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Abstract. In this paper we prove that the Anzellotti pairing can be regarded as a
relaxed functional with respect to the weak? convergence to the space BV of functions
of bounded variation. The crucial tool is a preliminary integral representation of this
pairing by means of suitable cylindrical averages.

1. Introduction

A classical problem in Calculus of Variations is to find minimal assumptions assuring
the lower semicontinuity with respect to a suitable convergence of integral functionals of
the type

(1) F (u) =

∫
Ω
f(x, u,∇u) dx,

where Ω is an open subset of RN and u belongs to a given space of weakly differentiable
functions. With this problem in mind, it is well known that, if the integrand f(x, s, ξ)
admits a linear growth with respect to the gradient variable ξ, the natural functional
framework is the space BV of functions of bounded variation.

A fundamental result in this direction has been proved by Dal Maso in [23]. More
precisely, assuming that the integrand f(x, s, ξ) is coercive, continuous and convex in the
last variable, he introduced a proper lower semicontinuous extension of F to BV and
proved that it coincides with the integral representation of the relaxed functional of F . If
we drop the coercivity assumption on f , the task of studying the lower semicontinuity and
of finding the relaxation of F is highly non-trivial and requires some additional regularity
assumption on f in the x variable (see for instance [1, 2, 10,26,27,30,33]).

Aim of this paper is to investigate the possibility of new progress in this area, by
confining our study to the model cases

Fϕ(u) =

∫
Ω
ϕ b(x, u) · ∇u dx , G(u) =

∫
Ω
|b(x, u) · ∇u| dx , ϕ ∈ C1

0 (Ω) ,

in the perspective to extend this study to more general cases. We remark that all the
results presented in this paper are new also in the case of a vector field b independent of
u.

The lower semicontinuity of these functionals with respect to the L1 convergence has
been established in [30] in the Sobolev space W 1,1 by requiring a very weak regularity
assumption, i.e. that the divergence of the vector field b(x, s) with respect to x is an L1

function. Our aim is to extend this result to the space BV , by considering a relaxed
functional defined by an abstract relaxation procedure. More precisely, for every fixed
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function ϕ ∈ Cc(Ω) and every open set A ⊆ Ω, let us consider the functional Fϕ(·, A) :
BVloc(Ω) ∩ L∞loc(Ω)→ [0,+∞] defined by

Fϕ(u,A) :=


∫
A
ϕ b(x, u) · ∇u dx if u ∈W 1,1

loc (Ω) ∩ L∞loc(Ω),

+∞, if u ∈ (BVloc(Ω) \W 1,1
loc (Ω)) ∩ L∞loc(Ω) ,

and the associated relaxed functional

(2) Fϕ(u,A) := inf

{
lim inf
n→+∞

Fϕ(un, A) :un ∈W 1,1(Ω) , un → u weak∗ in BV (Ω)

}
.

As it is customary, this relaxed functional can be characterized as the greatest lower semi-
continuous extension of F to BV , less than or equal to F . Besides this abstract definition,
for the applications it is of paramount importance to have an integral representation of
Fϕ. To this end, the main difficulty is to find a precise representative for the singular part
of the relaxed functional (i.e., the representative where the measure Du is singular).

The main contribution of this paper is to find an integral representation for Fϕ(u,A).
More precisely, we prove that, for every u ∈ BVloc(Ω) ∩ L∞loc(Ω) and for every open set
A ⊆ Ω, it holds that

(3) Fϕ(u,A) =

∫
A
ϕ (b(x, u), Du) ,

where (b(x, u), Du) denotes the pairing measure defined in the recent paper [21]. This
measure extends the concept of pairing measure introduced by Anzellotti in the celebrated
paper [8] by establishing a pairing theory between weakly differentiable vector fields b(x)
and BV functions. While the original definition of this measure starts from a distributional
viewpoint, our contribution shows that it can be regarded also in a variational sense as
a relaxed functional. This variational interpretation seems to be useful in order to study
the 1–Laplace operator, both in the case of the associated Euler–Lagrange equations (see
[38]) and in the study of the related Dirichlet problem with measure data.

Lower semicontinuity results and representation formulas for the relaxed functional in
BV (Ω) have been obtained by many authors. In the already cited paper [24], Dal Maso
showed that, in order to prove lower semicontinuity, in his general setting the coercivity
assumption cannot be dropped. In the spirit of the alternatives of Serrin (see [43]), in order
to drop this assumption, Fonseca and Leoni in [33] assumed a uniform lower semicontinu-
ity condition in x. Moreover, in [1,2], the authors required weak differentiability in x and
BV in x dependence, respectively. In these cases the precise representatives for the sin-
gular parts are the approximately continuous representative and the lower semicontinuous
capacitary representative, respectively.

Before describing in more details our results, a few words on the pairing measure are in
order.

The pairing theory was initially used to extend the validity of the Gauss–Green formula
to divergence-measure vector fields and to non-smooth domains (see [8,11,12,15,16,18,20,
37]). Moreover, it can be considered as a useful abstract tool in several contexts, ranging
from applications in the theory of hyperbolic systems of conservation and balance laws (see
[12–16, 19, 39] and the references therein) to the theory of capillarity and in the study of
the Prescribed Mean Curvature problem (see e.g. [36,37]) and in the context of continuum
mechanics (see e.g. [31, 42, 44]). Another field of application is related to the Dirichlet
problem for equations involving the 1–Laplacian operator (see [6, 7, 11,28,29,35,40,41]).
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In a recent paper [21], the authors introduced a nonlinear version of the pairing suitable
for applications to semicontinuity problems. This is the pairing appearing in the repre-
sentation formula (3). The pairing (b(x, u), Du) generalizes the Anzellotti pairing and
inherits its properties. In particular, in that paper we characterized the normal traces of
the vector field b(x, u(x)) and we performed an analysis of the singular part of the pairing
measure. Moreover, we established a generalized Gauss-Green formula.

Let us now describe the contents of the present paper. We underline that all our new
results have been obtained assuming that the divergence of the vector field with respect
to x is an L1 function (see Section 3 for the detailed list of assumptions on b). We
believe that this can be considered as a first step in order to study the general case with
a divergence–measure vector field.

In Section 4, we prove a coarea formula for the measure (b(x, u), Du) and its variation
(see Theorems 4.1 and 4.4).

Then, in Section 5, we show that the pairing (b(x, u), Du) admits a representation of
the form

(b(·, u), Du) = b(x, u) · ∇u dx+ Cyl(bũ, νu; ·) |Dcu|

+

(
−
∫ u+

u−
Cyl(bt, νu; ·) dt

)
|Dju|, u ∈ BVloc(Ω) ∩ L∞loc(Ω) ,

(4)

where Cyl(bt, νu; ·) plays the role of a precise representative, defined by means of some
cylindrical averages (see (7) below). The above formula extends the representation formula
for the pairing obtained by Anzellotti in the unpublished paper [9] in the case of a vector
field b(x) independent of u.

In the same spirit, we prove a similar representation formula

(b(·, u), Du) = b(x, u) · ∇u dx+ Tr(b(·, ũ), ∂∗{u > ũ(x)})(x)|Dcu|

+

(
−
∫ u+(x)

u−(x)
Tr(b(·, t), ∂∗{u > t})(x) dt

)
|Dju|, u ∈ BVloc(Ω) ∩ L∞loc(Ω) ,

(5)

based on the use of the weak normal traces as precise representatives (see Section 2.3 for
their definition). This formula generalizes the representation obtained in the recent paper
[17] for vector fields b(x) independent of u.

Sections 6 and 7 are devoted to the study of semicontinuity and relaxation. The main
result is the representation formula (3) for the relaxed functional. Clearly, this represen-
tation formula, coupled with (4) or (5), gives a full integral representation of the relaxed
functional.

In order to achieve (3), we need to prove those which in relaxation theory are called the
liminf and the limsup inequalities. The first one is a consequence of the lower semicon-
tinuity result (see Proposition 6.1 below), while the second one is obtained by using the
blow-up method.

2. Preliminaries

Given x0 ∈ RN and ρ > 0, Bρ(x0) denotes the ball in RN centered in x0 with radius ρ,

while SN−1 is the unit sphere of RN .
In the following Ω will always denote a nonempty open subset of RN . We denote by

M(Ω) the space of signed Radon measures on Ω.
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As usual, LN stands for the Lebesgue measure on RN and Hk for the k-dimensional
Hausdorff measure on RN . The Lebesgue measure of the unit ball in RN is denoted by
ωN , hence LN (Bρ(x0)) = ωNρ

N .
For every x ∈ RN , Ix0,r(y) := (y − x)/r denotes the homothety with scaling factor r

mapping x in 0, and the pushforward Ix,ri# µ of a Radon measure µ in RN is the measure

acting on a test function φ as∫
RN

φd(Ix,r# µ) =

∫
RN

φ ◦ Ix0,r dµ.

Let u ∈ L1
loc(Ω,Rm). We say that u has an approximate limit at x0 ∈ Ω if there exists

z ∈ Rm such that

lim
r→0+

1

LN (Br(x0))

∫
Br(x0)

|u(x)− z| dx = 0.

The set Cu ⊂ Ω of points where this property holds is called the approximate continuity
set of u, whereas the set Su := Ω\Cu is called the approximate discontinuity set of u. For
any x ∈ Cu the approximate limit z is uniquely determined and is denoted by z := ũ(x).

We say that x ∈ Ω is an approximate jump point of u if there exist a, b ∈ Rm, a 6= b,
and a unit vector ν ∈ RN such that

(6)

lim
r→0+

1

LN (Bi
r(x))

∫
Bir(x)

|u(y)− a| dy = 0,

lim
r→0+

1

LN (Be
r(x))

∫
Ber(x)

|u(y)− b| dy = 0,

where Bi
r(x) := {y ∈ Br(x) : (y− x) · ν > 0}, and Be

r(x) := {y ∈ Br(x) : (y− x) · ν < 0}.
The triplet (a, b, ν), uniquely determined by (6) up to a permutation of (a, b) and a change
of sign of ν, is denoted by (u+(x0), u−(x0), νu(x0)). The set of approximate jump points
of u will be denoted by Ju.

The space BV (Ω) is defined as the space of all functions u : Ω→ R belonging to L1(Ω)
whose distributional gradient Du is an RN -valued Radon measure with total variation
|Du| bounded in Ω. We indicate by Dau and Dsu the absolutely continuous and the
singular part of the measure Du with respect to the Lebesgue measure. We recall that
Dau and Dsu are mutually singular, moreover we can write

Du = Dau+Dsu and Dau = ∇u LN ,
where ∇u is the Radon-Nikodým derivative of Dau with respect to the Lebesgue measure.
In addition,

Dsu = Dcu+ (u+ − u−)νu HN−1 Ju ,

where Ju is a countably HN−1-rectifiable Borel set (see [5, Definition 2.57]) contained in
Su, such that HN−1(Su \ Ju) = 0. The remaining part Dcu is called the Cantor part of
Du.

A set E ⊂ Ω is of finite perimeter if its characteristic function χE belongs to BV (Ω).
If Ω ⊂ RN is the largest open set such that E is locally of finite perimeter in Ω, we call
reduced boundary ∂∗E of E the set of all points x ∈ Ω in the support of |DχE | such that
the limit

ν̃E(x) := lim
ρ→0+

DχE(Bρ(x))

|DχE |(Bρ(x))

exists in RN and satisfies |ν̃E(x)| = 1. The function ν̃E : ∂∗E → SN−1 is called the measure
theoretic unit interior normal to E.
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A fundamental result of De Giorgi (see [5, Theorem 3.59]) states that ∂∗E is countably
(N − 1)-rectifiable, |DχE | = HN−1 ∂∗E, and ν̃E coincides (up to the sign) with the
normal ν∂∗E defined in Section 2.3. Moreover, the measure theoretic interior normal can
be choosen as normal vector to ∂∗E, in the sense of Section 2.3.

If u ∈ BV (Ω), then the level set Et := {u > t} is of finite perimeter for a.e. t ∈ R,
and we can choose the sign of the normal vectors so that ν̃Et(x) = νΣt(x) = νu(x) for
HN−1-a.e. x ∈ Σt, where Σt := ∂∗{u > t}.

Moreover, we can choose an orientation on Ju such that u+(x) > u−(x) for every x ∈ Ju.
We also set u−(x) = u+(x) := ũ(x) for every x ∈ Cu, and u∗(x) := [u+(x) + u−(x)]/2 for
every x ∈ Cu ∪ Ju.

The measure Du can be disintegrated on the level sets of u using the following coarea
formula (see [32, Theorem 4.5.9]).

Theorem 2.1 (Coarea formula). If u ∈ BV (Ω), then for L1–a.e. t ∈ R the set {u > t}
has finite perimeter in Ω and the following coarea formula holds∫

Ω
g d|Du| =

∫ +∞

−∞
dt

∫
∂∗{u>t}∩Ω

g dHN−1 =

∫ +∞

−∞
dt

∫
{u−≤t≤u+}

g dHN−1 ,

for every Borel function g : Ω→ [0,+∞]. Moreover, for L1–a.e. t ∈ R,

(a) ∂∗{u > t} ⊂ {u− ≤ t ≤ u+},
(b) HN−1

(
{u− ≤ t ≤ u+} \

(
∂∗{u > t}

))
= 0,

and, in particular,

(a′) ∂∗{u > t} ∩ (Ω \ Su) ⊆ {x ∈ Ω \ Su : ũ(x) = t},
(b′) HN−1

(
{x ∈ Ω \ Su : ũ(x) = t} \

(
(Ω \ Su) ∩ ∂∗{u > t}

))
= 0.

2.1. Divergence–measure fields. We will denote by DM∞(Ω) the space of all vec-
tor fields A ∈ L∞(Ω,RN ) whose divergence in the sense of distributions is a bounded
Radon measure in Ω. Similarly, DM∞loc(Ω) will denote the space of all vector fields
A ∈ L∞loc(Ω,RN ) whose divergence in the sense of distribution is a Radon measure in

Ω. We set DM∞ = DM∞(RN ). Moreover, we denote by DL1(Ω) (resp. DL1
loc(Ω)) the

subset of DM∞(Ω) (resp. DM∞loc(Ω)) of vector fields whose divergence is in L1(Ω) (resp.
L1

loc(Ω)).

We recall that, if A ∈ DM∞loc(Ω), then | divA| � HN−1 (see [12, Proposition 3.1]). As
a consequence, the set

ΘA :=

{
x ∈ Ω : lim sup

r→0+

|divA|(Br(x))

rN−1
> 0

}
,

is a Borel set, σ-finite with respect to HN−1, and the measure divA can be decomposed
as

divA = divaA + divcA + divj A,

where divaA is absolutely continuous with respect to LN , divcA(B) = 0 for every set B
with HN−1(B) < +∞, and

divj A = hHN−1 ΘA

for some Borel function h (see [4, Proposition 2.3]).
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2.2. Anzellotti’s pairing. As in Anzellotti [8] (see also [12]), for every A ∈ DM∞loc(Ω)
and u ∈ BVloc(Ω) ∩ L∞loc(Ω) we define the linear functional (A, Du) : C∞0 (Ω)→ R by

〈(A, Du) , ϕ〉 := −
∫

Ω
u∗ϕddivA−

∫
Ω
uA · ∇ϕdx.

The distribution (A, Du) is a Radon measure in Ω, absolutely continuous with respect to
|Du| (see [8, Theorem 1.5] and [12, Theorem 3.2]), hence the equation

div(uA) = u∗ divA + (A, Du)

holds in the sense of measures in Ω. Furthermore, Chen and Frid in [12] proved that the
absolutely continuous part of this measure with respect to the Lebesgue measure is given
by (A, Du)a = A · ∇uLN .

In [9] it is proved that, for every A ∈ DL1
loc(Ω),

(A, Du) = Cyl(A, νu; ·) |Du| , |Du|–a.e. in Ω,

where

(7) Cyl(A, νu;x) := lim
ρ↓0

lim
r↓0

1

LN (Cr,ρ(x, νu(x)))

∫
Cr,ρ(x,νu(x))

A(y) · νu(x) dy

and, for every ζ ∈ SN−1,

Cr,ρ(x, ζ) :=
{
y ∈ RN : |(y − x) · ζ| < r, |(y − x)− [(y − x) · ζ]ζ| < ρ

}
.

(The existence of the limit in (7) for |Du|–a.e. x ∈ Ω is part of the statement.)
As a consequence, it holds that

lim
r↓0

(A, Du)(Br(x))

|Du|(Br(x))
= Cyl(A, νu;x) for |Du|–a.e. x ∈ Ω.

2.3. Weak normal traces on oriented countably HN−1-rectifiable sets. We recall
the notion of the traces of the normal component of a vector field A ∈ DM∞loc(Ω) on an
oriented countably HN−1–rectifiable set Σ ⊂ Ω, introduced in [3, Propositions 3.2, 3.4
and Definition 3.3]. In that paper the authors proved that there exist the normal traces
Tr+(A,Σ),Tr−(A,Σ) belonging to L∞(Σ,HN−1 Σ) and satisfying

(8) divA Σ =
[
Tr+(A,Σ)− Tr−(A,Σ)

]
HN−1 Σ.

In what follows we use the notation

Tr∗(A,Σ) :=
Tr+(A,Σ) + Tr−(A,Σ)

2
.

If A ∈ DL1
loc(Ω), then Tr+(A,Σ) = Tr−(A,Σ) and divA Σ = 0.

2.4. Representation formulas for the pairing measure. In the following theorem,
the pairing is characterized in terms of normal traces of the field A on level sets of u.

Theorem 2.2 (see [17], Thm. 3.9). Let A ∈ DM∞loc(RN ) and u ∈ BVloc(RN )∩L∞loc(RN ).
Then, the following equality holds in the sense of measures

(9) (A, Du) = −
∫ u+(x)

u−(x)
Tr∗(A, ∂∗{u > t})(x) dt|Du| ,

where we use the convention −
∫ a
a f(t) dt := f(a). Moreover,

(i) absolutely continuous part: (A, Du)a = A · ∇uLN ;
(ii) jump part: (A, Du)j = Tr∗(A, Ju)(x)|Dju|;
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(iii) Cantor part: (A, Du)c = Tr∗(A, ∂∗{u > ũ(x)})(x)|Dcu|.

Corollary 2.3. Let A ∈ DM∞loc(Ω), and let E ⊆ Ω be a set of finite perimeter, with
E ⊂ Ω. Then

(A, DχE) = Tr∗(A, ∂∗E)(x)HN−1 ∂∗E.

3. Assumptions on the vector field b

Let b : Ω× R→ RN be a function satisfying the following assumptions:

(i) b is a locally bounded Borel function;
(ii) the function b(x, ·) is Lipschitz continuous in R, uniformly with respect to x, i.e.

there exists a constant L > 0 such that

|b(x, t)− b(x, s)| ≤ L |t− s|, ∀t, s ∈ R, for LN–a.e. x ∈ Ω ;

(iii) for every t ∈ R, bt := b(·, t) ∈ DL1
loc(Ω);

(iv) the least upper bound

σ := sup
t∈R
| divx bt|

belongs to L1
loc(Ω).

We remark that, at the price of some additional technicality, assumption (iv) could be
replaced by the weaker assumption

(iv′) for every m > 0, the least upper bound

σm := sup
|t|≤m

|divx bt|

belongs to L1
loc(Ω).

The results of Section 4 will be mainly proved replacing (ii) with the following weaker
assumption:

(ii′) for LN–a.e. x ∈ Ω, the function b(x, ·) is continuous in R.

Let us extend b to 0 in (RN \ Ω)× R, so that the vector field

(10) B(x, t) :=

∫ t

0
b(x, s) ds, x ∈ RN , t ∈ R,

is defined for all (x, t) ∈ RN × R. Moreover B(x, 0) = 0 for every x ∈ RN and, from (ii′),
for every x ∈ Rn one has b(x, t) = ∂tB(x, t) for every t ∈ R.

Theorem 3.1 (See [21]). Let b satisfy assumptions (i)-(ii′)-(iii)-(iv), let B be defined
by (10), and let u ∈ BVloc(Ω) ∩ L∞loc(Ω). Then the distribution (b(·, u), Du), defined by

〈(b(·, u), Du), ϕ〉 := −
∫

Ω
ϕ(x) (divxB)(x, u(x)) dx

−
∫

Ω
B(x, u(x)) · ∇ϕ(x) dx, ∀ϕ ∈ C∞c (Ω),

(11)

is a Radon measure in Ω, and satisfies

(12) |(b(·, u), Du)|(E) ≤ ‖b‖L∞(K,RN )|Du|(E), for every Borel set E b Ω ,

where K := E ×
[
−‖u‖L∞(E), ‖u‖L∞(E)

]
.
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In other words, the composite function v : Ω → RN , defined by v(x) := B(x, u(x)),
belongs to L∞loc(Ω,RN ), and the following equality holds in the sense of measures:

div v = (divxB)(x, u(x))LN + (b(·, u), Du).(13)

From (12) it follows that (b(·, u), Du)� |Du|, hence there exists a function Θ(b, u; ·) ∈
L1(Ω, |Du|) such that

(14) (b(·, u), Du) = Θ(b, u; ·) |Du| , |Du|–a.e. in Ω.

Remark 3.2. By the definition (11) of the pairing and the definition (10) of B, it follows
that, for every ϕ ∈ C∞c (Ω),

〈(b(·, u), Du), ϕ〉 = −
∫

Ω
ϕ(x)

∫ u(x)

0
divx bt(x) dt dx

−
∫

Ω

∫ u(x)

0
bt(x) · ∇ϕ(x) dt dx.

(15)

4. Coarea formula for the pairing measure

In this section we establish a coarea formula for the pairing measure (b(·, u), Du), and
we draw some consequences that will be used in order to prove its integral representation
(see Theorem 5.1 below).

Theorem 4.1 (Coarea formula for the pairing measure). Let b satisfy assumptions (i)-
(ii′)-(iii)-(iv), and let u ∈ BVloc(Ω) ∩ L∞loc(Ω). Then

〈(b(·, u), Du), ϕ〉 =

∫
R
〈(bt, Dχ{u>t}), ϕ〉 dt, ∀ϕ ∈ C∞c (Ω) ,(16)

(b(·, u), Du)(B) =

∫
R

(bt, Dχ{u>t})(B) dt, ∀ Borel set B ⊂ Ω .(17)

Proof. Assume, for simplicity, that u ≥ 0 and let C > ‖u‖∞. Using the representation
(15), we have that

〈(b(·, u), Du), ϕ〉 = −
∫ C

0

∫
Ω
χ{u>t}ϕdivx bt dx dt−

∫ C

0

∫
Ω
χ{u>t}bt · ∇ϕdx dt

=

∫ C

0
〈(bt, Dχ{u>t}), ϕ〉 dt,

where, in the last equality, we have used the fact that, for L1-a.e. t ∈ R,

div(χ{u>t}bt) = χ∗{u>t} div bt + (bt, Dχ{u>t}).

The general case follows with minor modifications.
Finally, since both sides of (16) are real measures in Ω, they coincide not only as

distributions, but also as measures, hence (17) follows. �

The following approximation result is in the spirit of [22, Proposition 4.11], [20, Propo-
sition 4.15], [12, Theorem 1.2], [8, Lemma 2.2].

Theorem 4.2 (Approximation by C∞ fields). Let b satisfy assumptions (i)-(ii′)-(iii)-

(iv). Then there exists a sequence of vector fields bk : Ω × R → RN satisfying the same

assumptions, such that bkt ∈ C∞(Ω,RN ) for every t ∈ R and

(bk(·, u), Du)
∗
⇀ (b(·, u), Du), ∀u ∈ BVloc(Ω) ∩ L∞loc(Ω),



ON THE VARIATIONAL NATURE OF THE ANZELLOTTI PAIRING 9

locally in the weak∗ sense of measures in Ω. If, in addition, b satisfies (ii), then also the

vector fields bk satisfy (ii).

Proof. Using the same construction described in the proof of [22, Proposition 4.11], we

obtain locally uniformly bounded vector fields bkt ∈ C∞(Ω,RN ) satisfying (i)-(ii′)-(iii)-(iv),

and, for every t ∈ R, bkt → bt in L1
loc(Ω). If, in addition, b satisfies (ii), then it is verified

that also the vector fields bk satisfy (ii).
Moreover, for every t ∈ R and v ∈ BVloc(Ω) ∩ L∞loc(Ω),

lim
k→+∞

∫
Ω
v ϕ div bkt dx =

∫
Ω
v∗ ϕddiv bt, ∀ϕ ∈ Cc(Ω)

(see [22], formula (4.8)). We underline that, since by assumption div bt ∈ L1
loc(Ω), then

the above relation can be written as

(18) lim
k→+∞

∫
Ω
v ϕ div bkt dx =

∫
Ω
v ϕ div bt dx, ∀ϕ ∈ Cc(Ω) .

Let us fix u ∈ BVloc(Ω) ∩ L∞loc(Ω) and ϕ ∈ Cc(Ω). To simplify the notation, we assume
without loss of generality that u ≥ 0. By the representation formula (15) and Fubini’s
Theorem, we have that

〈(bk(·, u), Du), ϕ〉 = −
∫

Ω
ϕ(x)

∫ u(x)

0
divx b

k
t (x) dt dx

−
∫

Ω

∫ u(x)

0
bkt (x) · ∇ϕ(x) dt dx

= −
∫ ∞

0

∫
Ω
χ{u>t}(x)ϕ(x) divx b

k
t (x) dx dt

−
∫ ∞

0

∫
Ω
χ{u>t}(x) bkt (x) · ∇ϕ(x) dx dt

=: − Ik1 − Ik2 .

For every t ∈ R, by (18) with v = χ{u>t} we deduce that, as k →∞,

ζk(t) :=

∫
Ω
χ{u>t}(x)ϕ(x) divx b

k
t (x) dx→

∫
Ω
χ{u>t}(x)ϕ(x) divx bt(x) dx .

Let K b Ω denote the support of ϕ and let a := ‖u‖L∞(K). Since

|ζk(t)| ≤ χ[0,a](t) ‖ϕ‖∞
∫
K
σ ,

by the Dominated Convergence Theorem we deduce that

(19) lim
k→∞

Ik1 =

∫ ∞
0

∫
Ω
χ{u>t}(x)ϕ(x) divx b

k
t (x) dx dt =

∫
Ω
ϕ(x)

∫ u(x)

0
divx b

k
t (x) dt dx .

Let us compute the limit of Ik2 . Since, for every t ∈ R, bkt → bt in L1
loc(Ω), it holds that

ψk(t) :=

∫
Ω
χ{u>t}(x) bkt (x) · ∇ϕ(x) dx→

∫
Ω
χ{u>t}(x) bt(x) · ∇ϕ(x) dx .

Moreover, there exists a constant M > 0 such that ‖bk‖L∞(K×[−a,a]) ≤M for every k ∈ N,
so that

ψk(t)| ≤M ‖∇ϕ‖1 ,
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and hence, by the Dominated Convergence Theorem,

(20) lim
k→+∞

Ik2 =

∫ ∞
0

∫
Ω
χ{u>t}(x) bs(x) · ∇ϕ(x) dx dt =

∫
Ω

∫ u(x)

0
bkt (x) · ∇ϕ(x) dt dx .

The conclusion now follows from (19) and (20). �

Proposition 4.3. Let b satisfy assumptions (i)-(ii′)-(iii)-(iv), and let u ∈ BVloc(Ω) ∩
L∞loc(Ω). Then

for L1-a.e. t ∈ R : Θ(b, u;x) = Θ(bt, χ{u>t};x) for |Dχ{u>t}|-a.e. x ∈ Ω .

Proof. The proof is essentially the same of Proposition 5.2 in [22], and it is based on the
use of the coarea formula (Theorem 4.1) and the approximation result by smooth fields
(Theorem 4.2). �

Theorem 4.4 (Coarea formula for the variation). Let b satisfy assumptions (i)-(ii′)-(iii)-
(iv), and let u ∈ BVloc(Ω) ∩ L∞loc(Ω). Then

〈|(b(·, u), Du)| , ϕ〉 =

∫
R
〈
∣∣(bt, Dχ{u>t})∣∣ , ϕ〉 dt, ∀ϕ ∈ C∞c (Ω).

Proof. To simplify the notation let µ := (b(·, u), Du) and µt := (bt, Dχ{u>t}), t ∈ R. By
(14), we have that µ = Θ(b, u) |Du|, so that

|µ| = |Θ(b, u)| |Du| , |µt| = |Θ(bt, χ{u>t})| |Dχ{u>t}|

(see [5, Proposition 1.23]). Let B ⊂ Ω be a Borel set. By the coarea formula in BV (see
[5, Theorem 3.40]) and Proposition 4.3 it holds that

|µ|(B) =

∫
B
|Θ(b, u)| d|Du| =

∫
R
dt

∫
B
|Θ(b, u)| d|Dχ{u>t}|

=

∫
R
dt

∫
B
|Θ(bt, χ{u>t})| d|Dχ{u>t}| =

∫
R
|µt|(B) dt ,

concluding the proof. �

Lemma 4.5. Let b satisfy (i)–(iv), and let u ∈ BVloc(Ω)∩L∞loc(Ω). Then, for every τ ∈ R
and every ϕ ∈ C∞c (Ω), it holds that

|〈(b(·, u), Du), ϕ〉 − 〈(bτ , Du), ϕ〉|

≤ L ‖ϕ‖∞

[∫
sptϕ
|ũ− τ | d|Ddu|+

∫
Ju∩sptϕ

(∫ u+

u−
|t− τ | dt

)
dHN−1

]
,

where sptϕ b Ω denotes the support of ϕ.

Proof. Using the coarea formula (16) and (ii) we obtain that

Iτ := |〈(b(·, u), Du), ϕ〉 − 〈(bτ , Du), ϕ〉| =
∣∣∣∣∫

R
〈(bt − bτ , Dχ{u>t}), ϕ〉 dt

∣∣∣∣
≤ ‖ϕ‖∞

∫
R

∫
sptϕ
‖bt − bτ‖∞ d|Dχ{u>t}| dt

≤ L ‖ϕ‖∞
∫
R

∫
sptϕ
|t− τ | d|Dχ{u>t}| dt .



ON THE VARIATIONAL NATURE OF THE ANZELLOTTI PAIRING 11

We now consider sptϕ as the disjoint union of sptϕ \ Ju and Ju ∩ sptϕ, and we use the
coarea formula in BV , obtaining

Iτ ≤ L ‖ϕ‖∞

[∫
R

∫
sptϕ\Ju

|t− τ | d|Dχ{u>t}| dt+

∫
R

∫
Ju∩sptϕ

|t− τ | d|Dχ{u>t}| dt

]

= L ‖ϕ‖∞

[∫
sptϕ
|ũ− τ | d|Ddu|+

∫
Ju∩sptϕ

(∫ u+

u−
|t− τ | dt

)
dHN−1

]
. �

5. Integral representation of the pairing

In this section we are interested in finding an integral representation of the pairing
measure and of its total variation. We prove that the pairing measure can be represented
by an integral functional defined on the space BV (Ω), provided that in the support of the
singular part of the measure we choose a suitable precise representative of the vector field
b.

We recall the general form of an integral functional defined in BV (Ω). Given the
integrand f(x, t, ξ) = b(x, t) · ξ, for every open set A ⊂ Ω, let us define the functional
F(·, A) : BV (Ω)→]−∞,+∞] by setting

F(u,A) =

∫
A
b(x, u) · ∇u dx

+

∫
A
f
(
x, ũ,

Dcu

|Dcu|

)
d|Dcu|+

∫
Ju∩A

dHN−1

∫ u+

u−
f(x, t, νu) dt,

where f(·, s, ξ) is a proper precise representative of f(·, t, ξ) = bt · ξ.

We show that, in our case, this representative is the limit of cylindrical averages intro-
duced in [9] for vector fields b(x) whose divergence belongs to L1.

Theorem 5.1 (Integral representation of the pairing measure). Let b satisfy assumptions
(i)–(iv), and let u ∈ BVloc(Ω) ∩ L∞loc(Ω). Then it holds that

(b(·, u), Du) = Cyl(bũ, νu; ·) |Ddu|+

(
−
∫ u+

u−
Cyl(bt, νu; ·) dt

)
|Dju|.

In other words, the density Θ defined at (14) is given by

(21) Θ(b, u;x) =


Cyl(bũ(x), νu;x) , |Ddu|–a.e. x ∈ Ω,

−
∫ u+(x)

u−(x)
Cyl(bt, νu;x) dt , HN−1–a.e. x ∈ Ju.

Moreover, Cyl(bũ(x), νu;x)|∇u(x)| = b(x, u(x)) · ∇u(x) for LN -a.e. x ∈ Ω.

Proof. By assumption (iii), for every t ∈ R we have that

d(bt, Du)

d|Du|
= Cyl(bt, νu;x), |Ddu|–a.e. in Ω,

Tr+(Bt, Ju) = Tr−(Bt, Ju) = Cyl(Bt, νu; ·), HN−1–a.e. in Ju

(see [9, Theorems 2.6 and 3.6]).
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The representation of the jump part (i.e. of Θ on Ju) follows directly from [21, Theo-
rem 5.6] and the simple computation

Cyl(Bu+(x), νu;x)− Cyl(Bu−(x), νu;x) =

∫ u+(x)

u−(x)
Cyl(bt, νu;x) dt .

It remains to prove that

Θ(b, Du; ·) = Cyl(bũ, νu; ·) |Ddu|–a.e. in Ω .

First, we remark that there exists a Borel set N ⊂ Ω, with |Ddu|(N) = 0, such that
the limit of cylindrical averages Cyl(bt, νu; ·) exists for every x ∈ Ω \ N and every t ∈ R
(see e.g. the proof of [21, Lemma 4.2]). As a consequence, the map x 7→ Cyl(bũ(x), νu;x)

belongs to L∞loc(Ω, |Ddu|).
To simplify the notation, let us denote by µ := (b(·, u), Du) the pairing measure. We

have to prove that

dµd

d|Du|
(x) = Cyl(bũ(x), νu;x) , for |Ddu|–a.e. x ∈ Ω.

Let us choose x ∈ Ω such that

(a) x belongs to the support of Ddu, that is |Ddu|(Br(x)) > 0 for every r > 0;

(b) there exists the limit lim
r↓0

µd(Br(x))

|Du|(Br(x))
=

dµd

d|Du|
(x) ;

(c) lim
r↓0

|Dju|(Br(x))

|Du|(Br(x))
= 0;

(d) lim
r↓0

(bũ(x), Du)(Br(x))

|Du|(Br(x))
= Cyl(bũ(x), νu;x);

(e) lim
r↓0

1

|Du|(Br(x))

∫
Br(x)

|ũ(y)− ũ(x)| d|Ddu|(y) = 0.

We remark that these conditions are satisfied for |Ddu|-a.e. x ∈ Ω. In particular, (e) holds
since |Ddu|-a.e. x ∈ Ω is a Lebesgue point of ũ with respect to |Du|.

Since∣∣∣∣(b(·, u), Du)(Br(x))

|Du|(Br(x))
− Cyl(bũ(x), νu;x)

∣∣∣∣
≤
∣∣∣∣(b(·, u), Du)(Br(x))

|Du|(Br(x))
−

(bũ(x), Du)(Br(x))

|Du|(Br(x))

∣∣∣∣+

∣∣∣∣(bũ(x), Du)(Br(x))

|Du|(Br(x))
− Cyl(bũ(x), νu;x)

∣∣∣∣ ,
by (d) it is enough to prove that

(22) Ir :=

∣∣∣∣(b(·, u), Du)(Br(x))

|Du|(Br(x))
−

(bũ(x), Du)(Br(x))

|Du|(Br(x))

∣∣∣∣ −→ 0 , as r ↘ 0,

i.e.

d(b(·, u), Du)

d|Du|
(x) =

d(bũ(x), Du)

d|Du|
(x) .
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By Lemma 4.5, choosing τ = ũ(x) and taking a sequence φj ∈ C∞c (Br(x)), φj(y) → 1
in Br(x), with 0 ≤ φj ≤ 1, we get

Ir ≤
L

|Du|(Br(x))

[ ∫
Br(x)

|ũ(y)− ũ(x)| d|Ddu|(y)

+

∫
Br(x)∩Ju

(∫ u+(y)

u−(y)
|t− ũ(x)| dt

)
dHN−1(y)

]
≤ L

|Du|(Br(x))

∫
Br(x)

|ũ(y)− ũ(x)| d|Ddu|(y) + 2L‖u‖∞
|Dju|(Br(x))

|Du|(Br(x))
.

Finally, by (c) and (e) we conclude that (22) holds. �

Corollary 5.2 (Integral representation of the pairing functional). Let b satisfy assump-
tions (i)–(iv), and let u ∈ BVloc(Ω) ∩ L∞loc(Ω). Then it holds that∫

Ω
φ(b(x, u), Du) =

∫
Ω
φ −
∫ u+

u−
Cyl(bt, νu;x) dt|Du|, φ ∈ Cc(Ω) ,(23)

where we use the compact notation

−
∫ u+

u−
Cyl(bt, νu;x) dt|Du| := b(x, u) · ∇u dx+ Cyl(bũ, νu;x) |Dcu|

+ −
∫ u+

u−
Cyl(bt, νu;x) dt|Dju|.

(24)

Remark 5.3. As a direct consequence of the above corollary, it holds that

(b(·, u), Du)

|Dcu|
(x) = Cyl(bũ, νu;x)

for |Dcu|-a.e. ∈ Ω.

Theorem 5.4. Let b satisfy assumptions (i)–(iv), and u ∈ BVloc(Ω)∩L∞loc(Ω). Then, for
|Du|-a.e. x ∈ Ω,

(25) Θ(b, u;x) = −
∫ u+(x)

u−(x)
Tr(bt, ∂

∗{u > t})(x) dt ,

where we use the convention −
∫ a
a f(t) dt := f(a). In particular,

(26) Θ(b, u;x) = Tr(b(·, u), ∂∗{u > ũ(x)})(x), for |Ddu|-a.e. x ∈ Ω.

Proof. It suffices to prove that, for every Borel set B ⊂ Ω, it holds that

(27)

∫
B
b(·, u), Du) =

∫
B
−
∫ u+(x)

u−(x)
Tr(bt, ∂

∗{u > t})(x) dt |Du|.

For every t ∈ R such that ∂∗{u > t} is locally of finite perimeter (and hence for a.e. t ∈ R),
by Corollary 2.3 we deduce that

(28) Θ(bt, Dχ{u>t}, x) = Tr(bt, ∂
∗{u > t})(x) for HN−1-a.e. x ∈ ∂∗{u > t}.
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Then, by using the coarea formula (16) for the pairing measure, formula (28), Fubini’s
theorem and Theorem 2.1 we get∫

B
b(·, u), Du) =

∫
R

∫
B

(bt, Dχ{u>t}) dt =

∫
R

∫
B∩∂∗{u>t}

Tr(bt, ∂
∗{u > t})dHN−1 dt

=

∫
B\Ju

Tr(bt, ∂
∗{u > ũ(x)}) dHN−1 +

∫
B∩Ju

∫ u+(x)

u−(x)
Tr(bt, ∂

∗{u > t}) dt dHN−1

=

∫
B
−
∫ u+(x)

u−(x)
Tr(bt, ∂

∗{u > t}) dt |Du| ,

so that (27) is proved. �

6. Lower semicontinuity of the pairing

In this section, by using the nonautonomous chain rule formula (13) for the divergence,
we study the lower semicontinuity with respect to the L1 convergence of the functionals
F,G+ : BV (Ω) ∩ L∞(Ω)→ R defined by

F (u) :=

∫
Ω
|(b(x, u), Du)| , G(u) :=

∫
Ω

(b(x, u), Du) , G+(u) :=

∫
Ω

(b(x, u), Du)+ .

We start by proving the following continuity result (see [30] for the analogous result in
W 1,1).

Proposition 6.1. Let b satisfy assumptions (i)–(iv), let ϕ ∈ C1
c (Ω) be a fixed test function,

and let Gϕ : BV (Ω) ∩ L∞(Ω)→ R be the functional defined by

Gϕ(u) := 〈(b(x, u), Du) , ϕ〉 =

∫
Ω
ϕd(b(x, u), Du) , u ∈ BV (Ω) ∩ L∞(Ω).

Then, for every sequence (uj) ⊂ BV (Ω) ∩ L∞(Ω) converging to u ∈ BV (Ω) ∩ L∞(Ω) in
the L1 convergence, and satisfying

L := sup
j
‖uj‖L∞(Ω) < +∞,

it holds that

(29) lim
j→+∞

Gϕ(uj) = Gϕ(u).

Moreover, by assuming, instead of (iv), the stronger condition σ ∈ LNloc(Ω) (respectively σ ∈
L∞loc(Ω)), the continuity (29) holds if (uj) converges to u weakly∗ in BV (Ω) (respectively
strongly in L1

loc(Ω)).

Proof. Using (15) we have that

Gϕ(uj)−Gϕ(u) = −
∫

Ω
ϕ(x)

∫ uj(x)

u(x)
divx bt(x) dt dx−

∫
Ω

∫ uj(x)

u(x)
bt(x) · ∇ϕ(x) dt dx.

Since b is a locally bounded vector field, the second integral converges to 0 by the Lebesgue
Dominated Convergence theorem. The first integral can be written as

(30)

∫∫
K×[−L,L]

sign(u(x)− uj(x))χDj (x, s) divx bs(x) dx ds,
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where K ⊂ Ω is the support of ϕ and Dj ⊂ Ω× [−L,L] is the set of pairs (x, s) such that
s belongs to the segment of endpoints u(x) and uj(x). Since∣∣χDj (x, s)ϕ(x) divx bs(x)

∣∣ ≤ ‖ϕ‖L∞(Ω) | divx bs(x)| ≤ ‖ϕ‖L∞(Ω) σ(x) ∈ L1(K × [−L,L]),

the integral (30) converges to 0 by the Lebesgue Dominated Convergence theorem.
Let us prove the second part of the theorem. If the sequence (uj) ⊂ BV (Ω) ∩ L∞(Ω)

weak∗-converges to u ∈ BV (Ω)∩L∞(Ω), by the Poincaré inequality (see [5, Remark 3.50])

we have that (uj) weakly converges to u in L
N
N−1 (Ω). Since∣∣∣∣∣

∫
Ω
ϕ(x)

∫ uj(x)

u(x)
divx bt(x) dt dx

∣∣∣∣∣ ≤ ‖ϕ‖∞
∫
K
|uj(x)− u(x)|σ(x) dx,

then, if σ ∈ LNloc(Ω), the integral on the right-hand side converges to 0. The same conclu-
sion holds if (uj) converges to u strongly in L1

loc(Ω) and σ ∈ L∞loc(Ω). �

Remark 6.2. In [24] Dal Maso proved the lower semicontinuity of integral functionals with
coercive integrands and he showed, by exploiting Aronszajn’s example, that this result is
sharp, in the sense that, in general, the coercivity assumption cannot be dropped. Indeed,
Dal Maso constructed a continuous function ω : Ω → R, where Ω = (0, 1) × (0, 1) and
x = (x1, x2), and a sequence of functions {un} converging to u(x) = x2 in L∞(Ω), such
that∫

Ω
|(sinω(x), cosω(x)) · ∇u(x))| dx > lim inf

n→∞

∫
Ω
|(sinω(x), cosω(x)) · ∇un(x))| dx.

Let us remark that the integrand |b(x) · ξ| of Dal Maso’s example does not satisfy our
condition div b ∈ L1.

Theorem 6.3. [Lower semicontinuity] Let b satisfy assumptions (i)–(iv). Then the func-
tionals F,G+ are lower semicontinuous on BV (Ω)∩L∞(Ω) with respect to the L1 conver-
gence.

Proof. Let us define the auxiliary functionals H,H+ : BV (Ω) ∩ L∞(Ω)→ R by

H(u) := −
∫

Ω
(b(x, u), Du) , H+(u) :=

∫
Ω

(−(b(x, u), Du))+ .

Since F (u) = [G+(u) + H+(u)]/2, it suffices to prove that G+(u) and H+(u) are lower
semicontinuous on BV (Ω) ∩ L∞(Ω) with respect to the L1 convergence. We shall prove
the claim only for G+, being the proof for H+ similar.

Let us prove that lim infnG
+(un) ≥ G+(u) for every sequence (un) ⊂ BV (Ω) ∩ L∞(Ω)

converging to u ∈ BV (Ω) ∩ L∞(Ω) in L1(Ω).
For every k ∈ N let us consider the Lipschitz function σk : R→ R defined by

σk(t) :=


1 |t| ≤ k − 1,

−|t|+ k k − 1 < |t| ≤ k,
0 |t| > k.

The vector field

bk (x, t) := σk (t) b(x, t)

satisfies

bk(x, t) = 0 for |t| ≥ k, bk(x, t) = b(x, t) for |t| ≤ k − 1.
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We claim that, for every v ∈ BV (Ω) ∩ L∞(Ω),

Θ(bk, v;x) = σk(ṽ(x)) Θ(b, v;x) , for |Ddv|-a.e. x ∈ Ω,(31)

Θ(bk, v;x) = −
∫ v+(x)

v−(x)
σk(t) Cyl(bt, νv;x) dt , for HN−1-a.e. x ∈ Ω ∩ Jv.(32)

Specifically, both relations are a consequence of the representation formula (21) and of the
equality

Cyl(bkt , νv;x) = lim
ρ↓0

lim
r↓0

1

LN (Cr,ρ(x, νv(x)))

∫
Cr,ρ(x,νv(x))

σk(t) bt(y) · νv(x) dy

= σk(t) Cyl(bt, νv;x) .

We now proceed as in [25]. Given ϕ ∈ C1
c (Ω), let us consider the following functionals,

defined in BV (Ω) ∩ L∞(Ω):

F 1
ϕ(v) :=

∫
Ω
ϕ(x) Cyl(bṽ(x), νv;x)|Ddv|+

∫
Ω∩Jv

ϕ(x) −
∫ v+(x)

v−(x)
Cyl(bt, νv;x) dt dHN−1 ,

F 2
ϕ(v) :=

∫
Ω
ϕ(x)

[
Cyl(bṽ(x), νv;x)

]+
|Ddv|

+

∫
Ω∩Jv

ϕ(x) −
∫ v+(x)

v−(x)

[
Cyl(bt, νv;x) dt

]+
dHN−1 ,

F 3
ϕ(v) :=

∫
Ω
ϕ(x)

[
Cyl(bṽ(x), νv;x)

]+
|Ddv|

+

∫
Ω∩Jv

ϕ(x)
[
−
∫ v+(x)

v−(x)
Cyl(bt, νv;x) dt

]+
dHN−1 .

Let Φ denote the set of all functions ϕ ∈ C1
c (Ω) such that 0 ≤ ϕ ≤ 1. Then it holds

that

G+(un) = sup
ϕ∈Φ

∫
Ω
ϕ(x)(b(x, un), Dun) = sup

ϕ∈Φ

∫
Ω
ϕ(x)(b(x, un), Dun)+.(33)

Using the representation formulas (31) and (32), from (33) we deduce that

(34) G+(un) = sup
ϕ∈Φ

∫
Ω
F 1
ϕ(un) = sup

ϕ∈Φ

∫
Ω
F 3
ϕ(un) .

Since F 1
ϕ ≤ F 2

ϕ ≤ F 3
ϕ, from (34) it follows that

G+(un) = sup
ϕ∈Φ

∫
Ω
F 2
ϕ(un) .
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As a consequence, recalling that 0 ≤ σk ≤ 1, for every ϕ ∈ Φ we deduce that

G+(un) ≥ F 2
ϕ(un)

≥
∫

Ω
ϕ(x)σk(ũn(x))

[
Cyl(bũn(x), νun ;x)

]+
|Ddun|

+

∫
Ω∩Jun

ϕ(x) −
∫ u+n (x)

u−n (x)
σk(t)

[
Cyl(bt, νun ;x) dt

]+
dHN−1

≥
∫

Ω
ϕ(x)σk(ũn(x)) Cyl(bũn(x), νun ;x) |Ddun|

+

∫
Ω∩Jun

ϕ(x) −
∫ u+n (x)

u−n (x)
σk(t) Cyl(bt, νun ;x) dt dHN−1

=

∫
Ω
ϕ(x) Cyl(bkũn(x), νun ;x) |Ddun|

+

∫
Ω∩Jun

ϕ(x) −
∫ u+n (x)

u−n (x)
Cyl(bkt , νun ;x) dt dHN−1

=

∫
Ω
ϕ(x) (bk(x, un), Dun) .

Let us choose k > ‖u‖∞ + 1, let Tkz := min{max{z,−k}, k}, z ∈ R, and let us define
the functional

Gkϕ(v) :=

∫
Ω
ϕ(x) (bk(x, v), Dv), v ∈ BV (Ω) ∩ L∞(Ω),

so that the previous inequality reads

(35) G+(un) ≥ Gkϕ(un) .

From the representation formula (15) it holds that

Gkϕ(v) = Gkϕ(Tkv), ∀v ∈ BV (Ω) ∩ L∞(Ω),

and, by our choice of k, Gkϕ(u) = Gϕ(u).

For every ϕ ∈ Φ, from (35) and Proposition 6.1 applied to the functional Gkϕ and the
uniformly bounded sequence (Tkun)n, we deduce that

lim inf
n→+∞

G+(un) ≥ lim inf
n→+∞

Gkϕ(un) = lim inf
n→+∞

Gkϕ(Tkun) ≥ Gkϕ(u) = Gϕ(u).

Taking the supremum for ϕ ∈ Φ we finally conclude that lim inf
n→+∞

G+(un) ≥ G+(u). �

7. Pairing as relaxed functional

For every function ϕ ∈ C1
c (Ω) and for every open set A ⊂ Ω let us consider the functional

Fϕ(·, A) : BVloc(Ω) ∩ L∞loc(Ω)→]−∞,+∞] defined by

Fϕ(u,A) :=


∫
A
ϕ b(x, u) · ∇u dx u ∈W 1,1

loc (Ω) ∩ L∞(Ω),

+∞, u ∈ (BVloc(Ω) \W 1,1
loc (Ω)) ∩ L∞loc(Ω).
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Moreover, for every u ∈ BVloc(Ω) ∩ L∞loc(Ω) we define the relaxations with respect to the
weak∗ convergence in BV and the L1 convergence in BV as

F
ϕ
(u,A) := inf

{un}

{
lim inf
n→+∞

Fϕ(un, A) : un ∈W 1,1
loc (A), un

∗
⇀ u in BVloc(A)

}
,

F
ϕ
1 (u,A) := inf

{un}

{
lim inf
n→+∞

Fϕ(un, A) : un ∈W 1,1
loc (A), un → u strongly in L1(A)

}
.

Theorem 7.1. [Integral representation of the relaxed functionals of Fϕ] Let b satisfy
assumptions (i)–(iv). Then for every u ∈ BVloc(Ω) ∩ L∞loc(Ω) and for every open set

A ⊂ Ω, if we assume σ ∈ LNloc(Ω), then it holds that

F
ϕ
(u,A) =

∫
A
ϕd(b(x, u), Du)

and, if we assume σ ∈ L∞loc(Ω), then it holds that

F
ϕ
1 (u,A) =

∫
A
ϕd(b(x, u), Du).

Proof. Thanks to the continuity results proved in Proposition 6.1 and the argument in
[34, Theorem 1.3, part (i)], it is enough to prove the following two inequalities:

(J) for HN−1-a.e. x0 ∈ Ju, it holds that

dF
ϕ
(u, ·)

dHN−1 Ju
(x0) ≤ ϕ(x0)

∫ u+(x0)

u−(x0)
Cyl(b(·, t), νu(x0);x0) dt ;

(C) for |Dcu|-a.e. x0 ∈ Ω, it holds that

dF
ϕ
(u, ·)

d|Dcu|
(x0) ≤ ϕ(x0) Cyl(b(·, ũ(x0)), νu(x0);x0) .

Since both results are of local nature, it is not restrictive to assume that Ω = RN and that
u ∈ BV (RN ) ∩ L∞(RN ). Moreover, to simplify the notation we denote µ := (b(·, u), Du).

Proof of (J). By the definition of relaxed functional we have that

dF
ϕ
(u, ·)

dHN−1 Ju
(x0) = lim

r↘0

F
ϕ
(u,Br(x0))

ωN−1rN−1

≤ lim
r↘0

lim inf
ε↘0

1

ωN−1rN−1

∫
Br(x0)

ϕ(y) b(y, ρε ∗ u(y)) · ∇(ρε ∗ u)(y) dy .

As ε → 0+, the integral above converges to
∫
Br(x0) ϕdµ (see the proof of Theorem 4.3 in

[21], where this convergence is stated in formula (38)). Hence,

dF
ϕ
(u, ·)

dHN−1 Ju
(x0) ≤ lim

r↘0

1

ωN−1rN−1

∫
Br(x0)

ϕdµ

= ϕ(x0) lim
r↘0

|Du|(Br(x0))

ωN−1rN−1
· µ(Br(x0))

|Du|(Br(x0))

= ϕ(x0) [u+(x0)− u−(x0)] Θ(b, u, x0) ,

so that (J) follows from Theorem 5.1.
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Proof of (C). Reasoning as in the proof of (J) above, we have that

dF
ϕ
(u, ·)

d|Dcu|
(x0) = lim

r↘0

F
ϕ
(u,Br(x0))

ωN−1rN−1

≤ ϕ(x0) lim
r↘0

µ(Br(x0))

|Du|(Br(x0))
= ϕ(x0) Θ(b, u, x0) ,

and again the conclusion follows from Theorem 5.1. �
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