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Abstract. For a non-local semilinear eigenvalue problem, we prove simplicity and
isolation of the first eigenvalue with homogeneous Dirichlet boundary conditions on
open sets supporting a suitable compact Sobolev embedding.
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1. Introduction

This paper concerns a semilinear eigenvalue problem for the fractional Laplace opera-
tor with homogeneous Dirichlet boundary conditions in N -dimensional Euclidean spaces
with applications to a model for non-local filtration in a porous medium. We recall that,
given s P p0, 1q, the s-Laplacian of a smooth function u on RN is defined, up to a
normalisation constant depending only on N and s, by the formula

p´∆qsupxq “ lim
εÑ0`

ż

RN zBεpxq

upxq ´ upyq

|x´ y|N`2s dy (1.1)

The right hand side is usually multiplied by the quantity 4sΓ
`

N
2 ` s

˘

{
`

πN{2|Γp´sq|
˘

,
which has a precise degenerate behaviour both as s Ñ 0` and as s Ñ 1´. The specific
normalisation choice has no bearing for the matter of this paper and will be, therefore,
omitted.
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By classical spectral theory in Hilbert spaces, it is known that the eigenvalue problem

p´∆qsu “ λu

in a bounded open set Ω Ă RN , with Dirichlet conditions u “ 0 in the complement RNzΩ,
has non trivial solutions for a discrete set of real numbers λ, which either is empty or
consists of an unbounded non-decreasing sequence of eigenvalues. The corresponding
eigenfunctions are the stationary points of the double integral

ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy (1.2)

subject to an L2pΩq-constraint.
The variational problem under an LqpΩq-constraint, with q ‰ 2, leads one to a different

non-local semilinear elliptic boundary value problem, formally
#

p´∆qsu “ λ‖u‖2´q
LqpΩq|u|q´2u in Ω

u “ 0 in RNzΩ
(1.3)

Any fixed solution u of (1.3), if multiplied by a specific constant depending on u, solves
the fractional Lane-Emden equation

p´∆qsu “ |u|q´2u in Ω (1.4)

with u “ 0 in RNzΩ.
The largest lower bound for the collection SpΩ, s, qq of all positive numbers λ for

which (1.3) admits a non-trivial solution is called the first q-semilinear s-eigenvalue

λ1pΩ, s, qq “ inf
ϕPC80 pΩq

"
ż

RN

ż

RN

pϕpxq ´ ϕpyqq2

|x´ y|N`2s dx dy :
ż

Ω
|ϕ|q dx “ 1

*

(1.5)

In some cases, for example whenever Ω has finite N -dimensional volume, the embedding
Ds,2

0 pΩq ãÑ LqpΩq is compact, which assures the infimum to be achieved.
For q P p1, 2q, in fact, a necessary and sufficient condition that the embedding be

compact is that it be continuous (see [19, Theorem 1.3]). Hence, we have the following
existence and uniqueness result.

Theorem A. Let N ě 1, s P p0, 1q, q P p1, 2q and let Ω Ă RN be an open set with
λ1pΩ, s, qq ą 0. Up to a multiplicative constant, there exists a unique eigenfunction
achieving the minimum in (1.5). The first eigenfunction has constant sign, and the first
eigenvalue is the unique one admitting eigenfunctions with this property.

We also prove a uniqueness result for q ą 2 smaller than a suitable threshold depending
on Ω (see Proposition 3.7).

The proof of Theorem A follows standard methods (cf. [7]). Its conclusion implies
the uniqueness of positive least energy solutions of (1.4), i.e., positive solutions of the
fractional Lane-Emden equation, under homogeneous Dirichlet boundary conditions,
that minimise the energy functional

1
2

ż

RN

ż

RN

pϕpxq ´ ϕpyqq2

|x´ y|N`2s dx dy ´
1
q

ż

Ω
|ϕ|q dx (1.6)
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Thus, for q P p1, 2q, to every open set Ω with λ1pΩ, s, qq ą 0 we can associate the positive
least energy solution wΩ,s,q, also called the fractional Lane-Emden density of Ω (in fact,
the definition can be given for arbitrary open sets in RN , see Section 5 for details).

Remarkably, in analogy with the local case (cf. [9]), a negative power of the fractional
Lane-Emden density of Ω appears as a singular weight in a sort of Hardy inequality:

ż

Ω

u2

w2´q
Ω,s,q

dx ď

ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy for all u P C80 pΩq (1.7)

We refer to Proposition 5.1 for more details about (1.7). A better known Hardy-type
inequality in the fractional setting would involve the distance to the boundary, instead:

ż

Ω

upxq2

distpx, BΩq2s dx ď
ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy for all u P C80 pΩq (1.8)

Inequality (1.8) always holds, e.g., on bounded Lipschitz sets (see Section 5).
From inequalities (1.7) and (1.8), thanks to fractional Hopf’s lemma, we can infer the

local uniqueness in L1pΩq for positive solutions of fractional Lane-Emden equation (1.4);
this means that the positive least energy solution wΩ,s,q of (1.4) is isolated in Ds,2

0 pΩq
with respect to the topology of the convergence in L1pΩq. We refer to Lemma 7.3 for
a more precise statement. By a strategy borrowed from [6], where the result was first
proved in the local case, we draw the following consequence.

Theorem B. Let N ě 1, s P p0, 1q, q P p1, 2q and let Ω Ă RN a bounded open set with
C1,1 boundary. Then, λ1pΩ, s, qq is isolated, i.e., there exist no sequence of q-semilinear
s-eigenvalues converging to it.

Little more is known about higher eigenvalues, except that they form a closed set
that does not accumulate to λ1pΩ, s, qq. It is indeed possible to assemble an unbounded
sequence of q-semilinear s-eigenvalues by means of standard critical point theory (see
Remark 3.3 below) but it is not known if that gives a complete description of the q-
semilinear s-spectrum, nor is it known if the latter is a discrete set.

Given m ą 1, simplicity (Theorem A) and isolation (Theorem B) of the first q-
semilinear s-eigenvalue with q “ 1 ` 1

m have implications on the long-time behaviour
of solutions to the initial-boundary value problem for the the fractional porous media
equation (see [26])

$

’

&

’

%

Btv ` p´∆qs
`

|v|m´1v
˘

“ 0 in Ωˆ p0, T q
v “ 0 in

`

RNzΩ
˘

ˆ p0, T q
v “ v0 in Ωˆ t0u

We hope to return to this topic in the future, while in this paper we limit our attention
to the elliptic problem.

Plan of the paper. In Section 2, after framing our problem in appropriate function
spaces we introduce the fractional semilinear eigenvalue problem and the non-local Lane-
Emden density. More details on the former are provided in Section 3, and various
properties of the latter are discussed in Section 4. The preliminary results are used to
prove (1.7) in Section 5, where (1.8) is also proved. Then, Section 7 is devoted to the
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isolation of positive solutions of the non-local Lane-Emden equation; eventually, all the
partial results are used in Section 8 to prove Theorem A and Theorem B.

Acknowledgments. The authors are grateful to Lorenzo Brasco for fruitful discussions
on the problem considered in the paper, in particular on the various regularity estimates
and on related topics, leading the authors to improve the quality of this paper: he is
acknowledged especially for pointing attention to the Hardy-type inequality (1.8).

D. Licheri is supported by the grant “Non-homogeneous eigenvalue problems and
applications” (University of Cagliari, 2022).

2. Framework and (pseudo) differential equations

Throughout this paper, we fix an integer N ě 1, a real number s P p0, 1q and an open
set Ω Ă RN . The square root of

ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy (2.1)

is a norm on the vector space C80 pΩq. The metric completion of this space is denoted,
here and henceforth, by Ds,2

0 pΩq.

Remark 2.1 (Analogies and differences with other spaces). Except for the special case
s “ 1

2 , if Ω is bounded with Lipschitz boundary, then Ds,2
0 pΩq coincides with the closure

Hs
0pΩq of C80 pΩq in the Sobolev-Slobodeckij space HspΩq of all u P L2pΩq such that

rus2HspΩq :“
ż

Ω

ż

Ω

pupxq ´ upyqq2

|x´ y|N`2s dx dy ă `8

In fact, in that case1, the “censored” Sobolev norm ‖u‖L2pΩq ` rusHspΩq is equivalent to

‖u‖L2pΩq `

ˆ
ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy

˙

1
2

and the latter is equivalent to the norm in Ds,2
0 pΩq, because Lipschitz sets support

a Poincaré-type inequality. On the contrary, if BΩ is not Lipschitz regular, then the
existence of functions u P HspΩq for which the integral

ż

Ω

ż

RN zΩ

upxq2

|x´ y|N`2s dx dy

diverges cannot be ruled out. If Ω is bounded and Lipschitz, then Ds,2
0 pΩq coincides with

the Hilbert space Xs
0pΩq “

 

u P Hs
`

RN
˘

: u “ 0 a.e. in RNzΩ
(

considered in [21].

For a general open set, it is not true that all the elements of Ds,2
0 pΩq are functions;

Ds,2
0 pΩq is not even a distribution space, in general (see, e.g., [14, 20]). A restriction that

clears off this difficulty is to consider open sets Ω supporting a Sobolev-type inequality,
on which Ds,2

0 pΩq is a function space; namely, assuming that the infimum in (1.5) is a
positive number.

1See [11, Appendix B].



A NON-LOCAL SEMILINEAR EIGENVALUE PROBLEM 5

2.1. Semilinear fractional spectrum. We denote by 2˚s the fractional Sobolev con-
jugate exponent, defined by 2N{pN ´ 2sq if 2s ă N and `8 otherwise.

Definition 2.2 (Semilinear fractional eigenvalues). For q P p1, 2˚s q, we consider the
constrained critical points of the double integral (2.1) along the submanifold

"

u P Ds,2
0 pΩq :

ż

Ω
|u|q dx “ 1

*

(2.2)

We call q-semilinear s-eigenvalues the corresponding constrained critical values. Their
collection is denoted by SpΩ, s, qq, and is said to be the q-semilinear s-spectrum of Ω.

Clearly, (1.5) is the largest lower bound for SpΩ, s, qq, and it is its minimum whenever
the variational problem (1.5) has a solution. The restriction q ă 2˚s in Definition 2.2 is
natural because for q ą 2˚s loss of compactness occur regardless of the properties of Ω.
If 0 ă s ă N{2, in the borderline case q “ 2˚s the infimum in (1.5) is independent of Ω,
and gives the best constant in Sobolev inequality, that reads as

SpN, sq‖v‖2
L2˚s pΩq

ď

ż

RN

ż

RN

pvpxq ´ vpyqq2

|x´ y|N`2s dx dy for all v P C80
`

RN
˘

(2.3)

By Lagrange’s multipliers rule, the q-semilinear s-eigenvalues are those positive real
numbers λ for which

p´∆qsu “ λ‖u‖2´q
LqpΩq|u|q´2u (2.4)

has a non-trivial solution u P Ds,2
0 pΩq in the weak sense, viz.

ż

RN

ż

RN

pupxq ´ upyqqpϕpxq ´ ϕpyqq

|x´ y|N`2s dx dy “ λ‖u‖2´q
LqpΩq

ż

Ω
|u|q´2uϕdx (2.5)

for all ϕ P Ds,2
0 pΩq.

2.2. Fractional Lane-Emden equation. After a renormalisation, the equation (2.4)
for Dirichlet q-semilinear s-eigenfunctions becomes the fractional Lane-Emden equa-
tion (1.4). Given an open set U Ă RN , we will say a weak supersolution (resp., subso-
lution) of the latter in U any function u P Ds,2

0 pU q such that
ż

RN

ż

RN

pupxq ´ upyqqpϕpxq ´ ϕpyqq

|x´ y|N`2s dx dy ě

ż

U
|u|q´2uϕdx (resp., ď) (2.6)

for all non-negative ϕ P Ds,2
0 pU q. A function that is both a weak supersolution and a

weak subsolution in U will be called a weak solution in U . Clearly, the weak solutions
of (1.4) are the critical points on Ds,2

0 pΩq of the free energy
1
2

ż

RN

ż

RN

pϕpxq ´ ϕpyqq2

|x´ y|N`2s dx dy ´
1
q

ż

Ω
|ϕ|q dx (2.7)

Definition 2.3 (Fractional Lane-Emden densities). Let q P p1, 2q and assume that
λ1pΩ, s, qq ą 0. We denote by wΩ,s,q the unique solution of the variational problem

min
ϕPDs,2

0 pΩq

"

1
2

ż

RN

ż

RN

pϕpxq ´ ϕpyqq2

|x´ y|N`2s dx dy ´
1
q

ż

Ω
ϕq dx : ϕ ě 0 a.e. in Ω

*

(2.8)

and we call it the ps, qq–Lane-Emden density of Ω.
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Remark 2.4. By [19, Theorem 1.3], the assumption λ1pΩ, s, qq ą 0 assures the com-
pactness of the embedding Ds,2

0 pΩq ãÑ LqpΩq; then, any minimising sequence for (2.8) is
easily seen to be bounded in Ds,2

0 pΩq, so it converges, up to relabelling, weakly in Ds,2
0 pΩq

and strongly in LqpΩq. Also, the constraint ϕ ě 0 is convex. Thus, solutions of (2.8)
exist by direct methods in calculus of variations. As for their uniqueness, minimisers
of the even functional (2.7) cannot change sign by Lemma A.1, and thence constrained
minimisers are non-negative minimisers of the free energy (2.7). Then, we conclude by
the uniqueness of non-negative weak solutions of (1.4) (see Remark 4.1 below).

3. The fractional semilinear spectral problem

Next proposition provides quantitative L8-bounds for q-semilinear s-eigenfunctions u
corresponding to λ P SpΩ, s, qq in terms of the LqpΩq-norm of u and of the eigenvalue
λ. For this standard result, in the proof we limit ourselves to check that Moser-type
iterations such as those in appendix to [9] can be repeated in this framework, too.

Proposition 3.1. Let q P p1, 2˚s q and assume the embedding Ds,2
0 pΩq ãÑ LqpΩq to be

compact. Let λ P SpΩ, s, qq and let u P Ds,2
0 pΩq be a corresponding q-semilinear s-

eigenfunction. Then

‖u‖L8pΩq ď C1pN, s, qqλ
2˚s

2p2˚s ´qq ‖u‖LqpΩq if 2˚s ă `8 (3.1a)
‖u‖L8pΩq ď C2pN, s, q, |Ω|qλ‖u‖LqpΩq if 2˚s “ `8 (3.1b)

Proof. With no loss of generality, we may assume that u ą 0. Fix β ą 1 and M ą 0.
By [12, Lemma A.2] with p “ 2, a “ upxq, b “ upyq and2 gptq “ pt^Mqβ, we get

2β
β ` 1

ż

RN

ż

RN

´

pupxq ^Mq
β`1

2 ´ pupyq ^Mq
β`1

2

¯2

|x´ y|N`2s dx dy

ď

ż

RN

ż

RN

pupxq ´ upyqq
`

pupxq ^Mqβ ´ pupyq ^Mqβ
˘

|x´ y|N`2s dx dy (3.2)

The choice ϕ “ pu^Mqβ in (2.5) implies that the right integral in (3.2) does not exceed

λ‖u‖2´q
LqpΩq

ż

Ω
uq´1pu^Mqβ dx

Case N ą 2s. By the compactness of the embedding Ds,2
0 pΩq ãÑ LqpΩq and by a density

argument, Sobolev inequality (2.3) holds with v “ pu^Mq
β`1

2 . Thus, the left hand side
in (3.2) is at least

SpN, sq 2β
β ` 1

ˆ
ż

Ω
pu^Mq

β`1
2 2˚s dx

˙
2

2˚s

2From now on, we use the following notation:

a^ b :“ minta, bu

a_ b :“ maxta, bu
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As M ą 0 was arbitrary, by the material above we deduce that

SpN, sq
ˆ
ż

Ω
u
β`1

2 2˚s dx

˙
2

2˚s
ď λ‖u‖2´q

LqpΩq
β ` 1

2β

ż

Ω
uβ`q´1 dx (3.3)

If 1 ă q ă 2, by arguing as in the second part of the proof of [8, Proposition 2.5] we
see that (3.3) implies (3.1). If instead 2 ď q ă 2˚s , then, by Hölder’s inequality, we have

ż

Ω
uβ`q´1 dx ď ‖u‖q´2

LqpΩq

ˆ
ż

Ω
u
β`1

2 q dx

˙
2
q

whence it follows that

SpN, sq
ˆ
ż

Ω
u
β`1

2 2˚s dx

˙
2

2˚s
ď λ

β ` 1
2β

ˆ
ż

Ω
u
β`1

2 q dx

˙
2
q

which leads one to (3.1) again, thanks to the iteration scheme in first part of the proof
of [8, Proposition 2.5].
Case N “ 1 and 1

2 ă s ă 1. In this case, the conclusion is an immediate consequence
of fractional Morrey’s embedding (see [10, Corollary 2.7]).
Case N “ 1 and s “ 1

2 . The obvious fact in this borderline case is that solutions have
bounded mean oscillation. To prove they are also bounded, we first focus on exponents
q P p1, 2s. By the second statement in [19, Lemma 2.3] with p “ 2, N “ 1 and r “ 2q,

C1

ˆ
ż

Ω
ϕ2q dx

˙
2
q

ď

ˆ
ż

Ω
ϕq dx

˙
2
q
ż

R

ż

R

pϕpxq ´ ϕpyqq2

|x´ y|2
dx dy (3.4)

holds, in particular, with ϕ “ pu^Mq
β`1

2 , for all M ą 0. The constant C1 ą 0 depends
only on q and s. Then, by (3.2), arguing as done in the previous case we get

C2ps, qq

ˆ
ż

Ω
u
β`1

2 2q dx

˙
2
2q
ď λ‖u‖2´q

LqpΩq
β ` 1

2β

ż

Ω
uβ`q´1 dx

Hence, we arrive at the desired conclusion by arguing as done after equation (13) in [8],
with minor changes (just replace 2˚ by 2q).

In order to deal with the exponents q ą 2, we take σ P
`1

4 ,
1
2
˘

with 1
2 ´ σ so small

that the Sobolev conjugate 2˚σ “ 2{p1 ´ 2σq exceeds 2q and we observe that, for all
ϕ P Ds,2

0 pΩq,

C3

ż

R

ż

R

pϕpxq ´ ϕpyqq2

|x´ y|1`2σ dx dy ď

ˆ
ż

Ω
ϕ2 dx

˙2p1´2σqˆż

R

ż

R

pϕpxq ´ ϕpyqq2

|x´ y|2
dx dy

˙4σ

where C3 is an absolute constant. This follows by a homogeneity argument based on the
obvious remark that

ĳ

|y´x|ă1

pϕpxq ´ ϕpyqq2

|x´ y|1`2σ dx dy ď

ĳ

|y´x|ă1

pϕpxq ´ ϕpyqq2

|x´ y|2
dx dy

and
ĳ

|y´x|ě1

pϕpxq ´ ϕpyqq2

|x´ y|1`2σ dx dy ď 2
ż

Ω
ϕpxq2

ż

|y´x|ě1

dy

|x´ y|1`2σ dx ď
2
σ

ż

Ω
ϕ2 dx
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Recalling that 2 ă 2q ă 2˚σ, by interpolation we also have
ˆ
ż

Ω
ϕ2q dx

˙
1
2q
ď

ˆ
ż

Ω
ϕ2 dx

˙
θ
2
ˆ
ż

Ω
ϕ2˚σ dx

˙
1´θ
2˚σ

where θ P p0, 1q. Then, by Sobolev inequality (2.3) with σ instead of s and by Hölder’s
inequality, we have again (3.4), but with a constant different from C1, depending only
on Ω, s and q.

In conclusion, we can take ϕ “ pu ^Mq
β`1

2 and argue as done for the exponents in
the range p1, 2s to get the desired estimate also in the case q ą 2. �

The following elementary proposition contains a general property of the first semilinear
fractional eigenvalue.

Proposition 3.2. Let q P p1, 2˚s q and assume the embedding Ds,2
0 pΩq ãÑ LqpΩq to be

compact. Then, the infimum in (1.5) is a minimum. Moreover, any minimiser is either
a strictly positive or a strictly negative function.

Proof. The existence of a minimiser is an immediate consequence of the direct methods in
the calculus of variations. The fact that it must have constant sign follows by Lemma A.1.
Then, the last statement follows by the strong minimum principle of Proposition A.2. �

Besides the first eigenvalue (1.5), higher eigenvalues also exist. In fact, it is straightfor-
ward to check that the squared norm (1.2) in Ds,2

0 pΩq satisfies the Palais-Smale condition.
Hence, in view of [25, Theorem 5.7], SpΩ, q, sq is an infinite set. More precisely, for all
n P N we denote by TnpΩ, s, qq the collection of all subsets A of

"

u P Ds,2
0 pΩq :

ż

Ω
|u|q dx “ 1

*

(3.5)

that are symmetric and compact in Ds,2
0 pΩq and satisfy the following property; for every

k ă n, there exist no odd and continuous mapping from A to Rkzt0u. We can rephrase
last property saying that the Krasnoselskii’s genus of A is larger than or equal to n.
Then, setting

λnpΩ, s, qq “ inf
APTnpΩ,s,qq

max
uPA

ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy (3.6)

one defines an unbounded non-decreasing sequence of q-semilinear s-eigenvalues.

Remark 3.3. In general, SpΩ, s, qq is closed. Indeed, if a sequence pλjqjPN Ă SpΩ, s, qq
converges to a positive number λ, there is a corresponding sequence of q-semilinear s-
eigenfunctions (obtained by renormalisation in LqpΩq) which has constant LqpΩq-norm
and converging norm in Ds,2

0 pΩq. By uniform convexity, some subsequence is converging
strongly to a limit u in LqpΩq, and this implies that u is a q-semilinear s-eigenfunction
corresponding to λ.

3.1. The sub-homogeneous case. We recall two properties of λ1pΩ, s, qq for q ď 2.

Proposition 3.4. Let q P p1, 2s and assume that λ1pΩ, s, qq ą 0. If λ P SpΩ, s, qq and
u is a corresponding eigenfunction, then u ě 0 a.e. in Ω implies λ “ λ1pΩ, s, qq.
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Proof. By assumption, the embedding Ds,2
0 pΩq ãÑ LqpΩq is continuous. Then, since

q P p1, 2s, by Gagliardo-Nirenberg interpolation inequality (see [19, Lemma 2.3]) it is
also compact. Thus, the assumptions of Proposition 3.2 are valid.

Let v P Ds,2
0 pΩq be a first eigenfunction, and assume that v ą 0 a.e. in Ω. Then, let

λ P SpΩ, s, qq, let u be a corresponding eigenfunction, and assume that u ě 0 a.e. in Ω,
as well. This implies u ą 0 a.e. in Ω by the strong minimum principle (Proposition A.2).
Being free to multiply by constants, we shall also assume both u and v to have unit
norm in LqpΩq.

Fix ε ą 0 and write uε “ u ` ε. For every x, y P RN , by [7, Proposition 4.2] with
p “ 2, we have

pupxq ´ upyqq

ˆ

vpxqq

uεpxqq´1 ´
vpyqq

uεpyqq´1

˙

ď |vpxq ´ vpyq|q|upxq ´ upyq|2´q

Multiplying by the kernel |x ´ y|N`2s “ |x ´ y|N
q
2`sq`Np1´

q
2q`sp2´qq and integrating

yields
ż

RN

ż

RN

upxq ´ upyq

|x´ y|N`2s

ˆ

vpxqq

uεpxqq´1 ´
vpyqq

uεpyqq´1

˙

dx dy

ď

ż

RN

ż

RN

|vpxq ´ vpyq|q|upxq ´ upyq|2´q

|x´ y|pN`2sq q2 |x´ y|pN`2sq 2´q
2
dx dy

By Hölder’s inequality with exponents 2
q and 2

2´q , the right hand side is bounded by

λ1pΩ, s, qq
q
2λ

2´q
2

because of the equations satisfied by u and v and of their normalisation in LqpΩq. Since
ϕ “ vq{uq´1

ε is an admissible test function in (2.5), we have
ż

RN

ż

RN

upxq ´ upyq

|x´ y|N`2s

ˆ

vpxqq

uεpxqq´1 ´
vpyqq

uεpyqq´1

˙

dx dy “ λ

ż

Ω
upxqq´1 vpxqq

pupxq ` εqq´1 dx

Therefore, for every ε ą 0 we end up with inequality

λ

ż

Ω
upxqq´1 vpxqq

pupxq ` εqq´1 dx ď λ1pΩ, s, qq
q
2λ

2´q
2 (3.7)

Since u ą 0 a.e. in Ω, applying Fatou’s lemma and dividing λ out we arrive at

1 “
ż

Ω
vpxqq dx ď

ˆ

λ1pΩ, s, qq
λ

˙

q
2

which gives λ ď λ1pΩ, s, qq. The definition of λ1pΩ, s, qq gives the opposite inequality. �

Proposition 3.5. Let q P p1, 2s and assume that λ1pΩ, s, qq ą 0. Then, λ1pΩ, s, qq is
simple, i.e., all the corresponding eigenfunctions are mutually proportional.

Proof. Let u and v be first eigenfunctions. With no loss of generality, assume that
both u and v are non-negative functions. We may also assume both u and v to have
unit norm in LqpΩq. For all t P r0, 1s, consider the function ξt : Ω Ñ R2 defined by
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ξtpxq “
`

t1{qupxq, p1´ tq1{qvpxq
˘

. Let } ¨ }`q denote the `q-norm in R2. Then, the
convexity of τ ÞÑ |τ |2{q implies

‖ξtpxq ´ ξtpyq‖2
`q ď tpupxq ´ upyqq2 ` p1´ tqpvpxq ´ vpyqq2 for all x, y P Ω (3.8a)

Also, for every t P r0, 1s, set σtpxq “ ‖ξtpxq‖`q for x P Ω and σtpxq “ 0 for x P RNzΩ.
Then

pσtpxq ´ σtpyqq
2 “ p‖ξtpxq‖`q ´ ‖ξtpyq‖`qq2 for all x, y P Ω (3.8b)

Hence, by triangle inequality, σt P Ds,2
0 pΩq with the estimate

ĳ

R2N

pσtpxq ´ σtpyqq
2

|x´ y|N`2s dx dy ď t

ĳ

R2N

pupxq ´ upyqq2

|x´ y|N`2s dx dy ` p1´ tq
ĳ

R2N

pvpxq ´ vpyqq2

|x´ y|N`2s dx dy

The normalisation in LqpΩq of u and of v implies that the right hand side in the latter
equals λ1pΩ, s, qq. On the other hand, the left hand side is larger than or equal to
λ1pΩ, s, qq, because

ż

Ω
σtpxq

q dx “

ż

Ω
‖ξtpxq‖q`q dx “ t

ż

Ω
upxqq dx` p1´ tq

ż

Ω
vpxqq dx “ 1

thus, σt is admissible for the minimisation problem that defines λ1pΩ, s, qq. Therefore,
for every t P r0, 1s, the previous integral inequality is an equality. As a consequence, the
pointwise identity

pσtpxq ´ σtpyqq
2 “ tpupxq ´ upyqq2 ` p1´ tqpvpxq ´ vpyqq2

holds for all t P r0, 1s and for a.e. x, y P Ω. In view of (3.8), the latter yields the equality
case in triangle inequality

|‖ξtpxq‖`q ´ ‖ξtpyq‖`q | ď ‖ξtpxq ´ ξtpyq‖`q

which occurs if and only if there exists αpx, yq P R with ξtpxq “ αpx, yqξtpyq. Owing
to the definition of ξt, it follows that upxq “ αpx, yqupyq and vpxq “ αpx, yqvpyq. In
conclusion, for a.e. x, y, we have

upxq

vpxq
“
upyq

vpyq

and this concludes the proof. �

3.2. The super-homogeneous case. Following the proof of [8, Proposition 4.3] about
an analogous property in the local case, we show that the first eigenvalue on Ω is simple
also in the super-homogeneous case q ą 2, for all q up to a suitable threshold (depending
on Ω). For this purpose, we first discuss the continuous dependence of λ1pΩ, s, qq on q
with a method used in [1, Lemma 4] to derive monotonicity of semilinear eigenvalues
with respect to q in the local case; here we limit our attention to the right continuity at
q “ 2, which can be proved also by different methods (see [4, Lemma 2.1]).

Lemma 3.6. We have
lim
qÑ2`

λ1pΩ, s, qq “ λ1pΩ, s, 2q
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Proof. By [19, Corollary 1.2], we have λ1pΩ, s, 2q ą 0 if and only if

λ1pΩ, s, qq ą 0 for every q P r2, 2˚s q (3.9)

Hence, we can assume that (3.9) holds, otherwise the conclusion is obvious. Therefore,

sup
vPC80 pΩq

"
ż

Ω
|v|q dx :

ż

RN

ż

RN

pvpxq ´ vpyqq2

|x´ y|N`2s dx dy “ 1
*

“ λ1pΩ, s, qq´
q
2 (3.10)

for all q P r2, 2˚s q, which can be seen by a straightforward homogeneity argument. Since

d2

dq2

ż

Ω
|v|q dx “

ż

tv‰0u
|v|qplog |v|q2 dx ě 0 for all q ą 1

the left hand side of (3.10), as a function of q, is the pointwise supremum of a family of
lower semicontinuous convex functions on p1, 2˚s q. Thus, q ÞÑ λ1pΩ, s, qq´q{2 is continuous
on r2, 2˚s q, and thence so it is q ÞÑ λ1pΩ, s, qq on r2, 2˚s q, by composition. �

Proposition 3.7. Assume that the embedding Ds,2
0 pΩq ãÑ L2pΩq is compact. Then,

there exists qΩ P p2, 2˚s q such that λ1pΩ, s, qq is simple for all q P p2, qΩq.

Proof. Let pqnqnPN be a decreasing sequence converging to 2 and let punqnPN and pvnqnPN
be sequences in Ds,2

0 pΩq such that, for all n P N, equation (2.5) holds with λ “ λ1pΩ, s, qnq
both for u “ un and for u “ vn. By Proposition 3.2, we may assume un and vn to be
positive functions, nor does it cause any loss of generality assuming them to have unit
LqnpΩq-norm. Then, by using themselves as test functions in their own equations, in
view of Lemma 3.6 we see that

lim
nÑ8

ĳ

R2N

punpxq ´ unpyqq
2

|x´ y|N`2s dx dy “ lim
nÑ8

ĳ

R2N

pvnpxq ´ vnpyqq
2

|x´ y|N`2s dx dy “ λ1pΩ, s, 2q

Also, because, by assumption, the infimum that defines λ1pΩ, s, 2q is achieved, we have

λ1pΩ, s, 2q “
ż

RN

ż

RN

pūpxq ´ ūpyqq2

|x´ y|N`2s dx dy

for an appropriate function ū P Ds,2
0 pΩq with unit norm in L2pΩq.

By Proposition 3.5, ū is uniquely determined; hence, from the assumption that the
embedding Ds,2

0 pΩq ãÑ L2pΩq is compact, we infer that both punqnPN and pvnqnPN con-
verge to ū strongly in Ds,2

0 pΩq and pointwise a.e. in Ω, by using the last two identities
in display and the fact that, for any given γ ą 2, owing to Proposition 3.1 we have

‖un ´ ū‖LγpΩq ď c‖un ´ ū‖
2
γ

L2pΩq

‖vn ´ ū‖LγpΩq ď c‖vn ´ ū‖
2
γ

L2pΩq

for a constant c ą 0 independent of n.
As qn ą 2, by Proposition 3.1 there is a constant C, depending only on the data, such

that

wn :“ pqn ´ 1q
ż 1

0
rtun ` p1´ tqvnsqn´2 dt ď C (3.11)
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The latter appears as a weight in the equation for ψn “ ‖un ´ vn‖´1
L2pΩqpun ´ vnq, viz.

ż

RN

ż

RN

pψnpxq ´ ψnpyqqpϕpxq ´ ϕpyqq

|x´ y|N`2s dx dy “ λ1pΩ, s, qnq
ż

Ω
wnψnϕdx (3.12)

for all ϕ P Ds,2
0 pΩq. After choosing ϕ “ ψn in (3.12), in view of (3.11) we see that

pψnqnPN is bounded in Ds,2
0 pΩq. Thus, by assumption, a subsequence (not relabelled)

converges to some limit ψ, weakly in Ds,2
0 pΩq and strongly in L2pΩq. Then, ψ is bound

to have unit norm in L2pΩq, in particular ψ ‰ 0.
We claim that

wn Ñ 1 in L2
locpΩq (3.13)

Thence, recalling also Lemma 3.6, by passing to the limit in (3.12) we arrive at
ż

RN

ż

RN

pψpxq ´ ψpyqqpϕpxq ´ ϕpyqq

|x´ y|N`2s dx dy “ λ1pΩ, s, 2q
ż

Ω
ψϕdx (3.14)

for all ϕ P Ds,2
0 pΩq, i.e., ψ is a non-trivial first eigenfunction. By Proposition 3.5, it

follows that either ψ “ ū or ψ “ ´ū. On the other hand, we can plug in ϕ “ ψ˘n into
(3.12) and deduce from (3.11), for n large enough, that

ż

RN

ż

RN

pψ˘n pxq ´ ψ
˘
n pyqq

2

|x´ y|N`2s dx dy ď 2Cλ1pΩ, s, 2q
ż

Ω

∣∣ψ˘n ∣∣2 dx
We argue by contradiction and we assume that un ‰ vn, for all n P N. Hence, both

Ω`n “ tun ą vnu and Ω´n “ tun ă vnu must have non-zero measure, because un and vn
have the same LqpΩq-norm. Then, we can estimate from below the left hand side to get∣∣Ω˘n ∣∣ 2s

N

ż

RN

ż

RN

pψ˘n pxq ´ ψ
˘
n pyqq

2

|x´ y|N`2s dx dy ě C 1
ż

Ω

∣∣ψ˘n ∣∣2 dx
where C 1 depends only on N and s; indeed, if Ω˘n has infinite measure, then the latter is
trivial; otherwise, we can deduce it from the definition of λ1pΩ, s, 2q, its scaling properties
and the fractional Faber-Krahn inequality (see [11, Theorem 3.5]). Combining the upper
and the lower bound yields infnPN |Ω˘n | ą 0, which is inconsistent with the pointwise
convergence of ψn to its constant sign limit ψ.

Thus, we are left with proving the claim (3.13). To do so, we consider a bounded
open set Ω1 Ť Ω and observe that

ż

Ω1
pwn ´ 1q2 dx “

ż

Ω1

ˆ
ż 1

0
pqn ´ 1qrtun ` p1´ tqvnsqn´2 dt´ 1

˙2
dx

ď

ż

Ω1

ż 1

0

“

pqn ´ 1qrtun ` p1´ tqvnsqn´2 ´ 1
‰2
dt dx

ď 2pqn ´ 2q2
ż

Ω1

ż 1

0

`

rtun ` p1´ tqvnsqn´2˘2
dt dx

` 2
ż

Ω1

ż 1

0

`

rtun ` p1´ tqvnsqn´2 ´ 1
˘2
dt dx

ď 2C2∣∣Ω1∣∣` 2
ż

Ω1

ż 1

0

`

|tun ` p1´ tqvn|qn´2 ´ 1
˘2
dt dx
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By the pointwise convergence a.e. in Ω of both un and vn to ū and by (3.11), the
latter implies that wn Ñ 1 in L2pΩ1q by dominated convergence theorem. Since Ω1 was
arbitrary, that entails (3.13), as desired. �

4. Fractional Lane-Emden densities

In this section we always limit our attention to exponents q P p1, 2q and we prove some
properties of the fractional Lane-Emden density of Ω. We recall that in this paper the
function wΩ,s,q is introduced in Definition 2.3, under the assumption that λ1pΩ, s, qq ą 0,
as a non-negative weak solution of (1.4) (see also Remark 2.4).

Remark 4.1. Equation (1.4) has indeed a unique non-negative weak solution; by Propo-
sition 3.4, any such function is a non-negative q-semilinear s-eigenfunction with LqpΩq-
norm equal to λ1pΩ, s, qq

1
q´2 , whence the uniqueness by Proposition 3.5.

Proposition 4.2. Let q P p1, 2q, let Ω1 and Ω2 be bounded open sets and, for i P t1, 2u,
let wi be the fractional Lane-Emden density wΩi,s,q on Ωi. Then

Ω1 Ă Ω2 ùñ w1 ď w2

Proof. Let us write wi “ wΩi,s,q in Ωi and wi “ 0 in RNzΩi, for i P t1, 2u. The inequality

pa_ b´ c_ dq2 ´ pa´ cq2 ď pb´ dq2 ´ pa^ b´ c^ dq2

with a “ w1pxq, b “ w2pxq, c “ w1pyq and d “ w2pyq entails the submodularity property

1
2

ĳ

R2N

ppw1 _ w2qpxq ´ pw1 _ w2qpyqq
2

|x´ y|N`2s dx dy ´
1
2

ĳ

R2N

pw1pxq ´ w1pyqq
2

|x´ y|N`2s dx dy

ď
1
2

ĳ

R2N

pw2pxq ´ w2pyqq
2

|x´ y|N`2s dx dy ´
1
2

ĳ

R2N

ppw1 ^ w2qpxq ´ pw1 ^ w2qpyqq
2

|x´ y|N`2s dx dy

By minimality of w1, we also have

1
2

ż

RN

ż

RN

pw1pxq ´ w1pyqq
2

|x´ y|N`2s dx dy ´
1
q

ż

Ω1

wq1 dx

ď
1
2

ż

RN

ż

RN

ppw1 ^ w2qpxq ´ pw1 ^ w2qpyqq
2

|x´ y|N`2s dx dy ´
1
q

ż

Ω1

pw1 ^ w2q
q dx

Taking into account the integral identity
1
q

ż

Ω1

wq1 dx´
1
q

ż

Ω2

pw1 _ w2q
q dx “

1
q

ż

Ω1

pw1 ^ w2q
q dx´

1
q

ż

Ω2

wq2 dx

and summing up, then, gives

1
2

ż

RN

ż

RN

ppw1 _ w2qpxq ´ pw1 _ w2qpyqq
2

|x´ y|N`2s dx dy ´
1
q

ż

Ω2

pw1 _ w2q
q dx

ď
1
2

ż

RN

ż

RN

pw2pxq ´ w2pyqq
2

|x´ y|N`2s dx dy ´
1
q

ż

Ω2

wq2 dx

Hence, by the minimality property of w2, we infer that w2 “ w1 _ w2, as desired. �
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We can extend Definition 2.3 to the case λ1pΩ, s, qq “ 0, as done in the local case
(see [9]).

Definition 4.3. Let q P p1, 2q. Then, we set
wΩ,s,qpxq “ lim

rÑ8
wΩXBr,s,qpxq for all x P Ω (4.1)

and we continue to call wΩ,s,q the ps, qq–Lane-Emden density of Ω.

By Proposition 4.2, the limit (4.1) always exists, so that the definition is well posed.
The following lemma assures its consistency with Definition 2.3.

Lemma 4.4. Let q P p1, 2q and assume that λ1pΩ, s, qq ą 0. For every r ą 0, we set
wrpxq “ wΩXBr,s,qpxq if x P Br and wrpxq “ 0 otherwise. Then, wr converge pointwise
to wΩ,s,q as r Ñ `8.

Proof. As r Ñ `8, the ps, qq–Lane-Emden density wr on Ω X Br converges to an ap-
propriate function w ď wΩ,s,q. By minimality, for every given ϕ P C80 pΩq there exists
Rϕ ą 0 such that, for all r ě Rϕ, we have

1
2

ż

RN

ż

RN

pwrpxq ´ wrpyqq
2

|x´ y|N`2s dx dy ´
1
q

ż

ΩXBr
wqr dx

ď
1
2

ż

RN

ż

RN

pϕpxq ´ ϕpyqq2

|x´ y|N`2s dx dy ´
1
q

ż

ΩXBr
|ϕ|q dx (4.2)

Note that the equation for wr is (2.5) with Ω X Br in place of Ω, u “ wr and λ “

‖wr‖q´2
LqpΩXBrq. Testing with ϕ “ wr the equation for wr, we get

ż

RN

ż

RN

pwrpxq ´ wrpyqq
2

|x´ y|N`2s dx dy “

ż

ΩXBr
wqr dx

ď λ1pΩ, s, qq
q
2

ˆ
ż

RN

ż

RN

pwrpxq ´ wrpyqq
2

|x´ y|N`2s dx dy

˙

q
2

where in the second inequality we also used that wr “ 0 in ΩzBr. Since q ă 2, we deduce
that wr converges to w weakly in Ds,2

0 pΩq and strongly in LqpΩq. Thus, passing to the
limit as r Ñ8 in (4.2), we obtain

1
2

ĳ

R2N

pwpxq ´ wpyqq2

|x´ y|N`2s dx dy ´
1
q

ż

Ω
wq dx ď

1
2

ĳ

R2N

pϕpxq ´ ϕpyqq2

|x´ y|N`2s dx dy ´
1
q

ż

Ω
|ϕ|q dx

for all ϕ P C80 pΩq, which, by uniqueness, implies that w “ wΩ,s,q. �

Following [15], for all w P Ds,2
0
`

RN
˘

and for all x0 P RN , we set

Tailpw, x0, ρq “ ρ2s
ż

RN zBρpx0q

|wpxq|
|x´ x0|N`2s dx

The only difference between next proposition and [15, Theorem 1.1] is that we consider
a non-homogeneous equation. We present the proof of [15] for sake of completeness.
Clearly, a similar estimate holds for non-homogeneous equations with data in Lγ , γ ą
N{s, but that is not relevant to our case.
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Proposition 4.5. Let U Ă RN be an open set, x0 P U , δ P p0, 1s, 0 ă r ă distpx, BU q,
f P L8pU q and let w P Ds,2

0
`

RN
˘

be a non-negative weak subsolution of p´∆qsw “ f in
U , i.e., w ě 0 in U and

ż

RN

ż

RN

pwpxq ´ wpyqqpϕpxq ´ ϕpyqq

|x´ y|N`2s dx dy ď

ż

U
fwϕdx

for all non-negative ϕ P C80 pU q. Then

ess sup
Br{2px0q

w ď C

»

–δTailpw, x0, r{2q ` δr2s‖f‖L8pU q `
ˆ

rN´2s

δ

˙

N
4s
˜

´

ż

Brpx0q
w2 dx

¸
1
2
fi

fl

where the constant depends only on N and s.

Proof. Let rk “ r
2
`

1` 2´k
˘

, r̃k “ prk`1 ` rkq{2, Bk “ Brkpx0q and B̃k “ Br̃kpx0q. We
take h ą 0 and we define hk “

`

1´ 2´k
˘

h and h̃k “ phk ` hk`1q{2. We take a cut-off
function ζk P C80

`

B̃k
˘

, with |∇ζk| ď 2k`1r´1, from Bk`1 to B̃k. We set wk “ pw´ hkq`
and w̃k “

`

w ´ h̃k
˘

`
and we observe that, by Minkowski’s inequality and fractional

Poincaré-Sobolev inequality, there exists an absolute constant C0 ą 0 with
ˆ

‖w̃kζk‖L2˚s pBkq
´´

ż

Bk

wkζk dx

˙2
ď

C0
rN´2s

ż

Bk

ż

Bk

pw̃kpxqζkpxq ´ w̃kpyqζkpyqq
2

|x´ y|N`2s dx dy

(4.3)
By the fractional Caccioppoli inequality (see [12, Proposition 3.5]), the right hand side
in (4.3) must not exceed C1I1`C2I2`C3I3, where C1, C2, C3 are constants depending
only on N and s and

I1 “ r´N`2s
ż

Bk

ż

Bk

pζkpxq ´ ζkpyqq
2

|x´ y|N`2s
`

w̃kpxq
2 ` w̃kpyq

2˘ dx dy

I2 “ r´N`2s

˜

sup
yRB̃k

ż

RN zBr{2px0q

w̃kpxq

|x´ y|N`2s dx

¸

ż

Bk

w̃kζ
2
k dx

I3 “ r´N`2s
ż

Bk

fw̃kζ
2
k dx

In order to estimate the sum of these three terms, we set

Yk “

ˆ
ż

Bk

w2
k dx

˙
1
2

(4.4)

Recalling that |∇ζk|2 ď r´24k`2, 0 ď ζk ď 1 and w̃k ď wk, it is easily seen that
a

C1I1 ď r´
N
2 2kYk (4.5a)

Since |x´x0|
|x´y| ď

|x´x0|
|x´x0|´|x0´y| ď 2k`1 for all x P RNzBr{2px0q and y P B̃k, we also see that

a

C2I2 ď
2
N`2s

2 k

rN{2
Tailpw, x0, r{2q

1
2

ˆ
ż

Bk

w̃kζ
2
k dx

˙
1
2

ď 22
N`2s`1

2 k

rN{2

ˆ

Tailpw, x0, r{2q
h

˙
1
2
Yk

(4.5b)
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where in the last inequality we also used that w̃kζ2
k ď 2kp4{hqw2

k in Bk X
 

w ě h̃k
(

.
Similarly, we also have

a

C3I3 ď r´
N
2 `s‖f‖1{2

L8pU q

ˆ
ż

Bk

w̃kζ
2
k dx

˙
1
2
ď 2r´

N
2 `s2k

‖f‖1{2
L8pU q
?
h

Yk (4.5c)

The elementary inequality
?
a` b` c ď

?
a `

?
b `

?
c for positive numbers a, b, c,

the fact that pC1I1`C2I2`C3I3q
1{2 is an upper bound for the right hand side in (4.3)

and the inequalities (4.5) imply

‖w̃kζk‖L2˚s pBkq
ď C4r

´N
2 Yk

»

–2k ` 2
N`2s`1

2 k

ˆ

Tailpw, x0, r{2q
h

˙
1
2
` 2krs

‖f‖1{2
L8pU q
?
h

fi

fl

On the other hand, setting α “ 2s{N and β “ 2s{pN ´ 2sq, we have

‖w̃kζk‖L2˚s pBkq
ě C5h

α2´αkY
1

1`β
k`1

where also the constant C5 depends just on N and s. To see that, we use that for all
points x P Bk`1 we have w̃kpxqζkpxq “ w̃kpxq “ 2´pk`2qh ` wk`1pxq, whence it follows
that pw̃kζkq2

˚
s ě ph{4q2˚s´22´p2˚s´2qkw2

k`1 in Bk`1, and this gives the desired lower bound.
Therefore, for appropriate constants C6 and Λ0, depending only on N and s, we have

Yk`1 ď
C6Λk0Y

1`β
k

r
N
2 p1`βqhαp1`βq

»

–1`
ˆ

Tailpw, x0, r{2q
h

˙
1
2
`

˜

r2s‖f‖L8pU q
h

¸
1
2
fi

fl

1`β

and the latter takes the form Yk`1 ď r´
N
2 p1`βqh´αp1`βqδ´

1`β
2 C7Λk0Y

1`β
k , provided that

h ě δTailpw, x0, r{2q ` δr2s‖f‖L8pU q (4.6a)

Then, by setting C8 “ C
1{β
7 , Λ “ Λ1{β

0 and Zk “ C8ΛkYk, we obtain the recursive
relation

Zk`1 ď
´

Λr´
N
2 p1`βqh´αp1`βqδ´

1`β
2 Zβk

¯

Zk

If we also have
h ě δ´

1
2α pC7Λq

1
αp1`βq r´

N
2α ‖w‖L2pBrpx0qq (4.6b)

then, from the recursive relation, we infer by induction that Zk ď Z0 for all k P N, which
means, by construction, that Yk ď Λ´kY0. In view of (4.4), it follows that

ż

Br{2px0q
pw ´ hq2` dx ď lim inf

kÑ8

ż

Bk

w2
k dx ď lim

kÑ8
Λ´2k

ż

Brpx0q
w2 dx “ 0

For every h ą 0, the procedure can be repeated for all those h̃ that meet the requirement
that both the lower bounds in (4.6) for h hold, leading one to the conclusion that

w ď δTailpw, x0, r{2q ` δr2s‖f‖L8pU q ` C8δ
´ 1

2α r´
N
2α ‖w‖L2pBrpx0qq a.e. in Br{2px0q

where C8 depends only on N and s. Since α “ 2s{N , that ends the proof. �
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5. Functional inequalities with special singular weights

In the present section, we introduce a couple of Hardy-type inequalities. In the fol-
lowing proposition, we see that Lane-Emden inequalities (see [9, Section 3]) are valid
also in the non-local case.

Proposition 5.1. Let q P p1, 2q and u P C80 pΩq. Then
ż

Ω

u2

w2´q
Ω,s,q

dx ď

ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy (5.1)

with the agreement that the left integrand be 0 at all points where wΩ,s,q “ `8.

Proof. We first prove (5.1) in the special case of a bounded open set. We write w “ wΩ,s,q,
and we take ε ą 0. By Proposition 3.1, w P Ds,2

0 pΩqXL8pΩq. Hence, so does pw` εq´1,
because t ÞÑ pt` εq´1 is a Lipschitz function on p0,8q. Then, by [5, Lemma 2.4] we can
plug ϕ “ u2{pw ` εq into the equation for w and get

ż

Ω
wpxqq´1 upxq2

wpxq ` ε
dx “

ż

RN

ż

RN

wpxq ´ wpyq

|x´ y|N`2s

ˆ

upxq2

wpxq ` ε
´

upyq2

wpyq ` ε

˙

dx dy

for all ε ą 0. In view of [7, Proposition 4.2], and recalling that w ą 0 a.e. in Ω, by
Fatou’s lemma it follows that

ż

Ω

u2

w2´q dx ď

ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy

For the general case, we take R ą 0 so large that the support of u is contained in Br
for all r ě R. For all such radii r, by the material above we have

ż

ΩXBr

u2

w2´q
r

dx ď

ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy

where wr is the ps, qq–Lane-Emden density of Ω X Br. In view of Definition 4.3, by
Fatou’s lemma we get the conclusion passing to the limit as r Ñ8. �

The more familiar Hardy-type inequality of next proposition implies some restriction
on Ω. The assumption made below is not optimal, though; for instance, a uniform
exterior cone condition is also a valid assumption. More generally, for the statement to
hold true it would be sufficient that no boundary point belong to the measure-theoretic
interior of Ω (see [13]).

Proposition 5.2. Let s P p0, 1q and let Ω Ă RN be an open bounded Lipschitz set.
Then, for all u P C80 pΩq,

ż

Ω

upxq2

distpx, BΩq2s dx ď C

ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy (5.2)

for a constant C ą 0 depending only on Ω.

Before proving Proposition 5.2, we make a brief comment on (5.2). When it comes to
fractional Hardy inequalities, there are a number of variants of the same statement. A
stronger one just involves the Sobolev-Slobodeckij seminorm rusHspΩq in the right hand
side (instead of taking integrals on the whole of RN ), implying various restrictions both
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on Ω and on s: for a more detailed account on the topic, we refer to [13, 16, 17, 18, 24].
Here, incidentally, in view of Remark 2.1 we may point out the following.

Corollary 5.3. If s P p0, 1q and 2s ‰ N , then, under the assumptions of Proposition 5.2,
ż

Ω

upxq2

distpx, BΩq2s dx ď C

ˆ
ż

Ω

ż

Ω

pupxq ´ upyqq2

|x´ y|N`2s dx dy `

ż

Ω
u2 dx

˙

for all u P C80 pΩq.

Proof of Proposition 5.2. By assumption, Ω satisfies the uniform exterior cone condition,
i.e., that there exists ` ą 0 and a cone K, with given aperture, such that every boundary
point ξ is the vertex of a cone Kξ isometric to K that satisfies Kξ XB`pξq Ă RNzΩ.

For ease of notation, we write δpxq :“ distpx, BΩq. For all x P Ω with δpxq ě `, we can
pick ξx P BΩ with minimum distance to x and we have |x´ y| ď |ξx ´ y|` δpxq ď 2δpxq
for all y P Kξx XB`pξxq, whence it follows that

ż

KξxXB`pξxq

dy

|x´ y|N`2s ě p2δpxqq
´pN`2sq|Kξx XB`pξxq| ě

θ`Nδpxq´2s

2N`2sDNN

where θ “ H N´1pK X BB1p0qq and D is the diameter of Ω.
The inequality |x´ y| ď |ξx ´ y|` δpxq holds also for all points x P Ω with δpxq ď `,

and we infer that
ż

KξxXB`pξxq

dy

|x´ y|N`2s ě

ż δpxq

0

θρN´1 dρ

pρ` δqN`2s “
θ

Nδpxq2s

ż 1

0

dt

p1` t1{N qN`2s ě
θδpxq´2s

2N`2sN

Since for all x P Ω we have Kξx XB`pξxq Ă RNzΩ, it follows that
ż

RN zΩ

dy

|x´ y|N`2s ě
θδpxq´2s

2N`2sN

ˆ

`N

DN
^ 1

˙

That gives the desired conclusion, because for all u P C80 pΩq we have
ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s “

ż

Ω

ż

Ω

pupxq ´ upyqq2

|x´ y|N`2s ` 2
ż

Ω
upxq2

ż

RN zΩ

dy

|x´ y|N`2s �

Remark 5.4. For the use we shall make of Proposition 5.2, we don’t need to pay much
attention to the explicit value of the constant C ą 0. For sure, the proof presented
implies a very rough estimate of the optimal (unknown) constant.

Remark 5.5. By density, the inequality holds for all functions that belong to Ds,2
0 pΩq.

Given p P p1,8q, a similar inequality, with suitable adjustments to the exponents, is
valid for functions in the homogeneous fractional Sobolev space Ds,p

0 pΩq defined as the
completion of C80 pΩq with respect to

ˆ
ż

RN

ż

RN

|upxq ´ upyq|p

|x´ y|N`sp
dx dy

˙
1
p

and this can be seen by minor changes in the proof presented here. This variant was
considered, for example, in [5], where the authors provide a constant that works on
convex open sets, with stable asymptotic behaviour as sÕ 1.
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6. Universal bounds for Lane-Emden densities of unbounded open sets

The following is the non-local counterpart of [9, Proposition 4.3].

Proposition 6.1. Let q P p1, 2q and assume that λ1pΩ, s, 2q ą 0. Then, wΩ,s,q P L
8pΩq

and there exists a constant C, depending only on N , s and q, such that

‖wΩ,s,q‖2´q
L8pΩq ď Cλ1pΩ, s, 2q´1 (6.1)

Conversely, for all q P p1, 2q, if wΩ,s,q P L
8pΩq, then λ1pΩ, s, 2q ě ‖wΩ,s,q‖q´2

L8pΩq.

Proof. Let us write w “ wΩ,s,q. The last statement is a consequence of Proposition 5.1.
Then, we assume that λ1pΩ, s, 2q ą 0 and we prove the following fact: there exists a
constant C2pN, sq, that only depends on N and s, such that

‖w‖2´q
L8pΩqλ1pΩ, s, 2q ď C1pN, s, qq (6.2)

holds with a suitable constant C1pN, s, qq, depending only on N , s and q, provided that

‖w‖2´q
L8pΩq ě C2pN, sq (6.3)

That fact would imply

‖wΩ,s,q‖2´q
L8pΩqλ1pΩ, s, 2q ď maxtC2λ1pΩ, s, 2q, C1u

whence we would infer (6.1) by a scaling argument, because for all t ą 0 we have

‖wtΩ,s,q‖2´q
L8ptΩq “ t2s‖wΩ,s,q‖2´q

L8pΩq

λ1ptΩ, s, 2q “ t´2sλ1pΩ, s, 2q

In order to prove that (6.3) implies (6.2), as desired, for appropriate choices of con-
stants, we follow the lines of the proof of [2, Theorem 9]. Since the L8-norm is lower
semicontinuous with respect to the pointwise (monotone) convergence and the first eigen-
value λ1p¨, s, 2q is monotone non-increasing with respect to set inclusion, in order to prove
the claim we may assume Ω to be smooth and bounded, up to an approximation argu-
ment. So, by arguing under this assumption, in view of Proposition 3.1 we will assume
w to belong to L8pΩq and to achieve its maximum at an interior point, that we may
consider to be the origin in RN up to an unessential translation.

We now identify w with the function that agrees with w in Ω and equals zero every-
where else and we claim that w is a weak subsolution of the fractional Lane-Emden equa-
tion (1.4) in RN . To see this3, we fix a non-negative function η P C80

`

RN
˘

and, for every
ε ą 0, we take a monotone non-decreasing Lipschitz continuous function Hε : R Ñ R,
with Hεpuq “ 0 for all u ď 0 and Hεpuq “ 1 for all u ě ε. Then
ż

RN

ż

RN

wpxq ´ wpyq

|x´ y|N`2s rHεpwpxqqηpxq ´Hεpwpyqqηpyqs dx dy “

ż

Ω
wq´1Hεpwqη dx (6.4)

because of the weak equation for w with Hεpwqη as a test function. To handle the left
hand side of (6.4), we write the identity 2paξ´ bζq “ pa` bqpξ´ ζq` pa´ bqpξ` ζq with

3We owe the approximation trick used in the proof of this claim to a gentle advice by Lorenzo Brasco.
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a “ ηpxq, b “ ηpyq, ξ “ Hεpwpxqq and ζ “ Hεpwpyqq. After multiplying the result by
wpxq ´ wpyq and integrating against the singular kernel on Ωˆ Ω, we see that

2
ż

Ω

ż

Ω

wpxq ´ wpyq

|x´ y|N`2s rHεpwpxqqηpxq ´Hεpwpyqqηpyqs dx dy

“

ż

Ω

ż

Ω

wpxq ´ wpyq

|x´ y|N`2s pηpxq ` ηpyqqrHεpwpxqq ´Hεpwpyqqs dx dy

`

ż

Ω

ż

Ω

wpxq ´ wpyq

|x´ y|N`2s pηpxq ´ ηpyqqrHεpwpxqq `Hεpwpyqqs dx dy

(6.5)

Notice that the first integral in the right hand side of (6.5) is non-negative, due to the
monotonicity of the function Hε. Thus

ż

RN

ż

RN

wpxq ´ wpyq

|x´ y|N`2s rHεpwpxqqηpxq ´Hεpwpyqqηpyqs dx dy

ě
1
2

ż

Ω

ż

Ω

wpxq ´ wpyq

|x´ y|N`2s pηpxq ´ ηpyqqrHεpwpxqq `Hεpwpyqqs dx dy

` 2
ż

Ω

ż

RN zΩ

wpxq

|x´ y|N`2s rHεpwpxqqηpxq ´Hεpwpyqqηpyqs dx dy

(6.6)

By dominated convergence theorem, the limit as εÑ 0` in (6.4) and (6.6) gives
ż

Ω

ż

Ω

wpxq ´ wpyq

|x´ y|N`2s pηpxq ´ ηpyqq dx dy ` 2
ż

Ω

ż

RN zΩ

wpxqηpxq

|x´ y|N`2s dx dy ď

ż

Ω
wq´1η dx

and that proves the claim.
We let r be a positive radius, that will be chosen later, and we take a cut-off ζ P C80 pΩq

from the ball Br{2 to Br, with |∇ζ| ď 2
r . Since w is a weak subsolution of (1.4), the

localised Caccioppoli estimate of [12, Proposition 3.5], with F “ wq´1, p “ 2, β “ 1,
δ “ 0, L “ 1 and Ω1 “ Br, gives

ż

Br

ż

Br

pwpxqζpxq ´ wpyqζpyqq2

|x´ y|N`2s dx dy ď C3pN, sq
`

wp0qqrN ` wp0q2rN´2s˘ (6.7)

where C3pN, sq ą 0 depends only on N and s. Moreover, by the fact that w P L8pΩq,
ż

Br

ż

RN zBr

pwpxqζpxq ´ wpyqζpyqq2

|x´ y|N`2s dx dy ď C4pN, sqwp0q2rN´2s (6.8)

where C4pN, sq ą 0 depends only on N and s. Also, by Proposition 4.5 we have
ż

Br

w2 dx ě C5pN, s, qqr
N
`

wp0q ´ δTailpw, 0, r{2q ´ δr2swp0q
˘2

where the constant C5pN, s, qq depends only on N , s and q and δ P p0, 1s is a parameter
that we can take as small as we wish. By combining the latter with (6.7) and (6.8), for
δ smaller than an appropriate δ0pN, sq P p0, 1s, we obtain

λ1pΩ, s, 2q ď C6pN, s, qq
`

wp0q{2´ δr2swp0qq´2˘´2`
wp0qq ` wp0q2r´2s˘ (6.9)
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where we set C6 “ 2pC3 ` C4qC
´1
5 and we used the fact that the function wζ is an

admissible competitor for the infimum that defines the constant λ1pΩ, s, 2q. Then, we
take δ ď 2´q ^ δ0pN, sq. Hence, with the choice

r “
`1

2wp0q
˘

2´q
2s

we have wp0q ´ δr2swp0qq´2 ě wp0q{4, and (6.9) gives (6.2) with C1 “ 16
`

1` 22´q˘C6.
�

Under the stronger assumption that λ1pΩ, s, qq ą 0, we have the following estimate.

Proposition 6.2. Let q P p1, 2q and λ1pΩ, s, qq ą 0. Then, wΩ,s,q P L
8pΩq and

‖wΩ,s,q‖L8pΩq ď Cλ1pΩ, s, qq´γ

where the constant C ą 0 and the exponent γ ą 0 depends only on N , s and q.

Proof. We note that wΩ,s,q is the first q-semilinear s-eigenfunction with LqpΩq-norm
λ1pΩ, s, qq

1
q´2 . Then, the estimate follows at once by Proposition 3.1. �

Remark 6.3. We notice that Proposition 6.2 can also be seen as a particular case of the
general estimate (6.1) of Proposition 6.1. Indeed, the positivity of the greatest lower
bound λ1pΩ, s, 2q for the spectrum of the fractional (linear) s-Laplacian is, by definition,
equivalent to the continuity of the embedding Ds,2

0 pΩq ãÑ L2pΩq. Domains with this
property are not necessarily bounded, nor are they required to have finite measure; also,
an open set Ω may support a Sobolev-Poincaré inequality that makes λ1pΩ, s, 2q strictly
positive even if λ1pΩ, s, qq “ 0 for all q P p1, 2q (examples are provided by domains
of the form ω ˆ p´M,Mq, with M ą 0 and ω bounded in RN´1). Conversely, given
any q P p1, 2q, the fact that λ1pΩ, s, qq ą 0 implies that λ1pΩ, s, 2q ą 0, too; in fact,
it implies that the embedding Ds,2

0 pΩq ãÑ L2pΩq is compact, by interpolation (see [19,
Lemma 2.3]).

7. Local in L1 uniqueness for fractional Lane-Emden positive solutions

The following proposition is the non-local counterpart of [6, Proposition 4.1].

Proposition 7.1. Let q P p1, 2q and assume that the weighted space

L2pΩ, wq´2
Ω,s,qq “

"

u P L1
locpΩq :

ż

Ω
wq´2

Ω,s,qu
2 dx ă `8

*

(7.1)

contains Ds,2
0 pΩq with compact embedding. Then, every critical point of

1
2

ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy ´
1
q

ż

Ω
|u|q dx

must satisfy ‖u´ wΩ,s,q‖L1pΩq ě δ, where δ ą 0 depends only on s, q, Ω and N .

Proof. We will prove a contrapositive statement: if a sequence punqnPN, consisting of
weak solutions of the fractional Lane-Emden equation (1.4), converges to w :“ wΩ,s,q in
L1pΩq, then

ż

RN

ż

RN

pψpxq ´ ψpyqq2

|x´ y|N`2s dx dy ď pq ´ 1q
ż

Ω
wq´2ψ2 dx (7.2)
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Note that (7.2) is in contradiction with Proposition 5.1, because 1 ă q ă 2.
By setting Qn “

`

wq´1 ´ |un|q´2un
˘

{pw´unq at all points where w ‰ un and Qn “ 0
elsewhere, the weak equation for the difference w ´ un takes the form

ż

RN

ż

RN

ppw ´ unqpxq ´ pw ´ unqpyqqpϕpxq ´ ϕpyqq

|x´ y|N`2s dx dy “

ż

Ω
Qnpw ´ unqϕdx

for ϕ P Ds,2
0 pΩq; with the choice ϕ “ t´1

n pw ´ unq, where

tn “

ż

Ω
wq´2pw ´ unq

2 dx

it follows that
1
tn

ż

RN

ż

RN

ppw ´ unqpxq ´ pw ´ unqpyqq
2

|x´ y|N`2s dx dy “

ż

Ω
Qn

ˆ

w ´ un
?
tn

˙2
dx (7.3)

By [6, Lemma A.1], we have the following pointwise bound

0 ď Qnpxq ď 22´qwq´2pxq for all x P Ω (7.4)

and, by construction, that prevents the right integral in (7.3) from exceeding the constant
22´q. Therefore, setting ψn “ pw´unq{

?
tn defines a bounded sequence in Ds,2

0 pΩq, which
clearly has unit norm in the weighted space (7.1).

By assumption, we deduce that ψn converges weakly in Ds,2
0 pΩq and strongly in the

weighted space (7.1) to a non-zero limit ψ. Thus, by (7.3), we can write
ż

RN

ż

RN

pψnpxq ´ ψnpyqq
2

|x´ y|N`2s dx dy “

ż

Ω
Qn

`

ψ2
n ´ ψ

2˘ dx`

ż

Ω
Qnψ

2 dx (7.5)

The convergence of the sequence ψn implies

lim sup
nÑ8

ż

Ω
Qn

`

ψ2
n ´ ψ

2˘ dx ď 0 (7.6)

because, by the pointwise bound (7.4) and by Hölder’s inequality, we have

ż

Ω
Qn

`

ψ2
n ´ ψ

2˘ dx ď 22´q
ˆ
ż

Ω
wq´2pψn ´ ψq

2 dx

˙
1
2
ˆ

ˆ

«

ˆ
ż

Ω
wq´2ψ2

n dx

˙
1
2
`

ˆ
ż

Ω
wq´2ψ2 dx

˙
1
2
ff

In order to deal with the second integral in the right hand side of (7.5), we would
better handle the pointwise limit behaviour of Qn. Since

wq´1 ´ |un|q´2un “ ´

ż 1

0

d

dt

“

|w ` tpun ´ wq|q´2pw ` tpun ´ wqq
‰

dt

for every x P Ω, we have

Qnpxq ď pq ´ 1q
ż 1

0
fnpx, tq dt where fnpx, tq “ |p1´ tqwpxq ` tunpxq|q´2 (7.7)
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The Hölder continuity of τ ÞÑ τ2´q and the convexity of τ ÞÑ τ q´2 imply∣∣∣|a` tpb´ aq|q´2 ´ aq´2
∣∣∣ ď t2´q

a2´q pb´ aq
2´q“p1´ tqaq´2 ` tbq´2‰

for all t P r0, 1s and for all a, b ą 0. Then, at all points x where unpxq ą 0, we have

sup
tPr0,1s

∣∣∣fnpx, tq ´ w2´qpxq
∣∣∣ ď |wpxq ´ unpxq|2´q

wpxq2´q
“

p1´ tqwpxqq´2 ` tunpxq
q´2‰ (7.8)

As un converges to w in L1pΩq, a subsequence (not relabelled) also converges pointwise
a.e. in Ω. In view of (7.8), that assures the uniform convergence of fnpx, ¨q to the constant
wpxq2´q for all x out of a negligible set, so that

lim
nÑ8

ż 1

0
fnpx, tq dt “ wpxq2´q for a.e. x P Ω (7.9)

From (7.7) and (7.9) we infer that
lim sup
nÑ8

Qnψ
2 ď pq ´ 1qw2´qψ2 a.e. in Ω

From this and from (7.4), by reverse Fatou’s lemma, we deduce that

lim sup
nÑ8

ż

Ω
Qnψ

2 dx ď pq ´ 1q
ż

Ω
w2´qψ2 dx (7.10)

Inserting (7.6) and (7.10) in the identity (7.5) and using the lower semicontinuity of the
left hand side of (7.5) with respect to the weak convergence in Ds,2

0 pΩq, we arrive at
(7.2), as desired. �

Remark 7.2. In view of Proposition 5.1, the embedding Ds,2
0 pΩq ãÑ L2pΩ, wq´2

Ω,s,qq is
continuous, for example, on all open sets with finite volume. The stronger requirement
that it be compact may be met under higher regularity assumptions on BΩ.
Lemma 7.3. Let q P p1, 2q, let Ω Ă RN be a bounded open set with C1,1 boundary and
let v P C80 pΩq. Then

ż

Ω
wq´2

Ω,s,qv
2 dx ď

ˆ
ż

RN

ż

RN

pvpxq ´ vpyqq2

|x´ y|N`2s dx dy

˙

2´q
2

‖v‖qL2pΩq (7.11)

Proof. By Hopf’s lemma for the fractional Laplacian (see [22, Lemma 7.3]) we have a
constant C ą 0, only depending on Ω, N , q and s, such that4

wΩ,s,qpxq ě C distpx, BΩqs (7.12)
Since q P p1, 2q, by Hölder’s inequality with exponents 2

2´q and 2
q we have

ż

Ω
distpx, BΩqspq´2qv2 dx ď

ˆ
ż

Ω

v2

distpx, BΩq2s dx
˙

2´q
2
ˆ
ż

Ω
v2 dx

˙

q
2

(7.13)

Then, by (7.12), Proposition 5.2 and (7.13), we improve the fractional Lane-Emden
inequality (5.1) to (7.11). �

4The more precise asymptotic boundary behaviour wΩ,s,q — distp¨, BΩqs is known: for the semilinear
equation we refer to Theorem 6.4 and the following remarks in [3] (alternatively, see [23] for the linear
equation with a bounded right hand side, which is also relevant to our case thanks to Proposition 3.1).
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The conclusion of the previous lemma assures compactness for the weighted embed-
ding. Thus, we end this section with the remark that the isolation of fractional Lane-
Emden densities holds, for example, on open sets with smooth boundary.

Proposition 7.4. Let q P p1, 2q and let Ω Ă RN be a bounded open set with C1,1

boundary. Then, the conclusion of Proposition 7.1 holds.

Proof. By assumption, Ds,2
0 pΩq ãÑ L2pΩq is compact; this and Lemma 7.3 imply the

compactness of the embedding Ds,2
0 pΩq ãÑ L2pΩ, wq´2

Ω,s,qq, too. �

8. Proof of the main results

8.1. Proof of Theorem A. Because q P p1, 2q, the assumption λ1pΩ, s, qq ą 0 implies
the compactness of the embedding Ds,2

0 pΩq ãÑ LqpΩq (see [19, Theorem 1.3]). Then, a
first eigenfunction exists by Proposition 3.2. Also, Proposition 3.5 entails uniqueness up
to proportionality, and the last statement is true by Proposition 3.4. �

8.2. Proof of Theorem B. Arguing by contradiction, we assume that a sequence
pλnqnPN Ă SpΩ, s, qq converges to λ1pΩ, s, qq. For each λn, we pick an eigenfunction
un with unit norm in LqpΩq. That defines a bounded sequence in Ds,2

0 pΩq, due to
equation (2.5) with λ “ λn and u “ ϕ “ un. Then, by possibly passing to a subsequence,
we may assume that un converges weakly in Ds,2

0 pΩq and strongly in LqpΩq to a limit
function u with unit norm in LqpΩq. Hence, by passing to the limit as n Ñ 8 in (2.5)
with u “ un and λ “ λn, it is easily seen that u is a first q-semilinear s-eigenfunction.
Owing to Theorem A, up to changing everywhere sign to each element of the sequence,
u ą 0 and its multiple w “ λ1pΩ, s, qq

1
q´2u is the fractional Lane-Emden density of

Ω. Moreover, each function vn “ λ1pΩ, s, qq
1
q´2un is a weak solution of the fractional

Lane-Emden equation (1.4); yet, by construction, vn converges to wΩ,s,q in Ds,2
0 pΩq, in

contradiction with Proposition 7.4. �

Appendix A. Strong minimum principle

The following lemma is an immediate consequence of inequality p|a|´ |b|q2 ď pa´ bq2,
that is strict if and only if ab ă 0.

Lemma A.1. For all u P Ds,2
0 pΩq, we have

ż

RN

ż

RN

p|upxq|´ |upyq|q2

|x´ y|N`2s dx dy ď

ż

RN

ż

RN

pupxq ´ upyqq2

|x´ y|N`2s dx dy (A.1)

with strict inequality unless either u ě 0 or u ď 0 a.e. in Ω.

The following form of the minimum principle for weak supersolutions is well known.
We present the proof for convenience of the reader and we point out that Ω is not
required to be connected.

Proposition A.2. Let u P Ds,2
0 pΩq satisfy

ż

RN

ż

RN

pupxq ´ upyqqpϕpxq ´ ϕpyqq

|x´ y|N`2s dx dy ě 0 for all non-negative ϕ P C80 pΩq

and assume that u ě 0 a.e. in Ω. Then, either u “ 0 a.e. in Ω or u ą 0 a.e. in Ω.
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Proof. By [7, Theorem A.1], u ą 0 in each connected component where it is not iden-
tically zero. Then, we argue as in the proof of [12, Proposition 2.6] and we prove a
contrapositive statement: if u ” 0 in a connected component Ω0 of Ω, then, by assump-
tion, for all ϕ P C80 pΩ0qzt0u such that ϕ ě 0,

ż

ΩzΩ0

ż

Ω0

upxqϕpyq

|x´ y|n`2s dx dy ´
1
2

ż

RN

ż

RN

pupxq ´ upyqqpϕpxq ´ ϕpyqq

|x´ y|n`2s dx dy ď 0

which, by Fubini’s theorem, implies u “ 0 a.e. in ΩzΩ0, hence a.e. in Ω. �
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