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Abstract. In this paper we prove that, generically in the sense of domain
variations, any solution to a nonlinear eigenvalue problem is either non
degenerate or the Crandall-Rabinowitz transversality condition is satisfied.
We then deduce that, generically, the unbounded Rabinowitz continuum
of solutions is a simple analytic curve. The global bifurcation diagram
resembles the classic model case of the Gel’fand problem in dimension two.
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1. Introduction

Let Ω ⊂ RN be an open and bounded domain of class C4, we are concerned
with generic properties of the Rabinowitz ([22]) unbounded continuum of
C2,r

0 (Ω)-solutions of {
−∆v = µf(v) in Ω
v = 0 on ∂Ω

(1.1)

with µ ≥ 0 and f satisfying:

(H1) f : (a,+∞)→ (0,+∞) of class C2 for some a < 0, f
′
(t) > 0, f

′′
(t) > 0,

∀ t ∈ (a,+∞).

In particular, by the maximum principle we have v > 0 in Ω. It follows from
[22] that there exists a closed (in the [0,+∞)× C2,r

0 (Ω)-topology) connected
and unbounded set of solutions (µ, vµ) of (1.1), which we denote by R∞, that
contains the unique solution for µ = 0, which is (µ, vµ) = (0, 0). Of course it
is not true in general that R∞ is a simple curve with no bifurcation points,
see for example [18, 19, 21]. If f is real analytic, then R∞ is also a path-
connected set ([6]). On the other side, much more is known for certain classes
of nonlinearities in the radial case (see [9] and in particular [7, 14, 15] for
a review) or, limited to Ω ⊂ R2, for symmetric and convex geometries (see
[10]). Actually, in these cases in particular R∞ is a 1-dimensional connected
manifold in [0,+∞) × C2,r

0 (Ω) whose boundary is (0, 0). See also [1] for a
more detailed description of the qualitative behavior of R∞ for f(t) = et and
N = 2.

Our aim here is to initiate the qualitative study (in the spirit of [1]) of R∞
in a general setting. To this end we first prove that, for “almost any domain”
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in a suitably defined sense, a solution (µ, uµ) of (1.1) is either non degenerate
or the classical Crandall-Rabinowitz ([4]) transversality condition is satisfied.
We then deduce that, generically with respect to domain variations, under
suitable regularity and growth condition on f , R∞ is indeed a 1-dimensional
connected manifold in [0,+∞) × C2,r

0 (Ω) whose boundary is (0, 0) and that
asymptotically approaches the vertical axis, as shown in some particular cases
in the classical result of [16]. Although this result seems to be well known, we
could not find a statement of this sort in literature.

As far as we are concerned with generic properties with respect to domain
variations, many results are by now classical, see for example [11, 24], and
references quoted therein. Among many other applications which we cannot
discuss here, it follows from [11, 24] that, for a fixed µ, then for “almost any
domain” any solution of (1.1) is non degenerate. This is obviously false in
general if µ is not fixed ([4]). Actually these sort of results hold for much
more general semilinear elliptic PDE’s and are used ([11, 24]) to infer that the
number of solutions of certain equations is, generically with respect to domain
variations, either finite or at most countable.
Generic simpleness of eigenvalues and/or non-degeneracy properties with re-
spect to variations of µ and/or coefficients of the equations are also well known,
starting with [12, 17, 23, 24, 26] as later improved in the real-analytic frame-
work in [5] (see also [2, 3]).

On the other side, results of the sort considered in the present paper have been
obtained in [23]. First of all, as mentioned above, one can find in [23] a de-
tailed discussion of the fact that, in a generic sense with respect to coefficients
variations, and under suitable regularity assumptions, the set of solutions of
a quasilinear elliptic equation with f(v) = d(x)v + o(‖v‖) as ‖v‖ → 0, is the
union of at most countably many curves of class Ck−1 for some k ≥ 3. Also, a
short discussion of the genericity with respect to domain variations is provided
in [23], claiming that coupling some arguments in [24] and those of [23] yields
the same result, still for f(v) = d(x)v + o(‖v‖) as ‖v‖ → 0.

Compared to [23] our results contain some relevant differences which we
shortly describe hereafter.
Firstly, the nonlinearity considered in [23] has essentially the form of f(v) =
d(x)v + o(‖v‖) and hence, in particular, the branches analyzed therein are
those bifurcating from the line of trivial solutions. On the contrary we are
interested to the qualitative properties of the branch of solutions bifurcating
from (0, 0) with f superlinear (see (H1) above).
Secondly and more importantly, we attack the problem with a different ap-
proach. Indeed, we think this could be a first promising step toward the under-
standing of the qualitative behavior of the solution curves (in the same spirit
of [1]). Thus, we do not argue as in [23], where the fact that the set of solutions
is the union of at most countably many regular curves follows at once by the
argument in ([24], §4). Instead, as mentioned above, we first prove a result



GENERIC PROPERTIES OF THE RABINOWITZ CONTINUUM 3

of independent interest, Theorem 1.1, showing that, in a generic sense with
respect to domain variations, any solution on the continuum is either non de-
generate or the Crandall-Rabinowitz transversality condition is satisfied. Next,
by well known bending arguments based on the Crandall-Rabinowitz transver-
sality condition, we deduce by the analytic impicit function Theorem ([3]) that
around a singular point the curve of solutions is real analytic and has no bi-
furcation points. We then apply this result to the qualitative study of R∞.
In particular, in view of the assumption (H2) below, we see that the branch
asymptotically approaches the vertical axis. Of course, it is likely that ana-
lyticity of the solution curves considered in [23] could follow as well from the
arguments in [23] under suitable assumptions.
The argument here works essentially as in [23, 24], although we rely on the
more recent reference [11], where one can find a detailed and self-contained
exposition of the theory of domain variations (see in particular Chapter 2 in
[11]).

For Ω0 a bounded domain of class C4 (see section 3 for details) we denote by
Diff 4(Ω0) the set of diffeomorphisms h : Ω0 → Ω of class C4. We recall that a
subset of a metric space is said to be:
- nowhere dense, if its closure has empty interior;
- meager (or of first Baire category), if it is the union of countably many
nowhere dense sets.

Once more, it is likely that this result is known to experts in the field, still we
could not find a statement of this sort in literature.
Here Lµ is the linearized operator relative to (1.1) (see section 2). Then we
have

Theorem 1.1. Let f : (a,+∞)→ (0,+∞) be of class C2 for some a < 0. For
any Ω0 ⊂ RN of class C4 there exists a meager set F ⊂ Diff 4(Ω0), depending
on f,N,Ω0, such that if h ∈ Diff 4(Ω0) \ F then, for any solution (µ, vµ) of
(1.1) on Ω := h(Ω0) with µ > 0, it holds: either
(a) Ker(Lµ) = ∅, or
(b) Ker(Lµ) = span{φ} is one dimensional and

∫
Ω
f(vµ)φ 6= 0.

In particular, we deduce the following result about the Rabinowitz ([22]) un-
bounded continuum of solutions of (1.1) for f real analytic, which satisfies
(H1) and,

(H2) for any δ > 0 there exists Cδ > 0 (depending also by f,N,Ω) such that
vµ ≤ Cδ for any solution of (1.1) with µ ≥ δ.

It is well known that, for Ω a bounded domain of class C4, (H2) is satisfied
under suitable growth assumptions on f , as for example those in [8], (here
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F (t) =
t∫

0

f(s)ds),
lim
t→+∞

f(t)
t

= +∞, lim
t→+∞

f(t)
tβ

= 0, β = N+2
N−2

if N ≥ 3, β < +∞ if N = 2,

lim sup
t→+∞

tf(t)−θF (t)

t2f
2
N (t)

≤ 0, for some θ ∈ [0, 2N
N−2

),

and if N ≥ 3, f(t)t−
N+2
N−2 is non increasing in (0,+∞)

Clearly the model nonlinearities f(t) = (1 + t)p, 1 < p < N+2
N−2

, N ≥ 3, p > 1,
N = 2, fit these assumptions. However there are many other cases where (H2)
is satisfied, as for example f(t) = et, N = 2 ([20]). Then we have,

Theorem 1.2. Let f be real analytic and satisfying (H1)-(H2), Ω0 ⊂ RN of
class C4, F ⊂ Diff 4(Ω0) as defined by Theorem 1.1 and pick h ∈ Diff 4(Ω0)\F .
If Ω = h(Ω0), then the Rabinowitz unbounded continuum R∞ of solutions of
(1.1) is a 1-dimensional real analytic manifold with boundary (µ(0), v(0)) =
(0, 0). In particular

R∞ =
{

[0,∞) 3 s 7→ (µ(s), v(s)) ∈ [0,+∞)× C2,r
0 (Ω )

}
,

is a continuous simple curve without bifurcation points where (µ(0), v(0)) =
(0, 0) and µ(s)→ 0+ and ‖v(s)‖∞ → +∞ as s→∞.

Remark 1.3. Theorem 1.1 can be generalized to the case of uniformly elliptic

operators such as Lu := div(A(∇u)) +~b · ∇u + cu, where A = (aij), aij(x),
bj(x) and c(x) are smooth up to the boundary. Therefore, the generic bending
result (Theorem 1.2) also follows if one replace the Laplace operator in (1.1)
by uniformly elliptic operators.

2. Well-known results

Let X = R× C2,r
0 (Ω), we introduce the map,

F : X → Cr(Ω), F (µ, v) := −∆v − µf(v), (2.1)

and its differential with respect to (µ, v), that is the linear operator,

Dµ,vF (µ, v) : X → Cr(Ω ),

which acts as follows,

Dµ,vF (µ, v)[µ̇, v̇] = DvF (µ, v)[v̇] + dµF (µ, v)[µ̇],

where we have introduced the differential operators,

DvF (µ, v)[v̇] = −∆v̇ − µf ′(v)v̇, v̇ ∈ C2,r
0 (Ω ),

dµF (µ, v)[µ̇] = −f(v)µ̇, µ̇ ∈ R.
For a fixed solution (µ, vµ) the eigenvalues of Lµ := DvF (µ, vµ) form an in-
creasing sequence and are denoted by σk, k ∈ N, which satisfy

Lµφ = σkφ, φ ∈ C2,r
0 (Ω).
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By the Fredholm alternative, the implicit function theorem applies around
any solution of (1.1) as follows:

Lemma 2.1. Let (µ0, v0) be a solution of (1.1) with µ = µ0 ≥ 0.
If 0 is not an eigenvalue of Lµ0

, then:
(i) Lµ0

is an isomorphism;

(ii) There exists an open neighborhood J ⊂ R of µ0 and B ⊂ C2,r
0 (Ω ) of

v0, such that the set of solutions of (1.1) in J × B is a curve of class C2,
J 3 µ 7→ vµ ∈ B.

Next we state the well known bending result of [4] for solutions of (1.1) just
with an additional observation about the case where f is real analytic in
(a,+∞) for some a < 0. The conclusions deduced in this particular case
are straightforward consequences of general and well known facts of analytic
bifurcation theory ([3]).

Proposition 2.2. ([4]) Let (µ, vµ) be a solution of (1.1) with µ > 0 and
suppose that the k-th eigenvalue of Lµ satisfies σk = 0 and is simple, that is,

it admits only one eigenfunction, φk ∈ C2,r
0 (Ω ). If∫

Ω

f(vµ)φk 6= 0,

then there exists ε > 0, an open neighborhood U of (µ, vµ) in X and a curve
(−ε, ε) 3 s 7→ (µ(s), v(s)) of class C2 such that (µ(0), v(0)) = (µ, vµ) and the
set of solutions of (1.1) in U has the form (µ(s), v(s)) with, v(s) = vµ + sφk +
ξ(s), and ∫

Ω

f(v(s))ξ(s)φk = 0, s ∈ (−ε, ε).

Moreover it holds,

ξ(0) ≡ 0 ≡ ξ
′
(0), µ

′
(0) = 0, (2.2)

and there exists a continuous curve (σ(s), φ(s)), such that Lµ(s)φ(s) = σ(s)φ(s),
s ∈ (−ε, ε), φ(0) = φk, σ(0) = σk and

σ(s)

∫
Ω

f
′
(v(s))φ(s)v(s) and µ

′
(s)

∫
Ω

f(v(s))φ(s)

have the same zeroes and, whenever µ
′
(s) 6= 0, the same sign. In particular

σ(s)

µ′(s)
=

∫
Ω
f(vµ)φk + o(1)∫

Ω
φ2
k + o(1)

, as s→ 0.

If f is real analytic in (a,+∞) for some a < 0 then µ(s), v(s), σ(s), φ(s) are
real analytic functions of s ∈ (−ε, ε) and in particular either µ(s) is constant
in (−ε, ε) or µ

′
(s) 6= 0, σ(s) 6= 0 in (−ε, ε)\{0} and σ(s) is simple in (−ε, ε).
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3. Generic properties of the Rabinowitz continuum

In this section we prove Theorems 1.1 and 1.2.

Let us recall few definitions and set some notations first.

Definition 3.1. A domain Ω is of class Ck(Ck,r), k ≥ 1, if for each x0 ∈ ∂Ω
there exists a ball B = Br(x0) and a one to one map Θ : B 7→ U ⊂ RN such
that Θ ∈ Ck(B)(Ck,r(B)),Θ−1 ∈ Ck(U)(Ck,r(U)) and the following holds:

Θ(Ω ∩B) ⊂ RN
+ and Θ(∂Ω ∩B) ⊂ ∂RN

+ .

It is well known (see for example [11]) that this is equivalent to say that there
exists r > 0 and M > 0 such that, given any ball B ⊂ RN , then, after suitable
rotation and translations, it holds:

Ω ∩B = {(x1, x . . . , xN) : xN < f(x1, . . . , xN−1)} ∩B

and

∂Ω ∩B = {(x1, x . . . , xN) : xN = f(x1, . . . , xN−1)} ∩B,

for some f ∈ Ck(RN−1)(Ck,r(R)) whose norm is not larger than M.

Definition 3.2. Let Ω ⊂ RN be an open and bounded domain of class Cm,
m ≥ 1. Cm(Ω ;RN) is the Banach space of continuous and m-times differen-
tiable maps on Ω, whose derivatives of order j = 0, 1, · · · ,m extend continu-
ously on Ω. Diffm(Ω) ⊂ Cm(Ω ;RN) is the open subset of Cm(Ω ;RN) whose
elements are Cm imbeddings on Ω, that is, of maps h : Ω 7→ RN which are
diffeomorphisms of class Cm on their images h(Ω ).

We recall that if X,Z are Banach spaces and T : X → Z is linear and
continuous, then T is Fredholm (semi-Fredholm) if R(T ) (the range of T ) is
closed and both dim(Ker(T )) and codim(R(T )) are finite. If T is Fredholm,
then the index of T is

ind(T ) = dim(Ker(T ))− codim(R(T )).

We refer to [13] for further details about Fredholm operators. Given a Banach
space X and x ∈ X, we will denote by TxX the tangent space at x.

Definition 3.3. Let X,Z be Banach spaces, A ⊂ X an open set and F : A→
Z a C1 map. Suppose that for any x ∈ A the Fréchet derivative DxF (x) :
TxX → TηZ is a Fredholm operator. A point x ∈ A is a regular point if
DxF (x) is surjective, is a singular point otherwise. The image of a singular
point η = F (x) ∈ Z is a singular value. The complement of the set of singular
values in Z is the set of regular values.

The following Theorem is a particular case of a more general transversality
result proved in [11], see also [25].
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Theorem 3.4 ([11]). Let X,H, Z be separable Banach spaces, A ⊆ X × H
an open set, Φ : A → Z a map of class Ck and η ∈ Z.
Suppose that for each (x, h) ∈ Φ−1(η) it holds:

(i)DxΦ(x, h) : TxX → TηZ is a Fredholm operator with index < k;

(ii)DΦ(x, h) = (DxΦ(x, h), DhΦ(x, h)) : TxX × ThH → TηZ is surjective.

Let Ah = {x : (x, h) ∈ A} and

Hcrit = {h : η is a singular value of Φ( · , h) : Ah → Z}.
Then Hcrit is meager in H.

We are ready to present the proof of Theorem 1.1.
Proof of Theorem 1.1
Let Ω0 as in the statement and let us define

XΩ0
= R× C2,r

0 (Ω0 ).

We define the maps,

FΩ0 : XΩ0
→ Cr(Ω0 ), FΩ0(µ, v) = ∆v + µf(v).

Next, for fixed h ∈ Diff 4(Ω0) and v ∈ C2,r
0 (h(Ω0) ), we define the pull back,

h∗(v)(x) = v(h(x)), x ∈ Ω0.

Clearly h∗ is an isomorphism of C2,r
0 (h(Ω0) ) onto C2,r

0 (Ω0 ) with inverse h∗−1 =
(h−1)∗. For any such h, it is well defined the map

Fh(Ω0) : Xh(Ω0) → Cr(h(Ω0) )

and then we can set,

h∗Fh(Ω0)h
∗−1 : XΩ0 ×Diff 4(Ω0)→ Cr(Ω0 ).

Putting H = Diff 4(Ω0), η = 0 ∈ Z = Cr(Ω0 ), we will apply Theorem 3.4 to
the map Φ = Φ(µ, v, h) defined as follows

Φ : A → R× Cr(Ω0 ), A = XΩ0
×H,

Φ(µ, v, h) = h∗Fh(Ω0)h
∗−1(µ, v)

STEP 1: Our aim is to show that the assumptions (i) and (ii) of Theorem 3.4
hold.
As in [11], it is very useful for the discussion to denote by (µ̇, v̇, ḣ) ∈ R ×
C2,r

0 (Ω0 )×C4(Ω0 ; RN) the elements of the tangent space at points (µ, v, h) ∈
XΩ0
×H.

First of all observe that for fixed h ∈ Diff 4(Ω0), the linearized operator,

Dµ,vΦ(µ, v, h) : R× C2,r
0 (Ω0 )→ Cr(Ω0 ),
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acts as follows on (µ̇, v̇) ∈ R× C2,r
0 (Ω0 ),

Dµ,vΦ(µ, v, h)[µ̇, v̇] = h∗
(

∆v̇∗ + µf
′
(v∗)v̇∗ + f(v∗)µ̇

)
,

where
v∗ = (h∗)−1v, v̇∗ = (h∗)−1v̇.

Since any diffeomorphism of class C4 maps the Laplace operator to a uni-
formly elliptic operator with C2 coefficients, by standard elliptic estimates it
is not difficult to see that Dµ,vΦ(µ, v, h) is a Fredholm operator of index 1.
This fact proves (i) whenever we can show that Φ ∈ Ck(A) for some k ≥ 2.
The regularity of Φ with respect to h is the same as that of Fh(Ω0) with respect
to v, see chapter 2 in [11]. Therefore, we have Φ ∈ C3(A), as claimed.

Next we prove (ii), that is, we show that η = 0 is a regular value for the
map (µ, v, h)→ Φ(µ, v, h). We argue by contradiction and suppose that there
exists a singular point (µ, v, h ) of Φ such that Φ(µ, v, h ) = 0.

First of all, let us define Ω = h(Ω0), u = (h
∗
)−1v ∈ C2,r

0 (Ω ) and Φ̂(µ, u, h) on
XΩ ×Diff 4(Ω) as follows,

Φ̂(µ, u, h) = h∗FΩh
∗−1(µ, u)

where,
FΩ : XΩ → Cr(Ω), FΩ(µ, u) = ∆u+ µf(u),

Let iΩ ∈ Diff 4(Ω) be the identity map. By construction, in these new coordi-

nates the map Φ̂(µ, u, h) has a singular point (µ, u, iΩ) such that Φ̂(µ, u, iΩ) =

0, that is, by assumption the derivative Dµ,u,hΦ̂(µ, u, iΩ) is not surjective.
Putting

f = f(u), f
′

= f
′
(u),

a subtle evaluation shows that Dµ,u,hΦ̂(µ, u, iΩ) acts on

(µ̇, u̇, ḣ) ∈ R× C2,r
0 (Ω)× C4(Ω ;RN)

as follows (see Theorem 2.2 in [11]),

Dµ,u,hΦ̂(µ, u, iΩ)[µ̇, u̇, ḣ] =

∆u̇+ µf
′

u̇+ fµ̇+ ḣ · ∇(∆u+ µf)− (∆ + µf
′

)ḣ · ∇u =(
∆ + µf

′)
u̇−

(
∆ + µf

′ )
ḣ · ∇u+ fµ̇, (3.1)

where we used the fact that ∆u+ µf = Φ̂(µ, u, iΩ) = 0.
At this point observe that, by the Fredholm property of the operator ∆+µf on

C2,r
0 (Ω ), we have that the subspace

{
Dµ,u,hΦ̂(µ, u, iΩ)[(0, u̇, 0)], u̇ ∈ C2,r

0 (Ω)
}

,

is closed and has finite codimension. Next, since u ∈ C2,r
0 (Ω ) and ∂Ω is of

class C4, then by standard elliptic regularity theory we find that u ∈ C3,r
0 (Ω)

and then ḣ · ∇u ∈ C2,r(Ω). As a consequence we can prove that the subspace{
Dµ,u,hΦ̂(µ, u, iΩ)[(0, 0, ḣ)], ḣ ∈ C4(Ω ;RN)

}
is closed with finite codimension

as well. Indeed, let us define K : C2,r(Ω ) 7→ C2,r(Ω ) as the linear operator
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which, to any φ ∈ C2,r(Ω ), associates the unique solution φb = K[φ] of ∆φb =
0, φb = φ on ∂Ω. Clearly this is always well posed since Ω is of class C4 and
φ ∈ C2,r(Ω ). Then,

∆φ+ µf
′

φ = g ∈ Cr(Ω ),

if and only if

φ ∈ C2,r(Ω ) and φ+ T [φ] = G[g] ∈ C2,r(Ω ),

where G[g] =
∫

Ω
G(x, y)g(y) and T : C2,r(Ω ) 7→ C2,r(Ω ), T (φ) = G[µf

′

φ] −
K[φ]. Since Ω is of class C4, then by standard elliptic estimates, T maps
C2,r(Ω ) into C3,r(Ω ). Therefore T is compact and then we conclude by the

Fredholm alternative that the range of (∆ + µf
′

)(ḣ · ∇u), ḣ · ∇u ∈ C2,r(Ω ),
is closed in Cr(Ω ) and has finite codimension.

At this point, we deduce from these two facts that there exists a non trivial

φ⊥ ∈ Cr(Ω ) which is orthogonal to the image of Dµ,u,hΦ̂(µ, u, iΩ), that is,∫
Ω

φ⊥

((
∆ + µf

′)
u̇−

(
∆ + µf

′ )
ḣ · ∇u+ fµ̇

)
= 0,∀ (µ̇, u̇, ḣ). (3.2)

Putting (µ̇, u̇, ḣ) = (µ̇, 0, 0) in (3.2) we find
∫

Ω
fφ⊥ = 0, and then if we choose

ḣ = 0, we find that,∫
Ω

φ⊥

(
∆ + µf

′)
u̇ = 0, ∀ u̇ ∈ C2,r

0 (Ω ),

which shows that φ⊥ is a Cr(Ω ) distributional solution of ∆φ⊥ + µf
′

φ⊥ = 0.
Therefore, by standard elliptic estimates (where we recall that ∂Ω is of class

C4), φ⊥ is a C2
0(Ω ) solution of ∆φ⊥+µf

′

φ⊥ = 0. As a consequence we observe
that (3.2) is reduced to∫

Ω

φ⊥

(
∆ + µf

′)
ḣ · ∇u = 0, ∀ ḣ ∈ C4(Ω ;RN),

which allows us to deduce that,

0 =

∫
Ω

φ⊥

(
∆ + µf

′)
ḣ · ∇u =∫

Ω

φ⊥

(
∆ + µf

′)
ḣ · ∇u−

∫
Ω

(
∆φ⊥ + µf

′

φ⊥

)
ḣ · ∇u =∫

Ω

φ⊥∆(ḣ · ∇u)−
∫

Ω

(∆φ⊥)ḣ · ∇u =

∫
∂Ω

(
φ⊥∂ν(ḣ · ∇u)− ḣ · ∇u(∂νφ⊥)

)
=

−
∫
∂Ω

(∂νφ⊥)ḣ · ∇u = −
∫
∂Ω

(∂νφ⊥)(∂νu)ḣ · ν, ∀ ḣ ∈ C4(Ω,RN).

Therefore, since ḣ is arbitrary, we conclude that,

(∂νφ⊥)(∂νu) ≡ 0 on ∂Ω.
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At this point we observe that since f > 0 on Ω and u = 0 on ∂Ω, then, by
the strong maximum principle, we have u > 0 in Ω. Since ∂Ω is of class C4

we can apply the Hopf boundary Lemma and conclude that ∂νu < 0 on ∂Ω.
Therefore we conclude that necessarily ∂νφ⊥ ≡ 0 on ∂Ω, which is in contra-
diction with the Hopf boundary Lemma. This contradiction shows that (ii)
holds and then we can apply Theorem 3.4 and conclude that there exists a
meager set F ⊂ Diff4(Ω0) such that if h(Ω0) /∈ F then η = 0 is a regular value
of Φ(µ, v, h).

STEP 2: We have from STEP 1 that there exists a meager set F ⊂ Diff4(Ω0)
such that if h /∈ F and Ω := h(Ω0), then η = 0 is a regular value of the map
Φ(·, ·, h). As a consequence, for any (µ, v) which solves

Φ(µ, v) = FΩ(µ, v) = 0

and setting f = f(v), f
′

(v) then the differential

L[µ̇, v̇] := Dµ,vΦ(µ, v)[µ̇, v̇] = ∆v̇ + µf
′

(v)v̇ + fµ̇.

is surjective. On the other side, since v solves (1.1), then the operator,

∆v̇ + µf
′

(v)v̇

is just Lµ for which the Fredholm alternative holds. Let us define R = R(Lµ) ⊆
Cr(Ω ) to be the range of Lµ. Now if Lµ is surjective then, by the Fredholm
alternative, we have Ker(Lµ) = ∅, which is (a) in the statement of Theorem
1.1. Therefore we can assume without loss of generality that Lµ is not surjec-

tive, let d = codim(R) be the codimension of R. Since L is surjective, by the
Fredholm alternative it is not difficult to see that d ≤ 1, and since Lµ is not

surjective, then necessarily d = 1. We will conclude the proof by showing that
(b) holds in this case. Indeed, obviously the kernel must be one dimensional,
Ker(L) = span{φ}, for some φ ∈ C2,r

0 (Ω ) which satisfies Lµ[φ] = 0. Since L

is surjective, then f
′

φ must be an element of its range and then there exists
φ ∈ C2,r

0 (Ω ) which satisfies

Lµ[φ] + µ̇f = f
′

φ.

Multiplying this equation by φ and integrating by parts we find that

µ̇

∫
Ω

f φ =

∫
Ω

f
′

φ
2
,

and since f
′
(t) > 0, ∀ t, then we deduce that necessarily

∫
Ω
f φ 6= 0. In other

words (b) of Theorem 1.1 holds and the proof is concluded. �

We are ready to present the proof of Theorem 1.2.
Proof of Theorem 1.2.
It is well known ([4]) that, due to (H1), there exists µ∗ < +∞ such that µ ≤ µ∗
for any solution of (1.1) and in particular that there exists a continuous simple
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curve of solutions of (1.1) (the branch of minimal solutions) for any µ < µ∗
which emanates from (µ, vµ) = (0, 0), which we denote by G(Ω). In particular,
with the notations of section 2, G(Ω) is characterized by the fact that the first
eigenvalue of the linearized equation, which we denote by σ1(µ, vµ), satisfies
σ1(µ, vµ) > 0 for any (µ, vµ) ∈ G(Ω). In view of (H2) and standard elliptic
theory we have that v∗ = vµ|µ=µ∗

is a classical solution and σ1(µ∗, v∗) = 0. By

Theorem 1.1 we have that (b) holds for (µ∗, v∗) and then by Proposition 2.2
we can continue G(Ω) to a continuous and simple curve without bifurcation
points, [0, s1 + δ1) 3 s 7→ (µ(s), v(s)) which locally around any point s0 > 0
admits a real analytic reparametrization, that is, an injective and continuous
map γ0 : (−1, 1) → (s0 − ε, s0 + ε), s = γ0(t), such that γ0(0) = s0 and
(µ(γ0(t)), v(γ0(t))) is real analytic. Therefore locally this branch has also the
structure of a 1-dimensional real analytic manifold and we denote it by,

G(s1+δ1) = {[0, s1 + δ1) 3 s 7→ (µ(s), v(s))} ,
which satisfies,

G(s1+δ1) = {[0, s1 + δ1] 3 s 7→ (µ(s), v(s))} ,
where, for some s1 > 0 and δ1 > 0, we have:
(A1)0 (µ(s), v(s)) is continuous and locally (up to reparametrization) real
analytic for s ∈ [0, s1 + δ1];
(A1)1 v(s) is a solution of (1.1) with µ = µ(s) for any s ∈ [0, s1 + δ1];
(A1)2 µ(s) = s for s ≤ s1, µ(s1) = µ∗;

(A1)3 the inclusion {(µ, vµ), µ ∈ [0, µ∗]} ≡ G(Ω) ⊂ G(s1+δ1), holds;
(A1)4 inf

[s1,s1+δ1)
µ(s) > 0 and 0 < µ(s) ≤ µ∗, ∀ s ∈ (0, s1 + δ1);

(A1)5 0 /∈ Σ(Lµ(s)), ∀ s ∈ (0, s1 + δ1) \ {s1},
(A1)6 Ker(Lµ(s1)) = span{φ1} and

∫
Ω
f(v(s1))φ1 6= 0,

where Σ(Lµ(s)) denotes the spectrum of Lµ(s). Clearly (A1)6 follows from (b) of
Theorem 1.1. Concerning (A1)5 we recall that, by Proposition 2.2, either σ1(s)
vanishes identically around s1 or its zero must be isolated. In particular, since
σ1(s) is (locally up to a reparametrization) real analytic, its level sets cannot
have accumulation points unless σ1(s) is locally constant and consequently
unless it is constant on [0, s1 + δ1). However we can rule out this case since,
in view of (A1)2, for s < s1 we have σ1(µ(s), v(s)) > 0 and then no σk(s) can
vanish identically, which shows that (A1)5 holds as well. Therefore it is well
defined,

s2 := sup

{
t > s1 : inf

s∈[s1,t)
µ(s) > 0, 0 /∈ Σ(Lµ(s)), ∀ (µ(s), v(s)) ∈ G(t), ∀s1 < s < t

}
.

At this point either inf
s∈[s1,s2)

µ(s) = 0 or inf
s∈[s1,s2)

µ(s) > 0.

If inf
s∈[s1,s2)

µ(s) = 0 we set s∞ = s2,

G(s∞) = {[0, s∞) 3 s 7→ (µ(s), v(s))} , (3.3)

and claim that in this case necessarily µ(s) → 0+ and ‖v(s)‖∞ → +∞ as
s→ s∞.
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We first prove that µ(s) → 0+ and argue by contradiction, assuming that
there exists a sequence {sn} ⊂ (0, s∞) such that sn → s∞, as n → +∞ and
µ(sn) ≥ δ > 0 for some δ > 0. In view of (A1)4, passing to a subsequence
if necessary, we can assume that µ(sn) → µ ∈ [δ, µ∗]. By (H2) and passing
to a further subsequence we would deduce that v(sn) → v, where (µ, v) is
a solution of (1.1). By Theorem 1.1 we see that either (a) or (b) holds and
then, possibly with the aid of Proposition 2.2, we would deduce that locally
around (µ, v) the set of solutions of (1.1) is a real analytic parametrization
of the form (µ(t), v(t)), t ∈ (−ε, ε) for some ε > 0 with (v(0), v(0)) = (µ, v).
In particular, for any fixed n large enough we can assume without loss of
generality that (µ(t), v(t)), t ∈ (−ε, 0) coincides with (µ(s), v(s)), s ∈ (sn, s∞).
Now by construction µ(s) > 0 in [s1, sn], and since µ(s) is continuous we have

inf
s∈[s1,sn]

µ(s) ≥ δ > 0 for some δ > 0. On the other side, possibly taking a

larger sn, we have inf
s∈[sn,s∞)

µ(s) ≥ δ
2
. In other words we have a contradiction

to inf
s∈[s1,s∞)

µ(s) = 0 and the claim is proved.

Next we show that ‖v(s)‖∞ → +∞ and argue by contradiction. If this was
not the case we could find a sequence {sn} ⊂ (0, s∞) such that sn → s∞,
as n → +∞ and ‖v(sn)‖∞ ≤ C for some C > 0. Since we have shown that
µ(s) → 0+ as s → s∞, then passing to a subsequence we would deduce that
v(snk)→ v where v solves (1.1) with µ = 0. However by (A1)4 this fact implies
that (µ, vµ) = (0, 0) would be a bifurcation point which is clearly impossible,
which proves the claim. At this point, since by definition R∞ is a closed and
connected set, it is not difficult to see that R∞ ≡ G(s∞).
After a suitable reparametrization we can assume without loss of generality
that s2 = +∞ and we conclude that statement of Theorem 1.2 is true as
far as inf

s∈(0,s2)
µ(s) = 0. Therefore we can assume without loss of generality

that inf
s∈(0,s2)

µ(s) > 0. In this case, in view of (A1)4, (H2), Theorem 1.1 and

Proposition 2.2, it is not difficult to see that (µ(s), v(s)) converges to a solution
(µ2, v2) as s→ s2 and that 0 ∈ Σ(Lµ2

) and in particular that we can continue
the branch G(s2) in a right neighborhood of s2 to a continuous curve which
admits local real analytic reparametrizations. In particular, by arguing as
above we see that 0 /∈ Σ(Lµ(s)) for s /∈ {s1, s2} and we can argue by induction
defining, for k ≥ 3,

sk := sup

{
t > sk−1 : inf

s∈[s1,t)
µ(s) > 0, 0 /∈ Σ(Lµ(s)), ∀ (µ(s), v(s)) ∈ G(t), ∀sk−1 < s < t

}
.

If there exists some k ≥ 3 such that inf
s∈(0,sk)

µ(s) = 0, then as for (3.3) we

are done. Otherwise by using (A1)4, (H2), Theorem 1.1 and Proposition 2.2,
we can find sequences sk and δk > 0 such that, for any k ∈ N we have,
sk+1 > sk > · · · > s2 > s1, sk + δk < sk+1 and,

(Ak)0 (µ(s), v(s)) is continuous and simple curve without bifurcation points
(which admits local real analytic reparamterizations) defined for s ∈ [0, sk +
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δk];
(Ak)1 v(s) is a solution of (1.1) with µ = µ(s) for any s ∈ [0, sk + δk];
(Ak)2 µ(s) = s for s ≤ s1, µ(s1) = µ∗;

(Ak)3 the inclusion {(µ(s), v(s)), s ∈ [0, sk]} ≡ G(sk)(Ω) ⊂ G(sk+δk), holds;
(Ak)4 inf

[s1,sk+δk)
µ(s) > 0 and 0 < µ(s) ≤ µ∗, ∀ s ∈ (0, sk + δk);

(Ak)5 0 /∈ Σ(Lµ(s)), ∀ s ∈ (0, sk + δk) \ {s1, s2, · · · , sk},
(Ak)6 Ker(Lλ(sk)) = span{φk} and

∫
Ω
f(v(sk))φk 6= 0.

Let s∞ = lim
k→+∞

sk, we claim that:

Claim: µ(s)→ 0+ as s→ s∞.
We argue by contradiction and assume that along an increasing sequence {ŝj}
such that ŝj → s∞, it holds µ(ŝj) ≥ δ > 0 for some δ > 0. Clearly we can
extract a subsequence {skj} ⊂ {sk} such that skj < ŝj ≤ skj+1

. By (Ak)4 and
(H2) we can extract an increasing subsequence (which we will not relabel)
such that (µ(ŝj), v(ŝj)) converges to a solution (µ̂, v̂) of (1.1) as j → +∞,
where δ ≤ µ̂ ≤ µ∗.
By Theorem 1.1 we can apply either Lemma 2.1 or Proposition 2.2 and con-
clude that locally around (µ̂, v̂) the set of solutions of (1.1) is a real analytic
parametrization of the form (µ̂(t), v̂(t)), t ∈ (−ε, ε) for some ε > 0 with
(µ̂(0), v̂(0)) = (µ̂, v̂). In particular for j large enough we can assume with-
out loss of generality that (µ̂(t), v̂(t)), t ∈ (−ε, 0) coincides with (µ(s), v(s)),
s ∈ (ŝj, s∞). Let {σ̂n}n∈N be the eigenvalues corresponding to (µ̂, v̂) and
{σ̂n(t)}n∈N be those corresponding to (µ̂(t), v̂(t)). On one side, since by con-
struction 0 ∈ σ(Lλ(skj

)) and skj < ŝj ≤ skj+1
for any j, then we have that

0 ∈ σ(Lλ̂). Indeed, if this was not the case, then, by Lemma 2.1 and since the
eigenvalues are isolated, we would have that there exists a fixed full neigh-
borhood of 0 with empty intersection with σ(Lλ(skj

)) for any j large enough,

which is a contradiction since the number of negative eigenvalues is, locally
around each positive solution, uniformly bounded. As a consequence there ex-
ists n ∈ N such that σ̂n = 0. On the other side, since σ̂n(t) is in particular a
continuous function of t, by using once more the fact that the eigenvalues are
isolated, possibly passing to a further subsequence if necessary, we must obvi-
ously have σ̂n(t̂j) = 0 for some t̂j → 0− as j → +∞. Whence σ̂n must vanish
identically in (−ε, 0]. In particular the n-th eigenvalue relative to (µ(s), v(s))
must vanish identically for s ∈ (ŝj, s∞) and therefore in [0, s∞). This is again
a contradiction to (Ak)2 since for s < s1 we have σ1(µ(s), v(s)) > 0 and then
no eigenvalue can vanish identically. Therefore a contradiction arises which
shows that µ(s)→ 0+ as s→ s∞.
At this point, arguing as above, it is not difficult to see that ‖v(s)‖∞ → +∞
as s→ s∞ and, defining

G(s∞) = {[0, s∞) 3 s 7→ (µ(s), v(s))} ,

that R∞ ≡ G(s∞). After a suitable reparametrization we can assume without
loss of generality that s2 = +∞ which concludes the proof. �
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