A NON-LOCAL SEMILINEAR EIGENVALUE PROBLEM

GIOVANNI FRANZINA AND DANILO LICHERI

ABSTRACT. For a non-local semilinear eigenvalue problem, we prove simplicity and
isolation of the first eigenvalue with homogeneous Dirichlet boundary conditions on
open sets supporting a suitable compact Sobolev embedding.
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1. INTRODUCTION

This paper concerns a semilinear eigenvalue problem for the fractional Laplace opera-
tor with homogeneous Dirichlet boundary conditions in N-dimensional Euclidean spaces
with applications to a model for non-local filtration in a porous medium. We recall that,
given s € (0,1), the s-Laplacian of a smooth function u on RY is defined, up to a
normalisation constant depending only on N and s, by the formula

: u(z) — u(y)
(—A)°u(x) = lim —— " dy (1.1)
e=0* JrV\B_ () |T — Y|V 28
The right hand side is usually multiplied by the quantity 4°T' (5 + s)/(7V/2|0(=s)|),
which has a precise degenerate behaviour both as s — 0™ and as s — 17. The specific
normalisation choice has no bearing for the matter of this paper and will be, therefore,
omitted.
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By classical spectral theory in Hilbert spaces, it is known that the eigenvalue problem
(—A)°u = u

in a bounded open set Q — R, with Dirichlet conditions u = 0 in the complement RV\(,
has non trivial solutions for a discrete set of real numbers A, which either is empty or
consists of an unbounded non-decreasing sequence of eigenvalues. The corresponding
eigenfunctions are the stationary points of the double integral

u\xr) —u 2

|z

subject to an L?(Q)-constraint.
The variational problem under an L4(£2)-constraint, with ¢ # 2, leads one to a different
non-local semilinear elliptic boundary value problem, formally

{(—A)su = )\HuHi;gQ)|u\q_2u in Q

(1.3)
u=20 in RM\Q

Any fixed solution u of (1.3), if multiplied by a specific constant depending on u, solves
the fractional Lane-Emden equation

(—A)*u = |[u)i%u in (1.4)

with 4 = 0 in RM\Q.
The largest lower bound for the collection &(€2,s,q) of all positive numbers A for
which (1.3) admits a non-trivial solution is called the first g-semilinear s-eigenvalue

: (p(x) — p(y))* j
A1 (2 = f ) P daedy Iy =1 1.
1(£,5,9) (peggo(m{fwﬁw o — Vs zdy Q|<P| x (1.5)

In some cases, for example whenever () has finite N-dimensional volume, the embedding
DS’Z(Q) — L9(2) is compact, which assures the infimum to be achieved.

For ¢ € (1,2), in fact, a necessary and sufficient condition that the embedding be
compact is that it be continuous (see [19, Theorem 1.3]). Hence, we have the following
existence and uniqueness result.

Theorem A. Let N > 1, s € (0,1), g € (1,2) and let @ = RY be an open set with
M(Q,8,q) > 0. Up to a multiplicative constant, there exists a unique eigenfunction
achieving the minimum in (1.5). The first eigenfunction has constant sign, and the first
etgenvalue is the unique one admitting eigenfunctions with this property.

We also prove a uniqueness result for ¢ > 2 smaller than a suitable threshold depending
on  (see Proposition 3.7).

The proof of Theorem A follows standard methods (cf. [7]). Its conclusion implies
the uniqueness of positive least energy solutions of (1.4), i.e., positive solutions of the
fractional Lane-Emden equation, under homogeneous Dirichlet boundary conditions,
that minimise the energy functional

1 ) — 2 1
2JRN JRN dedy— qfﬂqux (1.6)
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Thus, for g € (1,2), to every open set Q with A\;(£2, s, q) > 0 we can associate the positive
least energy solution wgq s 4, also called the fractional Lane-Emden density of Q (in fact,
the definition can be given for arbitrary open sets in RY, see Section 5 for details).
Remarkably, in analogy with the local case (cf. [9]), a negative power of the fractional
Lane-Emden density of 2 appears as a singular weight in a sort of Hardy inequality:

2 _ 2

J 37 dx < f f % dedy  for all ue Ci°() (1.7)
o wg 1 RN JRN |2 — Y|

We refer to Proposition 5.1 for more details about (1.7). A better known Hardy-type

inequality in the fractional setting would involve the distance to the boundary, instead:

u(@) (v)? "
J dlSt((E o9Q) T Ae2s 4 JRN JRN |x — |N+2 dx dy for all u e Cy° () (1.8)

Inequality (1.8) always holds, e.g., on bounded Lipschitz sets (see Section 5).

From inequalities (1.7) and (1.8), thanks to fractional Hopf’s lemma, we can infer the
local uniqueness in L (£2) for positive solutions of fractional Lane-Emden equation (1.4);
this means that the positive least energy solution wq ¢, of (1.4) is isolated in DS’Q(Q)
with respect to the topology of the convergence in L'(£). We refer to Lemma 7.3 for
a more precise statement. By a strategy borrowed from [6], where the result was first
proved in the local case, we draw the following consequence.

Theorem B. Let N > 1, se€ (0,1), g€ (1,2) and let @ = RN a bounded open set with
CYY boundary. Then, \1(£, s, q) is isolated, i.e., there exist no sequence of q-semilinear
s-eigenvalues converging to it.

Little more is known about higher eigenvalues, except that they form a closed set
that does not accumulate to (€2, s, q). It is indeed possible to assemble an unbounded
sequence of g-semilinear s-eigenvalues by means of standard critical point theory (see
Remark 3.3 below) but it is not known if that gives a complete description of the g-
semilinear s-spectrum, nor is it known if the latter is a discrete set.

Given m > 1, simplicity (Theorem A) and isolation (Theorem B) of the first g¢-
semilinear s-eigenvalue with ¢ = 1 + % have implications on the long-time behaviour
of solutions to the initial-boundary value problem for the the fractional porous media
equation (see [26])

o + (=A)(Jv]™tv) =0 inQx(0,7T)
v=0 in (RM\Q) x (0,T)
v =g in Q x {0}
We hope to return to this topic in the future, while in this paper we limit our attention

to the elliptic problem.

Plan of the paper. In Section 2, after framing our problem in appropriate function
spaces we introduce the fractional semilinear eigenvalue problem and the non-local Lane-
Emden density. More details on the former are provided in Section 3, and various
properties of the latter are discussed in Section 4. The preliminary results are used to
prove (1.7) in Section 5, where (1.8) is also proved. Then, Section 7 is devoted to the
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isolation of positive solutions of the non-local Lane-Emden equation; eventually, all the
partial results are used in Section 8 to prove Theorem A and Theorem B.

Acknowledgments. The authors are grateful to Lorenzo Brasco for fruitful discussions
on the problem considered in the paper, in particular on the various regularity estimates
and on related topics, leading the authors to improve the quality of this paper: he is
acknowledged especially for pointing attention to the Hardy-type inequality (1.8).

D. Licheri is supported by the grant “Non-homogeneous eigenvalue problems and
applications” (University of Cagliari, 2022).

2. FRAMEWORK AND (PSEUDO) DIFFERENTIAL EQUATIONS

Throughout this paper, we fix an integer N > 1, a real number s € (0,1) and an open
set Q < RY. The square root of

u(lz) —u 2
JRN JRN w dz dy (2.1)

is a norm on the vector space C§°(£2). The metric completion of this space is denoted,
here and henceforth, by D> (€).

Remark 2.1 (Analogies and differences with other spaces). Except for the special case
s = %, if © is bounded with Lipschitz boundary, then DS’Q(Q) coincides with the closure
HE(Q) of CF(2) in the Sobolev-Slobodeckij space H*(£2) of all u € L?(£2) such that

u(z) — u(y))?
[u]%{s(g) = Jﬂ JQ (w(z) —uly)” |; z y|N(+y2)s) dx dy < +o0

In fact, in that case', the “censored” Sobolev norm |[ul|z2(0) + [u] g=(q) is equivalent to

and the latter is equivalent to the norm in DS’Q(Q), because Lipschitz sets support
a Poincaré-type inequality. On the contrary, if € is not Lipschitz regular, then the
existence of functions u € H*(Q2) for which the integral

u(z)?
—————dzxd
JQ JRN\Q |z — y|N+2s S

diverges cannot be ruled out. If €2 is bounded and Lipschitz, then DS’2(Q) coincides with
the Hilbert space X§() = {u € H*(RY) : u = 0 a.e. in RV\Q} considered in [21].

For a general open set, it is not true that all the elements of DS’2(Q) are functions;
D52 () is not even a distribution space, in general (see, e.g., [14, 20]). A restriction that
clears off this difficulty is to consider open sets {2 supporting a Sobolev-type inequality,
on which DS’Q(Q) is a function space; namely, assuming that the infimum in (1.5) is a
positive number.

ISee [11, Appendix B].
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2.1. Semilinear fractional spectrum. We denote by 2¥ the fractional Sobolev con-
jugate exponent, defined by 2N /(N — 2s) if 2s < N and 400 otherwise.

Definition 2.2 (Semilinear fractional eigenvalues). For ¢ € (1,2%), we consider the
constrained critical points of the double integral (2.1) along the submanifold

{u e DI2(Q) L uf? d — 1} (2.2)

We call g-semilinear s-eigenvalues the corresponding constrained critical values. Their
collection is denoted by &(£2, s, ), and is said to be the g-semilinear s-spectrum of Q.

Clearly, (1.5) is the largest lower bound for &(£2, s, ¢), and it is its minimum whenever
the variational problem (1.5) has a solution. The restriction ¢ < 2¥ in Definition 2.2 is
natural because for ¢ > 2% loss of compactness occur regardless of the properties of €.
If 0 < s < N/2, in the borderline case ¢ = 2¥ the infimum in (1.5) is independent of €2,
and gives the best constant in Sobolev inequality, that reads as

() N
S(N,s) ||v||L2* J JRN |a:— |N+28 dedy  for allve Cf°(RY) (2.3)

By Lagrange’s multipliers rule, the g-semilinear s-eigenvalues are those positive real
numbers A for which
2— 2
(—A)u = Allul% %y lul~u (2.4)

o e . 2 . .
has a non-trivial solution u € Dy *(€) in the weak sense, viz.

u(y)) (p(x) — p(y) e e
JRNJRN oy dedy = Al L’“‘ updr(25)

for all € DF?(€).

2.2. Fractional Lane-Emden equation. After a renormalisation, the equation (2.4)
for Dirichlet g-semilinear s-eigenfunctions becomes the fractional Lane-Emden equa-
tion (1.4). Given an open set % < RV, we Will say a weak supersolution (resp., subso-
lution) of the latter in % any function u € D >() such that

() (p(x) — »(y) Ly
fRN JRN \:n — y|N+2s dr dy > J% lul"“updz  (resp.,, <)  (2.6)

for all non-negative ¢ € DO’ (7). A function that is both a weak supersolution and a
weak subsolution in % will be called a weak solution in % . Clearly, the weak solutions
of (1.4) are the critical points on D8’2(Q) of the free energy

1 (o(z) — o(y))? 1 ,
2 JRN J]RN W dx dy — 6 JQ lp|? dx (2.7)

Definition 2.3 (Fractional Lane-Emden densities). Let ¢ € (1,2) and assume that
A1(€,s,q) > 0. We denote by wq s, the unique solution of the variational problem

d dy ldx : 0 a.e. in 2.8
@eps e Q){ JRN JRN |:1: _ |N+23 ¢ = (2.8)
and we call it the (s, q)—Lane-Emden density of Q.
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Remark 2.4. By [19, Theorem 1.3], the assumption A1(£2,s,q) > 0 assures the com-
pactness of the embedding D8’2(Q) — L9(Q); then, any minimising sequence for (2.8) is
easily seen to be bounded in DS’Z(Q), so it converges, up to relabelling, weakly in DS’Q(Q)
and strongly in L7(€2). Also, the constraint ¢ > 0 is convex. Thus, solutions of (2.8)
exist by direct methods in calculus of variations. As for their uniqueness, minimisers
of the even functional (2.7) cannot change sign by Lemma A.1, and thence constrained
minimisers are non-negative minimisers of the free energy (2.7). Then, we conclude by
the uniqueness of non-negative weak solutions of (1.4) (see Remark 4.1 below).

3. THE FRACTIONAL SEMILINEAR SPECTRAL PROBLEM

Next proposition provides quantitative L®-bounds for g-semilinear s-eigenfunctions u
corresponding to A € &(£2, s,¢) in terms of the L(Q2)-norm of u and of the eigenvalue
A. For this standard result, in the proof we limit ourselves to check that Moser-type
iterations such as those in appendix to [9] can be repeated in this framework, too.

Proposition 3.1. Let ¢ € (1,2¥) and assume the embedding DS’Q(Q) — L9(Q) to be

compact. Let A € &(8,s,q) and let u € D872(Q) be a corresponding q-semilinear s-
etgenfunction. Then

2
[ull =) < C1(NV, 5, )N [l Lo if 25 < +oo (3.1a)
[ull 2o () < C2(N, 8, ¢, [ Aull o) if 2§ = +oo (3.1b)

Proof. With no loss of generality, we may assume that v > 0. Fix § > 1 and M > 0.
By [12, Lemma A.2] with p = 2, a = u(z), b = u(y) and? g(t) = (t A M)?, we get

M) 5 (u(y) A M)%y
ﬁ +1 J]RN JRN |z — y[N+2s dx dy
(u(x) — u(y))((u(x) A M)B — (u(y) A M)B)
< JRN JRN |z — y|N+2s drdy (3.2)

The choice ¢ = (u A M)? in (2.5) implies that the right integral in (3.2) does not exceed
MalZ L W A MY da

Case N > 2s. By the compactness of the embedding Dy 2( ) L%(Q) and by a density
2

argument Sobolev inequality (2.3) holds with v = (u A M ) . Thus, the left hand side

n (3.2) is at least
28 ooy
S(N, )6+1<f(u/\M) dm)

2From now on, we use the following notation:

>
m*‘l\"

a A b= min{a, b}

a v b := max{a, b}
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As M > 0 was arbitrary, by the material above we deduce that

2
2% 1
S(N,s)( f WY dx) E <A||u|y§;gm@ WPl dy (3.3)
[¢) Qﬁ Q

If 1 < ¢ < 2, by arguing as in the second part of the proof of [8, Proposition 2.5] we
see that (3.3) implies (3.1). If instead 2 < ¢ < 2%, then, by Hoélder’s inequality, we have

2
J Pra—1 gz < < [lull?, (J u’ qd:v>q
9 Q
whence it follows that

S(N, s) <JQ ey d:):) ° 52-;1 (JQ uEra d:):> !

which leads one to (3.1) again, thanks to the iteration scheme in first part of the proof
of [8, Proposition 2.5].

Case N =1 and % < s < 1. In this case, the conclusion is an immediate consequence
of fractional Morrey’s embedding (see [10, Corollary 2.7]).

Case N =1 and s = % The obvious fact in this borderline case is that solutions have
bounded mean oscillation. To prove they are also bounded, we first focus on exponents

€ (1,2]. By the second statement in [19, Lemma 2.3] with p =2, N = 1 and r = 2gq,

o)t (o) [ e o

holds, in particular, with ¢ = (u A M ) , for all M > 0. The constant C7 > 0 depends
only on g and s. Then, by (3.2), arguing as done in the previous case we get

2
B+1 2 - +1 -
Ca(s,q) <f T2 dx) < >\||U”iq(qg)526 u’ T dg
Q Q

Hence, we arrive at the desired conclusion by arguing as done after equation (13) in [8],
with minor changes (just replace 2* by 2q).

In order to deal with the exponents ¢ > 2, we take o € (i l) with l — o so small
that the Sobolev conjugate 2% = 2/(1 — 20) exceeds 2q and we observe that, for all
v € Dy*(9),

o J e ama ([ tor) ([ [ R )

where ('3 is an absolute constant. This follows by a homogeneity argument based on the
obvious remark that

H ya:—y|1+2o Cdrdy < H ,x_ )) dz dy

ly—z|<1 ly—z|<1

(o(z) — o(y))* f 2[ dy
" drdy < 2 x ———dx <
Jf ‘33 - y‘1+20 Q 90( ) ly—z|=1 ’l‘ - y’1+20

ly—z|>1

and

SERN

f o dx
Q
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Recalling that 2 < 2g < 2%, by interpolation we also have

; : %
<J ™ dx) "< (f o da:) ( f o% d:c) s
Q Q Q

where 6 € (0,1). Then, by Sobolev inequality (2.3) with o instead of s and by Hoélder’s
inequality, we have again (3.4), but with a constant different from Cj, depending only

on {2, s and q.
B+1

In conclusion, we can take ¢ = (u A M) 2 and argue as done for the exponents in
the range (1,2] to get the desired estimate also in the case ¢ > 2. O

The following elementary proposition contains a general property of the first semilinear
fractional eigenvalue.

Proposition 3.2. Let ¢ € (1,2¥) and assume the embedding DS’Q(Q) — L9(Q) to be
compact. Then, the infimum in (1.5) is a minimum. Moreover, any minimiser is either
a strictly positive or a strictly negative function.

Proof. The existence of a minimiser is an immediate consequence of the direct methods in
the calculus of variations. The fact that it must have constant sign follows by Lemma A.1.
Then, the last statement follows by the strong minimum principle of Proposition A.2. [

Besides the first eigenvalue (1.5), higher eigenvalues also exist. In fact, it is straightfor-
ward to check that the squared norm (1.2) in D§ () satisfies the Palais-Smale condition.
Hence, in view of [25, Theorem 5.7], &(€2, ¢, s) is an infinite set. More precisely, for all
n € N we denote by T, (12, s, q) the collection of all subsets A of

{u e DIA(Q) - L luf? da — 1} (3.5)

that are symmetric and compact in D8’2(Q) and satisfy the following property; for every
k < n, there exist no odd and continuous mapping from A to Rk\{O}. We can rephrase
last property saying that the Krasnoselskii’s genus of A is larger than or equal to n.
Then, setting

; (u(z) —u(y))*
A(Qs5.q) = inf (u@) —u()? |
N I = ST

one defines an unbounded non-decreasing sequence of g-semilinear s-eigenvalues.

Remark 3.3. In general, &(€,s,q) is closed. Indeed, if a sequence (\;)jen < &(12,s,q)
converges to a positive number A, there is a corresponding sequence of g-semilinear s-
eigenfunctions (obtained by renormalisation in L4(2)) which has constant L?(2)-norm
and converging norm in Dg’z(Q). By uniform convexity, some subsequence is converging
strongly to a limit u in L%(Q2), and this implies that u is a g-semilinear s-eigenfunction
corresponding to .

3.1. The sub-homogeneous case. We recall two properties of A\1(€2, s, q) for ¢ < 2.

Proposition 3.4. Let q € (1,2] and assume that \1(Q,s,q) > 0. If A € §(Q,s,q) and
u is a corresponding eigenfunction, then u = 0 a.e. in Q implies A = A\ (£, s,q).
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Proof. By assumption, the embedding DS’Q(Q) — L49() is continuous. Then, since

€ (1,2], by Gagliardo-Nirenberg interpolation inequality (see [19, Lemma 2.3]) it is
also compact. Thus, the assumptions of Proposition 3.2 are valid.

Let v € DS’Z(Q) be a first eigenfunction, and assume that v > 0 a.e. in . Then, let
A e 6(Q,s,q), let u be a corresponding eigenfunction, and assume that u > 0 a.e. in 2,
as well. This implies u > 0 a.e. in 2 by the strong minimum principle (Proposition A.2).
Being free to multiply by constants, we shall also assume both v and v to have unit
norm in L7().

Fix ¢ > 0 and write u. = u + e. For every x,y € RY, by [7, Proposition 4.2] with
p = 2, we have

0@ () ,
— _ < _ q _ q
(u(x) u(?J))(,ua(x)q_l e (y) T [v(z) — v(y)|"u(z) — u(y)|
Multiplying by the kernel |z — y|V*2 = |z — y|N%+sq+N(1*%)+s(27‘1) and integrating

yields

fRN JRN = y|N+22 ( v((;)lq_l — u:((y))qq 1) dx dy
JRN JRN |z — N+22>‘ t( ) |(§Sry2)$’)22; dz dy

By Hoélder’s inequality with exponents o and 2 , the right hand side is bounded by

N

>\l (Qv S, Q)%A%q

because of the equations satisfied by v and v and of their normalisation in L7(€2). Since
¢ = v?/ul~! is an admissible test function in (2.5), we have

[ ( <(a:>> - u((;,))) dedy = A | wGo) ™ S e

Therefore, for every € > 0 we end up with inequality

-1 v(x)? s g
)\Jgu(x)q (@) + o9 Tdr < A(Q,8,9)2A 2

2—gq

Since u > 0 a.e. in €, applying Fatou’s lemma and dividing A out we arrive at

1= Lv(fc)qu < (W)g

which gives A < A\1(£2, s, q). The definition of A1 (€2, s, ¢) gives the opposite inequality. [

Proposition 3.5. Let ¢ € (1,2] and assume that A\1(,s,q) > 0. Then, M\ (L, s,q) is
simple, i.e., all the corresponding eigenfunctions are mutually proportional.

Proof. Let u and v be first eigenfunctions. With no loss of generality, assume that
both u and v are non-negative functions. We may also assume both u and v to have
unit norm in L9(Q). For all ¢ € [0,1], consider the function &: © — R? defined by



10 G. FRANZINA AND D. LICHERI

&(x) = (tY%u(z),(1 —t)Y9v(x)). Let | - | denote the %norm in R2. Then, the
convexity of 7 — |7]%/9 implies
lge(@) = &W)II7e < tu(@) —u(y))* + (1 —t)(v(z) —v(y)*  forallz,yeQ (3.8a)

Also, for every t € [0,1], set o¢(z) = ||&(2)||¢a for z € Q and oy(x) = 0 for z € RV\Q.
Then

(0e(2) = 1()* = (& (@)lles — & (W)llea)®  for all 2,y € Q (3.8b)
Hence, by triangle inequality, ot € Dg’z(Q) with the estimate

Jf ‘iL'—y‘N+2$ Jf _y‘N+2$ d dy+ 1_t J:[ ’x_y’N-&-Qs d dy

The normalisation in L4(€2) of u and of v implies that the right hand side in the latter
equals A\1(€2,s,¢q). On the other hand, the left hand side is larger than or equal to
A1(€, s, q), because

L o) dar — L 16 ()4, dr = tJQ (@) dz + (1 — t)f o(2)?dz — 1

Q

thus, o; is admissible for the minimisation problem that defines \1(€2,s,q). Therefore,
for every t € [0, 1], the previous integral inequality is an equality. As a consequence, the
pointwise identity

(o¢(z) = 0¢(y))* = tu(z) — u(y))® + (1 - t)(v(z) - v(y))*

holds for all ¢ € [0, 1] and for a.e. 2,y € Q. In view of (3.8), the latter yields the equality
case in triangle inequality

€ (@) llea = N1€e()lleal < 11€e(x) = &) lea

(
which occurs if and only if there exists a(z,y) € R with {&(x) = a(z,y)&(y). Owing
to the definition of &, it follows that u(z) = a(z,y)u(y) and v(z) = a(z,y)v(y). In
conclusion, for a.e. x,y, we have

~—

u(z) _ uly

and this concludes the proof. O

3.2. The super-homogeneous case. Following the proof of [8, Proposition 4.3] about
an analogous property in the local case, we show that the first eigenvalue on €2 is simple
also in the super-homogeneous case g > 2, for all ¢ up to a suitable threshold (depending
on ). For this purpose, we first discuss the continuous dependence of A\;(f2,s,q) on ¢
with a method used in [1, Lemma 4] to derive monotonicity of semilinear eigenvalues
with respect to ¢ in the local case; here we limit our attention to the right continuity at
q = 2, which can be proved also by different methods (see [4, Lemma 2.1]).

Lemma 3.6. We have
lim A (9, s,9) = A\1(2,s,2)

q—27F
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Proof. By [19, Corollary 1.2], we have (£, s,2) > 0 if and only if
)\1((2 s,q) >0  for every q € [2,2¥) (3.9)

Hence, we can assume that (3.9) holds, otherwise the conclusion is obvious. Therefore,

() g
sup J v|?dx : f f —drdy =1, = M\(Q,s,q9)2 3.10
uecgc(sz){ | RN JRN |$ - y|N+2 ( ) (3.10)

for all ¢ € [2,2¥), which can be seen by a straightforward homogeneity argument. Since
d2
dqgf v|? dx = J lv|?(log [v])?dx =0  forall ¢ > 1
Q {v#0}

the left hand side of (3.10), as a function of ¢, is the pointwise supremum of a family of
lower semicontinuous convex functions on (1,2*). Thus, ¢ — A\;(Q, 5, ¢)~%? is continuous
n [2,2%), and thence so it is ¢ — A1(2, s,q) on [2,2¥), by composition. O

Proposition 3.7. Assume that the embedding DS’Q(Q) — L2() is compact. Then,
there exists qq € (2,2%) such that M\ (R, s, q) is simple for all q € (2,qq).

Proof. Let (gn)nen be a decreasing sequence converging to 2 and let (uy)neny and (vp )nen
be sequences in DS’Q(Q) such that, for all n € N, equation (2.5) holds with A = A1 (€, s, ¢n)
both for v = u, and for u = v,,. By Proposition 3.2, we may assume u,, and v, to be
positive functions, nor does it cause any loss of generality assuming them to have unit
L (Q)-norm. Then, by using themselves as test functions in their own equations, in
view of Lemma 3 6 we see that

. — Un y)) — Up( y))Q _
ks U oy = limy H L ey =i,

Also, because, by assumption, the infimum that defines A;(€2, s,2) is achieved, we have

u(z) — a(y))?
R

for an appropriate function u € Dg’z(Q) with unit norm in L?(£2).

By Proposition 3.5, @ is uniquely determined; hence, from the assumption that the
embedding D8’2(Q) — L%(Q) is compact, we infer that both (u,)neny and (vp)nen con-
verge to @ strongly in DS’Q(Q) and pointwise a.e. in {2, by using the last two identities
in display and the fact that, for any given v > 2, owing to Proposition 3.1 we have

2
un — 1l L) < cllun — U”Zz(g)
2
[|vn, — 73||m(§2) < cf|vn — ﬁ||z2(g)
for a constant ¢ > 0 independent of n.

As g, > 2, by Proposition 3.1 there is a constant C, depending only on the data, such
that

1
wn = (g — 1)JO [t + (1 — o)™ 2 dt < C (3.11)
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The latter appears as a weight in the equation for ¢, = |ju, — vn||221(9) (Up, — vp), viz.

(Yn(@) — ¥n(y)) ((z) — ¢ (y)) _ ) " .
JRN RN |SU _ y|N+25 du dy - )‘1(9’ in) J;) nd}n(,pd (3.12)

for all p € DS’Q(Q). After choosing ¢ = 1, in (3.12), in view of (3.11) we see that
(¢¥n)nen is bounded in DS’Q(Q). Thus, by assumption, a subsequence (not relabelled)
converges to some limit v, weakly in DS’Q(Q) and strongly in L?(f2). Then, ¢ is bound
to have unit norm in L?(£2), in particular ¢ # 0.

We claim that

w, — 1 in L% (Q) (3.13)
Thence, recalling also Lemma 3.6, by passing to the limit in (3.12) we arrive at
) (p(x) — o(y)) J
drdy = A\ (Q,s,2 d 3.14
JRN J]RN |33*y|N+23 zdy = 2a(@5,2) QMD ! (3.14)

for all ¢ € DS’Q(Q), i.e., ¥ is a non-trivial first eigenfunction. By Proposition 3.5, it
follows that either ¢ = % or 1 = —u. On the other hand, we can plug in ¢ = ¥ into
(3.12) and deduce from (3 11) for n large enough, that

— Vi (y))? j 2
dz dy < 20X, (2, 5,2 £12y
jRN fRN |5L"— |V+2s v Ch(5,2) Qw |"dz

We argue by contradiction and we assume that u, # v,, for all n € N. Hence, both
QF = {u, > v,} and Q;; = {u, < v,} must have non-zero measure, because u,, and v,
have the same L4(Q2)-norm. Then, we can estimate from below the left hand side to get

+
+ N w ( )) > /J +12
il [, [ O s 0 [ it

where C’ depends only on N and s; indeed, if QF has infinite measure, then the latter is
trivial; otherwise, we can deduce it from the definition of A1 (€2, s, 2), its scaling properties
and the fractional Faber-Krahn inequality (see [11, Theorem 3.5]). Combining the upper
and the lower bound yields inf,en |Q2F| > 0, which is inconsistent with the pointwise
convergence of 1, to its constant sign limit .

Thus, we are left with proving the claim (3.13). To do so, we consider a bounded
open set ' € Q and observe that

2

J/(wn —1)%dx = J Ul( — D[tuy + (1 — t)v, |2 dt — 1) dz

J f Mtun + (1 =)o ]2 — 1] dt da
< 2(gn — 2)2J f ([tun + (1 — t)vn]q"_2)2 dt dx
Jo
+ 2f f([tun + (1= t)wp]™ 2 = 1) dt da
7Jo

1
<20?|Q| + 2J J (Jtun + (1 — ), |92 — I)thdz
rJo
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By the pointwise convergence a.e. in Q of both w, and v, to u and by (3.11), the
latter implies that w, — 1 in L?(€’) by dominated convergence theorem. Since ) was
arbitrary, that entails (3.13), as desired. O

4. FRACTIONAL LANE-EMDEN DENSITIES

In this section we always limit our attention to exponents ¢q € (1,2) and we prove some
properties of the fractional Lane-Emden density of 2. We recall that in this paper the
function wgq g 4 is introduced in Definition 2.3, under the assumption that A;(£2, s, q) > 0,
as a non-negative weak solution of (1.4) (see also Remark 2.4).

Remark 4.1. Equation (1.4) has indeed a unique non-negative weak solution; by Propo-
sition 3.4, any such function is a non-negative g-semilinear s-eigenfunction with L?(€2)-

1
norm equal to A\1(€2, s,q)7-2, whence the uniqueness by Proposition 3.5.

Proposition 4.2. Let g € (1,2), let Q1 and Q2 be bounded open sets and, forie {1,2},
let w; be the fractional Lane-Emden density wq, sq on ;. Then

0 cQy = w < wy
Proof. Let us write w; = wq, s 4 in €; and w; = 0 in RM\Q;, for i € {1,2}. The inequality
(avb—cvd?—(a—c)’<(b—d)?—(arb—cnd)?
with a = wi(x), b = wa(x), ¢ = wy (y) and d = ws(y) entails the submodularity property

[

]R2N
2(y)) (w1 A w2 ) (w1 A wa)(y))?
Jf |N+2s d dy — ff y[N+2s dx dy

R2N R2N

By minimality of wi, we also have

§ 1
J f N}r(ﬁ)) dxdy—f wi dx
RN JRN \x—y\ 7 Jo

w1 A Wy ( ) (w1 A w2)(y))” 1 f
drdy — — 9d
fRN JRN ‘N+25 v q Jo, (wl " w2) !

Taking into account the integral 1dent1ty

1 1 1 1
f wi’d:z:—f (wlvwg)qdmzf (wlAwg)qu—f wa dz
q Ql q QQ q Ql q QQ

and summing up, then, gives

1 (w1 v w2)(x) — (w1 v wz)(y))2 1 q
- jRN JRN ‘ drdy — 5 JQQ (w1 v wg)?dx

l‘—y‘N"'_ZS
2 1
J f }VUi(Qy)) dxdy—f wi dx
RN JRN ]w—y[ # q Ja,

Hence, by the minimality property of we, we infer that we = wi v we, as desired. O
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We can extend Definition 2.3 to the case (€, s,q) = 0, as done in the local case
(see [9]).

Definition 4.3. Let g € (1,2). Then, we set
wa,s.q(T) = Tlirglo WQAB,,s5,q(T) for all z € (4.1)
and we continue to call wq s 4 the (s, ¢)-Lane-Emden density of 2.

By Proposition 4.2, the limit (4.1) always exists, so that the definition is well posed.
The following lemma assures its consistency with Definition 2.3.

Lemma 4.4. Let q € (1,2) and assume that \1(Q,s,q) > 0. For every r > 0, we set
wr () = WoAB, sq(x) if x € By and w,(x) = 0 otherwise. Then, w, converge pointwise
to wq s,q a8 T — +00.

Proof. As r — 400, the (s, q)-Lane-Emden density w, on Q n B, converges to an ap-
propriate function W < wq s 4,. By minimality, for every given ¢ € C{°(Q2) there exists
R, > 0 such that, for all » > R, we have

T 2 1
f f ) =) 4y f wd dz
RN JRN |37— |V +2s QmBT

o(y))? 1 f
drdy — — Idx (4.2
J]RN fRN ‘1' - ‘NHS Y q JonB, i (4.2)

Note that the equation for w, is (2.5) with © n B, in place of Q, u = w, and A =
erHLq QnB,)- Testing with ¢ = w, the equation for w,, we get

2
f J jvui(Qy)) dxdy = f wi dx
RN JrN ’33 —y| N+ QAB,

2 3
Q g wr(y)) d d
$,q)? (JRN JRN ]a: —y[Ne2s xray

where in the second inequality we also used that w, = 0 in Q\B,. Since ¢ < 2, we deduce
that w, converges to w weakly in D8’2(Q) and strongly in L(€2). Thus, passing to the
limit as r — oo in (4.2), we obtain

1 ([ (w(z) —w(y))? 1J _ 1 ” (p(z) — o(y))? 1J

- dedy— = | wide <= || 222 gy — = a
2 Jf ]a:—y]N“‘QS €z y q Qw € 2 |x_y|N+28 €L y q Q‘(‘D‘ €L
RQN ]RQN

for all ¢ € C§°(£2), which, by uniqueness, implies that W = wgq s 4. O

Following [15], for all w € DJ*(RN) and for all g € RN, we set

Tail(w, g, p) = p** J % dx
RN\B,(z0) |z — @0l

The only difference between next proposition and [15, Theorem 1.1] is that we consider
a non-homogeneous equation. We present the proof of [15] for sake of completeness.
Clearly, a similar estimate holds for non-homogeneous equations with data in L7, v >
N/s, but that is not relevant to our case.
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Proposition 4.5. Let % < RY be an open set, zoe %, § € (0,1], 0 < r < dist(z, 0%),
f€L®() and let w e Dy 2(]RN) be a non-negative weak subsolution of (—A)*w = f in
U, ie,w=0in% and

w(y))(e(z) — »(y))
J]RN JRN ‘x — y|N+2s dr dy < J% Jwpdzr

for all non-negative ¢ € CL(%). Then

N—2s\ 1s 2
esssupw < C'| d Tail(w, zo,r/2) + (57“28”f”Loo(%) + (7‘ > (f w? da:)
B,3(z0) 0 By (o)

where the constant depends only on N and s.

Proof. Let 1, = %(1 + 2_1‘3), Tk = (rk+1 +7%)/2, By = By, (o) and By, = Bs . (0). We
take h > 0 and we define h; = (1 —2- )h and hy, = (hi + hk+1)/2 We take a cut-off
function ¢ € Cf° (Bk), with |V (| < 28191, from By, to By. We set wy, = (w — hy)+
and Wy = (w — }ka) N and we observe that, by Minkowski’s inequality and fractional
Poincaré-Sobolev inequality, there exists an absolute constant C() > 0 with

n W (2 Wk (y)Gr(y))?
(HwkaHLz;k (Br) J[Bk WG dx) rN 23 ka ka ]m — ’N+25 dzx dy

(4.3)
By the fractional Caccioppoli inequality (see [12, Proposition 3.5]), the right hand side
in (4.3) must not exceed C1Z7 + CoZs + C3Z3, where C1, Cs, C3 are constants depending
only on NV and s and

2
= JBk ka |z — |N+2ys>) (wk(ff)2 + ﬁ’kz(y)g) dx dy

Ty = N2 sup f % dx f (2 dx
y¢Bk RN\B,/Q SC() |.’1}' - y| By,

Iz = r N | fig d
By,

In order to estimate the sum of these three terms, we set

Yy = (JBk w? dx) : (4.4)

Recalling that |V(i|? < 772452 0 < ¢, < 1 and @y, < wy, it is easily seen that
A CiI1 < 7’_72kYk (45&)
Since ﬁim;'l < \:vfﬂlilixlglo*yl < 28 for all x € RM\B, j(z0) and y € By, we also see that

2N~§25k

1
CoTy < —7— Tail(w, zg,7/2)2
A/ CaTy N el (w, x0,7/2) <JB

N+2s+1
sk

%
Wi d$>
k

(Taﬂ(w, o, 7«/2)) %Yk (4.5b)

2

rN/2 h
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where in the last inequality we also used that w(? < 2¥(4/h)w? in By n {w > hy}.
Similarly, we also have

1 1/2
N 5 2 N 1f11 oo
CsIs<r +stH1L/£(7/ <JB e daz) < 2 2 tsok \L/E /) Ys (4.5¢)
k

The elementary inequality v/a + b + ¢ < y/a + Vb + \/c for positive numbers a, b, c,
the fact that (C1Zy + CoZs + 03I3)1/2 is an upper bound for the right hand side in (4.3)
and the inequalities (4.5) imply

1/2
i NiZotly Tail(w, xo,7/2) ”fHLoo x)
Hwk{kHLQS (B S < Cyr™ 7 Y| 2 +2 <h + \/E

On the other hand, setting o = 2s/N and = 2s/(N — 2s), we have
||7I)ka;||L2;" (Bg) = C5ha2_akYkl++1B

where also the constant C5 depends just on N and s. To see that, we use that for all
points = € By, we have ()¢ (x) = wp(z) = 2-* 2 b 4+ w1 (x), whence it follows
that (0,C,)% > (h/4)2§<_22_(Qf_2)"310/,%+1 in By1, and this gives the desired lower bound.

Therefore, for appropriate constants Cs and Ay, depending only on N and s, we have
144

Y1 <

L 1
CoAbY, 7 Tail(w, z0,7/2)\ 2 [ 7 fllLe(a) \
i 1+ ——— +|—F
rz (148 pa(1+8) h h

and the latter takes the form Yz, 1 < r=% (148) p—a(1+5) 5= =2 C’7AkYk , provided that
h = ¢ Tail(w, zo,7/2) + 57’2s”f"Lw(%) (4.6a)

Then, by setting Cg = 071/ p , A = Aé/ # and Z,, = CgAFY}, we obtain the recursive
relation

Zp41 < (AT_%(HB)h_O‘(Hﬁ)(S =R Zﬂ)Zk

If we also have
1
h > 673 (C7A) ST 173 |w]| 2B, (a0)) (4.6b)

then, from the recursive relation, we infer by induction that Z; < Zj for all k € N, which
means, by construction, that ¥, < A=*Yy. In view of (4.4), it follows that

J (w—h)id:céliminff wi dr < hm A~ Qkf w? dz =0
Br/2 ($0) k—o0 By, k—o0 Br(aﬁo)

For every h > 0, the procedure can be repeated for all those h that meet the requirement
that both the lower bounds in (4.6) for h hold, leading one to the conclusion that

. s 1L N :
w < Tail(w, z,7/2) + 612 1 fll o2y + Cs0 ™ 2ar™2a [wl| 2B, (20)) a.e. in B, (o)

where Cg depends only on N and s. Since o = 2s/N, that ends the proof. O
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5. FUNCTIONAL INEQUALITIES WITH SPECIAL SINGULAR WEIGHTS

In the present section, we introduce a couple of Hardy-type inequalities. In the fol-
lowing proposition, we see that Lane-Emden inequalities (see [9, Section 3]) are valid
also in the non-local case.

Proposition 5.1. Let g € (1,2) and ue CL(2). Then

L w;q JRN JRN w dx dy (5.1)

with the agreement that the left integrand be 0 at all points where wq 54 = +0.

Proof. We first prove (5.1) in the special case of a bounded open set. We write w = wg s 4,
and we take & > 0. By Proposition 3.1, w € D§(2) n L* (). Hence, so does (w + ),
because t +— (¢t +¢)~! is a Lipschitz function on (0, c0). Then, by [5, Lemma 2.4] we can
plug ¢ = u?/(w + ¢) into the equation for w and get

Lw(x)q_lw JRN JRN ym_y,ng)( ?(x)jg Zji’)j 8) da dy

for all € > 0. In view of [7 [ , Proposition 4.2], and recalling that w > 0 a.e. in 2, by
Fatou’s lemma it follows that

u? (u(z) — u(y))?
dx < ~——— 2 dxd
JQ wra JRN J]RN |z — y|N+2s v

For the general case, we take R > 0 so large that the support of u is contained in B,
for all » = R. For all such radii r, by the material above we have

u(y))?
dx dy
JQmBT wi™ JRN J]RN ’35 - ’N+2S

where w, is the (s,q)-Lane-Emden density of Q@ n B,. In view of Definition 4.3, by
Fatou’s lemma we get the conclusion passing to the limit as r — co. O

The more familiar Hardy-type inequality of next proposition implies some restriction
on ). The assumption made below is not optimal, though; for instance, a uniform
exterior cone condition is also a valid assumption. More generally, for the statement to
hold true it would be sufficient that no boundary point belong to the measure-theoretic
interior of Q (see [13]).

Proposition 5.2. Let s € (0,1) and let @ = RN be an open bounded Lipschitz set.
Then, for all u e CF(2),

u(x)” (u(z) — u(y))?
L dist(, o) < CJRN JRN T gV (5.2)

for a constant C' > 0 depending only on 2.

Before proving Proposition 5.2, we make a brief comment on (5.2). When it comes to
fractional Hardy inequalities, there are a number of variants of the same statement. A
stronger one just involves the Sobolev-Slobodeckij seminorm [u] Hs() in the right hand

side (instead of taking integrals on the whole of RY), implying various restrictions both
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on {2 and on s: for a more detailed account on the topic, we refer to [13, 16, 17, 18, 24].
Here, incidentally, in view of Remark 2.1 we may point out the following.

Corollary 5.3. Ifs€ (0,1) and 2s # N, then, under the assumptions of Proposition 5.2,

Jy e g e < ([, J, gy asan+ [ aar)
for all u e CZ ().

Proof of Proposition 5.2. By assumption, {2 satisfies the uniform exterior cone condition,
i.e., that there exists £ > 0 and a cone K, with given aperture, such that every boundary
point ¢ is the vertex of a cone K isometric to K that satisfies K¢ n By(€) = RM\Q.

For ease of notation, we write §(z) := dist(x, dQ2). For all z € Q with §(z) = ¢, we can
pick &, € 0 with minimum distance to = and we have |x — y| < |§, — y| + d(z) < 26(x)
for all y € K¢, n By(&:), whence it follows that

J o
Ke, nBy(€a) 1T — y|N+2s

where § = # N1 (K n 0B;1(0)) and D is the diameter of Q.
The inequality |z — y| < [§; — y| + d(z) holds also for all points = €  with (x) </,
and we infer that

OON § ()28

—(N+2s
> (20(2))" | Ke, 0 Bul&a)| 2 oy pyy

J dy >J5<~’v> 0N tdp 0 fl dt _ 08(x)
Ke, nBu(&s) \x— y|N+2s ~ (p+ 6)N+2s - No(x)2s Jo (1 + tU/N)N+2s Z 9N+2s
Since for all x € Q we have K¢, n By(&;) = RV\Q, it follows that

j dy - 06(x) 2 ﬁ .1
RM\Q |x—y|N+2S ~ 9N+2s N \ DN

That gives the desired conclusion, because for all u € C§°(€2) we have

o Lo 5 - [ e e [ e
RN JrN |1;_ |N+2$ ‘l‘— ‘N+25 Q RN\O |£E—y|N+25

Remark 5.4. For the use we shall make of Proposition 5.2, we don’t need to pay much
attention to the explicit value of the constant C > 0. For sure, the proof presented
implies a very rough estimate of the optimal (unknown) constant.

Remark 5.5. By density, the inequality holds for all functions that belong to Dg’2(Q).
Given p € (1,00), a similar inequality, with suitable adjustments to the exponents, is
valid for functions in the homogeneous fractional Sobolev space Dy (£2) defined as the
completion of C§°(£2) with respect to

[u(@) =@l NP
JRNJRN Iw—y|N+SP i

and this can be seen by minor changes in the proof presented here. This variant was
considered, for example, in [5], where the authors provide a constant that works on
convex open sets, with stable asymptotic behaviour as s " 1.
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6. UNIVERSAL BOUNDS FOR LANE-EMDEN DENSITIES OF UNBOUNDED OPEN SETS
The following is the non-local counterpart of [9, Proposition 4.3].

Proposition 6.1. Let g € (1,2) and assume that A\1(Q,s,2) > 0. Then, wqsq,€ L*(Q)
and there exists a constant C, depending only on N, s and q, such that

2— _
Hwﬂys,qHLOOq(Q) < C)\l(Q7872) ! (6].)
Conversely, for all g € (1,2), if wo,sq € L*(Q), then A\1(2,5,2) = ||lwas qHLw Q)

Proof. Let us write w = wq s 4. The last statement is a consequence of Proposition 5.1.
Then, we assume that A\1(£2,s,2) > 0 and we prove the following fact: there exists a
constant Cy(N, s), that only depends on N and s, such that

]380, A1 (9, 5,2) < C1L(N, 5,0) (6.2)
holds with a suitable constant C1(N, s, ¢q), depending only on N, s and ¢, provided that
lwll7o ) = Ca(N, s) (6.3)
That fact would imply
e s.4ll7of ) M (2, 5,2) < max{CaAi(Q,5,2),C1}

whence we would infer (6.1) by a scaling argument, because for all ¢ > 0 we have

2_
”wtﬂ,s,q Laoq(gz)

A (tQ,5,2) = t72X(Q, 5,2)

2—
Looq(tQ) =% [we,s,ql

In order to prove that (6.3) implies (6.2), as desired, for appropriate choices of con-
stants, we follow the lines of the proof of [2, Theorem 9]. Since the L*-norm is lower
semicontinuous with respect to the pointwise (monotone) convergence and the first eigen-
value A1 (+, s,2) is monotone non-increasing with respect to set inclusion, in order to prove
the claim we may assume {2 to be smooth and bounded, up to an approximation argu-
ment. So, by arguing under this assumption, in view of Proposition 3.1 we will assume
w to belong to L*(2) and to achieve its maximum at an interior point, that we may
consider to be the origin in RY up to an unessential translation.

We now identify w with the function that agrees with w in €2 and equals zero every-
where else and we claim that w is a weak subsolution of the fractional Lane-Emden equa-
tion (1.4) in RY. To see this®, we fix a non-negative function n € C§° (RN ) and, for every
e > 0, we take a monotone non-decreasing Lipschitz continuous function H.: R — R,
with H.(u) = 0 for all w < 0 and H.(u) =1 for all u > e. Then

[ ] e i wente) - et drdy = [ wr o onds (64

Q

because of the weak equation for w with H.(w)n as a test function. To handle the left
hand side of (6.4), we write the identity 2(a§ —b() = (a +b)(§ — () + (a — b)(§ + ¢) with

3We owe the approximation trick used in the proof of this claim to a gentle advice by Lorenzo Brasco.
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a=n(zx), b =n(y), £ = He(w(x)) and ¢ = H(w(y)). After multiplying the result by
w(z) — w(y) and mtegratlng against the singular kernel on Q x , we see that

j j \x _ ‘N+23 [ He(w(z))n(z) — Ho(w(y))n(y)] dz dy
- fg L wa) +n(y)[He(w(@)) — He(w(y))] de dy (6.5)
* L L W@(ﬂf) —n(y)[He(w(z)) + He(w(y))] dx dy

Notice that the first integral in the right hand side of (6.5) is non-negative, due to the
monotonicity of the function H.. Thus

J]RN J;RN W[Hg(w(fv))n(x) — He(w(y))n(y)] dz dy
% L L W(n@) —n(y))[He(w(x)) + He(w(y))] dz dy (6.6)
i fg JRN\Q w%[m(w(ff))n(iﬂ) — He(w(y))n(y)] dz dy

By dominated convergence theorem, the limit as e — 0" in (6.4) and (6.6) gives

wie) —wly) w(e)(@) o e
J;) L |z — y|N+2s (n(@) = nly)) d dy+2fn J]RN\Q |33—Z/|N+2sd dygjg nd

and that proves the claim.
We let r be a positive radius, that will be chosen later, and we take a cut-off ( € C{°(£2)

from the ball B, to B, with |V({| < 2. Since w is a weak subsolution of (1.4), the

localised Caccioppoli estimate of [12, Proposition 3.5], with F' = wi™!, p = 2, 8 = 1,
0=0,L=1and Q = B,, gives

—w(y)((y))? N 2, N-2s
J Tf ! |x—y|N+25 dz dy < C3(N, s)(w(0)r" + w(0)*r ) (6.7)
where C3(N, s) > 0 depends only on N and s. Moreover, by the fact that w e L*(Q),
(z) —w(y)C(y))” 2 N—2
J T JRN\BT |a: s dx dy < Cy4(N, s)w(0)r™ = (6.8)

where Cy(N,s) > 0 depends only on N and s. Also, by Proposition 4.5 we have
f w?dx = Cs5(N, s, q)r™ (w(0) — ¢ Tail(w, 0,7/2) —57’2Sw(0))2

where the constant C5(V, s, q) depends only on N, s and ¢ and § € (0, 1] is a parameter
that we can take as small as we wish. By combining the latter with (6.7) and (6.8), for
0 smaller than an appropriate do(N, s) € (0, 1], we obtain

(€, ,2) < Cs(N, s,q) (w(0)/2 — 57“25111(0)‘1*2)_2 (w(0)7 + w(0)?r~ %) (6.9)
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where we set Cg = 2(Cs + C4)Cs ' and we used the fact that the function w( is an
admissible competitor for the infimum that defines the constant A;(€2,s,2). Then, we
take § < 279 A dp(N, s). Hence, with the choice

1 2-q
r = (ﬁw(())) 2s
we have w(0) — 672w (0)4~2 = w(0)/4, and (6.9) gives (6.2) with C; = 16(1 + 2279) Cs.
O
Under the stronger assumption that A1(£2, s, q) > 0, we have the following estimate.

Proposition 6.2. Let g € (1,2) and A\i(Q2,s,q) > 0. Then, wq 4 € L*(Q) and

lwa,s.qlle@) < CAL(, 5,4)77
where the constant C > 0 and the exponent v > 0 depends only on N, s and q.

Proof. We note that wq s, is the first g-semilinear s-eigenfunction with L9(€2)-norm

1
A1(€, s,q)a-2. Then, the estimate follows at once by Proposition 3.1. O

Remark 6.3. We notice that Proposition 6.2 can also be seen as a particular case of the
general estimate (6.1) of Proposition 6.1. Indeed, the positivity of the greatest lower
bound A1 (2, s,2) for the spectrum of the fractional (linear) s-Laplacian is, by definition,
equivalent to the continuity of the embedding D(S]’Q(Q) < L?(Q). Domains with this
property are not necessarily bounded, nor are they required to have finite measure; also,
an open set 2 may support a Sobolev-Poincaré inequality that makes A\; (€2, s, 2) strictly
positive even if A\1(£2,s,q) = 0 for all ¢ € (1,2) (examples are provided by domains
of the form w x (=M, M), with M > 0 and w bounded in RN¥~1). Conversely, given
any ¢q € (1,2), the fact that \1(£,s,q) > 0 implies that A\1(2,s,2) > 0, too; in fact,
it implies that the embedding DS’2(Q) < L2(Q) is compact, by interpolation (see [19,
Lemma 2.3]).

7. LOCAL IN L' UNIQUENESS FOR FRACTIONAL LANE-EMDEN POSITIVE SOLUTIONS
The following proposition is the non-local counterpart of [6, Proposition 4.1].

Proposition 7.1. Let g € (1,2) and assume that the weighted space
LQ(Q,wg;fq) = {u eLi.(Q): f wgfquQ dzr < +OO} (7.1)
1< Q 1<

contains DS’Z(Q) with compact embedding Then, every critical point of

(u(z) —u(y)? 1J
drd ul? dz
JRN JRN ’33—3/|N+2S v q Q‘ |

must satisfy ||u — wQ737q||L1(Q) > 4, where § > 0 depends only on s, q, 2 and N.

Proof. We will prove a contrapositive statement: if a sequence (up)nen, consisting of
weak solutions of the fractional Lane-Emden equation (1.4), converges to w := wgq s 4 in
LY(9), then

) — 2
[ R B
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Note that (7.2) is in contradiction with Proposition 5.1, because 1 < ¢ < 2.
By setting Q,, = (wq_l — ]un|q_2un) /(w—1uy,) at all points where w # u, and @, =0
elsewhere, the weak equation for the difference w — u,, takes the form

((w = un)(2) = (w = un) (W) ((x) = ¢(y)) _ R
JRN JRN ’fL’ — y|N+23 dx dy = fQ Qn( n)(,Od

for ¢ € Dy (Q); with the choice ¢ = &' (w — uy), where
ty = J Wi (w — uy)? dx
Q
it follows that

L (e o

By [6, Lemma A.1], we have the following pointwise bound
0 < Qn(z) <22 %% 2%(z) forallzeQ (7.4)

and, by construction, that prevents the right integral in (7.3) from exceeding the constant
2274, Therefore, setting 1, = (w—uy)/+/t, defines a bounded sequence in DS’Q(Q), which
clearly has unit norm in the weighted space (7.1).

By assumption, we deduce that 1,, converges weakly in Dg’z(Q) and strongly in the
weighted space (7.1) to a non-zero limit . Thus, by (7.3), we can write

(n(@) = Un()? | o _ -
JRN JRN o g2 Gy = L Qn(¥7 — ¥?) dz + L Qui?dz  (7.5)

The convergence of the sequence 1, implies

n—0o0

lim sup f Qn (V7 —*) dx <0 (7.6)
Q

because, by the pointwise bound (7.4) and by Hélder’s inequality, we have

1

Q Q

(s (s

In order to deal with the second integral in the right hand side of (7.5), we would
better handle the pointwise limit behaviour of @,. Since

1
d
W= ol = [ )12+ )]
0
for every x € 2, we have

1
Qulz) < (q-1) jo falw,)dt  where fu(a,t) = |(1 - (@) + tun ()72 (7.7)
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The Hoélder continuity of 7 — 7279 and the convexity of 7 — 7972 imply
2—q

la+ 16— )" —a? < (b — ) [(1 - )a? + 1092]

a?-1
for all t € [0,1] and for all a,b > 0. Then, at all points x where u,(z) > 0, we have

(@) — un(x)*~
w(x)?—4

sup ’fn x,t) 2_'1(30)‘ < = tyw(z)?2 + tun(x)q_z] (7.8)

te[0,1]

As u, converges to w in L'(£2), a subsequence (not relabelled) also converges pointwise
a.e. in Q. In view of (7.8), that assures the uniform convergence of f,(x, -) to the constant
w(z)?7? for all 2 out of a negligible set, so that

1
hI%oJ fo(z,t) dt = w(z)* 1 for a.e. z € Q) (7.9)
n— 0

From (7.7) and (7.9) we infer that
lim sup Qup? < (g — 1)w? 9)? a.e. in €
n—o0
From this and from (7.4), by reverse Fatou’s lemma, we deduce that
lim supf Qui?dr < (g —1) f w2 da (7.10)

Inserting (7.6) and (7.10) in the identity (7.5) and using the lower semicontinuity of the

left hand side of (7.5) with respect to the weak convergence in DS’Q(Q), we arrive at
(7.2), as desired. O
Remark 7.2. In view of Proposition 5.1, the embedding D§?(€) — LQ(Q,wg{fq) is
continuous, for example, on all open sets with finite volume. The stronger requirement
that it be compact may be met under higher regularity assumptions on 0€2.

Lemma 7.3. Let g € (1,2), let Q = RN be a bounded open set with CY' boundary and
let ve C(R2). Then

2—q
(v)? [
JQ wQ s’q (JRN JRN \55 - ’N”s dar dy HU||L2(Q) (7.11)

Proof. By Hopf’s lemma for the fractional Laplacian (see [22, Lemma 7.3]) we have a
constant C' > 0, only depending on 2, N, ¢ and s, such that*

wq,sq(x) = Cdist(x, 0Q)* (7.12)
Since ¢ € (1,2), by Hélder’s inequality with exponents Q%q and % we have
2-q a4
J dist(z, 09)*T2)v? da < v? dr) J 24z ) (7.13)
vidr < ———dx v°dx .
Q 1S, Q dist(z:,@Q)Qs Q
Then, by (7.12), Proposition 5.2 and (7.13), we improve the fractional Lane-Emden
inequality (5.1) to (7.11). O

4The more precise asymptotic boundary behaviour we, s 4 = dist(-, 2Q)® is known: for the semilinear
equation we refer to Theorem 6.4 and the following remarks in [3] (alternatively, see [23] for the linear
equation with a bounded right hand side, which is also relevant to our case thanks to Proposition 3.1).
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The conclusion of the previous lemma assures compactness for the weighted embed-
ding. Thus, we end this section with the remark that the isolation of fractional Lane-
Emden densities holds, for example, on open sets with smooth boundary.

Proposition 7.4. Let ¢ € (1,2) and let Q@ < RN be a bounded open set with C1?
boundary. Then, the conclusion of Proposition 7.1 holds.

Proof. By assumption, DS’Q(Q) — L2(Q) is compact this and Lemma 7.3 imply the
compactness of the embedding D8’2(Q) — L*(Q,wd S q) too. O

8. PROOF OF THE MAIN RESULTS

8.1. Proof of Theorem A. Because ¢ € (1,2), the assumption A\;(€2,s,q) > 0 implies
the compactness of the embedding DS’Z(Q) — L(Q) (see [19, Theorem 1.3]). Then, a
first eigenfunction exists by Proposition 3.2. Also, Proposition 3.5 entails uniqueness up
to proportionality, and the last statement is true by Proposition 3.4. 0

8.2. Proof of Theorem B. Arguing by contradiction, we assume that a sequence
(A )nen < 6(,s,q) converges to A\1(£2,s,q). For each \,, we pick an eigenfunction
U, with unit norm in L%(Q2). That defines a bounded sequence in DS’2(Q), due to
equation (2.5) with A = A\, and u = ¢ = u,. Then, by possibly passing to a subsequence,
we may assume that w, converges weakly in Dé’z(Q) and strongly in L(Q2) to a limit
function u with unit norm in L9(2). Hence, by passing to the limit as n — o0 in (2.5)
with u = u,, and A = \,, it is easily seen that w is a first g-semilinear s-eigenfunction.
Owing to Theorem A, up to changing everlywhere sign to each element of the sequence,

u > 0 and its multiple w = A(Q,s,q)72u is the fractional Lane-Emden density of

1
). Moreover, each function v, = A1(€2,s,q)a2u, is a weak solution of the fractional
Lane-Emden equation (1.4); yet, by construction, v, converges to wq s 4 in DS’2(Q), in
contradiction with Proposition 7.4. U

APPENDIX A. STRONG MINIMUM PRINCIPLE

The following lemma is an immediate consequence of inequality (|a|—|b])? < (a —b)?,
that is strict if and only if ab < 0.

Lemma A.1l. For allue Ds’z(Q), we have

(Ju(@)] - lu)])? (u(z) — u(y))?
JRN JJRN |z — y|NF2s dody < JRN J;RN W de dy (A1)

with strict inequality unless either u = 0 or u < 0 a.e. in €.

The following form of the minimum principle for weak supersolutions is well known.
We present the proof for convenience of the reader and we point out that  is not
required to be connected.

Proposition A.2. Let ue DY*(Q) satisfy

f J u(y)(e@) = ¢(y)) drdy =0 for all non-negative p € C5°(82)
RN JrN ’33 _ ’N+25

and assume that uw = 0 a.e. in Q. Then, either u =0 a.e. in Q oru > 0 a.e. in Q.
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Proof. By [7, Theorem A.1], u > 0 in each connected component where it is not iden-
tically zero. Then, we argue as in the proof of [12, Proposition 2.6] and we prove a
contrapositive statement: if u = 0 in a connected component g of 2, then, by assump-
tion, for all ¢ € C(€20)\{0} such that ¢ >0,

w@)e®) gog L (u(2) — u() ($(2) — $v))
‘[Q\QO JQo |z — y|"t2s d dy 2 fRN JRN |z — y|nt2s drdy <0

which, by Fubini’s theorem, implies u = 0 a.e. in 2\, hence a.e. in Q. O
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