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Abstract

A simple model of cleavage in brittle crystals consists of a layer of mate-
rial containingN atomic planes separating in accordance with an interplanar
potential under the action of an opening displacement δ prescribed on the
boundary of the layer. The problem addressed in this work concerns the
characterization of the constrained minima of the energy EN of the layer as
a function of δ as N becomes large. These minima determine the effective
or macroscopic law of the crystal. The main results presented in this com-
munication are: i) The computation of the Γ-limit E0 of EN as N → +∞;
ii) The characterization of the minimum values of E0 as a function of the
opening displacement; iii) A proof of the uniform convergence of the val-
ues of EN for the case of nearest-neighbor interactiond; iv) A proof of the
uniform convergence of the derivatives of EN (the tractions) in the same
case. The scaling on which the present Γ-convergence analysis is based has
the effect of separating the bulk and surface contributions to the energy. It
differs crucially from other scalings employed in the past in that it renders
both contributions of the same order.

1 Introduction

A simple model of cleavage in brittle crystals consists of a layer of material con-
taining N atomic planes separating in accordance with an interplanar potential
under the action of an opening displacement prescribed on the boundary of the
layer. Let δj represent the opening displacement of the jth interatomic plane in
the layer, δ =

∑N
j=1 δj the prescribed total or macroscopic opening displacement,

and EN (δ1, . . . , δN ) the total energy per unit
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area of the layer as computed from the interplanar potential. Then, a cen-
tral question is to characterize the constrained minima of EN as a function
of δ as N becomes large. This minimization process determines the effective
or macroscopic cohesive law of the crystal.

Nguyen and Ortiz [10] and Hayes et al. [9] have investigated this prob-
lem using formal asymptotics, renormalization group techniques and first-
principles calculations. Their work shows that the energy minimizers con-
verge to a universal form independent of the interplanar potential when a
certain scaling of the variables is introduced. The choice of scaling differs
from the conventional scaling of bulk elasticity, and is instead tailored to
the physics of cohesive behavior, which involves relations between energy
per unit area and opening displacement. A striking demonstration of uni-
versality of the macroscopic cohesive law may be found in the recent work of
Hayes et al. [9], who have computed the macroscopic cohesive law for three
disparate materials: aluminum (a metal); alumina (Al2O3, a ceramic); and
silicon (a semi-conductor) using density functional theory. When the en-
ergy and opening displacement are scaled appropriately with respect to N,
all energy-displacement curves collapse onto a single universal curve. The
work of Hayes et al. [9] also points to the importance of allowing for surface
relaxation at newly created surfaces, an effect which is not within the scope
of the nearest-neighbor analysis of Nguyen and Ortiz [10].

In the present communication we investigate the macroscopic limit N →
∞ of a layer of interatomic planes by means of Γ -convergence. We consider
a general class of interaction potentials with a range encompassing an arbi-
trary number of neighbors. The main results presented in this communica-
tion are:

i) The computation of E0 = Γ - limN→∞EN upon a suitable normalization
that scales the macroscopic opening displacements and sets the absolute
minimum of the energies at 0.

ii) The characterization of the minimum values of E0 for each scaled macro-
scopic opening displacement, which are determined to be of the form:
min{αδ2, β}, for δ ≥ 0, where α and β are constants.

iii) A proof of uniform convergence of the minima of the sequence EN , as
functions of δ, for the case of nearest-neighbor interactions.

iv) A proof of uniform convergence of the tractions for the case of nearest-
neighbor interactions.

The rescaled macroscopic cohesive law min{αδ2, β} for δ ≥ 0 is precisely
of the universal form identified by Nguyen and Ortiz [10] and Hayes et al.
[9], even for interactions involving an arbitrary number of neighbors. In
particular, the macroscopic behavior depends only on the constants α and
β. The constant α is related to the curvature, or stiffness, of the well of the
interplanar potentials, whereas the constant β is twice the relaxed surface
energy.

Useful intuition into the analysis and results of this article may be built
from the following simple example. In the nearest-neighbor case, planes in-
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Fig. 1. Example of an interplanar potential of the Lennard-Jones type, which dis-
plays only one inflexion point separating convex and concave regions. For this sim-
ple case, a straightforward analysis proofs the uniform convergence of PN (

√
Nδ)

and its derivative with respect to δ to the universal form min{αδ2, β}, for δ ≥ 0,

and its derivative, respectively. A sketch of PN (
√

Nδ) for a particular value of N
is shown in the top figure. Also shown is a graphical representation of the solution
of equation (1.1). Given a value of δ/

√
N , the values of δN

1 and δN
2 are determined

by finding the horizontal line that leaves the point(s) in the dashed curve at a

distance δ/
√

N from the δ = 0 axis.

teract through a single interplanar potential φ(δj), where δj is the separation
between the two neighboring planes. Suppose, that φ(δj) attains a minimum
value of 0 at δj = 0, and that φ(δj) consists of convex and concave parts
separated by a single inflection point, cf Figure 1. The total energy of the
system in this case is: EN (δ1, . . . , δN ) =

∑
i φ(δi). For given N and δ, the

equilibrium configuration of the system is that which minimizes the total
energy EN subject to the constraint

∑
i δi = δ. The value of the energy at

equilibrium, i. e., the effective energy of the layer, is, therefore,

PN (δ) = min
{ N∑

i=1

φ(δi) :
∑

i

δi = δ
}
.

As N → +∞, a scaling of the macroscopic opening displacement with N
must be introduced in order for the functions PN (δ) to possess meaning-
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ful asymptotic behavior. The renormalization group approach of Nguyen
and Ortiz [10] suggests that the correct scaling is to consider the sequence
PN (

√
Nδ) for a fixed δ. With this scaling, the sequence of functions PN (δ)

converge uniformly, Theorem 1. In the case of a convex/concave potential
such as shown in Figure 1, a study of local minima of the energy (cf, e. g.,
[4,11,10]) shows that two cases need only be considered: a) all opening dis-
placements δi fall in the convex region of the interatomic potential, and
hence are equal; and b) one single opening displacement falls in the con-
cave region. Configurations of the first type correspond to an intact layer,
whereas configurations of the second type correspond to a fractured layer.
Accounting for cases (a) and (b), the scaled effective energy may be recast
in the form

PN (
√
Nδ) = min

{
Nφ

( δ√
N

)
, (N − 1)φ

(
δN
1 (δ)

)
+ φ

(
δN
2 (δ)

)}
,

where δN
i (δ) satisfy the following equilibrium equations and the boundary

conditions {
φ′(δN

1 (δ)) = φ′(δN
2 (δ)), δN

1 (δ) < δN
2 (δ)

(N − 1)δN
1 (δ) + δN

2 (δ) =
√
N δ

. (1.1)

A schematic of this system is shown in Figure 1. The functions δN
i (δ) are

then defined for δ ∈ [δN ,+∞), δN
1 is increasing, δN

2 decreasing and δN →
0 when N → +∞. Therefore, the function φ̃N (δ) = (N − 1)φ(δN

1 (δ)) +
φ(δN

2 (δ)) is concave and converges to β = φ(+∞) uniformly on (w,+∞) for
all w > 0, whereas φN (δ) = Nφ(δ/

√
N) converges locally uniformly on R to

the quadratic approximation αδ2 of φ at 0. We thus conclude that PN (
√
Nδ)

converges to min{αδ2, β} uniformly on (w,+∞) for all w. In addition, its
derivative converges away from the point

√
β/α. If φ does not have a simple

convex/concave form, it is not possible to use the equilibrium equations
as above. However, similar conclusions hold for very general potentials, as
shown in Section 3. There, we use properties of the renormalization group in
order to “sandwich” PN between auxiliary upper and lower potentials. Using
the ordering and monotonicity properties of the renormalization group we
then show that the bounding potentials converge to the same universal
limit as in he convex/concave case, and to establish the behavior of the
derivatives.

In Section 4, the results for nearest-neighbor interactions are extended
to a class of minimum problems of the general form

PN (
√
Nδ) = min

{ N∑
i=1

φ(δi, δi+1, . . . , δi+K−1) :
∑

i

δi = δ, i 7→ δi N -periodic
}
,

where we allow interactions between K + 1 neighboring planes. The prop-
erties that we require of the partial potentials φ are:

i) The existence of a unique ground state, together with the existence of
second derivatives at that state.
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ii) The validity of a Cauchy-Born hypothesis close to the ground state,
namely, that for macroscopic opening displacements close to the ground
state uniform interplanar separation is energetically favorable.

iii) An impenetrability property.
iv) Growth conditions at +∞ that allow for detachments of planes.
v) The property that when two neighboring planes are completely detached

the interactions of the remaining planes are decoupled.

For instance, these assumptions are satisfied by the superposition

φ(δ1, δ2, . . . , δK) =
K∑

n=1

(
φn(δ1) + · · ·+ φn(δn)

)
of K convex/concave potentials. The asymptotic form of PN is as in the
nearest-neighbor case, but the determination of the constant β requires the
computation of the optimal energy of boundary layers that abut to pairs of
detached planes. These boundary layers do not arise for nearest-neighbor
interactions, and render the analysis of the general case comparatively much
more challenging. The proof relies on Γ -convergence techniques recently
developed for the passage from discrete to continuous variational problems.
The Γ -limit result uses separation-of-scale arguments due to Chambolle
[7] and Braides, Dal Maso and Garroni [4], and combines them with the
analysis of internal boundary layers. It bears emphasis that whereas other
scalings proposed in the past (Charlotte and Truskinovsky [8], Braides and
Cicalese [3]) separate the bulk and surface contributions to the energy, for
the scaling employed here both contributions have the same order.

2. Problem definition and assumptions

We consider K partial interatomic potentials φn : Rn → (−∞,+∞]
(1 ≤ n ≤ K) such that, for each n:

i) φn is a C2 function in its domain {x ∈ R : φn(x) < +∞}
ii) We have:

lim
inf ti→−∞

φn(t1, . . . , tn) = +∞. (2.1)

This condition may be regarded as requiring impenetrability property. In
particular we may have φn(t1, . . . , tn) = +∞ if ti ≤ 0 for some i.

iii) for all n and 0 ≤ j ≤ n there exist functions ψj
n such that

φn(t1, . . . , tn) = ψj−1
n (t1, . . . , tj−1) + ψn−j

n (tj+1, . . . , tn) + o(1) (2.2)

as tj → +∞, uniformly in t1, . . . , tj−1, tj+1, . . . , tn if all ti are equi-
bounded from below. This condition asserts that, when two planes de-
tach completely, the interactions between the remaining planes are un-
coupled. We assume that ψ0

n = 0 for definiteness and that for j ≥ 1
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ψj
n : Rj → (−∞,+∞] themselves satisfy conditions (i)–(iii). The condi-

tion that ψ0
n = 0 can be regarded as a normalization assumption that

implies that
lim

inf ti→+∞
φn(t1, . . . , tn) = 0; (2.3)

i. e., the interaction energy between n planes is 0 when they are com-
pletely detached.

iv) minφn < 0. In view of (2.3), this condition implies that the complete
detachment of all planes is not an absolute minimum for the energy.

Remark 1. (a) Since we consider energies of the form

K∑
n=1

N∑
j=1

φn(δj , δj+1, . . . , δj+n−1) (2.4)

in conditions (i)–(iii) above we are free to regroup some of the energy den-
sities without changing the double sum in (2.4). Consider, by way of exam-
ple, the case K = 2: for any s ∈ (0, 1) we may set φ̃1(t1) = sφ1(t1) and
φ̃2(t1, t2) = φ2(t1, t2) + (1− s)(φ1(t1) + φ1(t2)). Clearly the energy in (2.4)
remains unchanged if we replace all φn by φ̃n. In particular, this shows that
in (iii) we may only require that each ψj

n be bounded from below, instead
of (2.1), since we may always add to it (and, correspondingly, to φn) a term
of the form sj(φ1(t1) + . . .+ φ1(tj)).

(b) If φn(t1, . . . , tn) = φn(t1 + . . .+ tn) then conditions (ii) and (iii) may
be replaced by

lim
s→−∞

φn(s) = +∞, and lim
s→+∞

φn(s) = 0,

respectively.
(c) Conditions (i)–(iii) can be weakened somewhat without essential

modification of the main conclusions of this work. In particular, condition
(i) is necessary on a neighborhood of the ground state only; in (ii) we may
require that the growth condition be satisfied for φ1 only; whereas in (iii)
we may require that each ψ0

n be a (possibly different) constant. However,
these extensions will not be pursued here in the interest of simplicity.

We consider minimum problems of the form

PN (δ) = min
{ K∑

n=1

N∑
j=1

φn(δj , δj+1, . . . , δj+n−1) :

j 7→ δj N -periodic,
N∑

j=1

δj = δ

}
(2.5)

and analyze the behavior of PN (δ) for N large and δ close to the ground
state. In order to make the latter statement precise, we introduce certain
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comparison interplanar potentials that will also be used in the proofs of the
theorems. To this end, we notice that PN (δ) can be equivalently written as

PN (δ) = min

{
N∑

i=1

K∑
n=1

K−n+1∑
j=1

1
K − n+ 1

φn(δi+j , . . . , δi+j+n−1) :

j 7→ δj N -periodic,
N∑

j=1

δj = δ

}
(2.6)

We define the lower-bound comparison potential as:

Φ−(δ) = inf

{
K∑

n=1

K−n+1∑
j=1

1
K − n+ 1

φn(δj , . . . , δj+n−1) :
K∑

i=1

δi = Kδ

}
.

(2.7)
In this formula all interactions of K consecutive planes are minimized at
fixed total mean displacement δ and without additional constraints such as
periodicity. Note the normalization factor K−n+1 that counts the number
of n-interaction between K + 1 neighboring planes.

We now append the following assumptions:

v) Existence of a uniform ground state: There exists a unique δmin such
that

min
δ
Φ−(δ) = Φ−(δmin) =: Φmin; (2.8)

vi) Uniform Cauchy-Born hypothesis near the ground state: There exist η >
0 and C > 0 such that
K∑

n=1

K−n+1∑
j=1

1
K − n+ 1

φn(δj , . . . , δj+n−1) ≥
K∑

n=1

φn(δ, . . . , δ)+C
K∑

j=1

(δj−δ)2

(2.9)
whenever

∑K
n=1 δn = Kδ and

∑K
n=1 |δn − δ|+ |δ − δmin| ≤ η.

vii) Non-degeneracy at the ground state:

Φ′′−(δmin) =
K∑

n=1

n∑
i=1

n∑
j=1

∂2φn

∂δi∂δj
(δmin, . . . , δmin) > 0; (2.10)

viii) Non-degeneracy at +∞:

lim inf
δ→+∞

Φ−(δ) > Φmin. (2.11)

Remark 2. From the hypotheses above we have that, for |δ − δmin| ≤ η,

Φ−(δ) =
K∑

n=1

φn(δ, . . . , δ), (2.12)

corresponding to the uniform state δi = δ for all i. This equality does not
hold for δ far from the ground state, as may be verified explicitly, e. g., for
Lennard-Jones potentials.
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Remark 3. ForK = 1 (nearest-neighbor interactions) the hypotheses above
reduce to requirements on the sole energy density φ1. For K = 2 and
φ2(δ1, δ2) = φ2(δ1 + δ2) assumptions (v) and (vi) are satisfied if there exists
δmin such that

φ1(δmin) + φ2(2δmin) = minφ, (2.13)
where

φ(δ) = φ2(2δ) +
1
2

min
t
{φ1(t) + φ1(2δ − t)}, (2.14)

and the unique minimizer of the latter minimum problem for δ = δmin is
t = δmin. It may readily be checked that commonly used potentials, such as
the Lennard-Jones and Morse potentials, satisfy these assumptions.

Remark 4. From the assumptions above it follows, upon changing the value
of C, that for η small enough

K∑
n=1

K−n+1∑
j=1

1
K − n+ 1

φn(δj , . . . , δj+n−1)−Φmin ≥ C
K∑

n=1

(δn−δmin)2 (2.15)

whenever
∑K

n=1 |δn−δmin| ≤ η. To verify this inequality we use an argument
by contradiction. Note that by (vi), the formula above holds for

∑
n δn =

Kδmin; hence to contradict it, with fixed N ∈ N, we suppose that δk
n exist

with
∑

n δ
k
n = Kδk 6= Kδmin and δk → δmin, such that (C as in (vi))

K∑
n=1

K−n+1∑
j=1

1
K − n+ 1

φn(δk
j , . . . , δ

k
j+n−1)− Φmin ≤

C

N

K∑
n=1

(δk
n − δmin)2.

By using the triangular inequality and (v) we get
K∑

n=1

K−n+1∑
j=1

1
K − n+ 1

φn(δk
j , . . . , δ

k
j+n−1)− Φmin

≤ 2C
N

K∑
n=1

(δk
n − δk)2 +

2KC
N

(δk − δmin)2

≤ 2C
N

( K∑
n=1

K−n+1∑
j=1

1
K − n+ 1

φn(δk
j , . . . , δ

k
j+n−1)− Φmin

)
+

2KC
N

(δk − δmin)2,

and hence

Φ−(δk)− Φ−(δmin)

≤
K∑

n=1

K−n+1∑
j=1

1
K − n+ 1

φn(δk
j , . . . , δ

k
j+n−1)− Φmin

≤ 2KC
N − 2C

(δk − δmin)2,

which contradicts condition (vii) in view of the arbitrariness of N .
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3. Renormalization group (RG) and nearest–neighbor
interactions

In this section, we start by analyzing here the case of nearest–neighbor
interactions, K = 1, with the aid of a Renormalization Group (RG) itera-
tion. The appeal of this approach is that it establishes a stronger conver-
gence, namely, uniform convergence, of the effective energy than obtained
from Γ -converge. In addition, the RG approach establishes the convergence
of the derivatives of the energy, or tractions.

For the nearest–neighbor case hypotheses (i)–(viii) simplify to assump-
tions on the sole interplanar potential φ1. In particular, (vi) is automatically
satisfied, and the remaining assumptions reduce to:

i) φ1 is a C2 function in its domain {φ1 < +∞}.
ii) lim

t→−∞
φ1(t) = +∞.

iii) lim
t→+∞

φ1(t) = 0.

iv) There exists a unique minimizer δmin of φ1 and minφ1 < 0.
v) δmin is an interior point of {φ1 < +∞} and φ′′1(δmin) > 0.

In the interest of simplicity, in addition to these hypotheses in this section
we suppose that {x ∈ R:φ1(δ) 6= +∞} is connected. In particular, this
assumption implies that, if φ1(δ) = +∞ for some δ < δmin, then φ1(δ) =
+∞ for all δ ≤ δ. Moreover, we note that by Taylor’s theorem and the
preceding assumptions there exists C > 0 and η > 0 such that

φ1(δ) ≥ φ1(δmin) + C(δ − δmin)2, (3.1)

whenever | δ − δmin |< η.

3.1. Renormalization group transformation

The renormalization group transformation R is defined on an interpla-
nar potential through a two–step process, namely relaxation and renormal-
ization. The relaxation of an interplanar potential φ1 is given by another
interplanar potential φ1 defined as

φ1(δ) = inf
δ∈R

[φ1(δ) + φ1(δ − δ)], (3.2)

The interplanar potential Rφ1 then follows by renormalization, i. e.,

(Rφ1)(δ) = φ1(
√

2δ). (3.3)

Evidently, R is well–defined for all functions bounded from below, and, in
particular, for all interplanar potentials. For 2n + 1 atomic planes, prob-
lem (2.5) can be equivalently stated in terms of the renormalization group
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transformation as

P2n(δ) = min
{2n−1∑

j=1

Rφ1(δj):
2n−1∑
j=1

δj = δ/
√

2
}

= min
{2n−2∑

j=1

R2φ1(δj):
2n−2∑
j=1

δj = δ/
√

22
}

...
...

= min
{
Rn−1φ1(δ1) +Rn−1φ1(δ2): δ1 + δ2 = δ/

√
2n−1

}
= Rnφ1(δ/

√
2n). (3.4)

For purposes of the present analysis, it is simpler to redefine φ1 such that 0 is
its absolute minimum point and Φmin = 0, i. e., we define a function ψ1(δ) =
φ1(δ + δmin)− Φmin. Then, limδ→+∞ ψ1(δ) = −Φmin and limδ→−∞ ψ1(δ) =
+∞.

The following remark summarizes the properties of interplanar poten-
tials that are preserved under recursive application of the renormalization
group transformation.

Remark 5. (a) Let ψ : R → (−∞,+∞] be an interplanar potential such
that

1. ψ is a C0 function in its domain, which contains 0 in its interior.
2. ψ has a unique minimum at 0, ψ(0) = 0.
3. ψ satisfies

lim
δ→−∞

ψ(δ) = +∞, lim
δ→+∞

ψ(δ) = −Φmin (3.5)

and

lim
δ→0

ψ(δ)
δ2

= C. (3.6)

Then Rψ has these properties as well. It is straightforward to verify that
Rψ is a C0 function and that

lim
δ→+∞

Rψ(δ) = −Φmin, lim
δ→−∞

Rψ(δ) = +∞. (3.7)

It is also clear that Rψ(0) ≥ 0, that Rψ(δ) = 0 if and only if δ = 0, and
that δ = 0 is in the interior of the domain of Rψ. Therefore, there remains
to prove only that equation (3.6) holds for Rψ. To verify this property, note
that for ε > 0 there exists ξ > 0 such that

(C − ε)δ2 ≤ ψ(δ) ≤ (C + ε)δ2, (3.8)

whenever |δ| < 2ξ, and, therefore,

(C − ε)
[
δ
2

+ (δ − δ)2
]
≤ ψ(δ) + ψ(δ − δ) ≤ (C + ε)

[
δ
2

+ (δ − δ)2
]
, (3.9)
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whenever |δ|, |δ| < ξ. Note also that for |δ| small enough

ψ(δ) = min
|δ|≤ξ

[
ψ(δ) + ψ(δ − δ)

]
. (3.10)

Since inequality (3.9) holds when |δ| < ξ, it also holds for the corresponding
minima. Then, in conjunction with (3.10) we obtain

C − ε

2
≤ lim

δ→0

ψ(δ)
δ2

≤ C + ε

2
, (3.11)

which holds for all ε > 0, and (3.6) follows after renormalization.
(b) We note, for subsequent reference, that hypotheses (i)-(vii) imply

that for all ε > 0
inf
|δ|>ε

ψ1(δ) > 0. (3.12)

(c) Since ψ1 is C2, and (ψ1)′′(0) > 0, we have that

lim
δ→0

ψ1(δ)
δ2

= C, (3.13)

where 0 < C < +∞, whence we conclude that ψ1 satisfies hypotheses 1-3
in part (a) of this remark.

We proceed to establish a monotonicity property of R. Consider two
interplanar potentials ψ1 and ψ2, not necessarily continuous, such that
ψ1(δ) ≤ ψ2(δ) for all δ ∈ R. Then, (Rψ1)(δ) ≤ (Rψ2)(δ) for all δ ∈ R.
The property follows directly by noting, for all δ ∈ R,

ψ1(δ) + ψ1(δ − δ) ≤ ψ2(δ) + ψ2(δ − δ). (3.14)

Therefore, ψ1(δ) ≤ ψ2(δ) and (Rψ1)(δ) ≤ (Rψ2)(δ), for any δ ∈ R.

Next, we prove a property of the derivative of Rψ to be used subse-
quently to prove the convergence of tractions.

Proposition 1. Let w = inf{x ∈ R:ψ(x) < +∞}. If ψ ∈ W 1,∞(w,+∞)
then Rψ ∈W 1,∞(

√
2w,+∞). Furthermore, there exists a function y : R →

R such that

ψ(y(x)) + ψ(x− y(x)) = ψ(x) = inf
δ∈R

[ψ(δ) + ψ(x− δ)] , (3.15)

for which the following identity holds

(Rψ)′(x) =
√

2 ψ′(y(
√

2x)), (3.16)

for almost every x ∈ (
√

2w,+∞).
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Proof. We begin by noting that, since limδ→−∞ ψ = +∞, the y(x) sat-
isfying equation (3.15) exists for all x ∈ R. Without loss of generality, we
assume y(x) ≤ x−y(x) for all x, or y(x) ≤ x/2. If x ∈ (

√
2w,+∞) we addi-

tionally have ψ(
√

2x) ≤ 2ψ(x/
√

2) < +∞, and, consequently, w ≤ y(
√

2x)
and w <

√
2x− y(

√
2x).

Next we prove that Rψ is absolutely continuous in every bounded inter-
val [a, b] ∈ (

√
2(w+ ε),+∞), for all ε > 0. To this end, consider a collection

of non-overlapping intervals {[ai, bi]} of [a, b]. Then, for any [ai, bi] such that
0 < bi − ai < ε/

√
2 there are two cases. One possibility is

0 ≤ Rψ(bi)−Rψ(ai) ≤ ψ(
√

2bi − y(
√

2ai))− ψ(
√

2ai − y(
√

2ai))

≤ ‖ψ′‖L∞(w,+∞)

√
2 (bi − ai), (3.17)

since
√

2bi − y(
√

2ai) =
√

2(bi − ai) + (
√

2ai − y(
√

2ai)) > w. Here we have
used the fact that ψ ∈ W 1,∞(w,+∞) is Lipschitz with Lipschitz constant
‖ψ′‖L∞(w,+∞). The second case is

0 > Rψ(bi)−Rψ(ai) ≥ ψ(
√

2bi − y(
√

2bi))− ψ(
√

2ai − y(
√

2bi))

≥ −‖ψ′‖L∞(w,+∞)

√
2 (bi − ai). (3.18)

In arriving at this inequality we have used the bound
√

2ai − y(
√

2bi) > w.
To proof this bound, assume otherwise. Then,

√
2ai − w ≤ y(

√
2bi) ≤

bi√
2

=⇒
√

2ai −
bi√
2
≤ w. (3.19)

But

√
2ai −

bi√
2
≥
√

2ai −
ai√
2

+
(
ai√
2
− bi√

2

)
≥ w + ε− ε

2
≥ w +

ε

2
, (3.20)

which contradicts (3.19). Then, from (3.17) and (3.18) we have∑
i

|Rψ(bi)−Rψ(ai)| ≤ ‖ψ′‖L∞(w,+∞)

√
2

∑
i

(bi − ai), (3.21)

for
∑

i(bi−ai) small enough. This proves that Rψ is absolutely continuous in
every interval (

√
2(w+ε),+∞) for all ε > 0, whence we conclude that (Rψ)′

exists almost everywhere in (w,+∞) and is the distributional derivative of
Rψ. Finally, equation (3.16), which we prove next, allows us to conclude
that Rψ ∈W 1,∞(

√
2w,+∞). Begin by noting that

1
h

[Rψ(x+ h)−Rψ(x)]

≤ 1
h

[
ψ(
√

2x− y(
√

2x)) + ψ(y(
√

2x) +
√

2h)−Rψ(x)
]

≤ 1
h

[
ψ

(
y(
√

2x) +
√

2h)
)
− ψ

(
y(
√

2x)
)]
,
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for all h > 0 small enough, from where we conclude that

(Rψ)′(x) ≤
√

2 ψ′
(
y(
√

2x),
)

(3.22)

for almost every x >
√

2w. Similarly, from

1
h

[Rψ(x)−Rψ(x− h)]

≥ 1
h

[
Rψ(x)− ψ(

√
2x− y(

√
2x))− ψ(y(

√
2x)−

√
2h)

]
,

for all h > 0 small enough we obtain

(Rψ)′(x) ≥
√

2 ψ′
(
y(
√

2x)
)
, (3.23)

for almost every x >
√

2w, and equation (3.16) follows.

3.2. Coarse-graining of interplanar potentials

Successive coarse-grainings of the interplanar potentials may be achieved
by recursive application of R. More precisely, the transformation Rn, n ∈
N0, is defined inductively as Rn = R◦Rn−1 for n ≥ 1, with R0 being just the
identity. The n-th coarse-grained interplanar potential corresponding to an
initial interplanar potential ψ is defined as ψn = Rnψ. It is clear that Rnψ
is well–defined. Specifically, we endeavor to characterize the limit of Rnψ
as n→ +∞, which defines the effective or macroscopic cohesive potential.

Theorem 1. Let ψ be an interplanar potential, such that the hypotheses of
Remark 5 are satisfied. Then Rnψ = ψn → ψ∞ uniformly in (z,+∞), for
all z ∈ R. Here,

ψ∞(δ) =
{
Cδ2 if δ < 0
min{Cδ2,−Φmin} if δ ≥ 0. (3.24)

In terms of the minimum problem (2.5), we have

lim
n→+∞

P2n(
√

2nδ + 2nδmin)− 2nΦmin = ψ∞(δ) (3.25)

uniformly in (z,+∞).

Remark 6. For the sake of simplicity, in the proof we consider only inter-
planar potentials ψ with convex growth to −∞. Thus, we suppose that there
exists a convex function ψconvex and δ0 < 0 such that ψconvex(δ) ≤ ψ(δ) for
all δ < δ0. It follows from the monotonicity of R that Rnψ has the same
property. In general, the theorem is valid for potentials that satisfy hypoth-
esis (ii), e. g., potentials with logarithmic growth to −∞.

Convergence of tractions. The uniform convergence of the interpla-
nar potentials stated in Theorem 1 also implies the strong convergence in
L∞ of the renormalized traction, defined as the distributional derivative of
the interplanar potential.



14 Andrea Braides, Adrian J. Lew, Michael Ortiz

Theorem 2. Let tn(δ) and t∞(δ) denote the distributional derivatives of
Rnψ(δ) and ψ∞(δ) respectively. Then

tn → t∞ in L∞((z, xc − ε) ∪ (xc + ε,+∞)), (3.26)

where xc =
√
−Φmin

C for any z ∈ R and any ε > 0. Additionally, tn
∗
⇀ t∞

in L∞(z,+∞), for any z ∈ R.

Remark 7. (a) The failure to obtain uniform convergence close to xc is not
surprising, since the limit t∞ is discontinuous at that point.

(b) With reference to the minimum problem (2.5), let T2n be the distri-
butional derivative of P2n with respect to its argument, i. e.,

T2n(∆) = P ′2n(∆). (3.27)

Then, from Theorem 2 we have that
√

2n T2n(
√

2nδ + 2nδmin) → t∞(δ), (3.28)

in L∞((z, xc − ε) ∪ (xc + ε,+∞)) for any z ∈ R and any ε > 0. Note that
the convergence is attained for a precisely scaled value of δ.

Remark 8. In [10] potentials of the type

φ0(δ) =
{
ϕ(δ) if δ ≥ 0
+∞ otherwise,

(3.29)

where ϕ(δ) has a unique minimum at ϕ(0) = 0, limδ→+∞ ϕ(δ) = −Φmin > 0,
and it is C2 in [0,+∞). All results and proofs proceed mutatis mutandis
in the general case. In this case we have that Rnφ0(δ) → min{Cδ2,−Φmin}
uniformly in [0,+∞), and Rnφ0(δ) = +∞ for δ < 0. An analogous result
for the tractions holds as well.

Proof (Theorem 1).
1. Action of R on special potentials. Let Θ : R → (−∞,+∞] be

an interplanar potential of the form

Θ(δ) =
{
ϕ(δ) if δ < δc

H if δ ≥ δc,
(3.30)

where ϕ : R 7→ (−∞,+∞] is a convex function, continuous for all δ ≥ 0,
with a unique minimum at δ = 0, ϕ(0) = 0, 0 < H < +∞. Here δc > 0
denotes the only nonnegative solution of ϕ(δc) = H.Then,

RnΘ(δ) =
{

2nϕ(δ/
√

2n) if δ < δc
n

H if δ ≥ δc
n,

(3.31)

where δc
n > 0 denotes the single nonnegative solution of 2nϕ(δc

n/
√

2n) = H.
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To prove the previous statement, we compute first RΘ. We begin by
noting that since ϕ is convex we have

2ϕ(δ/2) = min
δ∈R

[
ϕ(δ − δ) + ϕ(δ)

]
. (3.32)

Then,

RΘ(δ/
√

2) = min{ inf
δ
2≤δ<δc

[
ϕ(δ) + ϕ(δ − δ)

]
, inf
δ≥δc

[
H +Θ(δ − δ)

]
}

=
{

min{2ϕ(δ/2),H + infδ≥δc ϕ(δ − δ)} if δ < 2δc

H if δ ≥ 2δc.
(3.33)

Next, assume that δ ≤ 0. Then, if δ ≥ δc we have δ − δ ≤ δ − δc ≤ 0, and
consequently ϕ(δ − δ) ≥ ϕ(δ − δc), since ϕ(δ) is decreasing when δ < 0.
From here we conclude that H + ϕ(δ − δ) ≥ ϕ(δc) + ϕ(δ − δc) ≥ 2ϕ(δ/2),
and therefore RΘ(δ/

√
2) = 2ϕ(δ/2) for δ ≤ 0. If 0 < δ <

√
2δc

1, then
2ϕ(δ/2) < H, and RΘ(δ/

√
2) = 2ϕ(δ/2). Finally, in the case

√
2δc

1 ≤ δ note
that the convexity of ϕ implies that

2ϕ(δc/2) ≤ ϕ(δc) + ϕ(0) = H = 2ϕ(δc
1/
√

2) (3.34)

and, since ϕ(δ) is increasing for δ > 0, we obtain that δc ≤
√

2δc
1 ≤ δ. In

this case, by choosing δ = δ in (3.33) we it follows that RΘ(δ/
√

2) = H.
Summarizing,

RΘ(δ) =
{

2ϕ(δ/
√

2) if δ < δc
1

H if δ ≥ δc
1.

(3.35)

Formula (3.31) follows by recursively applying the last result. Consider next
the interplanar potential

θ1(δ;H,h, ζ) =


+∞ if δ < 0
0 if δ = 0
H if 0 < δ ≤ ζ
h if ζ < δ,

(3.36)

where 0 < h ≤ H, and ζ ≥ 0. By direct computation, it is straightforward
to verify that

Rθ1(δ;H,h, ζ) = θ1(δ;H,h, ζ/
√

2), (3.37)

and, by recursion,

Rnθ1(δ;H,h, ζ) = θ1(δ;H,h, ζ/
√

2n). (3.38)

2. Equivalent upper and lower potentials. Given the interplanar
potential ψ, we have that for all ε > 0 and every w ∈ R there exist Nε ∈ N
and interplanar potentials ψ−ε and ψ+

ε such that

ψ−ε ≤ ψ ≤ ψ+
ε ∀δ ∈ R, (3.39)
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In addition, there exists a constant M such that

0 ≤ ψ∞ −Rnψ−ε < εM (3.40)

and
0 ≤ Rnψ+

ε − ψ∞ < εM, (3.41)

for all n > Nε, for all δ ∈ (w,+∞). The proof of this statement is given
next.

3. Existence of upper potential ψ+
ε . Choose ζ > 0 such that

(C + ε)δ2 ≥ ψ(δ) if | δ |< ζ, (3.42)

and λ > 0 such that

ψ(δ) < −Φmin + ε ∀δ > λ. (3.43)

Let Ψmax = maxδ>δmin ψ(δ); clearly Ψmax < +∞. Set

θ2(δ) =

+∞ if δ ≤ −ζ
Ψ(δ) if − ζ < δ < ζ
Ψmax if δ ≥ ζ,

(3.44)

where Ψ(δ) is a convex function that satisfies Ψ(δ) = (C + ε)δ2 whenever
δ < ζ/2, and Ψ(ζ) = Ψmax. From the previous computation, for n large
enough we have that

Rnθ2(δ) =


+∞ if δ ≤ −ζ

√
2n

(C + ε)δ2 if − ζ
√

2n < δ <
√

H
C+ε

Ψmax if δ ≥
√

H
C+ε .

(3.45)

Define
ψ+

ε = min
{
θ1(δ;Ψmax,−Φmin + ε, λ), θ2(δ)

}
. (3.46)

Clearly ψ ≤ ψ+
ε . By the monotonicity of R we get

Rnψ+
ε (δ) < min

{
Rnθ1(δ;Ψmax,−Φmin + ε, λ), Rnθ2(δ)

}
, (3.47)

which for n large enough reduces to

Rnψ+
ε (δ) <


+∞ if δ ≤ −ζ

√
2n

(C + ε)δ2 if − ζ
√

2n < δ <
√

H
C+ε

−Φmin + ε if δ ≥
√

H
C+ε ,

(3.48)

whence (3.41) follows immediately.
4. Existence of lower potential ψ−ε . Choose ζ > 0 such that

(C − ε)δ2 ≤ ψ(δ) if | δ |< ζ, (3.49)
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and λ > 0 such that

ψ(δ) > −Φmin − ε if δ > λ. (3.50)

Next, consider the interplanar potential

ψ−ε (δ) =
{
Ψ(δ) if δ < λ
−Φmin − ε if δ ≥ λ,

(3.51)

where Ψ(δ) is a convex function such that Ψ(δ) = (C − ε)δ2 if |δ| < ζ,
Ψ(λ) = −Φmin − ε, and Ψ(δ) < ψ(δ) for all δ ∈ R. That such a function
exists follows from Remark 5, part (b), by choosing ζ small enough and λ
large enough. Note that ψ−ε < ψ. From the previous computation, for n
large enough we have

Rnψ−ε (δ) =


2nΨ(δ/

√
2n) if δ ≤ −ζ

√
2n

(C − ε)δ2 if − ζ
√

2n < δ <
√

H
C−ε

−Φmin − ε if δ ≥
√

H
C−ε ,

(3.52)

whence (3.40) follows immediately. A schematic representation of the upper
and lower potentials is shown in Figure 2.

5. Convergence. Let ε > 0 and z ∈ R. Because of (3.39) and the
monotonicity of R, we have

Rnψ−ε ≤ Rnψ ≤ Rnψ+
ε , (3.53)

for all n ∈ N and for all δ ∈ (z,+∞). In particular, if n > Nε

−εM < Rnψ−ε − ψ∞ ≤ Rnψ − ψ∞ ≤ Rnψ+
ε − ψ∞ < εM, (3.54)

whence it follows that

lim
n→+∞

|Rnψ − ψ∞| < εM ∀δ > z. (3.55)

Since this holds for any ε > 0, the uniform convergence in (z,+∞) follows.
To prove (3.25) it suffices to note that

Rnφ1(δ +
√

2nδmin) = Rnψ(δ) + 2nΦmin, (3.56)

which together with (3.4) gives the desired result.

Proof (Theorem 2).
1. Asymptotic structure of minimizers. Let ψn = Rnψ, and define

the function yn(x) such that |yn(x)| ≤ |x− yn(x)| and

ψ
n
(x) = inf

δ∈R
[ψn(δ) + ψn(x− δ)] = ψn(yn(x)) + ψn(x− yn(x)), (3.57)

which is well-defined since limδ→−∞ ψn(δ) → +∞, and ψn is continuous (it
may, however, not be uniquely defined). We seek to characterize the values
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ψ
θ2

θ1

Θ
-Φmin

δ

Fig. 2. Schematic representation of the construction of upper and lower poten-
tials. A typical interplanar potential is shown in a solid line. Note the asymptotic
behavior as δ → +∞ and the possibility of having multiple inflexion points, local
minima and maxima. Possible choices of upper and lower potentials are shown in
dashed lines.

of yn(x). Let x0 < z < 0 be such that ψ∞(x) > −Φmin for all x < z,
which implies that ψ∞(z) > ψ∞(x) for x ∈ (z,+∞). For all ε > 0 there
exists nε ∈ N such that, for all n > nε, |ψn(x)− ψ∞(x)| < ε whenever x ∈
(x0,+∞) and ψn(x) > ψ∞(x0) − ε whenever x ∈ (−∞, x0). The existence
of nε such that the last condition is satisfied is guaranteed by the shape of
the lower potential (3.51). Additionally, we take ε small enough such that
ψ∞(z) + ε ≤ ψ∞(x0)− ε.

We proceed to show that yn(x) > x0 and x − yn(x) > x0 for all x > z
and n > nε. Assume otherwise. Then, for some n > nε,

ψ
n
(x) > ψ∞(x0)− ε, (3.58)

But, by definition,

ψ
n
(x) ≤ ψn(x) ≤ ψ∞(x) + ε ≤ ψ∞(z) + ε ≤ ψ∞(x0)− ε, (3.59)

which contradicts the assumption. Next, consider the function φ(y, x) =
ψ∞(y) + ψ∞(x − y), whose minimum for every x is attained at y∞(x),
where

y∞(x) =
{

x
2 if x ≤

√
2 xc

0 if x ≥
√

2 xc

(3.60)
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is bi–valued at
√

2 xc =
√
−2Φmin

C . We have that for x > z and n > nε

φ(yn(x), x)− 2ε ≤ ψn(yn(x)) + ψn(x− yn(x))
≤ ψn(y∞(x)) + ψn(x− y∞(x))
≤ φ(y∞(x), x) + 2ε,

or, equivalently,

0 ≤ φ(yn(x), x)− φ(y∞(x), x) ≤ 4ε. (3.61)

Let A = {(y∞(x), x) : x ∈ R}. Then, it is straightforward to verify that
there exists c1, c2 > 0 such that

c1 dA (y, x)2 ∧ c2 ≤ φ(y, x)− φ(y∞(x), x), (3.62)

whenever |y| ≤ |x − y|, where dA is the Euclidean distance from a point
in R2 to the set A. It follows from (3.61) and (3.62) that yn(x) → y∞(x)
uniformly in any set of the form (z,

√
2 xc − ε) ∪ (

√
2 xc + ε,+∞), for any

ε > 0, and by the arbitrariness of z, pointwise for all x ∈ R \ {
√

2 xc}.
2. Uniform convergence of tractions. We begin by considering the

behavior of (Rnψ)′(x) in a neighborhood of x = 0. With reference to Re-
mark 5, part b, and hypotheses (i) and (vii), we can construct a continuous
function Θ(x) as in equation (3.30), such that Θ(x) = ψ(x) in an open
neighborhood of x = 0 in which ψ′′(x) > 0, and Θ(x) ≤ ψ(x) for all x.
Then, for η > 0 small enough, equation (3.31) gives

Rnψ(x) ≤ 2nψ

(
x√
2n

)
= 2nΘ

(
x√
2n

)
= RnΘ(x) ≤ Rnψ(x), (3.63)

or

Rnψ(x) = 2nψ

(
x√
2n

)
, (3.64)

for all x ∈ (−η, η) and all n ∈ N. Also, by Taylor’s theorem we have that

ψ′(x) = (C + ξ(x))x, (3.65)

for all x ∈ (−η, η), with limx→0 ξ(x) → 0. Therefore,

(Rnψ)′(x) =
√

2nψ′
(

x√
2n

)
= (C + ξ(x/

√
2n))x (3.66)

whence it follows that

lim
n→+∞

(Rnψ)′(x) = Cx, (3.67)

uniformly in (−η, η).
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In the more general case of x ∈ (z,+∞), we know from Proposition 1
that for n,m ∈ N, m ≤ n, and for almost all x ∈ R

(Rnψ)′(x) =
√

2(Rn−1ψ)′(yn−1(
√

2 x)) (3.68)

=
√

22(Rn−2ψ)′(yn−2(
√

2 yn−1(
√

2 x)))
...

=
√

2m(Rn−mψ)′(βn
m(x)),

where βn
0 (x) = x and βn

i (x) = yn−i(
√

2 βn
i−1(x)), for all i ≤ n.

Next, we analyze the asymptotic behavior of the sequence βn
m(x) as

n → +∞. Given ε > 0, and ζ > 0 sufficiently small, there exists nζ such
that

ζ >
∣∣∣yn−m(

√
2βn

m−1(x))− y∞(
√

2βn
m−1(x))

∣∣∣ =
∣∣∣∣βn

m(x)−
βn

m−1(x)√
2

∣∣∣∣ ,
(3.69)

for all x ∈ (z, xc − ε), whenever 0 < m < n − nζ . Equation (3.69) is a
consequence of the uniform convergence of {yn(x)}. It follows by induction
onm after noticing that ζ can be chosen small enough such that if βn

m−1(x) ∈
(z, xc− ε) then βn

m(x) ∈ (z, xc− ε), whenever 0 < m < n−nζ . By recursive
application of (3.69) and the triangular inequality it is straightforward to
verify that ∣∣∣∣βn

m(x)− x√
2m

∣∣∣∣ < ζ∗, (3.70)

for all m such that 0 ≤ m < n − nζ and all x ∈ (z, xc − ε), where
ζ∗ = ζ

√
2/(

√
2 − 1). Similarly, if x > xc + ε, it follows from the uniform

convergence of {yn} that
|βn

1 (x)| < ζ, (3.71)

and by using (3.70)

|βn
m(x)| < (1 + 1/

√
2m−1)ζ∗, (3.72)

for all m such that 1 ≤ m < n− nζ . With η as in equation (3.67), choose ζ
such that 2ζ∗ < η, and m ≥ 1 such that x/

√
2m ∈ (−η + ζ∗, η − ζ∗) for all

x ∈ (z, xc − ε). Then for n large enough we have∣∣(Rn−mψ)′(βn
m(x))− Cβn

m(x)
∣∣ < Cζ∗, (3.73)

for all x ∈ (z, xc − ε) ∪ (xc + ε,+∞), where we have used equations (3.70)
and (3.72) and replaced n for n−m and x for βn

m(x) in equation (3.67). In
particular, for x ∈ (z, xc − ε), it follows from equation (3.70) that∣∣∣∣(Rn−mψ)′(βn

m(x))− C
x√
2m

∣∣∣∣ < 2Cζ∗, (3.74)

or, equivalently by using equation (3.68)

|(Rnψ)′(x)− Cx| <
√

2m+2Cζ∗. (3.75)
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Similarly, if x > xc + ε we have from equations (3.68), (3.72) and (3.73)
that

|(Rnψ)′(x)| < 3
√

2mCζ∗. (3.76)

Therefore, it follows that the tractions converge uniformly in any set (z, xc−
ε) ∪ (xc + ε,+∞), for all z ∈ R, and for any ε > 0. Finally, if x ∈ (xc −
2ε, xc + 2ε) we have from equation (3.62) that, for n large enough, either
|βn

1 (x) − xc/
√

2| < ζ or |βn
1 (x)| < ζ. In either case, by using equations

(3.70) and (3.68) we conclude that the tractions are uniformly bounded in
(z,+∞), for any z ∈ R, whence the weak∗ convergence of the tractions in
the same interval follows.

4. Γ -limit of the energy functional

Under assumptions (i)-(viii) of Section 2, in this section we prove the
following:

Theorem 3. There exist constants α and β such that for δ ≥ 0

PN (Nδmin +
√
N δ) = NΦmin + min{αδ2, β}+ o(1). (4.1)

The constants Φmin and α are simply given by

Φmin =
K∑

n=1

φn(δmin, . . . , δmin), α =
1
2

K∑
n=1

n∑
i=1

n∑
j=1

∂2φn

∂δi∂δj
(δmin, . . . , δmin),

(4.2)
while β = 2B −KΦmin, where B is the (free) boundary-layer energy

B = inf
R∈N

min
{∑

j≥0

( K∑
n=1

K−n∑
j=0

1
K − n+ 1

φn(δi+j , . . . , δi+j+n−1)− Φmin

)

+
K−1∑
n=1

n−1∑
j=0

K − n− j

K − n+ 1
φn(δj , . . . , δj+n−1)

+
K∑

n=1

n−1∑
i=1

ψi
n(δ0, . . . , δi−1) : δj = δmin for j ≥ R

}
. (4.3)

If K = 1 (nearest-neighbor interactions) and φ1 = φ, then Φmin = φ(δmin),
α = 1

2φ
′′(δmin), and B = 0 so that β = −Φmin.

The behavior of minimum problems may be turned into the computation
of a Γ -limit on a metric (more precisely, metrizable) space. To this end, we
may identify each discrete function j 7→ δj with a function on the continuum.
One way to do this is simply by identifying it with the piecewise-constant
function

δ(t) =
√
N (δi − δmin) if

i− 1
N

< t ≤ i

N
.
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In this way the domain of our energies may be interpreted as a subset
of L1(0, 1) (more precisely, as a subset of L1

loc(R) with a periodicity con-
straint). However, our energies are be coercive on these sets: minimizers
are not compact in L1(0, 1). Therefore, we have to further view L1(0, 1) as
a subset of the set of measures on M([0, 1]), where we eventually obtain
compactness and hence convergence of the minimum problem. Moreover, in
this framework that sequences δN with an energy of the same order as that
of minimizers may converge to measures µ whose singular part is composed
of a finite number of Dirac deltas.

In order to have a more direct connection with known results, we ad-
ditionally use an equivalent identification. Instead of identifying each {δj}
with a piecewise-constant function we interpret our energies as defined on
the space of piecewise-H1 functions, i. e., functions u which are H1 outside
a finite number of points of discontinuity. This discontinuity set is denoted
by S(u). The results thus obtained may readily be recast in the frame-
work of M([0, 1]) by interpreting µ as the derivative of u, and hence each
discontinuity of u as a Dirac mass of µ.

The identification is obtained by making the following changes in nota-
tion. We set εN = 1

N and, for given {δj} we define the function u : εNZ → R
given by

u0 = u(0) = 0, uj = u(jεN ) = u((j − 1)εN ) +
√
εN (δj − δmin). (4.4)

Every such u is understood to represent a piecewise affine function with R
as domain given by

u(t) =
(
1− t

εN
+ j

)
uj +

( t

εN
− j

)
uj+1 if jεN ≤ t ≤ (j+1)εN , (4.5)

so that the convergence of the discrete functions can be interpreted in terms
of that of the corresponding interpolations.

We introduce the space AN (δ) as the set of functions u : εNZ → R such
that u((i+N)εN ) = δ + u(iεN ) (1-periodicity of u(t)− δt). We then have

PN (Nδmin +
√
N δ)−NΦmin

= PN (Nδmin +
√
N δ)−N

K∑
n=1

φn(δmin, . . . , δmin)

= min
{ K∑

n=1

N∑
j=1

(
φn(δj , δj+1, . . . , δj+n−1)− φn(δmin, . . . , δmin)

)
:

j 7→ δj is N -periodic and
N∑

j=1

δj = Nδmin +
√
N δ

}

= min
{ K∑

n=1

N∑
j=1

(
φn

(√
εN

(uj+1 − uj

εN

)
+ δmin, . . .
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. . . ,
√
εN

(uj+n − uj+n−1

εN

)
+ δmin

)
−φn(δmin, . . . , δmin)

)
: u ∈ AN (δ)

}
.

Theorem 3 in turn follows as a consequence of the following Γ -convergence
result for the functionals defined on AN (δ) by

EN (u) =
K∑

n=1

N∑
j=1

εNφ
N
n

(uj+1 − uj

εN
, . . . ,

uj+n − uj+n−1

εN

)
, (4.6)

where

φN
n (z1, . . . , zn) =

1
εN

(
φn

(√
εNz1 + δmin, . . . ,

√
εNzn + δmin

)
−φn(δmin, . . . , δmin)

)
. (4.7)

Theorem 4. Let α and β be the constants defined above. Then the func-
tionals EN Γ -converge with respect to the L1-convergence to the functional
E0 defined on piecewise-H1 functions such that u− δx is 1-periodic by

E0(u) =

α

∫ 1

0

|u′|2 dt+ β#(S(u) ∩ (0, 1]) if u+ > u− on S(u)

+∞ otherwise

(4.8)

Moreover, if δ > 0 the minimum values above converge to the minimum
value

minE0 = min{αδ2, β}. (4.9)

Remark 9. Γ -limits of functionals of the form (4.6) and their multidimen-
sional analogs when φN

n depend on z1+· · ·+zn have been extensively studied
in recent times (see e. g. [7,4–6,1]). The choice of notation in terms of dif-
ference quotients is made in order to facilitate usage of–and comparison
with–those results.

In the proof of this theorem we make repeated use of the following results
on the energies

GN (u) =
N−1∑
j=1

ΨN

(uj+1 − uj

εN

)
, (4.10)

where

ΨN (z) =
{

(εNc1z
2) ∧ c2 if z ≥ 0

(εNc1z
2) ∧ c3 if z < 0,

(4.11)

with ci > 0 (see e.g. [2] Section 8.3):
1) GN Γ -converge to

c1

∫ 1

0

|u′|2 dt+ c2#{t ∈ (S(u)) : u+ > u−}+ c3#{t ∈ (S(u)) : u+ < u−}.

(4.12)
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2) The functionals GN are equicoercive on bounded sets of L1(0, 1).
Moreover, if (uN ) is a bounded sequence in L1(0, 1) and supN GN (uN ) <
+∞ then, there exists a finite set S such that (uN ) is precompact in
H1((0, 1) \ S).

3) If supN GN (uN ) < +∞ and η > 0 is fixed then the number of indices
j such that

uj+1 − uj

εN
>

η√
εN

(4.13)

is equibounded.

The proof of Theorem 4 consists of four steps. First, we prove that the
sequence EN is equicoercive, i. e., that from every sequence (uN ) bounded
in L1(0, 1) and with supN EN (uN ) < +∞ we may extract a converging
subsequence. The proof follows by remarking that we may obtain a lower
bound of EN with an energy of the form (4.10), for which this property
already holds. The second step is to provide a lower bound for the limit
energy. This step is in turn divided into two parts: First we locally minimize
the interaction of each group of K + 1 neighboring planes (with the proper
‘multiplicities’ giving the factor K − n + 1 in the definition of Φ−), thus
obtaining an estimate of the energy in terms of a sum of nearest-neighbor
energies with a proper scaling of Φ− − Φmin as an energy density. The Γ -
limit of this simpler energy is standard and provides a lower bound outside
S(u). A bound on the energy of a discontinuity between u− and u+ is then
obtained by minimization among all discrete transitions between these two
values. In this step, hypothesis (iii) plays a crucial role in establishing that
the final energy necessary to create a discontinuity does not depend on
the values of u±. The third step consists of showing that these bounds are
optimal by exhibiting a recovery sequence for each piecewise-H1 u. In this
step the hypothesis of the validity of the Cauchy-Born rule close to the
ground state is used to ensure that, away from jump points, we may take
recovery sequences simply as interpolations of the target function. Finally,
we obtain the convergence of minima by explicitly computing the values of
the minima of the Γ -limit.

It is convenient to rewrite our energies taking into account the form in
(2.6) of problem PN (δ). To this end we introduce the energy

Φ(δ1, . . . , δK) =
K∑

n=1

K−n+1∑
j=1

1
K − n+ 1

φn(δj , . . . , δj+n−1). (4.14)

Note that

Φ−(δ) = min
{
Φ(δ1, . . . , δK) :

K∑
i=1

δi = Kδ
}
,

and in particular that Φ(δ1, . . . , δK) ≥ Φmin, the equality holding only for
δ1 = · · · = δK = δmin. As in (2.6) the energy EN can be rewritten as

EN (u) =
N∑

i=1

εNΨN

(ui+1 − ui

εN
, . . . ,

ui+K − ui+K−1

εN

)
, (4.15)
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where

ΨN (z1, . . . , zK) =
1
εN

(
Φ

(√
εNz1 + δmin, . . . ,

√
εNzK + δmin

)
− Φmin

)
.

(4.16)

Proof. Throughout the proof we identify (0, 1) with the torus; i. e., the
points 0 and 1 are identified and jumps at 0 are taken into account in the
limit energies.
1. Coerciveness. We note that, from (vi) and Remark 4, it follows that
there exist constants K1,K2 > 0 such that

K∑
n=1

K−n+1∑
j=1

1
K − n+ 1

φn(δj , . . . , δj+n−1)−Φmin ≥ K1

K∑
n=1

(δn − δmin)2 ∧K2.

(4.17)
We then have

EN (u) =
N∑

j=1

εNΨN

(uj+1 − uj

εN
, . . . ,

uj+K − uj+K−1

εN

)

≥
N∑

j=1

εN

K∑
n=1

(
K1

(uj+n+1 − uj+n

εN

)2)
∧ K2

εN

= K
N∑

j=1

(
εNK1

(uj+1 − uj

εN

)2)
∧K2.

By Remark 9(2) we then conclude that, given a sequence (uN ) with
equibounded energy (supN EN (uN ) < +∞), upon addition of a constant
the sequence is compact in L1(0, 1), and, upon a finite set S ⊂ (0, 1] it is
also locally weakly compact in H1((0, 1) \ S).
2. Lower bound. We have to prove the ‘liminf inequality’

E0(u) ≤ lim inf
N

EN (uN ) for all uN → u.

The lower bound needs to be proved only for sequences (uN ) converging in
L1 and with supN EN (uN ) < +∞. This implies that (we can assume that)
the sequence also converges locally weakly in H1 away from the set S in the
sense of Step 1.

We begin by remarking that, from the growth conditions on φn and the
hypotheses on Φ−, we have

lim inf
δ→+∞

Φ−(δ) > Φmin lim inf
δ→−∞

Φ−(δ) = +∞. (4.18)

We then infer (similarly to the the proof of the existence of lower potentials
in the previous section) that there exist constants C1, C2, C3 > 0 such that

Φ−(δ)− Φmin ≥ Ψ(δ − δmin) :=
{
C1(δ − δmin)2 ∧ C2 if δ ≥ δmin

C1(δ − δmin)2 ∧ C3 if δ ≤ δmin
(4.19)
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Moreover, note that

sup{C1 : (4.19) holds} =
1
2

K∑
n=1

n∑
i=1

n∑
j=1

∂2φn

∂δi∂δj
(δmin, . . . , δmin) (4.20)

by hypothesis (vii) and

sup{C3 : (4.19) holds for some C1 and C2} = +∞ (4.21)

by (4.18).
We can then estimate

EN (u) =
N∑

j=1

εN

K∑
n=1

φN
n

(uj+1 − uj

εN
, . . . ,

uj+n − uj+n−1

εN

)

≥
N∑

j=1

(
Φ−

(
δmin +

√
εN · uj+K − uj

KεN

)
− Φmin

)

≥
N∑

j=1

Ψ
(uj+K − uj

K
√
εN

)
. (4.22)

Let (uN ) converge to u in L1. We then obtain

lim inf
N

EN (uN ) ≥ C1

∫ 1

0

|u′|2 dt+ C2#{t ∈ S(u) : u+ > u−}

+C3#{t ∈ S(u) : u+ < u−} (4.23)

by Remark 9(1). By using (4.20) and (4.21) we finally get

lim inf
N

EN (uN ) ≥ α

∫ 1

0

|u′|2 dt+ C2#S(u) (4.24)

and the constraint that u+ > u− on S(u).
Next, we need to compute the contribution of the discontinuity. If we

optimize the constant C2 we find the value

sup{C2 : (4.19) holds for some C1 and C3} = lim inf
δ→+∞

Φ−(δ)− Φmin.

This estimate is sharp if K = 1; in general, this is only a lower bound,
and a finer analysis is needed to describe the optimal transition between u−

and u+. This is explained by the fact that the minimization process giving
Φ−(δ) may be incompatible with the minimal configuration giving Φmin.

We now give a sharp estimate for the energy that concentrates at a
point t ∈ S(u). Without loss of generality we may suppose that t = 0, and
that w := u+(0) − u−(0) > 0. Note that there exist indices jN such that
εN jN → 0 and

lim
N

uN ((jN + 1)εN )− uN (jNεN )√
εN

= +∞, (4.25)
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otherwise uN would be equibounded in H1 of a neighborhood of 0 (to this
end, remark that if |u′N |∞ ≤ η/

√
εN on some interval (−ξ, ξ) for some

η > 0 then, following Step 1 we obtain
∫ ξ

−ξ
|u′N |2 dt ≤ C ′EN (uN ) for some

constant C ′).
Again, it is not restrictive to suppose that jN = 0 for all N . By the

equiboundedness of EN (uN ) and the growth condition (ii) we have

inf
N,j

uN ((j + 1)εN )− uN (jεN )√
εN

> −∞;

hence by (iii), if j ≤ 0 and j + n ≥ 1 then, upon setting

wN
j =

uN ((j + 1)εN )− uN (jεN )√
εN

,

we have

φn

(
δmin + wN

j , . . . , δmin + wN
j+n−1

)
= ψj

n

(
δmin + wN

j , . . . , δmin + wN
−1

)
+ψj+n−1

n

(
δmin + wN

1 , . . . , δmin + wN
j+n−1

)
+ o(1) (4.26)

uniformly as N → +∞ by hypothesis (iii).
Fix M ∈ N. Let S be a finite set such that uN → u locally weakly in

H1((0, 1) \ S) and |u′N | ≤ 1/(M
√
εN ) for large enough N on each compact

set of (0, 1) \S (by Remark 9(3)). Fix η > 0 such that S ∩ (−4η, 4η) = {0}.
Note that we have that

|u′N | ≤
1

M
√
εN

on (−3η,−η) and (η, 3η), (4.27)

and that uN → u uniformly in (−3η,−η) and (η, 3η). Let

JN
η = {j ∈ Z : εN j ∈ (−2η, 2η)} =: {−jN

η , . . . , j
N
η }. (4.28)

We can then write∑
j∈JN

η

εNΨN

(
uN ((j+1)εN )−uN (jεN )

εN
, . . . , uN ((j+K)εN )−uN ((j+K−1)εN )

εN

)
= IN

1 + IN
0 + IN

2 , (4.29)

where (wN
j as above)

IN
0 =

K∑
n=1

∑
j≤0,j+n≥1

(
φn

(
δmin + wN

j , . . . , δmin + wN
j+n−1

)
−ψj+n−1

n

(
δmin + wN

j , . . . , δmin + wN
−1

)
−ψj

n

(
δmin + wN

1 , . . . , δmin + wN
j+n−1

))
−KΦmin,
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IN
1 =

∑
j∈JN

η , j≥1

εNΨN

(
uN ((j+1)εN )−uN (jεN )

εN
,...,

uN ((j+K)εN )−uN ((j+K−1)εN )
εN

)

+
K−1∑
n=1

n∑
j=1

K − n− j + 1
K − n+ 1

φn

(
δmin + wN

j , . . . , δmin + wN
j+n−1

)
+

K∑
n=1

n−1∑
j=1

ψj
n

(
δmin + wN

1 , . . . , δmin + wN
j

)
,

IN
2 =

∑
j∈JN

η , j≤−K

εN

K∑
n=1

ΨN

(
uN ((j+1)εN )−uN (jεN )

εN
,...,

uN ((j+K)εN )−uN ((j+K−1)εN )
εN

)

+
K−1∑
n=1

n−1∑
j=0

K − n+ j

K − n+ 1
φn

(
δmin + wN

−j−n, . . . , δmin + wN
−j−1

)
+

K∑
n=1

n−1∑
j=1

ψj
n

(
δmin + wN

−j , . . . , δmin + wN
−1

)
.

By (4.26) we have

lim
N
IN
0 = −K Φmin. (4.30)

Note the factor K that derives from the decomposition of the K terms
involving ΨN labeled by j ∈ {1 − K, . . . , 0} into the three sums involving
the φns.

We now compute the limit of IN
1 , that of IN

2 being completely analogous.
Let vN : Z → R be the function defined by

vN (j) =


uN (jεN ) if −jN

η ≤ j ≤ jN
η +K

uN (−jN
η εN ) if j < −jN

η

uN (jN
η εN ) if j > jN

η +K.
(4.31)

Upon setting

zN
j =

vN ((j + 1)εN )− vN (jεN )√
εN

,

we may write

IN
1 =

∑
j≥1

εNΨN

(vN (j + 1)− vN (j)
εN

, . . . ,
vN (j +K)− vN (j +K − 1)

εN

)

−
jN
η +K∑

j=jN
η +1

εNΨN

(vN (j + 1)− vN (j)
εN

, . . . ,
vN (j +K)− vN (j +K − 1)

εN

)

+
K−1∑
n=1

n∑
j=1

K − n− j + 1
K − n+ 1

φn

(
δmin + zN

j , . . . , δmin + zN
j+n−1

)
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+
K∑

n=1

n−1∑
j=1

ψj
n

(
δmin + zN

1 , . . . , δmin + zN
j

)
(4.32)

We can estimate

jN
η +K∑

j=jN
η +1

εNΨN

(vN (j + 1)− vN (j)
εN

, . . . ,
vN (j +K)− vN (j +K − 1)

εN

)

≤
jN
η +K∑

j=jN
η +1

sup
{
Φ(z1 + δmin, . . . , zK + δmin)− Φmin : |zi| ≤ 1/M

}
≤ K sup

{
Φ(z1 + δmin, . . . , zK + δmin)− Φmin : |zj | ≤ 1/M

}
=: ω

( 1
M

)
,

with limx→0 ω(x) = 0.
We now define the boundary-layer energy of the discrete system as

B = inf
R∈N

inf
{∑

j≥0

(Φn(zj + δmin, . . . , zj+K + δmin)− Φmin)

+
K−1∑
n=1

n−1∑
j=0

K − n− j

K − n+ 1
φn(δmin + zj , . . . , δmin + zj+n−1)

+
K∑

n=1

n−1∑
i=1

ψi
n(z0 + δmin . . . , zi−1 + δmin) : zj = 0 if j ≥ R

}
.(4.33)

We then obtain (taking zj = 1√
εN

(vN (j + 1)− vN (j)))

lim inf
N

IN
1 ≥ B − ω

( 1
M

)
, (4.34)

and, by the arbitrariness of M and a symmetric argument,

lim inf
N

IN
1 ≥ B, lim inf

N
IN
2 ≥ B. (4.35)

Since the estimates concerning u′ and S(u) may be decoupled, we may sum
up the previous inequalities to obtain

lim inf
N

EN (uN ) ≥ α

∫ 1

0

|u′|2 dt+ (2B −K Φmin) #(S(u)) (4.36)

with the constraint u+ > u− on S(u).
3. Upper bound. We have to prove the ‘limsup inequality’: that for every u
and for every r > 0 there exists a sequence (uN ) (called a recovery sequence)
converging to u and such that

lim sup
N

EN (uN ) ≤ E0(u) + r.
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First, note that it is sufficient to check this property for piecewise H1-
functions that are sufficiently smooth and locally constant on both sides of
S(u), by a density argument (see, e. g., [2] Section 1.7.1).

We confine our analysis to u ∈ C2(0, 1) with a discontinuity in 0 and
such that u = u+(0) on (0, η) and u = u−(0)(= u−(1)) < u+(0) on (−η, 0].
Let M ∈ N, R ∈ N and let z : Z → R be such that zj = 0 for j ≥ R, and∑

j≥0

(Φn(zj + δmin, . . . , zj+K + δmin)− Φmin)

+
K−1∑
n=1

n−1∑
j=0

K − n− j

K − n+ 1
φn(δmin + zj , . . . , δmin + zj+n−1)

+
K∑

n=1

n−1∑
i=1

ψi
n(z0 + δmin . . . , zi−1 + δmin) ≤ B +

1
M
. (4.37)

We then define uN as follows:

uN (jεN ) =

{√
εN (

∑j−1
i=0 zi −

∑R
i=0 zi) + u(jεN ) if j ≥ 0√

εN (
∑0

i=−R zi −
∑0

i=−j zi) + u(jεN ) if j < 0.
(4.38)

Note that this definition makes sense since uN (jεN ) = u(jεN ) for |j| > R.
It can be easily checked now that (uN ) is a recovery sequence for u. In fact,
by the definition of (zj) we deduce that∑
|j|<η/(2εN )

εNΨN

(
uN ((j+1)εN )−uN (jεN )

εN
, . . . , uN ((j+1)εN )−uN (jεN )

εN

)
≤ B + 1

M ,

while, using Taylor’s expansion of Φ at (δmin, . . . , δmin) we obtain∑
|j|>η/(2εN )

εNΨN

(uN ((j + 1)εN )− uN (jεN )
εN

, . . . ,
uN ((j + 1)εN )− uN (jεN )

εN

)
=

∑
|j|>η/(2εN )

εNΨN

(u((j + 1)εN )− u(jεN )
εN

, . . . ,
u((j + 1)εN )− u(jεN )

εN

)
≤

∑
|j|>η/(2εN )

(Φ(δmin +
√
εN (u′(jεN ) + o(1)), . . .

. . . , δmin +
√
εN (u′(jεN ) + o(1)))− Φmin)

≤
∑

|j|>η/(2εN )

α εN |u′(jεN )|2 + o(1) ≤ α

∫ 1

0

|u′|2 dt+ o(1).

4. Convergence of minimum problems. The convergence of minimum
problems now follows immediately from the Γ -convergence of the function-
als. It remains to verify that

min{E0(u) : u− δt 1-periodic} = min{αδ2, 2B −KΦmin}, (4.39)

if δ > 0. This is a simple computation, minimizers being given by u(t) = δt
or u(t) = 0 (in this case with S(u) = Z).
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