ON THE VARIATIONAL NATURE OF THE ANZELLOTTI PAIRING

GRAZIANO CRASTA AND VIRGINIA DE CICCO

ABSTRACT. In this paper we prove that the Anzellotti pairing can be regarded as a
relaxed functional with respect to the weak™ convergence to the space BV of functions
of bounded variation. The crucial tool is a preliminary integral representation of this
pairing by means of suitable cylindrical averages.

1. INTRODUCTION

A classical problem in Calculus of Variations is to find minimal assumptions assuring
the lower semicontinuity with respect to a suitable convergence of integral functionals of
the type

(1) F(u):/Qf(x,u,Vu) dz,

where € is an open subset of RV and u belongs to a given space of weakly differentiable
functions. With this problem in mind, it is well known that, if the integrand f(zx,s,¢)
admits a linear growth with respect to the gradient variable &, the natural functional
framework is the space BV of functions of bounded variation.

A fundamental result in this direction has been proved by Dal Maso in [23]. More
precisely, assuming that the integrand f(x, s, §) is coercive, continuous and convex in the
last variable, he introduced a proper lower semicontinuous extension of F' to BV and
proved that it coincides with the integral representation of the relaxed functional of F'. If
we drop the coercivity assumption on f, the task of studying the lower semicontinuity and
of finding the relaxation of F' is highly non-trivial and requires some additional regularity
assumption on f in the x variable (see for instance [1,2,10,26,27,30,33]).

Aim of this paper is to investigate the possibility of new progress in this area, by
confining our study to the model cases

Fo(u) = /an b(z,u) - Vudr, Gu)= /Q |b(x,u) - Vu|dz, € Ci(Q),

in the perspective to extend this study to more general cases. We remark that all the
results presented in this paper are new also in the case of a vector field b independent of
u.

The lower semicontinuity of these functionals with respect to the L' convergence has
been established in [30] in the Sobolev space W'l by requiring a very weak regularity
assumption, i.e. that the divergence of the vector field b(z, s) with respect to = is an L!
function. Our aim is to extend this result to the space BV, by considering a relaxed
functional defined by an abstract relaxation procedure. More precisely, for every fixed
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function ¢ € C.(Q) and every open set A C 2, let us consider the functional Fi (-, A) :
BMOC(Q) NLy (Q) — [0, +OO] defined by

loc

¢ b(x,u) - Vudr ifue VVI})CI(Q) N L. (),

Fo(u,A) == /A
Yoo, i € (BVioel®) \ Wi (@) N L),

loc

and the associated relaxed functional

(2)  Fy(u,A):= inf {Egﬂg{f Fu(un, A):u, € WHHQ)  up — u weak™ in BV(Q)}.
As it is customary, this relaxed functional can be characterized as the greatest lower semi-
continuous extension of F' to BV, less than or equal to F. Besides this abstract definition,
for the applications it is of paramount importance to have an integral representation of
FSD. To this end, the main difficulty is to find a precise representative for the singular part
of the relaxed functional (i.e., the representative where the measure Du is singular).

The main contribution of this paper is to find an integral representation for F‘p (u, A).
More precisely, we prove that, for every u € BV,.(2) N LiX.(2) and for every open set
A C €, it holds that

3) Fotwd) = [ o (bla).Du).

where (b(x,u), Du) denotes the pairing measure defined in the recent paper [21]. This
measure extends the concept of pairing measure introduced by Anzellotti in the celebrated
paper [8] by establishing a pairing theory between weakly differentiable vector fields b(x)
and BV functions. While the original definition of this measure starts from a distributional
viewpoint, our contribution shows that it can be regarded also in a variational sense as
a relaxed functional. This variational interpretation seems to be useful in order to study
the 1-Laplace operator, both in the case of the associated Euler-Lagrange equations (see
[38]) and in the study of the related Dirichlet problem with measure data.

Lower semicontinuity results and representation formulas for the relaxed functional in
BV () have been obtained by many authors. In the already cited paper [24], Dal Maso
showed that, in order to prove lower semicontinuity, in his general setting the coercivity
assumption cannot be dropped. In the spirit of the alternatives of Serrin (see [43]), in order
to drop this assumption, Fonseca and Leoni in [33] assumed a uniform lower semicontinu-
ity condition in z. Moreover, in [1,2], the authors required weak differentiability in 2 and
BV in x dependence, respectively. In these cases the precise representatives for the sin-
gular parts are the approximately continuous representative and the lower semicontinuous
capacitary representative, respectively.

Before describing in more details our results, a few words on the pairing measure are in
order.

The pairing theory was initially used to extend the validity of the Gauss—Green formula
to divergence-measure vector fields and to non-smooth domains (see [8,11,12,15,16,18, 20,
37]). Moreover, it can be considered as a useful abstract tool in several contexts, ranging
from applications in the theory of hyperbolic systems of conservation and balance laws (see
[12-16,19,39] and the references therein) to the theory of capillarity and in the study of
the Prescribed Mean Curvature problem (see e.g. [36,37]) and in the context of continuum
mechanics (see e.g. [31,42,44]). Another field of application is related to the Dirichlet
problem for equations involving the 1-Laplacian operator (see [6,7,11,28,29,35,40,41]).
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In a recent paper [21], the authors introduced a nonlinear version of the pairing suitable
for applications to semicontinuity problems. This is the pairing appearing in the repre-
sentation formula (3). The pairing (b(x,u), Du) generalizes the Anzellotti pairing and
inherits its properties. In particular, in that paper we characterized the normal traces of
the vector field b(x, u(z)) and we performed an analysis of the singular part of the pairing
measure. Moreover, we established a generalized Gauss-Green formula.

Let us now describe the contents of the present paper. We underline that all our new
results have been obtained assuming that the divergence of the vector field with respect
to x is an L' function (see Section 3 for the detailed list of assumptions on b). We
believe that this can be considered as a first step in order to study the general case with
a divergence—measure vector field.

In Section 4, we prove a coarea formula for the measure (b(x,u), Du) and its variation
(see Theorems 4.1 and 4.4).

Then, in Section 5, we show that the pairing (b(z,u), Du) admits a representation of
the form

(b(-,u), Du) = b, u) - Vuda + Cyl(by, v; ) [ D4l

4 ut .
(4) + <][ Cyl(by, vy; ) dt) | D7, u € BVipe(Q2) N LS (2),

where Cyl(by, v,,;-) plays the role of a precise representative, defined by means of some
cylindrical averages (see (7) below). The above formula extends the representation formula
for the pairing obtained by Anzellotti in the unpublished paper [9] in the case of a vector
field b(z) independent of w.

In the same spirit, we prove a similar representation formula

(b(-,u), Du) = b(z,u) - Vudz + Tr(b(-,u), 0" {u > u(x)})(x)|Dul|

G <][u (b 1), 0 {u > (@) dt) Diul, € BVioe() N Li5L(),
u~ (x)

based on the use of the weak normal traces as precise representatives (see Section 2.3 for
their definition). This formula generalizes the representation obtained in the recent paper
[17] for vector fields b(x) independent of u.

Sections 6 and 7 are devoted to the study of semicontinuity and relaxation. The main
result is the representation formula (3) for the relaxed functional. Clearly, this represen-
tation formula, coupled with (4) or (5), gives a full integral representation of the relaxed
functional.

In order to achieve (3), we need to prove those which in relaxation theory are called the
liminf and the limsup inequalities. The first one is a consequence of the lower semicon-
tinuity result (see Proposition 6.1 below), while the second one is obtained by using the
blow-up method.

2. PRELIMINARIES

Given 79 € RN and p > 0, B,(70) denotes the ball in RY centered in zo with radius p,
while $V~1 is the unit sphere of RV,
In the following Q will always denote a nonempty open subset of RV, We denote by

M(Q) the space of signed Radon measures on {).
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As usual, £V stands for the Lebesgue measure on RY and H* for the k-dimensional
Hausdorff measure on RY. The Lebesgue measure of the unit ball in RY is denoted by
wy, hence LN (B, () = wyp™.

For every z € RY, I*0"(y) := (y — x)/r denotes the homothety with scaling factor r
mapping z in 0, and the pushforward I;i’” v of a Radon measure p in RY is the measure
acting on a test function ¢ as

oty = [ oor du
RN RN

Let u € Li (Q,R™). We say that u has an approximate limit at xo € Q if there exists

loc
z € R™ such that .

lim —r+—— u(x) — z| de = 0.
0 TN (By(20) /BT@O)’ (z) =]

The set C,, C € of points where this property holds is called the approximate continuity
set of u, whereas the set S, := Q\ C,, is called the approximate discontinuity set of u. For
any x € C,, the approximate limit z is uniquely determined and is denoted by z := u(x).

We say that x € §2 is an approximate jump point of u if there exist a,b € R™, a # b,
and a unit vector v € RY such that

1
li - — =
S0+ ZN(Bi(z)) /Bm) [uy) — aldy =0,
(6) 1

lim ————— —bldy=0
T_I)%Br LN (Be(z)) /B;i(a:) lu(y) | dy )

where Bi(x) :={y € B.(x): (y—z)-v >0}, and B¢(z) :={y € B,(z) : (y—=x) v <0}
The triplet (a, b, v), uniquely determined by (6) up to a permutation of (a,b) and a change
of sign of v, is denoted by (u™(zo),u™ (z0),vu(20)). The set of approximate jump points
of u will be denoted by J,.

The space BV () is defined as the space of all functions u: {2 — R belonging to L*()
whose distributional gradient Du is an RY-valued Radon measure with total variation
|Du| bounded in Q. We indicate by D®u and D®u the absolutely continuous and the
singular part of the measure Du with respect to the Lebesgue measure. We recall that
D% and D®u are mutually singular, moreover we can write

Du = D% + D’u and D% = Vu LV,
where Vu is the Radon-Nikodym derivative of D%u with respect to the Lebesgue measure.
In addition,
D%u = D+ (ut —u ), HY L J,,

where J,, is a countably H™ ~'-rectifiable Borel set (see [5, Definition 2.57]) contained in
Sy, such that HV=1(S, \ J,) = 0. The remaining part D is called the Cantor part of
Du.

A set E C Q is of finite perimeter if its characteristic function xz belongs to BV (Q).

If Q ¢ RY is the largest open set such that E is locally of finite perimeter in €, we call
reduced boundary 0*E of E the set of all points x € 2 in the support of |[Dxg| such that

the limit Dvo(B
vgp(z) = lim Dxp(Bylw))
p=0+ | DxE|(By(2))
exists in RY and satisfies |[7g(x)| = 1. The function vg: 0*E — SV =1 is called the measure
theoretic unit interior normal to E.
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A fundamental result of De Giorgi (see [5, Theorem 3.59]) states that 0*E is countably
(N — 1)-rectifiable, |Dxg| = HN 'L 0*FE, and vg coincides (up to the sign) with the
normal vyg«p defined in Section 2.3. Moreover, the measure theoretic interior normal can
be choosen as normal vector to 0*F, in the sense of Section 2.3.

If u € BV (), then the level set E; := {u > t} is of finite perimeter for a.e. ¢t € R,
and we can choose the sign of the normal vectors so that vg, (z) = vy, (z) = v,(z) for
HNLae. x €%y, where &y := 0" {u > t}.

Moreover, we can choose an orientation on J,, such that u™(z) > u™ (z) for every z € J,.
We also set v~ (z) = ut(z) := u(z) for every x € Cy, and u*(z) := [u™(z) + u~(x)]/2 for
every x € Cy, U J,,.

The measure Du can be disintegrated on the level sets of u using the following coarea
formula (see [32, Theorem 4.5.9]).

Theorem 2.1 (Coarea formula). If u € BV (), then for L'-a.e. t € R the set {u > t}
has finite perimeter in  and the following coarea formula holds

+00 +oo
/gd|Du| :/ dt/ gd’HN_lz/ dt/ gdHN 1,
Q —00 *{u>t}NQ —00 {u=<t<ut}

for every Borel function g : Q2 — [0, +00]. Moreover, for L'~a.e. t € R,
(a) *{u>t} c{u” <t<ut},
(b) HY " ({um <t <t} (07 {u> 1)) =0,
and, in particular,
(@) O {u>t}N(Q\ Sy) C{zx e\ Sy: u(z) =t},
(b) HN_l({x €Q\ S, @) =t} \ ((Q\ Su) N O {u > t})) —0.

2.1. Divergence—measure fields. We will denote by DM*(Q2) the space of all vec-
tor fields A € L*°(Q,RY) whose divergence in the sense of distributions is a bounded
Radon measure in 2. Similarly, DM (2) will denote the space of all vector fields
A € L (2, RY) whose divergence in the sense of distribution is a Radon measure in
Q. We set DM = DM>®(RY). Moreover, we denote by DL (Q) (resp. DLL () the
subset of DM (Q) (resp. DM, (Q)) of vector fields whose divergence is in L' (£2) (resp.
Llloc(Q))‘

We recall that, if A € DM (), then |div A| < HV~! (see [12, Proposition 3.1]). As
a consequence, the set

Op = {xEQ: limsupw > 0},
r—0+ r

is a Borel set, o-finite with respect to HV =1, and the measure div A can be decomposed
as

div A = div® A + div® A + div? A,
where div® A is absolutely continuous with respect to £V, div® A(B) = 0 for every set B
with HVN~1(B) < +o0, and
divV A=hHN 'L 04

for some Borel function h (see [4, Proposition 2.3]).
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2.2. Anzellotti’s pairing. As in Anzellotti [8] (see also [12]), for every A € DM ()
and u € BVjoc(2) N LS.(©2) we define the linear functional (A, Du): C§°(©2) — R by

((A, Du), @) ::—/u*goddiVA—/uA'Vgod:U.
Q Q

The distribution (A, Du) is a Radon measure in 2, absolutely continuous with respect to
|Du| (see [8, Theorem 1.5] and [12, Theorem 3.2]), hence the equation

div(uA) = u*div A + (A, Du)

holds in the sense of measures in Q. Furthermore, Chen and Frid in [12] proved that the
absolutely continuous part of this measure with respect to the Lebesgue measure is given
by (A, Du)® = A-Vu LV,

In [9] it is proved that, for every A € DLL (),

(A, Du) = Cyl(A,vy; ) |Dul, |Du|-a.e. in Q,
where
1
7 Cyl(A,vy; x) := lim lim / A(y) - vy(x) dy
" A5 2) = S BN @) S o )

and, for every ¢ € $V 1,

Crp(@,Q) = {y eRY: |(y —a) - (| <r, |(y —x) = [(y —2) - (J¢| < p} -
(The existence of the limit in (7) for [Du|-a.e. x € Q is part of the statement.)
As a consequence, it holds that
(A, Du)(B,(x))
lim = Cyl(A,vy;z
W Dul(B(@) (4, 15)
2.3. Weak normal traces on oriented countably HV~!-rectifiable sets. We recall
the notion of the traces of the normal component of a vector field A € DMS. (2) on an
oriented countably H™¥~!-rectifiable set ¥ C €, introduced in [3, Propositions 3.2, 3.4
and Definition 3.3|. In that paper the authors proved that there exist the normal traces
rT(A,¥), Tr™ (A, ) belonging to L=(X, HN 1Y) and satisfying
(8) divALY = [TrT(A,%) - Tr (A, %)] #HV L.

In what follows we use the notation

for |Dul-a.e. x € Q.

(A, X))+ Tr (A, X)
5 .
If Ac DLl (), then Tr™ (A, %) = Tr (A,%) and div ALY = 0.

(A, X) =

2.4. Representation formulas for the pairing measure. In the following theorem,
the pairing is characterized in terms of normal traces of the field A on level sets of u.

Theorem 2.2 (see [17], Thm. 3.9). Let A € DM (RY) and u € BVioe(RY) N LS (RY).
Then, the following equality holds in the sense of measures

u*(x)
(9) (A, Du) = ]l T (A, 0" {u > })(x) dt| Dul
(z)
where we use the convention f f(t)dt := f(a). Moreover,
(

(i) absolutely continuous part: (A, Du)® = A -VuLN;
(ii) jump part: (A, Du)? = Tr*(A, J,)(z)| D7 ul;
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(iii) Cantor part: (A, Du)® = Tr*(A, 0*{u > u(x)})(z)|Dul.

Corollary 2.3. Let A € DMS.(Q), and let E C Q be a set of finite perimeter, with
E CQ. Then

(A, Dxg) = Tr* (A, 0"E) () HN 1 LO*E.

3. ASSUMPTIONS ON THE VECTOR FIELD b

Let b: Q x R — RY be a function satisfying the following assumptions:
(i) bis a locally bounded Borel function;
(ii) the function b(z,-) is Lipschitz continuous in R, uniformly with respect to z, i.e.
there exists a constant L > 0 such that
b(x,t) —b(xz,s)| < Lt — s, Vt,s € R, for LN -ae. z € Q;

(iii) for every t € R, b, := b(-,t) € DLL .();
(iv) the least upper bound

o = sup | div, by|
teR
belongs to L ().

loc

We remark that, at the price of some additional technicality, assumption (iv) could be
replaced by the weaker assumption

(iv") for every m > 0, the least upper bound

Om = sup |div, by
lt|<m

belongs to Li. ().

The results of Section 4 will be mainly proved replacing (ii) with the following weaker
assumption:

(ii") for LN-a.e. x € Q, the function b(z,-) is continuous in R.
Let us extend b to 0 in (RY \ Q) x R, so that the vector field
(10) B(x,t) := /Ot b(x,s)ds, zeRN, teR,
is defined for all (z,t) € RY x R. Moreover B(z,0) = 0 for every x € R and, from (ii’),

for every x € R™ one has b(z,t) = 0,B(x,t) for every t € R.

Theorem 3.1 (See [21]). Let b satisfy assumptions (i)-(ii )-(iii)-(iv), let B be defined
by (10), and let w € BVioc(2) N LS (). Then the distribution (b(-,u), Du), defined by

loc

(0. D)) = = [ pla) (divs B) (o @) da

(11)

- [ B.u@) Vela)ds, Ve (@)
Q

is a Radon measure in ), and satisfies

(12) |(b(-;u), Du)[(E) < [[b]| Loo (5 rmy | Dul(E), for every Borel set E € Q,

where K := E x —Hu||Loo(E)> HUHLOO(E)} :
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In other words, the composite function v: Q — RN defined by v(z) := B(x,u(x)),

belongs to LS (€2, RN), and the following equality holds in the sense of measures:

ocC

(13) div v = (div, B)(x,u(x)) LY + (b(-,u), Du).

From (12) it follows that (b(-,u), Du) < |Du|, hence there exists a function ©(b,u;-) €
LY(Q, |Dul) such that

(14) (b(-,u), Du) = ©(b,u; ) |Dul, |Dul-a.e. in Q.

Remark 3.2. By the definition (11) of the pairing and the definition (10) of B, it follows
that, for every ¢ € C$°(Q),

((b(-,u), Du), ) = —/Qgp(x)/ divg by(x) dt dx

0
- /Q /OU(I) bi(x) - V(x) dt dx.

4. COAREA FORMULA FOR THE PAIRING MEASURE

(15)

In this section we establish a coarea formula for the pairing measure (b(-,u), Du), and
we draw some consequences that will be used in order to prove its integral representation
(see Theorem 5.1 below).

Theorem 4.1 (Coarea formula for the pairing measure). Let b satisfy assumptions (i)-

(i )-(43)- (), and let w € BVioe(2) N LS. (Q). Then
(16) (B, w), Du), ) = /R (b1, DXpusy) ) dt, Vi € CF(9),

(17) (b(-,u), Du)(B) = /R (be. Dxusry)(B)dt, ¥ Borel set B C 9.

Proof. Assume, for simplicity, that « > 0 and let C' > ||u]|c. Using the representation
(15), we have that

C C
(b(-,u), Du),p) = — / /Q Xpusty o divg by da dt — / /Q Npuseybe - Voo dr dt
0 0
C

— [ @ Dxp
where, in the last equality, we have used the fact that, for £'-a.e. t € R,

diV(X{u>t} bt) = X?u>t} div b; + (btv DX{u>t})
The general case follows with minor modifications.

Finally, since both sides of (16) are real measures in Q, they coincide not only as
distributions, but also as measures, hence (17) follows. U

The following approximation result is in the spirit of [22, Proposition 4.11], [20, Propo-
sition 4.15], [12, Theorem 1.2], [8, Lemma 2.2].

Theorem 4.2 (Approximation by C* fields). Let b satisfy assumptions (i)-(ii )-(iii)-
(iv). Then there exists a sequence of vector fields b*: Q x R — RN satisfying the same
assumptions, such that b¥ € C°(Q,RN) for everyt € R and

(b*(-,u), Du) = (b(-,u), Du), Vu € BVine(2) N LZ.(Q),

loc
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locally in the weak® sense of measures in Q. If, in addition, b satisfies (ii), then also the
vector fields b satisfy (ii).

Proof. Using the same construction described in the proof of [22, Proposition 4.11], we
obtain locally uniformly bounded vector fields bf € C>(Q, RY) satisfying (i)-(ii')-(iii)-(iv),
and, for every t € R, by — b, in L}, (Q). If, in addition, b satisfies (ii), then it is verified
that also the vector fields b* satisfy (ii).

Moreover, for every t € R and v € BVio(2) N LS (£2),

lim v divbl dz = / v* pddiv by, Vo € Ci(Q)
k—+oc0 J 0

(see [22], formula (4.8)). We underline that, since by assumption divb; € L] (), then
the above relation can be written as

(18) lim v divbf de = / v div b, dz, Vo € Co(Q) .

k—+oco Jo Q
Let us fix u € BVioc(2) N LS (Q2) and ¢ € C.(£2). To simplify the notation, we assume

without loss of generality that u > 0. By the representation formula (15) and Fubini’s
Theorem, we have that

u(x)
(6" (-,u), Du), ) = —/ (JJ)/ div, b (z) dt dz

/ / bl (z) - Vo(z) dt da

= - / / X(ust) (2) @(2) div, bf (z) dz dt
/ /X{u>t} z) b (x) - Vo(x) da dt

= —IF-
For every t € R, by (18) with v = x4 we deduce that, as k — oo,
)= [ () 9(o) div V@) de > [ (@) pla) div, bu(o) do.
Let K € © denote the support of ¢ and let a := ||u|| (k). Since
O] < X0 Ielle /K o,

by the Dominated Convergence Theorem we deduce that

(19) hm Il / / X{ust} () o(x) divy bl () dx dt = /ng(x)/o div, bl (x) dt dz .
Let us compute the limit of I¥. Since, for every t € R, bf — b; in L} (), it holds that
V) = [ X @) B@) - V@) o [ Xusa (@) bile) - Vpla) o,

Moreover, there exists a constant M > 0 such that ||bk||Loo(Kx[_a7a]) < M for every k € N,
so that
DB < M|Vl
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and hence, by the Dominated Convergence Theorem,
(20) lim I} = / / X{ust}(2) bs(w) - Vo(z) dr dt = / / by () - V(x)dt dx .
k—+o00 0o Ja QJo

The conclusion now follows from (19) and (20). O

Proposition 4.3. Let b satisfy assumptions (i)-(ii )-(iii)- (), and let u € BVio(2) N
L (Q). Then

for L'-a.e. teR:  O(b,u;z) = O(be Xgusty3 @) for [IDxgyspyl-a.e. v € Q.

Proof. The proof is essentially the same of Proposition 5.2 in [22], and it is based on the
use of the coarea formula (Theorem 4.1) and the approximation result by smooth fields
(Theorem 4.2). O

Theorem 4.4 (Coarea formula for the variation). Let b satisfy assumptions (i)-(ii )-(iii)-
(iv), and let u € BVioc(2) N LS. (). Then

loc

(b w), Du)| , ¢) = /R (B, Dxgusry)

Proof. To simplify the notation let y := (b(:,u), Du) and py := (b, Dx{u>1}), t € R. By
(14), we have that u = O(b, u) |Dul, so that

lul =106, w)[ [Dul, |pe| = [0(be; X gus i) DX us gy

(see [5, Proposition 1.23]). Let B C Q be a Borel set. By the coarea formula in BV (see
[5, Theorem 3.40]) and Proposition 4.3 it holds that

ul(B) = /B ©(b )| d|Dul = /R dt /B 10(b, u)] dIDx oy

= [t [ 100 xgoi)l diDx sy = [ sl e,
R B R

concluding the proof. O

, o) dt, Vi € CZ°(9).

Lemma 4.5. Let b satisfy (1)-(iv), and let w € BVioc(2)NLS.(2). Then, for every 7 € R
and every ¢ € CX(Q), it holds that

|<(b('vu)7Du>a 90> - <(bT7 Du): @)’

ut
spt ¢ JuNspt ¢ u—

where spt p € ) denotes the support of p.
Proof. Using the coarea formula (16) and (ii) we obtain that

I := [{(b(-,u), Du), ) — {(bs, Du), )| =

/R<(bt_b7'7DX{u>t})>90>dt'
< Jlellso /R / b= bl diDx
spt o

< Lol / / £ — 7] d| Dy qusey | d
R Jsptp
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We now consider spt ¢ as the disjoint union of spt ¢ \ J,, and J, Nspt ¢, and we use the
coarea formula in BV, obtaining

[ e-rdnxgglas [ [ |t—ﬂd|D><{u>t}ldt]
R Jspt p\Jy R J JuNspt ¢

ut
= Llelloc / W—T\dIDdUH/ / ¢ —rldt | auV1| 0
spt ¢ JuNspt u—

5. INTEGRAL REPRESENTATION OF THE PAIRING

I < Llolloo

In this section we are interested in finding an integral representation of the pairing
measure and of its total variation. We prove that the pairing measure can be represented
by an integral functional defined on the space BV (2), provided that in the support of the
singular part of the measure we choose a suitable precise representative of the vector field
b.

We recall the general form of an integral functional defined in BV (). Given the
integrand f(x,t,£) = b(x,t) - £, for every open set A C €, let us define the functional
F(-,A): BV () —] — 00, +00] by setting

Fu,A) = /Ab(x,u)-Vudac

_ Deu uh
+/f 2,0, —— ) d| D +/ d?-LNl/ flz,t, 1) dt,
I gy ARl [ - J@ohn)

where f(-, s,£) is a proper precise representative of f(-,t,&) = b - €.

We show that, in our case, this representative is the limit of cylindrical averages intro-
duced in [9] for vector fields b(x) whose divergence belongs to L.

Theorem 5.1 (Integral representation of the pairing measure). Let b satisfy assumptions
(i)—(iv), and let u € BVipe(Q) N L3S.(?). Then it holds that

loc

ut )
(b(au)vDu) = Cyl(bﬂ7yu; ) |Ddu| T (J[ Cyl(bt7yu; )dt> |D]u|

In other words, the density © defined at (14) is given by
Cyl(bg(a), vu; ) |D%|-a.e. x € Q,
(21) O, u;x) = ][“(z)
u(x)
Moreover, Cyl(bgy), vu; z)|Vu(z)| = b(z,u(z)) - Vu(z) for LN -a.e. z € Q.

Cyl(b,vy;z)dt, HN'-a.e. z € J,.

Proof. By assumption (iii), for every ¢ € R we have that
d(bs, Du)

d|Dul
TrH(By, J,) = Tr—(By, Ju) = Cyl(By,v;-),  HY l-ae. in J,

= Cyl(by, vy; x), |D%|-a.e. in Q,

(see [9, Theorems 2.6 and 3.6]).
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The representation of the jump part (i.e. of © on J,) follows directly from [21, Theo-
rem 5.6] and the simple computation

ut(z)

Cyl(By+(2), vu; ) — Cyl( By (), Vu; T) = / Cyl(by, vyy; ) dt .
u~(x)

It remains to prove that
O(b, Du;-) = Cyl(by,v;-)  |D%l-a.e. in Q.

First, we remark that there exists a Borel set N C €, with |[D%|(N) = 0, such that
the limit of cylindrical averages Cyl(by, v,;-) exists for every x € Q\ N and every t € R
(see e.g. the proof of [21, Lemma 4.2]). As a consequence, the map z +— Cyl(bg(s), Vu; )
belongs to LS (€2, [D%ul).

To simplify the notation, let us denote by u := (b(:,u), Du) the pairing measure. We
have to prove that

d
)

Dl r) = Cyl(by(z), vu;v), for |D%|-a.e. z € Q.

Let us choose x € Q such that

(a) x belongs to the support of D%, that is |D%|(B,(x)) > 0 for every r > 0;
d d

p(Br(x)) _ dp

b) there exists the limit hm = x);

" e DB (o) D]
Dlu|(By(x))

) T TDul(B, ()~
ba(a), Du) (B,

o [Du|(B(x))

(e) lim

e DB @) o, ") ™

9

= Cyl(bi(a)s Vu; 2);
()| d| D (y) =

We remark that these conditions are satisfied for |[D%ul-a.e. 2 € Q. In particular, (e) holds
since |D%l-a.e. x € Q is a Lebesgue point of & with respect to |Dul.
Since

‘(b( w), Du) (B, (z))

— Cyl(bg(y), Vu; )

| Dul|(Br(x))
(b(-,u), Du)(Br(z))  (ba), Du)(Br(2))| | (baw), Du)(Br(x)) o
S‘ | Du|(Br(z)) |Dul|(B(z)) ' ‘ |Dul|(B,(2)) Cyl(bi(a), vus )|

by (d) it is enough to prove that

(22) I, :=

‘(b(wULDU)(Br(fv)) (bi(a), Du)(Br (

Du(B,(x))  |Dul(B,(@) ‘_%0 w0,

d(b(7u>7DU) _
dDu T gD @)
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By Lemma 4.5, choosing 7 = @(z) and taking a sequence ¢; € C°(B,(x)), ¢;(y) — 1
in B,(z), with 0 < ¢; < 1, we get

# u(y) —u(zx dy,
ITS,DM(BT(@)[/M' (y) — ()| d|D%ul(y)

ut(y)
-/ [ -t ) an i)
Bo(@)ndu \Ju—(y)

S - DB )
< BT /B ) T D) + 2l

Finally, by (c¢) and (e) we conclude that (22) holds. O

Corollary 5.2 (Integral representation of the pairing functional). Let b satisfy assump-
tions (i)-(iw), and let uw € BVio.(Q) N LS (). Then it holds that

loc

uwt
(23) / ¢(b($au)a Du) = / o ][ Cyl(bta Vs x) dt|Du’7 NS CC(Q) )
Q Q U~
where we use the compact notation
ut
][ Cyl(by, vy; x) dt|Du| := b(z,u) - Vudz + Cyl(bg, vy; ) | DCul|
(24) " .
+][ Cyl(by, vy; x) dt| DI,
Remark 5.3. As a direct consequence of the above corollary, it holds that

(b(" u)’ Du)

for |Dul-a.e. € .

Theorem 5.4. Let b satisfy assumptions (i)—(iv), and u € BVioo(Q) N LS. (2). Then, for
|Dul-a.e. z € Q,

ut(x)
(25) O(b,u;z) = ][ Tr (b, 0" {u > t})(z) dt,
u~ ()
where we use the convention f= f(t)dt := f(a). In particular,

(26) O(b,u;x) = Tr(b(-,u), 0" {u > u(z)})(x), for |D%ul|-a.e. z € Q.

Proof. 1t suffices to prove that, for every Borel set B C 2, it holds that

()
(27) /Bb(-,u),Du):/B][() Tr(by, 8 {u > t})(z) dt |Dul.

For every t € R such that 0*{u > t} is locally of finite perimeter (and hence for a.e. t € R),
by Corollary 2.3 we deduce that

(28) O(bt, Dx{usty, ) = Tr(by, 0" {u > t})(x) for HNae. 2 € 0 {u > t}.
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Then, by using the coarea formula (16) for the pairing measure, formula (28), Fubini’s
theorem and Theorem 2.1 we get

/b(-,u),Du)://(bt,DX{u>t})dt:// Tr(by, 0 {u > t})dHN L dt
B RJB Bma*{u>t}

:/ Tr(by, 0" {u > u(z)}) dHN ! + / / Tr(by, 0*{u > t}) dt dH™ 1
B\J, BNJy Ju~(z)

/ % Te(by, & {u > t})dt | D,

so that (27) is proved. O

6. LOWER SEMICONTINUITY OF THE PAIRING

In this section, by using the nonautonomous chain rule formula (13) for the divergence,
we study the lower semicontinuity with respect to the L' convergence of the functionals
F,GT: BV(Q) N L*(Q) — R defined by

~ [ et Du)]. 6= [ (bwu) D), 6w = [ (b))
Q Q Q

We start by proving the following continuity result (see [30] for the analogous result in
whl),
Proposition 6.1. Let b satisfy assumptions (i)-(iv), let o € CX(Q) be a fized test function,
and let G,: BV (Q) N L>®(2) — R be the functional defined by

Golu) i= ((b(w,w). Du) ) = [ pd(ble.w). D), we BY(®)NL¥(@),
Q

Then, for every sequence (uj) C BV () N L>®(Q) converging to u € BV (2) N L>®(Q) in
the L' convergence, and satisfying

L= sup [|uj|| Lo (o) < 400,
J

it holds that
(29) lim Gy(uj) = Gp(u).

j—+oo

Moreover, by assuming, instead of (iv), the stronger condition o € LY _(Q) (respectively o €
L (Q)), the continuity (29) holds if (uj) converges to u weakly* in BV () (respectively
strongly in L{ _(Q)).

Proof. Using (15) we have that

GW@—%M:—/ﬂ@/JdMQMﬁM—//]bmyWMMMU

Since b is a locally bounded vector field, the second integral converges to 0 by the Lebesgue
Dominated Convergence theorem. The first integral can be written as

(30) //KX[ . sign(u(z) — uj(x))xp,(z,s) divy bs(r) dx ds,
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where K C  is the support of ¢ and D; C 2 x [—L, L] is the set of pairs (z, s) such that
s belongs to the segment of endpoints u(z) and u;(z). Since

XD, (2, 5)p(w) dive bs(x)] < [l ooy | dive bs(2)] < @]l re o) o(2) € LK x [-L, L)),

the integral (30) converges to 0 by the Lebesgue Dominated Convergence theorem.
Let us prove the second part of the theorem. If the sequence (u;) C BV(§2) N L>(Q)
weak*-converges to u € BV ()N L>*°(Q2), by the Poincaré inequality (see [5, Remark 3.50])

we have that (u;) weakly converges to u in L%(Q) Since

()
/go(x)/ ’ div, by(z) dt dx

< ¢l /K juj () — u(@)|o () de

then, if o € LY (), the integral on the right-hand side converges to 0. The same conclu-
sion holds if (u;) converges to u strongly in L] _(Q) and o € L2 (). O

Remark 6.2. In [24] Dal Maso proved the lower semicontinuity of integral functionals with
coercive integrands and he showed, by exploiting Aronszajn’s example, that this result is
sharp, in the sense that, in general, the coercivity assumption cannot be dropped. Indeed,
Dal Maso constructed a continuous function w: Q@ — R, where Q@ = (0,1) x (0,1) and
x = (z1,22), and a sequence of functions {u,} converging to u(x) = xo in L*(Q2), such
that

/ |(sinw(x),cosw(x)) - Vu(z))| dz > hmmf/ |(sinw(zx),cosw(x)) - Vup(z))| dz.
Q

Let us remark that the integrand |b(x) - £| of Dal Maso’s example does not satisfy our
condition divb € L.

Theorem 6.3. [Lower semicontinuity] Let b satisfy assumptions (i)—(iv). Then the func-
tionals F, G are lower semicontinuous on BV (£2) N L>(Q) with respect to the L' conver-
gence.

Proof. Let us define the auxiliary functionals H, H": BV (Q) N L>®(Q) — R by

H(u) = —/Q(b(:c,u),Du), H* (u) = /Q(—(b(x,u),pu))+

Since F(u) = [GT(u) + H(u)]/2, it suffices to prove that G*(u) and H™ (u) are lower
semicontinuous on BV () N L>(£) with respect to the L' convergence. We shall prove
the claim only for GT, being the proof for H' similar.

Let us prove that liminf,, G*(u,) > G (u) for every sequence (u,) C BV (Q) N L>®(Q)
converging to u € BV (2) N L>(Q) in L1(Q).

For every k € N let us consider the Lipschitz function o : R — R defined by

or(t) == —|t| + k kE—1<|t| <k,
0 t| > k.

The vector field
bt (z,t) := oy (t) b(z, 1)
satisfies
bk (x,t) = 0 for |t| > k, b (x,t) = b(x,t) for [t| < k—1.
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We claim that, for every v € BV (Q2) N L*>(2),

(31) O (b, v;z) = op(v(x)) O(b, v; ), for [D%v|-a.e. z € Q,
vt (x)
(32) O(b*, vy x) = ][ o (t) Cyl(bs, vy; x) dt for HN"Lae. z € QN J,.
v (z)

Specifically, both relations are a consequence of the representation formula (21) and of the
equality

1

Cyl(bF, vy: z) = lim i ) b(y) - vp(x) d
SBEvi ) 010 110 LN(Cy (@, v (1)) /C'r,p(xﬂ/u(z‘)) owlE) Bely) - ol dy

— ou(t) Cyl(br, v ).

We now proceed as in [25]. Given ¢ € C(Q), let us consider the following functionals,
defined in BV (Q2) N L*>°(Q):

vt (@)

FA) = [ ole) Collba i o)DMl + [ ola) f ol ded
Q QNJy, v

~(2)

F(0) = [ ola) [ Colbsyomnia)] D%

vt (z) +
+ / o(z) ][ [Cyl(bt,uv;x) dt} AN
QNJy v~ ()

Fw) = [ @) Oxt(bigay i) D%

vt (2) + N
+/ g@(az)[% Cyl(bt,yv;a:)dt} dHN L
QNJy v~ (z)

Let ® denote the set of all functions ¢ € C1(€) such that 0 < ¢ < 1. Then it holds
that

@) G )= /Q #(2)(b( 1), D) = sup /Q (@) (b(, ), Dun) ™

Using the representation formulas (31) and (32), from (33) we deduce that

(34 G (u) = sup [ Flwn) = sup [ Fi(uw,).

ped ped

: 1 2 3 -
Since F, < F; < F;, from (34) it follows that

Gt (up) = sup/ Fz(un)
ped JQ
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As a consequence, recalling that 0 < oy < 1, for every ¢ € ® we deduce that

Gt (up) > Fg(un)

~ .
> [ pla)on(in(@) [ Ool(ba, oy, 1)) 1D
uyy (x) + N
w [ e o [oxttb e de] !
QNJuy, Uy, ()
> /Q ()0 (Tn (1)) C¥ (b (2> i ) | D]
+ / () ][ o4 (t) Cyl(by, v, : 2) dt dHN !
QNJu,, Up, ()
- /Q (@) CYIBE () Vs ) [ D
+ / o(x) ][ Cyl(bF vy, ;) dt dHN !
QNJy,, Uy, ()
= /cp(x) (bk(:v,un),Dun).
Q

Let us choose k > [Julloo + 1, let Tz := min{max{z, —k}, k}, 2 € R, and let us define
the functional

G]:,(’U) = /ng(a:) (b"(x,v), Dv), v e BV(Q)N LX),

so that the previous inequality reads
(35) G (un) > Gl (un) .
From the representation formula (15) it holds that
Gh(v) =GL(Tw), Vv e BV(Q)NL®(Q),

and, by our choice of k, G’:,(u) = Gy(u).
For every ¢ € @, from (35) and Proposition 6.1 applied to the functional GZf, and the
uniformly bounded sequence (Tjuy,)n, we deduce that

.. + .. k T k k i
légliggG (un) > %gfcg G (un) = EE&.‘E Go(Tiun) > Gi(u) = Gy(u).

Taking the supremum for ¢ € ® we finally conclude that lim Jirnf Gt (up) > Gt (u). O
n—-+0o0
7. PAIRING AS RELAXED FUNCTIONAL

For every function ¢ € C}(Q) and for every open set A C 2 let us consider the functional

F#(-; A) : BVoc(2) N LE2.(Q) =] — 00, +00] defined by

loc

pb(z,u) - Vudx uEWi’SQﬂL"OQ,
SR § RO 50 £2(0)
+00, u € (BVioe(2) \ W () N LS

loc

(62).
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Moreover, for every u € BVio.(£2) N LY. (2) we define the relaxations with respect to the
weak* convergence in BV and the L' convergence in BV as

{un} | n—=+oo loc

F?(u, A) := inf {liminf F?(tn, A): up € W2H(A), u, = win BVlOC(A)} ,

F¥(u, A) := {inf} {ligl}rnf F?(up, A): uy, € W’licl(A), uy, — u strongly in Ll(A)} .
Theorem 7.1. [Integral representation of the relazed functionals of F¥] Let b satisfy
assumptions (i)—(i). Then for every u € BWo.(2) N LS. (2) and for every open set
A CQ, if we assume o € LY (Q), then it holds that

loc

F? = T, U u
F (u,A>—/A¢d<b< ), Du)

and, if we assume o € LS (), then it holds that
Fi(wA) = [ pdb(e,u). D),
A

Proof. Thanks to the continuity results proved in Proposition 6.1 and the argument in
[34, Theorem 1.3, part (i)], it is enough to prove the following two inequalities:

(J) for HN -a.e. ¢ € J,, it holds that

dF¢(u ) u™t (z0)
st @) < (o) [ Col(b(e ) vl o) dt:
dHN-1LJ, u=(x0)
or ul-a.e. xg € (2, it holds that
(C) for | DCul Q, it holds th
dF? (u, - ~
dD(Cu\ ) (z0) < @(x0) Cyl(b(-, u(zg)), vu(zo); zo) -

Since both results are of local nature, it is not restrictive to assume that Q = RY and that
u € BV (RY) N L=®(RY). Moreover, to simplify the notation we denote p := (b(-,u), Du).

Proof of (J). By the definition of relaxed functional we have that

F* (u,- F?(u,B
di(“’)(wo):hmM
dHN-TLJ, ™o w1Vl
1
< lim liminf — b : dy.
< lmlimint ey [ )b e ) Vo0

As e — 07, the integral above converges to || By (x0) wdp (see the proof of Theorem 4.3 in
[21], where this convergence is stated in formula (38)). Hence,

dF? (u, ) 1
—_— <lim —— d
dHN-1L T, (1‘0) B 7‘{‘% wy_1rN-1 ~/BT(IE0) v

o Du(By(a) | p(Belan)
= (@) 71~\0 wn_1rN=1 | Du|(B(z0))

= p(0) [u” (w0) — u™ (20)] (b, u, 7o) ,
so that (J) follows from Theorem 5.1.
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Proof of (C). Reasoning as in the proof of (J) above, we have that

dF? (u,-) F*(u, B,(x0))
el W)y — iy — % PriZo))
d| Dl (o) 0 wy_qrN-1
p#(Br(20))

< (o) 11{‘1(1) Dul(By(zo)) = p(z9) O(b, u, z9),

and again the conclusion follows from Theorem 5.1. g
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