αn) sin2

(θi
I j

2

)
+ 2

(
1 −

αn

4

)2}

+ λnR2
M∑
j=1

∑
i∈In(I j)

[
2 sin2(θi

I j
) − 1 + cos(θi

I j
+ θi+1

I j
)
]

= 8λnR2
M∑
j=1

∑
i∈In(I j)

[
sin2

(θi
I j

2

)
−

1
2

(
1 −

αn

4

)]2

+ λnR2
M∑
j=1

∑
i∈In(I j)

[
2 sin2(θi

I j
) − 1 + cos(θi

I j
+ θi+1

I j
)
]

≥ λnR2
M∑
j=1

∑
i∈In(I j)

{
8
[

sin2
(θi

I j

2

)
−

1
2

(
1 −

αn

4

)]2

+ 2(1 − γn)
[

sin
(θi+1

I j

2

)
− sin

(θi
I j

2

)]2}
.

Dividing by
√

2λnδ
3
2
n and recalling that αn = 4(1 − δn), we infer that

Gn(hn)
√

2λnδ
3
2
n

≥ R2
{ √

2δ
1
2
n

λn

∑
i∈In(I j)

λn
[
(wi

nI j
)2 − 1

]2
+

λn
√

2δ
1
2
n

(1 − γn)
∑

i∈In(I j)

(wi+1
nI j
− wi

nI j

λn

)2}
. (3.33)

If ε > 0 is sufficiently small such that Iεj := (t j + ε, t j+1 − ε) ⊂ (I j)n, for all n ∈ N, then

MMn(wn|Iεj ) ≤ λnδ
3
2
n C

and (3.33) holds with Iεj in place of I j, for any j ∈ {1, . . . ,M}. Therefore, applying [12, Theorem 2.2
and Remark 2.3] (see also [8]) , {wnχIεj }n∈N converges, up to subsequences, to w ∈ BV(I j) in L1. Thus

we deduce the existence of h ∈ BV(I; {−1, 1} × {v1, v2}) such that hn := (wn,A(un))
θ
−→ h.

Now we prove (ii). Let h = (w,A(u)) ∈ BV(I; {−1, 1} × {v1, v2}) and {hn}n∈N ⊂ P̃Cλn be such

that hn
θ
−→ h and (3.31) holds true for some constant C > 0. Up to a subsequence, M = M(hn)

is independent of n. Moreover, denoting I j = (t j, t j+1), for ε > 0 sufficiently small, it holds that
Iεj := (t j + ε, t j+1 − ε) ⊂ (I j)n, for all j ∈ {1, . . . ,M(hn)} and n ∈ N. By the definition of Gn, we have

lim inf
n→+∞

Gn(hn)
√

2λnδ
3
2
n

= lim inf
n→+∞

M∑
j=1

MMn(hn|I j)

√
2λnδ

3
2
n

≥
4
3

R2
M∑
j=1

|Dw| (Iεj ),

where in the last step we have used the liminf inequality of [12, Theorem 4.2]. Letting ε → 0, we
obtain the liminf inequality.
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We finally prove (iii). Let h = (w,A(u)) ∈ BV(I; {−1, 1} × {v1, v2}). We can find M > 0 and an open
partition of I made by the intervalsC = {I j} j∈{1,...,M} such that h|I j = (w|I j , v j) ∈ BV(I j; {−1, 1}) × {v1, v2}).
Thanks to the limsup inequality proved in [12, Theorem 4.2], for all j ∈ {1, . . . ,M} there exists a
sequence {(z j)n}n∈N ⊂ L1(I j;R), such that (z j)n → w|I j in L1(I j;R) and

lim
n→+∞

MMn(hn|I j)
√

2λnδ
3
2
n

=
4
3

R2|Dw|(I j), (3.34)

where hn|I j := ((z j)n, v j). By the definition of Gn and (3.34) we gain

lim
n→+∞

Gn(hn)
√

2λnδ
3
2
n

= lim
n→+∞

M∑
j=1

MMn(hn|I j
)

√
2λnδ

3
2
n

=
4
3

R2
M∑
j=1

|Dw| (I j),

that is the thesis. �

4. Analysis of the two-dimensional model

In this section we analyze the problem in the two-dimensional case. Therefore we need to introduce
proper notation and new definitions.

4.1. Further notation and definitions

Let {λn}n∈N ⊂ R
+ be a vanishing sequence of positive lattice spacings. Given i, j ∈ Z, we denote by

Qλn(i, j) := (λni, λn j) + [0, λn)2 the half-open square with left-bottom corner in (λni, λn j). For a given
set S , we introduce the class of spin fields with values in S which are piecewise constant on the squares
of the lattice λnZ

2:

PCλn(R
2; S ) := {u : R2 → S : u(x) = u(λni, λn j) for x ∈ Qλn(i, j)}.

We will identify a function u ∈ PCλn(R
2; S ) with the function defined on the points of the lattice λnZ

2

given by (i, j) 7→ ui, j := u(λni, λn j), for i, j ∈ Z. Conversely, given values ui, j ∈ S for i, j ∈ Z, we define
u ∈ PCλn(R

2; S ) by setting u(x) := ui, j, for x ∈ Qλn(i, j).
Furthermore, we define the projection functionA : PCλn(R

2; S 1 ∪ S 2)→ L∞(R2; {v1, v2}) by setting

A(u)(x) =

v1 if u(x) ∈ S 1,

v2 if u(x) ∈ S 2,
∀x ∈ R2.

In this paper we will make use of the notion of BVG regularity. BVG domains and BVG functions
have been introduced in [21] (see also [9, Section 3]).

Definition 4.1. Let I ⊂ R be an open set. We define the space of BVG functions by

BVG(I) := {φ ∈ W1,∞(I) : ∇φ ∈ BV(I)}.

A bounded connected open set Ω ⊂ R2 is called a BVG domain if Ω can be described locally at
its boundary as the epigraph of a BVG function with respect to a suitable choice of the axes, i.e., if
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for every x ∈ ∂Ω there exist a neighborhood Ux ⊂ R
2, a function ψx ∈ BVG(R) and an isometry

Rx : R2 → R2 satisfying

Rx(Ω ∩ Ux) = {(y1, y2) ∈ R2 : y1 > ψx(y2)} ∩ Rx(Ux).

We remark that smooth domains and polygons are BVG domains and BVG domains are Lipschitz
domains.

As in the one-dimensional case we observe that, if u ∈ PCλn(R
2; S 1∪S 2), then a bounded connected

open set Ω ⊂ R2 can be uniquely partitioned in regions where the spin field u takes values only in one
of the two circles. In other words, there exist M(u) ∈ N and a collection of connected open sets,
{Cs}s∈{1,...,M(u)}, such that

{Cs}s∈{1,...,M(u)} is an open partition of Ω, (4.1)

either u(Cs) ⊂ S 1 or u(Cs) ⊂ S 2, for any s ∈ {1, . . . ,M(u)}, (4.2)

if u(Cs1) × u(Cs2) ⊂ S ` × S `, for some s1, s2 ∈ {1, . . . ,M(u)} and ` ∈ {1, 2}, (4.3)

then C s1 ∩C s2 has at most a finite number of points.

The last two properties imply that this partition is unique. We remark that the sets Cs are squares or
union of squares. In particular, (4.3) ensures that u maps two confining sets of the open partition in
different circles, if their intersection contain edges of squares.

The following definition will be useful throughout the section.

Definition 4.2. Let u ∈ PCλn(R
2; S 1 ∪ S 2) and Ω ⊂ R2 be a bounded connected open set. We say

that Cn(u) = {Cs |s ∈ {1, . . . ,M(u)}} is the open partition of Ω associated with u if M(u) ∈ N and the
collection {Cs}s∈{1,...,M(u)} of open connected sets satisfies (4.1), (4.2) and (4.3). If Ω is a BVG domain,
we call Cn(u) the open BVG partition of Ω associated with u if Cs is also a BVG domain, for all
s ∈ {1, . . . ,M(u)}.

4.2. The energy model

Our model is an energy on discrete spin fields defined on square lattices inside a given domain
Ω ⊂ R2 belonging to the following class:

A0 := {Ω ⊂ R2 : Ω is a simply connected BVG domain}.

To define the energies in our model, we introduce the set of indices

In(Ω) := {(i, j) ∈ Z2 : Qλn
(i, j),Qλn

(i + 1, j),Qλn
(i, j + 1) ⊂ Ω},

for Ω ∈ A0. Let αn := 4(1 − δn), where {δn} ⊂ R
+ is a vanishing sequence, and let {kn}n∈N ⊂ R

+ be a
divergent sequence. In the following we shall assume that εn := λn√

δn
→ 0 and λnkn → η ∈ (0,+∞), as

n→ +∞.
We consider the functionals Hn, Pn : L∞(R2; S 1 ∪ S 2) × A0 → [0,+∞] defined by

Hn(u; Ω) :=
1

√
2λnδ

3
2
n

1
2
λ2

n

∑
(i, j)∈In(Ω)

[∣∣∣∣∣ui+2, j −
αn

2
ui+1, j + ui, j

∣∣∣∣∣2 +

∣∣∣∣∣ui, j+2 −
αn

2
ui, j+1 + ui, j

∣∣∣∣∣2] ,
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Pn(u; Ω) := λnkn|DA(u)|(Ω),

for u ∈ PCλn(R
2; S 1 ∪ S 2) and extended to +∞ elsewhere.

Similarly to the analysis at the first and second order in the one-dimensional case, we split the
functional Hn as follows:

Hn(u; Ω) =

M(u)∑
s=1

[
Hn(u; Cs) + (Rn)Cs(u)

]
,

where
Hn(u; Cs) := Hn(u; Cs) +

1
√

2λnδ
3
2
n

· 2λ2
n(αn − 1)(1 − R2)#In(Cs),

(Rn)Cs(u) :=
1

√
2λnδ

3
2
n

1
2
λ2

n

∑
(i, j)∈(Cs∩In(Ω))\In(Cs)

[ ∣∣∣∣∣ui+2, j −
αn

2
ui+1, j + ui, j

∣∣∣∣∣2
+

∣∣∣∣∣ui, j+2 −
αn

2
ui, j+1 + ui, j

∣∣∣∣∣2 ]
−

1
√

2λnδ
3
2
n

· 2λ2
n(αn − 1)(1 − R2)#In(Cs),

for any s ∈ {1, . . . ,M(u)}. The functionals (Rn)Cs collect the remainders associated with the
decomposition of the energy in the open partition Cn(u) = {Cs |s ∈ {1, . . . ,M(u)}}. They consist of
the interactions between spin field’s vectors located in different circles.

4.3. The Γ-convergence result

In this subsection we introduce the chirality order parameter associated with a spin field. Let u ∈
PCλn(R

2; S 1 ∪ S 2) and let Cn(u) = {Cs |s ∈ {1, . . . ,M(u)}} be the partition associated with u. For
(i, j) ∈ In(Cs), we consider the pairs (ui, j, ui+1, j) and (ui, j, ui, j+1) of vectors that take values in S `, for
some ` = `s ∈ {1, 2}. We define the horizontal and vertical oriented angles between two adjacent spin
vectors by

θ̃
i, j
Cs

:= χ[πv⊥
`
(ui, j), πv⊥

`
(ui+1, j)] arccos(πv⊥

`
(ui, j) · πv⊥

`
(ui+1, j)) ∈ [−π, π),

θ̌
i, j
Cs

:= χ[πv⊥
`
(ui, j), πv⊥

`
(ui, j+1)] arccos(πv⊥

`
(ui, j) · πv⊥

`
(ui, j+1)) ∈ [−π, π).

We define the order parameter ((w, z),A(u)) ∈ PCλn(R
2;R2)×L∞(Ω; {v1, v2}) (we will write (w, z,A(u))

for simplicity) by setting

wi, j :=


√

2
δn

sin
θ̃

i, j
Cs
2 if (i, j) ∈ In(Cs) for some s ∈ {1, . . . ,M(u)},

0 otherwise,

zi, j :=


√

2
δn

sin
θ̌

i, j
Cs
2 if (i, j) ∈ In(Cs) for some s ∈ {1, . . . ,M(u)},

0 otherwise.

It is convenient to introduce the transformation Tn : PCλn(R
2; S 1∪S 2)→ PCλn(R

2;R2)×L∞(Ω; {v1, v2})
given by

Tn(u) :=
(
w, z,A(u)).

Mathematics in Engineering Volume 5, Issue 6, 1–37.



31

With a slight abuse of notation we define the functional Hn : L1
loc(R

2;R2 × {v1, v2}) × A0 → [0,+∞)
by setting

Hn(h; Ω) =

Hn(u; Ω) if Tn(u) = h for some u ∈ PCλn(R
2; S 1 ∪ S 2),

+∞ otherwise.
(4.4)

Notice that Hn does not depend on the particular choice of u, since it is rotation-invariant. The same
notation can be adopted for Pn, (Rn)Cs andHn.

We study the convergence of the functional

Gn(h; Ω) :=


Hn(h,Ω) −

M(h)∑
s=1

(Rn)Cs(h) if Tn(u) = h for some u ∈ PCλn(R
2; S 1 ∪ S 2),

+∞ otherwise

=

M(h)∑
s=1

Hn(h; Cs).

where M(h) := M(u). Hence, we introduce the functional G : L1
loc(R

2;R2 × {v1, v2}) × A0 → [0,+∞)
by setting

G(h; Ω) :=


4
3

R2
M(h)∑
s=1

(|D1w|(Cs) + |D2z|(Cs)) if h = (w, z, α) ∈ Dom(G; Ω),

+∞ otherwise,

where

Dom(G; Ω) :=
{
(w, z, α) ∈ L1

loc(R
2;R2 × {v1, v2}) : ∃{Cs}s∈{1,...,M} open partition of Ω s.t.

(w|Cs , z|Cs , α|Cs) ∈ BV(Cs; {−1, 1}2 × {v`s}), for some `s ∈ {1, 2},

curl(w|Cs , z|Cs) = 0 inD′(Cs;R2)
}
.

For h ∈ Dom(G; Ω) we say that the collection {Cs}s∈{1,...,M} existing in virtue of the definition of
Dom(G; Ω) is the open partition associated with h.

We have denoted by D′(Cs;R2) the space of distributions and by curl the distribution curl defined
by

〈(curl(T ))h,k, ξ〉 := −〈T k, ∂hξ〉 + 〈T h, ∂kξ〉, ∀ξ ∈ C∞c (Cs), ∀T ∈ D′(Cs;R2),

for any h, k ∈ {1, 2}.
The following notion of convergence will be used.

Definition 4.3. Let {hn}n∈N ⊂ L1
loc(R

2;R2 × {v1, v2}). We say that hn Θ-converges to h ∈ L1
loc(R

2;R2 ×

{v1, v2}) (we write hn
Θ
−→ h) if the following conditions are satisfied:

• there exist {un}n∈N ⊂ PCλn(R
2; S 1 ∪ S 2), a positive constant C such that

– hn = Tn(un) and Pn(un; Ω) < C,
– M(un)→ M ∈ N as n→ +∞,
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– (Cs)n → Cs in the Hausdorff sense, as n→ +∞, for any s ∈ {1, . . . ,M},

where Cn(un) = {(Cs)n| s ∈ {1, . . . ,M(hn)}} is the open partition associated with un.
• hnχ(Cs)n → hχCs in L1

loc(R
2;R2 × {v1, v2}), for any s ∈ {1, . . . ,M}.

As in formula (4.4) we define Pn(h; Ω) := Pn(u; Ω) for h = Tn(u) with u ∈ PCλn(R
2; S 1 ∪ S 2).

We remark that in general it is not possible to prove a compactness result for a sequence {hn =

Tn(un)}n∈N ⊂ Tn(PCλn(R
2; S 1 ∪ S 2)) satisfying only the following natural conditions:

sup
n∈N

Gn(hn; Ω) < C and sup
n∈N

Pn(hn; Ω) < C.

Indeed, it could happen that the region {A(un) = v1} has an increasing number of holes vanishing in
the limit so that {M(un)}n∈N is divergent. Neither the Hausdorff convergence of the sets of the open
partition is ensured.

In the following proposition we show that, if strong and technical conditions hold, then {hn}n∈N

converges, up to subsequences, with respect to the Θ-convergence.

Proposition 4.4. Let {hn = Tn(un)}n∈N ⊂ Tn(PCλn(R
2; S 1 ∪ S 2)) be a sequence such that

sup
n∈N

Gn(hn; Ω) < C and sup
n∈N

Pn(hn; Ω) < C, (4.5)

for some constant C > 0. Furthermore, we assume that the open partition associated with un, Cn(un) =

{(Cs)n| s ∈ {1, . . . ,M(un)}}, is such that

M(un)→ M ∈ N as n→ +∞,

(Cs)n → Cs in the Hausdorff sense, as n→ +∞, ∀s ∈ {1, . . . ,M}.

Then there exists h ∈ Dom(G; Ω) such that, up to a subsequence, hn
Θ
−→ h.

Proof. Let {hn = (wn, zn,A(un))}n∈N ⊂ Tn(PCλn(R
2; S 1 ∪ S 2)) be a sequence satisfying (4.5). Since

un |Cs ∈ S `, for some ` = `s ∈ {1, 2}, then, by geometric and trigonometric identities, we deduce that

ui, j · ui+1, j = 1 − R2 + πui, j · πui+1, j,

ui, j · ui, j+1 = 1 − R2 + πui, j · πui, j+1,

where πui, j := πv⊥
`
ui. Thus we may write

Gn(hn; Ω) =

M∑
s=1

H̃n(un; Cs),

where

H̃n(hn; Cs)

:=
1

√
2λnδ

3
2
n

1
2
λ2

n

∑
(i, j)∈In(Cs)

[∣∣∣∣∣πui+2, j
n −

αn

2
πui+1, j

n + πui, j
n

∣∣∣∣∣2 +

∣∣∣∣∣πui, j+2
n −

αn

2
πui, j+1

n + πui, j
n

∣∣∣∣∣2] .
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Fixing ε > 0 sufficiently small, we have that for all n ∈ N, up to a subsequence, (Cs)ε := {x ∈ Cs :
dist(x, ∂Cs) > ε} ⊂ (Cs)n and un|(Cs)ε

takes values only in one circle. We infer that

M∑
s=1

H̃n(hn; (Cs)ε) ≤ Gn(hn; Ω) < C,

which of course implies that H̃n(hn; (Cs)ε) < C, for all s ∈ {1, . . . ,M}. We are in position to apply
[9, Theorem 2.1 i) and Remark 2.2] to deduce the existence of (w(Cs)ε , z(Cs)ε) ∈ BV((Cs)ε; {−1, 1}2)
such that, up to subsequences, (wn, zn) → (w(Cs)ε , z(Cs)ε) in L1

loc((Cs)ε;R2) and curl(w(Cs)ε , z(Cs)ε) = 0 in
D′((Cs)ε;R2). The couples (w(Cs)ε , z(Cs)ε) can be extended to 0 in Cs \ (Cs)ε. We preliminary observe
that

(w(Cs)ε2
, z(Cs)ε2

) = (w(Cs)ε1
, z(Cs)ε1

) a.e. on (Cs)ε2 , (4.6)

for any 0 < ε1 < ε2. Indeed, since (Cs)ε2 ⊂ (Cs)ε1 , we have that

(wn, zn)→ (w(Cs)ε1
, z(Cs)ε1

) inL1
loc((Cs)ε2;R

2).

The uniqueness of the limit in the L1
loc-topology implies (4.6). We now define the couples

(wCs , zCs) : Cs → R
2 by

(wCs , zCs) := lim
ε→0+

(w(Cs)ε , z(Cs)ε).

The definition is well-posed; indeed, since by (4.6),

lim
ε′→0+

(w(Cs)ε′ , z(Cs)ε′ ) = (w(Cs) 1
n
, z(Cs) 1

n
) a.e. in (Cs) 1

n
,

for all n ∈ N, then ∣∣∣∣∣{x ∈ Cs : @ lim
ε′→0+

(w(Cs)ε′ (x), z(Cs)ε′ (x))
}∣∣∣∣∣

=

∣∣∣∣∣∣∣
+∞⋃
n=1

{
x ∈ (Cs) 1

n
: @ lim

ε′→0+
(w(Cs)ε′ (x), z(Cs)ε′ (x))

}∣∣∣∣∣∣∣ = 0.

Furthermore we define (w, z) : Ω→ R2 by setting

(w, z)(x) = (wCs , zCs)(x),

for a.e. x ∈ Ω with x ∈ Cs, for some s ∈ {1, . . . ,M}. Of course (w|Cs , z|Cs) = (wCs , zCs) ∈
BV(Cs; {−1, 1}2), as it is the limit of BV functions. In order to show the L1

loc-convergence, we fix
A ⊂⊂ Cs. Since dist(A, ∂Cs) > 0, there exists ε > 0 such that A ⊂⊂ (Cs)ε. We obtain:∥∥∥(wn, zn) − (wCs , zCs)

∥∥∥
L1(A;R2)

=
∥∥∥(wn, zn) − (w(Cs)ε , z(Cs)ε)

∥∥∥
L1(A;R2)

,

which vanishes as n→ +∞, up to subsequences. This leads to the convergence

(wn, zn)→ (wCs , zCs) in L1
loc(Cs;R2).
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Finally, we prove that curl(wCs , zCs) = 0 in D′(Cs;R2). If ξ ∈ C∞c (Cs), then suppξ ⊂ (Cs)ε for some
ε > 0 and so 〈

curl(wCs , zCs), ξ
〉

= −

∫
(Cs)ε

w(Cs)ε∂2ξ dx +

∫
(Cs)ε

z(Cs)ε∂1ξ dx

=
〈
curl(w(Cs)ε , z(Cs)ε), ξ

〉
= 0.

�

Now we state the main theorem of this section. The regularity assumption on Ω and on the open
partition of h in the statement ii) are required in order to apply [9, Theorem 2.1 iii)] locally. As
explained in [9] a simply connected BVG domain guaranties an extension property for BVG functions,
which is needed to construct a recovery sequence for h. On the contrary, the proof of the liminf
inequality i) actually works without assuming this kind of regularity (see [9, Remark 2.2]).

Theorem 4.5. Let Ω ∈ A0. Then the following statements hold true:

i) (liminf inequality) Let {hn}n∈N ⊂ L1
loc(R

2;R2 × {v1, v2}) and h ∈ L1
loc(R

2;R2 × {v1, v2}). Assume that

sup
n∈N

Pn(hn; Ω) < C for some constant C > 0 and hn
Θ
−→ h. Then

G(h; Ω) ≤ lim inf
n→+∞

Gn(hn; Ω).

ii) (limsup inequality) Let h ∈ Dom(G; Ω) be such that its open partition consists of BVG domains.

Then there exists a sequence {hn}n∈N ⊂ L1
loc(R

2;R2 × {v1, v2}) such that hn
Θ
−→ h and

lim sup
n→+∞

Gn(hn; Ω) ≤ G(h; Ω).

Proof. We start by proving i). Let {hn}n∈N ⊂ L1
loc(R

2;R2×{v1, v2}) and h ∈ L1
loc(R

2;R2×{v1, v2}) be such

that sup
n∈N

Pn(hn; Ω) < C and hn
Θ
−→ h. Up to subsequences, we may assume that the lower limit in the

right hand side of the liminf inequality is actually a limit. Furthermore we may assume that it is finite,
the inequality being otherwise trivial. In particular, we have

sup
n∈N

Gn(hn; Ω) < C,

possibly with a larger C. By the definition of Θ-convergence, hn = (wn, zn,A(un)) = Tn(un) for some
un ∈ PCλn(R

2; S 1 ∪ S 2). Up to subsequences, M = M(hn) is independent of n and we may assume, for
ε > 0 sufficiently small, that (Cs)ε ⊂ (Cs)n and un|(Cs)ε

takes values only on one circle S `, for all n ∈ N.
Reasoning as in i), we infer

Gn(hn; Ω) ≥
M∑

s=1

H̃n(hn; (Cs)ε),

Since hn → h in L1((Cs)ε;R2 × {v`}), as n → +∞, we are in position to apply [9, Theorem 2.1 ii) and
Remark 2.2] so that, passing to the lower limit, we get

lim inf
n→+∞

Gn(hn; Ω) ≥
M∑

s=1

lim inf
n→+∞

H̃n(hn; (Cs)ε) ≥
M∑

s=1

4
3

R2[|D1w|((Cs)ε) + |D2z|((Cs)ε)],
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where h = (w, z, α). Letting ε→ 0+ we get the thesis.
Let us prove ii). Let h ∈ Dom(G; Ω). This implies that h = (w, z, α) ∈ L1

loc(R
2;R2 × {v1, v2}) and the

existence of an open partition of Ω, C = {Cs| s ∈ {1, . . . ,M}} consisting of BVG domains such that, for
some ` = `s ∈ {1, 2},

(w|Cs , z|Cs , α|Cs) ∈ BV(Cs; {−1, 1}2 × {v`}) and curl(w|Cs , z|Cs) = 0 inD′(Cs;R2).

Applying [9, Theorem 2.1 iii)] to any (w|Cs , z|Cs), we get the existence of a sequence
{((wn)Cs , (zn)Cs)}n∈N ⊂L1

loc(R
2;R2) such that ((wn)Cs , (zn)Cs)→ (w|Cs , z|Cs) in L1(Cs;R2) and

lim sup
n→+∞

Hn((wn)Cs , (zn)Cs , v`) ≤
4
3

R2(|D1w|(Cs) + |D2z|(Cs))

Defining (wn, zn, αn) : R2 → R2 × {v1, v2} by

(wn, zn, αn)(x) := ((wn)Cs(x), (zn)Cs(x), v`),

if x ∈ Ω such that x ∈ Cs for some s ∈ {1, . . . ,M}, and arbitrarily extended outside Ω, and summing on
s ∈ {1, . . . ,M} the previous inequality we obtain the thesis. �
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