
Scuola Normale Superiore
Classe di Scienze Matematiche, Fisiche e Naturali

Rectifiability in Carnot Groups
Tesi di Perfezionamento in Matematica

Candidato:

Gioacchino Antonelli

Relatori:

Prof. Luigi Ambrosio
Prof. Enrico Le Donne

Anno Accademico 2021 – 2022
7 Luglio 2022





Scuola Normale Superiore
Classe di Scienze Matematiche, Fisiche e Naturali

Rectifiability in Carnot Groups
Tesi di Perfezionamento in Matematica

Candidato:
Gioacchino Antonelli
matricola n. 18776

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Relatori:
Prof. Luigi Ambrosio

Prof. Enrico Le Donne

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Anno Accademico 2021 – 2022
Pisa, 7 Luglio 2022





Abstract. This thesis is devoted to the study of the theory of rectifi-
ability of sets and measures in the non smooth context of Carnot groups.
The focus is on the study of the notion of P-rectifiability and its relation
with other notions of rectifiability in Carnot groups.
A P-rectifiable measure of integer dimension h in a Carnot group is a
Radon measure with positive lower and finite upper h-densities almost
everywhere such that the tangent measures are almost everywhere Haar
measures of homogeneous subgroups of the Carnot group of homogeneous
dimension h.
The results discussed in this thesis have been obtained in the papers [25,
31–33].
In Chapter 1 we shall revise the basic notions of Measure Theory, and
we shall introduce Carnot groups with a special focus on the notions of
rectifiability, intrinsic regular functions, and submanifolds.
In Chapter 2 we summarize part of the results obtained in collaboration
with A. Merlo in [31, 33]. We prove that in arbitrary Carnot groups P-
rectifiable measures of dimension h with a unique complemented tangent
almost everywhere have h-density. We also characterize P-rectifiable mea-
sures with complemented tangents by means of a covering property with
intrinsically differentiable graphs in Carnot groups. These results comple-
ment and extend in several directions the study by Mattila–Serapioni–Serra
Cassano in the Heisenberg groups Hn.
In Chapter 3 we give the proof of a Marstrand–Mattila type rectifiability
criterion in Carnot groups for P-rectifiable measures with tangents that
admit at least one normal complementary subgroup. This result extends
to the Carnot setting the Marstrand–Mattila rectifiability criterion in Eu-
clidean spaces. We exploit such a criterion to derive as a consequence the
Preiss’s Theorem for one-dimensional Radon measures in the first Heisen-
berg group H1 endowed with the Korányi norm. The results in Chapter 3
have been obtained in collaboration with A. Merlo in [32].
In Chapter 4 we present the results obtained with E. Le Donne in [25].
In some Carnot group of homogeneous dimension 13 we construct an an-
alytic hypersurface, which is also a C1

H-hypersurface, that is purely unrec-
tifiable with respect to Carnot groups of homogeneous dimension 12. This
gives an example of a C1

H-hypersurface that is not Pauls rectifiable. As a
consequence Franchi–Serapioni–Serra Cassano’s notion of C1

H-rectifiability
differs from Pauls’s notion of rectifiability in arbitrary Carnot groups. We
further present a proof of the fact that in Hn, with n ≥ 2, every Euclidean
C∞-hypersurface can be almost everywhere covered by bi-Lipschitz images
of subsets of codimension-one subgroups of Hn.
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Introduction

This thesis is about Geometric Measure Theory in Carnot groups, with a particular
focus on the theory of rectifiability of sets and measures. The results discussed in this
manuscript are obtained in collaboration with my PhD advisor Le Donne, and my colleague
Merlo [25,31–33].

In my PhD studies I obtained several other results that will be discussed in the last
section of this introduction. Among them I would like to mention a line of research devoted
to the study of the isoperimetric problem in spaces with curvature bounded from below that
I have been pursuing with several coauthors in [20,24,34–36].

The aim of this introduction is to sketch the birth, the development, and the main
achievements of the theory of rectifiability: starting from the classical Euclidean setting,
passing through the arbitrary metric setting, and finally specializing in Carnot groups. After
that, I will discuss the main contributions I gave to the topic of rectifiability in Carnot groups.

The presentation is inspired to the classical references [89, 102, 174] for the Euclidean
part. For the development of the theory in metric spaces I shall refer to the introductions of
the fundamental papers that I am going to discuss below, while for the discussion related to
Carnot groups I shall mainly refer to [145,208].

Since it is virtually impossible to catch in few pages the huge developments of the theory
of rectifiability, I will cut some topics off from the discussion. Nevertheless, for a more
informative and general treatment, the reader is referred to the very nice and recent survey
by Mattila [177].

Rectifiability in Euclidean spaces

At the beginning of 1900, the fundamental works of Lebesgue, Carathéodory, and Haus-
dorff introduced the generalizations of the notions of length and area in Euclidean spaces:
in fact, the m-dimensional Hausdorff measure Hm is an outer measure which generalizes the
notion of m-dimensional area.

After that, the birth of the theory of rectifiability dates back to three fundamental works
of Besicovitch between 1920 and 1940 [55–57].

Besicovitch was mainly concerned with the study of one-dimensional objects in R2:
namely, he aimed at studying the geometry of Borel sets E ⊆ R2 such that H1(E) < +∞.
His remarkable works revealed that a lot could be said for such sets: e.g., they split in a
regular part, on which the one-density of the Hausdorff measure H1 is H1-almost everywhere
equal to one, and an irregular part, which we would call - with the modern language - the
purely unrectifiable part. Moreover, on the regular part, the set is infinitesimally linear H1-
almost everywhere: this amounts to saying that it has H1-almost everywhere a well defined
one-dimensional tangent space. Finally, the regular part of the set E can be H1-almost
everywhere covered by Lipschitz curves.

ix
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In [103], Federer generalized many of the ideas and results of Besicovitch for k-dimensional
sets in Rn. Anyway one of the main results Besicovitch proved had been left open: is it true
that a Borel set E ⊆ Rn such that Hk(E) < +∞ and the density of Hk⌞E is one almost
everywhere has a well defined tangent k-plane Hk-almost everywhere? Further, is it true
that, under the same hypotheses, E is covered Hk-almost everywhere by countably many
Lipschitz images of subsets of Rk in Rn?

Let us now introduce some terminology. Given a Radon measure ϕ on Rn, and given
k ≥ 0, we define the lower and upper k-densities of ϕ at x ∈ Rn, respectively, as

(1) Θk
∗(ϕ, x) := lim inf

r→0

ϕ(Br(x))
rk

, Θk,∗(ϕ, x) := lim sup
r→0

ϕ(Br(x))
rk

,

where Br(x) is the closed Euclidean ball of radius r > 0 and center x ∈ Rn. We say that ϕ
has k-density at x if

0 < Θk
∗(ϕ, x) = Θk,∗(ϕ, x) < +∞,

and we denote by Θk(ϕ, x) the k-density of ϕ at x.
We shall say that a Borel set E ⊆ Rn is (ϕ, k)-rectifiable, with k ∈ N, if there exist

countably many fi : Ui ⊆ Rk → Rn such that

(2) ϕ

(
E \

+∞⋃
i=1

fi(Ui)
)

= 0.

The query that had been left open by Federer was settled first in the case k = 2 and
n = 3 by Marstrand [171], and then for every k, and n by Mattila [179]. In particular, as a
result of the work by Mattila [179] the following equivalence holds for Borel sets E, provided
one chooses the correct multiplicative constant in the definition of the Hausdorff measure:
(3)
E ⊆ Rn is (Hk, k)-rectifiable if and only if Θk(Hk⌞E, x) = 1 for Hk-almost every x ∈ E.

One fundamental step in order to prove the previous equivalence is the following so-called
Marstrand–Mattila rectifiability criterion, that we shall state for arbitrary Radon measures.
In the following statement we denote by Tank(ϕ, x) the set of k-tangent measures to ϕ at x,
for which we refer the reader to Definition 1.52. We recall that a Radon measure ϕ on Rn is
said to be k-rectifiable, with k ∈ N, if ϕ ≪ Hk and Rn is (ϕ, k)-rectifiable. For the following
statement, see [174, Theorem 16.7].
Proposition 0.1 (Marstrand–Mattila rectifiability criterion). Let ϕ be a Radon measure on
Rn, and let k be a natural number such that 0 ≤ k ≤ n. Then ϕ is k-rectifiable if and only if
for ϕ-almost every x ∈ Rn one has

(i) 0 < Θk
∗(ϕ, x) ≤ Θk,∗(ϕ, x) < +∞,

(ii) Tank(ϕ, x) ⊆ {λHk⌞V : λ > 0, and V is a k-dimensional vector subspace of Rn}.
The latter proposition can be interpreted in the following way: in Euclidean spaces, the

global k-rectifiability property - by means of covering with Lipschitz images of subsets of Rk

- for a measure ϕ arises as a consequence of the infinitesimal (flat) structure of the measure,
and vice-versa.

After the foundational contributions described above, there was still one open question in
order to complete the picture of the rectifiability in Euclidean spaces. Namely, is the proper
analogue of (3) true for arbitrary Radon measures, and not just for sets? The answer is
affirmative, and it is due to the breakthrough contribution by Preiss in [202].
Theorem 0.2 (Preiss’s Theorem). Let ϕ be a Radon measure on Rn, and let k ≥ 0. Assume
that ϕ has k-density positive and finite for ϕ-almost all x ∈ Rn. Hence k is an integer, and
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ϕ is k-rectifiable. Vice-versa if ϕ is k-rectifiable with k ∈ N, hence ϕ has k-density positive
and finite for ϕ-almost all x ∈ Rn.

The assertion of k being an integer in the previous theorem is due to Marstrand [172],
while the consequence of ϕ being k-rectifiable is due to Preiss [202]. Actually, in [202] Preiss
proved something stronger. He proved that, for every couple of integers k ≤ n, there exists
a constant c(k, n) ≤ 1 such that whenever ϕ is a Radon measure on Rn for which

Θk
∗(ϕ, x)

Θk,∗(ϕ, x) ≥ c(k, n),

for ϕ-almost every x ∈ Rn, hence ϕ is k-rectifiable. Finally, the last part of Theorem 0.2 is
an easy consequence of the locality and the area formula.

The theory of rectifiability gained a lot of fortune because it soon showed to be the correct
language to study some classical problems. We refer here just to one famous example. In
1954 and 1955 De Giorgi, motivated by earlier results by Caccioppoli, published a couple of
papers [87, 88] in which he studied the structure of finite perimeter sets in Rn. He showed
that given a set of finite perimeter E ⊆ Rn, the perimeter measure |DχE | is the restriction of
the Hausdorff measure Hn−1 to the so-called reduced boundary, which is a measure-theoretic
notion of boundary smaller than the topological boundary. Moreover, De Giorgi proved that
the reduced boundary is (|DχE |, n − 1)-rectifiable. Such a fundamental structure result for
codimension-one objects in Rn led to the development of Federer–Fleming’s theory of currents
that is one of the cornerstones of Geometric Measure Theory [104]. For more on the subject
one can read [177, Sections 13-14].

Analysis and rectifiability on metric measure spaces

Let (X, d) be a complete metric space, and let ϕ be a Radon measure onX. The definitions
of lower and upper densities (1) make sense in this metric setting, and also the notion of (ϕ, k)-
rectifiability (2) if one takes X-valued Lipschitz maps instead of Rn-valued Lipschitz maps.
So it makes sense to study the notion of rectifiability even in the metric setting. This study
fits into the broader framework of the study of analysis in metric spaces, for which we refer
to [121,123–125] for some landmark contributions.

One of the first influential papers for the study of the theory of rectifiability in the metric
setting was Kirchheim’s paper [138]. In that paper, he shows both a Rademacher-type
theorem and an area formula for Lipschitz maps f : Rn → (X, ∥ · ∥), where (X, ∥ · ∥) is a
Banach space. A remarkable consequence of his study is that whenever (X, d) is a complete
metric space that is (Hn, n)-rectifiable, then Θn(Hn, x) = 1 for Hn-almost every x ∈ X,
namely one implication of (3) holds in the general metric setting.

A related study in the metric setting is in the paper by Preiss and Tišer [203], in which
they improve a previous result by Besicovitch [55]. In fact, Besicovitch shows that if a Borel
E ⊆ R2 is such that H1(E) < +∞ and Θ1

∗(H1⌞E, x) ≥ 3/4 for H1-almost every x ∈ E,
then E is (H1, 1)-rectifiable. Preiss and Tišer extend Besicovitch’s result to arbitrary metric
spaces and they slightly improve the constant 3/4 by substituting it with (2 +

√
46)/12. As

a result, remarkably, on the one hand the equivalence in (3) holds in the arbitrary metric
setting in the case k = 1. On the other hand, it is conjectured that the best constant in
Besicovitch’s result is 1/2 in the arbitrary metric setting, but nowadays the conjecture is still
open. It’s worth to point out that it is also not known if the equivalence in (3) holds for
k > 1 in the general metric setting.

Later, a further impulse to the study of rectifiability in the metric setting was given by
the work of Ambrosio and Kirchheim [14], where the authors study (Hk, k)-rectifiable sets
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in arbitrary metric spaces. They prove another variant of Rademacher theorem for Banach-
valued Lipschitz maps defined on subsets of Rn, and they prove area and coarea formulae
for Lipschitz maps defined on rectifiable sets with values in arbitrary metric spaces. As
the authors explicitly say in the paper, one of the motivations for such a study was the
development of the theory of currents in metric spaces [13], which is one of the landmark
contributions of modern Geometric Measure Theory.

The paper [14] has been fundamental also for the development of the theory of rectifi-
ability in Carnot groups, as we will specify below. Indeed, in [14] the authors prove that
the first Heisenberg group H1 with a sub-Riemannian distance is purely k-unrectifiable with
k = 2, 3, 4. Notice that the the topological dimension of H1 is 3, and its metric dimension is
4.

In addition to the previously described results, one of the main contributions to the study
of Lipschitz functions in metric spaces is Cheeger’s paper [70], see also the contribution of
Keith [135]. In these papers, the authors propose and study the notion of Lipschitz differ-
entiability space: namely, a metric measure space (X, d, µ) with countably many Lipschitz
charts with values in Euclidean spaces such that every real-valued Lipschitz function on X
is µ-almost everywhere differentiable with respect to every chart. One of the main results
is that every metric measure space that is doubling and supports a Poincaré inequality is
a Lipschitz differentiable space, and the dimension of the range of the Lipschitz charts is
bounded from above by a constant only depending on the doubling and Poincaré constants.
For a partial converse to the previous theorem see [100] and references therein.

One of the remarkable contributions to the study of Lipschitz differentiability spaces was
lately given by Bate in [44]. In that paper Bate proves that a metric measure space (X, d, µ)
is a Lipschitz differentiable space if and only if it can be written as a countable union of
Borel sets X = ∪Ui such that each µ⌞Ui possesses a finite collection of (universal) Alberti
representations.

The notion of Alberti representation originated in the seminal work [5], where Alberti
proved the Rank-One property for the singular part of the derivative of vector-valued BV
functions defined on an open subset of a Euclidean space conjectured by De Giorgi and
Ambrosio [18]. Alberti proved that given an arbitrary Radon measure µ on a k-dimensional
plane V in Rn that is singular with respect to Hk⌞V , one can associate to it a natural bundle
E(µ, ·) whose fibers have dimension at most 1. The fiber E(µ, x) of this bundle consists of
the vectors v ∈ Rk such that vµ is tangent in an appropriate sense to the derivative of a BV
function on V . Moreover, the restriction of µ to the set where the dimension of E(µ, ·) is 1
can be written as

´
I µtdt, where µt := Hk−1⌞St, and St is (Hk−1, k − 1)-rectifiable in V .

In the language of [4], which collects several other finer results about the theory of rectifi-
ability in Rn, the previous result means that on the set where the fiber is one-dimensional, µ
is (k−1)-representable: namely, it can be written as the integral of measures that are (k−1)-
rectifiable. Another interesting contribution that originated from these ideas is the result by
Alberti–Marchese in [6]. In that paper the authors associate to every Radon measure µ on
Rn (the unique minimal) bundle V (µ, ·) such that every real-valued Lipschitz function on Rn

is differentiable along V (µ, x) for µ-almost every x ∈ Rn. In the language of [4], an Alberti
representation in the sense used by Bate in [44] is roughly speaking a 1-representation of the
measure.

In [47] Bate–Li exploited the result by Bate in [44] to characterize the (Hn, n)-rectifiability
of a metric space. More precisely, they show that a metric measure space (X, d, µ) is (Hn, n)-
rectifiable if and only if it can be µ-almost everywhere decomposed in the countable union
of Borel sets Ui, with good n-density properties with respect to µ, such that, equivalently,
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either (Ui, d, µ) is an n-Lipschitz differentiable space, or each µ⌞Ui has n independent Alberti
representations with respect to some Lipschitz chart φi : X → Rn.

Moreover, very recently Bate in [46] gives a remarkable generalization of Marstrand–
Mattila rectifiability criterion (cf. Proposition 0.1) for sets in arbitrary metric spaces. In the
metric setting we have no homogeneous structure on the space so one has to use the pointed
measured Gromov–Hausdorff convergence to give a meaning to item (ii) in Proposition 0.1.
We stress that in this case the flat models are finite-dimensional Banach spaces. The proof
of [46] uses a former result by Bate [45], in which he proves an appropriate metric analogue
of Besicovitch–Federer Projection Theorem.

We stress that every generalization of Marstrand–Mattila criterion, or Preiss’s Theorem,
is hardly won outside the Euclidean setting, since the classical proofs of these results heavily
use the Euclidean structure.

One of the first Preiss-type results outside the Euclidean setting in this direction has
been given by Lorent in [159] where he proved that locally 2-uniform measures in ℓ3∞ are
rectifiable. Moreover, recently Merlo proved the intrinsic codimension-one Preiss’s Theorem
in the Heisenberg groups Hn endowed with the Korányi norm, see [180,181]. In the setting
of the Heisenberg groups Hn, the notion of rectifiability for which the results in [180, 181]
hold is not the one discussed above, but another one tailored for Carnot groups proposed by
Franchi–Serapioni–Serra Cassano, and which we will extensively discuss below.

In a parallel direction, Miranda defined the notion of BV function on metric measure
spaces, see [183]. Hence one can say that a Borel set E in a metric measure space (X, d, µ) is
a set of finite perimeter if the characteristic function χE is a BV function in (X, d, µ). Miranda
[183] and Ambrosio [7,8] started the study of fine properties of sets of finite perimeter in the
general metric setting. Among other results, Ambrosio [8] proved that in a doubling metric
measure space supporting a Poincaré inequality the perimeter measure |DχE | of a (locally)
finite perimeter set E is asymptotically doubling, it is supported on (a precise subset of)
the essential boundary of E, which is defined as the set of the points that have neither
µ-density 0 nor 1 with respect to E, and it is absolutely continuous with respect to the
codimension-one measure Hh, which is constructed like the Hausdorff measure but using
the Gauge ζ(Br(x)) := µ(Br(x))/diam(Br(x)). As an interesting contribution to the topic,
we stress that recently Lahti [142] generalized Federer’s characterization of sets of finite
perimeter in the setting of doubling metric measure spaces supporting a Poincaré inequality.
Namely, he proves that a set E is of finite perimeter if and only if (a precise subset of) the
essential boundary has Hh-finite measure.

One cannot hope for a general rectifiability result for the essential boundary of a finite
perimeter set in arbitrary metric measure spaces. Nevertheless, when some additional struc-
ture is available on the space, one can hope to prove rectifiability results. In a series of
three papers [10,65,66] Ambrosio–Bruè–Semola and Bruè–Pasqualetto–Semola succeeded in
showing that in an RCD(K,N) space of essential dimension n - which is roughly speaking a
metric-measure generalization of a Riemannian manifold with geometric dimension n, with
Ricci curvature bounded from below by K, and analytic dimension bounded above by N -
the perimeter measure |DχE | of every set of finite perimeter E is concentrated on the re-
duced boundary, which is a subset of the essential boundary, and the reduced boundary is
(Hn−1, n− 1)-rectifiable.

Carnot groups

Due to the multitude of applications, sub-Riemannian geometry has attracted a lot of
attention in the mathematical community in the recent years. Simplifying a bit, a sub-
Riemannian manifold is a generalization of Riemannian manifold for which the metric is
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induced by a smooth scalar product defined only on a sub-bundle of the tangent bundle.
For a more general definition one can consult [2]. According to a fundamental result due to
Mitchell [185], see also the contributions of Bellaïche [52], Jean [129], and Gromov [120], the
infinitesimal model of a sub-Riemannian manifold, namely the class of its Gromov-Hausdorff
tangents, is represented by the class of (quotients of) Carnot groups, that we now introduce.

For surveys on Carnot groups we refer the reader to [145, 208]. Carnot groups are
connected and simply connected Lie groups G whose Lie algebra g admits a stratification,
namely a decomposition into non trivial complementary linear subspaces V1, . . . , Vκ such that

(4) g = V1 ⊕ · · · ⊕ Vκ, [Vj , V1] = Vj+1, for j = 1, . . . , κ− 1, [Vκ, V1] = {0},

where [Vj , V1] denotes the subspace of g generated by the commutators [X,Y ] with X ∈ Vj

and Y ∈ V1. The number κ is called the step of the stratification. A distinguished subclass
of Carnot groups is the one of Heisenberg groups {Hn}n∈N: they are Carnot groups whose
Lie algebras hn can be endowed with a 2-step stratification as follows:

hn = V1 ⊕ V2,

where V1 := span{X1, . . . , Xn, Y1, . . . , Yn}, V2 := span{Z}, and the only non trivial commu-
tators are [Xi, Yi] = Z for every i = 1, . . . , n. For a survey on Heisenberg groups see [206].
Carnot groups have been studied from very different point of views such as Differential Ge-
ometry [69], they naturally emerge in Harmonic analysis and studying subelliptic Differential
Equations [61,106–108,205], and they have been used for models in Neuroimaging [83].

One can endow a Carnot group with a geodesic left-invariant distance that admits di-
lations. A natural class of such distances is given by the so-called Carnot–Carathéodory
distances. Roughly speaking every such a distance is constructed by taking the length dis-
tance associated to the length functional on curves that is the integral of a norm on V1
(extended left-invariantly) of the derivative of the curve. The only paths admitted are the
ones that tangentially follow the left-invariant bundle generated by V1. Even the fact that
such a distance is finite is non trivial, it is a result due to Chow and Rashevskii, and it heavily
relies on the fact that V1 generates by brackets the Lie algebra. Such a bracket generation
condition had already appeared in a very influential work by Hörmander in 1967 [126] as a
sufficient condition to prove hypoellipticity of differential operators.

From the geometric viewpoint, Carnot groups represent a different world with respect to
the Euclidean one since their Hausdorff dimension is strictly greater than their topological
dimension, unless they are Abelian. Anyway, Carnot groups are natural objects to consider
not only because they arise as infinitesimal models in sub-Riemannian geometry, but also
because they naturally appear as asymptotic cones of connected nilpotent Lie groups, see
Pansu’s work [199], they appear as boundaries at infinity of rank-one symmetric spaces [64],
and their homogeneous structure allows to study harmonic analysis on them [106].

Carnot groups also play a prominent and natural role in Metric Geometry: Le Donne
showed that Carnot groups (equipped with Carnot–Carathéodory distances) can be axiomat-
ically characterized as the only metric spaces that are locally compact, geodesic, homogeneous
with respect to at least one dilation, and isometrically homogeneous, see [144]. Moreover, if
a doubling geodesic metric measure space has almost everywhere a unique pointed Gromov–
Hausdorff tangent, such a tangent is almost everywhere isometric to a Carnot group, see
[143].

Several additional subjects have been studied in the framework of sub-Riemannian man-
ifolds and Carnot groups: e.g., the Bernstein problem [209], the isoperimetric problem
[69, 157], the study of different notions of curvature [3, 42, 48], the relation between the
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heat flow and the entropy [17], the study of complete stable surfaces [127], and the list is far
from being complete. For further references we refer to the survey [208].

Carnot groups also appear in several landmark contributions in geometry and analysis
in the last three decades. In [200] Pansu proved a Rademacher-type theorem for Lipschitz
maps between Carnot groups, and he uses it to show that quasi-isometries of the quaternionic
Heisenberg groups are at finite distance from isometries.

In [72, 73] Cheeger and Kleiner show that the first Heisenberg group with an arbitrary
left-invariant homogeneous distance cannot be bi-Lipschitz embedded in L1. This result
has both a theoretical and an applied interest. From the theoretical point of view, in [75]
Cheeger and Kleiner, following the study started by Cheeger in [70], had showed that a
Rademacher-type theorem for maps between PI spaces (i.e., doubling spaces that admit a
Poincaré inequality) and Banach spaces with the Radon-Nikodým Property (RNP) holds. A
Banach space has the RNP if every Lipschitz curve in it is almost everywhere differentiable.
Such a property holds for Lp spaces with p > 1, and it does not for L1 as the map t 7→ χ[0,t]
shows. The result of [75] immediately gives non-embeddability theorems in Banach spaces
with the RNP, from which L1 is cut away. Thus, from one hand, [72, 73] complement the
study started in [75]. For generalizations of the results in [72, 73] to arbitrary nilpotent
Lie groups we refer the reader to the very recent [99]. It is worth noticing that the results
in [73] have also motivated an interesting line of research whose aim is to study monotone
sets and horizontally affine functions in arbitrary Carnot groups, see the contributions of
[148,189,190].

From the applied point of view, the results in [72, 73] gave a counterexample to the so-
called Goemans-Linial conjecture in computer science. The fact that H1 would have given a
counterexample to such a conjecture was suggested by Lee and Naor [155]. Another example
had previously been given by Khot and Vishnoi [137]. Goemans-Linial conjecture stated
that every metric space (X, d) such that (X,

√
d) is isometric to a subset of a Hilbert space

could be bi-Lipschitz embedded in L1. The positive solution to such a conjecture would have
given the possibility of writing an algorithm that approximates within a constant factor and
in polynomial time an NP-hard computable quantity. For recent advances on related topics,
one can read Naor–Young remarkable papers [193,194].

Rectifiability on Carnot groups. The study of Geometric Measure Theory and rec-
tifiability in Carnot groups was pioneered by the works of Ambrosio–Kirchheim [14], and
Franchi–Serapioni–Serra Cassano [111].

As anticipated above, in [14] the authors proved that the first Heisenberg group H1 is
purely k-unrectifiable for k = 2, 3, 4. This means that, for every k = 2, 3, 4, every Lipschitz
map f : U ⊆ Rk → H1 is such that Hk(f(U)) = 0. This result was generalized by Magnani
in [162] where he proved that a Carnot group is purely k-unrectifiable if and only if there
do not exist sub-algebras of dimension k in V1. These negative results showed that the
classical notion of rectifiability, where the models are Lipschitz images of subsets of Rk, is
not feasible in Carnot groups. In fact, for example, H1 has metric dimension 4 but it is purely
4-unrectifiable according to the latter notion of rectifiability, and one would avoid this for
any reasonable notion of rectifiability tailored for Carnot groups.

In [111], in the setting of the Heisenberg groups Hn, the authors propose a notion of
codimension-one rectifiability where the models with which you cover a set are hypersurfaces
that are locally defined as zero-level sets of functions that are continuously differentiable
only along horizontal directions, and with non vanishing horizontal gradients. Such intrinsic
hypersurfaces are called C1

H-hypersurfaces. By using the latter notion of rectifiability, the
authors proved the rectifiability of the reduced boundary of sets with locally finite perimeter
in the Heisenberg groups Hn. The positive result in [111] led a lot of authors in the last two
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decades to study different notions of rectifiability in Carnot groups, modelled on different
classes of sets.

In [113] the authors study the notion of C1
H-hypersurface in arbitrary Carnot groups, and

they prove an implicit function theorem for such hypersurfaces, see also [81] for a general-
ization in Carnot–Carathéodory spaces. Then, in [112] the authors generalize the result of
[111] to all the Carnot groups of step 2. The proof closely follows De Giorgi’s scheme and it is
essentially divided in two parts: first, one proves that all the blow-ups at almost every point
of the boundary are monotone in one horizontal direction ν of the algebra while being invari-
ant along ν⊥; second, one proves that such sets, called constant horizontal normal sets, are
halfspaces in exponential coordinates. Then the conclusion is classical. The first step is true
in every Carnot group, while the second is false. This does not mean that the rectifiability
of the reduced boundary of sets of finite perimeter is false in some Carnot group. Indeed, as
of today, the C1

H-rectifiability problem for sets of finite perimeter in arbitrary Carnot groups
is still open.

A lot of research has been done in order to push the previous strategy to give more
information on the C1

H-rectifiability problem for finite perimeter sets in arbitrary Carnot
groups. In [15] the authors prove that in arbitrary Carnot groups at almost every point
of the reduced boundary of a sets of finite perimeter one has at least one vertical halfspace
as a blow-up. In [170] Marchi defines a special class of Carnot groups, the Carnot groups
of type ⋆, which strictly generalizes the class of step-2 Carnot groups, in which constant
horizontal normal sets are vertical halfspaces, and thus the C1

H-rectifiability of the boundary
of sets of finite perimeter holds. Recently, Le Donne–Moisala [147] strictly extends the class
of Carnot groups of type ⋆, introducing the Carnot groups of type ⋄. In [147] they prove
that constant horizontal normal sets in Carnot groups of type ⋄ are vertical halfspaces and
moreover they characterize all the step-3 Carnot groups for which constant horizontal normal
sets are vertical halfspaces. It is worth mentioning that recently Don–Le Donne–Moisala–
Vittone obtained a weak rectifiability result for the boundary of sets of finite perimeter in
arbitrary Carnot groups [95]. Moreover, a fine study of constant horizontal normal sets in
the Engel group and in the free Carnot group of rank 2 and step 3 is in [53,54].

Going beyond the codimension one, the notion of C1
H-submanifold has been studied in

[115] in the setting of Heisenberg groups, then generalized by Magnani [168,169] in arbitrary
Carnot groups, and recently also studied by Julia–Nicolussi Golo–Vittone [132], where area
and co-area formulae are proved within the class of rectifiable sets defined by using C1

H-
submanifolds. For an area formula for C1

H-submanifolds in Hn, we mention also the recent
contribution by Corni–Magnani [85]. Moreover, area and coarea formulae for Euclidean
regular submanifolds in Carnot groups have been studied, e.g., in [165,167].

For the comparison between Euclidean regularity and intrinsic regularity of hypersurfaces
in Carnot groups, an important contribution was given by Balogh [39]. He proved that the
set of characteristic points of a C1 Euclidean hypersurface in the Heisenberg groups Hn is
negligible with respect to the intrinsic codimension-one measure, and he constructed C1,α

Euclidean examples for which the characteristic set has positive Euclidean codimension-one
measure. Such results were generalized by Magnani [168] in arbitrary codimensions and
Carnot groups. We mention also the example by Kirchheim–Serra Cassano [139]: they prove
the existence of a fractal C1

H-hypersurface in H1 that has Euclidean Hausdorff dimension
2.5. For further comparisons between the Euclidean and the sub-Riemannian dimension of
submanifolds in Carnot groups we refer the reader to [41].

Another notion of rectifiability in the setting of Carnot groups is the intrinsically Lips-
chitz rectifiability, modelled on the notion of intrinsically Lipschitz graph that has been first
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proposed in [114] by Franchi–Serapioni–Serra Cassano, and then studied in [110] by Franchi–
Serapioni. An intrinsically Lipschitz graph in a Carnot group G is the graph of a function
φ : U ⊆ W → L, where G = W · L is a splitting of the group with homogeneous complemen-
tary subgroups, such that at every point the graph satisfies an intrinsic cone property. Some
very deep recent advances on the study of the latter notion have been obtained by Naor–
Young in [194], where the authors introduce the notion of foliated corona decomposition of
an intrinsically Lipschitz graph in the first Heisenberg group H1.

The relation between the notion of intrinsically Lipschitz rectifiability and the notion of
C1

H-rectifiability, i.e., the one modelled on C1
H-submanifolds, has been initially investigated

in [109,116]. Such a study is tightly linked to a Rademacher-type theorem for intrinsically
Lipschitz functions. Roughly speaking a function between homogeneous complementary sub-
groups in a Carnot group is said to be intrinsically differentiable at a point if the graph of such
a function has a unique homogeneous complemented subgroup as a blow-up at that point,
in the local Hausdorff topology. In [116] the authors prove a Rademacher-type theorem for
intrinsically Lipschitz functions with one-dimensional target in the Heisenberg groups, i.e.,
they prove that such functions are intrinsically differentiable almost everywhere. In [109]
the authors generalize this result to Carnot groups of type ⋆. What they prove in general
is the following: in every Carnot group in which De Giorgi’s C1

H-rectifiability theorem holds
for boundaries of sets of finite perimeter, a Rademacher theorem for intrinsically Lipschitz
functions with one-dimensional target holds. As a consequence, the intrinsically Lipschitz
rectifiability and the C1

H-rectifiability are the same notion, in codimension one, in groups of
type ⋆ and also in the more general framework of groups with semigenerated Lie algebras,
among which one can find the groups of type ⋄, according to the recent study in [147]. It is
nowadays an open problem to understand whether in codimension one C1

H-rectifiability and
intrinsically Lipschitz rectifiability are the same notion in arbitrary Carnot groups.

In arbitrary Carnot groups, the Rademacher theorem for intrinsically Lipschitz functions
in higher codimensions is a challenging problem. When the target of an intrinsically Lipschitz
function is normal, Rademacher theorem for intrinsically Lipschitz functions holds as an im-
mediate consequence of Pansu’s theorem, see [29]. In higher codimensions in the Heisenberg
groups, Rademacher theorem holds as proved in the recent remarkable work by Vittone [213],
in which he also exploits the theory of currents. In general, Rademacher theorem is false,
as the counterexample of [134] shows. It is worth to point out also the recent Rademacher
theorem for Lipschitz functions defined on C1

H-submanifolds with low codimension in the
Heisenberg groups, see [133].

A study related to the one discussed above is that of the notion of uniformly intrinsically
differentiable functions, which, roughly speaking, are the functions that parametrize C1

H-
submanifolds. This study was initiated by Ambrosio–Serra Cassano–Vittone in the Heisen-
berg groups in codimension one [16], and later pursued by other authors, see, e.g., [37, 93].
For more details we refer the reader to Section 0.3.5, and to Section 4 of Chapter 1.

The problem of linking the C1
H-rectifiability and the intrinsically Lipschitz rectifiability

with the infinitesimal notion of having flat blow-ups was raised for the first time in the work
by Mattila–Serapioni–Serra Cassano [178] in the setting of Heisenberg groups Hn. From the
results in [178] one deduces that in Hn the natural infinitesimal notion of rectifiable measure
- namely the one given in terms of the existence of flat tangent measures almost everywhere -
agrees with the one given in terms of intrinsically Lipschitz graphs in low dimensions, and with
the one given in terms of C1

H-submanifolds in low codimensions. Eventually, it took about
ten years to conclude that a Rademacher theorem for intrinsically Lipschitz functions in low
codimensions holds in Hn, see the above discussed work by Vittone [213]. As a consequence,
at least in Hn, the natural infinitesimal definition of rectifiability always agrees with the one
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given in terms of coverings with intrinsically Lipschitz graphs, or equivalently with intrinsic
almost everywhere differentiable intrinsic graphs. An analysis similar to the one of [178] has
been pursued by Idu–Magnani–Maiale in [128] in the setting of homogeneous groups and for
measures with horizontal tangents.

Other notions of rectifiability modelled on Lipschitz images of (homogeneous subgroups
of) Carnot groups have been proposed by Pauls and Cole–Pauls in [84, 201]. We refer the
reader to Chapter 4 for more details about these definitions. An interesting open question
asks whether in H1 the notion of rectifiability by means of C1

H-hypersurfaces is equivalent
to the one of Cole–Pauls given in [84]. In [60] Bigolin–Vittone prove that there is a C1

H-
hypersurface in H1 and a neighborhood of it that cannot be bi-Lipschitz parametrized with
an open set of the vertical plane in H1. In [92] Di Donato–Fässler–Orponen show that
C1

H-hypersurfaces with an Hölder regular intrinsic normal in Hn can be almost everywhere
covered by bi-Lipschitz images of subsets of the vertical plane. In H1 the same result can be
strengthened to the class of intrinsically Lipschitz graphs with an extra Hölder regularity on
the vertical coordinate.

The relationship between the above discussed notions of rectifiability and density prop-
erties have been recently investigated in the remarkable works by Merlo [180,181]. In [181],
Merlo proved that in Hn endowed with the Korányi norm, if a Radon measure has positive
and finite (2n + 1)-density almost everywhere, then all the tangent measures are flat, i.e.,
they are Haar measures restricted to codimension-one homogeneous subgroups in Hn. Hence,
in [180] Merlo proved a Marstrand–Mattila rectifiability criterion in codimension one for
arbitrary Carnot groups that coupled with the result in [181] gives Preiss’s C1

H-rectifiability
theorem in codimension one in all the Heisenberg groups endowed with the Korányi norm.
This is a rather remarkable result in high dimensions because Preiss’s proof [202] very deeply
relies on the Euclidean structure of Rn.

Main contributions

The relationship between the notion of C1
H-rectifiability, intrinsically Lipschitz rectifia-

bility, and Pauls’s rectifiability has been poorly understood. Moreover, a study of the recti-
fiability of sets and measures privileging the infinitesimal point of view was only performed
by Mattila–Serapioni–Serra Cassano in [178] in the setting of Heisenberg groups, and by
Idu–Magnani–Maiale [128] for homogeneous groups (but only for horizontal rectifiable sets).
An analogous study is missing in arbitrary Carnot groups. The aim of this thesis is to give
contributions in better understanding such topics.

As discussed above while depicting the Euclidean theory of rectifiability, in the Euclidean
setting the notion of rectifiable set, and more in general that of rectifiable measure, can
be given in two equivalent ways. Either one could prescribe the infinitesimal behaviour of
the measure by saying that it has flat tangent measures almost everywhere, i.e., Hausdorff
measures on vector subspaces of dimension k ∈ N; or, following a global approach, one could
say that the measure is absolutely continuous with respect to the Hausdorff k-dimensional
measure, and that it is supported on a countable union of k-dimensional Lipschitz graphs,
compare with Proposition 0.1.

One of the big efforts in the study of the theory of rectifiability in Carnot groups, as
discussed above, is trying to understand what is the correct class of building blocks to consider
in order to give a satisfactory global definition of rectifiable set, or measure. As said above,
several building blocks have been considered in the literature: C1

H-submanifolds, intrinsically
Lipschitz graphs, and (bi)-Lipschitz images of subsets of homogeneous groups.

Privileging the infinitesimal viewpoint, a notion that makes sense in arbitrary Carnot
groups has been proposed in [180] by Merlo, namely the notion of P-rectifiable measure,



MAIN CONTRIBUTIONS xix

which we soon introduce. We recall that a subgroup V of G is said to be homogeneous if it
is closed under the action of the natural family of dilations {δλ}λ>0 on G, see Section 2 of
Chapter 1 for details. In the discussion below, every Carnot group G shall be endowed with
a left-invariant homogeneous (with respect to δλ) distance d.

We recall that, given the stratification in (4), the homogeneous dimension of G is the
number

∑κ
i=1 i dimVi. The homogeneous dimension of a Carnot group, or of any homoge-

neous subgroup of it, is also the Hausdorff dimension with respect to every left-invariant
homogeneous distance.
Definition 0.3 (P-rectifiable measures). Let G be a Carnot group of homogeneous dimen-
sion Q. Fix a natural number 1 ≤ h ≤ Q. A Radon measure ϕ on G is said to be Ph-rectifiable
(or P-rectifiable of dimension h) if for ϕ-almost every x ∈ G we have

(i) 0 < Θh
∗(ϕ, x) ≤ Θh,∗(ϕ, x) < +∞,

(ii) Tanh(ϕ, x) ⊆ {λHh⌞V(x) : λ ≥ 0}, where V(x) is a homogeneous subgroup of G of
homogeneous dimension h,

where Θh
∗(ϕ, x) and Θh,∗(ϕ, x) are, respectively, the lower and the upper h-density of ϕ at x,

i.e., the obvious analogues of (1.4), Tanh(ϕ, x) is the set of h-tangent measures to ϕ at x, see
Definition 1.52, and Hh is the Hausdorff measure of dimension h.

As we shall notice, not only one could consider the study of P-rectifiability reversed
with respect to previous studies in the literature but it also has a twofold advantage. On
the one hand the definition of P-rectifiable measure is natural and intrinsic with respect to
the (homogeneous) structure of Carnot groups and it is equivalent to the usual one in the
Euclidean setting; on the other hand we do not have to handle the problem of distinguishing,
in the definition, between the low-dimensional and the low-codimensional rectifiability.

In Chapter 2 we study structure results for P-rectifiable measures in arbitrary Carnot
groups. In particular we prove the following results in arbitrary Carnot groups:

• The support of every Ph-rectifiable measure can be covered by sets with the cone
property with arbitrarily small opening. Notice that such sets can be also taken such
that they have Hausdorff tangents everywhere, compare with Proposition 2.26. The
cones of the covering have an axis that is a homogeneous subgroup of homogeneous
dimension h, see Theorem 2.1;

• The support of every Ph-rectifiable measure with tangents that are complemented
almost everywhere can be covered by sets that are simultaneously intrinsically Lips-
chitz graphs with arbitrarily small Lipschitz constant, and intrinsically differentiable
graphs almost everywhere, see Theorem 2.25;

• Every Ph-rectifiable measure with tangents that are complemented almost every-
where has h-density almost everywhere, see Theorem 2.12;

• The measures Hh⌞Γ, for some Γ ⊆ G with 0 < Hh(Γ) < +∞, are Ph-rectifiable
with tangents that are complemented almost everywhere if and only if either Preiss’s
tangent cone is supported on the same complemented homogeneous subgroup of ho-
mogeneous dimension h (which might depend on the point) almost everywhere; or
Γ is Hh-almost everywhere covered by graphs that are h-dimensional and intrinsi-
cally differentiable almost everywhere with complemented Hausdorff tangents, see
Theorem 2.30.

Moreover, we prove that whenever Hh⌞Γ, for some Γ ⊆ G with 0 < Hh(Γ) <
+∞, is Ph-rectifiable with tangents that are complemented almost everywhere,
then the density of the centered Hausdorff measure Ch⌞Γ is 1 for Hh⌞Γ-almost every
x ∈ G, see Theorem 2.30.
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For a detailed discussion of the previous statements we refer the reader to the introduc-
tions of the sections of Chapter 2. All in all, from the previous results, we could conclude that,
in Carnot groups, the correct building blocks to consider in order to give a global definition
of rectifiability that agrees with the infinitesimal one seem to be intrinsically differentiable
graphs. In a work in collaboration with Merlo [33], we also provide an area formula for such
building blocks. We are not including such a contribution in this thesis, but for a survey we
refer the reader to Section 0.3.4. We stress that, due to the existence of intrinsically Lipschitz
graphs that are nowhere intrinsically differentiable, see [134], one cannot give a geometric
area formula for arbitrary intrinsically Lipschitz graphs, and in general the result in The-
orem 2.30 is false if one substitutes intrinsically differentiable with intrinsically Lipschitz.

In Chapter 3 we prove a Marstrand–Mattila rectifiability criterion for P-rectifiable mea-
sures whose tangents admit at least one normal complementary subgroup, see Theorem 3.1.
This result provides a generalization of the classical Marstrand–Mattila rectifiability criterion
in Euclidean spaces, see Proposition 0.1, in the setting of Carnot groups. One nice conse-
quence of such a result is the proof of the one-dimensional Preiss’s Theorem for measures in
the first Heisenberg group H1 endowed with the Korányi norm, see Theorem 3.2. Moreover,
joining Rademacher theorem for intrinsically Lipschitz functions with normal targets, the
result in Theorem 2.30, and Marstrand–Mattila rectifiability criterion in Theorem 3.1, we
derive a rather complete characterization of rectifiability for measures Hh⌞Γ, for some Γ ⊆ G
with 0 < Hh(Γ) < +∞, in the co-normal case in arbitrary Carnot groups, see Corollary 3.3.

Finally, in Chapter 4 we provide an example of an analytic and non-characteristic hy-
persurface S in a Carnot group of homogeneous dimension 13 such that the image of every
Lipschitz function from a subset of a Carnot group of homogeneous dimension 12 into S is
H12-negligible, see Theorem 4.1. Such an example implies that the notion of Pauls’s rectifi-
ability might not be equivalent to the notion of C1

H-rectifiability in arbitrary Carnot groups.
In the setting of the Heisenberg groups Hn, with n ≥ 2, we show that we cannot have such
an example. In particular, we show that every C∞-hypersurface in Hn, with n ≥ 2, is almost
everywhere covered by bi-Lipschitz images of subsets of codimension-one subgroups of Hn

that, being isomorphic to Hn−1 × R, are Carnot groups, see Theorem 4.2.

Let us finish this section by taking a look for one moment at the big picture. On the one
hand, the problem of understanding the link between all the different notions of rectifiability
presented above in the utmost level of generality - e.g., when the tangents are possibly not
complemented - in arbitrary Carnot groups seems out of reach as of today. On the other hand,
the various definitions of P-rectifiability are rather natural in the setting of Carnot groups
since they rely on the idea that a good definition of rectifiability selects sets or measures with
flat models. In this direction, the results in Chapter 2 and Chapter 3 are a systematic study
of the notion of P-rectifiability, trying to understand how to connect, in the most general
scenario, the infinitesimal approach to rectifiability with the global one - i.e., the one given by
covering with the correct class of building blocks. The result in Chapter 4 aims to highlight
how, in arbitrary Carnot groups, the global definition of rectifiability is very sensitive to the
choice of different building blocks, and requires special attention and studies.

Based on these results, one could speculate that the notion of P-rectifiability gives the
possibility to establish a robust theory of rectifiability of sets and measures in arbitrary
Carnot groups; finally, in a different direction, and due to possible pathological behaviours,
further studies of fine properties of intrinsic Lipschitz graphs - also in specific Carnot groups
- and of the notion of Carnot rectifiability à la Pauls are still needed.
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Other contributions

In this section I will list the other contributions I gave during my PhD studies.

0.1. Polynomial functions on Lie groups. In this subsection I shall discuss my con-
tribution to the study of polynomial maps on Lie groups. The reference for the discussion
below is my work with Le Donne [26].

Let G be a Lie group with Lie algebra g, seen as left-invariant vector fields on G. We fix
a left-Haar measure µ on G. Let S ⊆ g be a subset that is Lie bracket generating, i.e., the
only sub-algebra of g that contains S is g.

We say that a distribution f on G is S-polynomial if for all X ∈ S there exists k ∈ N such
that the iterated derivative Xkf is zero in the sense of distributions on G. We say that a
distribution f is S-polynomial with degree at most k if for every X ∈ S we have that Xkf is
zero in the sense of distributions on G. For basic definitions and properties of distributions on
Lie groups we refer the reader to the account given in [26, Section 2] and references therein.

In [26, Theorem 1.1] we show that every S-polynomial distribution on G, with a Lie
generating S, is represented by an analytic function. Moreover, the vector space of S-
polynomial distributions with degree at most k ∈ N on each connected component of G
is finite-dimensional. It is then natural to ask if an S-polynomial distribution on G is a poly-
nomial in some sense. A notion of polynomial map between arbitrary groups that showed to
be versatile has been studied, with a special attention toward the nilpotent case, in [156]. In
the case we deal with, i.e., the case of maps f : G → R, Leibman’s definition in [156] can be
generalized for distributions. Let us define the operator Dg acting on distributions f on G
as follows

Dgf := f ◦Rg − f,

where Rg stands for the right translation by g ∈ G and f ◦Rg is defined in the obvious way
via duality. We say that a distribution f on G is polynomial à la Leibman with degree at most
d ∈ N if

(5) g1, . . . , gd+1 ∈ G ⇒ Dg1 · · ·Dgd+1f ≡ 0, in the sense of distributions on G.

In [26, Item (1) of Theorem 1.2] we prove that the latter notion of being polynomial,
which is “discrete” in spirit, is equivalent to the following “differential” definition. We say
that a distribution f on G is polynomial (in the differential sense) with degree at most d ∈ N
if

(6) X1, . . . , Xd+1 ∈ g ⇒ X1 · · ·Xd+1f ≡ 0, in the sense of distributions on G.

Moreover, in [26, Item (4) of Theorem 1.2] we show that every polynomial function on a
connected Lie group passes to the maximal nilpotent Lie quotient, see the introduction of
[26] for the terminology.

Hence polynomial maps always factor via a nilpotent group. This motivates us to focus
the attention on polynomial maps on nilpotent Lie groups. When G is a connected nilpotent
Lie group exp : g → G is an analytic and surjective map, and thus one could also give another
definition of “polynomial”, namely a map f : G → R is polynomial in exponential chart if
f ◦ exp : g → R is a polynomial. In case G is a connected and nilpotent Lie group, we show
that the property of being S-polynomial propagates to the entire Lie algebra. Namely, we
prove that an S-polynomial distribution on G is represented by a polynomial in exponential
chart, and thus in particular it is g-polynomial of some degree k ∈ N, see [26, Remark 4.10].
Thus, one of our results in the setting of connected nilpotent Lie groups is the following.
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Theorem 0.4. Let G be a connected nilpotent Lie group, let f be a distribution on G, and let
S be a Lie generating subset of g. If f is S-polynomial, then it is represented by a function
that is polynomial in exponential chart.

We stress that if G is not nilpotent, being S-polynomial for a Lie generating S may not
imply being g-polynomial, or even being polynomial in exponential chart, see [26, Appendix
A] for such a counterexample in the group of affine orientation-preserving maps Aff(R)+. For
non-nilpotent groups we do not know either if being g-polynomial implies being polynomial,
or even if being g-polynomial passes to the maximal nilpotent Lie quotient.

With the previous result we can prove that on a connected nilpotent Lie group G the
different notions of being polynomial that we discussed above are equivalent and in particular
they are equivalent to being S-polynomial for any Lie generating S.
Theorem 0.5. Let G be a connected nilpotent Lie group, and let f be a distribution on G.
Then the following are equivalent

(1) f is an S-polynomial distribution for some Lie generating S ⊆ g,
(2) f is an S-polynomial distribution for all S ⊆ g,
(3) f is represented by a function that is polynomial in exponential chart,
(4) f is a polynomial distribution (in the differential sense), see (6).
(5) f is a polynomial distribution à la Leibman, see (5).

0.2. Isoperimetric problem on spaces with curvature bounded from below. In
this subsection I shall discuss my contributions to the study of the isoperimetric problem
on spaces with curvature bounded from below. The references for the discussion below are
my works [20, 24, 34–36]. These results are the outcome of several collaborations of myself
together with Bruè, Fogagnolo, Nardulli, Pasqualetto, Pozzetta, and Semola.

The isoperimetric problem can be formulated on every ambient space possessing notions
of volume measure m and perimeter Per on (some subclass of) its subsets. Among sets having
assigned positive volume, the problem deals with finding those having least perimeter. Among
the most basic questions in the context of the isoperimetric problem, one would naturally
ask whether there exist minimizers, called isoperimetric regions (or isoperimetric sets), but
also what goes wrong in the minimization process in case such minimizers do not exist. The
value of the infimum of the perimeter among sets of a given volume V is called isoperimetric
profile at V , and denoted by I(V ).

A natural class of spaces where to set the isoperimetric problem is given by metric measure
spaces (X, d,m). Indeed, the nonnegative Radon measure m plays the role of a volume
functional, and, together with a distance d, it is possible to give a definition of perimeter Per,
see [183]. The smooth and more classical counterpart of these spaces is given by Riemannian
manifolds. If (M, g) is a Riemannian manifold of dimension N , the natural Riemannian
distance and the N -dimensional Hausdorff measure HN yield the structure of metric measure
space, and the corresponding definition of perimeter recovers the classical well-known notion à
la Caccioppoli–De Giorgi. In fact, the theory of BV functions and of the perimeter functional
on metric measure spaces has been blossoming in the last decades [7,8,11,183,184].

The most natural way to approach the existence problem is to argue by direct method,
that is, by studying the behaviour of a minimizing sequence of sets Ei of fixed volume V whose
perimeter is converging to the isoperimetric profile at volume V . It is therefore understood
that, by usual precompactness and lower semicontinuity, the problem of existence is non
trivial only in case the ambient is noncompact (actually, with infinite measure). Already
in the smooth ambient, the development of an effective theory of a direct method for the
isoperimetric problem is a difficult task. Studying the problem in Euclidean solid cones, in
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[204] the authors identified a general mass splitting phenomenon of a minimizing sequence
for the problem, where the sequence decomposes into two components, one converging in the
space and the other diverging at infinity. Combining this approach with a concentration-
compactness argument, in [195] the author performed a better description of the possible
mass lost at infinity for the problem on Riemannian manifolds satisfying some asymptotic
hypotheses on their ends. The theory has then been successfully applied to get existence
theorems in [187], further generalized in [192].

As the examples in [24] point out, already in smooth Riemannian manifolds, the isoperi-
metric problem becomes trivial, i.e., the isoperimetric profile vanishes, unless it is assumed a
lower bound on the Ricci curvature and a positive lower bound on the volume of unit balls. In
fact, as one of the two hypotheses is not satisfied, one can find examples where a description
of the behaviour of minimizing sequences is actually compromised, see [24]. Therefore, it be-
comes natural to consider the isoperimetric problem on RCD(K,N) metric measure spaces,
which are spaces encoding synthetic notions of Ricci curvature bounded below by K ∈ R and
dimension bounded above by N ∈ (0,+∞]. We are not going to give an account on the huge
development of the RCD theory in the last years, and we refer the reader to the survey by
Ambrosio in [9] and [207].

Moreover, we shall address only the case of RCD(K,N) spaces of the form (X, d,HN ), i.e.,
endowed with the N -dimensional Hausdorff measure. We will call such spaces N -dimensional
RCD(K,N) spaces. The case of arbitrary volume measures m appears to be more involved
and related to a better understanding of the properties of the density of m with respect to
the Hausdorff measure of the essential dimension of the space. We stress that the class of N -
dimensional RCD(K,N) spaces, that has been recently introduced and studied in the works
[21, 67, 90, 140], is the non-smooth generalization of the class of non collapsed Ricci limit
spaces [71].

It is remarkable to notice that the development of a theory on such nonsmooth spaces
already is a necessary consequence also of the approach by direct method of the isoperimetric
problem on perfectly smooth Riemannian manifolds, see the introduction of my work with
Fogagnolo and Pozzetta [24]. Indeed, nonsmooth RCD(K,N) spaces (X, d,HN ) arise as
limits in the pointed Gromov–Hausdorff sense of smooth manifolds M with Ricci and volume
of unit balls bounded below along sequences of points diverging on M .

Capitalizing on the methods developed in [24,35,195], we are able to give a description
of the behaviour of perimeter minimizing sequences for the isoperimetric problem on RCD
spaces as follows. The following result is in my work with Nardulli and Pozzetta in [34].
It generalizes a previous result of myself with Fogagnolo and Pozzetta [24], by using as a
tool the results I obtained with Pasqualetto and Pozzetta [35]. For the notion of pmGH
convergence and L1-strong convergence, as well as for the notation, we refer the reader to
[34, Section 2] and references therein.
Theorem 0.6 (Asymptotic mass decomposition). Let K ≤ 0 and N ≥ 2. Let (X, d,HN ) be
a noncompact RCD(K,N) space. Assume there exists v0 > 0 such that HN (B1(x)) ≥ v0 for
every x ∈ X. Let V > 0. For every minimizing (for the perimeter) sequence of bounded sets
Ωi ⊆ X of volume V , up to passing to a subsequence, there exist a nondecreasing bounded
sequence {Ni}i∈N ⊆ N, disjoint finite perimeter sets Ωc

i ,Ωd
i,j ⊆ Ωi, and points pi,j, with

1 ≤ j ≤ Ni for any i, such that the following claims hold

• limi d(pi,j , pi,ℓ) = limi d(pi,j , o) = +∞, for any j ̸= ℓ ≤ N and any o ∈ X, where
N := limiNi < +∞;

• Ωc
i converges to Ω ⊆ X in the sense of finite perimeter sets, HN (Ωc

i ) →i HN (Ω),
and Per(Ωc

i ) →i Per(Ω). Moreover Ω is an isoperimetric region in X;
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• for every 0 < j ≤ N , (X, d,HN , pi,j) converges in the pmGH sense to a pointed
RCD(K,N) space (Xj , dj ,HN , pj). Moreover there are isoperimetric regions Zj ⊆
Xj such that Ωd

i,j →i Zj in L1-strong and Per(Ωd
i,j) →i Per(Zj);

• it holds that

(7) IX(V ) = Per(Ω) +
N∑

j=1
Per(Zj), V = HN (Ω) +

N∑
j=1

HN (Zj).

The previous Theorem 0.6 states a general behaviour for minimizing sequences of the
isoperimetric problem. Roughly speaking, the mass of a sequence splits into at most finitely
many pieces and it is totally recovered by finitely many isoperimetric regions sitting in spaces
possibly “located at infinity” with respect the original ambient space. Notice that Theo-
rem 0.6 is not an existence theorem, nor it is a nonexistence result, instead it is a general tool
for treating the problem by direct method. With such theorem it is then possible to recover
the main existence and nonexistence results previously proved in [20,24,187], and, actually,
to suitably extend those to the nonsmooth RCD setting.

We exploited the previous asymptotic mass decomposition result in Theorem 0.6 to prove
genuinely new - even on noncompact smooth Riemannian manifold - existence results for the
isoperimetric problem, and new sharp differential inequalities for the isoperimetric profile.
We refer the reader to the introductions of [20,36] for a detailed account on the results - and
their consequences - that we are going to discuss below.

We stress that almost all of the results obtained in the paper [36] I wrote together
with Pasqualetto, Pozzetta, and Semola, are new even for smooth, non compact manifolds
with lower Ricci curvature bounds and for Alexandrov spaces with lower sectional curvature
bounds. They answer several open questions in [38,50,154,182,196].

On simply connected model spaces with constant sectional curvature K/(N − 1) ∈ R and
dimension N ≥ 2 the isoperimetric profile IK,N solves the following second order differential
equation on its domain

(8) − I ′′
K,NIK,N = K +

(
I ′

K,N

)2

N − 1 .

Equivalently, setting ψK,N := I
N

N−1
K,N , we have

(9) − ψ′′
K,N = KN

N − 1ψ
2−N

N
K,N .

Combining the existence of isoperimetric regions for any volume, the regularity theory in
Geometric Measure Theory, and the second variation formula

(10) d2

dt2
|t=0Per(Et) =

ˆ
∂E

(
H2 − ||II||2 − Ric(ν, ν)

)
dPer ,

where t 7→ Et denotes the parallel deformation of E via equidistant sets, ν and II denote a
choice of the unit normal to ∂E and its second fundamental form, respectively, and Ric(ν, ν)
indicates the Ricci curvature of M in the direction of ν; in [49–51, 191, 197] it was proved
that the isoperimetric profile of a smooth, compact, N -dimensional Riemannian manifold
with Ric ≥ K verifies the inequality ≥ in (8) and (9) in a weak sense.

In [36] we obtain the following far reaching extension to the setting of RCD(K,N) metric
measure spaces (X, d,HN ) with a uniform lower bound on the volume of unit balls, without
any assumption on the existence of isoperimetric regions. We stress again that the classical
argument to show Theorem 0.7 in the compact setting uses in a crucial way the existence of
isoperimetric regions for every volume, that we do not have at disposal in the present setting.
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Indeed, for the proof of Theorem 0.7, one key tool will be the previously discussed asymptotic
mass decomposition theorem in Theorem 0.6.
Theorem 0.7. Let K ∈ R, and N ≥ 2. Let (X, d,HN ) be an RCD(K,N) space. Assume
that there exists v0 > 0 such that HN (B1(x)) ≥ v0 for every x ∈ X.

Let I : (0,HN (X)) → (0,∞) be the isoperimetric profile of X. Then the following holds.
(1) the inequality

−I ′′I ≥ K + (I ′)2

N − 1 holds in the viscosity sense on (0,HN (X)) ,

(2) if ψ := I
N

N−1 then

−ψ′′ ≥ KN

N − 1ψ
2−N

N holds in the viscosity sense on (0,HN (X)) .

In particular, the above holds for non compact smooth Riemannian manifolds with Ricci
curvature bounded from below and volume of unit balls uniformly bounded away from zero,
without further restrictions on their geometry at infinity. The proof combines the generalized
existence of isoperimetric regions (cf. Theorem 0.6), the interpretation of the differential
inequalities in the viscosity sense and the forthcoming Laplacian comparison Theorem 0.8 to
estimate first and second variation of the area via equidistant sets in the non smooth setting,
in an original way.

The other key tool that we develop to prove Theorem 0.7 is a sharp bound on the Lapla-
cian of the signed distance function from isoperimetric regions inside RCD(K,N) metric
measure spaces (X, d,HN ). It is the isoperimetric analogue of the result in [188] for perime-
ter minimizers.

For every k, λ ∈ R, let us introduce the comparison functions

(11) sk,λ(r) := cosk(r) − λ sink(r) ,

where

(12) cos′′
k +k cosk = 0 , cosk(0) = 1 , cos′

k(0) = 0 ,

and

(13) sin′′
k +k sink = 0 , sink(0) = 0 , sin′

k(0) = 1 .

Theorem 0.8. Let (X, d,HN ) be an RCD(K,N) metric measure space for some K ∈ R and
N ≥ 2, and let E ⊆ X be an isoperimetric region. Then, denoting by f the signed distance
function from E, there exists c ∈ R such that
(14)

∆f ≥ −(N − 1)
s′

K
N−1 , c

N−1
◦ (−f)

s K
N−1 , c

N−1
◦ (−f) on E, and ∆f ≤ (N − 1)

s′
K

N−1 ,− c
N−1

◦ f

s K
N−1 ,− c

N−1
◦ f

on X \ E .

The bounds in (14) are understood in the sense of distributions, and we always consider
open representatives for isoperimetric regions, which is possible due to one of the main results
of my work with Pasqualetto and Pozzetta [35]. The bounds above are sharp, since equalities
are attained in the model spaces with constant sectional curvature.

Notice that the distance function might not be globally smooth even when (X, d) is
isometric to a smooth Riemannian manifold and E ⊆ X has smooth boundary, in which case
(14) is equivalent to the requirement that ∂E has constant mean curvature equal to c. Hence
we decided to call any c ∈ R such that (14) holds a mean curvature barrier for E.

In [36] we derive several consequences of Theorem 0.7 and Theorem 0.8 among which:
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• a sharp and rigid isoperimetric inequality for RCD(0, N) spaces (X, d,HN ) with
Euclidean volume growth, see [36, Theorem 1.3]. The rigidity part improves the
previous results obtained in [1,38,63,105];

• uniform lower bounds, semi-concavity and Lipschitz properties of the isoperimetric
profile in a fixed range of volumes, only depending on the lower Ricci curvature
bound, the dimension and a lower bound on the volume of unit balls;

• the strict subadditivity of the isoperimetric profile for small volumes (only depending
on K, N and the uniform lower bound on the volume of unit balls). This implies
in turn that isoperimetric regions with small volume are connected. Moreover, in
the asymptotic mass decomposition, minimizing sequences for small volumes do not
split: either they converge to an isoperimetric region, or they drift off to exactly one
isoperimetric region in a pointed limit at infinity. All the previous conclusions hold
for every volume when K = 0;

• uniform, scale invariant diameter estimates for isoperimetric regions of small volume,
without further assumptions, and for any volume when K = 0 and (X, d,HN ) has
Euclidean volume growth. This answers a question in [196];

• uniform density estimates and uniform almost minimality properties for isoperimet-
ric sets. They allow to bootstrap L1-convergence to Gromov–Hausdorff convergence
and convergence of the perimeters for sequences of isoperimetric sets, and to prove
the stability of mean curvature barriers, compare with [136];

• the exact asymptotic behaviour of the isoperimetric profile for small volumes and,
when K = 0, for large volumes, see [36, Theorem 1.4 and Theorem 1.5]. This
extends some results in [158] that hold for unbounded convex bodies to the much
more general setting of RCD(K,N) spaces (X, d,HN ).

We also stress that the application of Theorem 0.6 gives raise to new existence results in
spaces with curvature bounded from below. For the following statement in the smooth case,
we refer the reader to [20, Theorem 1.3] while the exact result stated below is in [36, Item (1)
of Theorem 1.4]. For some comments on this statement we refer the reader to the introduction
of my work with Bruè, Fogagnolo, and Pozzetta [20], where we developed all the machineries
to prove Theorem 0.9.
Theorem 0.9. Let (X, d) be an Alexandrov space of dimension N ∈ N with non negative
curvature. Suppose that (X, d,HN ) satisfies

lim
r→+∞

HN (Br(x))
ωNrN

=: AVR(X, d,HN ) > 0,

where x ∈ X, and ωN is the volume of the unit ball in RN . Then there exists V0 ≥ 0 such
that for every V ≥ V0 there exists an isoperimetric region of volume V .

0.3. Other results. In this final subsection I will sketch the statements of other results
I obtained during my studies.

0.3.1. Carnot–Carathéodory structures and their limits. In this subsection I will state
the main result obtained in [27], together with Le Donne, and Nicolussi Golo, about the
convergence of distances associated to converging Carnot–Carathéodory structures.

In [27] we dealt with the following general problem. Let M be a smooth manifold endowed
with a family of vector fields and a continuously varying norm on the tangent spaces. Let us
consider the length distance associated to the trajectories that infinitesimally follow such a
family. What are the weakest notion of convergence and the most general assumptions on the
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family of vector fields and the norm that ensure the uniform convergence of the associated
length distances?

Such a question is natural while studying metric geometry. For example, a better under-
standing of such a question gives an effective way of approximating sub-Finsler distances with
Finsler distances, compare with [152, 153]. Moreover, a remarkable situation in which the
convergence of the distances associated to converging sub-Finsler structures emerges is while
studying asymptotic or tangent cones of sub-Finsler structures, see the celebrated works of
Mitchell and Bellaïche [52,185] (and the account in [129]), and the work of Pansu [199].

Let us fix from now on a finite-dimensional real Banach space E, and a smooth manifold
M . A Lipschitz-vector-field structure f : M → E∗ ⊗ TM on M modelled by E is a Lipschitz
choice, for every point p ∈ M , of a linear map between E and TpM . We say that a sequence
of Lipschitz-vector-field structures {fn}n∈N converges to a Lipschitz-vector-field structure f∞
if, on every compact subset of M , {fn}n∈N is an equi-Lipschitz family that converges to f∞
uniformly.

Let f be a Lipschitz-vector-field structure on M modelled by E. We say that N : M×E →
R is a continuously varying norm on M × E if N is continuous, and N(p, ·) is a norm on
E for every p ∈ M . Attached to a couple (f, N) there is a natural notion of energy and
length associated to every u ∈ L∞([0, 1];E), which we will sometimes call control, see [27].
Taking the infimum of the energy (or equivalently of the length) of all the controls associated
to the curves that connect two points, one defines the Carnot–Carathéodory distance d(f,N)
associated to (f, N), see [27, Definition 1.2] for details.

In [27] we aim at understanding which kind of convergence is expected from the sequence
of distances {d(fn,Nn)}n∈N when we have that the sequence {(fn, Nn)}n∈N converges. The
key hypothesis in order to have the local uniform convergence of the distances is a kind of
essential non-holonomicity of the limit vector-field structure f∞. We refer to [27, Definition
1.3] for the precise notion of essential non-holonomicity, and we just sketch its definition here.
First of all we introduce the notion of essentially open map. We say that a continuous map
f : M → N between two topological manifolds of the same dimension k is essentially open at
p ∈ M at scale U if U is a neighborhood of p homeomorphic to the k-dimensional Euclidean
ball, with ∂U homeomorphic to the sphere Sk−1, and there exists V a neighborhood of f(p)
homeomorphic to the k-dimensional Euclidean ball, such that f(∂U) ⊆ V \f(p) and the map
f : ∂U → V \ f(p) induces a nonconstant map between the (k − 1)-homology groups. Then,
a set F of Lipschitz vector fields on a smooth manifold M of dimension m is essentially non-
holonomic at a point p ∈ M whenever there exists a sequence of points pn ∈ M that converges
to p such that pn is connected to p with the concatenation, starting at p, of line flows of m
vector fields in F for times (t1, . . . , tm), and moreover such concatenation is essentially open
around (t1, . . . , tm). We stress that one can prove that the latter notion is weaker than the
bracket-generating condition in the case the vector fields are smooth.

We are now ready to give the main theorem of our paper [27], see [27, Theorem 1.4].
For some applications, i.e., a sub-Finsler Mitchell’s Theorem, and a convergence result for
distances on Lie groups, we refer the reader to [27, Theorem 1.5], and to [27, Theorem 1.6],
respectively.
Theorem 0.10. Let M be a smooth manifold, and let E be a finite-dimensional real Banach
space. Let f̂ be an essentially non-holonomic Lipschitz-vector-field structure modelled by E,
and let N̂ : M × E → [0,+∞) be a continuously varying norm. Then the following hold.

(1) if M is connected, then d(f̂,N̂)(p, q) < ∞ for every p, q ∈ M ;
(2) d(f̂,N̂) induces the manifold topology on M ;
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(3) Let {fn}n∈N be a sequence of Lipschitz-vector-field structures on M modelled by E,
and let {Nn}n∈N be a sequence of continuously varying norms on M × E. Let us
assume that fn → f̂ in the sense of Lipschitz-vector-field structures described above,
and Nn → N̂ uniformly on compact subsets of M × E.

Then d(fn,Nn) → d(f̂,N̂) locally uniformly on M , i.e., every o ∈ M has a neigh-
borhood U such that d(fn,Nn) → d(f̂,N̂) uniformly on U × U as n → +∞.

(4) If in the hypotheses of item (3) we additionally have that d(f̂,N̂) is a boundedly
compact (or equivalently complete) distance, we conclude that

lim
n→+∞

d(fn,Nn) = d(f̂,N̂),

uniformly on compact subsets of M × M . Moreover, for every x ∈ M , we have
(M,d(fn,Nn), x) → (M,d(f̂,N̂), x) in the pointed Gromov–Hausdorff topology as n →
+∞.

0.3.2. Unextendable intrinsically Lipschitz graphs. In this subsection I will state the main
result obtained in [30] together with Merlo about the existence, in some Carnot groups, of
positive-measured intrinsically Lipschitz curves that cannot be extended to entire intrinsically
Lipschitz curves.

Questions about Lipschitz Extension Properties, LEP from now on, that are classical in
Geometric Measure Theory, can be asked also for intrinsically Lipschitz graphs in Carnot
groups. For example, is it true that every intrinsically Lipschitz map φ : U ⊆ W → V,
where W,V are complementary subgroups of a Carnot group, can be extended to an entire
intrinsically Lipschitz map φ̃ : W → V? The answer is positive when the subgroup V
is horizontal, i.e., contained in the first layer of the stratification of the Carnot group, cf.
[213, Theorem 1.5], and [116, Theorem 4.25].

Hence, we have the validity of the LEP for low-codimensional intrinsically Lipschitz
graphs in arbitrary Carnot groups. Moreover, in the recent [94], the authors prove that
every φ : U ⊆ W → V, where W,V are complementary subgroups of the n-th Heisenberg
group Hn, and W is horizontal, can be extended to an entire intrinsically Lipschitz map
φ̃ : W → V, cf. [94, Theorem 1.2].

In [30] we show that the previous example is special. Namely, we provide a negative
answer to the validity of the LEP for intrinsically Lipschitz maps defined on subsets of hori-
zontal subgroups of a Carnot group. It is the first example in which the LEP of intrinsically
Lipschitz graphs is known to fail on Carnot groups. We recall that with F2,3 we denote the
free Carnot group of rank 2 and step 3, and with V1 we denote its horizontal layer. Up to a
choice of an adapted basis B := (X1, X2, X3, X4, X5) of the Lie algebra, we identify F2,3 with
R5 through the exponential map. We endow the Lie algebra of F2,3 with an auxiliary inner
product that makes B an orthonormal basis, and we fix an arbitrary left-invariant homoge-
neous distance on F2,3. The Hausdorff measures on F2,3 are computed with respect to such a
distance. Finally, for every e ∈ V1 we denote N(e) := {exp(te) : t ∈ R}, and V(e) := exp(e⊥).
Hence the main result of our paper [30] reads as follows.
Theorem 0.11. Let F2,3 be the free Carnot group of rank 2 and step 3, and let V1 be the
first layer of a stratification of its Lie algebra. For any e ∈ V1 there exists a compact set
K ⊆ N(e), and an intrinsically Lipschitz function φ : K → V(e) such that the following two
conditions hold.

(i) H1(graph(φ)) > 0, where graph(φ) := {a · φ(a) : a ∈ K},
(ii) for any intrinsically Lipschitz map φ̃ : Ω → V(e), where Ω is an open subset of N(e),

we have
H1(graph(φ) ∩ graph(φ̃)) = 0.
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As a consequence, there exists no intrinsically Lipschitz map ψ : N(e) → V(e) such that
ψ|K = φ.

0.3.3. Volume bounds for the quantitative singular strata in noncollapsed RCD spaces. In
this subsection I will state the main result obtained in [21] together with Bruè and Semola
about volume bounds for the quantitative singular strata in noncollapsed RCD spaces.

Building upon [90], it is possible to prove that any tangent cone to an N -dimensional
RCD(K,N) space (X, d,HN ) is a metric cone. Letting then R ⊆ X be the set of those points
where the tangent cone is the N -dimensional Euclidean space, following [71] it is possible to
introduce a stratification

S0 ⊆ · · · ⊆ SN−1 = S = X \ R,

of the singular set S, where, for any k = 0, . . . , N − 1, Sk is the set of those points where
no tangent cone splits a factor Rk+1. Adapting the arguments of [71], in [90] the Hausdorff
dimension estimate dimH Sk ≤ k was obtained.

In [74] a quantitative and effective counterpart of the above mentioned stratification of
the singular set was introduced letting, for any k = 0, . . . , N − 1 and for any r, η > 0, Sk

η,r be
the set of those points x ∈ X where the scale invariant Gromov-Hausdorff distance between
the ball Bs(x) and any ball of the same radius centered at the tip of a metric cone splitting a
factor Rk+1 is bigger than η for any r < s < 1. In particular for any η > 0 and any 0 < r < 1,
we define the k-effective stratum Sk

η,r by

Sk
η,r :=

{
y|dGH(Bs(y), Bs ((0, z∗))) ≥ ηs for all Rk+1 × C(Z) and all r ≤ s ≤ 1

}
,

where Bs ((0, z∗)) denotes the ball in Rk+1 × C(Z) centered at (0, z∗) with radius s. We
recall that C(Z) denotes the metric cone with basis the metric space Z. Hence we prove the
following theorem, which can be found in our paper [21, Theorem 2.4]. The following theorem
has been used as a key tool in [186], where the boundary of N -dimensional RCD(K,N) spaces
is studied, see also [67]. We recall that vK,N (r) denotes the volume of the ball of radius r in
the simply connected model of constant sectional curvature K/(N − 1) and dimension N .
Theorem 0.12. Given K ∈ R, N ∈ [2,+∞), an integer k ∈ [0, N), and v, η > 0, there exists
a constant c(K,N, v, η) > 0 such that if (X, d,HN ) is an RCD(K,N) metric measure space
satisfying

(15) HN (B1(x))
vK,N (1) ≥ v ∀x ∈ X,

then, for all x ∈ X and 0 < r < 1/2, it holds

(16) HN (Sk
η,r ∩B1/2(x)) ≤ c(K,N, v, η)rN−k−η.

0.3.4. Area formula for intrinsically differentiable graphs in Carnot groups. In this sub-
section I will state one of the main results obtained in [33] together with Merlo. It is an
area formula for (almost everywhere) intrinsically differentiable graphs in arbitrary Carnot
groups. The other results of [33] are described in Chapter 2. In [33] one may also find
rectifiability results for level sets of Lipschitz functions between Carnot groups, but I will
skip the treatment of such results in this thesis. For the terminology used in this subsection
we refer the reader to Chapter 1.

We start introducing the notion of area factor with respect to a splitting of a Carnot
group, and then we give the statement of the theorem.
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Lemma 0.13 ([109, Proposition 3.1.5]). Let V,L be two homogeneous complementary sub-
groups in G. Let P be a homogeneous subgroup that is a complementary subgroup of L. Then
there exists a map φP : V → L such that P = ΦP(V) := V · φP(V).
Definition 0.14 (Area factor, [132, Lemma 3.2]). Let V,L be two homogeneous comple-
mentary subgroups of a Carnot group G. Let P be a homogeneous subgroup that is a
complementary subgroup of L. Take φP : V → L as in Lemma 0.13 and let ΦP : v 7→ v ·φP(v)
be its graph map. Then the centered area factor of P with respect to the splitting V ·L is the
unique 0 < A(P) < +∞ such that

(17) Ch⌞P = A(P)(ΦP)∗(Ch⌞V).
Theorem 0.15. Let V,L be two homogeneous complementary subgroups of a Carnot group G,
and let h be the homogeneous dimension of V. Let Γ be the graph of an intrinsically Lipschitz
map φ : A ⊆ V → L, with A Borel. Let us assume Γ is an intrinsically differentiable graph
at Sh-almost every x ∈ Γ and let us assume that the Hausdorff tangent V(x) of Γ at x is
complemented by L at Sh-almost every x ∈ Γ. Then, for every Borel function ψ : Γ →
[0,+∞), the following area formula holds

(18)
ˆ

Γ
ψdCh⌞Γ =

ˆ
A
ψ(a · φ(a))A(V(a · φ(a)))dCh⌞V,

where Ch is the centered Hausdorff measure, V(a · φ(a)) is the Hausdorff tangent of Γ at the
point a · φ(a) ∈ Γ, and A(·) is the centered area factor defined with respect to the splitting
G = V · L, see Definition 0.14.

Let us remark that (18) extends and strengthens the area formula of [132, Theorem 1.1].
Let us stress that when a Rademacher theorem is available, one can remove the hypothesis
about the intrinsic differentiability in Theorem 0.15. Nevertheless, as it will be discussed in
Chapter 2, a Rademacher theorem might not hold in arbitrary Carnot groups, see [134].

Let us point out that in the literature one can find many more analytic area formulae
in Carnot groups, i.e., in which the area element is expressed in terms of properly defined
intrinsic derivatives of the map ψ. This is the case of [85, Theorem 1.1 and Theorem 1.2] for
low-codimensional C1

H-submanifolds in Heisenberg groups (cf. also [114, Theorem 2]), which
has been extended to intrinsically Lipschitz low-codimensional surfaces in [213, Theorem 1.3]
(cf. also [82, Theorem 1.6]); and of [23, Proposition 1.8] for one-codimensional C1

H-graphs in
arbitrary Carnot groups. The latter formulae could be derived from Theorem 0.15 explicitly
writing the area element in terms of the intrinsic derivatives of the parametrization map φ.
Other geometric area formulae for Euclidean C1 or C1,1-submanifolds in Carnot groups have
been investigated, e.g., in [165–167].

0.3.5. Analytic characterizations of intrinsically C1 hypersurfaces in Carnot groups of
step 2. In this subsection I will state the main results obtained in [22, 23] together with Di
Donato, Don, and Le Donne about the characterization of intrinsically C1 regular submani-
folds through analytic properties of the graphing function in groups of step 2.

We focus our attention on codimension-one intrinsic graphs. Other results in the arbitrary
co-horizontal case are in the works [23, 141]. A codimension-one intrinsic graph Γ inside a
Carnot group G comes with a couple of homogeneous and complementary subgroups W and L
with L one-dimensional, and a map φ : U ⊆ W → L such that Γ = {x ∈ G : x = w ·φ(w), w ∈
U}. It turns out that the regularity of the graph Γ is strictly related to the regularity of φ
and its intrinsic gradient ∇φφ, see Section 4. However, one can define some different notions
of regularity that rely on some φ-dependent operators Dφ

W with W ∈ Lie(W). We recall
that given two homogeneous complementary subgroups W and L in a Carnot group G, and
a continuous function φ : U ⊆ W → L defined on an open set U of W, we define, for every
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W ∈ Lie(W), the continuous projected vector field Dφ
W , by defining its action on smooth

functions as follows

(19) (Dφ
W )|w(f) := W|w·φ(w)(f ◦ PW),

for all w ∈ U and all f ∈ C∞(W), where PW is the projection on W relative to the splitting
G = W · L.

If an adapted basis of the Lie algebra (X1, . . . , Xn) is fixed and is such that L :=
exp(span{X1}) and W := exp(span{X2, . . . , Xn}), then we denote by Dφ the vector-valued
operator (Dφ

X2
, . . . , Dφ

Xm
) =: (Dφ

2 , . . . , D
φ
m), where m is the rank of G, i.e., the dimension

of the first layer of the stratification of G. The regularity of Γ is related to the validity of
the equation Dφφ = ω in an open subset U ⊆ W, for some ω : U → Rm−1, which can be
understood in different ways. We briefly present some of them here.

Distributional sense. Since L is one-dimensional, one can see that Dφφ is a well-
defined distribution. Thus we could interpret the equality Dφφ = ω in the distribu-
tional sense.
Broad* sense. For every j = 2, . . . ,m and every point a ∈ U , there exists a C1 inte-
gral curve of Dφ

Xj
starting from a for which the Fundamental Theorem of Calculus

with derivative ω holds, see [23] for details.
Broad sense. For every j = 2, . . . ,m and every point a ∈ U , all the integral curves
of Dφ

Xj
starting from a are such that the Fundamental Theorem of Calculus with

derivative ω holds, see [23] for details.
Approximate sense. For every a ∈ U , there exist δ > 0 and a family {φε ∈
C1(Bδ(a)) : ε ∈ (0, 1)} such that φε → φ and Dφε

j φε → ωj uniformly on Bδ(a)
as ε goes to zero, for every j = 2, . . . ,m.

In the two works [23] and [22], When G has step 2 we prove the following theorem,
see [23, Theorem 6.17], and [22, Theorem 4.2]. For the relevant definitions in the following
statement that we did not explain above, we refer the reader to Section 4 of Chapter 2.
Theorem 0.16. Let G be a Carnot group of step 2 and rank m, and let W and L be two
homogeneous complementary subgroups of G, with L horizontal and one-dimensional. Let
U ⊆ W be an open set, and let φ : U → L be a continuous function. Then the following
conditions are equivalent.

(a) graph(φ) is a C1
H-hypersurface with tangents complemented by L;

(b) φ is uniformly intrinsically differentiable on U ;
(c) φ is intrinsically differentiable on U and its intrinsic gradient is continuous;
(d) there exists ω ∈ C(U ;Rm−1) such that, for every a ∈ U , there exist δ > 0 and a

family of functions {φε ∈ C1(Bδ(a)) : ε ∈ (0, 1)} such that

lim
ε→0

φε = φ, and lim
ε→0

Dφε
j φε = ωj in L∞(Bδ(a)),

for every j = 2, . . . ,m;
(e) there exists ω ∈ C(U ;Rm−1) such that Dφφ = ω holds in the broad sense on U ;
(f) there exists ω ∈ C(U ;Rm−1) such that Dφφ = ω holds in the broad* sense on U .
(g) there exists ω ∈ C(U ;Rm−1) such that Dφφ = ω holds in the distributional sense U .

Moreover if any of the previous holds, ω is the intrinsic gradient of φ.
The previous Theorem 0.16 is the complete generalization to the case of step-2 Carnot

groups of all the results scattered in [16,58,59] where the authors study the same problem
in the Heisenberg groups, and of [93] where partial results are obtained in the case of step-2
Carnot groups.
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0.3.6. The Rank-One Theorem in RCD spaces. In this subsection I will state the main
result obtained in [19] together with Brena and Pasqualetto, which is the Rank-One Theorem
in finite dimensional RCD spaces.

Let Ω be an open subset of Rn, and let u ∈ BV(Ω;Rk). By using the Lebesgue–Radon–
Nikodým Theorem one can write the distributional derivative of u as

Du = Dau+Dsu,

where Dau is the absolutely continuous part of Du with respect to the Lebesgue measure Ln,
and Dsu is the singular part of Du. We denote with Du/|Du| the matrix-valued Lebesgue–
Radon–Nikodým density of Du with respect to the total variation |Du|.

In 1988 Ambrosio and De Giorgi [18], motivated by the study of some functionals coming
from the Mathematical Physics, conjectured the following:

Rank-One property: For every u ∈ BV(Ω;Rk) the matrix Du/|Du| has rank-one
|Du|s-almost everywhere.

In 1993 Alberti [5] solved in the affirmative the previous conjecture.
Let (X, d,m) be a metric measure space. The definition of BV function on (X, d,m) by

Miranda and Ambrosio can easily be adapted to give a meaning of the total variation |DF | of
an arbitrary F ∈ BVloc(X, d,m)k, while in the general metric measure setting a good notion
for the Lebesgue–Radon–Nikodým derivative DF/|DF | is missing.

In the setting of RCD metric measure spaces, the study of calculus has been blossoming
very fast in the last decade. In particular, very recently in [91] the authors propose and
study the notion of L0(Cap)-normed L0(Cap)-module, and the notion of capacitary tangent
module L0

Cap(TX), where Cap denotes the usual 2-Capacity.
A fundamental contribution of [65], building on [91], is the fact that, in the setting of

RCD(K,N) spaces, for an arbitrary set of finite perimeter E with finite mass, one can give
a meaning to the unit normal νE = DχE/|DχE | as an element of the capacitary tangent
module L0

Cap(TX) such that the Gauss–Green formula holds, see [65, Theorem 2.4]. The
Gauss–Green formula has been then successfully employed, together with the former work
by Ambrosio–Bruè–Semola [10], to obtain the (n− 1)-rectifiability of the essential boundary
of any set of locally finite perimeter in an RCD space of essential dimension n, see [65,66].

The Gauss–Green formula in [65, Theorem 2.4] has been generalized by Brena–Gigli
in [62] for vector–valued BV functions. We give below the statement of the Gauss–Green
formula in [62], where the density νF = DF/|DF | is implicitly defined.
Theorem 0.17 ([62, Theorem 3.13]). Let k ≥ 1 be a natural number, let K ∈ R, and let
N ≥ 1. Let (X, d,m) be an RCD(K,N) space, and let F ∈ BV(X, d,m)k. Then there exists
a unique νF ∈ L0

Cap(TX)k, up to |DF |-almost everywhere equality, such that |νF | = 1 |DF |-
almost everywhere, and

k∑
j=1

ˆ
X
Fjdiv(vj)dm = −

ˆ
X
π|DF |(v) · νFd|DF |, for every test vector field v = (v1, . . . , vk).

For the notion of divergence of a vector field, the notion of test vector fields, the notion of
the projection π|DF | and of the norm | · | in L0

Cap(TX)k, we refer the reader to the preliminary
section of [19].

The previous Theorem 0.17 tells us that in the setting of RCD(K,N) spaces we can give
a precise meaning to DF/|DF | for an arbitrary vector-valued BV function F . Hence it is
meaningful to ask if DF/|DF | is a rank-one matrix |DF |s-almost everywhere, where |DF |s
is the singular part of the total variation |DF |. Before giving the main result we clarify this
last sentence by means of a definition.
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Definition 0.18. Let k ≥ 1 be a natural number, let K ∈ R, and let N ≥ 1. Let (X, d,m)
be an RCD(K,N) space, let ν ∈ L0

Cap(TX)k, and let µ ≪ Cap be a Radon measure. We say
that

Rk(ν) = 1 µ-almost everywhere,
if there exist ω ∈ L0

Cap(TX) and λ1, . . . , λk ∈ L0(Cap) such that for every i = 1, . . . , k,
νi = λiω µ-almost everywhere.

Theorem 0.19 (Rank-One Theorem for RCD(K,N) spaces). Let k ≥ 1 be a natural number,
let K ∈ R, and let N ≥ 1. Let (X, d,m) be an RCD(K,N) space, and let F ∈ BV(X, d,m)k.
Then

Rk(νF ) = 1 |DF |s-almost everywhere,
in the sense of Definition 0.18, where νF is defined in Theorem 0.17, and |DF |s is the singular
part of the total variation |DF |.

The proof of Theorem 0.19 closely follows the one in the Euclidean setting by Massaccesi–
Vittone [173], whose strategy has been used by Don–Massaccesi–Vittone to prove the Rank-
One property in some Carnot groups [96]. As far as we know, apart from the result of
Don–Massaccesi–Vittone [96] that holds for a special class of Carnot groups, Theorem 0.19
is one of the first instances of the validity of the Rank-One Theorem in a large class of metric
measure spaces.





CHAPTER 1

Preliminaries

In this first chapter we discuss preliminary results and notation of this thesis.
In Section 1 we discuss general facts of Measure Theory. In particular in Section 1.1 we

define the Hausdorff measures, in Section 1.2 we discuss general definitions and facts about
Radon measures, and finally in Section 1.3 we briefly discuss the notion and some results
regarding Vitali relations.

In Section 2 we discuss general facts and notation in Carnot groups. In particular, in
Section 2.1 we set the basic definitions about Carnot groups and, among other things, we
give the definitions of homogeneous subgroups, and left-invariant homogeneous distances and
norms. In Section 2.2 we introduce and discuss the properties of the Grassmannian of a
Carnot group, which is the set of homogeneous subgroups of a Carnot group. We prove that
the Grassmannian is compact, and then we discuss basic properties of the Haar measures
of homogeneous subgroups of a Carnot group. In Section 2.3 we introduce and study the
splitting projections on complementary subgroups of a Carnot group, and the notions of cones
over homogeneous subgroups of a Carnot group.

In Section 3 we discuss the definitions of rectifiable measures in Carnot groups. In partic-
ular in Section 3.1 we give the notion of tangent measures to a Radon measure, we consider
the class of flat measures on a Carnot group, which are by definition Haar measures on ho-
mogeneous subgroups, and we give the definition of P-rectifiable measure. In Section 3.2 we
define a couple of functionals that in some sense quantify the distance of a Radon measure
from being flat, and we discuss some of their properties. Finally, in Section 3.3 we prove the
measurability of the map that associates to a point in the support of a Radon measure its
flat tangent when this tangent is assumed to be unique pointwise almost everywhere.

In Section 4 we introduce several classes of intrinsic regular functions and submanifolds
in Carnot groups. In particular, in Section 4.1 we introduce and discuss the notion of intrin-
sically Lipschitz function. In Section 4.2 we introduce the notion of intrinsically differentiable
function and graph, uniformly intrinsically differentiable function, and we explore what hap-
pens when the target of the function is a horizontal subgroup. In Section 4.3 we introduce
the notion of C1

H-function between Carnot groups, we give the area formula for Lipschitz
functions between Carnot groups, we discuss the definition of intrinsically C1 rectifiable sets,
and we discuss the relation of such a definition with the one of P-rectifiability. Finally we
briefly discuss the class of co-horizontal intrinsically C1 submanifolds.

1. Measure Theory

In this section we introduce the general notation and the basic facts of Measure Theory
we are going to exploit in this thesis. Standard references for the material that we are going
to discuss are [12,102,174].

Let (X, d) be a metric space. We let B(x, r) := {z ∈ X : d(x, z) < r} be the open metric
ball relative to the distance d centred at x and with radius r > 0. The closed ball will be
denoted with B(x, r) := {z ∈ X : d(x, z) ≤ r}. Moreover, for a subset E ⊆ X and r > 0,
we denote with B(E, r) := {z ∈ X : dist(z, E) ≤ r} the closed r-tubular neighborhood of E

1
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and with B(E, r) := {z ∈ X : dist(z, E) < r} the open r-tubular neighborhood of E, where
dist(z, E) := infx∈E d(z, x). If A ⊆ X, we denote with diamA the diameter of A, i.e., the
quantity sup(x,y)∈A×A d(x, y).

1.1. Hausdorff measures. In this subsection we introduce the Hausdorff measures.
Definition 1.1 (Hausdorff Measures). Let (X, d) be a metric space. We define the h-
dimensional spherical Hausdorff measure relative to d as

Sh(A) := sup
δ>0

inf
{ ∞∑

j=1
rh

j : A ⊆
∞⋃

j=1
B(xj , rj), rj ≤ δ

}
,

for every A ⊆ X. We define the h-dimensional Hausdorff measure relative to d as

Hh(A) := sup
δ>0

inf


∞∑

j=1
2−h(diamEj)h : A ⊆

∞⋃
j=1

Ej , diamEj ≤ δ

 ,
for every A ⊆ X. We define the h-dimensional centered Hausdorff measure relative to d as

Ch(A) := sup
E⊆A

Ch
0 (E),

for every A ⊆ X, where

Ch
0 (E) := sup

δ>0
inf
{ ∞∑

j=1
rh

j : E ⊆
∞⋃

j=1
B(xj , rj), xj ∈ E, rj ≤ δ

}
,

for every E ⊆ X. We stress that Ch is an outer measure, and thus it defines a Borel
regular measure, see [97, Proposition 4.1], and that the measures Sh,Hh, Ch are all equivalent
measures, see [102, Section 2.10.2] and [97, Proposition 4.2].
Definition 1.2 (Hausdorff distance). Let (X, d) be a metric space. For every couple of sets
A,B ⊆ X, we define the Hausdorff distance of A from B as

dH(A,B) := max
{

sup
x∈A

dist(x,B), sup
y∈B

dist(A, y)
}
,

where
dist(x,A) := inf

y∈A
d(x, y),

for every x ∈ X and A ⊆ X.

1.2. Densities of Radon measures. In this subsection we discuss general facts about
Radon measures. For basic references on Measure Theory in this setting we refer the reader
to [12, Chapter 1].
Definition 1.3 (Weak convergence of measures). Let (X, d) be a locally compact separable
space. Given a family {ϕi}i∈N of Radon measures on X, we say that ϕi weakly converges to
a Radon measure ϕ, and we write ϕi ⇀ ϕ, ifˆ

fdϕi →
ˆ
fdϕ, for every f ∈ Cc(X),

where Cc(X) denotes the space of compactly supported functions on X.
Definition 1.4 (Lower and upper densities). If ϕ is a Radon measure on a locally compact
separable metric space (X, d), and h ≥ 0, we define

Θh
∗(ϕ, x) := lim inf

r→0

ϕ(B(x, r))
rh

, and Θh,∗(ϕ, x) := lim sup
r→0

ϕ(B(x, r))
rh

,
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and we say that Θh
∗(ϕ, x) and Θh,∗(ϕ, x) are the lower and upper h-density of ϕ at the point

x ∈ X, respectively. Furthermore, we say that the measure ϕ has h-density if
0 < Θh

∗(ϕ, x) = Θh,∗(ϕ, x) < ∞, for ϕ-almost every x ∈ X.

Definition 1.5 (Asymptotically doubling measure). If ϕ is a Radon measure on a locally
compact separable metric space (X, d), we say that ϕ is asymptotically doubling if

lim sup
r→0

ϕ(B(x, 2r))
ϕ(B(x, r))

< +∞, for ϕ-almost every x ∈ X.

Remark 1.6. Let ϕ be a Radon measure on a locally compact separable metric space (X, d).
Suppose there exists h > 0 with 0 < Θh

∗(ϕ, x) ≤ Θh,∗(ϕ, x) < ∞ for ϕ-almost every x ∈ X.
Hence it is readily seen that ϕ is asymptotically doubling.

In the following proposition we recall that the upper and lower densities are natural under
restriction to Borel subsets. We will subsequently obtain a refined version of the following
proposition in the setting of Carnot groups, see Proposition 1.55.
Proposition 1.7. Suppose ϕ is a Radon measure on a locally compact separable metric space
(X, d). Suppose there exists h ≥ 0 with 0 < Θh

∗(ϕ, x) ≤ Θh,∗(ϕ, x) < ∞ for ϕ-almost every
x ∈ X. Then, for every Borel set B ⊆ X and for ϕ-almost every x ∈ B we have

Θh
∗(ϕ⌞B, x) = Θh

∗(ϕ, x), and Θh,∗(ϕ⌞B, x) = Θh,∗(ϕ, x).

Proof. This is a direct consequence of Lebesgue Differentiation Theorem of [125, page 77],
that can be applied since (X, d, ϕ) is a Vitali metric measure space due to [125, Theorem
3.4.3]. □

Let us introduce a useful split of the support of a Radon measure ϕ on a locally compact
separable metric space (X, d).
Definition 1.8 (Support of a measure). Let ϕ be a Radon measure on a locally compact
separable metric space (X, d). Hence the support of ϕ is

supp(ϕ) := {x ∈ X : ϕ(U) > 0 for every neighborhood U of x}.
We say that ϕ is supported on a Borel set A if ϕ(X \A) = 0.
Definition 1.9 (The sets E(ϑ, γ)). Let ϕ be a Radon measure on a locally compact separable
metric space (X, d), and let us suppose that ϕ is supported on a compact set K. For every
ϑ, γ ∈ N we define
(1.1) EK(ϑ, γ) :=

{
x ∈ K : ϑ−1rh ≤ ϕ(B(x, r)) ≤ ϑrh for every 0 < r < 1/γ

}
.

In the following, we will always write E(ϑ, γ), underlying the dependence on the compact set
K.
Proposition 1.10. Let ϕ be a Radon measure on a locally compact separable metric space
(X, d), and let us suppose that ϕ is supported on a compact set K. For every ϑ, γ ∈ N, the
set E(ϑ, γ) defined in Definition 1.9 is compact.

Proof. This can be obtained arguing verbatim as in [180, Proposition 1.14]. □

Proposition 1.11. Let ϕ be a Radon measure supported on the compact set K of a locally
compact separable metric space (X, d). Assume there exists h > 0 such that 0 < Θh

∗(ϕ, x) ≤
Θh,∗(ϕ, x) < ∞ for ϕ-almost every x ∈ X. Then ϕ(X \

⋃
ϑ,γ∈NE(ϑ, γ)) = 0.

Proof. Let w ∈ K \
⋃

ϑ,γ E(ϑ, γ) and note that this implies that either Θh
∗(ϕ, x) = 0 or

Θh,∗(ϕ, x) = ∞. Since 0 < Θh
∗(ϕ, x) ≤ Θh,∗(ϕ, x) < ∞ for ϕ-almost every x ∈ X, this

concludes the proof. □
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1.3. Vitali relations. In this subsection we recall the notion and some basic facts about
Vitali relations associated to a Borel measure. Our main reference is [102].
Definition 1.12 (ϕ-Vitali relation). Let (X, d) be a metric space with a Borel measure ϕ on
it and let B(X) be the family of Borel sets of X. We say that S ⊆ X × B(X) is a covering
relation if

S = {(x,B) : x ∈ B}.

Furthermore for every Z ⊆ X we let

(1.2) S(Z) := {B : (x,B) ∈ S for some x ∈ Z}.

Finally a covering S is said to be fine at x ∈ X if

inf{diam(B) : (x,B) ∈ S} = 0.

By a ϕ-Vitali relation we mean a covering relation S that is fine at every point of X and such
that the following condition holds

If C is a subset of S and Z is a subset of X such that C is fine at each point of Z,
then C(Z) has a countable disjoint subfamily covering ϕ-almost all of Z.

If δ is a nonnegative function on S(X), for every B ∈ S(X) we define its δ-enlargement as

(1.3) B̂ :=
⋃

{B′ ∈ S(X) : B′ ∩B ̸= ∅ and δ(B′) ≤ 5δ(B)}.

We recall the following general result due to Federer: it contains a criterion to show that
a fine covering relation is a ϕ-Vitali relation, and a Lebesgue theorem for ϕ-Vitali relations.
Proposition 1.13 ([102, Theorem 2.8.17, Corollary 2.9.9 and Theorem 2.9.11]). Let X be
a metric space, and let ϕ be a Borel regular measure on X that is finite on bounded sets. Let
S be a covering relation such that S(X) is a family of bounded closed sets, S is fine at each
point of X, and let δ be a nonnegative function on S(X) such that

lim
ε→0+

sup
{
δ(B) + ϕ(B̂)

ϕ(B)
: (x,B) ∈ S, diamB < ε

}
< +∞,

for ϕ-almost every x ∈ X. Then S is a ϕ-Vitali relation.
Moreover, if S is a ϕ-Vitali relation on X, and f is a ϕ-measurable real-valued function

with
´

K |f |dϕ < +∞ on every bounded ϕ-measurable K, we have

lim
ε→0+

sup
{´

B |f(z) − f(x)|dϕ(z)
ϕ(B)

: (x,B) ∈ S, diamB < ε

}
= 0,

for ϕ-almost every x ∈ X. In addition, given A ⊆ X, if we define

P :=
{
x ∈ X : lim

ε→0+
inf
{
ϕ(B ∩A)
ϕ(B)

: (x,B) ∈ S, diamB < ε

}
= 1

}
,

then P is ϕ-measurable and ϕ(A \ P ) = 0.

2. Carnot Groups

In this section we briefly introduce some notation on Carnot groups that we will exten-
sively use throughout the thesis. Basic references on Carnot groups are [61,145].



2. CARNOT GROUPS 5

2.1. General definitions and notation. In this subsection we set the basic definitions
and notation about Carnot groups.

A stratifiable group G of step κ is a connected and simply connected Lie group whose Lie
algebra g admits a stratification g = V1 ⊕ V2 ⊕ · · · ⊕ Vκ. We say that V1 ⊕ V2 ⊕ · · · ⊕ Vκ is
a stratification of g if g = V1 ⊕ V2 ⊕ · · · ⊕ Vκ as vector spaces, and moreover

[V1, Vi] = Vi+1, for every i = 1, . . . , κ− 1, [V1, Vκ] = {0}, and Vκ ̸= {0},
where [A,B] := span{[a, b] : a ∈ A, b ∈ B}. We call V1 the horizontal layer of G. We
denote by n the topological dimension of g, by nj the dimension of Vj for every j = 1, . . . , κ.
Furthermore, we define πi : g → Vi to be the projection maps on the i-th stratum. We will
often shorten the notation to vi := πiv. A Carnot group G, or stratified group, is a stratifiable
group G on which we fix a stratification. The identity element of G will be denoted by e, or
also by 0 when we are identifying G with Rn by means of exponential coordinates, which we
are now going to introduce.

For a Carnot group G, the exponential map exp : g → G is a global diffeomorphism from
g to G. Hence, if we choose a basis {X1, . . . , Xn} of g, every p ∈ G can be written in a unique
way as
(1.4) p = exp(p1X1 + · · · + pnXn).
This means that we can identify p ∈ G with the n-tuple (p1, . . . , pn) ∈ Rn and the group
G itself with Rn endowed with the group operation · determined by the Baker-Campbell-
Hausdorff formula. When we say that (X1, . . . , Xn) is an adapted basis of g we mean that
{X1, . . . , Xn} is a basis of g, and {X1+

∑j−1
i=1 ni

, . . . , X
nj+
∑j−1

i=1 ni
} is a basis of Vj for every

j = 1, . . . , κ (where, by convention,
∑0

i=1 ni := 0). For every p ∈ G, we define the left
translation τp : G → G as the map

q 7→ τpq := p · q.
The stratification of g carries with it a natural family of dilations δλ : g → g, that are Lie

algebra automorphisms of g and are defined by
δλ(v1, . . . , vκ) := (λv1, λ

2v2, . . . , λ
κvκ), for every λ ∈ R \ 0.

We will also denote with δλ the automorphism on G defined as exp ◦δλ ◦ exp−1.
As already remarked above, the group operation · is determined by the Baker-Campbell-

Hausdorff formula, and, in exponential coordinates, it has the form (see [112, Proposition
2.1])

p · q = p+ q + Q(p, q), for all p, q ∈ Rn,

where Q = (Q1, . . . ,Qκ) : Rn × Rn → Rn, and the Qi’s have the following properties. For
every i = 1, . . . κ and every p, q ∈ G we have

(i) Qi(δλp, δλq) = λiQi(p, q),
(ii) Qi(p, q) = −Qi(−q,−p),
(iii) Q1 = 0 and Qi(p, q) = Qi(p1, . . . , pi−1, q1, . . . , qi−1).

Thus, we can represent the product · as
(1.5) p · q = (p1 + q1, p2 + q2 + Q2(p1, q1), . . . , pκ + qκ + Qκ(p1, . . . , pκ−1, q1, . . . , qκ−1)).

We recall that a sub-algebra h of g is said to be homogeneous if it is δλ-invariant for every
λ > 0. We recall that, given any sub-algebra h ⊆ g, h = W1 ⊕ · · · ⊕ Wκ is a grading of h if
[Wi,Wj ] ⊆ Wi+j for every 1 ≤ i, j ≤ κ, where we mean that Wℓ := {0} for every ℓ > κ. The
stratification of the Lie algebra g naturally induces a grading on each of its homogeneous Lie
sub-algebras h, i.e.,
(1.6) h = V1 ∩ h ⊕ . . .⊕ Vκ ∩ h.
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Definition 1.14 (Homogeneous subgroups). A subgroup V of G is said to be homogeneous
if it is a Lie subgroup of G that is invariant under the dilations δλ. Given V a homogeneous
subgroup of G we denote with Lie(V) its Lie algebra.

We recall the following basic terminology: a horizontal subgroup of a Carnot group G is
a homogeneous subgroup of it that is contained in exp(V1); a Carnot subgroup W = exp(h)
of a Carnot group G is a homogeneous subgroup of it such that the first layer V1 ∩ h of the
grading of h inherited from the stratification of g is the first layer of a stratification of h.

Homogeneous Lie subgroups of G are in bijective correspondence through exp with the
homogeneous Lie sub-algebras of g. For every Lie algebra h with grading h = W1 ⊕ . . .⊕Wκ,
we define its homogeneous dimension as

dimhom(h) :=
κ∑

i=1
i · dim(Wi).

Thanks to (1.6) we infer that, if h is a homogeneous Lie sub-algebra of g, we have dimhom(h) :=∑κ
i=1 i · dim(h∩Vi). We introduce now the class of homogeneous and left-invariant distances.

Definition 1.15 (Homogeneous left-invariant distance). A metric d : G × G → R is said to
be homogeneous and left-invariant if for every x, y ∈ G we have

(i) d(δλx, δλy) = λd(x, y) for every λ > 0,
(ii) d(τzx, τzy) = d(x, y) for every z ∈ G.

We remark that two homogeneous left-invariant distances on a Carnot group are always
bi-Lipschitz equivalent, and moreover they induce the manifold topology on G, see [149].
It is well-known that the Hausdorff dimension (for a definition of Hausdorff dimension see
for instance [174, Definition 4.8]) of a graded Lie group G with respect to an arbitrary left-
invariant homogeneous distance coincides with the homogeneous dimension of its Lie algebra.
For a reference for the latter statement, see [149, Theorem 4.4].

We recall that a homogeneous norm ∥ · ∥ on G is a function ∥ · ∥ : G → [0,+∞) such that
∥x∥ = ∥x−1∥ for every x ∈ G; ∥δλx∥ = λ∥x∥ for every λ > 0 and x ∈ G; ∥x · y∥ ≤ ∥x∥ + ∥y∥
for every x, y ∈ G; and ∥x∥ = 0 if and only if x = e. Given an arbitrary homogeneous norm
∥ · ∥ on G, the homogeneous left-invariant distance d induced by ∥ · ∥ is defined as follows

d(x, y) := ∥x−1 · y∥.

Vice-versa, given a homogeneous left-invariant distance d, it induces a homogeneous norm
through the equality ∥x∥ := d(x, e) for every x ∈ G, where e is the identity element of G.

We introduce now a distinguished homogeneous norm on G.
Definition 1.16 (Box metric). Let G be a Carnot group. Let B := {X1, . . . , Xn} be a basis
of g, and, for every i = 1 . . . , κ, let us identify each vector space Vi with a vector subspace
of Rn by means of the exponential map and the coordinates associated to B. We will denote
with | · | the standard Euclidean norms on such vector subspaces. Then there exist ε2, . . . εκ

depending on the group G such that, if we define

∥g∥ := max{|g1|, ε2|g2|1/2, . . . , εκ|gκ|1/κ} for all g ∈ G,

then ∥·∥ is a homogeneous norm on G that induces a left-invariant homogeneous distance.
We refer to [112, Section 5] for a proof of this fact.

There is a distinguished class of left-invariant homogeneous distances on Carnot groups,
known as Carnot-Carathéodory distances. If we fix a norm ∥ · ∥1 on the first stratum V1 of
the Lie algebra g of G, we can extend it left-invariantly to the horizontal bundle

(1.7) V1(x) := (τx)∗V1,
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for x ∈ G, where τx is the left translation by x, and V1 is seen as a subspace of TeG ≡ g. We
say that an absolutely continuous curve γ : [0, 1] → G is horizontal if

γ′(t) ∈ V1(γ(t)), for almost every t ∈ [0, 1].

We define

(1.8) d∥·∥1
cc (x, y) := inf

{ˆ 1

0
∥γ′(t)∥1dt : γ(0) = x, γ(1) = y, γ horizontal

}
.

The Chow-Rashevskii theorem states that this distance is finite. It is clearly homogeneous
and left-invariant.

2.2. Intrinsic Grassmannian in Carnot groups. In this subsection we introduce the
Grassmannian in Carnot groups and we discuss some of its basic properties. This treatment
is mainly taken from the work [28], that has been subsequently divided in the two works
[31,32].

Let us recall the definition of the Euclidean Grassmannian, along with some of its prop-
erties.
Definition 1.17 (Euclidean Grassmannian). Let k, n be natural numbers such that k ≤ n.
We let Gr(n, k) be the set of the k-vector subspaces of Rn. We endow Gr(n, k) with the
following distance

deu(V1, V2) := dH,eu
(
V1 ∩Beu(0, 1), V2 ∩Beu(0, 1)

)
,

where Beu(0, 1) is the (closed) Euclidean unit ball, and dH,eu is the Hausdorff distance between
sets induced by the Euclidean distance on Rn.
Remark 1.18 (Euclidean Grassmannian and convergence). Let k, n be natural numbers such
that k ≤ n. It is well-known that the metric space (Gr(n, k), deu) is compact. Moreover, the
following hold

(i) if Vn → V , then for every v ∈ V there exist vn ∈ Vn such that vn → v;
(ii) if Vn → V and there is a sequence vn ∈ Vn such that vn → v, then v ∈ V .

We now give the definition of the intrinsic Grassmannian on Carnot groups and introduce
the class of complemented homogeneous subgroups.
Definition 1.19 (Intrinsic Grassmannian on Carnot groups). Let h,Q be natural numbers
such that 1 ≤ h ≤ Q. Let G be a Carnot group of homogeneous dimension Q. We define
Gr(h) to be the family of homogeneous subgroups V of G that have homogeneous dimension
h.

Let us recall that if V is a homogeneous subgroup of G, any other homogeneous subgroup
L such that

V · L = G and V ∩ L = {e},
is said to be a complementary subgroup of V in G. We say that a homogeneous subgroup V
is complemented if it admits at least one homogeneous complementary subgroup. Finally, we
let

(i) Grc(h) to be the subfamily of those V ∈ Gr(h) that have a complementary subgroup,
and we will refer to Grc(h) as the h-dimensional complemented Grassmannian,

(ii) Gr⊴(h) to be the subfamily of those V ∈ Grc(h) having at least one normal com-
plementary subgroup, and we will refer to Gr⊴(h) as the h-dimensional co-normal
Grassmannian.

Let us introduce the stratification vector of a homogeneous subgroup, and the notion of
s-co-normal Grassmannian.
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Definition 1.20 (Stratification vector). Let h,Q be natural numbers such that 1 ≤ h ≤ Q.
Let G be a Carnot group of homogeneous dimension Q. For every V ∈ Gr(h) we denote with
s(V) the vector

s(V) := (dim(V1 ∩ exp−1(V)), . . . ,dim(Vκ ∩ exp−1(V))),

that with abuse of language we call the stratification, or the stratification vector, of V. Fur-
thermore, we define

S(h) := {s(V) ∈ Nκ : V ∈ Gr(h)}.
We remark that the cardinality of S(h) is bounded by

∏κ
i=1(dimVi + 1) for every h ∈

{1, . . . , Q}.
Definition 1.21 (s-co-normal Grassmannian). For every s ∈ S(h) we let

Grs⊴(h) := {V ∈ Gr⊴(h) : s(V) = s},

and we will refer to Grs⊴(h) as the s-co-normal Grassmannian.
We now prove that the Grassmannian introduced above is compact. Notice that, since

the homogeneous subgroups of a Carnot group G are in bijective correspondence with the
homogeneous sub-algebras of g, and since the Grassmannian of vector subspaces of g has a
natural compact topology, the core of the following proposition is to prove that the subset
of homogeneous sub-algebras is closed in this topology. Anyway, we are going to explicitly
provide a distance dG on Gr(h), and we will directly prove that (Gr(h), dG) is a compact
metric space. We will not prove it explicitly, but we stress that the topology induced by dG
on the Grassmannian of vector subspaces of g is the usual topology on the Grassmannian.
Proposition 1.22 (Compactness of the Grassmannian). Let h,Q be natural numbers such
that 1 ≤ h ≤ Q. Let G be a Carnot group of homogeneous dimension Q, endowed with a
left-invariant homogeneous distance d. Let B(e, 1) be the closed ball, in the distance d, of
center e and radius 1. The function

dG(W1,W2) := dH,G(W1 ∩B(e, 1),W2 ∩B(e, 1)),

where W1,W2 ∈ Gr(h), and dH,G is the Hausdorff distance associated to d, is a distance on
Gr(h). Moreover (Gr(h), dG) is a compact metric space.

Proof. The fact that dG is a distance comes from well-known properties of the Hausdorff
distance. Let us consider a sequence {Wj}j∈N ⊆ Gr(h), with exp−1(Wj) = Wj,1 ⊕ · · · ⊕Wj,κ,
where Wj,i := Vi ∩ exp−1(Wj) for every j ∈ N and 1 ≤ i ≤ κ. By extracting a (non re-
labelled) subsequence we can suppose that there exist {ki}i=1,...,κ natural numbers such that
the topological dimension is dimWj,i = ki for all j ∈ N, and for all 1 ≤ i ≤ κ. In particular the
topological dimension of exp−1(Wj) is constant. Exploiting the compactness of the Euclidean
Grassmannian, see Remark 1.18, we get that up to a (non re-labelled) subsequence,

(1.9) Wj,i → Wi, i.e. deu(Wj,i,Wi) → 0 for every 1 ≤ i ≤ κ,

where the convergence is meant in the Euclidean Grassmannian Gr(dimVi, ki). As a conse-
quence

(1.10) Wj = Wj,1 ⊕ · · · ⊕Wj,κ → W = W1 ⊕ · · · ⊕Wκ, i.e., deu(Wj ,W ) → 0,

where the convergence is meant in the Euclidean Grassmannian Gr(n,
∑κ

i=1 ki, ). The pre-
vious equality is a consequence of (1.9) and the following observation: if V and W are two
orthogonal (according to the standard scalar product) linear subspaces such that Rn = V ⊕W ,
and A,B are vector subspaces of V , and C,D are vector subspaces of W , then

deu(A⊕ C,B ⊕D) ≤ deu(A,B) + deu(C,D),
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where the direct sums above are orthogonal too. Let us notice that, from (1.10) it follows
that
(1.11) dH,eu(Wj ∩B(0, 1),W ∩B(0, 1)) → 0,

where we stress that B(0, 1) ⊆ g is the preimage by means of exp of the closed unit ball, in
the homogeneous left-invariant metric d, centered at e. The proof of (1.11) can be reached
by contradiction exploiting (1.10) and the fact that B(0, 1) is compact. We leave the routine
details to the reader.

In order to conclude the proof, we need to show that
(1.12) dH,G(Wj ∩B(0, 1),W ∩B(0, 1)) → 0,
where, with a little abuse of notation, we denote with dH,G the Hausdorff distance on g

induced by pulling back d with the exponential map exp. Indeed, on the compact set B(0, 1),
one has d ≤ Cd

1/κ
eu for some constant C > 0, see for instance [208, Proposition 2.15]. This

means that for subsets contained in B(0, 1) one has dH,G ≤ Cd
1/s
H,eu. This last inequality with

(1.11) gives (1.12). Finally from (1.12) we get, by the very definition of dG,
dG(Wj ,W) → 0,

where W := expW . If we show that W is a homogeneous subgroup of homogeneous dimension
h we are done. The homogeneity comes from the fact that W admits a stratification (1.10),
while the homogeneous dimension is fixed because it depends on the dimensions of Wi that
are all equal to ki. Let us prove W is a subgroup. First of all W is inverse-closed, because
W = expW , and W is a vector space. Now take a, b ∈ W. By the first point of Remark 1.18
we find an, bn ∈ Wn such that an → a, and bn → b. Then, by continuity of the product,
an · bn → a · b, and an · bn ∈ Wn. Then from the second point of Remark 1.18 we get that
a · b ∈ W. □

In the following proposition we prove that if the distance between two elements of the
intrinsic Grassmannian is sufficiently small, then they have the same stratification vector.
Proposition 1.23. Let Q be a natural number. Let G be a Carnot group of homogeneous
dimension Q, endowed with a left-invariant homogeneous distance d. There exists a constant
ℏG > 0, depending only on G, such that if W,V ∈ Gr(h) for some 1 ≤ h ≤ Q, and dG(V,W) ≤
ℏG, then s(V) = s(W).

Proof. Let us fix 1 ≤ h ≤ Q. Let us suppose by contradiction that there exist Vi and Wi

in Gr(h) such that, for every i ∈ N, the stratification vector of Vi is different from Wi and
such that dG(Vi,Wi) → 0. Up to extract two (non re-labelled) subsequences we can assume
that the Vi’s have the same stratification vector for every i ∈ N, as well as the Wi’s. Then,
by compactness, see the proof of Proposition 1.22, we can assume up to passing to a (non
re-labelled) subsequence that Wi → W where W has the same stratification of the Wi’s,
and Vi → V where V has the same stratification of the Vi’s. Since dG(Vi,Wi) → 0 we get
that dG(V,W) = 0 and then V = W but this is a contradiction since they have different
stratification vectors. This proves the existence of a constant ℏ that depends both on G
and h. However, taking the minimum over 1 ≤ h ≤ Q of such ℏ’s, the dependence on h is
eliminated. □

In the following proposition we explicitly characterize the Haar measures on elements of
the Grassmannian introduced above.
Proposition 1.24. Let h,Q be natural numbers such that 1 ≤ h ≤ Q. Let G be a Carnot
group of homogeneous dimension Q, endowed with a left-invariant homogeneous distance d.
Suppose V ∈ Gr(h) is a homogeneous subgroup of topological dimension ρ.
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Let us identify G with Rn by means of the exponential map, and a choice of a basis
{X1, . . . , Xn} of g. Let Hρ

eu⌞V be the ρ-dimensional Euclidean (on G ≡ Rn) Hausdorff
measure restricted to V. Then Sh⌞V, Hh⌞V, Ch⌞V and Hρ

eu⌞V are Haar measures of V.
Furthermore, every Haar measure λ of V is h-homogeneous in the sense that

λ(δr(E)) = rhλ(E), for every Borel set E ⊆ V.

Proof. First, one can show by an explicit computation that the Lebesgue measure Lρ re-
stricted to the vector space exp−1(V) is a Haar measure. Indeed, this last assertion comes
from the fact that for every v ∈ V the map p → v · p has unitary Jacobian determinant when
seen as a map from V to V, see [110, Lemma 2.20]. Thus since when seen V as immersed in
Rn we have that the Lebesgue measure of V coincides with Hρ

eu⌞V, we conclude that Hρ
eu⌞V

is a Haar measure of V as well. Moreover, the Hausdorff, the spherical Hausdorff, and the
centered Hausdorff measures introduced in Definition 1.2 on V, are non-zero, locally finite,
and invariant under left-translations and thus they are Haar measures of V.

The last part of the proposition comes from the fact that the property is obvious by
definition for the spherical Hausdorff measure, and the fact that all the Haar measures are
the same up to a constant. □

In the following proposition we explore some relations on various Haar measures on the
elements of the Grassmannian. The following proposition holds for the distance d induced
by the norm introduced in Definition 1.16.
Proposition 1.25. Let G be a Carnot group of homogeneous dimension Q endowed with the
homogeneous norm ∥ · ∥ introduced in Definition 1.16. Let 1 ≤ h ≤ Q, and W ∈ Gr(h) be a
homogeneous subgroup of homogeneous dimension h and of topological dimension ρ. Then

(i) there exists a constant C1 := C1(s(W)) such that for every p ∈ W and every r > 0
we have

(1.13) Hρ
eu

(
B(p, r) ∩ W

)
= C1r

h,

where, for the precise definition of Hρ
eu we refer to the statement of Proposition 1.24,

(ii) there exists a constant β(W) such that Ch⌞W = β(W)Hρ
eu⌞W,

(iii) β(W) = Hρ
eu⌞W(B(0, 1))−1 and in particular β(W) only depends on s(W).

Proof. Thanks to Proposition 1.24, we have

Hρ
eu(B(p, r) ∩ W) = Hρ

eu(B(0, r) ∩ W) = Hρ
eu(δr(B(0, 1) ∩ W)) = rhHρ

eu(B(0, 1) ∩ W).
Furthermore, if V is another homogeneous subgroup such that s(W) = s(V), we can find a
linear map T that acts as an orthogonal transformation on each of the Vi’s and that maps W
bijectively to V. Since we are endowing G with the box metric, see Definition 1.16, we get
that T (B(0, 1) ∩ W) = B(0, 1) ∩ V. Since T is an orthogonal transformation itself, it is an
isometry of Rn and this implies that

Hρ
eu(B(0, 1) ∩ W) = Hρ

eu(T (B(0, 1) ∩ W)) = Hρ
eu(B(0, 1) ∩ V),

and thus item (i) is proved.
Concerning item (ii), thanks to Proposition 1.24, we have that both Ch⌞W and Hρ

eu⌞W
are Haar measures of W. This implies that there must exist a constant β(W) such that
β(W)Hρ

eu⌞W = Ch⌞W.
Finally, in order to prove item (iii), we prove the following. For every left-invariant

homogeneous distance d on G and every homogeneous subgroup W ⊆ G of homogeneous
dimension h, we have that

(1.14) Ch(W ∩B(0, 1)) = 1,



2. CARNOT GROUPS 11

where Ch is the centered Hausdorff measure relative to the distance d and B(0, 1) is the closed
ball relative to the distance d.

Indeed, let us fix an ε > 0, let us take A ⊆ W ∩ B(0, 1) such that Ch
0 (A) ≥ Ch(W ∩

B(0, 1)) − ε, δ > 0 and a covering of A with closed balls Bi := {B(xi, ri)}i∈N centred on
A ⊆ W and with radii ri ≤ δ such that∑

i∈N
rh

i ≤ Ch
0 (A) + ε.

This implies that

Ch(B(0, 1) ∩ W)
(
Ch(B(0, 1) ∩ W) + ε

)
≥ Ch(B(0, 1) ∩ W)

(
Ch

0 (A) + ε
)

≥
∑
i∈N

Ch(B(0, 1) ∩ W)rh
i =

∑
i∈N

Ch(B(xi, ri) ∩ W) ≥ Ch(A)

≥ Ch
0 (A) ≥ Ch(W ∩B(0, 1)) − ε,

where the first inequality is true since Ch(B(0, 1) ∩ W) ≥ Ch(A) ≥ Ch
0 (A), and the third

equality is true since xi ∈ W and Ch⌞W is a Haar measure on W. Thanks to the arbitrariness
of ε we finally infer that Ch(W ∩B(0, 1)) ≥ 1.

On the other hand, thanks to [117, item (ii) of Theorem 2.13 and Remark 2.14], we have
that, calling Bt := {x ∈ W ∩ B(0, 1) : Θh,∗(Ch⌞W, x) > t} for every t > 0, we infer that
Ch(Bt) ≥ tCh(Bt) for every t > 0. Thus, for every t > 1 we conclude Ch(Bt) = 0 and hence
for Ch⌞W-almost every x ∈ W ∩ B(0, 1) we have that Θh,∗(Ch⌞W, x) ≤ 1. For one of such
x ∈ W ∩B(0, 1) we can write

Ch(B(0, 1) ∩ W) = lim sup
r→0

Ch(B(x, r) ∩ W)
rh

= Θh,∗(Ch⌞W, x) ≤ 1,

where the first equality comes from Proposition 1.24. Thus Ch(W ∩ B(0, 1)) = 1 and this
concludes the proof of the first part of (iii) thanks to item (ii). The fact that β(W) depends
only on s(W) follows from item (i) □

Remark 1.26. The above proposition can be proved verbatim whenever the distance is a
multiradial distance, see [165, Definition 8.5].
Remark 1.27. We stress here for future references that in the proof of item (iii) of Proposi-
tion 1.25, see (1.14), we proved that whenever G is endowed with an arbitrary left-invariant
homogeneous distance d, then for every homogeneous subgroup W ⊆ G of homogeneous
dimension h, we have that

(1.15) Ch(W ∩B(0, 1)) = 1.

In the next proposition we prove that uniform measures supported on homogeneous sub-
groups of Carnot groups are Haar measures.
Proposition 1.28. Suppose that µ is a Borel regular measure on G supported on a homoge-
neous subgroup V ∈ Gr(h), such that 0 ∈ supp (µ), and assume that there exists a constant
C > 0 such that for every z ∈ supp (µ) and every s > 0 we have

µ(B(z, s)) = Csh.

Then µ is a Haar measure of the subgroup V.

Proof. Without loss of generality we can assume C = 1. Thanks to [117, Theorem 3.1] we
thus infer that µ = Ch⌞supp(µ). Moreover, for every x ∈ supp (µ), thanks to Remark 1.27,
we have that µ(B(x, r)) = Ch⌞V(B(x, r)) for every r > 0. If by contradiction supp(µ) ̸= V,
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then there would exist a p ∈ V and a r0 > 0 such that B(p, r0) ∩ supp(µ) = ∅. This however
is impossible since we would have

Ch⌞V(B(0, 2(∥p∥ + r0))) ≥ Ch(B(0, 2(∥p∥ + r0)) ∩ supp(µ)) + Ch(B(p, r0) ∩ V)
> µ(B(0, 2(∥p∥ + r0))),

(1.16)

where we have used µ = Ch⌞supp(µ). The last inequality is a contradiction with what we
found above, since by assumption 0 ∈ supp(µ). □

Let us now exploit Remark 1.27 to prove next proposition that will be useful in Chapter 3.
Let ∥·∥ be a homogeneous norm on G. A function φ : G → R is said to be radially symmetric
with respect to ∥ · ∥ if there is a function g : [0,∞) → R, called profile function such that
φ(x) = g(∥x∥).
Proposition 1.29. Let G be a Carnot group of homogeneous dimension Q, and let h ∈
{1, . . . , Q}. Let φ : G → R be a continuous radially symmetric function with respect to a
homogeneous norm ∥ · ∥ on G, and let g be its profile function. Let V ∈ Gr(h). Then the
following holds ˆ

φdCh⌞V = h

ˆ
sh−1g(s)ds.

Proof. It suffices to prove the proposition for positive simple functions, since the general result
follows by Beppo Levi’s convergence theorem. Thus suppose V has topological dimension ρ
and let φ(z) :=

∑N
i=1 aiχB(0,ri)(z) and note that thanks to Remark 1.27 for every V ∈ Gr(h)

we have that Ch⌞V(B(0, ri)) = rh
i , and then

ˆ
φ(z)dCh⌞V =

N∑
i=1

aiCh⌞V(B(0, ri)) =
N∑

i=1
air

h
i

= h
N∑

i=1
ai

ˆ ri

0
sh−1ds = h

ˆ N∑
i=1

ais
h−1χ[0,ri](s)ds = h

ˆ
sh−1g(s)ds.

□

The following proposition is a consequence of the choice of the norm in Definition 1.16,
since it is based on Proposition 1.25.
Proposition 1.30. Let G be a Carnot group endowed with the box norm defined in Def-
inition 1.16. Let h ∈ {1, . . . , Q} and suppose that {Vi}i∈N is a sequence of homogeneous
subgroups in Gr(h) converging in the Grassmannian metric dG to some V ∈ Gr(h). Then,
Ch⌞Vi ⇀ Ch⌞V.

Proof. First of all notice that Proposition 1.23 implies that there exists a i0 ∈ N such that for
every i ≥ i0 we have that Vi and V have the same stratification and thus the same topological
dimension ρ. Since the Vi’s have the same stratification if i ≥ i0, Proposition 1.25(iii) implies
that β(Vi) = β(V) for every i ≥ i0. Thus, for every continuous function f with compact
support, thanks to Proposition 1.25 we have

lim
i→∞

ˆ
fdCh⌞Vi −

ˆ
fdCh⌞V = lim

i→∞
β(V)

( ˆ
fdHρ

eu⌞Vi −
ˆ
fdHρ

eu⌞V
)

= 0,

where the last identity comes from the fact that Hρ
eu⌞Vi ⇀ Hρ

eu⌞V. □
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2.3. Splitting projections and cones over homogeneous subgroups. In this sub-
section we introduce and discuss the splitting projections on complementary subgroups, and
different notions of cones over homogeneous subgroups in Carnot groups. The basic references
for this subsection are [28,110].

We now introduce the projections related to a splitting G = V · L of the group. From
now on let h,Q be natural numbers such that 1 ≤ h ≤ Q. Let G be a Carnot group of
homogeneous dimension Q with an arbitrary homogeneous norm ∥ · ∥ that induces a left-
invariant homogeneous distance d.
Definition 1.31 (Projections related to a splitting). For every V ∈ Grc(h) with a homoge-
neous complementary subgroup L, we can find two unique elements gV := PV(g) ∈ V and
gL := PL(g) ∈ L such that

g = PV(g) · PL(g) = gV · gL.

We will refer to PV(g) and PL(g) as the splitting projections, or simply projections, of g onto
V and L, respectively.

We recall here below a very useful fact on splitting projections.
Proposition 1.32. Let us fix V ∈ Grc(h) and L two complementary homogeneous subgroups
of G.

Then, for every x ∈ G the map Ψ : V → V defined as Ψ(z) := PV(xz) is invertible and
it has unitary Jacobian. As a consequence Sh(PV(E)) = Sh(PV(xPV(E))) = Sh(PV(xE)) for
every x ∈ G and E ⊆ G Borel.

Proof. The first part is a direct consequence of [110, Proof of Lemma 2.20]. For the second
part it is sufficient to use the first part and the fact that for every x, y ∈ G we have PV(xy) =
PV(xPVy). □

We collect below two useful propositions on the splitting projections.
Proposition 1.33 (Proposition 2.12 and Corollary 2.15 of [110]). Let ∥ ·∥ be a homogeneous
norm on G that induces a homogeneous left-invariant distance d, and let V and L be two
complementary subgroups. Then there exists a constant 0 < K < 1 such that for every g ∈ G
we have

K∥PL(g)∥ ≤ dist(g,V) ≤ ∥PL(g)∥,
K(∥PL(g)∥ + ∥PV(g)∥) ≤ ∥g∥ ≤ ∥PL(g)∥ + ∥PV(g)∥.

(1.17)

Let us define C2(V,L) to be the supremum of all the constants K such that inequalities in
(1.17) are satisfied, and let C3(V,L) be the supremum of all the constants K such that the
first inequality in (1.17) is satisfied. Notice that C2(V,L) ≤ C3(V,L).
Proposition 1.34. Let h,Q be natural numbers such that 1 ≤ h ≤ Q. Let G be a Carnot
group of homogeneous dimension Q. For every V ∈ Grc(h) with complementary subgroup L
there is a constant C4(V,L) > 0 such that for every p ∈ G and every r > 0 we have

Sh⌞V
(
PV(B(p, r))

)
= C4(V,L)rh.

Furthermore, for every Borel set A ⊆ G for which Sh(A) < ∞, we have

(1.18) Sh⌞V(PV(A)) ≤ 2C4(V,L)Sh(A).

Proof. The existence of such C4(V,L) is yielded by [110, Lemma 2.20].
Suppose {B(xi, ri)}i∈N is a countable covering of A with closed balls for which

∑
i∈N r

h
i ≤
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2Sh(A). Then

Sh(PV(A)) ≤ Sh
(
PV
( ⋃

i∈N
B(xi, ri)

))
≤ C4(V,L)

∑
i∈N

rh
i ≤ 2C4(V,L)Sh(A).

□

We now prove a proposition that will be useful in the Chapter 3.
Proposition 1.35. Let W ∈ Grc(h) and assume L is one of the complementary subgroups
of W. Any other homogeneous subgroup V ∈ Gr(h) on which PW is injective, and satisfying
the identity s(V) = s(W), is in Grc(h) and admits L as a complementary subgroup.

Proof. Let PW be the projection related to the splitting G = W · L. The hypothesis s(V) =
s(W) implies that V and W have the same topological dimension. If by contradiction there
exists a 0 ̸= y ∈ L ∩ V, then

PW(y) = 0 = PW(0).
This however is not possible since we assumed that PW is injective on V. The fact that
L ∩ V = {0} together with the fact that s(V) = s(W) and that W and L are complementary
subgroups, imply that (L ∩ Vi) + (V ∩ Vi) = Vi for every i = 1, . . . , κ. This, jointly with the
fact that L ∩ V = {0}, implies that L and V are complementary subgroups in G due to the
triangular structure of the product · on G, see (1.5). For an alternative proof of the fact that
L and V are complementary subgroups, see also [132, Lemma 2.7]. □

Given W ∈ Gr(h), and α > 0, we now introduce the intrinsic cone CW(α) and the notion
of CW(α)-set, and prove some of their properties.
Definition 1.36 (Intrinsic cone). For every α > 0 and W ∈ Gr(h), we define the cone CW(α)
as

CW(α) := {w ∈ G : dist(w,W) ≤ α∥w∥}.
Definition 1.37 (CW(α)-set). Given W ∈ Gr(h), and α > 0, we say that a set E ⊆ G is a
CW(α)-set if

E ⊆ p · CW(α), for every p ∈ E.

Remark 1.38 (Equivalent intrinsic cones). Let us observe that if V ∈ Grc(h), L is a com-
plementary subgroup of V, and α < C2(V,L), then

(1.19) CV(α) ⊆
{
w ∈ G : ∥PL(w)∥ ≤ α

C2 − α
∥PV(w)∥

}
.

Indeed, let us take an element w in the complement of the set in the right-hand-side above.
Thanks to the fact that ∥w∥ ≤ ∥PL(w)∥ + ∥PV(w)∥ < C2(V,L)α−1∥PL(w)∥, and to Proposi-
tion 1.33 we have

dist(w,V) ≥ C2∥PL(w)∥ > α∥w∥.(1.20)

Therefore, every such w is contained in the complement of the left-hand-side of (1.19), and
thus we get the sought conclusion. Moreover, for every V ∈ Grc(h) and every of its comple-
mentary subgroup L, let us show that for every α > 0
(1.21) CV,L(α) := {w ∈ G : ∥PL(w)∥ ≤ α∥PV(w)∥} ⊆ CV(C−1

2 α).
Indeed, if w is an element in the left-hand-side above, we can readily see thanks to Proposi-
tion 1.33 that

dist(w,V) ≤ ∥PL(w)∥ ≤ α∥PV(w)∥ ≤ αC−1
2 ∥w∥.

All in all we have proved that if V ∈ Grc(h), L is one of its complementary subgroups,
and α < C2 we have

CV,L(C2α) ⊆ CV(α) ⊆ CV,L(α/(C2 − α)),
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thus showing that, for a small α, the cones CV(α) and CV,L(α) are equivalent.
Let us now prove the following lemma about the comparison of cones.

Lemma 1.39. For every W1,W2 ∈ Gr(h), ε > 0, and α > 0, if dG(W1,W2) < ε/4, then

CW1(α) ⊆ CW2(α+ ε).

Proof. We prove that every z ∈ CW1(α) is contained in the cone CW2(α+ ε). Thanks to the
triangle inequality we infer

dist(z,W2) ≤ d(z, b) + inf
w∈W2

d(b, w), for every b ∈ W1.

Thus, choosing b∗ ∈ W1 in such a way that d(z, b∗) = dist(z,W1), and evaluating the previous
inequality at b∗ we get

(1.22) dist(z,W2) ≤ dist(z,W1) + dist(b∗,W2) ≤ α∥z∥ + dist(b∗,W2),

where in the second inequality we used z ∈ CW1(α).
Let us notice that, given W an arbitrary homogeneous subgroup of G, p ∈ G an arbitrary

point such that p∗ ∈ W is one of the points at minimum distance from W to p, then the
following inequality holds

(1.23) ∥p∗∥ ≤ 2∥p∥.

Indeed,
∥p∗∥ − ∥p∥ ≤ ∥(p∗)−1 · p∥ = dist(p,W) ≤ ∥p∥ ⇒ ∥p∗∥ ≤ 2∥p∥.

Now, by homogeneity, since b∗ ∈ W1 is one of the points at minimum distance from W1
of z, we get that δ1/∥z∥(b∗) is one of the points at minimum distance from W1 of δ1/∥z∥(z).
Thus, since ∥δ1/∥z∥(z)∥ = 1, from (1.23) we get that ∥δ1/∥z∥(b∗)∥ ≤ 2. Finally we obtain

dist(b∗,W2) = ∥z∥dist
(
δ1/∥z∥(b∗),W2

)
= ∥z∥dist

(
δ1/∥z∥(b∗),W2 ∩B(0, 4)

)
≤

≤ ∥z∥dH(W1 ∩B(0, 4),W2 ∩B(0, 4))
= 4∥z∥dH(W1 ∩B(0, 1),W2 ∩B(0, 1)) < ε∥z∥,

(1.24)

where the first equality follows from the homogeneity of the distance, and the second is a
consequence of the fact that ∥δ1/∥z∥(b∗)∥ ≤ 2, and thus, from (1.23), every point at minimum
distance of δ1/∥z∥(b∗) from W2 has norm bounded above by 4; the third inequality comes from
the definition of Hausdorff distance, the fourth equality is true by homogeneity and the last
inequality comes from the hypothesis dG(W1,W2) < ε/4. Joining (1.22), and (1.24) we get
z ∈ CW2(α+ ε), that was what we wanted. □

We now prove that if two homogeneous subgroups are complementary one to the other,
then there is a cone around each of them that does not intersect the other.
Lemma 1.40. Let V ∈ Grc(h), and let L be a complementary subgroup of V. Let ε1 :=
ε1(V,L) := C2(V,L)/2 > 0. Hence

L ∩ CV(ε1) = {0}.

Proof. Let us suppose the statement is false. Thus there exists 0 ̸= v ∈ L ∩ CV(ε1). From
Proposition 1.33 and from the very definition of the cone CV(ε1) we have

C2(V,L)∥v∥ ≤ dist(v,V) ≤ ε1∥v∥ = C2(V,L)∥v∥/2,

which is a contradiction with the fact that v ̸= 0. □
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Remark 1.41. Let V ∈ Grc(h) and let L be a complementary subgroup of V. Let us notice
that if there exists α > 0 such that L∩CV(α) = {0}, then C3(V,L) ≥ α. Indeed, it is enough
to prove that α∥PL(g)∥ ≤ dist(g,V) for every g ∈ G. If g ∈ V the latter in equality is trivially
verified. Hence suppose by contradiction that there exists g /∈ V such that α∥PL(g)∥ >
dist(g,V). Since dist(g,V) = dist(PL(g),V) we conclude that PL(g) ∈ L ∩CV(α) = {0}, that
is a contradiction since g /∈ V.

We now prove that the subset of the elements of the Grassmannian that admit a comple-
mentary homogeneous subgroup is open.
Proposition 1.42. The family of the complemented subgroups Grc(h) is an open subset of
Gr(h).

Proof. Fix a W ∈ Grc(h), let L be one complementary subgroup of W and set

ε < min{ε1(V,L), ℏG},

where ℏG is defined in Proposition 1.23. Then, if W′ ∈ Gr(h) is such that dG(W,W′) < ε/4,
Lemma 1.39 implies that W′ ⊆ CW(ε) and in particular

L ∩ W′ ⊆ L ∩ CW(ε) = {0}.

Moreover, since ε < ℏG, from Proposition 1.23, we get that W′ has the same stratification of
W and thus the same topological dimension. This, jointly with the previous equality and the
Grassmann formula, means that (W′ ∩Vi) + (L∩Vi) = Vi for every i = 1, . . . , κ. This, jointly
with the fact that L ∩ W′ = {0}, implies that L and W′ are complementary subgroups in G
due to the triangular structure of the product · on G, see (1.5). For an alternative proof of
the fact that L and W′ are complementary subgroups, see also [132, Lemma 2.7]. □

The following two lemmas will play a fundamental role in the proof of the existence of
density result in Chapter 2.
Lemma 1.43. Let V ∈ Grc(h) and L be one of its complementary subgroups. For every
0 < α < C2(V,L)/2, let

(1.25) c(α) := α/(C2(V,L) − α).

Then we have

(1.26) B(0, 1) ∩ V ⊆ PV(B(0, 1) ∩ CV(α)) ⊆ B(0, 1/(1 − c(α))) ∩ V.

Proof. The first inclusion comes directly from the definition of projections and cones. Con-
cerning the second, if v ∈ B(0, 1) ∩ CV(α), thanks to Proposition 1.33 we have

(1.27) C2(V,L)∥PL(v)∥ ≤ dist(v,V) ≤ α∥v∥ ≤ α(∥PL(v)∥ + ∥PV(v)∥).

This implies in particular that ∥PL(v)∥ ≤ c(α)∥PV(v)∥ and thus

1 ≥ ∥PV(v)PL(v)∥ ≥ ∥PV(v)∥ − ∥PL(v)∥ ≥ (1 − c(α))∥PV(v)∥.

This concludes the proof of the lemma. □

Lemma 1.44. Let V ∈ Grc(h) and L be one of its complementary subgroups. Suppose Γ is
a CV(α)-set with α < C2(V,L)/2, and let

(1.28) C(α) := 1 − c(α)
1 + c(α) ,

where c(α) is defined in (1.25). Then

Sh(PV(B(x, r) ∩ Γ)) ≥ Sh
(
PV
(
B(x,C(α)r) ∩ xCV(α)

)
∩ PV(Γ)

)
, for every x ∈ Γ.
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The same inequality above holds if we substitute Sh with any other Haar measure on V, see
Proposition 1.24, because all of them are equal up to a constant.

Proof. First of all, let us note that we have

(1.29) Sh(PV(B(x, r) ∩ Γ)
)

= Sh
(
PV
(
B(0, r) ∩ x−1Γ

))
,

where the last equality is true since Sh(PV(E)) = Sh(PV(x−1E)) for every Borel E ⊆ G, see
Proposition 1.32. We wish now to prove the following inclusion

(1.30) PV
(
B(0,C(α)r) ∩ CV(α)

)
∩ PV(x−1Γ) ⊆ PV(B(0, r) ∩ x−1Γ).

Indeed, fix an element y of PV(B(0,C(α)r) ∩ CV(α)) ∩ PV(x−1Γ). Thanks to our choice of y
there are a w1 ∈ x−1Γ and a w2 ∈ B(0,C(α)r) ∩ CV(α) such that

PV(w1) = y = PV(w2).

Furthermore, since Γ is a CV(α)-set, we infer that w1 ∈ CV(α) and thus with the same
computations as in (1.27) we obtain that ∥PL(w1)∥ ≤ c(α)∥PV(w1)∥ and thus

(1.31) ∥w1∥ ≤ (1 + c(α))∥PV(w1)∥ ≤ (1 + c(α))∥y∥.

Furthermore, since by assumption w2 ∈ B(0,C(α)r) ∩ CV(α), Lemma 1.43 yields

(1.32) ∥y∥ = ∥PV(w2)∥ ≤ C(α)r/(1 − c(α)) = r/(1 + c(α)).

The bounds (1.31) and (1.32) together imply that ∥w1∥ ≤ r, and thus w1 ∈ B(0, r) ∩ x−1Γ
and this concludes the proof of the inclusion (1.30). Finally (1.29), (1.30) imply

(1.33) Sh(PV(B(x, r) ∩ Γ)) ≥ Sh
(
PV(B(0,C(α)r) ∩ CV(α)) ∩ PV(x−1Γ)

)
.

Furthermore, for every Borel subset E of G we have PV(xE) = PV(xPV(E)), since for every
g ∈ E we have the following simple equality PV(xg) = PV(xPVg). Therefore, by using the
latter observation and Proposition 1.32, we get, denoting with Ψ the map Ψ(v) = PV(x−1v)
for every v ∈ V, that

Sh
(
PV
(
B(0,C(α)r) ∩ CV(α)

)
∩ PV

(
x−1Γ

))
= Sh

(
PV
(
x−1PV(B(x,C(α)r) ∩ xCV(α))

)
∩ PV

(
x−1PV(Γ)

))
= Sh

(
Ψ
(
PV(B(x,C(α)r) ∩ xCV(α))

)
∩ Ψ

(
PV(Γ)

))
= Sh

(
PV(B(x,C(α)r) ∩ xCV(α)) ∩ PV(Γ)

)
.

(1.34)

Joining together (1.33) and (1.34) gives the sought conclusion. □

We conclude this subsection with a more detailed study of the co-normal Grassmannian.
These results will turn out to be fundamental when approaching the Marstrand–Mattila
rectifiability criterion in Chapter 3.
Proposition 1.45. Let ε2 := ε2(V,L) := C3(V,L)/2 > 0. For every s ∈ S(h) the function
e : Grs⊴(h) → R defined as

(1.35) e(V) := sup{ε2(V,L) : L is a normal complementary subgroup of V},

is lower semicontinuous. Moreover the following conclusion holds
if G ⊆ Grs⊴(h) is compact with respect to the distance dG on the Grassmannian, then
there exists a eG > 0 such that e(V) ≥ eG for every V ∈ G ⊆ Grs⊴(h).
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Proof. Let us prove that the function e is lower semicontinuous. Since ε2(V,L) = C3(V,L)/2,
see Lemma 1.40, it is enough to prove the proposition with 2e(V) instead of e(V), and with
C3(V,L) instead of ε2(V,L). Let us fix V ∈ Grs⊴(h) and 0 < ε < e(V), and denote with L
one of the normal complementary subgroups of V for which C3(V,L) > 2e(V) − ε. For every
W ∈ Grs⊴(h) thanks to Lemma 1.39 we have
(1.36) CW(C3(V,L) − 4dG(V,W) − ε) ⊆ CV(C3(V,L) − ε),
whenever dG(V,W) is small enough. Therefore if dG(V,W) is sufficiently small, the latter
inclusion and the same proof as in Lemma 1.40 imply that L ∩ W ⊆ L ∩CV(C3(V,L) − ε) =
{0}. Since L ∩ W = {0}, L and V are complementary subgroups and V and W have the
same stratification vector, and thus the same topological dimension, we have that L is a
complementary subgroup of W for the same argument used in the proof of Proposition 1.35.
Thus, taking (1.36) into account we get that L ∩ CW(C3(V,L) − 4dG(V,W) − ε) = {0} and
thus, from Remark 1.41, we get that C3(W,L) ≥ C3(V,L)−4dG(V,W)−ε whenever dG(V,W)
is sufficiently small. This implies that

2e(W) ≥ C3(W,L) ≥ C3(V,L) − 4dG(V,W) − ε ≥ 2e(V) − 4d(V.W) − 2ε,
whenever dG(V,W) is small enough, and thus

lim inf
dG(W,V)→0

e(W) ≥ e(V) − ε,

from which the lower semicontinuity follows due to the arbitrariness of ε. The last conclusion
follows since G ⊆ Grs⊴(h) is compact and e is lower semicontinuous. □

Remark 1.46. We observe that in proof of the previous proposition we did not use the
fact that L is normal, but we stated the proposition in this specific case since we are
going to use this formulation in this work. The same proof works in the more general
case when V ∈ Grc(h) with a fixed stratification vector s, and e(V) = sup{ε2(V,L) :
L is a complementary subgroup of V}.
Proposition 1.47. Let C > 0 and V ∈ Grs⊴(h) be such that e(V) ≥ C. Then there exists a
normal complementary subgroup L of V such that
(1.37) ∥PV(g)∥ ≤ (1 + 2/C)∥g∥, and ∥PL(g)∥ ≤ (2/C)∥g∥, for all g ∈ G,
where we recall that PV and PL are the projections relative to the splitting G = V · L.

Proof. Thanks to the definition of e(V), see (1.35), there exists a normal complementary
subgroup L of V such that ε1(V,L) ≥ C/2. Thus, arguing as in Lemma 1.40, we get L ∩
CV(C/2) = {0}. This implies, arguing as in Remark 1.41, that for every g ∈ G we have
(1.38) C∥PL(g)∥/2 ≤ dist(PL(g),V) = dist(g,V) ≤ ∥g∥.
Furthermore, thanks to the triangle inequality we have

∥g∥ ≥ ∥PV(g)∥ − ∥PL(g)∥ ≥ ∥PV(g)∥ − (2/C)∥g∥,
thus concluding the proof of the proposition. □

Proposition 1.48. Let s ∈ S(h). Let C > 0 and V ∈ Grs⊴(h) be such that e(V) ≥ C. Let L
be a normal complementary subgroup of V as in the statement of Proposition 1.47. Then the
projection PV : G → V related to the splitting G = V ·L is a (1+2/C)-Lipschitz homogeneous
homomorphism.

Proof. Thanks to the fact that L is normal, we have that for every x, y ∈ G the following
equality holds

PV(xy) = PV(xVxLyVyL) = PV(xVyV · y−1
V xLyV · yL) = PV(x)PV(y).
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Since PV is always an homogeneous map, we infer that PV is a homogeneous homomorphism.
Moreover, from Proposition 1.47 we have that

∥PV(g)∥ ≤ (1 + 2/C)∥g∥,

for every g ∈ G. Hence from the fact that PV is a homomorphism we have

∥PV(x)−1PV(y)∥ = ∥PV(x−1y)∥ ≤ (1 + 2/C)∥x−1y∥,

for every x, y ∈ G and thus PV is (1 + 2/C)-Lipschitz. □

Remark 1.49. Notice that in the proof of the above proposition we proved that whenever
L is normal, then PV is a homogeneous homomorphism.
Definition 1.50 (Cylinder). Let V,L be two complementary subgroups of G. For every
u ∈ G, and r > 0 we define

T (u, r) := P−1
V (PV(B(u, r))).

In the following proposition we study the structure of cylinders T (·, ·) when L is normal.
Proposition 1.51. Let s ∈ S(h). Let C > 0 and V ∈ Grs⊴(h) be such that e(V) ≥ C. Let L
be a normal complementary subgroup of V as in Proposition 1.47. Thus, for every u ∈ G we
have T (u, r) = PV(u)δrT (0, 1). Furthermore, we have

T (u, r) ⊆ PV(u)δrP
−1
V (B(0, (1 + 2/C)) ∩ V) = P−1

V (B(PV(u), (1 + 2/C)r) ∩ V).

Finally, for every h ∈ L we have B(uh, r) ⊆ T (u, r).

Proof. First of all, we note that thanks to Proposition 1.48 we have that w ∈ PV(B(u, r)) if
and only if there exists a v ∈ B(0, 1) such that w = PV(u)δrPV(v). Therefore, given u ∈ G
and r > 0, we have that y ∈ T (u, r) if and only if y = PV(u)δrPV(v)h for some v ∈ B(0, 1)
and h ∈ L. Thus we conclude that T (u, r) = PV(u)δrT (0, 1) for every u ∈ G and r > 0.

Secondly, thanks to Proposition 1.48 we infer that PV(B(0, 1)) ⊆ V∩B(0, (1 + 2/C)) and
thus combining such inclusion with the first part of the proposition we deduce that

T (u, r) ⊆ PV(u)δrP
−1
V (B(0, (1 + 2/C)) ∩ V) = P−1

V (B(PV(u), (1 + 2/C)r) ∩ V),

where the last equality is true since PV is a homogeneous homomorphism. Finally, thanks to
the first part of the proposition, for every u ∈ V and every h ∈ L we have

B(uh, r) ⊆ T (uh, r) = T (u, r),

and this concludes the proof of the proposition. □

3. Rectifiable measures in Carnot groups

In this section we are going to introduce and discuss the notion of P-rectifiable measure
in Carnot groups. This definition was first given in the work [180], and later extensively
studied in the papers [28,33]. Hence, the main references for this section are [28,33,180].

We recall that throughout this section G will be a fixed Carnot group of homogeneous
dimension Q endowed with an arbitrary left-invariant homogeneous distance d, and 1 ≤ h ≤
Q.

3.1. P-rectifiable measures. On a Carnot group we have a natural family of dilations,
see Section 2. Hence, we can define the notion of tangent measures to an arbitrary Radon
measure. This notion mimics the classical one in the Euclidean setting, see [89,202].
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Definition 1.52 (Tangent measures). Let ϕ be a Radon measure on G. For every x ∈ G and
every r > 0 we define the measure

Tx,rϕ(E) := ϕ(x · δr(E)), for every Borel set E.

Furthermore, we define Tan(ϕ, x), the tangent measures to ϕ at x, to be the collection of
the non-null Radon measures ν for which there is a sequence {ri}i∈N, with ri → 0, and a
sequence {ci}i∈N, with ci > 0, such that

ciTx,riϕ ⇀ ν.

Moreover, we define Tanh(ϕ, x), the h-tangent measures to ϕ at x, to be the collection of
Radon measures ν for which there is a sequence {ri}i∈N, with ri → 0, such that

r−h
i Tx,riϕ ⇀ ν.

Remark 1.53. (Zero as a tangent measure) We remark that in our definition, the zero
measure could be an element of Tanh(ϕ, x) as in [89], while in [202] and [178] this is excluded
by definition.
Lemma 1.54. Assume ϕ is a Radon measure on G and suppose that, for a sequence ri → 0,
r−h

i Tx,riϕ ⇀ ν. Then, for every z ∈ supp (ν) there exists a sequence yi ∈ supp (ϕ) such that
δ1/ri

(x−1yi) → z.

Proof. A simple argument by contradiction yields the claim. The proof follows verbatim as
its Euclidean analogue, see for instance [89, Proof of proposition 3.4]. □

Let ϕ be a Radon measure on G. We stress that whenever the h-lower density of ϕ is
strictly positive, and the h-upper density of ϕ is finite ϕ-almost everywhere, the set Tanh(ϕ, x)
is nonempty for ϕ-almost every x ∈ G. More in general, if ϕ is asymptotically doubling,
the set Tan(ϕ, x) is nonempty for ϕ-almost every x ∈ G. The latter two observations are
consequences of the argument in [174, Theorem 14.3], see also [202, Theorem 2.5], together
with [12, Theorem 1.59]. We briefly recall here the fact that the tangents are local and that
the density is natural with respect to restrictions to Borel sets.
Proposition 1.55. Let ϕ be an asymptotically doubling Radon measure on G. Then

(i) for every Borel set B ⊆ G the measure ϕ⌞B is an asymptotically doubling measure,
and we have that for every h ≥ 0, the following equalities hold for ϕ-almost every
x ∈ B

Θh
∗(ϕ⌞B, x) = Θh

∗(ϕ, x), and Θh,∗(ϕ⌞B, x) = Θh,∗(ϕ, x),

(ii) for every non-negative ρ ∈ L1(ϕ), and for ϕ-almost every x ∈ G, we have

Tan(ρϕ, x) = ρ(x)Tan(ϕ, x).

More precisely, for ϕ-almost every x ∈ G the following holds

if ri → 0 is such that cϕ(B(x, ri))−1Tx,riϕ ⇀ ν,

then cϕ(B(x, ri))−1Tx,ri(ρϕ) ⇀ ρ(x)ν.
(1.39)

(iii) Suppose there exists h ≥ 0 with 0 < Θh
∗(ϕ, x) ≤ Θh,∗(ϕ, x) < ∞ for ϕ-almost every

x ∈ G. Then, for every non-negative ρ ∈ L1(ϕ), and for ϕ-almost every x ∈ G, we
have Tanh(ρϕ, x) = ρ(x)Tanh(ϕ, x). More precisely, for ϕ-almost every x ∈ G the
following holds

if ri → 0 is such that r−h
i Tx,riϕ ⇀ ν then r−h

i Tx,ri(ρϕ) ⇀ ρ(x)ν.(1.40)
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Proof. The item (i) is a direct consequence of Lebesgue Differentiation Theorem of [125,
page 77], that can be applied since (G, d, ϕ) is a Vitali metric measure space due to [125,
Theorem 3.4.3].

Let us pass to the item (ii). Notice that, since ϕ is asymptotically doubling, hence for
ϕ-almost every x ∈ G, and every ν ∈ Tan(ϕ, x), there exists c > 0 such that

cϕ(B(x, ri))−1Tx,riϕ ⇀ ν.

The latter assertion is a consequence of the very same argument in [174, Remark 14.4(3)].
Now the proof of item (ii) can be concluded arguing verbatim as in [89, Proposition 3.12]
and exploiting that ϕ is asymptotically doubling. Indeed, the proof in [89] only relies on the
Lebesgue Differentiation Theorem [125, page 77], which is true because (G, d, ϕ) is a Vitali
metric measure space due to [125, Theorem 3.4.3]. The proof of item (iii) is analogous to
the proof of item (ii). □

Before going on, we state here a useful proposition about the structure of Radon measures
with positive h-lower density, and finite h-upper density almost everywhere.
Proposition 1.56 (See [180, Proposition 1.17 and Corollary 1.18]). Let ϕ be a Radon mea-
sure supported on a compact set of a Carnot group G. Assume there exists h > 0 such that
0 < Θh

∗(ϕ, x) ≤ Θh,∗(ϕ, x) < ∞ for ϕ-almost every x ∈ G.
For every ϑ, γ ∈ N we have that ϕ⌞E(ϑ, γ) is mutually absolutely continuous with respect

to Sh⌞E(ϑ, γ), where E(ϑ, γ) is defined in Definition 1.9.
We now introduce the notion of flat measures on a Carnot group.

Definition 1.57 (Flat measures). For every h ∈ {1, . . . , Q} we let M(h) to be the family of
flat h-dimensional measures in G, i.e.,

M(h) := {λSh⌞W : for some λ > 0 and W ∈ Gr(h)}.
Furthermore, if G is a subset of the h-dimensional Grassmannian Gr(h), we let M(h,G) to
be the set
(1.41) M(h,G) := {λSh⌞W : for some λ > 0 and W ∈ G}.
We stress that in the previous definitions we can use any of the Haar measures on W, see
Proposition 1.24, since they are the same up to a constant.

The following definition has been proposed in [180]. The study of the notions given in
Definition 1.58 and Definition 1.61 is at the core of Chapter 2 and Chapter 3 of this thesis.
Definition 1.58 (Ph and P∗

h-rectifiable measures). Let h ∈ {1, . . . , Q}. A Radon measure
ϕ on G is said to be a Ph-rectifiable measure if for ϕ-almost every x ∈ G we have

(i) 0 < Θh
∗(ϕ, x) ≤ Θh,∗(ϕ, x) < +∞,

(ii) there exists a V(x) ∈ Gr(h) such that Tanh(ϕ, x) ⊆ {λSh⌞V(x) : λ ≥ 0}.
Furthermore, we say that ϕ is P∗

h-rectifiable if (ii) is replaced with the weaker
(ii)* Tanh(ϕ, x) ⊆ {λSh⌞V : λ ≥ 0 and V ∈ Gr(h)}.

Remark 1.59. (About λ = 0 in Definition 1.58) It is readily noticed that, since in Defini-
tion 1.58 we are asking Θh

∗(ϕ, x) > 0 for ϕ-almost every x, we can not have the zero measure
as a tangent measure. As a consequence, a posteriori, we have that in item (ii) and item (ii)*
above we can restrict to λ > 0. We will tacitly work in this restriction from now on.

On the contrary, if we only know that for ϕ-almost every x ∈ G we have
(1.42) Θh,∗(ϕ, x) < +∞, and Tanh(ϕ, x) ⊆ {λSh⌞V(x) : λ > 0},
for some V(x) ∈ Gr(h), hence Θh

∗(ϕ, x) > 0 for ϕ-almost every x ∈ G, and the same property
holds with the item (ii)* above. Indeed, if at some x for which (1.42) holds we have Θh

∗(ϕ, x) =



22 1. PRELIMINARIES

0, then there exists ri → 0 such that r−h
i ϕ(B(x, ri)) = 0. Since Θh,∗(ϕ, x) < +∞, up

to subsequences (see [12, Theorem 1.60]), we have r−h
i Tx,riϕ → λSh⌞V(x), for some λ >

0. Hence, by applying [12, Proposition 1.62(b)] we conclude that r−h
i Tx,riϕ(B(0, 1)) →

λSh⌞V(x)(B(0, 1)) > 0, that is a contradiction.
Remark 1.60 (About the rectifiability of Hausdorff measures). We observe that if Γ is a
Borel set in G with 0 < Sh(Γ) < +∞, Sh⌞Γ is Ph-rectifiable if and only if Ch⌞Γ (or Hh⌞Γ)
is Ph-rectifiable. This is because Sh,Hh, Ch are equivalent measures (see Definition 1.1), the
Ph-rectifiability implies being asymptotically doubling, and then we can transfer the property
of being Ph-rectifiable from one measure to the other by using Lebesgue–Radon–Nikodým
theorem (see [125, page 82]) and the locality of tangents in Proposition 1.55.

Let us briefly comment on why one should be interested in the study of the notion of
P-rectifiability. The definition of P-rectifiable measure is natural in the setting of Carnot
groups. Indeed, we have on G a family of dilations {δλ}λ>0, see Section 2, that we can use to
give a good definition of blow-up of a measure. Hence we ask, for a measure to be rectifiable,
that the tangents are flat. The natural class of flat spaces, i.e., the analogous of vector
subspaces of the Euclidean space, seems to be the class of homogeneous subgroups of G, see
Definition 1.57. This latter assertion is suggested also from the result in [175, Theorem 3.2]
according to which on every locally compact group G endowed with dilations and isometric
left translations, if a Radon measure µ has a unique (up to multiplicative constants) tangent
µ-almost everywhere then this tangent is µ-almost everywhere (up to multiplicative constants)
the left Haar measure of a closed dilation-invariant subgroup of G. As a consequence, in the
definition of Ph-rectifiable measure we can equivalently substitute item (ii) of Definition 1.58
with the weaker requirement

(ii)′ Tanh(ϕ, x) ⊆ {λνx : λ > 0}, where νx is a Radon measure on G.

Moreover, we stress that if a metric group is locally compact, isometrically homogeneous and
admits one dilation, as it is for the class of metric group studied in [175], and moreover
the distance is geodesic, then it is a sub-Finsler Carnot group, see [144, Theorem 1.1], and
[86, Theorem D] for a generalization and related studies.

We are now going to define different subclasses of Ph and P∗
h-rectifiable measures. More

precisely we give the following definition.
Definition 1.61 (Subclasses of Ph and P∗

h-rectifiable measures). Let h ∈ {1, . . . , Q}. In
the following we denote by Pc

h the family of those Ph-rectifiable measures such that for
ϕ-almost every x ∈ G we have

Tanh(ϕ, x) ⊆ M(h,Grc(h)),

namely at ϕ-almost every point the tangent measures are supported on complemented ho-
mogeneous subgroups. Furthermore, the family of those P∗

h-rectifiable measures ϕ such that
for ϕ-almost every x ∈ G we have

(i) Tanh(ϕ, x) ⊆ M(h,Grc(h)) is denoted by P∗,c
h ,

(ii) Tanh(ϕ, x) ⊆ M(h,Gr⊴(h)) is denoted by P∗,⊴
h ,

(iii) Tanh(ϕ, x) ⊆ M(h,Grs⊴(h)), for some s ∈ S(h), is denoted by P∗,⊴,s
h .

We have the following simple lemma.
Lemma 1.62. Let h ∈ {1, . . . , Q} and assume ϕ is a Radon measure on G. If {ri}i∈N is an
infinitesimal sequence such that r−h

i Tx,riϕ ⇀ λCh⌞V for some λ > 0 and V ∈ Gr(h) then

lim
i→∞

ϕ(B(x, ri))/rh
i = λ.
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Proof. Since Ch⌞V(x)(∂B(0, 1)) = 0, see e.g., [132, Lemma 3.5], thanks to Remark 1.27 and
to [12, Proposition 1.62(b)] we have

λ = λCh⌞V(x)(B(0, 1)) = lim
i→∞

Tx,riϕ(B(0, 1))
rh

i

= lim
i→∞

ϕ(B(x, ri))
rh

i

,

and this concludes the proof. □

The above lemma has the following immediate consequence.
Corollary 1.63. Let h ∈ {1, . . . , Q} and assume ϕ is a P∗

h-rectifiable measure. Then for
ϕ-almost every x ∈ G we have

Tanh(ϕ, x) ⊆ {λCh⌞W : λ ∈ [Θh
∗(ϕ, x),Θh,∗(ϕ, x)] and W ∈ Gr(h)}.

We prove the following compactness result that will be of crucial importance in the proof
of the co-normal Marstrand–Mattila rectifiability criterion in Chapter 3.
Proposition 1.64. Let h ∈ {1, . . . , Q} and assume ϕ is a P∗

h-rectifiable measure. Then, for
ϕ-almost all x ∈ G the set Tanh(ϕ, x) is weak* compact.

Proof. Since the statement of the proposition does not depend on the choice of the left-
invariant homogeneous distance on G, we assume that G is endowed with the left-invariant
homogeneous distance induced by the box norm in Definition 1.16.

Let x ∈ G be such that 0 < Θh
∗(ϕ, x) ≤ Θh,∗(ϕ, x) < ∞ and Tanh(ϕ, x) ⊆ M(h). We now

prove that for every sequence {λjCh⌞Vj}j∈N ⊆ Tanh(ϕ, x), there are a λ > 0 and V ∈ Gr(h)
such that, up to non-relabelled subsequences we have

λjCh⌞Vj ⇀ λCh⌞V.

Indeed, thanks to Corollary 1.63 we have that λj ∈ [Θh
∗(ϕ, x),Θh,∗(ϕ, x)] for every j ∈ N and

thus we can assume without loss of generality that

λj → λ ∈ [Θh
∗(ϕ, x),Θh,∗(ϕ, x)],

up to a non-relabelled subsequence. Furthermore, thanks to Proposition 1.22 there exists a
V ∈ Gr(h) such that Vj → V with respect to the Grassmannian metric dG. Thus, thanks to
Proposition 1.30 and a simple computation that we omit, we conclude that

λjCh⌞Vj ⇀ λCh⌞V.

Since we assumed {λjCh⌞Vj} ⊆ Tanh(ϕ, x) then, for every j ∈ N there is an infinitesimal
sequence {rℓ(j)}ℓ∈N such that

rℓ(j)−hTx,rℓ(j)ϕ ⇀ λjCh⌞Vj .

Thus, the forthcoming Lemma 1.73 implies that limℓ→∞ F0,1(rℓ(j)−hTx,rℓ(j)ϕ, λjCh⌞Vj) = 0,
and in particular for every j ∈ N there exists an ℓj ∈ N such that defined rj := rℓj

(j) we have
that rj → 0, and

F0,1(r−h
j Tx,rjϕ, λjCh⌞Vj) ≤ 1/j.

Since lim supj→∞ r−h
j Tx,rjϕ(B(0, r)) ≤ Θh,∗(ϕ, x)rh for every r > 0, thanks to [12, Corollary

1.60], we can assume without loss of generality that there exists a Radon measure ν such
that r−h

j Tx,rjϕ ⇀ ν. On the other hand, by definition we have that ν ∈ Tanh(ϕ, x) and thus
by hypothesis on ϕ there is a η > 0 and a W ∈ Gr(h) such that ν = ηCh⌞W. This implies
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that for every j ∈ N we have

F0,1(ηCh⌞W, λCh⌞V) ≤ F0,1(ηCh⌞W, r−h
j Tx,rjϕ) + F0,1(r−h

j Tx,rjϕ, λjCh⌞Vj)

+ F0,1(λjCh⌞Vj , λCh⌞V)
≤ F0,1(ηCh⌞W, r−h

j Tx,rjϕ) + 1/j + F0,1(λjCh⌞Vj , λCh⌞V).

The arbitrariness of j and Lemma 1.73 implies that F0,1(ηCh⌞W, λCh⌞V) = 0 and since flat
measures are cones, we conclude that ηCh⌞W = λCh⌞V. This shows that λCh⌞V ∈ Tanh(ϕ, x)
and then the proof is concluded. □

3.2. Quantifying the distance of a Radon measure from flat measures. In this
subsection we are going to define functionals that in some sense tell how far is a measure
from being h-flat around a point x ∈ G and at a certain scale r > 0.

We first introduce now a way to estimate how far two measures are, cf. [202, 1.9(2)].
Definition 1.65 (Definition of FK). Given ϕ and ψ two Radon measures on G, and given
K ⊆ G a compact set, we define

(1.43) FK(ϕ, ψ) := sup
{∣∣∣∣ˆ fdϕ−

ˆ
fdψ

∣∣∣∣ : f ∈ Lip+
1 (K)

}
,

where Lip+
1 (K) is the set of nonnegative 1-Lipschitz functions supported on K. We also write

Fx,r for FB(x,r).
Remark 1.66. With few computations that we omit, it is easy to see that Fx,r(ϕ, ψ) =
rF0,1(Tx,rϕ, Tx,rψ). Furthermore, FK enjoys the triangle inequality. Indeed if ϕ1, ϕ2, ϕ3 are
Radon measures and f ∈ Lip+

1 (K), then∣∣∣ ˆ fdϕ1 −
ˆ
fdϕ2

∣∣∣ ≤
∣∣∣ ˆ fdϕ1 −

ˆ
fdϕ3

∣∣∣+ ∣∣∣ ˆ fdϕ3 −
ˆ
fdϕ2

∣∣∣
≤ FK(ϕ1, ϕ3) + FK(ϕ2, ϕ3).

The arbitrariness of f lets us conclude that FK(ϕ1, ϕ2) ≤ FK(ϕ1, ϕ3) + FK(ϕ3, ϕ2).
Let us introduce a Gauge for Radon measures on Carnot groups, cf. [202, 1.9(1)].

Definition 1.67 (Definition of Fr). For a given Radon measure ϕ on G and for r > 0, let us
define Fr(ϕ) :=

´
dist(z,B(0, r)c)dϕ(z).

Lemma 1.68. For every Radon measure ϕ on G and every r > 0 we have that Fr(ϕ) =
F0,r(ϕ, 0).

Proof. It is immediate to see that F0,r(ϕ, 0) ≥ Fr(ϕ) for every r > 0. In order to prove the
vice-versa, note that for every f ∈ Lip+

1 (B(0, r)) we have that f |∂B(0,r) = 0. Thanks to this
observation, for every y ∈ B(0, r) if we let x ∈ ∂B(0, r) be a point of minimal distance of y
from B(0, r)c we have

f(y) = |f(y) − f(x)| ≤ d(y, x) = dist(y,B(0, r)c),

and this finally shows that F0,r(ϕ, 0) = Fr(ϕ), concluding the proof of the lemma. □

In the following proposition we show a distance that metrizes the weak* convergence of
Radon measures.
Proposition 1.69. Let M be the set of Radon measures on G. The function defined on
M × M as

D(ϕ, ψ) :=
∞∑

p=0
2−p min{1, F0,p(ϕ, ψ)},
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is a distance, and (M, D) is a separable metric space. The topology induced by D on M
coincides with the weak* topology.

Moreover, let us assume {ϕi}i∈N is a sequence of Radon measures such that

lim sup
i→∞

ϕi(B(0, r)) < ∞,

for every r > 0. Then {ϕi}i∈N has a converging subsequence with respect to the weak* topology.

Proof. The result is stated in [202, Proposition 1.12] in the Euclidean case, but the proof
works verbatim for Radon measures on Carnot groups. □

Proposition 1.70. The function F0,1(·, ·) is a metric on B(h) := {ψ ∈ M(h) : F1(ψ) = 1}
and (B(h), F0,1) is a compact metric space.

Proof. First of all, we note that for every µ, ν ∈ B(h) we have that F0,1(µ, ν) = 0 if and only
if µ = ν and this is an immediate consequence of the fact that µ and ν are cones. Symmetry
follows directly from the definition, and the triangle inequality follows from Remark 1.66.

We are left to show that (B(h), F0,1) is a compact metric space. Let Ψi be a sequence in
B(h) and note that since Ch⌞V(B(0, 1)) = 1 for every V ∈ Gr(h), because of Remark 1.27, we
deduce that Ψi = (h+ 1)Ch⌞Vi for some Vi ∈ Gr(h), due to Proposition 1.29. Thus, we can
find a (non-relabeled) subsequence of the homogeneous subgroups Vi that converges to some
V ∈ Gr(h) in the Hausdorff metric thanks to the compactness of the Grassmannian Gr(h),
see Proposition 1.22. Hence, by Proposition 1.30 we infer that Ψi ⇀ (h + 1)Ch⌞V ∈ B(h)
and therefore the compactness follows. □

We are now ready to define a functional that in some sense tells us how far is a measure
from being h-flat. The following definition is inspired by [202, 2.1(3)].
Definition 1.71 (Definition of dx,r). For every x ∈ G, every h ∈ {1, . . . , Q} and every r > 0
we define the functional

(1.44) dx,r(ϕ,M(h)) := inf
Θ>0,

V∈Gr(h)

Fx,r(ϕ,ΘSh⌞xV)
rh+1 .

Furthermore, if G is a subset of the h-dimensional Grassmannian Gr(h), we also define

dx,r(ϕ,M(h,G)) := inf
Θ>0,
V∈G

Fx,r(ϕ,ΘSh⌞xV)
rh+1 .

Remark 1.72. It is a routine computation to prove that, whenever h ∈ N and r > 0 are fixed,
the function x 7→ dx,r(ϕ,M(h,G)) is a continuous function. The proof can be reached as in
[180, Item (ii) of Proposition 2.2]. Moreover, from the invariance property in Remark 1.66
and Proposition 1.24, if in (1.44) we use the measure Ch⌞xV instead of Sh⌞xV we obtain the
same definition.

Let us now prove the following criterion of flatness of h-tangents. We first need an
auxiliary lemma that is inspired by [202, Proposition 1.11]. The reader might find a complete
proof in [180, Proposition 1.10]. Here, we omit it.
Lemma 1.73. Let {µi} be a sequence of Radon measures on G. Let µ be a Radon measure
on G. The following are equivalent

(1) µi ⇀ µ;
(2) FK(µi, µ) → 0, for every K ⊆ G compact.
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Proposition 1.74. Let ϕ be a Radon measure on G. Further, let G be a subfamily of Gr(h)
and let M(h,G) be the set defined in (1.41). If at a point x ∈ G for which item (i) in
Definition 1.58 holds we have Tanh(ϕ, x) ⊆ M(h,G), then for every k > 0 we have

lim
r→0

dx,kr(ϕ,M(h,G)) = 0.

Proof. Let us fix x ∈ G a point for which Tanh(ϕ, x) ⊆ M(h,G) and let us assume by
contradiction that there exist k > 0 and ri → 0 such that, for some ε > 0, we have
(1.45) dx,kri

(ϕ,M(h,G)) > ε.

Since ϕ and x satisfy the hypotheses in item (i) in Definition 1.58, we can use [12, Proposition
1.62(b)] and then, up to subsequences, there are Θ∗ > 0 and V∗ ∈ G such that

(1.46) r−h
i Tx,riϕ ⇀ Θ∗Sh⌞V∗.

Thus,
dx,kri

(ϕ,M(h,G)) = d0,k(r−h
i Tx,riϕ,M(h,G)) ≤ k−h−1F0,k(r−h

i Tx,riϕ,Θ∗Sh⌞V∗) → 0,
where the first equality follows from the first part of Remark 1.66, and the last convergence
follows from (1.46), and Lemma 1.73. This is in contradiction with (1.45). □

The following proposition is an adaptation of [202, 4.4(4)] and it will be crucial in the
proof of Marstrand–Mattila’s rectifiability criterion in Chapter 3.
Proposition 1.75. Let h ∈ {1, . . . , Q}, and ϑ, γ ∈ N. Let ϕ be a Radon measure supported
on a compact set of G, and let G ⊆ Gr(h). Assume there exists an x ∈ E(ϑ, γ) (cf. Defini-
tion 1.9), a σ ∈ (0, 2−10(h+1)ϑ−1) and a 0 < t < 1/(2γ) such that

dx,t(ϕ,M(h,G)) ≤ σh+4.

Then, there is a V ∈ G such that
(i) whenever y, z ∈ B(x, t/2) ∩ xV and σt ≤ r, s ≤ t/2 we have

ϕ(B(y, r) ∩B(xV, σ2t)) ≥ (1 − 210(h+1)ϑσ)(r/s)hϕ(B(z, s));
(ii) furthermore, let us assume the homogeneous subgroup V yielded by item (i) above

admits a complementary normal subgroup L, and denote by PV the splitting projec-
tion on V according to this splitting. Then, for every k > 0 with σk < 2−10hϑ−1, if
we define TV(0, t/4k) := P−1

V (PV(B(0, t/4k))) we have

ϕ(B(x, t/4) ∩ xTV(0, t/4k)) ≤ (1 + 4σ(2kh+ 1))Ch(PV(B(0, 1)))k−hϕ(B(x, t/4)).

Proof. First of all, we notice that by the definition of dx,t(ϕ,M(h,G)) there exist V ∈ G and
λ > 0 such that

Fx,t(ϕ, λCh⌞xV) ≤ σh+3th+1.

Proof of (i). The key of the proof of item (i) is to show that for every w ∈ B(x, t/2) ∩xV,
every τ ∈ (0, t/2] and every ρ ∈ (0, τ ] we have

ϕ(B(w, τ)) ≤ λCh⌞(xV)(B(w, τ + ρ)) + σh+3th+1/ρ,(1.47)
λCh⌞(xV)(B(w, τ − ρ)) ≤ ϕ(B(w, τ) ∩B(xV, ρ)) + σh+3th+1/ρ.(1.48)

Before proving that (1.47) and (1.48) together imply the claim, we need to give a lower bound
for λ. Since x ∈ E(ϑ, γ), with the choice w = x, τ = t/4, and ρ := σ2t we have, from (1.47),
that the following inequality holds

ϑ−1(t/4)h ≤ ϕ(B(x, t/4)) ≤ λCh⌞(xV)(B(x, (1/4 + σ2)t)) + σh+1th

= λ(1/4 + σ2)hth + σh+1th,
(1.49)
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where the last equality comes from Remark 1.27. Since we know that σ ≤ 1/(210(h+1)ϑ), we
infer that σh+1 ≤ 1/(8hϑ), and then from (1.49) we infer

(1.50) ϑ−14−h ≤ λ(1/4 + σ2)h + σh+1 and in particular λ ≥ ϑ−12−3h,

where we exploited the fact that 1/4 + σ2 < 1, the fact that σh+1 ≤ 1/(8hϑ) and the fact
that 4−h − 8−h ≥ 8−h.

Let us now prove that (1.47) and (1.48) imply the claim. Since by hypothesis r, s ≥ σt
with the choice ρ = σ2t we have ρ < r, s. Furthermore since σt ≤ r, s ≤ t/2 and y, z ∈
B(x, t/2) ∩ xV, the bounds (1.47) and (1.48) imply

ϕ(B(y, r) ∩B(xV, ρ))
ϕ(B(z, s))

≥ λCh⌞(xV)(B(y, r − ρ)) − σh+3th+1/ρ

λCh⌞(xV)(B(z, s+ ρ)) + σh+3th+1/ρ

= rh

sh

λ(1 − σ2t/r)h − σh+1(t/r)h

λ(1 + σ2t/s)h + σh+1(t/s)h

≥ rh

sh

λ(1 − σ)h − σh+1(t/r)h

λ(1 + σ)h + σh+1(t/s)h
≥ rh

sh

λ(1 − σ)h − σ

λ(1 + σ)h + σ
,

where the equality in the second line comes from Remark 1.27, and we are using σt/r ≤ 1,
and σt/s ≤ 1. Since 2hσ ≤ 1, we have that (1 + σ)h ≤ 1 + 2hσ, that can be easily proved by
induction on h. This together with (1.50) and Bernoulli’s inequality (1 −σ)h ≥ 1 −σh allows
us to finally infer that

ϕ(B(y, r) ∩B(xV, ρ))
ϕ(B(z, s))

≥ rh

sh

1 − (λh+ 1)σ/λ
1 + (2hλ+ 1)σ/λ ≥ (1 − 210(h+1)ϑσ)r

h

sh
,

where the last inequality comes from the fact that σ ≤ 1/210(h+1)ϑ, from (1.50) and some
easy algebraic computations that we omit. An easy way to verify the last inequality is to show
that (1− α̃σ)/(1+ β̃σ) ≥ 1− γ̃σ, where α̃ := (λh+1)/λ, β̃ := (2hλ+1)/λ and γ̃ := 210(h+1)ϑ,
and observe that the latter inequality is implied by the fact that α̃+ β̃ − γ̃ ≤ 0.

Therefore, we are left to prove (1.47) and (1.48). In order to prove (1.47), we let g(z) :=
min{1, dist(z,G \B(w, τ + ρ))/ρ} and note that

ϕ(B(w, τ)) ≤
ˆ
g(z)dϕ(z) ≤

ˆ
g(z)dλCh⌞(xV)(z) + Lip(g)Fx,t(ϕ, λCh⌞(xV))

≤ λCh⌞(xV)(B(w, τ + ρ)) + σh+3th+1/ρ.

On the other hand, to prove (1.48) we let

h(z) := min{1,dist(z,G \ (B(w, τ) ∩B(xV, ρ)))/ρ},

and then

λCh⌞(xV)(B(w, τ − ρ)) ≤
ˆ
h(z)dλCh⌞(xV)(z)

≤
ˆ
h(z)dϕ(z) + Lip(h)Fx,t(ϕ, λCh⌞(xV))

≤ ϕ(B(w, τ) ∩B(xV, ρ)) + σh+3th+1/ρ.

Proof of (ii): In this proof let us fix τ := t/4 and define the function

ℓ(z) := min{1,dist(z,G \B(B(x, τ) ∩ xT (0, τ/k), ρ))/ρ},
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where 0 < ρ < τ . With this definition we have the following chain of inequalities

ϕ(B(x, τ) ∩ xT (0, τ/k)) ≤
ˆ
ℓ(z)dϕ(z) ≤

ˆ
ℓ(z)dλCh⌞(xV)(z) + Lip(ℓ)Fx,t(ϕ, λCh⌞(xV))

≤ λCh⌞(xV)(B(x, τ + ρ) ∩ xT (0, τ/k + ρ)) + 4h+1σh+3τh+1/ρ

≤ λCh⌞V(PV(B(0, 1)))(τ/k + ρ)h + 4h+1σh+3τh+1/ρ,

(1.51)

where the third inequality above comes from the fact that, according to the proof of Propo-
sition 1.48, the projection PV is a homomorphism, and then the following chain of equalities
holds

PV(B(T (0, τ/k), ρ)) = PV(T (0, τ/k)B(0, ρ))
= PV(B(0, t/k))PV(B(0, ρ)) = PV(B(0, τ/k + ρ)).

(1.52)

Putting together (1.48) when specialized to the case w = x and τ = t/4, with (1.51) and
Remark 1.27, we infer that

ϕ(B(x, τ) ∩ xT (0, τ/k))
ϕ(B(x, τ))

≤ λCh⌞V(PV(B(0, 1)))(τ/k + ρ)h + 4h+1σh+3τh+1/ρ

λ(τ − ρ)h − 4h+1σh+3τh+1/ρ
.(1.53)

Since σ2 < 1 we choose ρ := σ2τ and note that since σk < 2−10hϑ−1, the previous inequality
yields

ϕ(B(x, τ) ∩ xT (0, τ/k))
ϕ(B(x, τ))

≤ λCh(PV(B(0, 1)))(1/k + σ2)h + 4h+1σh+1

λ(1 − σ2)h − 4h+1σh+1

≤ (1 + 4σ(2kh+ 1))Ch(PV(B(0, 1)))k−h,

where we omit the straightforward computations that lead to the last inequality but we stress
that we need Ch(PV(B(0, 1))) ≥ 1, that in turns comes from the fact that PV(B(0, 1)) ⊇
B(0, 1) ∩V and Ch(B(0, 1) ∩V) = 1, due to Remark 1.27; and also the bound on λ in (1.50).
The last inequality concludes the proposition. □

Now we are going to define an analogous version of the quantity defined in Definition 1.71.
This next definition will be useful while dealing with measures for which we only know that
they are asymptotically doubling. The following definition is inspired by [202, 2.1(3)].
Definition 1.76 (Definition of dx,r). For every x ∈ G, every h ∈ {1, . . . , Q} and every r > 0
we define the functional

(1.54) dx,r(ϕ,M(h)) := inf
V∈Gr(h)

F0,1

(
Tx,rϕ

F1(Tx,rϕ) , (h+ 1)Ch⌞V
)
.

Furthermore, if G is a subset of the h-dimensional Grassmannian Gr(h), we also define

(1.55) dx,r(ϕ,M(h,G)) := inf
V∈G

F0,1

(
Tx,rϕ

F1(Tx,rϕ) , (h+ 1)Ch⌞V
)
.

Remark 1.77 (About the definition of dx,r). For every Radon measure ϕ on G and every
r > 0 it is immediate to see that F1(T0,rϕ) = r−1Fr(ϕ). Moreover, thanks to the first part of
Remark 1.66, by few simple computations we get

(1.56) F0,1

(
Tx,rϕ

F1(Tx,rϕ) , (h+ 1)Ch⌞V
)

= r−(h+1)F0,r

(
Tx,1ϕ

r−(h+1)Fr(Tx,1ϕ)
, (h+ 1)Ch⌞V

)
,

for all r > 0 and V ∈ Gr(h). Hence, since F1((h+ 1)Ch⌞V) = 1 as a consequence of Proposi-
tion 1.29 and Remark 1.27, we notice that the definition in (1.55) agrees with the definition
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given in [202, 2.1(3)]. Namely, dx,r(ϕ,M(h,G)) = dr(Tx,1ϕ,M(h,G)) = d1(Tx,rϕ,M(h,G)),
where dr is the analogue in the Carnot setting of the functional defined in [202, 2.1(3)] in
the Euclidean setting.

For the sake of completeness, and for some benefits toward subsequent calculations, let
us give here the precise analogue, in the setting of Carnot groups, of the definition of the
function d that Preiss gave in the Euclidean setting. Let C be an arbitrary cone of Radon
measures on G without the origin, that means 0 ̸∈ C and µ ∈ C implies λT0,νµ ∈ C for every
λ, ν > 0. Then, for every r > 0 and Radon measure ϕ we define

(1.57) dr(ϕ,C ) := inf
{
F0,r

(
ϕ

Fr(ϕ) , ψ
)

: ψ ∈ C , Fr(ψ) = 1
}
.

By the explicit expression and the continuity of Fr(·) with respect to the weak* convergence,
one easily verifies that for every r > 0 the following implication holds
(1.58) ϕk ⇀ ϕ, Fr(ϕ) > 0 ⇒ dr(ϕk,C ) → dr(ϕ,C ),
compare [202, 2.1(6)]. Moreover, due to a slight modification of (1.56), we have, for every
r > 0 and every Radon measure ϕ,
(1.59) dr(ϕ,C ) = d1(T0,rϕ,C ).

We now adapt some classical results contained in [202] to our context. The aim will be to
prove that when a Radon measure on G has a tangent at a point that is a cone (of measures)
with compact basis, then the measure is asymptotically doubling at the point. The following
proposition is the analogue of [202, Propostion 2.2].
Proposition 1.78. Assume that T is a non-empty cone of Radon measures on G, i.e., for
every ν ∈ T and every λ, η > 0 we have ηT0,λν ∈ T , and moreover 0 ̸∈ T . Then, the
following are equivalent

(i) the set B(T ) := {ν ∈ T : F1(ν) = 1} is weak* compact,
(ii) for every sequence {νi}i∈N ⊆ T such that limi→∞ F1(νi) = 0, we have νi ⇀ 0,

(iii) there is a q ∈ (0,∞) such that ν(B(0, 2r)) ≤ qν(B(0, r)) for every r > 0 and every
ν ∈ T .

Proof. Let us first prove that (i)⇒(ii). Let νi be a sequence in T and let us assume that
limi→∞ F1(νi) = 0. We note that νi ⇀ 0 if and only if F0,t(νi, 0) = Ft(νi) →i 0 for every
t > 0. This means that if νi does not converge to 0, we infer that there are a t > 1 and an
ε > 0 such that, up to passing to subsequences, we have Ft(νi) > ε for every i ∈ N. We can
assume without loss of generality that F1(νi) > 0 for every I. Let us define

ri := sup{r ∈ [1, t] : Fr(νi) ≤ F1(νi) + 1/i}.
It is immediate to see that up to further subsequences F1(T0,riνi) = r−1

i Fri(νi) > 0 and that

lim
i→∞

Ft/ri
(T0,riνi)

F1(T0,riνi)
= lim

i→∞

Ft(νi)
Fri(νi)

> ε lim
i→∞

(F1(νi) + 1/i)−1 = ∞.

Thanks to the fact that T is a cone, we know that F1(T0,riνi)−1T0,riνi ∈ B(T ) and thus
there must exists a converging (non-relabeled) subsequence of ri and a ν ∈ B(T ) such that
F1(T0,riνi)−1T0,riνi ⇀ ν. This however implies that

∞ = lim
i→∞

Ft/ri
(T0,riνi)

F1(T0,riνi)
≤ lim

i→∞

Ft(T0,riνi)
F1(T0,riνi)

= lim
i→∞

Ft(F1(T0,riνi)−1T0,riνi) = Ft(ν),

that is a contradiction with the fact that ν is a Radon measure.
Secondly, let us show that (ii)⇒(iii). Since T is a cone, it suffices to prove that there

exists q ∈ (0,+∞) such that ν(B(0, 2)) ≤ qν(B(0, 1)) for every ν ∈ T . Indeed, we thus would
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get that for every ν ∈ T and r > 0 we have ν(B(0, 2r)) = T0,rν(B(0, 2)) ≤ qT0,rν(B(0, 1)) =
qν(B(0, r)). Suppose by contradiction that there exists a sequence of measures νi ∈ T such
that νi(B(0, 2)) > iνi(B(0, 1)). Note now that since T is a cone, the measures νi(B(0, 2))−1νi

are still in T and limi→∞ F1(νi(B(0, 2))−1νi) = 0. Thanks to (ii) this shows in particular
that

(1.60) νi(B(0, 2))−1νi ⇀ 0

However, since F3(νi(B(0, 2))−1νi) ≥ 1 for every i ∈ N, this is a contradiction with (1.60),
according to which one should have

lim
i→∞

F3(νi(B(0, 2))−1νi) = F3(0) = 0,

since F3 is a weak* continuous operator on Radon measures.
Finally, let us prove the implication (iii)⇒(i). Let {νi}i∈N be a sequence in B(T ) and

note that for every i ∈ N we have

νi(B(0, 1/2)) ≤ 2F1(νi) = 2,

and thus thanks to (iii) we infer that for every r > 0 we have νi(B(0, r)) is uniformly
bounded above independently on i ∈ N. Finally, Proposition 1.69 and the weak* continuity
of F1 conclude the proof. □

Remark 1.79. Let us notice that if T is a non-empty cone of Radon measures such that
B(T ) is weak* compact, for every λ > 1 there is τ > 1 such that Fτr(ψ) ≤ λFr(ψ) for
every r > 0 and ψ ∈ T . The proof follows verbatim from the five lines in [202, (1)⇒(5) of
Proposition 2.2].
Proposition 1.80. For every Radon measure ϕ on G and ϕ-almost every x ∈ G the set
Tan(ϕ, x) is either empty or a cone. Moreover, if ϕ is a Radon measure on G such that the
set B(ϕ, x) := {ν ∈ Tan(ϕ, x) : F1(ν) = 1} is non-empty and weak* compact for ϕ-almost
every x ∈ G, then ϕ is asymptotically doubling.

Proof. In order to prove the first part of the statement, let x ∈ supp (ϕ) be a point where
Tan(ϕ, x) is non-empty, choose a ν ∈ Tan(ϕ, x) and assume that ri → 0 and ci are two
sequences such that

ciTx,riϕ ⇀ ν.

To conclude the proof of the claim we need to show that for every η, λ > 0 we have ηT0,λν ∈
Tan(ϕ, x) and to do this, we just note that

ηciTx,λri
ϕ = ηT0,λ(ciTx,riϕ) ⇀ ηT0,λν.

This shows that ηT0,λν ∈ Tan(ϕ, x) and thus Tan(ϕ, x) is a cone.
Fix a point x ∈ G where the set B(ϕ, x) is a compact cone and thanks to Proposi-

tion 1.78(iii) we infer there exists a q > 0 such that ν(B(0, 2r)) ≤ qν(B(0, r)) for every
ν ∈ Tan(ϕ, x) and every r > 0. Let d := inf{dist(z,B(0, 1/2)c) : z ∈ B(0, 1/4)} > 0. We now
claim that

(1.61) lim sup
r→0

F1(Tx,2rϕ)/F1(Tx,rϕ) ≤ 2d−1q2.

Indeed, if by contradiction ri is an infinitesimal sequence such that

F1(Tx,2riϕ) > 2d−1q2F1(Tx,riϕ),



3. RECTIFIABLE MEASURES IN CARNOT GROUPS 31

then for every ν ∈ B(ϕ, x) we have
F0,1(Tx,2riϕ/F1(Tx,2riϕ), ν) ≥ F0,1/2(Tx,2riϕ/F1(Tx,2riϕ), ν)

≥ F1/2(ν) − F1/2(Tx,2riϕ)/F1(Tx,2riϕ),(1.62)

where the last inequality comes from Remark 1.66 and Lemma 1.68. Furthermore, we also
have for every ν ∈ B(ϕ, x) that

(1.63) F1/2(ν) =
F1/2(ν)
F1(ν) ≥ dν(B(0, 1/4))

2ν(B(0, 1))
≥ d

2q2 .

Thanks to the absurd hypothesis and the fact that for every s > 0 we have Fs(Tx,rϕ) =
sF1(Tx,rsϕ), we infer that

(1.64) F1/2(Tx,2riϕ)/F1(Tx,2riϕ) = F1(Tx,riϕ)/2F1(Tx,2riϕ) ≤ d/4q2.

Putting (1.62), (1.63) and (1.64) together, we conclude that

(1.65) F0,1(Tx,2riϕ/F1(Tx,2riϕ), ν) ≥ d/4q2 ≥ min{d/4q2, 1/2} =: ε,

for every ν ∈ B(ϕ, x). Let us now denote, for simplicity, T := Tan(ϕ, x). By taking
into account the definition of d1 in (1.57), we get from the previous computations that
d1(Tx,2riϕ,T ) ≥ ε for every i. Let us fix ν ∈ Tan(ϕ, x), and take ci > 0 and si → 0 such that
ciTx,siϕ ⇀ ν. Let us note that (1.57) and (1.58) imply that

lim
i→0

d1(Tx,siϕ,T ) = lim
i→∞

d1(ciTx,siϕ,T ) = d1(ν,T ) = 0.

Thanks to the above chain of identities, for i sufficiently large, we denote by ℓi the smallest
number among those ℓ ∈ [0, si] with the property that d1(Tx,ηϕ,T ) < ε for every ℓ < η ≤ si.
Since d1(Tx,2riϕ,T ) ≥ ε we conclude that ℓi > 0 for i sufficiently large and d1(Tx,ℓi

ϕ,T ) = ε

by the minimality of ℓi and the continuity of the map η 7→ d1(Tx,ηϕ,T ).
If, up to subsequences, ℓi/si →i t > 0, we conclude that, thanks to (1.58),

d1(T0,tν,T ) = lim
i→+∞

d1(Tx,tsiϕ,T ) ≥ ε,

where the last inequality is true since tsi is arbitrarily near to ℓi for i large enough, and
d1(Tx,ℓi

ϕ,T ) ≥ ε. The previous inequality gives a contradiction since T0,tν ∈ T and hence
we should have d1(T0,tν,T ) = 0. Thus, ℓi/si → 0. This means that for every r ≥ 1, taking
into account (1.59), we have

(1.66) lim sup
i→+∞

dr(Tx,ℓi
ϕ,T ) = lim sup

i→+∞
d1(Tx,rℓi

ϕ,T ) ≤ ε,

since ℓi ≤ rℓi ≤ si for i sufficiently large. Since ε < 1, we have that λ := 2/(1 + ε) > 1,
and hence, by Remark 1.79, there exists τ > 1 such that Fτr(ψ) ≤ λFr(ψ) for every ψ ∈ T
and for every r > 0, since T has a compact basis. Hence, taking (1.66) into account with τr
instead of r, we get that, whenever r ≥ 1 and i is sufficiently big, there exists ψ ∈ T with
Fτr(ψ) = 1 and

F0,τr

(
Tx,ℓi

ϕ

Fτr(Tx,ℓi
ϕ) , ψ

)
≤ ε/2.

As a consequence, whenever r ≥ 1 and i is sufficiently big, by the triangle inequality for F
(cf. Proposition 1.70) and by the fact that Fτr(·) ≥ Fr(·), we get that

Fr(Tx,ℓi
ϕ)

Fτr(Tx,ℓi
ϕ) ≥ Fr(ψ) − ε/2 ≥ λ−1Fτr(ψ) − ε/2 ≥ 1/2.
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Hence, iterating, we have shown that there exists τ > 1 such that that for every r ≥ 1 and
every p ∈ N,

lim sup
i→+∞

Fτpr(Tx,ℓi
ϕ)

Fr(Tx,ℓi
ϕ) < +∞.

By the arbitrariness of p ∈ N and r ≥ 1, this implies that we are in a position to apply
Proposition 1.69 to the sequence Tx,ℓi

ϕ

F1(Tx,ℓi
ϕ) , which then converges, up to subsequences, to

ν̃ ∈ T with F1(ν̃) = 1. But then, by (1.58),

d1(ν̃,T ) = lim
i→+∞

d1(Tx,ℓi
ϕ,T ) ≥ ε,

that is a contradiction since d1(ν̃,T ) = 0. Hence we finally have proven (1.61).
Hence, from (1.61), we deduce

lim sup
r→0

ϕ(B(x, 2r))
ϕ(B(x, r))

≤ lim sup
r→0

2F1(Tx,4rϕ)
2−1F1(Tx,rϕ) ≤ 16d−2q4,

whence the conclusion. □

Let us now prove a simple consequence of the previous proposition.
Proposition 1.81. Let ϕ be a Radon measure on G such that for ϕ-almost every x ∈ G we
have Tan(ϕ, x) = {λSh⌞V(x), λ > 0} for some homogeneous subgroup V(x) of homogeneous
dimension h ∈ N. Then, for ϕ-almost every x ∈ G, the measure Tx,rϕ/F1(Tx,rϕ) weak*
converges to (h+ 1)Ch⌞V(x) as r → 0.

Proof. For ϕ-almost every x ∈ G we have that B(ϕ, x) = {(h + 1)Ch⌞V(x)}, taking into
account Proposition 1.29 and Remark 1.27. Hence B(ϕ, x) is clearly compact for ϕ-almost
every x ∈ G, and then ϕ is asymptotically doubling, due to Proposition 1.80. Hence for
every sequence ri → 0 we can extract a subsequence in i such that Tx,riϕ/F1(Tx,riϕ) weak*
converges to some ν ∈ Tan(ϕ, x), due to the fact that ϕ is asymptotically doubling and
thus the hypothesis of Proposition 1.69 is verified. Since F1(ν) = 1 by continuity of F1, we
conclude that ν = (h + 1)Ch⌞V(x). Thus, being the sequence ri arbitrary, we obtain the
thesis. □

The following proposition, which is inspired by [202, 4.4(4)], will be of crucial importance
in the proof of some results in Chapter 2.
Proposition 1.82. Let 0 < σ < 1/5, ϕ be a Radon measure on G, h ∈ {1, . . . , Q}, and
dz,t(ϕ,M(h, {V})) ≤ σh+4, then

ϕ(B(y, s) ∩B(yV, σ2t/(h+ 1))) ≥ (1 − 5σ)(s/r)hϕ(B(x, r)),

whenever x, y ∈ zV∩B(z, (1−σ)t), σt ≤ r ≤ (1−σ)t−∥z−1x∥, and σt ≤ s ≤ (1−σ)t−∥z−1y∥.

Proof. The definition of dz,t(·,M(h, {V})) implies that

F0,1(Tz,tϕ/F1(Tz,tϕ), (h+ 1)Ch⌞V) ≤ σh+4.

Up to redefining ϕ we can assume without loss of generality that z = 0, t = 1 and that
F1(ϕ) = 1. Thus, let q := σ2/(h+1), x ∈ V and r > 0 as in the hypothesis of the proposition.
Define

g(w) := min{1, dist(w,G \B(x, r + q))/q}.
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Notice that B(x, r) ⋐ B(0, 1), and thanks to the assumptions on ϕ we infer that, calling
Lip(g) the Lipschitz constant of the function g,

ϕ(B(x, r)) ≤
ˆ
g(w)dϕ(w) ≤ (h+ 1)

ˆ
g(w)dCh⌞V(w) + Lip(g)F0,1(ϕ, (h+ 1)Ch⌞V(w))

≤ (h+ 1)Ch⌞V(B(x, r + q)) + σh+4/q = (h+ 1)(r + q)h + σh+4/q,

(1.67)

where in the last equality we are exploiting Remark 1.27. With the same argument used
above, cf. (1.48), for every y and s > 0 as in the hypothesis of the proposition one can also
show that
(1.68) (h+ 1)(s− q)h = (h+ 1)Ch⌞V(B(y, s− q)) ≤ ϕ(B(y, s) ∩B(V, q)) + σh+4/q.

Thus, putting together (1.67) and (1.68) we infer that

ϕ(B(y, s) ∩B(V, q))
ϕ(B(x, r))

≥ (h+ 1)(s− q)h − σh+4/q

(h+ 1)(r + q)h + σh+4/q
=
(
s

r

)h

(
1 − σ2

s(h+1)

)h
− σh+2

sh(
1 + σ2

r(h+1)

)h
+ σh+2

rh

≥
(
s

r

)h

(
1 − σ

h+1

)h
− σ2(

1 + σ
h+1

)h
+ σ2

≥
(
s

r

)h 1 − h/(h+ 1)σ − σ2

1 + 2h/(h+ 1)σ + σ2

≥
(
s

r

)h 1 − 2σ
1 + 3σ ≥ (1 − 5σ)

(
s

r

)h

,

where in the third inequality above we are using that σ ≤ r and σ ≤ s; in the fourth
inequality we are using that (1 − σ/(h + 1))h ≥ 1 − h/(h + 1)σ by Bernoulli inequality,
and (1 + σ/(h + 1))h ≤ 1 + 2h/(h + 1)σ, which can be easily verified by induction since
2hσ/(h+ 1) ≤ 1. □

3.3. Measurability of the map "points to tangents". In this subsection we state
and prove three measurability results that will play a crucial role in Chapter 2. Roughly
speaking, we prove that when a measure has unique tangents (or unique approximate tan-
gents), the map that associates a point x ∈ G to its tangent (or approximate tangent) is
measurable. The reference for this subsection is the work [33].
Lemma 1.83. Let ϕ be a Radon measure on G such that, for ϕ-almost every x ∈ G, there
exists τ(ϕ, x) ∈ Gr(h) such that

Tan(ϕ, x) = {λCh⌞τ(ϕ, x) : λ > 0}.
Then the map x 7→ τ(ϕ, x) is ϕ-measurable as a map from G to Gr(h).

Proof. First of all, from Proposition 1.80 we get that ϕ is asymptotically doubling. We let
{Vℓ}ℓ∈N be a countable dense set in Gr(h), which exists thanks to the compactness of the
Grassmannian, see Proposition 1.22. Furthermore, for every r ∈ (0, 1) ∩ Q every ε > 0, and
every ℓ ∈ N we define the function

fr,ℓ,ε(x) := ϕ(B(x, r))−1ϕ({w ∈ B(x, r) : dist(x−1w,Vℓ) ≥ ε∥x−1w∥})
=: ϕ(B(x, r))−1ϕ(I(x, r, ℓ, ε)),

when ϕ(B(x, r)) > 0 and we set it to be +∞ if ϕ(B(x, r)) = 0. We claim that the functions
fr,ℓ,ε are upper semicontinuous. Let {xi}i∈N be a sequence of points converging to some
x ∈ G. If ϕ(B(x, r)) = 0 the upper semicontinuity on the sequence {xi}i∈N is trivially
verified by definition of fr,ℓ,ε. So let us assume without loss of generality that ϕ(B(x, r)) > 0.
Since xi → x and ϕ is a Radon measure we have, by Fatou’s Lemma, that ϕ(B(x, r)) ≤
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lim inf i→+∞ ϕ(B(xi, r)), and then we can assume without loss of generality that ϕ(B(xi, r)) >
0 for every i.

Since the sets I(xi, r, ℓ, ε) are contained in B(x, 2) provided i is sufficiently big, we infer
thanks to Fatou’s Lemma that

lim sup
i→+∞

fr,ℓ,ε(xi) = lim sup
i→+∞

ϕ(B(xi, r))−1
ˆ
χI(xi,r,ℓ,ε)(z)dϕ(z)

≤ ϕ(B(x, r))−1
ˆ

lim sup
i→+∞

χI(xi,r,ℓ,ε)(z)dϕ(z).
(1.69)

Furthermore, since xi → x and the sets I(xi, r, ℓ, ε) and I(x, r, ℓ, ε) are closed, we have
lim sup
i→+∞

χI(xi,r,ℓ,ε) = χlim supi→+∞ I(xi,r,ℓ,ε) ≤ χI(x,r,ℓ,ε),

where the first equality is true in general. Then, from (1.69), we infer that

lim sup
i→∞

fr,ℓ,ε(xi) ≤ ϕ(B(x, r))−1
ˆ

lim sup
i→+∞

χI(xi,r,ℓ,ε)(z)dϕ(z)

≤ ϕ(B(x, r))−1
ˆ
χI(x,r,ℓ,ε)(z)dϕ(z) = fr,ℓ,ε(x),

and this concludes the proof that fr,ℓ,ε is upper semicontinuous. This shows that for every
ℓ ∈ N and ε > 0, the function

fℓ,ε := lim inf
r∈Q∩(0,1),r→0

fr,ℓ,ε,

is ϕ-measurable. Hence also f̃ℓ,ε := supε̃∈Q,ε̃>ε fℓ,ε is ϕ-measurable. As a consequence, since
Tan(ϕ, x) = {λCh⌞τ(ϕ, x) : λ > 0} for ϕ-almost every x ∈ G, we infer that the set

Bℓ,ε :=
{
x ∈ G : f̃ℓ,ε(x) = 0} ∩ {x ∈ G : there exists τ(ϕ, x)

}
= {x ∈ G : τ(ϕ, x) ⊆ CVℓ

(ε)},
(1.70)

is ϕ-measurable as well.
Let us now prove that

Bℓ,ε = {x ∈ G : τ(ϕ, x) ⊆ CVℓ
(ε)},(1.71)

Let us show the inclusion ⊆ in (1.71). If f̃ℓ,ε(x) = 0, then fℓ,ε̃(x) = 0 for every ε̃ > ε, ε̃ ∈ Q.
Hence, we first get that there exist ri → 0 such that fri,ℓ,ε̃(x) →i 0. Since ϕ is asymptotically
doubling, thanks to Proposition 1.69 we deduce that ϕ(B(x, ri))−1Tx,riϕ converges, up to
subsequences, to some tangent measure ν ∈ Tan(ϕ, x), and then from the hypothesis we have
ν = λCh⌞τ(ϕ, x), for some λ > 0.

Thanks to [89, Proposition 2.7], we infer that for every ε̃ > ε the following holds

ν({w ∈ B(0, 1) : dist(w,Vℓ) > ε̃∥w∥})
≤ lim inf

i→∞
ϕ(B(x, ri))−1Tx,riϕ({w ∈ B(0, 1) : dist(w,Vℓ) > ε̃∥w∥})

= lim inf
i→∞

ϕ(B(x, ri))−1ϕ({w ∈ B(x, ri) : dist(x−1w,Vℓ) > ε̃∥x−1w∥}) = 0,

(1.72)

where the last identity comes from the fact that fri,ℓ,ε̃(x) →i 0. This shows in particular that

τ(ϕ, x) ⊆ {w ∈ G : dist(w,Vℓ) ≤ ε̃∥w∥} = CVℓ
(ε̃),

and thus, taking ε̃ → ε we get the sought first inclusion in (1.71).
For the other inclusion, if τ(ϕ, x) ⊆ CVℓ

(ε), we get that τ(ϕ, x) ⊆ {w ∈ G : dist(w,Vℓ) <
ε̃∥w∥} for every ε̃ > ε. Moreover, as a consequence of a routine argument (cf. [174, Remark
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14.4(3)]) we get that there exists an infinitesimal sequence ri → 0, and a λ > 0, such that
ϕ(B(x, ri))−1Tx,ri ⇀ λCh⌞τ(ϕ, x). Hence, using [89, Proposition 2.7], we get that for every
ε̃ > ε the following inequalities hold

fℓ,ε̃(x) = lim inf
r∈Q,r→0

fr,ℓ,ε̃(x) ≤ lim inf
i→∞

fri,ℓ,ε̃(x)

= lim inf
i→∞

ϕ(B(x, ri))−1ϕ({w ∈ B(x, ri) : dist(x−1w,Vℓ) ≥ ε̃∥x−1w∥})

≤ lim sup
i→∞

ϕ(B(x, ri))−1Tx,riϕ({w ∈ B(0, 1) : dist(w,Vℓ) ≥ ε̃∥w∥})

≤ λCh⌞τ(ϕ, x)({w ∈ B(0, 1) : dist(w,Vℓ) ≥ ε̃∥w∥}) = 0,

(1.73)

where the last inequality is true since τ(ϕ, x) ⊆ CVℓ
(ε) holds. Hence we have finally proved

the claim (1.71).

In order to prove that the map x 7→ τ(ϕ, x) is ϕ-measurable, it suffices to check that the
for every open Ω ⊆ Gr(h) we have that τ−1(Ω) is ϕ-measurable. To show this we note that,
thanks to Lemma 1.39, there is a sequence of radii rk > 0 such that

Ω =
⋃

k∈N
Vk∈Ω

{W ∈ Gr(h) : W ⊆ CVk
(rk)}.

This implies that, up to ϕ-null sets, τ−1(Ω) =
⋃

k∈NBk,rk
, which thanks to the above discus-

sion is a ϕ-measurable set. □

Lemma 1.84. Let ϕ be a Ph-rectifiable measure. Denote with τ(ϕ, x) the unique element of
Gr(h), that exists ϕ-almost everywhere by definition, for which

Tanh(ϕ, x) ⊆ {λCh⌞τ(ϕ, x) : λ > 0}.

Then the map x 7→ τ(ϕ, x) is ϕ-measurable as a map from G to Gr(h).

Proof. From a routine argument (cf. [174, Remark 14.4(3)]), we get that

Tan(ϕ, x) = {λCh⌞τ(ϕ, x)},

for ϕ-almost every x ∈ G. Hence we can apply Lemma 1.83 to conclude the proof. □

The proof of the following lemma follows as the ones above. We omit the details. Notice
that the following statement could be also obtained arguing as in [178, Proposition 3.9], after
having noticed that, since 2−h ≤ Θh,∗(Sh⌞E, x) ≤ 1 for Sh⌞E-almost every x ∈ G due to
[102, 2.10.19(1) and 2.10.19(5)], the condition (1.74) is equivalent to asking that V(x) is an
approximate tangent plane to E at x in the sense of [178, Equation (3.2)].
Lemma 1.85. Let E ⊆ G be a Borel set of positive and finite Sh-measure, and suppose that
for Sh-almost every x ∈ E there exists V(x) ∈ Gr(h) for which for every 0 < ε < 1 and every
0 < β < 1 there exists a ρ(x, ε, β) > 0 such that

(1.74) Sh⌞E(B(x, r) \ xCV(x)(β)) ≤ εSh⌞E(B(x, r)),

for every 0 < r < ρ(x, ε, β). Then the map x 7→ V(x) from E to Gr(h) is Sh⌞E-measurable.
Remark 1.86. The results in Lemma 1.83, Lemma 1.84, and Lemma 1.85 are readily true
also when we allow τ(ϕ, x) (or V(x)) to be in some Borel subset of Gr(h).
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4. Intrinsic regular functions and submanifolds

In this section we discuss the various notions of intrinsic regular functions and submani-
folds in Carnot groups. We will fix h,Q natural numbers such that 1 ≤ h ≤ Q. Let G be a
Carnot group of homogeneous dimension Q equipped with a homogeneous norm ∥ · ∥ which
induces a left-invariant homogeneous distance d.

4.1. Intrinsically Lipschitz functions and graphs. In this subsection we discuss
the definition of intrinsically Lipschitz function. The following Definition 1.87 of intrinsically
Lipschitz function is equivalent to the classical one in [110, Definition 11] because the cones in
[110, Definition 11] and the cones CV(α) are equivalent whenever V admits a complementary
subgroup, see Remark 1.88.
Definition 1.87 (Intrinsically Lipschitz functions). Let W ∈ Grc(h), assume L is a comple-
mentary subgroup of W, and let E ⊆ W. Let α > 0. A function f : E → L is said to be an
α-intrinsically Lipschitz function if graph(f) := {v · f(v) : v ∈ E} is a CW(α)-set. A function
f : E → L is said to be an intrinsically Lipschitz function if there exists α > 0 such that f
is an α-intrinsically Lipschitz function.
Remark 1.88. Let us fix V,L two complementary subgroups of G. Let us recall, from
Remark 1.38, that if we define

CV,L(α) := {w ∈ G : ∥PL(w)∥ ≤ α∥PV(w)∥},

then, for every α < C2(V,L), the following inclusions hold

CV,L(C2α) ⊆ CV(α) ⊆ CV,L(α/(C2 − α)).

Thus, in Definition 1.87 we can equivalently use the cones CV,L instead of the cones CV to
give the notion of intrinsically Lipschitz function.
Proposition 1.89. Let us fix W ∈ Grc(h) with complementary subgroup L. If Γ ⊆ G is a
CW(α)-set for some α ≤ ε1(W,L), then the map PW : Γ → W is injective. As a consequence
Γ is the intrinsic graph of an intrinsically Lipschitz map defined on PW(Γ).

Proof. Suppose by contradiction that PW : Γ → W is not injective. Then, there exist p ̸= q
with p, q ∈ Γ such that PW(p) = PW(q). Thus p−1 · q ∈ L. Moreover, since Γ is a CW(α)-set,
we have that p−1 · q ∈ CW(α). Eventually we get

p−1 · q ∈ L ∩ CW(α) ⊆ L ∩ CW(ε1(W,L)),

where the last inclusion follows since α ≤ ε1(W,L). The above inclusion, jointly with
Lemma 1.40, gives that p−1 · q = 0 and this is a contradiction. Concerning the last part
of the statement, let us notice that the map PL ◦

(
(PW)|Γ

)−1 is well-defined from PW(Γ) to L
and its intrinsic graph is Γ by definition. Moreover, since Γ is a CW(α)-set, the latter map is
intrinsically Lipschitz by Definition 1.87. □

Let us now end this section with the definition of the intrinsic translation of a function.
Definition 1.90 (Intrinsic graph of a function). Let W,L be complementary subgroups of
G. Let φ : U ⊆ W → L, we denote

Φ(U) := graph(φ) := {Φ(w) := w · φ(w) : w ∈ U}.

Definition 1.91 (Intrinsic translation of a function). Let W,L be complementary subgroups
of G. Given a function φ : U ⊆ W → L, we define, for every q ∈ G,

Uq := {a ∈ W : PW(q−1 · a) ∈ U},
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and φq : Uq ⊆ W → L by setting

(1.75) φq(a) :=
(
PL(q−1 · a)

)−1 · φ
(
PW(q−1 · a)

)
.

4.2. Intrinsically differentiable functions and graphs. In this subsection we discuss
the notion of intrinsically differentiable function and graph, see [109, Definition 3.2.1]. From
now on let V and L be two fixed complementary subgroups in a Carnot group G endowed
with a homogeneous norm ∥ · ∥ that induces a left-invariant homogeneous distance d.

The notion of intrinsic differentiability was first given in [114, Definition 4.4] and then
first studied in [16], see [16, Definition 1.1]. In this last reference the notion of intrinsic
differentiability is given in terms of the graph distance. We here give a slightly different
definition of intrinsic differentiability that is indeed equivalent to the one in [16], by [208,
Proposition 4.76], when V is a normal subgroup.
Definition 1.92 (Intrinsically linear function). The map ℓ : V → L is said to be intrinsically
linear if graph(ℓ) is a homogeneous subgroup of G.
Definition 1.93 (Intrinsically differentiable function). Let φ : U ⊆ V → L be a function
with U Borel in V. Fix a density point a0 ∈ D(U) of U , let p0 := φ(a0)−1 · a−1

0 and denote
with φp0 : Up0 ⊆ V → L the shifted function introduced in Definition 1.91. We say that φ
is intrinsically differentiable at a0 if there is an intrinsically linear map dφφa0 : V → L such
that

(1.76) lim
b→e, b∈Up0

∥dφφa0(b)−1 · φp0(b)∥
∥b∥

= 0.

The function dφφa0 is called the intrinsic differential of φ at a0. We say that φ is intrinsically
differentiable if it is intrinsically differentiable at every point a0 ∈ U . We also denote by
ID(U,W;L) the set of intrinsically differentiable functions φ : U ⊆ W → L.
Definition 1.94 (Intrinsically differentiable graph). Let φ : K ⊆ V → L be a continuous
function with K compact in V. Let a0 ∈ K. We say that graph(φ) is an intrinsically
differentiable graph at a0 · φ(a0) if there exists a homogeneous subgroup V(a0) such that for
every compact set K ′ ⊆ G, the following holds

(1.77) lim
λ→∞

dH,G
(
δλ((a0 · φ(a0))−1 · graph(φ)) ∩K ′,V(a0) ∩K ′

)
= 0,

where dH,G is the Hausdorff distance between closed subsets of G.
When we want to stress that the homogeneous dimension of V is h, we sometimes refer

to graph(φ) as an h-dimensional intrinsically differentiable graph at a0 · φ(a0).
Let us fix φ : U ⊆ V → L with U open. Whenever the intrinsic differential introduced

in Definition 1.93 exists, it is unique: see [109, Theorem 3.2.8]. In [109] the authors prove
the following result: a function φ : U ⊆ V → L, with U open, is intrinsically differentiable
at a0 if and only if graph(φ) is an intrinsically differentiable graph at a0 · φ(a0) with the
tangent V(a0) complemented by L, see Definition 1.94, and moreover V(a0) = graph(dφφa0).
If we have φ : U ⊆ V → L with U compact and with positive Haar measure in V, the above
equivalence still holds at density points of U . We do not give a proof of this last assertion
since it follows by routine modifications of the argument in [109], and moreover we do not
need it in this thesis.

Let us now give the definition of uniformly intrinsically differentiable map between com-
plementary subgroups.
Definition 1.95 (Uniformly intrinsic differentiability). Let φ : U ⊆ W → L be a function
with U open. For a point a0 ∈ U , let p0 := φ(a0)−1 · a−1

0 and denote by φp0 : Up0 ⊆ W → L
the shifted function defined in Definition 1.91.
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We say that φ is uniformly intrinsically differentiable at a0 if, setting pa := φ(a)−1 · a−1

for every a ∈ U , we have
(1.78)

lim
r→0

(
sup

{
∥dφφa0(b)−1 · φpa(b)∥

∥b∥
: a ∈ U ∩B(a0, r), b ∈ Upa ∩B(a0, r), a ̸= b

})
= 0.

We say that φ is uniformly intrinsically differentiable on U if it is uniformly intrinsically
differentiable at every a0 ∈ U . We finally denote by UID(U,W;L) the set of uniformly
intrinsically differentiable functions φ : U ⊆ W → L.

Let us now discuss more in detail the case in which we have a splitting G = W ·L, where
L is a horizontal homogeneous subgroup.
Proposition 1.96 ([93, Proposition 3.4]). Let W and L be two complementary subgroups of
a Carnot group G with L horizontal and k-dimensional, and let ℓ : W → L be an intrinsically
linear function. Then ℓ only depends on the horizontal components of the elements in W,
namely on W1 := W ∩ V1, where V1 = exp(V1). In particular, if πV1 denotes the projection
from G to V1, i.e., the map exp ◦πV1 ◦ exp−1, one has

ℓ(a) = ℓ(πV1a), ∀a ∈ W.

As a consequence, exp−1 ◦ℓ ◦ exp|Lie(W)∩V1
: Lie(W) ∩ V1 → Lie(L) is linear, and there exists a

constant C := C(ℓ) > 0 such that

(1.79) ∥ℓ(a)∥ ≤ C∥πV1a∥, ∀a ∈ W.

Let us now describe how to represent the intrinsic gradient of a function in coordinates,
when L is horizontal.
Definition 1.97 (Intrinsic gradient). Let W and L be two complementary subgroups of a
Carnot group G with L horizontal and k-dimensional, let U ⊆ W be open, and let φ : U → L
be intrinsically differentiable at a0 ∈ U . By Proposition 1.96, the map exp−1 ◦(dφφa0) ◦
exp|Lie(W)∩V1

is linear and thus there exists a linear map ∇φφa0 ∈ Lin(Lie(W) ∩ V1; Lie(L))
such that

dφφa0(expW ) = exp (∇φφa0(W )) , ∀W ∈ Lie(W) ∩ V1.

Remark 1.98 (Intrinsic gradient in exponential coordinates). Assume (X1, . . . , Xn) is an
adapted basis of the Lie algebra g such that

L = span{X1, . . . , Xk}, W = span{Xk+1, . . . , Xn},

and identify W and L with Rn−k and Rk, respectively, through exponential coordinates
associated to {X1, . . . , Xn}. Then, by Definition 1.97, with a little abuse of notation, we get
a k × (n1 − k) matrix ∇φφa0 such that, in coordinates, one has

dφφa0(a) =
(
∇φφa0(ak+1, . . . , am)T, 0, . . . , 0

)
, ∀a = (ak+1, . . . , an) ∈ W ≡ Rn−k.

4.3. Intrinsically C1 functions, submanifolds and rectifiability. In this subsection
we recall the definition of intrinsically C1 function between Carnot groups. Moreover, we give
the definitions of intrinsically C1 submanifolds and rectifiable sets.

A notion of intrinsically C1 regular submanifold, C1
H-submanifold from now on, was firstly

introduced and studied in [111] in the setting of Heisenberg groups, and then in [112] in
arbitrary Carnot groups G. Initially, the authors only took hypersurfaces into account.
A first step toward a general definition of C1

H-submanifolds in arbitrary codimensions was
done in [115, Definition 3.1, Definition 3.2] in the setting of Heisenberg groups Hn. Then
a general notion of (G,M)-regular submanifold, where G and M are Carnot groups, was
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proposed by Magnani in [168, Definition 3.5]. According to the latter definition, a (G,M)-
regular submanifold is locally the zero-level set of an M-valued C1

H-function defined on an open
subset of G and whose intrinsic Pansu differential df is surjective. For more general definition
of C1

H-submanifold, we refer the reader to [168, Definition 3.1], [169, Definition 10.2] and to
[132, Section 2.5].

Below, we present the approach to C1
H-rectifiability presented in [132]. In [132] the

authors give the following definitions of C1
H-submanifold of a Carnot group and rectifiable

sets. We first recall the definition of C1
H-function along with the area formula for Lipschitz

functions between Carnot groups, which will be useful later on.
Before starting, we recall the definition of Carnot homomorphism. We call a Lie group

homomorphism φ : G → H between two Carnot groups a Carnot homomorphism if

φ ◦ δλ = δλ ◦ φ, ∀λ > 0.

Definition 1.99 (Differentiability and C1
H-function). Let G and G′ be two Carnot groups

endowed with left-invariant homogeneous distances d and d′, respectively. Let U ⊆ G be
Borel and let f : U → G′. Let x ∈ U be a point of density one for U in G. We say that f is
Pansu differentiable at x ∈ U if there exists a Carnot homomorphism dfx : G → G′ such that

lim
y→x

d′(f(x)−1 · f(y), dfx(x−1 · y))
d(x, y) = 0.

Moreover we say that f is of class C1
H in U if the map x 7→ dfx is well-defined and continuous

from U to the space of Carnot homomorphisms from G to G′.
We shall recall the area formula for Lipschitz maps in Carnot groups which is due to

Magnani. First we recall Rademacher theorem in this setting, which is due to Pansu. The
following statement is in Magnani’s work [160, Theorem 3.9].
Theorem 1.100. Let G and H be two Carnot groups. Let us call Q the homogeneous dimen-
sion of G. Then every Lipschitz map f : A ⊆ (G, dG) → (H, dH), where A is a measurable set,
is differentiable HQ-a.e., i.e., for HQ-a.e. point x of A, there exists a Carnot homomorphism
dfx : G → H such that

(1.80) lim
y∈A,y→x

dH(f(x)−1f(y), dfx(x−1y))
dG(x, y) = 0.

Remark 1.101. We discuss here how dfx is defined. From [160, Step 1 and Step 2 of
Theorem 3.9], and [160, Equation (3) in Step 1 of Theorem 3.9], it follows that

dfx(z) := lim
xδtz∈A,t→0

δ1/t

(
f(x)−1f(xδtz)

)
does exist for every x in a HQ-full measure set Aω ⊆ A, and every z in a countable dense
subset of G. Then, from [160, Step 2 of Theorem 3.9], for x ∈ Aω, the map dfx can be
extended to all z ∈ G, by density.
Definition 1.102 (Jacobian of a Lipschitz map). Given any Lipschitz map f : A ⊆ (G, dG) →
(H, dH) we can define the Jacobian

JQ(dfx) := HQ(dfx(B(0, 1)))
HQ(B(0, 1)) ,

at every differentiability point x of f .
The following result is proved in [160, Theorem 4.4].
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Theorem 1.103. Given any Lipschitz map f : A ⊆ (G, dG) → (H, dH), where A is a mea-
surable set, we have ˆ

A
JQ(dfx)dHQ(x) =

ˆ
H
♯(f−1(y) ∩A)dHQ(y).

Let us now pass to the definition of C1
H-submanifold and to the definition of intrinsically

C1 rectifiability.
Definition 1.104 (C1

H-submanifold). Given a Carnot group G, we say that Σ ⊆ G is a C1
H-

submanifold of G if there exists a Carnot group G′ such that for every p ∈ Σ there exists an
open neighborhood Ω of p and a function f ∈ C1

H(Ω;G′) such that
(1.81) Σ ∩ Ω = {g ∈ Ω : f(g) = 0},
and dfp : G → G′ is surjective with Ker(dfp) complemented. In this case we say that Σ is a
C1

H(G,G′)-submanifold. When G′ = R, we say that Σ is a C1
H-hypersurface.

Definition 1.105 ((G,G′)-rectifiable set). Given two arbitrary Carnot groups G and G′ of
homogeneous dimensions Q and Q′, respectively, we say that Σ ⊆ G is a (G,G′)-rectifiable
set if there exist countably many subsets Σi of G that are C1

H(G,G′)-submanifolds, such that

HQ−Q′
(

Σ \
+∞⋃
i=1

Σi

)
= 0.

The definition of rectifiability in Definition 1.105 is based on the assumption that the
good class with which we are choosing to cover our rectifiable set is the class of intrinsically
C1 submanifolds. This approach has been taken to its utmost level of generality through the
works [132,163,164].

We stress here that the notion of P-rectifiability is strictly weaker than the notion in
Definition 1.105. Indeed, the following result holds. This result is taken from [28, Proposi-
tion 1.2], and we will not present the proof here.
Proposition 1.106. Let us fix G and G′ two arbitrary Carnot groups of homogeneous dimen-
sions Q and Q′ respectively. Let us take Σ ⊆ G a (G,G′)-rectifiable set. Then SQ−Q′

⌞Σ is a
PQ−Q′-rectifiable measure with complemented tangents, namely a Pc

Q−Q′-rectifiable measure.
Moreover, there exist a Carnot group G, a Borel set Σ ⊆ G, and 1 ≤ h ≤ Q such that Sh⌞Σ
is a Ph-rectifiable measure but, for every Carnot group G′, Σ is not (G,G′)-rectifiable.
Remark 1.107. We remark that the proof of Proposition 1.106 in [28] is heavily based on
the results in [132, Lemma 3.4 & Corollary 3.6]. The two latter results in the reference are
consequences of the area formula [132, Theorem 1.1]. As a consequence the approach in
[132] is, in some sense, reversed with respect to our approach to rectifiability. The authors in
[132] deal with the category of C1

H(G,G′)-regular submanifolds and prove the area formula
relying on [132, Proposition 2.2], that ultimately tells that a Borel regular measure µ with
positive and finite Federer’s density θ with respect to the spherical Hausdorff measure Sh

admits the representation µ = θSh. Then with this area formula they are able to prove the
results that led to the proof of the above Proposition 1.106.

We stress that in the paper [33], together with A. Merlo, we proved an area formula
for intrinsically differentiable graphs, see [33, Theorem 1.3], that extends the result of [132,
Theorem 1.1].
Remark 1.108 (P-rectifiability and (G,G′)-rectifiable sets). From Definition 1.104 and
Definition 1.105 it follows that the tangent subgroup W at almost every point of a (G,G′)-
rectifiable set is normal and complemented. Moreover, from [132, Lemma 2.14, (iv)], every
complementary subgroup of W must be a Carnot subgroup of G that in addition is isomorphic
to G′. This results in a lack of generality of this approach to rectifiability. Let us give here an
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example where the previous phenomenon becomes clear. If we take L an horizontal subgroup
in the first Heisenberg group H1, on the one hand S1⌞L is P1-rectifiable, on the other hand
L is not (H1,G′)-rectifiable for every Carnot group G′ since L is not normal.

Let us stress that the second part of Proposition 1.106 is not surprising. Indeed, the
approach to rectifiability through intrinsically C1 submanifolds described above and used in
[132] is selecting rectifiable sets whose tangents are complemented normal subgroups of G,
see [132, Section 2.5] for a more detailed discussion. This can be easily understood if one
thinks that the parametrizing class of objects is given by C1

H-regular submanifolds Σ with
complemented tangents Ker(dfp) at p ∈ Σ, which are complemented (and normal) subgroups.

In some sense we could say that the approach of [132] is covering, in the utmost generality
known up to now, the case of low-codimensional rectifiable sets in a Carnot group G. It
has been clear since the works [115, 178] that, already in the Heisenberg groups Hn, one
should approach the low-dimensional rectifiability in a different way with respect to the low-
codimensional one. Indeed, in the low-dimensional case in Hn, the authors in [115, 178]
choose as a parametrizing class of objects the images of C1

H-regular (or Lipschitz-regular)
functions from subsets of Rd to Hn, with 1 ≤ d ≤ n, see [115, Definition 3.1 & Definition
3.2], and [178, Definition 2.10 and Definition 3.13].

The bridge between the definition of P-rectifiability and the ones discussed in the above
paragraphs is done in [178] in the setting of Heisenberg groups, and in [128] in arbitrary
homogeneous groups but only in the case of horizontal tangents. Let us stress that the result in
[178, (i)⇔(iv) of Theorem 3.15] shows that in the Heisenberg groups the P-rectifiability with
tangents that are vertical subgroups is equivalent to the rectifiability given in terms of C1

H-
regular submanifolds. Moreover [178, (i)⇔(iv) of Theorem 3.14] shows that in the Heisenberg
groups the P-rectifiability with tangents that are horizontal subgroups is equivalent to the
rectifiability given in terms of Lipschitz-regular images.

Moreover, very recently, in [128, Theorem 1.1], the authors prove a generalization of [178,
Theorem 3.14] in arbitrary homogeneous groups. Namely they prove that in a homogeneous
group the k-rectifiability of a set in the sense of Federer can be characterized with the fact that
the tangent measures to the set are horizontal subgroups, or equivalently with the fact that
there exists an approximate tangent plane that is a horizontal subgroup almost everywhere. In
our setting this implies that the P-rectifiability with tangents that are horizontal subgroups
is equivalent to the rectifiability given in terms of Lipschitz-regular images, which is Federer’s
one. For results similar to the ones of [33,128,178] but in the different setting of the parabolic
Rn and in all the codimensions, we point out the recent [176].

One natural question to ask after the negative result in Proposition 1.106 is whether the
notion of P-rectifiability and the notion of (G,G′)-rectifiability do coincide in some cases.
In [33, Corollary 5.3] we show that this is the case in the co-horizontal setting, namely we
prove the following result. Here, we omit the proof, which is based on the slicing result in
[33, Proposition 5.1], which is itself ultimately based on the rectifiability result presented in
Proposition 2.37.
Proposition 1.109. Let G be a Carnot group of homogeneous dimension Q, and let 1 ≤ h ≤
Q be a natural number. Let Γ ⊆ G be a Borel set such that 0 < Sh(Γ) < +∞. The following
are equivalent

1. Sh⌞Γ is a Pc
h-rectifiable measure, and at Sh⌞Γ-almost every x ∈ G the support of

every tangent measure is complemented by a horizontal subgroup.
2. Γ is C1

H(G,RQ−h)-rectifiable.
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Thus the following question becomes natural. A positive answer to the following question
would imply that, whenever they can agree, the notions of P-rectifiable set and the notion
of intrinsically C1 rectifiable set in the sense Definition 1.104 do agree.

Question 1. Let ϕ be a Ph-rectifiable measure on G such that at ϕ-almost every point
the support of every tangent measure is the Haar measure of a given normal complemented
subgroup. Understand whether G can be covered ϕ-almost everywhere with the countable
union of C1

H(G,G′)-submanifolds (where G′ need not to be unique), see Definition 1.104.

Let us now discuss, with more details, the case of co-horizontal submanifolds in a Carnot
group.
Definition 1.110 (∇W,∇L). Let W and L be two complementary subgroups of a Carnot
group G, with L horizontal and k-dimensional and let f ∈ C1

H(U ;Rk). Consider an adapted
basis (X1, . . . , Xn) of the Lie algebra g such that L = exp(span{X1, . . . , Xk}) and
W = exp(span{Xk+1, . . . , Xn}). Then, we define ∇Lf and ∇Wf by setting

∇Lf :=


X1f

(1) . . . Xkf
(1)

... . . . ...
X1f

(k) . . . Xkf
(k)

 , ∇Wf :=


Xk+1f

(1) . . . Xmf
(1)

... . . . ...
Xk+1f

(k) . . . Xmf
(k)

 .
In particular, one has that, in exponential coordinates, ∇Hf = (∇Lf | ∇Wf), where ∇H is
the intrinsic differential, see Definition 1.99, in coordinates.

We recall the notion of co-horizontal C1
H-submanifold of arbitrary codimension, see [141,

Definition 3.3.4]. We stress that we changed the terminology with respect to [141, Defini-
tion 3.3.4]. What the author calls co-Abelian submanifold, for us is a co-horizontal subman-
ifold. This is a particular case of Definition 1.104, when G′ ≡ Rk.
Definition 1.111 (co-horizontal C1

H-submanifold). Let G be a Carnot group of rank m and
let 1 ≤ k ≤ m. We say that Σ ⊆ G is a co-horizontal C1

H-submanifold of codimension k if,
for every p ∈ Σ, there exist a neighborhood U of p and a map f ∈ C1

H(U ;Rk) such that
(1.82) Σ ∩ U = {g ∈ U : f(g) = 0},

and the Pansu-differential dfp : G → Rk of f is surjective.
We say that Σ is a codimension k co-horizontal C1

H-submanifold with complemented tan-
gents if, in addition, given a representation around p as in (1.82), the homogeneous subgroup
Ker(dfp) admits a horizontal complement (of dimension k). In this case, we call Ker(dfp) the
homogeneous tangent space to Σ at p. This homogeneous subgroup at p is independent of the
choice of f , see [169, Theorem 1.7].

A first natural question one could try to answer is whether it is possible to (locally) write
a C1

H-submanifold as an intrinsic graph of a function. The answer to the previous question
is affirmative for C1

H-hypersurfaces. Moreover the graphing function is intrinsically Lipschitz
according to Definition 1.87 (actually it is UID, see the forthcoming discussion), while it
is in general neither Euclidean Lipschitz nor Lipschitz with respect to any sub-Riemannian
distance, see [114, Example 3.3 and Proposition 3.4].

A more general implicit function theorem was proved by Magnani in [169, Theorem 1.4].
This theorem holds for arbitrary (G,M)-regular submanifolds with the additional property
that Ker(dfx) has a complementary subgroup in G, where x is the point around which we
want to parametrize the submanifold. From [169, Eq. (1.8)] it follows, also in this case, that
the parametrization is intrinsically Lipschitz. The validity of the implicit function theorem
leads the way to a very general definition of (G,M)-regular sets for G, where M is just a
homogeneous group, given in [169, Definition 10.2], compare with the above Definition 1.104.



4. INTRINSIC REGULAR FUNCTIONS AND SUBMANIFOLDS 43

We will not deal with objects at this level of generality, but we refer the interested reader
to [169, Sections 10,11,12]. As already pointed out above, the class of intrinsic regular
submanifolds is also studied in [132], where area and coarea formulae are proved. For an
alternative proof of the implicit function theorem, one can also see [132, Section 2.5].

Coming back to the co-horizontal case, we remark that, if Σ ⊆ G is a co-horizontal C1
H-

submanifold with complemented tangents, then one can use the implicit function theorem,
see [113, Theorem 2.1] for the one-codimensional case, and see [169, Theorem 1.4] for the
more general statement, to locally represent the submanifold as a graph of a function φ : U ⊆
W := Ker(dfp) → L, with W and L complementary subgroups.

A finer study on the regularity of the parametrizing function of a C1
H-submanifold has been

initiated in [16] in the setting of Heisenberg groups Hn, for the class of C1
H-hypersurfaces.

For this study in arbitrary CC-spaces, see also [81]. In [16], with this aim, the authors
introduced the notion of uniform intrinsic differentiability that we gave in Definition 1.95.

Building upon an implicit function theorem, the authors in [16] prove that in Hn the
graphing map φ for a C1

H-hypersurface is UID. The idea behind this implication is the follow-
ing: a function f ∈ C1

H not only has continuous derivatives, but also its horizontal gradient
∇Hf uniformly approximates f at first order, see [169, Theorem 1.2], and [132, Proposi-
tion 2.4]. This notion is sometimes referred to as strict differentiability. This fact has a
strong analogy with the Euclidean setting. Indeed, in the Euclidean framework, a function f
with continuous partial derivatives is Fréchet-differentiable, and the proof relies on a use of a
mean value inequality, that is exactly what one finds in [169, Theorem 1.2], and [16, Lemma
4.2]. We stress that [16, Lemma 4.2] is an instance of the stratified mean value theorem that
can be found in [106]. Finally, the uniform differentiability of f translates into the uniform
intrinsic differentiability of φ.

The fact that the graphing function is UID was proved in the case of co-horizontal C1
H-

submanifolds in Hn in [37], and more in general for co-horizontal C1
H-submanifolds with

complemented tangents in every Carnot group, in [93]. The converse implication, i.e., the
fact that the graph of a UID function is a C1

H-submanifold, was firstly shown to be true
in [16, 37] in the setting of Hn, and lately generalized in [93] for arbitrary Carnot groups
G to functions with horizontal target, see the forthcoming Proposition 1.112 for a precise
statement. Notice that the lack of generality in the statement, namely, the fact that one
restricts the target to be horizontal, is due to the fact that a generalized version of Whitney’s
extension theorem, beyond the case in which the target is horizontal, is still not known to be
true.

The following proposition follows from [93, Theorem 4.1 and Theorem 4.6] and relates
level sets of Rk-valued C1

H-functions, and ultimately co-horizontal C1
H-submanifolds with com-

plemented tangents, with uniformly intrinsically differentiable functions.
Proposition 1.112 ([93, Theorem 4.1 and Theorem 4.6]). Let W and L be two complemen-
tary subgroups of a Carnot group G, with L horizontal and k-dimensional, take U ⊆ W open
and φ ∈ UID(U,W;L). Then, for every a ∈ U , there exist a neighborhood V of a ·φ(a) in G,
and f ∈ C1

H(V ;Rk), such that

graph(φ)(U) ∩ V =: Φ(U) ∩ V = {g ∈ V : f(g) = 0},

and, for every g ∈ V , the Pansu differential (dfg)|L : L → Rk is bijective. As a conse-
quence graph(φ) is a co-horizontal C1

H-submanifold of codimension k, with tangents comple-
mented by L. Moreover, if (X1, . . . , Xn) is an adapted basis of the Lie algebra g such that
L = exp(span{X1, . . . , Xk}) and W = exp(span{Xk+1, . . . , Xn}), then det ∇Lf ̸= 0 and, in
exponential coordinates, one has

(1.83) ∇φφ(a) = − (∇Lf(Φ(a)))−1 ∇Wf(Φ(a)), ∀a ∈ U.
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For the definition of ∇φφ,∇W and ∇L we refer to Definition 1.97 and Definition 1.110.
On the other hand, if 1 ≤ k ≤ m and Σ is a codimension k co-horizontal C1

H-submanifold
with complemented tangents, then, for every p ∈ Σ, there exist two complementary subgroups
W and L of G with L horizontal and k-dimensional, a neighborhood V ⊆ G of p and φ ∈
UID(U,W;L), with U = PW(V ), such that

Σ ∩ V = graph(φ).
Remark 1.113. Notice that, in the setting of Proposition 1.112, in the case k = 1, up to
possibly changing basis, one may assume X1f ̸= 0 on V , and, in coordinates, formula (1.83)
reads as

(1.84) ∇φφ(a) = −
(
X2f

X1f
, . . . ,

Xmf

X1f

)
◦ Φ(a), ∀a ∈ U.

Remark 1.114 (Tangent subgroups to C1
H-submanifolds). From the previous Proposi-

tion 1.112 it directly follows that every co-horizontal C1
H-submanifold with complemented

tangents has Hausdorff tangent everywhere, and moreover such Hausdorff tangent is the ho-
mogeneous tangent space as defined in Definition 1.111. For a proof of this property in a
more general context one can see [169, Theorem 1.7], or [132, Lemma 2.14, point (iii)]. This
convergence is moreover locally uniform: we will not use this information, but this comes
from [141, Theorem 3.1.1].
Remark 1.115 (Hausdorff dimension of a co-horizontal submanifold). Let Σ be a co-
horizontal C1

H-submanifold of codimension k with complemented tangents in a Carnot group
of homogeneous dimension Q endowed with an arbitrary left-invariant homogeneous distance.
Hence the Hausdorff dimension of Σ is Q − k. This comes from the implicit function theo-
rem (see e.g., [96, Theorem A.5], and [169, Theorem 1.4]), that allows to locally write the
hypersurface as the graph of an intrinsically Lipschitz function. Thus, the local estimate of
the Hausdorff measure of the graph of an intrinsically Lipschitz function in [109, Theorem
2.3.7] gives the sought conclusion.



CHAPTER 2

Fine Structure of P-rectifiable measures

In this chapter we are going to study the fine structure properties of P-rectifiable mea-
sures. The content of this chapter is a selection of the results obtained in [31–33] together
with A. Merlo. I stress that the two papers [31,32] are two companion papers derived from
[28] that is available on arXiv as version 2 in the submission history of the file [31].

In this chapter, if not otherwise specified, G will be a fixed Carnot group of homogeneous
dimension Q endowed with a homogeneous norm ∥ · ∥ that induces a homogeneous left-
invariant distance d. Moreover, h will be a natural number in the set {1, . . . , Q}.

In Section 1 we first prove that the support of an arbitrary Ph-rectifiable measure on
a Carnot group can be covered ϕ-almost everywhere with sets with the cone property with
arbitrarily small opening. In the case the tangents of the measure are complemented ϕ-
almost everywhere, we show that the support of ϕ can be covered ϕ-almost everywhere with
intrinsically Lipschitz graphs with arbitrarily small Lipschitz constants.

In Section 2 we exploit the results in Section 1 to prove that an arbitrary Ph-rectifiable
measure ϕ with complemented tangents has h-density ϕ-almost everywhere.

In Section 3 we slightly improve the results in Section 1, and we prove that the support of
a Ph-rectifiable measure ϕ with complemented tangents can be covered ϕ-almost everywhere
with intrinsically Lipschitz graphs with arbitrarily small Lipschitz constant that in addition
are intrinsically differentiable graphs almost everywhere.

Finally, in Section 4 we give equivalent properties for a measure Sh⌞Γ, where Γ ⊆ G, and
0 < Sh(Γ) < +∞, to be a Ph-rectifiable measure with complemented tangents, and we prove
that the h-density of the centered Hausdorff measure Ch⌞Γ is 1 Sh⌞Γ-almost everywhere.

1. Covering the support of P-rectifiable measures with sets with the cone
property

In this section we aim at proving the next two theorems, that are two of the main results
contained in [28]. In the first result we prove that the support of a Ph-rectifiable measure ϕ,
see Definition 1.58, can be covered ϕ-almost all by sets with the cone property with arbitrarily
small opening.
Theorem 2.1. Let G be a Carnot group of homogeneous dimension Q endowed with an ar-
bitrary left-invariant homogeneous distance. Let h ∈ {1, . . . , Q}, and let ϕ be a Ph-rectifiable
measure on G.

Then G can be covered ϕ-almost everywhere with countably many compact sets with the
cone property with arbitrarily small opening. In other words for every α > 0 we have

ϕ

(
G \

+∞⋃
i=1

Γi

)
= 0,

where Γi are compact CVi(α)-sets, where Vi are homogeneous subgroups of G of homogeneous
dimension h.
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If we ask that the tangents are complemented subgroups, we can improve the previous
result. In particular we can take the Γi’s to be intrinsically Lipschitz graphs. For the definition
of intrinsically Lipschitz function, we refer the reader to Definition 1.87.
Theorem 2.2. Let G be a Carnot group of homogeneous dimension Q endowed with an ar-
bitrary left-invariant homogeneous distance. Let h ∈ {1, . . . , Q}, and let ϕ be a Pc

h-rectifiable
measure on G, i.e., a Ph-rectifiable measure with tangents that are complemented almost
everywhere.

Then G can be covered ϕ-almost everywhere with countably many compact graphs of in-
trinsically Lipschitz functions with arbitrarily small Lipschitz constant. In other words for
every α > 0 we have

ϕ

(
G \

+∞⋃
i=1

Γi

)
= 0,

where Γi = graph(φi) are compact sets, with φi : Ai ⊆ Vi → Li being an intrinsically α-
Lipschitz function between a compact subset Ai of Vi, which is a homogeneous subgroup of G
of homogeneous dimension h, and Li, which is a subgroup complementary to Vi.

1.1. Proof. In this subsection section we prove Theorem 2.1 and Theorem 2.2. Let us
recall that for an arbitrary Radon measure ϕ on G supported on a compact set, and for
ϑ, γ ∈ N, we can define E(ϑ, γ) as in Definition 1.9. Moreover, as ϑ, γ vary, the sets E(ϑ, γ)
cover ϕ-almost all of G. In this subsection ϕ will be an arbitrary Radon measure supported
on a compact set K ⊆ G, and ϑ, γ will be arbitrary natural numbers.

The first step in order to prove Theorem 2.1 is to observe the following general property,
that can be made quantitative at arbitrary points x ∈ E(ϑ, γ): if the measure Sh⌞xV, with
V ∈ Gr(h), is sufficiently near to ϕ in a precise measure theoretic sense at the scale r around
x, then in some ball of center x and with radius comparable with r, the points in the set
E(ϑ, γ) are not too distant from xV. Roughly speaking, if we denote with Fx,r the functional
that measures the distance between measures on the ball B(x, r), see Definition 1.65, we
prove that the following implication holds

if there exist Θ, δ > 0 such that Fx,r(ϕ,ΘSh⌞xV) ≤ δrh+1,
then E(ϑ, γ) ∩B(x, r) ⊆ B(xV, ω(δ)r) where ω is continuous and ω(0) = 0.

(2.1)

For the precise statement of the implication in (2.1), see Proposition 2.5. Let us remark that
when ϕ is a Ph-rectifiable measure, then for ϕ-almost every x ∈ G the bound on Fx,r in the
premise of (2.1) is satisfied with V(x) ∈ Gr(h), and for arbitrarily small δ > 0, whenever
r < r0(x, δ). Thus for Ph-rectifiable measures we deduce that the estimate in the conclusion
of (2.1) holds for arbitrarily small δ, and with r < r0(x, δ). This latter estimate easily implies,
by a very general geometric argument, that E(ϑ, γ)∩B(x, r) ⊆ xCV(x)(α) for arbitrarily small
α and for all r < r0(x, α). For the latter assertion we refer the reader to Proposition 2.7. The
proof of Theorem 2.1 is thus concluded by joining together the previous observations and by
the general cone-rectifiability criterion in Proposition 2.9.

In order to prove Theorem 2.2 we follow the path of the proof of Theorem 2.1, which
we discussed above, but we have to pay attention to one technical detail. We have to split
the subset of the Grassmannian Gr(h) made by the homogeneous subgroups V that admit at
least one complementary subgroup L into countable subsets according to the value of ε1(V,L).
Indeed, if we work in an arbitrary Carnot group G and one of its homogeneous subgroups
V admits a complementary subgroup L we already proved that there exists a constant ε1 :=
ε1(V,L) such that every CV(ε1)-set is the intrinsic graph of a function f : A ⊆ V → L, see
Proposition 1.89. Then, in order to prove Theorem 2.2, we have to change the argument of
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Theorem 2.1 by paying attention to the fact that we want to control the opening of the final
CVi(αi)-sets with αi < ε1(Vi,Li). This is what we do in the forthcoming Theorem 2.10: we
prove a refinement of Theorem 2.11 in which we further ask that the opening of the cones is
controlled above also by some a priori defined function F(V,L). Let us now start with some
preliminary definitions and results.
Definition 2.3. Let us fix x ∈ G, r > 0 and ϕ a Radon measure on G. We define Πδ(x, r) to
be the subset of homogeneous subgroups V ∈ Gr(h) for which there exists a Θ > 0 such that
(2.2) Fx,r(ϕ,ΘSh⌞xV) ≤ 2δrh+1.

Definition 2.4. For every ϑ ∈ N we define δG = δG(h, ϑ) := ϑ−12−(4h+5).
In the following proposition we prove that if ϕ is sufficiently dx,r-near to M(h), see

Definition 1.71 for the definition of dx,r, then E(ϑ, γ) is at a controlled distance from a
homogeneous subgroup V.
Proposition 2.5. Let x ∈ E(ϑ, γ), fix δ < δG, where δG is defined in Definition 2.4, and set
0 < r < 1/γ. Then for every V ∈ Πδ(x, r), see Definition 2.3, we have

(2.3) sup
w∈E(ϑ,γ)∩B(x,r/4)

dist
(
w, xV

)
r

≤ 21+1/(h+1)ϑ1/(h+1)δ1/(h+1) =: C5(ϑ, h)δ1/(h+1).

Proof. Let V be any element of Πδ(x, r) and suppose Θ > 0 is such that∣∣∣∣ ˆ fdϕ− Θ
ˆ
fdSh⌞xV

∣∣∣∣ ≤ 2δrh+1, for every f ∈ Lip+
1 (B(x, r)).

Since the function g(w) := min{dist(w,B(x, r)c),dist(w, xV)} belongs to Lip+
1 (B(x, r)), we

deduce that

2δrh+1 ≥
ˆ
g(w)dϕ(w) − Θ

ˆ
g(w)dSh⌞xV

=
ˆ
g(w)dϕ(w) ≥

ˆ
B(x,r/2)

min{r/2,dist(w, xV)}dϕ(w).

Suppose that y is a point in B(x, r/4) ∩ E(ϑ, γ) furthest from xV and let D := dist(y, xV).
If D ≥ r/8, this would imply that

2δrh+1 ≥
ˆ

B(x,r/2)
min{r/2,dist(w, xV)}dϕ(w)

≥
ˆ

B(y,r/16)
min{r/2,dist(w, xV)}dϕ(w) ≥ r

16ϕ(B(y, r/16)) ≥ rh+1

ϑ16h+1 ,

where the last inequality follows from the definition of E(ϑ, γ). The previous inequality would
imply δ ≥ ϑ−12−(4h+5), which is not possible since δ < δG = ϑ−12−(4h+5), see Definition 2.4.
This implies that D ≤ r/8 and as a consequence, we have

2δrh+1 ≥
ˆ

B(x,r/2)
min{r/2, dist(w, xV)}dϕ(w)

≥
ˆ

B(y,D/2)
min{r/2,dist(w, xV)}dϕ(w) ≥ Dϕ(B(y,D/2))

2 ≥ ϑ−1
(
D

2

)h+1
,

(2.4)

where the second inequality comes from the fact that B(y,D/2) ⊆ B(x, r/2). This implies
thanks to (2.4), that

sup
w∈E(ϑ,γ)∩B(x,r/4)

dist(w, xV)
r

≤ D

r
≤ 21+1/(h+1)ϑ1/(h+1)δ1/(h+1) = C5(ϑ, h)δ1/(h+1).
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□

Remark 2.6. Notice that a priori Πδ(x, r) in the statement of Proposition 2.5 may be empty.
Nevertheless it is easy to notice, by using the definitions, that if dx,r(ϕ,M) ≤ δ then Πδ(x, r)
is nonempty.

In the following proposition we show that if we are at a point x ∈ E(ϑ, γ) for which the
h-tangents are flat, then locally around x the set E(ϑ, γ) enjoys an appropriate cone property
with arbitrarily small opening.
Proposition 2.7. For every α > 0 and every x ∈ E(ϑ, γ) for which

Tanh(ϕ, x) ⊆ {λSh⌞V(x) : λ > 0},

for some V(x) ∈ Gr(h), there exists a ρ(α, x) > 0 such that whenever 0 < r < ρ we have

E(ϑ, γ) ∩B(x, r) ⊆ xCV(x)(α).

Proof. Let us fix α > 0. Let us fix x ∈ E(ϑ, γ) and V(x) ∈ Gr(h) such that Tanh(ϕ, x) ⊆
{λSh⌞V(x) : λ > 0}. Thus, by using Proposition 1.74, we conclude that

lim
r→0

inf
Θ>0

Fx,r(ϕ,ΘSh⌞xV(x))
rh+1 = 0.

From the previous equality it follows that for every ε > 0 there exists 1/γ > r0(ε) > 0 such
that

(2.5) inf
Θ>0

Fx,r(ϕ,ΘSh⌞xV(x)) ≤ εrh+1, whenever 0 < r ≤ r0(ε).

Now we aim at proving that, for ε > 0 small enough, E(ϑ, γ) ∩B(x, r0(ε)/4) ⊆ xCV(x)(α). In
order to prove this we notice that (2.5) and Proposition 2.5 imply that, for ε > 0 sufficiently
small, the following inequality holds

(2.6) sup
p∈E(ϑ,γ)∩B(x,r/4)

dist(p, xV(x)) ≤ C5(h, ϑ)ε1/(h+1)r, whenever 0 < r ≤ r0(ε).

Indeed, from (2.5) it follows that V(x) ∈ Πε(x, r) for every 0 < r ≤ r0, see Definition 2.3;
so that it suffices to choose ε < δG = ϑ−12−(4h+5), see Definition 2.4, in order to apply
Proposition 2.5 and conclude (2.6).

Now let us take ε < δG so small that the inequality 8C5(h, ϑ)ε1/(h+1) < α holds. We
finally prove E(ϑ, γ) ∩ B(x, r0(ε)/4) ⊆ xCV(x)(α). Indeed, let p ∈ E(ϑ, γ) ∩ B(x, r0(ε)/4),
and k ≥ 3 be such that r02−k < ∥x−1 · p∥ ≤ r02−k+1. Since p ∈ E(ϑ, γ) ∩B(x, (r02−k+3)/4),
from (2.6) we get

dist(p, xV(x)) ≤ C5(h, ϑ)ε1/(h+1)r02−k+3 ≤ 8C5(h, ϑ)ε1/(h+1)∥x−1 · p∥ ≤ α∥x−1 · p∥,

thus showing the claim. □

We now prove a cone-type rectifiability criterion that will be useful in combination with
the previous results in order to split the support of a Ph or a Pc

h-rectifiable measures with
sets that have the cone property. We will need the following estimate on the norm of the
conjugate in a Carnot group.
Lemma 2.8. There exists a constant C6 > 1 such that for every x, y ∈ B(0, ℓ) we have

∥y−1 · x · y∥ ≤ C6(ℓ,G)∥x∥1/κ,

where κ is the step of the group.

Proof. This follows immediately from [110, Lemma 3.12]. □
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Proposition 2.9 (Cone-rectifiability criterion). Suppose that E is a closed subset of G for
which there exists a countable family F ⊆ Gr(h) and a function α : F → (0, 1) such that for
every x ∈ E there exist ρ(x) > 0, and V(x) ∈ F for which

(2.7) B(x, r) ∩ E ⊆ xCV(x)(α(V(x))),

whenever 0 < r < ρ(x). Then, there are countably many compact CVi(3βi)-sets Γi such that
Vi ∈ F , α(Vi) < βi < 2α(Vi), and

(2.8) E =
⋃
i∈N

Γi.

Proof. Let us split E in the following way. Let i, j, k ∈ N, and let G(i, j, k) be the subset of
those x ∈ E ∩B(0, k) for which

B(x, r) ∩ E ⊆ xCVi(α(Vi)),

for every 0 < r < 1/j. Then, from the hypothesis, it follows E = ∪i,j,k∈NG(i, j, k). Since E is
closed, it is not difficult to see that G(i, j, k) is closed too. Let us fix i, j, k ∈ N, some βi < 1
with α(Vi) < βi < 2α(Vi), and let us prove that G(i, j, k) can be covered with countably
many compact CVi(3βi)-sets. Since i, j, k ∈ N are fixed from now on we assume without loss
of generality that G(i, j, k) = E so that we can drop the indeces.

Let us take {qℓ} a dense subset of E, and let us define the closed tubular neighbourhood
of qℓV

(2.9) S(ℓ) := B(qℓV, 2−κj−κC6(14k,G)−κβκ),

where we recall that κ is the step of the group, and where C6 is defined in (2.8). We will now
prove that S(ℓ) ∩ E is a CV(3β)-set, or equivalently that for every p ∈ S(ℓ) ∩ E we have

(2.10) S(ℓ) ∩ E ⊆ p · CV(3β).

If q ∈ S(ℓ) ∩ E ∩ B(p, 1/(2j)), the inclusion (2.10) holds thanks to our assumptions on E.
If on the other hand q ∈ S(ℓ) ∩ E \ B(p, 1/(3j)), let p∗, q∗ ∈ V be such that dist(p, qℓV) =
∥(p∗)−1q−1

ℓ p∥, and dist(q, qℓV) = ∥(q∗)−1q−1
ℓ q∥. Let us prove that ∥q∗∥ ≤ 4k and ∥p∗∥ ≤ 4k.

This is due to the fact that

∥q∗∥ − ∥qℓ∥ − ∥q∥ ≤ ∥(q∗)−1q−1
ℓ q∥ = dist(q, qℓV) ≤ 1,

where the last inequality follows from the definition of S(ℓ), see (2.9). From the previous
inequality it follows that ∥q∗∥ ≤ 2k + 1, since q, qℓ ∈ B(0, k). A similar computation proves
the bound for ∥p∗∥ and this implies that

∥p−1 · qℓ · p∗∥ + ∥(p∗)−1 · q∗∥ ≤ ∥p−1∥ + ∥qℓ∥ + 2∥p∗∥ + ∥q∗∥ ≤ 14k.

The application of Lemma 2.8 and the fact that (q∗)−1p∗ and p−1qℓp
∗ are in B(0, 14k), due

to the previous inequality, imply that

dist(p−1q,V) ≤ ∥(q∗)−1p∗ · p−1q∥ = ∥(q∗)−1p∗ · p−1 · qℓp
∗(p∗)−1q∗(q∗)−1q−1

ℓ · q∥
≤ ∥(q∗)−1p∗ · p−1qℓp

∗ · (p∗)−1q∗∥ + ∥(q∗)−1q−1
ℓ q∥

≤ C6(14k,G)∥p−1qℓp
∗∥1/κ + dist(q, qℓV)

= C6(14k,G)dist(p, qℓV)1/κ + dist(q, qℓV).

(2.11)

Finally, thanks to (2.9) and (2.11) we infer

dist(p−1q,V) ≤ C6(14k,G) + 1
2jC6(14k,G) β ≤ βj−1 ≤ 3β∥p−1q∥,
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thus showing (2.10) in the remaining case. In conclusion we have proved that for every
i, j, k, ℓ ∈ N, the sets G(i, j, k) ∩ S(ℓ) are CVi(3βi)-sets. This concludes the proof since

E ⊆
⋃

i,j,k,ℓ∈N
G(i, j, k) ∩ S(ℓ),

and on the other hand every G(i, j, k)∩S(ℓ) is a bounded and closed, thus compact, CVi(3βi)-
set. The fact that the sets G(i, j, k) ∩ S(ℓ) are contained in E follows by definition, thus
concluding the proof of the equality. □

In the following, with the symbol Sub(h), we denote the subset of Grc(h) × Grc(Q − h)
defined by
(2.12)

{(V,L) : V ∈ Grc(h) and L is a hom. subgroup that is a complementary subgroup of V},
we fix a function F : Sub(h) → (0, 1), and for every ℓ ∈ N with ℓ ≥ 2 let us define

GrF
c (h, ℓ) := {V ∈ Grc(h) : ∃L compl. subgroup of V s.t. 1/ℓ < F(V,L) ≤ 1/(ℓ− 1)}.

Observe that GrF
c (h, ℓ) is separable for every ℓ ∈ N, since GrF

c (h, ℓ) ⊆ Gr(h) and (Gr(h), dG)
is a compact metric space, see Proposition 1.22. For every ℓ ≥ 2, let
(2.13) Dℓ := {Vi,ℓ}i∈N,

be a countable dense subset of GrF
c (h, ℓ) and

(2.14)
for all i ∈ N, choose a compl. subgroup Li,ℓ of Vi,ℓ s.t. 1/ℓ < F(Vi,ℓ,Li,ℓ) ≤ 1/(ℓ− 1).
Let us now prove Theorem 2.2. In order to do this, we will prove the following more

detailed result, from which Theorem 2.2 will follow as a corollary.
Theorem 2.10. Let F : Sub(h) → (0, 1) be a function, where Sub(h) is defined in (2.12),
and for every ℓ ∈ N define Dℓ as in (2.13). Set F := {Vi,ℓ}i,ℓ∈N, and choose Li,ℓ as in (2.14).
Furthermore, let β : N → (0, 1) and define β(Vi,ℓ) := β(ℓ) for every i, ℓ ∈ N. For the ease of
notation we rename F := {Vk}k∈N. Then the following holds.

Let ϕ be a Pc
h-rectifiable measure. There are countably many compact sets Γk that are

CVk
(min{F(Vk,Lk), β(Vk)})-sets for some Vk ∈ F , and such that

ϕ
(
G \

+∞⋃
k=1

Γk

)
= 0.

Proof. Let us notice that without loss of generality, by restricting the measure on balls with
integer radius, we can suppose that ϕ has a compact support. Fix ϑ, γ ∈ N and let E(ϑ, γ)
be the set introduced in Definition 1.9 with respect to ϕ. Furthermore, for every ℓ, i, j ∈ N,
we let

Fℓ(i, j) := {x ∈ E(ϑ, γ) :B(x, r) ∩ E(ϑ, γ)
⊆ xCVi,ℓ

(6−1 min{F(Vi,ℓ,Li,ℓ), β(Vi,ℓ)}) for every 0 < r < 1/j}.

(2.15)

It is not hard to prove, since E(ϑ, γ) is compact, see Proposition 1.10, that for every ℓ, i, j
the sets Fℓ(i, j) are compact. We claim that

(2.16) ϕ
(
E(ϑ, γ) \

⋃
ℓ,i,j∈N

Fℓ(i, j)
)

= 0.

Indeed, let w ∈ E(ϑ, γ) be such that Tanh(ϕ,w) ⊆ {λSh⌞V(w) : λ > 0} for some V(w) ∈
Grc(h); the complement of the set of such w’s is ϕ-null since ϕ is Pc

h-rectifiable. Let ℓ(w) ∈ N
be the smallest natural number for which there exists L complementary subgroup of V(w)
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with 1/ℓ(w) < F(V(w),L) ≤ 1/(ℓ(w) − 1). Then by definition we have V(w) ∈ GrF
c (h, ℓ(w)).

By density of the family Dℓ(w) in GrF
c (h, ℓ(w)) there exists a homogeneous subgroup Vi,ℓ(w) ∈

Dℓ(w) such that
dG(Vi,ℓ(w),V(w)) < 30−1 min{1/ℓ(w), β(Vi,ℓ(w))};

for this last observation to hold it is important that β only depends on ℓ(w), as it is true by
construction. The previous inequality, jointly with Lemma 1.39, imply that

CV(w)(30−1 min{1/ℓ(w), β(Vi,ℓ(w))}) ⊆ CVi,ℓ(w)(6
−1 min{1/ℓ(w), β(Vi,ℓ(w))})

⊆ CVi,ℓ(w)(6
−1 min{F(Vi,ℓ(w),Li,ℓ(w)), β(Vi,ℓ(w))}),

(2.17)

where the last inclusion follows from the fact that by definition of the family Dℓ(w) it holds
F(Vi,ℓ(w),Li,ℓ(w)) > 1/ℓ(w). Thanks to Proposition 2.7 we can find a ρ(w) > 0 such that for
every 0 < r < ρ(w) we have

(2.18) B(w, r) ∩ E(ϑ, γ) ⊆ wCV(w)(30−1 min{1/ℓ(w), β(Vi,ℓ(w))}).

In particular, putting together (2.17) and (2.18) we infer that for ϕ-almost every w ∈ E(ϑ, γ)
there are an i = i(w) > 0, an ℓ(w) ∈ N and a ρ(w) > 0 such that whenever 0 < r < ρ(w) we
have

B(w, r) ∩ E(ϑ, γ) ⊆ wCVi,ℓ(w)(6
−1 min{F(Vi,ℓ(w),Li,ℓ(w)), β(Vi,ℓ(w))}).

This concludes the proof of (2.16).
Now, if we fix ℓ, i, j ∈ N, we can apply Proposition 2.9 to the set Fℓ(i, j). It suffices to

take the family F in the statement of Proposition 2.9 to be the singleton {Vi,ℓ} and the
function α in the statement of Proposition 2.9 to be α(Vi,ℓ) := 6−1 min{F(Vi,ℓ,Li,ℓ), β(Vi,ℓ)}.
As a consequence we can write each Fℓ(i, j) as the union of countably many compact
CVi,ℓ

(min{F(Vi,ℓ,Li,ℓ), β(Vi,ℓ)})-sets. Thus the same holds ϕ-almost everywhere for E(ϑ, γ),
allowing i, ℓ, j to vary in N, since (2.16) holds. Finally, since we have

ϕ(G \ ∪ϑ,γ∈NE(ϑ, γ)) = 0,

due to Proposition 1.11, we can cover ϕ-almost all of G with compact
CVi,ℓ

(min{F(Vi,ℓ,Li,ℓ), β(Vi,ℓ)})-sets for i, ℓ that vary in N, concluding the proof of the propo-
sition. □

Proof of Theorem 2.2. Let us define F(V,L) := ε1(V,L), and let us take β : N → (0, 1) to be
the constant function β(n) ≡ min{1, α} > 0. Hence an application of Theorem 2.10 together
with Proposition 1.89 gives the sought conclusion. □

Finally, let us state the following theorem, which is a more detailed version of Theorem 2.1.
Theorem 2.11. There exists a countable subfamily F := {Vk}k∈N of Gr(h) such that the
following holds. Let ϕ be a Ph-rectifiable measure. For every 0 < β < 1 there are countably
many compact sets Γk that are CVk

(β)-sets for some Vk ∈ F , and such that

ϕ
(
G \

+∞⋃
k=1

Γk

)
= 0.

Proof. The proof is similar to the one of Theorem 2.10. It suffices to choose, as a family
F , an arbitrary countable dense subset of Gr(h) and then one can argue as in the proof
of Theorem 2.10 without the technical effort of introducing the parameter ℓ. We skip the
details. □

Proof of Theorem 2.1. It is an immediate consequence of Theorem 2.11. □
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2. Existence of the density of P-rectifiable measures when the tangents are
complemented

In this section we prove that arbitrary Pc
h-rectifiable measures have density almost ev-

erywhere, which is one of the main results of [28].
Theorem 2.12 (Existence of the density). Let G be a Carnot group of homogeneous dimen-
sion Q endowed with an arbitrary left-invariant homogeneous distance. Let h ∈ {1, . . . , Q},
and let ϕ be a Pc

h-rectifiable, i.e., a Ph-rectifiable measure with tangents that are comple-
mented almost everywhere, see Definition 1.58.

Then, for ϕ-almost every x ∈ G we have

0 < lim inf
r→0

ϕ(B(x, r))
rh

= lim sup
r→0

ϕ(B(x, r))
rh

< +∞.

Moreover, for ϕ-almost every x ∈ G we have

r−hTx,rϕ ⇀ Θh(ϕ, x)Ch⌞V(x), as r goes to 0,

where the map Tx,r is defined in Definition 1.52, the convergence is understood in the duality
with the continuous functions with compact support on G, Θh(ϕ, x) is the h-density, and
Ch⌞V(x) is the h-dimensional centered Hausdorff measure, restricted to the tangent V(x), see
Definition 1.1.

A way of reading the previous theorem is the following: we prove that whenever a Radon
measure on a Carnot group has strictly positive h-lower density and finite h-upper density, and
at almost every point all the blow-up measures are supported on the entire same (depending
on the point) h-dimensional homogeneous complemented subgroup, then the measure has
h-density.

In Euclidean spaces the proof of Theorem 2.12 is an almost immediate consequence of the
fact that projections on linear spaces are 1-Lipschitz in conjunction with the area formula.
In our context we do not have at our disposal the Lipschitz property of projections. Instead,
we have at our disposal an area formula for Ph-rectifiable measures with complemented
tangents, which is obtained as a consequence of the rectifiability results we obtain in [28,33],
see [33, Theorem 4.6]. So the proof of Theorem 2.12 require new ideas.

In order to obtain Theorem 2.12 first of all one reduces to the case of the surface measure
on an intrinsically Lipschitz graph with very small Lipschitz constant thanks to the structure
result Theorem 2.2 proved above. Secondly, one needs to show that the surface measures
of the tangents and their push-forward on the graph are mutually absolutely continuous.
For this last point to hold it will be crucial on the one hand that a Ph-rectifiable measure
with complemented tangents can be covered almost everywhere with intrinsic graphs, see
Theorem 2.2, and on the other hand that asymptotically doubling intrinsically Lipschitz
graphs have big projections on their bases, see Proposition 2.17 below. Third, one exploits
the fact that the density exists for the surface measures on the tangents to infer its existence
for the original measure.

We further notice that Theorem 2.12 extends the implication in [178, (iv)⇒(ii) of The-
orem 3.15] to the setting of Ph-rectifiable measures whose tangents are complemented in
arbitrary Carnot groups. Indeed, in [178, (iv)⇒(ii) of Theorem 3.15] the authors prove that
if n + 1 ≤ h ≤ 2n, and Sh⌞Γ is a Ph-rectifiable measure with tangents that are vertical
subgroups in the Heisenberg group Hn, then the h-density of Sh⌞Γ exists almost everywhere
and the tangent is unique almost everywhere. The analogous property in Hn, but with Ph-
rectifiable measures with tangents that are horizontal subgroups is obtained in [178, (iv)⇒(ii)
of Theorem 3.14], and in arbitrary homogeneous groups in the recent [128, (iii)⇒(ii) of
Theorem 1.1]. However, in the special horizontal case treated in [178, Theorem 3.14] and
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[128, Theorem 1.1] the authors do not assume Θh
∗(Sh⌞Γ, x) > 0 since it comes from the

existence of an approximate tangent, see [178, Theorem 3.10], while the authors in [128]
are able to overcome this issue by adapting [102, Lemma 3.3.6] in [128, Theorem 4.4]. For
further discussions on this see the forthcoming Remark 2.40.

2.1. Proof. Throughout this subsection we assume that V ∈ Grc(h) and that V ·L = G.
In this subsection whenever we deal with CV(α)-sets we are always assuming that α <
ε1(V,L), where ε1 is defined in Lemma 1.40.

This subsection is devoted to the proof of Theorem 2.12, that is obtained through three
different steps. Let Γ be a compact CV(ε1(V,L)) set, and recall that by Proposition 1.89
we can write Γ = graph(φ) with φ : PV(Γ) → L. Let us denote Φ(v) := v · φ(v) for every
v ∈ PV(Γ) to be the graph map of φ.

We first show that if we assume that Sh⌞Γ is asymptotically doubling, then the push-
forward measure (Φ)∗(Sh⌞V) is mutually absolutely continuous with respect to Sh⌞Γ, see
Proposition 2.18. We remark that in the Euclidean case the analogous statement holds true
even without the asymptotically doubling assumption: this is true because in the Euclidean
case every Lipschitz graph Γ over a Sh-positive measured subset of a vector subspace of
dimension h is such that Sh⌞Γ is asymptotically doubling, since Γ is a differentiable graph
almost everywhere. We also stress that every intrinsically Lipschitz graph over a open sub-
set of a h-dimensional homogeneous subgroups has strictly positive lower h-density almost
everywhere, see [110, Theorem 3.9].

As a second step in order to obtain the proof of Theorem 2.12 we prove the following
statement that can be made quantitative: if V ∈ Grc(h), Γ is a compact CV(α)-set with α
sufficiently small, and Sh⌞Γ is a Ph-rectifiable measure with complemented tangents, i.e., a
Pc

h-rectifiable measure, then we can give an explicit lower bound on the ratio of the lower and
upper h-densities of Sh⌞Γ. We refer the reader to Proposition 2.21 for a more precise state-
ment. This result is obtained through a blow-up analysis and a careful use of the mutually
absolute continuity property that we discussed above, and which is contained in Proposi-
tion 2.18. We stress that in order to differentiate in the proof of Proposition 2.21, we need to
use proper Sh⌞PV(Γ) and Sh⌞V-Vitali relations, see Proposition 2.19, and Proposition 2.20,
respectively.

As a last step of the proof of Theorem 2.12 we first use the result in Proposition 2.21 in
order to prove that Theorem 2.12 holds true for measures of the type Sh⌞Γ, see Theorem 2.23.
Then we conclude the proof for arbitrary measures by reducing ourselves to the sets E(ϑ, γ).

We start this chapter with some preliminary results.
Lemma 2.13. There exists a constant K ≥ 1 such that for every w ∈ B(0, 1/(5K)), every
y ∈ ∂B(0, 1) ∩ CV(ε1(V,L)), and every z ∈ B(y, 1/(5K)), we have w−1z ̸∈ L.

Proof. By contradiction let us assume that we can find sequences {wn}, {yn} ⊆ ∂B(0, 1) ∩
CV(ε1) and zn ∈ B(yn, 1/n) such that wn converges to 0 and w−1

n zn ∈ L. By compactness
without loss of generality we can assume that the sequence yn converges to some y ∈ ∂B(0, 1)∩
CV(ε1). Furthermore, by construction we also have that zn must converge to y. This implies
that w−1

n zn converges to y and since by hypothesis w−1
n zn ∈ L, thanks to the fact that L is

closed we infer that y ∈ L. This however is a contradiction since y has unit norm and at the
same time we should have y ∈ CV(ε1) ∩ L = {0} by Lemma 1.40. □

Let us denote with A := A(V,L) ≥ 1 the infimum of all the constant K ≥ 1 such that
Lemma 2.13 holds.
Proposition 2.14. Let α ≤ ε1(V,L) and suppose Γ is a compact CV(α)-set. For every x ∈ Γ
let ρ(x) to be the supremum of all the numbers ℓ > 0 satisfying the following condition. For
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every y ∈ B(x, ℓ) ∩ Γ we have

PV(B(x, r)) ∩ PV(B(y, s)) = ∅ for every r, s < d(x, y)/(5A),

where A = A(V,L) is the constant yielded by Lemma 2.13. Then, the function x 7→ ρ(x) is
positive everywhere on Γ, and it is upper semicontinuous.

Proof. Let x ∈ Γ and suppose by contradiction that there is a sequence of points {yi}i∈N ⊆ Γ
converging to x and

(2.19) PV(B(x, ri)) ∩ PV(B(yi, si)) ̸= ∅,

for some ri, si < d(x, yi)/(5A). We note that (2.19) is equivalent to assuming that there are
zi ∈ B(x, ri) and wi ∈ B(yi, si) such that

(2.20) PV(wi) = PV(zi).

Identity (2.20) implies in particular that for every i ∈ N we have w−1
i zi ∈ L and let us denote

ρi := d(x, yi). Thanks to the assumptions on yi, zi and wi we have that
(1) d(0, δ1/ρi

(x−1yi)) = 1 and thus we can assume without loss of generality that there
exists a y ∈ ∂B(0, 1) such that

lim
i→∞

δ1/ρi
(x−1yi) = y,

(2) d(0, δ1/ρi
(x−1zi)) ≤ 1/(5A) and thus up to passing to a non-relabelled subsequence

we can assume that there exists a z ∈ B(0, 1/5A) such that

lim
i→∞

δ1/ρi
(x−1zi) = z,

(3) d(δ1/ρi
(x−1yi), δ1/ρi

(x−1wi)) ≤ 1/(5A) and thus, up to passing to a non re-labelled
subsequence, we can suppose that there exists a w ∈ B(y, 1/5A) such that

lim
i→∞

δ1/ρi
(x−1wi) = w.

Since Γ is supposed to be a CV(α)-set, we have that for every i ∈ N the point x−1yi

is contained in the cone CV(α) and, since CV(α) is closed, we infer that y ∈ CV(α). Since
we assumed α < ε1(V,L), we have y ∈ ∂B(0, 1) ∩ CV(ε1(V,L)). Since δ1/ρi

(x−1zi) and
δ1/ρi

(x−1wi) converge to z and w, respectively, we have

lim
i→∞

δ1/ρi
(w−1

i zi) = lim
i→∞

δ1/ρi
(w−1

i x)δ1/ρi
(x−1zi) = w−1z.

Furthermore since w−1
i zi ∈ L for every i ∈ N, we infer that w−1z ∈ L since L is closed.

Applying Lemma 2.13 to y, z, w we see that the fact that w−1z ∈ L, z ∈ B(0, 1/(5A)) and
w ∈ B(y, 1/(5A)) results in a contradiction. This concludes the proof of the first part of the
proposition.

In order to show that ρ is upper semicontinuous we fix an x ∈ Γ and we assume by
contradiction that there exists a sequence {xi}i∈N ⊆ Γ converging to x such that

(2.21) lim sup
i→∞

ρ(xi) > (1 + τ)ρ(x),

for some τ > 0. Fix an y ∈ B(x, (1 + τ/2)ρ(x)) ∩ Γ and assume s, r < d(x, y)/(5A). Thus,
thanks to (2.21) and the fact that the xi converge to x, we infer that there exists a i0 ∈ N
such that, up to non re-labelled subsequences, for every i ≥ i0 we have ρ(xi) > (1 + τ)ρ(x),
d(xi, x) < τρ(x)/4 and s, r + d(xi, x) < d(xi, y)/(5A). Therefore, for every i ≥ i0 we have

y ∈ B(xi, (1 + 3τ/4)ρ(x)) ⊆ B(xi, ρ(xi)), and s, r + d(xi, x) < d(xi, y)/(5A).
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This however, thanks to the definition of ρ(xi), implies that

PV(B(x, r)) ∩ PV(B(y, s)) ⊆ PV(B(xi, r + d(xi, x))) ∩ PV(B(y, s)) = ∅.

Summing up, we have proved that for every y ∈ B(x, (1 + τ/2)ρ(x)) ∩ Γ whenever r, s <
d(x, y)/5A we have

PV(B(x, r)) ∩ PV(B(y, s)) = ∅,
and this contradicts the maximality of ρ(x). This concludes the proof. □

Corollary 2.15. Let us fix α ≤ ε1(V,L) and suppose that Γ is a compact CV(α)-set. Let
us fix x ∈ Γ and choose ρ(x) > 0 as in the statement of Proposition 2.14. Then there is a
0 < r(x) < 1/2 such that the following holds

if 0 < r < r(x) and y ∈ Γ are such that PV(B(x, 2r)) ∩ PV(B(y, 10r)) ̸= ∅,
then y ∈ B(x, ρ(x)) and d(x, y) ≤ 50Ar,

(2.22)

where A = A(V,L) is the constant yielded by Lemma 2.13.

Proof. Let us first prove that there exists a constant k such that whenever y ∈ Γ is such that
d(x, y) ≥ ρ(x) then d(PV(x), PV(y)) ≥ k. Indeed if it is not the case, we have a sequence
{yi}i∈N ⊆ Γ such that d(x, yi) ≥ ρ(x) for every i ∈ N and d(PV(x), PV(yi)) → 0 as i → +∞.
Since Γ is compact we can suppose, up to passing to a non re-labelled subsequence, that
yi → y ∈ Γ. Moreover since d(x, yi) ≥ ρ(x) and d(PV(x), PV(yi)) → 0 we conclude that
d(x, y) ≥ ρ(x), and hence x ̸= y, and moreover PV(x) = PV(y). Then y−1 ·x ∈ L∩CV(α) that
is a contradiction with Lemma 1.40 because y ̸= x and α < ε1. Let us denote α̃ := α̃(α, x)
the supremum of all the constants k for which the previous property holds.

Since PV is uniformly continuous on the closed tubular neighborhood B(Γ, 1), there exists
a constant 0 < c ≤ 1/10 depending on α̃ = α̃(α, x) such that for every y ∈ Γ and every r < c,
we have

(2.23) PV(B(y, 10r)) ⊆ B(PV(y), α̃/10).

Let us denote r(x) the supremum of all the constants 0 < c ≤ 1/10 for which (2.23) holds.
Let us show the first part of the statement. It is sufficient to prove that if r < r(x) and
y ∈ Γ is such that d(x, y) ≥ ρ(x), then PV(B(x, 2r)) ∩ PV(B(y, 10r)) = ∅. Indeed if d(x, y) ≥
ρ(x) then d(PV(x), PV(y)) ≥ α̃. Moreover, from (2.23) we deduce that PV(B(x, 10r)) ⊆
B(PV(x), α̃/10) and PV(B(y, 10r)) ⊆ B(PV(y), α̃/10). Since d(PV(x), PV(y)) ≥ α̃ we conclude
that B(PV(x), α̃/10) ∩B(PV(y), α̃/10) = ∅ and then also PV(B(x, 10r)) ∩ PV(B(y, 10r)) = ∅,
from which the sought conclusion follows. In order to prove d(x, y) ≤ 50Ar, once we have
y ∈ B(x, ρ(x)), the conclusion follows thanks to Proposition 2.14. □

Lemma 2.16. Fix some N ∈ N and assume that F is a family of closed balls of G with
uniformly bounded radii. Then we can find a countable disjoint subfamily G of F such that

(i) if B,B′ ∈ G then 5NB and 5NB′ are disjoint,
(ii)

⋃
B∈F B ⊆

⋃
B∈G 5N+1B.

We recall that with λB we denote the ball with the same center as B and the radius multiplied
by λ.

Proof. If N = 0, there is nothing to prove, since it is the classical 5-Vitali’s covering Lemma.
Let us assume by inductive hypothesis that the claim holds for N = k and let us prove

that it holds for k + 1. Let Gk be the family of balls satisfying (i) and (ii) for N = k, and
apply the 5-Vitali’s covering Lemma to the family of balls F̃ := {5k+1B : B ∈ Gk}. We
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obtain a countable subfamily G̃ of F̃ such that if 5k+1B, 5k+1B′ ∈ G̃ then 5k+1B and 5k+1B′

are disjoint, and that satisfies
⋃

B∈F̃
B ⊆

⋃
B∈G̃

5B. Therefore, if we define

Gk+1 := {B ∈ Gk : 5k+1B ∈ G̃ },

point (i) directly follows and thanks to the inductive hypothesis we have⋃
B∈F

B ⊆
⋃

B∈Gk

5k+1B ⊆
⋃

B∈Gk+1

5k+2B,

proving the second point of the statement. □

Proposition 2.17. Let α ≤ ε1(V,L) and suppose Γ is a compact CV(α)-set with 0 < Sh(Γ) <
+∞, such that

(2.24) Θh
∗(Sh⌞Γ, x) > 0,

for Sh-almost every x ∈ Γ. Then, there exists a constant C7 > 0 depending on V, L, such
that for Sh-almost every x ∈ Γ there exists an R := R(x) > 0 such that for every 0 < ℓ ≤ R
we have

(2.25) Sh(PV(Γ ∩B(x, ℓ))) ≥ C7Θh
∗(Sh⌞Γ, x)2ℓh.

In the same hypotheses above, if instead of having (2.24) we have

lim sup
r→0

Sh⌞Γ(B(x, 2r))
Sh⌞Γ(B(x, r))

< ∞,

for Sh-almost every x ∈ Γ, then, there exists a constant C8 := C8(h,V,L) > 0 such that for
Sh-almost every x ∈ Γ there exists an infinitesimal sequence {ℓi(x)}i∈N such that for every
i ∈ N we have

(2.26) Sh(PV(Γ ∩B(x, ℓi(x)))) > C8ℓi(x)h

Proof. Let us start with the proof of the first part of the statement. First of all, let us
recall that two homogeneous left-invariant distances are always bi-Lipschitz equivalent on G.
Therefore if dc is a Carnot-Carathéodory distance on G, which is in particular geodesic, see
[145, Section 3.3], there exists a constant L(d, dc) ≥ 1 such that

L(d, dc)−1dc(x, y) ≤ d(x, y) ≤ L(d, dc)dc(x, y) for every x, y ∈ G.

We claim that if for every ϑ, γ ∈ N for which Sh(E(ϑ, γ)) > 0 we have that for Sh-almost
every w ∈ E(ϑ, γ) there exists a R(w) > 0 such that

(2.27) Sh(PV(Γ ∩B(w, ℓ))) ≥ C4(V,L)ℓh

8 · 53hAhL(d, dc)2hϑ2 ,

whenever 0 < ℓ < R(w), then the proposition is proved. We recall that A(V,L) is defined
after Lemma 2.13. The latter claim is due to the following reasoning. First of all, thanks to
[102, Proposition 2.10.19(5)], we know that Θh,∗(Sh⌞Γ, x) ≤ 1. Secondly, if we set, for every
k ∈ N, Γk := {w ∈ Γ : 1/(k + 1) < Θh

∗(Sh⌞Γ, w) ≤ 1/k}, we have that

(2.28) Sh

Γ \
⋃

k∈N
Γk

 = 0.
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We observe now that if Sh(Γk) > 0, then Sh-almost every w ∈ Γk belongs to some E(k+1, γ)
provided γ is big enough, or in other words

(2.29) Sh

Γk \
⋃

γ∈N
E(k + 1, γ)

 = 0.

If our claim (2.27) holds true, whenever Sh(E(k+1, γ)) > 0, we have that for Sh⌞E(k+1, γ)-
almost every w there exists R(w) such that whenever 0 < ℓ < R(w) the following chain of
inequalities holds

Sh(PV(Γ ∩B(w, ℓ))) ≥ C4(V,L)ℓh

8 · 53hAhL(d, dc)2h(k + 1)2

≥ C4(V,L)ℓh

25 · 53hAhL(d, dc)2hk2 ≥ C4(V,L)Θh
∗(Sh⌞Γ, w)2ℓh

25 · 53hAhL(d, dc)2h

=: C7Θh
∗(Sh⌞Γ, w)2ℓh.

(2.30)

Identities (2.28) and (2.29) together with (2.30) imply that our claim suffices to prove the
proposition. Therefore, in the following we will assume that ϑ, γ ∈ N are fixed and such that
Sh(E(ϑ, γ)) > 0, and we want to prove (2.27).

Let N ∈ N be the unique natural number for which 5N−2 ≤ AL(d, dc)2 < 5N−1 and
for every k ∈ N and 0 < δ < 1/2 we define the following sets, where ρ(x) is defined in
Proposition 2.14,

Aϑ,γ(k) :={x ∈ E(ϑ, γ) : ρ(x) > 1/k},

Dϑ,γ(k) :=
{
x ∈ Aϑ,γ(k) : lim

r→0

Sh(B(x, r) ∩Aϑ,γ(k))
Sh(B(x, r) ∩ E(ϑ, γ))

= 1
}
,

Fδ(k) :=
{
B(x, r) : x ∈ Dϑ,γ(k) and r ≤ min{ϑ−1, γ−1, k−1, δ}

1000AL(d, dc)2

}
.

For every ϑ, γ ∈ N the sets Aϑ,γ(k) are Borel since thanks to Proposition 2.14, the function
ρ is upper semicontinuous. Before going on we observe that Sh⌞E(ϑ, γ)(Aϑ,γ(k) \ Dϑ,γ(k)) =
0. This comes from the fact that the points of Dϑ,γ(k) are exactly the points of density
one of Aϑ,γ(k) with respect to the measure Sh⌞E(ϑ, γ), that is asymptotically doubling at
Sh⌞E(ϑ, γ)-almost every point because it has positive lower density and finite upper density
at Sh⌞E(ϑ, γ)-almost every point, see Proposition 1.55. Moreover, observe that from Propo-
sition 2.14 we have Sh(E(ϑ, γ)\∪+∞

k=1Aϑ,γ(k)) = 0. Let us apply Lemma 2.16 to N and Fδ(k),
and thus we infer that there exists a subfamily Gδ(k) such that

(α) for every B,B′ ∈ Gδ(k) we have that 5NB ∩ 5NB′ = ∅,
(β)

⋃
B∈Fδ(k)B ⊆

⋃
B∈Gδ(k) 5N+1B.

The point (α) above implies in particular that whenever B(x, r), B(y, s) ∈ Gδ(k) we have
d(x, y) > L(d, dc)−25N (r+ s), since d is L(d, dc)-Lipschitz equivalent to the geodesic distance
dc, and thanks to the choice of N we deduce that

r + s <
d(x, y)

5A .

Throughout the rest of the proof we fix a w ∈ Dϑ,γ(k) and a
0 < R(w) < min{ϑ−1, γ−1, k−1}/8,

such that

(2.31) Sh⌞Γ(B(w, ℓ))
ℓh

≥ 1
2ϑ, and Sh⌞Dϑ,γ(k)(B(w, ℓ))

Sh⌞Γ(B(w, ℓ))
≥ 1

2 , for every 0 < ℓ ≤ R(w).
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For the ease of notation we continue the proof fixing the radius ℓ = R(w) = R. We stress that
the forthcoming estimates are verified, mutatis mutandis, also for every 0 < ℓ < R. The first
inequality above comes from the definition of E(ϑ, γ), see Definition 1.9, while the second is
true, up to choose a sufficiently small R(w), because Sh⌞Γ-almost every point of Dϑ,γ(k) has
density one with respect to the asymptotically doubling measure Sh⌞Γ. Let us stress that if
we prove our initial claim for such w and R(w) we are done since Sh⌞Γ-every point of Dϑ,γ(k)
satisfies (2.31), Sh⌞E(ϑ, γ)(Aϑ,γ(k) \ Dϑ,γ(k)) = 0, and Sh(E(ϑ, γ) \ ∪+∞

k=1Aϑ,γ(k)) = 0.
Let us notice that the definition of Fδ(k) implies that there must exist a ball B ∈ Gδ(k)

such that w ∈ 5N+1B. We now prove that for every couple of closed balls B(x, r), B(y, s) ∈
Gδ(k) such that B(w,R) intersects both B(x, 5N+1r) and B(y, 5N+1s), we have

(2.32) PV(B(x, r)) ∩ PV(B(y, s)) = ∅.

Indeed, suppose that p ∈ B(x, 5N+1r) ∩B(w,R) and note that

d(x,w) ≤ d(x, p) + d(p, w) ≤ R+ 5N+1r

≤
(1

8 + 5N+1

1000AL(d, dc)2

)
min{ϑ−1, γ−1, k−1} ≤ min{ϑ−1, γ−1, k−1}

4 ,
(2.33)

where the last inequality comes from the choice of N . The bound (2.33) shows in particular
that

d(x, y) ≤ d(x,w) + d(w, y) ≤ min{ϑ−1, γ−1, k−1}
2 < ρ(x),

where the last inequality comes from the fact that by construction x is supposed to be in
Dϑ,γ(k). Thanks to the fact that r + s < d(x, y)/5A and y ∈ B(x, ρ(x)) ∩ E(ϑ, γ) we have
that Proposition 2.14 implies that (2.32) holds.

In order to proceed with the conclusion of the proof, let us define

Fδ(w,R) :={B ∈ Fδ(k) : 5N+1B ∩B(w,R) ∩ Dϑ,γ(k) ̸= ∅},
Gδ(w,R) :={B ∈ Gδ(k) : 5N+1B ∩B(w,R) ∩ Dϑ,γ(k) ̸= ∅},

Thanks to our choice of R, see (2.31), and the definition of Gδ(w,R) we have

Rh

2ϑ ≤ Sh⌞Γ(B(w,R)) ≤ 2Sh⌞Dϑ,γ(k)(B(w,R)) ≤ 2Sh⌞Dϑ,γ(k)
( ⋃

B∈Gδ(w,R)
5N+1B

)
.

Let Gδ(w,R) = {B(xi, ri)}i∈N and recall that xi ∈ Dϑ,γ(k) and that 5N+1ri ≤ 1/γ. This
implies, thanks to Proposition 1.34, that

Sh⌞Dϑ,γ(k)
( ⋃

B∈Gδ(w,R)
5N+1B

)
≤ 2ϑ5h(N+1)∑

i∈N
rh

i

= 2ϑ5h(N+1)C4(V,L)−1∑
i∈N

Sh(PV(B(xi, ri)))

= 2ϑ5h(N+1)C4(V,L)−1Sh
(
PV

( ⋃
i∈N

B(xi, ri)
))

≤ 2ϑ5h(N+1)C4(V,L)−1Sh
(
PV

( ⋃
B∈Fδ(w,R)

B

))
,

where the first inequality comes from the subadditivity and the upper estimate that we have
in the definition of E(ϑ, γ), see Definition 1.9; while identity in the third line above comes
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from (2.32). Summing up, for every δ > 0 we have

C4(V,L)Rh

8 · 5h(N+1)ϑ2 ≤ Sh
(
PV

( ⋃
B∈Fδ(w,R)

B

))
.

We now prove that the projection under PV of the closure of
⋃

B∈Fδ(w,R)B converges in the
Hausdorff sense to PV(Dϑ,γ(k) ∩B(w,R)) as δ goes to 0. Since the set

⋃
B∈Fδ(w,R)B is a

covering of Dϑ,γ(k) ∩B(w,R) we have that

(2.34) Dϑ,γ(k) ∩B(w,R) ⋐
⋃

B∈Fδ(w,R)
B.

On the other hand, since by definition the balls of Fδ(w,R) have radii smaller than δ/4 and
center in Dϑ,γ(k), we also have

(2.35)
⋃

B∈Fδ(w,R)
B ⋐ B(Dϑ,γ(k) ∩B(w,R), 5N+2δ).

Putting together (2.34) and (2.35), we infer that the closure of
⋃

B∈Fδ(w,R)B converges in
the Hausdorff metric to the closure of B(w,R) ∩ Dϑ,γ(k). Furthermore, since PV restricted
to the ball B(w,R+ 1) is uniformly continuous, we infer that

PV

( ⋃
B∈Fδ(w,R)

B

)
−→

H
PV

(
Dϑ,γ(k) ∩B(w,R)

)
.

Thanks to the upper semicontinuity of the Lebesgue measure with respect to the Hausdorff
convergence we eventually infer that

C4(V,L)Rh

8 · 5h(N+1)ϑ2 ≤ lim sup
δ→0

Sh
(
PV

( ⋃
B∈Fδ(w,R)

B

))
≤ Sh(PV(Dϑ,γ(k) ∩B(w,R))) ≤ Sh(PV(E(ϑ, γ) ∩B(w,R))),

where the last inequality above comes from the fact that by construction Dϑ,γ(k) ⊆ E(ϑ, γ)
and the compactness of E(ϑ, γ). Finally, since C7 = 2−55−3hA−hL(d, dc)−2hC4(V,L), we
infer

Sh(PV(E(ϑ, γ) ∩B(w,R))) ≥ C4(V,L)Rh

8 · 5h(N+1)ϑ2 ≥ 4C7R
h

ϑ2 ,

thus showing the claim (2.27) and then the proof.

Let us prove the second part of the statement. Let us assume for the ease of notation that
the distance d is geodesic. If not, as done in the first part of the proof, one has to properly
change the constants in the proof. We will just sketch the proof, that is an adaptation of the
proof above. Let N ∈ N be the unique natural number for which 5N−2 ≤ A < 5N−1, where
A is defined after Lemma 2.13. Notice that, since 2−h ≤ Θh,∗(Sh⌞Γ, x) ≤ 1 for Sh⌞Γ-almost
every x ∈ G (cf. [102, 2.10.19(1) and 2.10.19(5)]), hence, for Sh⌞Γ-almost every x ∈ G there
exists an infinitesimal sequence {ℓi(x)}i∈N such that

(2.36) 1
2h+1 ≤ Sh(Γ ∩B(x, ℓi(x)))

ℓi(x)h
≤ 2.
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Thus, for every k ∈ N and 0 < δ < 1/2 we define the following sets

A(k) :={x ∈ Γ : ρ(x) > 1/k},

D(k) :=
{
x ∈ A(k) : lim

r→0

Sh(B(x, r) ∩A(k))
Sh(B(x, r) ∩ Γ)

= 1
}
,

Fδ(k) :=
{
B(x, r) : x ∈ D(k), r ≤ min{k−1, δ}

1000A and 1
2h+1 ≤ Sh⌞Γ(B(x, 5N+1r))

(5N+1r)h
≤ 2

}
,

where ρ(x) is the number defined in Proposition 2.14. First of all notice that, thanks to (2.36),
Fδ(k) is a fine covering of Sh⌞Γ-almost all D(k). Furthermore, for every k the sets A(k) are
Borel since thanks to Proposition 2.14, the function ρ is upper semicontinuous and, since
by assumption Sh⌞Γ is asymptotically doubling, we also know that Sh⌞Γ(A(k) \ D(k)) = 0.
Finally, from Proposition 2.14 we infer that Sh(Γ \ ∪+∞

k=1A(k)) = 0. Let us apply Lemma 2.16
to N and Fδ(k) and we obtain the disjoint subfamily Gδ(k) of Fδ(k) such that

(α) for every B,B′ ∈ Gδ(k) we have that 5NB ∩ 5NB′ = ∅,
(β)

⋃
B∈Fδ(k)B ⊆

⋃
B∈Gδ(k) 5N+1B.

Throughout the rest of the proof we fix a w ∈ D(k) such that there exists a sequence
{ℓi(w)}i∈N satisfying (2.36), ℓi(w) ≤ min{k−1, δ}/8, and

(2.37) Sh⌞D(k)(B(w, ℓi(w)))
Sh⌞Γ(B(w, ℓi(w)))

≥ 1
2 for every i ∈ N,

where the inequality follows from the fact that Sh⌞Γ-almost every point of D(k) has density
one with respect to the asymptotically doubling measure Sh⌞Γ. Notice that, according to the
previous discussion, the previous choice on w is made in a set of full Sh⌞Γ-measure, so that if
we prove the estimate (2.26) with such a w we are done. For the ease of notation we continue
the proof fixing the radius ℓi(w) = R. We stress that the forthcoming estimates are verified
also for every ℓi(w). As done in the first part of the proof above, one can prove that for every
couple of closed balls B(x, r), B(y, s) ∈ Gδ(k) such that B(w,R) intersects both B(x, 5N+1r)
and B(y, 5N+1s), we have

(2.38) PV(B(x, r)) ∩ PV(B(y, s)) = ∅.

In order to proceed with the conclusion of the proof, let us define

Fδ(w,R) :={B ∈ Fδ(k) : 5N+1B ∩B(w,R) ∩ D(k) ̸= ∅},
Gδ(w,R) :={B ∈ Gδ(k) : 5N+1B ∩B(w,R) ∩ D(k) ̸= ∅},

Thanks to our choice of R, see (2.37), and the definition of Gδ(w,R) we have

Rh

2h+1 ≤ Sh⌞Γ(B(w,R)) ≤ 2Sh⌞D(k)(B(w,R)) ≤ 2Sh⌞D(k)
( ⋃

B∈Gδ(w,R)
5N+1B

)
.
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Let Gδ(w,R) := {B(xi, ri)}i∈N and recall that xi ∈ D(k). This implies, thanks to Proposi-
tion 1.34, that

Sh⌞D(k)
( ⋃

B∈Gδ(w,R)
5N+1B

)
≤ 2 · 5(N+1)h∑

i∈N
rh

i

= 2 · 5(N+1)hC4(V,L)−1∑
i∈N

Sh(PV(B(xi, ri)))

= 2 · 5(N+1)hC4(V,L)−1Sh
(
PV

( ⋃
i∈N

B(xi, ri)
))

≤ 2 · 5(N+1)hC4(V,L)−1Sh
(
PV

( ⋃
B∈Fδ(w,R)

B

))
,

where the first inequality comes from the subadditivity of the measure and the upper estimate
that we have in the definition of Fδ(k); while the first identity of the second line above comes
from (2.38). Summing up, for every δ > 0 we have

C4(V,L)Rh

5(N+1)h2h+3 ≤ Sh
(
PV

( ⋃
B∈Fδ(w,R)

B

))
.

Arguing as above, we get the Hausdorff convergence

PV

( ⋃
B∈Fδ(w,R)

B

)
−→

H,δ→0
PV

(
D(k) ∩B(w,R)

)
.

Thanks to the upper semicontinuity of the Lebesgue measure with respect to the Hausdorff
convergence we eventually infer that

C4(V,L)Rh

5(N+1)h2h+3 ≤ lim sup
δ→0

Sh
(
PV

( ⋃
B∈Fδ(w,R)

B

))
≤ Sh(PV(D(k) ∩B(w,R))) ≤ Sh(PV(Γ ∩B(w,R))),

(2.39)

where the last inequality above comes from the compactness of Γ and the fact that D(k) ⊆
Γ. □

Proposition 2.18. Let us fix α ≤ ε1(V,L), and suppose Γ is a compact CV(α)-set with
0 < Sh(Γ) < +∞ such that

lim sup
r→0

Sh⌞Γ(B(x, 2r))
Sh⌞Γ(B(x, r))

< ∞,

for Sh-almost every x ∈ Γ. Let us set φ : PV(Γ) → L the map whose graph is Γ, see
Proposition 1.89, and set Φ : PV(Γ) → G to be the graph map of φ. Let us define Φ∗Sh⌞V
to be the measure on Γ such that for every measurable A ⊆ Γ we have Φ∗Sh⌞V(A) :=
Sh⌞V(Φ−1(A)) = Sh⌞V(PV(A)). Then Φ∗Sh⌞V is mutually absolutely continuous with respect
to Sh⌞Γ.

Proof. The fact that Φ∗Sh⌞V is absolutely continuous with respect to Sh⌞Γ is an immediate
consequence of Proposition 1.34. Vice-versa, suppose by contradiction that there exists a
compact subset C of Γ of positive Sh-measure such that

(2.40) 0 = Φ∗Sh⌞V(C) = Sh(PV(C)).
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Since Sh⌞C is asymptotically doubling by Proposition 1.55 and C has positive and finite
Sh-measure, we infer thanks to the second part of Proposition 2.17 that the set C must have
a projection of positive Sh-measure. This however comes in contradiction with (2.40). □

In the following propositions we are going to introduce two fine coverings of PV(Γ) and
V, respectively, that will be used in the proof of Proposition 2.21 to differentiate with respect
to the measure Sh⌞PV(Γ).
Proposition 2.19. Let α ≤ ε1(V,L) and suppose that Γ is a compact CV(α)-set with 0 <
Sh(Γ) < +∞ such that

Θh
∗(Sh⌞Γ, x) > 0,

for Sh-almost every x ∈ Γ. As in the statement of Proposition 2.18, let us denote with
Φ : PV(Γ) → G the graph map of φ : PV(Γ) → L whose intrinsic graph is Γ. Then the
covering relation

S1 :=
{(
z, PV(B(Φ(z), r) ∩ Γ)

)
: z ∈ PV(Γ) and 0 < r < min{1, R(Φ(z))}

}
,

is a Sh⌞PV(Γ)-Vitali relation, where R(Φ(z)) is defined as in the first part of Proposition 2.17
for Sh⌞PV(Γ)-almost every z ∈ V, and it is +∞ on the remaining Sh⌞PV(Γ)-null set (cf.
Proposition 2.18) where the first part of Proposition 2.17 does not hold.

Proof. First of all, it is readily noticed that S1 is a fine covering of PV(Γ) sine PV is continuous.
Let us prove that S1 is a Sh⌞PV(Γ)-Vitali relation in (PV(Γ), d) with the distance d induced
form G. For x ∈ PV(Γ) and r > 0, define G(x, r) := PV(B(Φ(x), r) ∩ Γ). Notice that an
arbitrary element of S1(PV(Γ)), see (1.2), is of the form G(x, r) for some x ∈ PV(Γ) and some
0 < r < min{1, R(Φ(x))}. Let δ

(
G(x, r)

)
:= r and note that the δ-enlargement, see (1.3), of

G(x, r) is

Ĝ(x, r) :=
⋃

{G(y, s) : y ∈ PV(Γ), 0 < s < min{1, R(Φ(y))},
G(y, s) ∩G(x, r) ̸= ∅ and δ(G(y, s)) ≤ 5δ(G(x, r))}

=
⋃

{G(y, s) : y ∈ PV(Γ), 0 < s < min{1, R(Φ(y))}, G(y, s) ∩G(x, r) ̸= ∅, s ≤ 5r}.

(2.41)

WheneverG(x, r)∩G(y, s) ̸= ∅ we have that d(Φ(x),Φ(y)) ≤ r+s: indeed, since PV is injective
on Γ, see Proposition 1.89, we have PV(B(Φ(x), r)∩Γ)∩PV(B(Φ(y), s)∩Γ) ̸= ∅ if and only if
B(Φ(x), r)∩B(Φ(y), s)∩Γ ̸= ∅. In particular, since s ≤ 5r we have B(Φ(y), s) ⋐ B(Φ(x), 12r),
and thus Ĝ(x, r) ⊆ G(x, 12r) for every x ∈ PV(Γ) and 0 < r < min{1, R(Φ(x))}.

Finally, thanks to Proposition 2.17 and Proposition 2.18, for Sh-almost every x ∈ PV(Γ)
we have

lim
ξ→0

sup
{
δ(G(x, r)) + Sh(Ĝ(x, r))

Sh(G(x, r))
: 0 < r < min{1, R(Φ(x))}, diam(G(x, r)) ≤ ξ

}

≤ 1 + lim
ξ→0

sup Sh(G(x, 12r))
Sh(G(x, r)) ≤ 1 + lim

ξ→0
sup Sh(PV(B(Φ(x), 12r)))

Sh(PV(B(Φ(x), r) ∩ Γ))

≤ 1 + lim
ξ→0

sup (12r)hSh(PV(B(0, 1)))
C7Θh

∗(Sh⌞Γ,Φ(x))2rh
= 1 + 12hSh(PV(B(0, 1)))

C7Θh
∗(Sh⌞Γ,Φ(x))2 ,

(2.42)

where we explicitly mentioned the set over which we take the supremum only in the first
line for the ease of notation, and where the first inequality in the third line follows from
the fact that Sh(PV(E)) = Sh(PV(xE)) for every x ∈ G and every Borel set E ⊆ G, see
Proposition 1.32. Thanks to (2.42) we can apply the first part of Proposition 1.13 and thus
we infer that S1 is a Sh⌞PV(Γ)-Vitali relation. □
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Proposition 2.20. Let α ≤ ε1(V,L) and let Γ be a compact CV(α)-set with 0 < Sh(Γ) < +∞.
As in the statement of Proposition 2.18, let us denote with Φ : PV(Γ) → G the graph map of
φ : PV(Γ) → L whose intrinsic graph is Γ. Then for Sh-almost every w ∈ PV(Γ) we have

(2.43) lim
r→0

Sh
(
PV
(
B(Φ(w), r) ∩ Φ(w)CV(α)

)
∩ PV(Γ)

)
Sh
(
PV
(
B(Φ(w), r) ∩ Φ(w)CV(α)

)) = 1.

Proof. For every w ∈ V \ PV(Γ) we let

ρ(w) := inf{r ≥ 0 : B(w, r) ∩ PV(B(Γ, r1/κ)) ̸= ∅}.

It is immediate to see that ρ(w) ≤ dist(w,PV(Γ)) and that ρ(w) = 0 if and only if w ∈ PV(Γ).
Throughout the rest of the proof we let S be the fine covering of V given by the couples
(w,G(w, r)) for which

(α) if w ∈ V \ PV(Γ) then r ∈ (0,min{ρ(w)/2, 1}) and G(w, r) := B(w, r) ∩ V,
(β) if w ∈ PV(Γ) then r ∈ (0, 1) and G(w, r) := PV(B(Φ(w), r) ∩ Φ(w)CV(α)).

Furthermore, for every w ∈ V we define the function δ on S(V), see (1.2), as

(2.44) δ
(
G(w, r)

)
:= r.

If we prove that S is a Sh⌞V-Vitali relation, the second part of Proposition 1.13 directly
implies that (2.43) holds. If for Sh-almost every w ∈ V we prove that

lim
ξ→0

sup
(w,G(w,r))∈S, diam(G(w,r))≤ξ

{
δ
(
G(w, r)

)
+ Sh(Ĝ(w, r))

Sh(G(w, r))

}
≤ 1 + lim

ξ→0
sup Sh(Ĝ(w, r))

Sh(G(w, r)) < ∞,

(2.45)

where we explicitly mentioned the set over which we take the supremum only the first time
for the ease of notation, and where Ĝ(w, r) is the δ-enlargement of G(w, r), see (1.3); thus,
thanks to the first part of Proposition 1.13 we would immediately infer that S is a Sh⌞V-
Vitali relation. In order to prove that (2.45) holds, we need to get a better understanding of
the geometric structure of the δ-enlargement of G(w, r).

If w ∈ V \ PV(Γ), we note that there must exist an 0 < r(w) < min{ρ(w)/2, 1} such that
for every 0 < r < r(w) we have

B(w, r) ∩ PV(B(Γ, 5r)) = ∅.

Indeed, if this is not the case there would exist a sequence ri ↓ 0 and a sequence {zi}i∈N such
that

zi ∈ B(w, ri) ∩ PV(B(Γ, 5ri)).
Since PV(Γ) is compact and PV is continuous on the closed tubular neighborhood B(Γ, 1), up
to passing to a non re-labelled subsequence we have that the zi’s converge to some z ∈ PV(Γ)
and on the other hand by construction the zi’s converge to w which is not contained in PV(Γ),
and this is a contradiction. This implies that if 0 < r < r(w), we have

Ĝ(w, r) =
⋃

{G(y, s) : y ∈ V, s > 0, (y,G(y, s)) ∈ S, G(y, s) ∩G(w, r) ̸= ∅, and s ≤ 5r}

⊆
⋃

{B(y, s) ∩ V : B(y, s) ∩B(w, r) ∩ V ̸= ∅ and s ≤ 5r} ⊆ B(w, 11r) ∩ V,

(2.46)

where in the inclusion we are using the fact that if y were in PV(Γ), and s ≤ 5r, then G(y, s) ⊆
PV(B(Γ, s)) ⊆ PV(B(Γ, 5r)) which would be in contradiction with G(y, s)∩G(w, r) ̸= ∅, since
we chose 0 < r < r(w). Summing up, if w ∈ V \PV(Γ) the bound (2.45) immediately follows
thanks to (2.46) and the homogeneity of Sh.
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If on the other hand w ∈ PV(Γ) the situation is more complicated. If y ∈ V \ PV(Γ) and
s ≤ 5r are such that

(2.47) G(y, s) ∩ PV(B(Φ(w), r)) = B(y, s) ∩ PV(B(Φ(w), r)) ̸= ∅,

since by construction of the covering S we also assumed that 0 < s < ρ(y)/2, we infer that we
must have r ≥ s1/κ for (2.47) to be satisfied. This allows us to infer that, for every w ∈ PV(Γ)
and 0 < r < 1, we have

Ĝ(w, r) =
⋃

{G(y, s) : y ∈ V, s > 0, (y,G(y, s)) ∈ S, G(y, s) ∩G(w, r) ̸= ∅, and s ≤ 5r}

⊆
⋃

{PV(B(Φ(y), s)) : y ∈ PV(Γ), PV(B(Φ(y), s)) ∩ PV(B(Φ(w), r)) ̸= ∅, and s ≤ 5r}∪

∪
⋃

{B(y, s) ∩ V : y ∈ V \ PV(Γ), B(y, s) ∩ PV(B(Φ(w), r)) ̸= ∅, s ≤ min{5r, ρ(y)/2}}

⊆
⋃

{PV(B(Φ(y), s)) : y ∈ PV(Γ), PV(B(Φ(y), s)) ∩ PV(B(Φ(w), r)) ̸= ∅, and s ≤ 5r}∪

∪
(
B(PV(B(Φ(w), r)), 3rκ) ∩ V

)
,

(2.48)

where in the last inclusion we are using the observation right after (2.47) according to which
s ≤ rκ. We now study independently each of the two terms of the union of the last two lines
above. Let us first note that if w, y ∈ PV(Γ), s ≤ 5r and

PV(B(Φ(y), s)) ∩ PV(B(Φ(w), r)) ̸= ∅,

then PV(B(Φ(y), 10r)) ∩ PV(B(Φ(w), 2r)) ̸= ∅. This observation and Corollary 2.15 imply
that if 0 < r < r(w) is sufficiently small we have d(Φ(w),Φ(y)) ≤ 50Ar, where the constant
A = A(V,L) is yielded by Lemma 2.13. In particular we deduce that for every 0 < r < r(w)
sufficiently small⋃

{PV(B(Φ(y), s)) : y ∈ PV(Γ), PV(B(Φ(y), s)) ∩ PV(B(Φ(w), r)) ̸= ∅, and s ≤ 5r}

⊆ PV(B(Φ(w), 50(A+ 1)r)).

In order to study the term in the last line of (2.48), we prove the following claim: for
every 0 < r < 1, every z ∈ PV(B(Φ(w), r)), and every ∆ ∈ B(0, 3rκ) ∩ V we have z∆ ∈
PV(B(Φ(w), C(Γ)r)), where C(Γ) is a constant depending only on Γ. Indeed, since Γ is
compact and PL is continuous, there exists a constant K ′ := K ′(Γ) such that whenever
0 < r < 1, and z ∈ PV(B(Φ(w), r)), there exsits an ℓ ∈ L such that zℓ ∈ B(Φ(w), r) and
∥ℓ∥ ≤ K ′. Thus there exists a constant K := K(Γ) > 0 such that whenever 0 < r < 1,
z ∈ PV(B(Φ(w), r)), and ∆ ∈ B(0, 3rκ) ∩ V, there exists ℓ ∈ L with zℓ ∈ B(Φ(w), r) and
∥∆∥ + ∥ℓ∥ ≤ K. Thus we can estimate

d(Φ(w), z∆ℓ) ≤ d(Φ(w), zℓ) + d(zℓ, z∆ℓ) ≤ r + C6(K,G)∥∆∥1/κ ≤ C(Γ)r,

where the second inequality in the last equation comes from Lemma 2.8. Thus z∆ ∈
PV(B(Φ(w), C(Γ)r)), and the claim is proved. Summing up, we have proved that when-
ever w ∈ PV(Γ) and 0 < r < r(w) is sufficiently small we have

Ĝ(w, r) ⊆ PV(B(Φ(w), 50(A+ 1)r)) ∪ PV(B(Φ(w), C(Γ)r)),

and thus (2.45) immediately follows by the latter inclusion, the homogeneity of Sh⌞V, and
the fact that Sh(PV(xE)) = Sh(PV(E)) for every x ∈ G and E a Borel subset of G, see
Proposition 1.32. This concludes the proof of the proposition. □

We are now ready to prove the main step that will be needed for the proof of Theorem 2.12.
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Proposition 2.21. Let us fix α ≤ ε1(V,L). Suppose Γ is a compact CV(α)-set with 0 <
Sh(Γ) < +∞, and such that Sh⌞Γ is Pc

h-rectifiable. For Sh-almost every x ∈ Γ we have

(2.49) (1 − c(α))2h(1 + c(α))−h ≤ Θh
∗(Sh⌞Γ, x)

Θh,∗(Sh⌞Γ, x) ≤ 1,

where c(α) is defined in Lemma 1.43.

Proof. Let us preliminarily observe that since Sh⌞V and Ch⌞V are both Haar measures on V,
they coincide up to a constant. Since for Sh-almost every x ∈ Γ we have Θh

∗(Sh⌞Γ, x) > 0,
the upper bound is trivial. Let us proceed with the lower bound. Thanks to Proposition 2.18
and the Radon-Nikodým Theorem, see [125, page 82], there exists ρ ∈ L1(Φ∗Ch⌞V) such that

(i) ρ(x) > 0 for Φ∗Ch⌞V-almost every x ∈ Γ,
(ii) Sh⌞Γ = ρΦ∗Ch⌞V.

We stress that the following reasoning holds for Sh⌞Γ-almost every x ∈ Γ. Let {ri}i∈N be an
infinitesimal sequence such that r−h

i Tx,riSh⌞Γ ⇀ λCh⌞V(x) for some λ > 0. First of all, we
immediately see that Corollary 1.63 implies that λ ∈ [Θh

∗(Sh⌞Γ, x),Θh,∗(Sh⌞Γ, x)] and that

1 = lim
i→∞

Sh⌞Γ(B(x, ri))
Sh⌞Γ(B(x, ri))

= lim
i→∞

´
PV(B(x,ri)∩Γ) ρ(Φ(y))dCh⌞V(y)

Sh⌞Γ(B(x, ri))

= ρ(x)
λ

lim
i→∞

Ch⌞V(PV(B(x, ri) ∩ Γ))
rh

i

,

where the last identity comes from Proposition 2.19, that allows us to differentiate by using
the second part of Proposition 1.13, and Lemma 1.62. Thanks to Lemma 1.43, Remark 1.27,
and the fact that Γ is a CV(α)-set, we have

λ

ρ(x) ≤ lim
i→∞

Ch⌞V(PV(B(x, ri) ∩ xCV(α)))
rh

i

= Ch(PV(B(0, 1) ∩ CV(α)))

≤ Ch⌞V(B(0, 1))
(1 − c(α))h

= (1 − c(α))−h,

(2.50)

where in the second equality we used the homogeneity of Ch and the fact that Ch(PV(xE)) =
Ch(PV(E)) for every x ∈ G and E a Borel subset of G, see Proposition 1.32. On the other
hand, thanks to Lemma 1.44 we have

λ

ρ(x) = lim
i→∞

Ch⌞V(PV(B(x, ri) ∩ Γ))
rh

i

≥ lim
i→∞

Ch
(
PV
(
B(x,C(α)ri) ∩ xCV(α)

)
∩ PV(Γ)

)
Ch
(
PV
(
B(x,C(α)ri) ∩ xCV(α)

)) Ch
(
PV
(
B(x,C(α)ri) ∩ xCV(α)

))
rh

i

= C(α)hCh(PV(B(0, 1) ∩ CV(α))
)

≥ C(α)h,

(2.51)

where the first identity in the last line comes from Proposition 2.20, and the inequality comes
from Lemma 1.43, Remark 1.27, and C(α) is defined in (1.28). Putting together (2.50) and
(2.51), we have

(2.52) (1 − c(α))h

(1 + c(α))h
≤ λ

ρ(x) ≤ 1
(1 − c(α))h

.
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Thanks to the definition of Θh
∗(Sh⌞Γ, x) and Θh,∗(Sh⌞Γ, x) we can find two sequences {ri}i∈N

and {si}i∈N such that

Θh
∗(Sh⌞Γ, x) = lim

i→∞

Sh⌞Γ(B(x, ri))
rh

i

, and Θh,∗(Sh⌞Γ, x) = lim
i→∞

Sh⌞Γ(B(x, si))
sh

i

,

and without loss of generality, taking Lemma 1.62 into account, we have that, up to passing
to subsequences,

r−h
i Tx,riSh⌞Γ ⇀ Θh

∗(Sh⌞Γ, x)Ch⌞V(x), , s−h
i Tx,siSh⌞Γ ⇀ Θh,∗(Sh⌞Γ, x)Ch⌞V(x).

The bounds (2.52) imply therefore that

(1 − c(α))h

(1 + c(α))h
≤ Θh

∗(Sh⌞Γ, x)
ρ(x) ≤ 1

(1 − c(α))h
,

(1 − c(α))h

(1 + c(α))h
≤ Θh,∗(Sh⌞Γ, x)

ρ(x) ≤ 1
(1 − c(α))h

.

(2.53)

Finally the bounds in (2.53) yield

(1 − c(α))2h(1 + c(α))−h ≤ Θh
∗(Sh⌞Γ, x)

Θh,∗(Sh⌞Γ, x) ≤ 1,

and this concludes the proof. □

We prove now the existence of the density of Pc
h-rectifiable measures, see Theorem 2.12.

We first prove an algebraic lemma, then we prove the existence of the density for measures
of the type Sh⌞Γ, and then we conclude with the proof of the existence of the density for
arbitrary Pc

h-rectifiable measures.
Lemma 2.22. Let us fix 0 < ε < 1 a real number, ℓ, h ∈ N, and let f be the function defined
as follows

f : {(α,C) ∈ (0,+∞)2 : α < C} → (0,+∞), f(α,C) := α

C − α
.

Then, there exists α̃ := α̃(ε, ℓ, h) > 0 such that the following implication holds

if 0 < α ≤ α̃ and C > 1/ℓ, then α < C and (1 − f(α,C))2h(1 + f(α,C))−h ≥ 1 − ε.

Proof. Let us choose 0 < ε̃ := ε̃(ε, h) < 1 such that

(1 − x)2h(1 + x)−h ≥ 1 − ε, for all 0 ≤ x ≤ ε̃.

Let us show that the sought constant α̃(ε, ℓ, h) can be chosen to be α̃ := ε̃/(ℓ(1+ ε̃)). Indeed,
if α ≤ α̃ and C > 1/ℓ we infer that α < C and

α ≤ ε̃

ℓ(1 + ε̃) ≤ Cε̃

1 + ε̃
, and then f(α,C) = α

C − α
≤ ε̃.

This implies that if α ≤ α̃ and C > 1/ℓ, then

(1 − f(α,C))2h(1 + f(α,C))−h ≥ 1 − ε,

where the last inequality above comes from the choice of ε̃. This concludes the proof. □

Theorem 2.23. Let Γ be a compact subset of G with 0 < Sh(Γ) < +∞, and such that Sh⌞Γ
is a Pc

h-rectifiable measure. Then

0 < Θh
∗(Sh⌞Γ, x) = Θh,∗(Sh⌞Γ, x) < +∞, for Sh⌞Γ-almost every x ∈ G.
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Proof. In the following, for every ε > 0, we will construct a measurable set Aε ⊆ Γ such that
Sh(Γ \Aε) = 0 and

(2.54) 1 − ε ≤ Θh,∗(Sh⌞Γ, x)
Θh

∗(Sh⌞Γ, x) ≤ 1, for every x ∈ Aε.

If (2.54) holds then we are free to choose ε = 1/n for every n ∈ N and then the density of
Sh⌞Γ exists on the set ∩+∞

n=1A1/n, that has full Sh⌞Γ-measure. So we are left to construct Aε

as in (2.54). Let us define the function

F(V,L) := ε1(V,L), for all V ∈ Grc(h) with complement L.

Let us take the family F := {Vi}+∞
i=1 ⊆ Grc(h) and let us choose Li complementary subgroups

to Vi as in the statement of Theorem 2.10. We remark that the choices of the family F and of
the complementary subgroups depend on the function F previously defined, see the discussion
before Theorem 2.10. Let us define

β : N → (0, 1), β(ℓ) := α̃(ε, ℓ, h),

where α̃(ε, ℓ, h) is the constant in Lemma 2.22, and with an abuse of notation let us lift β
to a function on F as we did in the statement of Theorem 2.10. From Theorem 2.10 we
conclude that there exist countably many Γi’s that are compact CVi(min{ε1(Vi,Li), β(Vi)})-
sets contained in Γ such that

(2.55) Sh
(
Γ \ ∪+∞

i=1 Γi

)
= 0.

Let us write, for the ease of notation, αi := min{ε1(Vi,Li), β(Vi)} for every i ∈ N. Since
Γi ⊆ Γ and Sh⌞Γ is Pc

h-rectifiable, we conclude, by exploiting the locality of tangents and the
Lebesgue Differentiation Theorem, see Proposition 1.55, that the measures Sh⌞Γi are Pc

h-
rectifiable as well for every i ∈ N. Thus, since αi ≤ ε1(Vi,Li), we can apply Proposition 2.21
and conclude that, for every i ∈ N, we have

(1 − c(αi))2h(1 + c(αi))−h ≤ Θh,∗(Sh⌞Γi, x)
Θh

∗(Sh⌞Γi, x) ≤ 1, for Sh⌞Γi-almost every x ∈ G,

where c(αi) := αi/(C2(Vi,Li) − αi). Since it holds that Θh,∗(Sh⌞Γi, x) = Θh,∗(Sh⌞Γ, x), and
Θh

∗(Sh⌞Γi, x) = Θh
∗(Sh⌞Γ, x) for Sh⌞Γi-almost every x ∈ G, see Proposition 1.55, for every

i ∈ N we conclude that

(2.56) (1 − c(αi))2h(1 + c(αi))−h ≤ Θh,∗(Sh⌞Γ, x)
Θh

∗(Sh⌞Γ, x) ≤ 1, for Sh⌞Γi-almost every x ∈ G.

Let us now fix i ∈ N and note there exists a unique ℓ(i) ∈ N such that

1/ℓ(i) < ε1(Vi,Li) ≤ 1/(ℓ(i) − 1).

Moreover, from the definition of β and F we see that β(Vi) = β(ε, ℓ(i), h). This allows us to
infer that

(1) αi ≤ β(Vi) = β(ε, ℓ(i), h), since αi := min{ε1(Vi,Li), β(Vi)},
(2) C2(Vi,Li) > 1/ℓ(i), since 1/ℓ(i) < ε1(Vi,Li) = C2(Vi,Li)/2, see Lemma 1.40.

Thus we can apply Lemma 2.22 and conclude that

(1 − c(αi))2h(1 + c(αi))−h ≥ 1 − ε.

This shows, thanks to (2.56), that for every i ∈ N, we have

1 − ε ≤ Θh,∗(Sh⌞Γ, x)
Θh

∗(Sh⌞Γ, x) ≤ 1, for Sh⌞Γi-almost every x ∈ G.
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Thus by taking into account (2.55) and the previous equation we conclude (2.54), that is the
sought claim. □

Remark 2.24. It is a classical result that if E ⊆ Rn is a h-rectifiable set, with 1 ≤ h ≤ n,
then Θh(Sh⌞E, x) = 1 for Sh-almost every point x ∈ E, see [102, Theorem 3.2.19]. The
converse also holds as it is a special case of Preiss’s theorem [202].

We point out that as a consequence of the forthcoming Theorem 2.30, we have that
whenever Γ ⊆ G is a Borel set such that 0 < Sh(Γ) < +∞, and Sh⌞Γ is Pc

h-rectifiable, then
Θh(Ch⌞Γ, x) = 1 for Ch-almost every x ∈ Γ.

We thus ask the following two questions, the second one being a simplified version of the
analogue of Preiss’s theorem for sets on Carnot groups.

Question 2. Understand whether the following holds. Let Γ ⊆ G be a Borel set such
that 0 < Sh(Γ) < +∞, and Sh⌞Γ is Pc

h-rectifiable. Then Θh(Sh⌞Γ, x) = 1 for Sh-almost
every x ∈ Γ.

Question 3. Understand whether the following holds. Let Γ ⊆ G be a Borel set such
that 0 < Sh(Γ) < +∞, and Θh(Ch⌞Γ, x) = 1 (or Θh(Sh⌞Γ, x) = 1) for Sh-almost every x ∈ Γ.
Then Sh is Ph-rectifiable.

Regarding the last question, very recently Julia–Merlo [131] proved that on every homo-
geneous group there is a homogeneous left-invariant distance such that if the measure Hh⌞Γ
has h-density one almost everywhere, than Γ is Euclidean rectifiable.

Proof of Theorem 2.12. We stress that by restricting ouserlves on balls of integer radii, by
using Proposition 1.55, we can assume that ϕ has compact support. Let us first recall that,
by Proposition 1.11, we have

(2.57) ϕ

G \
⋃

ϑ,γ∈N
E(ϑ, γ)

 = 0.

Let us fix ϑ, γ ∈ N. From Lebesgue Differentiation Theorem and the locality of tangents,
see Proposition 1.55, we deduce that ϕ being Pc

h-rectifiable implies that ϕ⌞E(ϑ, γ) is Pc
h-

rectifiable. From Proposition 1.56 we deduce that ϕ⌞E(ϑ, γ) is mutually absolutely continuous
with respect to Sh⌞E(ϑ, γ), and thus, by Radon-Nikodým theorem, see [125, page 82], there
exists a positive function ρ ∈ L1(Sh⌞E(ϑ, γ)) such that ϕ⌞E(ϑ, γ) = ρSh⌞E(ϑ, γ). We stress
that we can apply Lebesgue–Radon–Nikodým theorem since ϕ⌞E(ϑ, γ) is asymptotically dou-
bling because it has positive h-lower density and finite h-upper density almost everywhere.
By Lebesgue–Radon–Nikodým theorem, see [125, page 82], and the locality of tangents again,
we deduce that Sh⌞E(ϑ, γ) is a Pc

h-rectifiable measure, since ϕ⌞E(ϑ, γ) is a Pc
h-rectifiable

measure. Thus we can apply Theorem 2.23 to Sh⌞E(ϑ, γ) and obtain that for every ϑ, γ ∈ N
we have that

0 < Θh
∗(Sh⌞E(ϑ, γ), x) = Θh,∗(Sh⌞E(ϑ, γ), x) < +∞, for Sh⌞E(ϑ, γ)-a.e. x ∈ G.

Since ϕ⌞E(ϑ, γ) = ρSh⌞E(ϑ, γ) we thus conclude from the previous equality and by Lebesgue–
Radon–Nikdoym theorem that for every ϑ, γ ∈ N we have that

0 < Θh
∗(ϕ⌞E(ϑ, γ), x) = Θh,∗(ϕ⌞E(ϑ, γ), x) < +∞, for ϕ⌞E(ϑ, γ)-a.e. x ∈ G.

The previous equality, jointly with Proposition 1.55 and together with (2.57) allows us to
conclude the proof. The last piece of Theorem 2.12 readily comes from the first part and
Lemma 1.62. □
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3. Covering the support of P-rectifiable measures with intrinsically
differentiable graphs

In this section we aim at proving the next theorem, which is one of the main results
contained in [28]. Namely, we prove that the support of a Pc

h-rectifiable measure ϕ, see
Definition 1.58 and Definition 1.61, can be covered ϕ-almost all by countably many compact
graphs that, in addition of being intrinsically Lipschitz with arbitrarily small Lipschitz con-
stant, are intrinsically differentiable almost everywhere. Namely, the following Theorem 2.25
is a refinement of Theorem 2.2.

Roughly speaking we say that the graph of a function between complementary subgroups
φ : U ⊆ V → L is intrinsically differentiable at a0 · φ(a0) if graph(φ) admits a homogeneous
subgroup as Hausdorff tangent at a0 · φ(a0), see Definition 1.94 for details.
Theorem 2.25. Let G be a Carnot group of homogeneous dimension Q endowed with an ar-
bitrary left-invariant homogeneous distance. Let h ∈ {1, . . . , Q}, and let ϕ be a Pc

h-rectifiable,
i.e., a Ph-rectifiable measure with tangents that are complemented almost everywhere.

Then G can be covered ϕ-almost everywhere with countably many compact graphs that
are simultaneously intrinsically Lipschitz with arbitrarily small constant, and intrinsically
differentiable almost everywhere. In other words, for every α > 0, we can write

ϕ

(
G \

+∞⋃
i=1

Γi

)
= 0,

where Γi = graph(φi) are compact sets, with φi : Ai ⊆ Vi → Li being a function between a
compact subset Ai of Vi, which is a homogeneous subgroup of G of homogeneous dimension
h, and Li, which is a subgroup complementary to Vi; in addition graph(φi) is a CVi(α)-set,
and it is an intrinsically differentiable graph at a · φi(a) for Sh⌞Ai-almost every a ∈ Vi, see
Definition 1.94.

Let us briefly remark that when a Rademacher-type theorem holds, i.e., if an intrinsically
Lipschitz function is intrinsically differentiable almost everywhere, the result in Theorem 2.25
would simply be deduced as an immediate corollary of Theorem 2.2. We remark that a
Rademacher-type theorem at such level of generality, i.e., between arbitrary complementary
subgroups of a Carnot group, is now known to be false, see the counterexample in [134]. On
the other hand, some positive results in particular cases have been provided in [29,109,116]
for intrinsically Lipschitz functions with one-dimensional target in groups in which De Giorgi
C1

H-rectifiability for finite perimeter sets holds (cf. also [147]), and for functions with normal
targets in arbitrary Carnot groups. We stress that very recently in [213] the author proves
the Rademacher theorem at any codimension in the Heisenberg groups Hn.

3.1. Proof. In this subsection we provide the proof of Theorem 2.25. The key step for
proving the rectifiability with intrinsically differentiable graphs is the following proposition.
Proposition 2.26 (Hausdorff convergence to tangents). Let ϕ be a Ph-rectifiable measure.
Let K be a compact set such that ϕ(K) > 0. Then for ϕ-almost every point x ∈ K there
exists V(x) ∈ Gr(h) such that

δ1/r(x−1 ·K) → V(x), as r goes to 0,
in the sense of Hausdorff convergence on compact sets.

First of all, by reducing the measure ϕ to have compact support, e.g., considering the
restriction to the balls with integer radii, and then by using Proposition 1.11, we can assume
without loss of generality that K ⊆ E(ϑ, γ) for some ϑ, γ ∈ N. In order to prove the Hausdorff
convergence to the homogeneous subgroup V(x) we need to prove two different things: first,
around almost every point x of K, the points of the set K at decreasingly small scales lies
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ever closer to the points of xV(x), and this is exactly what comes from the implication (2.1),
see Proposition 2.5. Secondly, we have to prove the converse assertion with respect to the
previous one, i.e., that the points of xV(x) around x at decreasingly small scales are ever
closer to the points of K. For this latter assumption to hold we also need to add to the
condition in (2.1) the additional control Fx,r(ϕ⌞K,ΘSh⌞xV) ≤ δrh+1, see Proposition 2.28.
As a consequence of Proposition 2.26, we can prove Theorem 2.25 for measures of the form
Sh⌞Γ. Finally by the usual reduction to E(ϑ, γ), we can give the proof of Theorem 2.25 for
arbitrary measures.

Let us now start with the proof of Proposition 2.26 and Theorem 2.25. Throughout
this subsection we let G to be a Carnot group of homogeneous dimension Q endowed with
an arbitrary left-invariant distance, and h an arbitrary natural number with 1 ≤ h ≤ Q.
Whenever ϕ is a Radon measure supported on a compact set we freely use the notation
E(ϑ, γ) introduced in Definition 1.9, for ϑ, γ ∈ N. We start with some useful definitions and
facts.
Definition 2.27. For 1 ≤ h ≤ Q and ϑ ∈ N, let us set

η(h) := 1/(h+ 1),

and then let us define the constant

C9 = C9(h, ϑ) :=
(
η(1 − η)h

32ϑ

)h+2

.

Proposition 2.28. Let ϕ be a Radon measure supported on a compact subset of G and let K
be a Borel subset of supp(ϕ). Let ϑ, γ and 1 ≤ h ≤ Q be natural numbers. Let x ∈ E(ϑ, γ),
0 < r < 1/γ, and 0 < δ < C9. Assume further that there exist Θ > 0 and V ∈ Gr(h) such
that

(2.58) Fx,r(ϕ⌞K,ΘCh⌞xV) + Fx,r(ϕ,ΘCh⌞xV) ≤ 2δrh+1.

Then for every w ∈ B(x, r/2) ∩ xV we have ϕ(K ∩ B(w, δ
1

h+2 r)) > 0, and thus in particular
K ∩B(w, δ

1
h+2 r) ̸= ∅.

Proof. From the hypothesis we have that Fx,r(ϕ,ΘCh⌞xV) ≤ 2δrh+1. Define

g(x) := min{dist(x,B(0, 1)c), η},

where η is defined in Definition 2.27. From the very definition of the function g and the
choice of Θ above we deduce that

ϑ−1(1 − η)hηrh+1 − Θηrh+1 ≤ ηrϕ
(
B(x, (1 − η)r)

)
− ηrΘCh⌞xV(B(x, r))

≤
ˆ
rg(δ1/r(x−1z))dϕ(z) − Θ

ˆ
rg(δ1/r(x−1z))dCh⌞xV(z) ≤ 2δrh+1,

where in the first inequality we are using that x ∈ E(ϑ, γ) and Remark 1.27, and in the last
inequality we are using that rg(δ1/r(x−1·)) ∈ Lip+

1 (B(x, r)). Simplifying and rearranging the
above chain of inequalities, we infer that

Θ ≥ ϑ−1(1 − η)h − 2δ/η ≥
(A)

(2ϑ)−1(1 − η)h =
(B)

(2ϑ)−1(1 − 1/(h+ 1))h,

where (A) comes from the fact that δ < C9 < ((1 − η)hη)/(4ϑ), see Definition 2.27, and (B)
comes from the definition of η, see Definition 2.27. Since the function h 7→ (1 − 1/(h+ 1))h

is decreasing and bounded below by e−1, we deduce, from the previous inequality, that
Θ ≥ 1/(2ϑe).
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We now claim that for every λ with δ1/(h+2) ≤ λ < 1/2 and every w ∈ xV ∩ B(x, r/2)
we have ϕ

(
B(w, λr) ∩ K

)
> 0. This will finish the proof. By contradiction assume there is

w ∈ xV ∩B(x, r/2) such that ϕ
(
B(w, λr) ∩K

)
= 0. This would imply that

Θη(1 − η)hλh+1rh+1 = ΘηλrCh⌞xV
(
B(w, (1 − η)λr)

)
≤ Θ
ˆ
λrg(δ1/(λr)(w−1z))dCh⌞xV(z)

= Θ
ˆ
λrg(δ1/(λr)(w−1z))dCh⌞xV(z) −

ˆ
λrg(δ1/(λr)(w−1z))dϕ⌞K(z) ≤ 2δrh+1,

(2.59)

where the first equality comes from Remark 1.27, and the last inequality comes from the
choice of Θ as in the statement, and the fact that

λrg(δ1/(λr)(w−1·)) ∈ Lip+
1 (B(w, λr)) ⊆ Lip+

1 (B(x, r)),

because λ < 1/2 and w ∈ B(x, r/2). Thanks to (2.59), the choice of λ, and the fact, proved
some line above, that 1/(4eϑ) < Θ, we have that

δ
h+1
h+2

4eϑ η(1 − η)h < Θλh+1η(1 − η)h ≤ 2δ, and then δ1/(h+2) ≥ η(1 − η)h

8eϑ ,

which is a contradiction since δ < C9 = ((η(1 − η)h)/(32ϑ))h+2, see Definition 2.27. □

Proof of Proposition 2.26. First of all, by reducing the measure ϕ to have compact support,
e.g., considering the restriction on the balls with integer radii, and then by using Proposi-
tion 1.11, we can assume without loss of generality that K ⊆ E(ϑ, γ) for some ϑ, γ ∈ N.

Since ϕ is a Ph-rectifiable measure, by using the locality of tangents with the density
ρ ≡ χK , see Proposition 1.55, for ϕ-almost every x ∈ K we have that the following three
conditions hold

(i) Tanh(ϕ, x) ⊆ {λSh⌞V(x) : λ > 0}, where V(x) ∈ Gr(h),
(ii) 0 < Θh

∗(ϕ, x) ≤ Θh,∗(ϕ, x) < +∞,
(iii) if ri → 0 is such that there exists Θ > 0 with r−h

i Tx,riϕ → ΘCh⌞V(x), then
r−h

i Tx,ri(ϕ⌞K) → ΘCh⌞V(x).
From now on let us fix a point x ∈ K for which the three conditions above hold. If we are able
to prove the convergence in the statement for such a point then the proof of the proposition
is concluded.

Thus, it suffices to show that for every k > 0 the following holds

(2.60) lim
r→0

dH,G(δ1/r(x−1 ·K) ∩B(0, k),V(x) ∩B(0, k)) = 0,

where dH,G is the Hausdorff distance between closed subsets in G. For some compatibility
with the statements that we already proved, we are going to prove (2.60) for k = 1/4. The
proof of (2.60) for an arbitrary k > 0 can be achieved by changing accordingly the constants
in the statements of Proposition 2.5 and Proposition 2.28, that we are going to crucially use
in this proof. We leave this generalization to the reader, as it will be clear from this proof.

Let us fix ε < min{δG, C9}, where δG is defined in Definition 2.4 and C9 in Definition 2.27,
and let us show that there exist an r0 = r0(ε) and a real function f1 such that

(2.61) dH,G
(
δ1/r(x−1 ·K) ∩B(0, 1/4),V(x) ∩B(0, 1/4)

)
≤ f1(ε), for all 0 < r < r0(ε),

where

(2.62) f1(ε) := max{C5ε
1/(h+1) + f2(ε), 3ε1/(h+2) + f3(ε)},
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and where the constant C5 is defined in Proposition 2.5, and the functions f2, f3 will be
introduced in (2.68) and (2.70), respectively. By the definition of f1, f2, f3 it follows that
f1(ε) → 0 as ε → 0 and thus, if we prove (2.61), we are done.

In order to reach the proof of (2.61) let us add an intermediate step. We claim that there
exists an r0 := r0(ε) < 1/γ such that the following holds

for 0 < r < r0 there is a Θ := Θ(r) s.t.Fx,r(ϕ⌞K,ΘCh⌞xV) + Fx,r(ϕ,ΘCh⌞xV) ≤ 2εrh+1.

(2.63)

The conclusion in (2.63) follows if we prove that

(2.64) lim
r→0

inf
Θ>0

Fx,r(ϕ⌞K,ΘCh⌞xV) + Fx,r(ϕ,ΘCh⌞xV)
rh+1 → 0.

We prove (2.64) by contradiction. If (2.64) was not true, there would exist an ε̃ and an
infinitesimal sequence {ri}i∈N such that

(2.65) inf
Θ>0

(
Fx,ri(ϕ⌞K,ΘCh⌞xV) + Fx,ri(ϕ,ΘCh⌞xV)

)
> ε̃rh+1

i , for every i ∈ N.

Thus, from items (i) and (ii) above, and from [12, Corollary 1.60], we conclude that, up to
a non re-labelled subsequence of ri, there exists a Θ∗ > 0 such that we have r−h

i Tx,riϕ →
Θ∗Ch⌞V(x) as ri → 0. Then by exploiting the item (iii) above we get also that

r−h
i Tx,ri(ϕ⌞K) → Θ∗Ch⌞V(x),

as ri → 0. These two conclusions immediately imply, by exploiting Remark 1.66 and
Lemma 1.73, that

lim
i→+∞

r
−(h+1)
i

(
Fx,ri(ϕ⌞K,Θ∗Ch⌞xV) + Fx,ri(ϕ,ΘCh⌞xV)

)
→ 0,

which is a contradiction with (2.65). Thus, the conclusion in (2.63) holds. Let us continue
the proof of (2.61).

Taking into account the bound on ε and (2.63) we can apply Proposition 2.5, since
V(x) ∈ Πε(x, r) for all 0 < r < r0, and Proposition 2.28 to obtain, respectively, that for all
0 < r < r0

sup
p∈K∩B(x,r/4)

dist(p, xV(x)) ≤ sup
p∈E(ϑ,γ)∩B(x,r/4)

dist(p, xV(x)) ≤ C5rε
1/(h+1),

and for every p ∈ B(x, r/2) ∩ xV(x) we have B(p, ε1/(h+2)r) ∩K ̸= ∅.
(2.66)

Let us proceed with the proof of (2.61). Fix 0 < r < r0 and note that for every w ∈ δ1/r(x−1 ·
K) ∩B(0, 1/4) there exists a point p ∈ K ∩B(x, r/4) such that w =: δ1/r(x−1 · p). From the
first line of (2.66) we get that dist(x−1·p,V(x)) ≤ C5rε

1/(h+1) and thus there exists a v ∈ V(x)
such that d(x−1 · p, v) ≤ C5rε

1/(h+1). This in particular means that d(w, δ1/rv) ≤ C5ε
1/(h+1)

and then, since w ∈ B(0, 1/4), we get also that δ1/rv ∈ V(x) ∩B(0, 1/4 +C5ε
1/(h+1)). Thus,

we conclude that

(2.67) dist(w,V(x) ∩B(0, 1/4 + C5ε
1/(h+1))) ≤ C5ε

1/(h+1),

for all w ∈ δ1/r(x−1 ·K) ∩B(0, 1/4). Define the following function

(2.68) f2(ε) := sup
u∈V(x)∩

(
B(0,1/4+C5ε1/(h+1))\B(0,1/4)

) d(u, δ4−1∥u∥−1u),
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and notice that by compactness it is easy to see that f2(ε) → 0 as ε → 0. With the previous
definition of f2 in hands, we can exploit (2.67) and conclude that

(2.69) sup
w∈δ1/r(x−1·K)∩B(0,1/4)

dist(w,V(x) ∩B(0, 1/4)) ≤ C5ε
1/(h+1) + f2(ε).

The latter estimate is the first piece of information we need to prove (2.61). Let us now
estimate dist(δ1/r(x−1 · K) ∩ B(0, 1/4), v) for every v ∈ V(x) ∩ B(0, 1/4). If u ∈ V(x) ∩(
B(0, 1/4) \B(0, 1/4 − ε1/(h+2))

)
, then there exists a unique µ = µ(u) > 0 such that δµ(u)u ∈

V(x) ∩ ∂B(0, 1/4 − ε1/(h+2)). Let us define

(2.70) f3(ε) := sup
u∈V(x)∩

(
B(0,1/4)\B(0,1/4−ε1/(h+2))

) d(u, δµ(u)u),

and by compactness it is easy to see that f3(ε) → 0 as ε → 0. Let us now fix v ∈ V(x) ∩
B(0, 1/4). Then x · δrv ∈ B(x, r/4) ∩xV(x) ⊆ B(x, r/2) ∩xV(x). We can use the second line
of (2.66) to conclude that there exists w ∈ B(x ·δrv, ε

1/(h+2)r)∩K. Thus w̃ := δ1/r(x−1 ·w) ∈
B(v, ε1/(h+2)) ∩ δ1/r(x−1 ·K). Now we have two cases

• if v was in B(0, 1/4 − ε1/(h+2)) we would get w̃ ∈ B(0, 1/4) and then

(2.71) dist(δ1/r(x1 ·K) ∩B(0, 1/4), v) ≤ ε1/(h+2);

• if instead v ∈ V(x) ∩
(
B(0, 1/4) \ B(0, 1/4 − ε1/(h+2))

)
, we denote v′ := δµ(v)v the

point that we have defined above and then we still have x · δrv
′ ∈ B(x, r/2) ∩xV(x).

Thus we can again apply the second line of (2.66) to deduce the existence of w′ ∈
B(x · δrv

′, ε1/(h+2)r) ∩K. Then we conclude w̃′ := δ1/r(x−1 · w′) ∈ B(v′, ε1/(h+2)) ∩
δ1/r(x−1 ·K). Now we can estimate

d(w̃, w̃′) = 1
r
d(w,w′) ≤ 1

r

(
d(w, x · δrv) + d(x · δrv, x · δrv

′) + d(x · δrv
′, w′)

)
≤ 2ε1/(h+2) + f3(ε).

(2.72)

Moreover, since v′ ∈ ∂B(0, 1/4 − ε1/(h+2)) and w̃′ ∈ B(v′, ε1/(h+2)) we get that
w̃′ ∈ B(0, 1/4) ∩ δ1/r(x−1 · K). Then by the triangle inequality and (2.72) we
conclude that, in this second case,

(2.73) d(w̃′, v) ≤ 3ε1/(h+2) + f3(ε),

and then

(2.74) dist(δ1/r(x1 ·K) ∩B(0, 1/4), v) ≤ 3ε1/(h+2) + f3(ε).

By joining together the conclusion of the two cases, see (2.71) and (2.74), we conclude
that

(2.75) sup
v∈V(x)∩B(0,1/4)

dist(δ1/r(x1 ·K) ∩B(0, 1/4), v) ≤ 3ε1/(h+2) + f3(ε).

The equations (2.69) and (2.75) imply (2.61) by the very definition of Hausdorff distance.
Thus the proof is concluded. □

We prove now that the support of a Pc
h-rectifiable measure Sh⌞Γ, where Γ is compact and

0 < Sh(Γ) < +∞, can be written as the countable union of almost everywhere intrinsically
differentiable graphs.
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Theorem 2.29. For every 1 ≤ h ≤ Q, there exist a countable subfamily F := {Vk}+∞
k=1 of

Grc(h), and Lk complementary subgroups of Vk such that the following holds.
Let Γ be a compact subset of G such that 0 < Sh(Γ) < +∞, and assume Sh⌞Γ is a Pc

h-
rectifiable measure. Then, for every α > 0, there are countably many compact Γi’s that are
intrinsic graphs of functions φi : PVi(Γi) → Li, and that satisfy the following three conditions:
Γi are CVi(α)-sets, Γi are intrinsically differentiable graphs at a ·φi(a) for Sh⌞PVi(Γi)-almost
every a ∈ PVi(Γi), and

Sh(Γ \ ∪+∞
i=1 Γi) = 0.

Proof. First of all let

F(V,L) := ε1(V,L), for all (V,L) ∈ Sub(h),

where Sub(h) is defined in (2.12). Given the above defined function F, we construct the
family F := {Vk}+∞

k=1 and choose Lk complementary subgroups of Vk as discussed above the
statement of Theorem 2.10. Notice that this choice is dependent on the function F that we
chose above. We claim that the family for which the statement holds is F .

Applying Theorem 2.10 with β ≡ min{1, α} to the measure Sh⌞Γ we get countably many
compact sets Γi ⊆ Γ that are CVi(min{F(Vi,Li), α, 1})-sets and such that

Sh(Γ \ ∪+∞
i=1 Γi) = 0.

Since F(Vi,Li) = ε1(Vi,Li), we conclude that each Γi is also the intrinsic graph of a function
φi : PVi(Γi) → Li, see Proposition 1.89. The fact that Γi is a CVi(α) is true by how we chose
β. It is left to show that, for every i ∈ N, graph(φi) is an intrinsically differentiable graph at
a · φi(a) for Sh⌞PV(Γi)-almost every a ∈ PVi(Γi).

Indeed, since Sh⌞Γ is Pc
h-rectifiable, we can apply Proposition 2.26 and, for every i ∈ N

for which Sh(Γi) > 0, we conclude that

δ1/r(x−1 · Γi) → V(x), as r goes to 0, for Sh⌞Γi-almost every x ∈ G, where V(x) ∈ Gr(h),
(2.76)

in the sense of Hausdorff convergence on compact sets. Moreover, thanks to Proposition 2.18
and to Lebesgue Differentiation Theorem in Proposition 1.55, we infer that (Φi)∗Sh⌞Vi is
mutually absolutely continuous with respect to Sh⌞Γi, where Φi is the graph map of φi.
Furthermore, since every point x ∈ Γi can be written as x = a · φi(a), with a ∈ PVi(Γi), we
conclude, from (2.76) and the latter absolute continuity, that Γi = graph(φi) is an intrinsically
differentiable graph at a · φi(a) for Sh⌞PV(Γi)-almost every a ∈ PVi(Γi), and this concludes
the proof. □

Proof of Theorem 2.25. By restricting on closed balls of integer radii we can assume without
loss of generality that ϕ has compact support. Let us fix ϑ, γ ∈ N. We can infer this corollary
by working on ϕ⌞E(ϑ, γ), that is mutually absolutely continuous with respect to Sh⌞E(ϑ, γ),
see Proposition 1.56, and by using the previous Theorem 2.29 together with Proposition 1.11.
The resulting strategy is identical to the one in the proof of Theorem 2.12 so we omit the
details. □

4. Equivalent criteria for P-rectifiable sets with complemented tangents

In Theorem 2.25 we showed that every Pc
h-rectifiable measure can be covered almost

everywhere with compact graphs that are intrinsically differentiable almost everywhere. In
this section we prove that for measure of the form Sh⌞Γ the latter is actually an equivalence.
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We first recall that, while Tanh(ϕ, x) captures the behaviour of tangent measures obtained
rescaling with the h-th power of the scale, see Definition 1.52, the Preiss’s tangent Tan(ϕ, x),
see Definition 1.52, captures the behaviour of all the possible tangent measures, namely

Tan(ϕ, x) := {ν : ∃{ci}, with ci > 0, and {ri} with ri →i 0 such that ciTx,riϕ ⇀i ν},

where the convergence of measures is meant in the duality with Cc(G), see Definition 1.3.
For the reader’s convenience we recall here that an intrinsic graph with respect to a splitting
G = V · L of the group is said to be intrinsically differentiable at one of its points if the
Hausdorff tangent at that point is a homogeneous subgroup, see Definition 1.94 for a precise
definition.

For a generalization of the forthcoming Theorem 2.30 in the broader setting of Radon
measures with finite h-upper density almost everywhere, see Remark 2.39.
Theorem 2.30. Let G be a Carnot group of homogeneous dimension Q endowed with a homo-
geneous norm ∥ · ∥ that induces a left-invariant homogeneous distance d. Let h ∈ {1, . . . , Q},
and Let Γ ⊆ G be a Borel set such that 0 < Sh(Γ) < +∞, where Sh is the h-dimensional
spherical Hausdorff measure. Then the following are equivalent

(1) Sh⌞Γ is a Ph-rectifiable measure with complemented tangents, or, in other words,
a Pc

h-rectifiable measure, see Definition 1.61,
(2) For Sh⌞Γ-almost every x ∈ G we have

Tan(Sh⌞Γ, x) = {λSh⌞V(x) :
λ > 0,V(x) is a complemented hom. subgroup of G, dimhomV(x) = h},

(3) There are countably many compact intrinsic graphs Γi that are h-dimensional intrin-
sically differentiable at Sh-almost every x ∈ Γi, that have complemented Hausdorff
tangents at Sh-almost every x ∈ Γi, and such that

Sh(Γ \ ∪+∞
i=1 Γi) = 0.

Moreover, denoting with Ch the centered Hausdorff measure of dimension h, see Defini-
tion 1.1, if any of the previous holds, then Θh(Ch⌞Γ, x) = 1 exists for Ch⌞Γ-almost every
x ∈ G and

r−h(Tx,r)∗(Ch⌞Γ) ⇀ Ch⌞V(x), as r → 0, for Ch⌞Γ-almost every x ∈ G,

where the convergence of measures is meant in the duality with Cc(G).
Finally, if any of the previous items holds, for every α there are countably many compact

intrinsic graphs Γi that are h-dimensional intrinsically differentiable at Sh-almost every x ∈
Γi, that have complemented Hausdorff tangents at Sh-almost every x ∈ Γi, that are CVi(α)-
sets for some homogeneous complemented subgroup Vi of homogeneous dimension h, and such
that

Sh(Γ \ ∪+∞
i=1 Γi) = 0.

Let us observe that when a Rademacher theorem is available, we can equivalently con-
sider as the building blocks in item (3) of Theorem 2.30 the class of intrinsically Lipschitz
graphs over subsets of homogeneous subgroups of homogeneous dimension h, without asking
anything a priori on the differentiability, compare e.g., with Corollary 3.3. Let us recall that
a Rademacher theorem is proved in [109, 116] in the setting of Carnot groups G of type ⋆,
i.e., a class strictly larger than Carnot groups of step 2, and for maps φ : U ⊆ W → L, where
W and L are complementary subgroups of G, with L horizontal and one-dimensional. More-
over, with the recent results of [147], the latter codimension-one Rademacher theorem can be
extended to the groups of type diamond introduced in [147]. Recently, by making use of the
theory of currents, the author of [213] has proved the Rademacher theorem for intrinsically
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Lipschitz maps between complementary subgroups of any dimension in the Heisenberg groups
Hn, while in [29] we proved the validity of a Rademacher theorem for co-normal intrinsically
Lipschitz graphs.

Nevertheless, Rademacher theorem is now known to be false in arbitrary Carnot groups
in a very strict sense, i.e., there exists an intrinsically Lipschitz graph in a Carnot group such
that at every point of it there exist infinitely many blow-ups and each of these blow-ups is not
a homogeneous subgroup, see [134, Theorem 1.1]. This latter result implies that in general
in item (3) of Theorem 2.30 one cannot equivalently consider as building blocks of a locally
well-behaved definition of rectifiable sets the family of intrinsically Lipschitz graphs. So, in
some sense, the result of Theorem 2.30 is sharp also in view of the negative result of [134].

Let us further notice that we do not consider in this work the relations between the
three items in Theorem 2.30 and the existence of an approximate tangent in the sense of
[174, Definition 15.17] (cf. [178, Definition 3.7]), see also the discussion in Remark 2.40.
All in all, taking into account that Sh⌞Γ is Pc

h-rectifiable with co-horizontal tangents if and
only if Γ is C1

H(G,RQ−h)-rectifiable, see Definition 1.105 and Proposition 1.109, our result in
Theorem 2.30 extends and strengthens [178, (i)⇔(ii)⇔(iv)⇔(v) of Theorem 3.15]. Notice
also that in the previous chain of equivalences, we can also drop the assumption on the
lower density in [178, (iv),(v)]. Moreover, taking into account the Rademacher theorem of
[29] in the co-normal case, our result in Theorem 2.30 extends [178, (i)⇔(ii)⇔(iv)⇔(v) of
Theorem 3.14] as well. We refer the reader also to the statement of Corollary 3.3. Let us
recall, for the reader’s convenience, that [178, Theorem 3.15] deals with the characterization
of co-horizontal rectifiability in the Heisenberg groups Hn, while [178, Theorem 3.14] deals
with the characterization of horizontal rectifiability in the Heisenberg groups Hn.

Let us briefly comment on the proof of Theorem 2.30. For what concerns the implications
(1) ⇒ (2), and (1) ⇒ (3), the first is just a matter of routine argument, see [174, Remark
14.4(3)], and the second is a consequence of Theorem 2.25. What one needs to show are the
implications (2) ⇒ (1), and (3) ⇒ (1), both of them non-trivial.

For what concerns the implication (2) ⇒ (1), we first use that the hypothesis of flat
Preiss’s tangents allows to conclude that Γ is Sh-almost everywhere covered by countably
many graphs Γi of intrinsically Lipschitz functions defined on subsets of homogeneous sub-
groups of homogeneous dimension h, namely Sh(Γ\∪+∞

i=1 Γi) = 0, see Proposition 2.32. Hence
we exploit the general fact, that dates back to Preiss’s paper (cf. [202, Corollary 2.7]), that
a measure with a compact-based tangent at a point is asymptotically doubling at that point.
Joining the latter two observations, we deduce that, for every i, the measure Sh⌞Γi is asymp-
totically doubling, and then this enables us to prove that Γi has big projections on the plane
over which Γi is a graph, see Proposition 2.17. Finally, the big projections property of Propo-
sition 2.17 allows us to conclude that the h-lower density Θh

∗(Sh⌞Γi, ·) is positive Sh⌞Γi almost
everywhere, see Proposition 2.33. Hence, the proof of the implication (2) ⇒ (1) is concluded
since we can argue, by exploiting Lebesgue Differentiation Theorem, that Θh

∗(Sh⌞Γ, ·) is pos-
itive Sh⌞Γ-almost everywhere, which was the non-trivial missing information to prove (1).
Let us stress that in (2) we are not requiring anything a priori on the positivity of the h-lower
density of Sh⌞Γ, otherwise the implication (2) ⇒ (1) would have been trivial. Nevertheless,
we deduce the positivity of the h-lower density from the fact that the tangents are flat and
complemented as we discussed above.

The proof of the implication (3) ⇒ (1) relies on the fact that an arbitrary h-dimensional
(almost everywhere) intrinsically differentiable graph Γ with complemented Hausdorff tan-
gents has the property that Sh⌞Γ is Pc

h-rectifiable. This is exactly the content of Proposi-
tion 2.37. In order to prove the latter, we show that when we have an arbitrary h-dimensional
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(almost everywhere) intrinsically differentiable graph Γ with complemented Hausdorff tan-
gents, at (Sh⌞Γ-almost) every point we have that the graph Γ is, at arbitrarily small scales,
contained in a cone with arbitrarily small opening and with basis the Hausdorff tangent at
that point. This observation enables us to perform a covering argument and to show directly
that Θh(Ch⌞Γ, ·) = 1 at Ch⌞Γ-almost every point. Then the fact that Ch⌞Γ, and hence Sh⌞Γ,
is Pc

h-rectifiable is reached by using a classical argument from the existence of density. Let
us notice that in Proposition 2.37 it is essential to work with the centered Hausdorff measure
Ch⌞Γ, since we consider coverings with balls centered on Γ. The second part of the statement
in Theorem 2.30 is a consequence of the fact that the h-density of Ch⌞Γ is 1 as a consequence
of the previous reasoning, and the fact that Ch⌞V(B(0, 1)) = 1 for every homogeneous sub-
group V of homogeneous dimension h, see Remark 1.27. The last part of the statement in
Theorem 2.30 is a direct consequence of Theorem 2.25.

4.1. Proof. Let us start with the proof of Theorem 2.30. In this subsection, we let G be
a Carnot group of homogeneous dimension Q endowed with a homogeneous norm ∥ · ∥ that
induces a left-invariant homogeneous distance d. Let h ∈ {1, . . . , Q}. We first prove that
if Preiss’s tangent Tan(ϕ, x) of a measure ϕ at x is the cone over a homogeneous subgroup,
then the support of the measure can be covered almost everywhere with sets with the cone
property with arbitrarily small opening.
Proposition 2.31. Suppose ϕ is a Radon measure on G such that, for ϕ-almost every x ∈ G,
we have Tan(ϕ, x) = {λSh⌞V(x) : λ > 0} for some V(x) ∈ Gr(h). Then, for every α ∈ (0, 1)
there exist {Vi}i∈N ⊆ Gr(h), and a family of compact CVi(α)-sets {Γi}i∈N such that

ϕ(G \ ∪i∈NΓi) = 0.

Proof. First of all, by Proposition 1.80, the measure ϕ is asymptotically doubling. Up to
restricting ϕ to closed balls and by using the locality of tangents and Lebesgue Theorem in
Proposition 1.55, we may assume that ϕ is supported on a compact set K and that it is
still asymptotically doubling. Let S be dense countable subset of (Gr(h), dG), that exists
thanks to Proposition 1.22. Thanks to Proposition 1.30, we infer that also the countable set
{(h+ 1)Ch⌞W : W ∈ S} is dense in the metric space ({(h+ 1)Ch⌞V : V ∈ Gr(h)}, F0,1).

Let us now fix e < 1/10, σ < 1/100(e/(3(1 + e)))h,V ∈ S and let us denote

KV := {x ∈ K : F0,1((h+ 1)Ch⌞V, (h+ 1)Ch⌞V(x)) < σh+4},

where V(x) ∈ Gr(h) is such that Tan(ϕ, x) = {λSh⌞V(x), λ > 0}. Since {(h + 1)Ch⌞W :
W ∈ S} is dense in the metric space ({(h + 1)Ch⌞V : V ∈ Gr(h)}, F0,1) we conclude that
K = ∪V∈SKV. By Lemma 1.83, one gets that KV is ϕ-measurable for every V ∈ S. Thus by
Proposition 1.55, we can assume without loss of generality that ϕ is asymptotically doubling
and supported on KV for some V ∈ S, which from now on we fix.

We now claim that for ϕ-almost every x ∈ G the following holds
(2.77) lim

r→0+
dx,r(ϕ,M(h, {V})) = F0,1((h+ 1)Ch⌞V, (h+ 1)Ch⌞V(x)).

Indeed, for ϕ-almost every x ∈ G the measure Tx,rϕ/F1(Tx,rϕ) converges to (h + 1)Ch⌞V(x)
as r → 0+, see Proposition 1.81, and thus, from the definition of dx,r, we get that

(2.78) dx,r(ϕ,M(h, {V})) = F0,1(Tx,rϕ/F1(Tx,rϕ), (h+ 1)Ch⌞V),
from which we deduce the claim (2.77) by using the previous convergence and the continuity
of F0,1, see Lemma 1.73. Moreover, the function x → dx,r(ϕ,M(h, {V})) is continuous in x for
every r > 0. Indeed, by (2.78) and the continuity of F0,1, it is sufficent to see that, for every
r > 0, the map x → Tx,rϕ/F1(Tx,rϕ) is continuous from G to the space of Radon measures
equipped with the weak* convergence, which is clear again by the continuity of F1(·) and by
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the continuity of the map x → Tx,rϕ, which is readily verified (see, e.g., the computations at
the end of [180, page 22]).

Hence, by using Severini-Egoroff Theorem, we can assume without loss of generality that
ϕ is supported on a compact set E such that diam(E) < s and such that dx,r(ϕ,M(h, {V})) <
σh+4 whenever x ∈ E and r ∈ (0, 400(h+1)s). Let us now fix x̃, ỹ ∈ E and denote a := d(x̃, ỹ),
t̃ := 2a(1 + e), r̃ := a(1 + e) and s̃ := ae.

Let us apply Proposition 1.82 first with the choices x = y = z = ỹ, s = r = r̃, t = t̃ and
σ as above, that yields

(2.79) ϕ(B(ỹ, r̃) ∩B(ỹV, σ2t̃/(h+ 1))) ≥ (1 − 5σ)ϕ(B(ỹ, r̃)),

and secondly with x = y = z = x̃, r = r̃ + a, s = s̃, t = 3a(1 + e) and σ, we get

(2.80) ϕ(B(x̃, s̃) ∩B(x̃V, σ2 · 3a(1 + e)/(h+ 1))) ≥ (1 − 5σ)(s̃/(r̃ + a))hϕ(B(x̃, r̃ + a)).

Putting together (2.79) and (2.80), we conclude that

ϕ(B(ỹ, r̃) \B(ỹV, 2aσ2(1 + e)/(h+ 1))) = ϕ(B(ỹ, r̃))
− ϕ(B(ỹ, r̃) ∩B(ỹV, 2aσ2(1 + e)/(h+ 1)))

≤ 5σϕ(B(ỹ, r̃)) ≤ 5σϕ(B(x̃, r̃ + a)) ≤ 5σ
1 − 5σ

(2(1 + e)
e

)h

ϕ(B(x̃, s̃))

(2.81)

If by contradiction B(x̃, ea) ∩B(ỹV, 2aσ2(1 + e)/(h+ 1))) = ∅ then from (2.81) and the fact
that B(x̃, s̃) ⊆ B(ỹ, r̃), we infer

ϕ(B(x̃, s̃)) ≤ 5σ
1 − 5σ

(2(1 + e)
e

)h

ϕ(B(x̃, s̃)),

that is in contradiction thanks with the choice of σ. Hence, for every x̃, ỹ ∈ E we have that
B(x̃, ea) ∩ B(ỹV, 2aσ2(1 + e)/(h+ 1))) ̸= ∅ and thus d(x̃, ỹV) ≤ a(e + 2σ2(1 + e)/(h+ 1)) =
d(x̃, ỹ)(e+ 2σ2(1 + e)/(h+ 1)). Hence, the compact set E is a CV(e+ 2σ2(1 + e)/(h+ 1))-set.
Since it is clear that, for every given α > 0, σ and e can be chosen small enough in order to
have e + 2σ2(1 + e)/(h+ 1) < α, the proof is thus concluded. □

In the case the tangents are complemented we can give the following improvement of the
latter Proposition.
Proposition 2.32. Let 1 ≤ h ≤ Q be a natural number. There exist {Vi}i∈N ⊆ Grc(h) and
Li complementary subgroups of Vi such that the following holds.

Suppose ϕ is a Radon measure on G such that, for ϕ-almost every x ∈ G, we have
Tan(ϕ, x) = {λSh⌞V(x) : λ > 0} for some V(x) ∈ Grc(h). Then, for every α ∈ (0, 1) there
exists a family of compact sets {Γi}i∈N such that

ϕ(G \ ∪i∈NΓi) = 0,

and, for every i ∈ N, Γi is a compact intrinsically Lipschitz graph, which is also a CVi(α)-set,
of a map φi : Ai ⊆ Vi → Li, where Ai is compact.

Proof. The proof follows exactly the same lines as the proof of Proposition 2.31, so we just
sketch it underlying the main differences. For every ℓ ∈ N, with ℓ ≥ 2, let us define

Grc(h, ℓ) := {V ∈ Grc(h) : ∃L compl. subgroup of V s.t. 1/ℓ < ε1(V,L) ≤ 1/(ℓ− 1)}.

Observe that Proposition 1.22 implies that Grc(h, ℓ) is separable for every ℓ ∈ N, since
Grc(h, ℓ) ⊆ Gr(h) and (Gr(h), dG) is a compact metric space. Let

(2.82) Dℓ := {Vi,ℓ}i∈N,
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be a countable dense subset of Grc(h, ℓ) and

for all i ∈ N, choose a compl. subgroup Li,ℓ of Vi,ℓ s.t. 1/ℓ < ε1(Vi,ℓ,Li,ℓ) ≤ 1/(ℓ− 1).

Now, let S := {Vi,ℓ}i,ℓ∈N, which is a dense countable subset of (Grc(h), dG) thanks to the
definition given above. As in the above Proposition 2.31, we infer that also the countable
set {(h+ 1)Ch⌞W : W ∈ S} is dense in the metric space ({(h+ 1)Ch⌞V : V ∈ Grc(h)}, F0,1).
Let us now fix, for every ℓ ∈ N, eℓ < min{1/10, 1/(2ℓ), α/2}, where α is as in the statement,
and σℓ < min{1/100(eℓ/(3(1 + eℓ)))h, σ′

ℓ}, where σ′
ℓ is chosen small enough such that eℓ +

2(σ′
ℓ)2(1 + eℓ)/(h+ 1) < min{α, 1/ℓ}. Moreover, for every Vi,ℓ ∈ Dℓ, let us denote

KVi,ℓ
:= {x ∈ K : F0,1((h+ 1)Ch⌞Vi,ℓ, (h+ 1)Ch⌞V(x)) < σh+4

ℓ },

where V(x) is the element of Grc(h) for which Tan(ϕ, x) = {λSh⌞V(x), λ > 0}. Arguing as in
Proposition 2.31, being K the compact set on which we can assume ϕ is supported without
loss of generality, we have K = ∪ℓ∈N ∪Vi,ℓ∈Dℓ

KVi,ℓ
. Hence, we can assume without loss of

generality that ϕ is supported on KVi,ℓ
for some Vi,ℓ. The computations in Proposition 2.31

can be repeated substituting σℓ with σ accordingly, allowing us to conclude that ϕ-almost
every KVi,ℓ

can be covered by compact sets that are CVi,ℓ
(eℓ + 2(σℓ)2(1 + eℓ)/(h+ 1)). By the

very choice of σ′
ℓ this implies that the latter compact sets are CVi,ℓ

(min{α, 1/ℓ})-sets, and
since 1/ℓ < ε1(Vi,ℓ,Li,ℓ), we also conclude that they are graphs according to the splitting
G = Vi,ℓ · Li,ℓ, see Proposition 1.89. □

4.1.1. From flat tangents to P-rectifiability. In this subsection we first prove that, in an
arbitrary Carnot group, having flat (complemented) tangent measures à la Preiss implies
being P-rectifiable, see Theorem 2.34. Then we will prove a rectifiable criterion, see Propo-
sition 2.37, which will allow us to complete the proof of Theorem 2.30. Throughout this
subsection we assume that V ∈ Grc(h) and that V ·L = G. We stress that in this subsection,
whenever we deal with CV(α)-sets, we are always assuming that α ≤ ε1(V,L), if not otherwise
specified.

Let us begin with a proposition that roughly tells us the following. If Γ is a compact
CV(α)-set with α ≤ ε1(V,L), and moreover we know that the measure Sh⌞Γ is asymptoti-
cally doubling, hence the lower h-density of Sh⌞Γ is positive almost everywhere, see Propo-
sition 2.33. The latter conclusion eventually leads to the following result: if a set has flat
complemented Preiss’s tangents, then it is P-rectifiable with complemented tangents, see
Theorem 2.34. We stress that the following Proposition 2.33 gives as a consequence that the
hypotheses of the second part of Proposition 2.17 imply the hypotheses of the first part of
Proposition 2.17. This is not trivial a priori: indeed, with the second part of Proposition 2.17,
one proves Proposition 2.18, which is hence used as a fundamental tool in the proof of the
following Proposition 2.33.
Proposition 2.33. Let α ≤ ε1(V,L) and suppose Γ is a CV(α)-set such that 0 < Sh(Γ) <
+∞, and Sh⌞Γ is asymptotically doubling. Then, Θh

∗(Sh⌞Γ, x) > 0 for Sh-almost every
x ∈ Γ.

Proof. Assume by contradiction that there exists a compact set C ⊆ Γ of positive Sh-measure
such that Θh

∗(Sh⌞Γ, x) = 0 for every x ∈ C. Since by Proposition 2.18 the measures Sh⌞Γ and
Φ∗Sh⌞V are mutually absolutely continuous, the set PV(C) must have positive Sh-measure
as well. In particular we have thanks to Proposition 2.20, Lemma 1.44, Proposition 1.34, and
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Proposition 1.32 that for Sh-almost every x ∈ C we have

Sh(PV
(
B(0, 1) ∩ CV(α)

))
= lim inf

r→0

Sh
(
PV
(
B(x,C(α)r) ∩ xCV(α)

)
∩ PV(Γ)

)
Sh
(
PV
(
B(Φ(w),C(α)r) ∩ Φ(w)CV(α)

)) Sh
(
PV
(
B(Φ(w),C(α)r) ∩ Φ(w)CV(α)

))
(C(α)r)h

= lim inf
r→0

Sh
(
PV
(
B(x,C(α)r) ∩ xCV(α)

)
∩ PV(Γ)

)
(C(α)r)h

≤ lim inf
r→0

Sh⌞V(PV(B(x, r) ∩ Γ))
(C(α)r)h

≤ 2C4(V,L) lim inf
r→0

Sh⌞Γ(B(x, r))
(C(α)r)h

= 0,

where C(α) is the constant introduced in Lemma 1.44. The above computation is in contra-
diction with the fact that Sh

(
PV
(
B(0, 1) ∩ CV(α)

))
is positive thus concluding the proof of

the proposition. □

Theorem 2.34. Let Γ ⊆ G be compact such that 0 < Sh(Γ) < +∞. Assume that for Sh⌞Γ-
almost every x ∈ G we have Tan(Sh⌞Γ, x) = {λSh⌞V(x) : λ > 0, }, where V(x) ∈ Grc(h).
Then, Sh⌞Γ is Pc

h-rectifiable.

Proof. We have that Sh⌞Γ is asymptotically doubling, see Proposition 1.80. Moreover, from
Proposition 2.32, there exist {Vi}i∈N ⊆ Grc(h), and {Li}i∈N, such that Li and Vi are ho-
mogeneous complementary subgroups, with the property that for every α > 0 there exists a
family of compact sets {Γi} such that Γi is a CVi(min{α, ε1(Vi,Li)})-set, and

(2.83) Sh(Γ \ ∪i∈NΓi) = 0.

Since Sh⌞Γ is asymptotically doubling, then Sh⌞Γi is asymptotically doubling for every i ∈ N,
see Proposition 1.55. Hence, we can apply Proposition 2.33 to conclude that Θh

∗(Sh⌞Γi, x) > 0
for every i ∈ N and for Sh-almost every x ∈ Γi. In addition, from the previous inequality
and [102, 2.10.19(5)], for every i ∈ N, we get that

(2.84) 0 < Θh
∗(Sh⌞Γi, x) ≤ Θh,∗(Sh⌞Γi, x) < +∞, for Sh-almost every x ∈ Γi.

Moreover, since for Sh-almost every x ∈ Γ we have Tan(Sh⌞Γ, x) = {λSh⌞V(x) : λ > 0} with
V(x) ∈ Grc(h), we deduce that, for every i ∈ N, the locality of tangents in Proposition 1.55
ensures that for Sh-almost every x ∈ Γi we have Tan(Sh⌞Γi, x) = {λSh⌞V(x) : λ > 0}.
From the previous equality, we conclude that for every i ∈ N we have Tanh(Sh⌞Γi, x) ⊆
{λSh⌞V(x) : λ > 0}. Hence, from the latter conclusion and (2.84) we get that Sh⌞Γi is a
Pc

h-rectifiable measure for every i ∈ N. Finally, from (2.83) and Proposition 1.55 we conclude
that Sh⌞Γ is a Pc

h-rectifiable measure. □

Remark 2.35. With the very same argument as in Theorem 2.34 we can show that whenever
ϕ is a Radon measure on G such that Θh,∗(ϕ, x) < +∞ at ϕ-almost every x ∈ G, and
Tan(ϕ, x) = {λSh⌞V(x) : λ > 0} with V(x) ∈ Grc(h) for ϕ-almost every x ∈ G, hence ϕ is
Pc

h-rectifiable.
4.1.2. From approximate tangent planes to P-rectifiability. In this subsection we aim at

proving that whenever an approximate (complemented) h-dimensional tangent plane to a
set Γ exists almost everywhere (in the sense of the forthcoming Proposition 2.37), then the
measure Sh⌞Γ is Pc

h-rectifiable. First, we need a crucial estimate on projections that will be
useful also later on.
Proposition 2.36. Let V,W ∈ Grc(h) be complemented by the same homogeneous subgroup
L. Then, there exists an increasing function ∆ : (0, C2(W,L)] → (0,+∞), depending only on
V, W, and L, such that limβ→0 ∆(β) = 0, and satisfying the following condition.
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For every α ≤ ε1(V,L) and every CV(α)-set Γ of finite and positive Sh-measure if there
are an x ∈ Γ, a β ≤ C2(W,L) and a ρ > 0 such that

(2.85) Γ ∩B(x, r) ⊆ xCW(β), for all 0 < r < ρ.

then ∣∣∣Sh(PV(B(x, r) ∩ xCW(β)) ∩ PV(Γ))
rh

− Sh(PV(B(x, r) ∩ xCW(β) ∩ Γ))
rh

∣∣∣ ≤ ∆(β),

for every 0 < r < (1 + α(C2(V,L) − α)−1)−1C2(V,L)ρ =: ϱ(ρ, α).

Proof. Let us fix an x ∈ Γ, a 0 < β ≤ C2(W,L) and a ρ where (2.85) holds. We denote with
PV, P

V
L , respectively, the projections associated to the splitting G = V ·L, and analogously for

the splitting G = W · L. For the sake of notation, for every fixed 0 < r < (1 + α(C2(V,L) −
α)−1)−1C2(V,L)ρ we let

Ar := PV(B(x, r) ∩ xCW(β)) ∩ PV(Γ) and Br := PV(B(x, r) ∩ xCW(β) ∩ Γ).

Since the inclusion Br ⊆ Ar is always verified, we want to estimate the measure of those w
contained in Ar \ Br. If y ∈ Ar, there are w ∈ Γ such that PV(w) = y, and an ℓ ∈ L such
that yℓ ∈ B(x, r) ∩ xCW(β). Let us notice that Proposition 1.33 implies that ∥PV(x−1y)∥ =
∥PV(x−1yℓ)∥ ≤ C2(V,L)−1r. Moreover, since Γ is a CV(α)-set, we even get that, by exploiting
Remark 1.38,

∥PV
L (x−1w)∥ ≤ α(C2(V,L) − α)−1∥PV(x−1w)∥ = α(C2(V,L) − α)−1∥PV(x−1y)∥

≤ α(C2(V,L) − α)−1C2(V,L)−1r.
(2.86)

This implies in particular that

∥x−1w∥ ≤ ∥PV(x−1w)∥ + ∥PV
L (x−1w)∥ = ∥PV(x−1y)∥ + ∥PV

L (x−1w)∥
≤ (1 + α(C2(V,L) − α)−1)C−1

2 (V,L)r.
(2.87)

Hence, from the choice of r, we infer that (1 + α(C2(V,L) − α)−1)C2(V,L)−1r < ρ and thus
we can use the hypothesis in (2.85) applied to w to obtain that x−1w ∈ CW(β). Thus, by
also exploiting Remark 1.38 and the fact that x−1yℓ ∈ CW(β) we get that

∥PW
L (x−1y)ℓ∥ ≤ β(C2(W,L) − β)−1∥PW(x−1y)∥

∥PW
L (x−1y)PV

L (w)∥ ≤ β(C2(W,L) − β)−1∥PW(x−1y)∥,
(2.88)

where the last inequality comes from the fact that

PW
L (x−1w) = PW

L (x−1yPV
L (w)) = PW

L (x−1y)PV
L (w).

Thanks to (2.88) we deduce that

∥ℓ−1PV
L (w)∥ ≤ ∥PW

L (x−1y)ℓ∥ + ∥PW
L (x−1y)PV

L (w)∥ ≤ 2β(C2(W,L) − β)−1∥PW(x−1y)∥
= 2β(C2(W,L) − β)−1∥PW(x−1yℓ)∥
≤ 2β(C2(W,L) − β)−1C2(W,L)−1∥x−1yℓ∥
≤ 2β(C2(W,L) − β)−1C2(W,L)−1r.

(2.89)

This in particular implies that

∥x−1w∥ = ∥x−1yPV
L (w)∥ ≤ r + ∥ℓ−1PV

L (w)∥
≤ (1 + 2β(C2(W,L) − β)−1C2(W,L)−1)r =: f2(β)r.

(2.90)
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The above chain of inequalities, together with the hypothesis (2.85), allows us to conclude
that

Ar ⊆ PV(B(x, f2(β)r) ∩ xCW(β) ∩ Γ).
Finally this allows us to infer

Sh(Ar) − Sh(Br) ≤ Sh(PV(B(x, f2(β)r) ∩ xCW(β) ∩ Γ) \ PV(B(x, r) ∩ xCW(β) ∩ Γ))
= Sh(PV(B(x, f2(β)r) \B(x, r) ∩ xCW(β) ∩ Γ)),

(2.91)

where the last identity comes from the injectivity of PV when restricted to Γ, since α ≤
ε1(V,L), see Proposition 1.89. Finally, Proposition 1.32 implies

Sh(Ar) − Sh(Br) ≤ Sh(PV(B(x, f2(β)r) \B(x, r) ∩ xCW(β)))
= Sh(PV(B(0, f2(β)) \B(0, 1) ∩ CW(β)))rh =: ∆(β)rh.

(2.92)

The function ∆ is easily seen to be increasing and thanks to the continuity from above of
the measure, the fact that limβ→0 ∆(β) = 0 immediately follows too since f2(β) → 1 as
β → 0. □

Proposition 2.37. Let Γ be a Borel set of Ch positive and finite measure such that at Ch-
almost every x ∈ Γ there exists V(x) ∈ Grc(h) for which for every 0 < β < 1 there exists a
ρ(x, β) > 0 such that
(2.93) Γ ∩B(x, ρ(x, β)) ⊆ xCV(x)(β).

Then, the measure Ch⌞Γ is Pc
h-rectifiable. In addition we have that Θh(Ch⌞Γ, x) = 1 and

Tanh(Ch⌞Γ, x) = {Ch⌞V(x)} for Ch⌞Γ-almost every x.

Proof. First of all we define the family of sets
F := {Γ ⊆ G : Γ Borel, Sh⌞Γ is Pc

h-rectifiable, Θh(Ch⌞Γ, x) = 1 for Sh⌞Γ-almost every x}.
By a classical argument, see for example [180, Proposition 1.22], we can write Γ as Γ = Γr∪Γu

where Γr is a Borel set for which there are countable many Σk ∈ F such that Γr ⊆ ∪kΣk

and Γu is a Borel set such that Sh(Γ ∩ Σ) = 0 for every Σ ∈ F .
Let us prove that Γr ∈ F . For every k ∈ N we define Σ̃k := Σk \ ∪1≤i≤k−1Σi. Thanks to

Proposition 1.55 the measure Sh⌞Σ̃k is still Pc
h-rectifiable, the Σ̃k are pairwise disjoint and

their union still contains Γr. Again by Proposition 1.55 we infer that for every k ∈ N the
measure Sh⌞(Σ̃k ∩ Γr) is Pc

h-rectifiable and Θh(Ch⌞(Σ̃k ∩ Γr), x) = 1 for Sh⌞(Σ̃k ∩ Γr)-almost
every x and this finally implies that

Θh(Ch⌞Γr, x) = 1,
for Sh⌞Γr-almost every x. Applying Proposition 1.55 to the measure Sh⌞Γr and to the Borel
set Σ̃k we infer that Tanh(Sh⌞Γr, x) is unique and flat Sh⌞Γr-almost everywhere on Σ̃k. Since
the Σ̃k countably cover Γr this concludes the proof that Sh⌞Γr is Pc

h-rectifiable.
The above argument shows that we can assume by contradiction that Γ is compact set

of positive and finite Sh-measure and that
(2.94) Sh(Γ ∩ Σ) = 0 for every Σ ∈ F .

For every η > 0 we let

Grη
c (h) :=

{
V ∈ Grc(h) : inf

W∈Gr(h)\Grc(h)
dG(V,W) ≥ η

}
⊆ Grc(h).

Thanks to Proposition 1.22 it follows that Grη
c (h) is a closed, thus compact, subset of Gr(h).

Thanks to Lemma 1.85, for every η > 0 the set Γη := {x ∈ Γ : (2.93) holds at x and V(x) ∈
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Grη
c (h)} is Sh-measurable. In addition to this, since V(x) belongs Sh⌞Γ-almost everywhere

to Grc(h), that is an open set in Gr(h), see Proposition 1.42, we have

Sh

Γ \
⋃

η∈Q+\{0}
Γη

 = 0.

In particular there exists an η0 > 0 such that Sh(Γη0) > 0. In the following we let E be a
compact subset of Γη0 such that

Sh(Γη0 \ E) < Sh(Γη0)/2.

Note further that thanks to Remark 1.46 we have that

m(η0) := min
W∈Gr

η0
c (h)

e(V) > 0.

Let D := {Vj}j∈N be a countable dense subset of Grη0
c (h) and

for all j ∈ N we choose a compl. subgroup Lj of Vj s.t. ε1(Vj ,Lj) > e(Vj)/2 ≥ m(η0)/2.

From now on we let ε be a fixed positive number in (0,m(η0)/10) such that

(2.95) 1 − 3m(η0)−1ε(1 + 3m(η0)−2ε)/(m(η0) − ε) > 0,

which we can do taking ε small enough. The previous estimate will play a role later on. For
every p, q ∈ N we define the set

(2.96) F (p, q) := {x ∈ E : B(x, 1/q) ∩ Γ ⊆ xCVp(ε/6)},

and we claim that

(2.97) Sh

E \
⋃

p,q∈N
F (p, q)

 = 0.

By density of the family D in Grη0
c (h) and since by construction for every x ∈ Γη0 we have

V(x) ∈ Grη0
c (h), we deduce that there must exist a plane Vp ∈ D such that dG(Vp,V(x)) <

30−1ε. This, jointly with Lemma 1.39, implies that

CV(x)(30−1ε) ⊆ CVp(6−1ε).(2.98)

Since by definition of Γη0 , (2.93) holds at every point x ∈ E, we can find a ρ(x) > 0 such
that for every 0 < r < ρ(x) we have

(2.99) B(x, r) ∩ Γ ⊆ xCV(x)(30−1ε).

In particular, putting together (2.98) and (2.99) we infer that for Sh⌞Γ-almost every x ∈ E
there are a p = p(x) > 0 and a ρ(x) > 0 such that whenever 0 < r < ρ(x) we have

B(x, r) ∩ Γ ⊆ xCVp(6−1ε),

and this concludes the proof of (2.97). Thanks to Proposition 2.9 and Proposition 1.89, we
get that there are countably many Vj ∈ Grη0

c (h) complemented by some Lj , compact subsets
Kj of Vj and intrinsically Lipschitz functions φj : Kj ⊂ Vj → Lj such that

(1) for every z ∈ Kj we have Γj = {wφj(w) : w ∈ Kj} ⊆ zφj(z)CVj (ε), and Γj ⊆ E

(2) Sh(E \ ∪jΓj) = 0.
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Thanks to [97, Corollary 4.17] we know that Θh,∗(Ch⌞E, x) ≤ 1 for Ch⌞E-almost every x and
now we wish to prove that Θh

∗(Ch⌞E, x) ≥ 1 for Ch⌞E-almost every x.
Fix a j ∈ N, and an x ∈ Γj such that the conclusion in Proposition 2.20 holds. Notice

that such a choice of x can be made in a set of Ch⌞Γj-full measure in Γj . Suppose that rk is
an infinitesimal sequence such that

Θh
∗(Ch⌞Γj , x) = lim

k→∞
r−h

k Ch⌞Γj(B(x, rk)).

Thanks to item (1) above and to Proposition 2.36 one infers that for every k ∈ N we get
(2.100)∣∣∣Ch(PVj (B(x, rk) ∩ xCVj (ε)) ∩ PVj (Γj))

rh
k

−
Ch(PVj (B(x, rk) ∩ xCVj (ε) ∩ Γj))

rh
k

∣∣∣ ≤ ∆j(ε),

where ∆j was introduced in the statement of Proposition 2.36 and depends only on the split
Vj · Lj = G. In addition to this, for every j ∈ N the definitions of ε1(·, ·) and of Lj imply
that
(2.101) C2(Vj ,Lj) = 2ε1(Vj ,Lj) > e(Vj) ≥ m(η0),
and in turn this means that ∆j(ε) can be estimated with

∆j(ε) = Ch(PVj (B(0, f2(ε)) \B(0, 1) ∩ CVj (ε)))
= Ch(PVj (B(0, 1 + 2ε(C2(Vj ,Lj) − ε)−1C2(Vj ,Lj)−1) \B(0, 1) ∩ CVj (ε)))
≤ Ch(PVj (B(0, 1 + 3m(η0)−2ε) \B(0, 1) ∩ CVj (ε))),

(2.102)

where the last inequality above comes from (2.101) and the fact that ε ∈ (0,m(η0)/10). From
(2.100), the invariance properties in Proposition 1.32, the fact that x ∈ Γj was chosen in such
a way that Proposition 2.20 holds, and the homogeneity of Ch⌞V, we infer that

Ch(PVj (B(0, 1) ∩ CVj (ε))) lim sup
k→+∞

(Ch(PVj (B(x, rk) ∩ xCVj (ε)) ∩ PVj (Γj))
Ch(PVj (B(x, rk) ∩ xCVj (ε)))

−
Ch(PVj (B(x, rk) ∩ xCVj (ε) ∩ Γj)

Ch(PVj (B(x, rk) ∩ xCVj (ε)))
)
)

= Ch(PVj (B(0, 1) ∩ CVj (ε)))
(
1 − lim inf

k→+∞

Ch(PVj (B(x, rk) ∩ xCVj (ε) ∩ Γj))
Ch(PVj (B(x, rk) ∩ xCVj (ε)))

)
≤ ∆j(ε).

This implies that, for every 0 ≤ δ ≤ 1/100, up to passing to a non-relabelled subsequence in
k, we can assume without loss of generality that for every k ∈ N we have

1 −
Ch(PVj (B(x, rk) ∩ Γj))

rh
kCh(PVj (B(0, 1) ∩ CVj (ε)))

= 1 −
Ch(PVj (B(x, rk) ∩ xCVj (ε) ∩ Γj))

Ch(PVj (B(x, rk) ∩ xCVj (ε)))

≤ δ + ∆j(ε)
Ch(PVj (B(0, 1) ∩ CVj (ε)))

.

(2.103)

Now, let us fix a k ∈ N sufficiently large such that |Ch⌞Γj(B(x, rk))/rh
k−Θh

∗(Ch⌞Γj , x)| ≤ δ,
and let Γ′

j ⊆ Γj be a Borel set such that |Ch(B(x, rk) ∩ Γj) − Ch
0 (B(x, rk) ∩ Γ′

j)| ≤ δrh
k .

Finally, we choose a covering with balls {B(yℓ, sℓ)}ℓ∈N of Γ′
j ∩ B(x, rk), with yℓ ∈ Γ′

j , such
that |

∑
ℓ∈N s

h
ℓ − Ch

0 (B(x, rk) ∩ Γ′
j)| ≤ δrh

k . This implies in particular that

|Ch(B(x, rk) ∩ Γj) −
∑
ℓ∈N

sh
ℓ | ≤ |Ch(B(x, rk) ∩ Γj) − Ch

0 (B(x, rk) ∩ Γ′
j)|

+ |
∑
ℓ∈N

sh
ℓ − Ch

0 (B(x, rk) ∩ Γ′
j)| ≤ 2δrh

k .
(2.104)
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The above inequalities together imply in particular that for such a k ∈ N we have

1 − δ + ∆j(ε)
Ch(PVj (B(0, 1) ∩ CVj (ε)))

≤
Ch(PVj (B(x, rk) ∩ Γj))

rh
kCh(PVj (B(0, 1) ∩ CVj (ε)))

≤
Ch(PVj (B(x, rk) ∩ Γ′

j)) + C4(Vj ,Lj)δrh
k

rh
kCh(PVj (B(0, 1) ∩ CVj (ε)))

≤
Ch(PVj (

⋃
ℓ∈NB(yℓ, sℓ) ∩ yℓCVj (ε))) + C4δr

h
k

rh
kCh(PVj (B(0, 1) ∩ CVj (ε)))

≤ r−h
k

∑
ℓ∈N

sh
ℓ + C4δ

Ch(PVj (B(0, 1) ∩ CVj (ε)))
,

(2.105)

where in the second inequality we used

Ch(PVj (B(x, rk) ∩ Γj)) − Ch(PVj (B(x, rk) ∩ Γ′
j)) = Ch(PVj (B(x, rk) ∩ Γj \B(x, rk) ∩ Γ′

j))

≤ C4Ch(B(x, rk) ∩ Γj \B(x, rk) ∩ Γ′
j) = C4

(
Ch(B(x, rk) ∩ Γj) − Ch(B(x, rk) ∩ Γ′

j)
)

≤ C4
(
Ch(B(x, rk) ∩ Γj) − Ch

0 (B(x, rk) ∩ Γ′
j)
)

≤ C4δr
h
k ,

(2.106)

that is true taking into account Proposition 1.34, the fact that PVj is injective on Γj , see
Proposition 1.89, and the fact that Sh ≤ Ch by definition. Hence putting together (2.104)
and (2.105) we deduce that, for k large enough,

1 − (1 + C4)δ + ∆j(ε)
Ch(PVj (B(0, 1) ∩ CVj (ε)))

≤ r−h
k

∑
ℓ∈N

sh
ℓ ≤ Ch(B(x, rk) ∩ Γj)/rh

k + 2δ ≤ Θh
∗(Ch⌞Γj , x) + 3δ.

Thanks to the arbitrariness of δ, this implies that for Ch⌞Γj-almost every x we have, by
making use of (2.102)

1 − ℸ(ε, j) := 1 −
Ch(PVj (B(0, 1 + 3m(η0)−2ε) \B(0, 1) ∩ CVj (ε)))

Ch(PVj (B(0, 1) ∩ CVj (ε)))

≤ 1 − ∆j(ε)
Ch(PVj (B(0, 1) ∩ CVj (ε)))

≤ Θh
∗(Ch⌞Γj , x) ≤ Θh

∗(Ch⌞E, x).
(2.107)

We now wish to get a bound from above of ℸ(ε, j) that does not depend on j. In order to do
this, we first of all let ρ1(ε) := 1+3m(η0)−2ε and ρ2(ε) := 1−3m(η0)−1ερ1(ε)/(m(η0)−ε) > 0,
thanks to (2.95). We claim that the following inclusion holds

PVj (B(0, ρ1(ε)) \B(0, 1) ∩ CVj (ε)) ⊆ PVj (B(0, ρ1(ε)) ∩ CVj (ε)) \ PVj (B(0, ρ2(ε)) ∩ CVj (ε)).
(2.108)

By definition, if y ∈ PVj (B(0, ρ1(ε)) \ B(0, 1) ∩ CVj (ε)), there exists an ℓ1 ∈ Lj such that
yℓ1 ∈ B(0, ρ1(ε)) \ B(0, 1) ∩ CVj (ε). Notice that if ℓ ∈ Lj is such that yℓ ∈ CVj (ε), by
Proposition 1.33 we have

m(η0)∥ℓ∥ ≤ C4(Vj ,Lj)∥ℓ∥ ≤ dist(yℓ,Vj) ≤ ε∥yℓ∥ ≤ ε∥y∥ + ε∥ℓ∥,
and then ∥ℓ∥ ≤ ε∥y∥/(m(η0) − ε). This implies that in order to prove that y does not belong
to PVj (B(0, ρ2(ε)) ∩ CVj (ε)) we just need to show that yℓ ̸∈ B(0, ρ2(ε)) ∩ CVj (ε) for every
ℓ ∈ B(0, ε∥y∥/(m(η0) − ε)) ∩ Lj . This however, follows from the following computation

∥yℓ∥ ≥ ∥yℓ1∥ − ∥ℓ−1
1 ℓ∥ ≥ 1 − 2ε∥y∥

m(η0) − ε
> ρ2(ε),

where the last inequality comes from the fact that ∥ℓ−1
1 ℓ∥ ≤ ∥ℓ−1

1 ∥+∥ℓ∥ ≤ 2ε∥y∥/(m(η0)−ε),
and ∥y∥ ≤ C4(Vj ,Lj)−1∥yℓ1∥ ≤ m(η0)−1ρ1(ε). This proves (2.108) and in turn the inequality
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ℸ(ε, j) ≤ ρ1(ε)h − ρ2(ε)h, by homogeneity of Ch. Furthermore, since on the right-hand side
of the previous inequality we have an expression independent on j we conclude that, by
exploiting (2.107), for Ch-almost every x ∈ Γj we have

1 − (ρ1(ε)h − ρ2(ε)h) ≤ Θh
∗(Ch⌞E, x).

Thanks to the arbitrariness of j and to the fact that Ch(E \ ∪jΓj) = 0, we deduce that the
previous inequality holds for Ch-almost every x ∈ E. Since ε can be chosen arbitrarily small,
we conclude that Θh

∗(Ch⌞E, x) ≥ 1, and then Θh(Ch⌞E, x) = 1 for Ch-almost every x ∈ E.

Eventually, Lemma 1.54 together with (2.93) concludes that for Ch-almost every x ∈ E
and for every ν ∈ Tanh(Ch⌞E, x) the support of ν is contained in V(x). In addition to this,
from the existence of the density, the argument in [89, Proposition 3.4], and Proposition 1.28,
we have that for Ch⌞E-almost every x ∈ G we have Tanh(Ch⌞E, x) = {Ch⌞V(x)}. This
concludes the proof of the fact that Ch⌞E is Ph

c -rectifiable and this comes in contradiction
with the fact that E ⊆ Γ has positive Sh⌞Γ-measure by construction and (2.94). □

Let us now verify that an intrinsically differentiable graph satisfies the hypothesis of
Proposition 2.37.
Lemma 2.38. Let φ : A ⊆ V → L be a map such that Γ := graph(φ) is an intrinsically
differentiable graph at w ∈ Γ with tangent V(w). Then, for every β there exists ρ = ρ(β)
such that

Γ ∩B(w, ρ) ⊆ wCV(w)(β).

Proof. We first claim that for every ε > 0 there exists r0 := r0(ε) such that

(2.109) sup
p∈Γ∩B(w,r)

dist(p, wV(w)) ≤ εr, for all 0 < r ≤ r0.

Indeed, this follows just by taking K ′ := B(0, 1) in the definition (1.77) and by exploiting
the very definition of Hausdorff distance.

Now let us take ε ≤ β/2. We claim that Γ ∩ B(w, r0(ε)) ⊆ wCV(w)(β). Indeed, let
p ∈ Γ ∩ B(w, r0(ε)), and k ≥ 1 be such that r02−k < ∥w−1 · p∥ ≤ r02−k+1. Since p ∈
Γ ∩B(w, r02−k+1), from (2.109) we get

dist(p, wV(w)) ≤ εr02−k+1 ≤ 2ε∥w−1 · p∥ ≤ β∥w−1 · p∥,

thus showing the claim. □

We are now ready to give the proof of Theorem 2.30.

Proof of Theorem 2.30. We prove different implications in separate points.
1.⇒2. If Sh⌞Γ is Pc

h-rectifiable, then Sh⌞Γ is asymptoticall doubling. Hence, by a routine
argument (cf. [174, Remark 14.4(3)]) we get that, for Sh⌞Γ-almost every x ∈ G,
every element in Tan(Sh⌞Γ, x) is a constant multiple of an element of Tanh(Sh⌞Γ, x),
which is by hypothesis of the form λSh⌞V(x) with V(x) ∈ Grc(h), whence the
conclusion.

2.⇒1. It follows from Theorem 2.34 by approximating the Borel set Γ from within by
compact sets.

1.⇒3. It is a consequence of Theorem 2.25, and the fact that the Hausdorff tangent at
Sh⌞Γi-almost ever x of Γi is complemented since it coincides almost everywhere
with the subgroup on which it is supported the tangent measure.
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3.⇒1. Since, for every i ∈ N, Γi is an intrinsically differentiable graph at Sh⌞Γi-almost every
point of it, by Lemma 2.38 we conclude that the hypothesis of Proposition 2.37 is
verified. Hence, for every i ∈ N, Sh⌞Γi is Pc

h-rectifiable. Hence, since Sh(Γ \
∪+∞

i=1 Γi) = 0, by a routine argument involving the locality of tangents and the
Lebesgue Differentiation Theorem, see Proposition 1.55, we conclude that Sh⌞Γ is
Pc

h-rectifiable as well.

Let us show the second part of the statement. Let us assume item (3) holds. Since, for
every i ∈ N, Γi is intrinsically differentiable, arguing as above we can apply Proposition 2.37
and then conclude that Θh(Ch⌞Γi, x) = 1 for Ch⌞Γi-almost every x ∈ G. Hence, from the
Lebesgue Differentiation Theorem in Proposition 1.55, we conclude that, for every i ∈ N,
Θh(Ch⌞Γ, x) = 1 for Ch⌞Γi-almost every x ∈ G, and hence the same conclusion holds for
Ch⌞Γ-almost every x ∈ G since Ch(Γ \ ∪+∞

i=1 Γi) = 0. The convergence in the second part of
the statement is a direct consequence of the fact that the density is 1 and Lemma 1.62. The
last part of the statement is an immediate consequence of Theorem 2.25. □

Remark 2.39. With the argument in the proof of Theorem 2.30, taking also into account
Remark 2.35, we might prove the same equivalence as in Theorem 2.30 but for Radon mea-
sures ϕ on G with Θh,∗(ϕ, x) < +∞ at ϕ-almost every x ∈ G, instead of Sh⌞Γ. Clearly, the
density Θh(ϕ, x) might not be 1 ϕ-almost everywhere.

We recall the definition of approximate tangent to a set. Let Γ ⊆ G be a Borel set of
finite and positive Sh-measure, and let V ∈ Gr(h). We say that V is an approximate tangent
plane of Γ at x if

(1) we have Θh,∗(Sh⌞Γ, x) > 0;
(2) we have

lim
r→0

Sh⌞Γ(Br(x) \ CV(α))
rh

→ 0,
for every α > 0.

Remark 2.40. By properly adapting the argument in Proposition 2.37, one might prove that
if Γ ⊆ G is a Borel set with Sh positive and finite measure, Θh

∗(Sh⌞Γ, x) > 0 for Sh⌞Γ-almost
every x ∈ G, and moreover Γ has an approximate complemented tangent at Sh⌞Γ-almost
every x ∈ G, hence the measure Sh⌞Γ is Pc

h-rectifiable. This means that in the statement of
Theorem 2.30 one can also add the item

• Θh
∗(Sh⌞Γ, x) > 0 for Sh⌞Γ-almost every x ∈ G, and moreover Γ has an approximate

complemented tangent at Sh⌞Γ-almost every x ∈ G.
One thus might ask the following question.

Question 4. Is it possible to remove the hypothesis Θh
∗(Sh⌞Γ, x) > 0 in the item above,

and still get the equivalence of Theorem 2.30?
In the special case of tangents that are complemented by at least one normal subgroup,

the answer to the previous question should be positive, by adapting the arguments of [178],
and [128], which deal with the co-horizontal case. Thus one could add the following item

• Γ has an approximate tangent that is complemented by at least one normal subgroup,
at Sh⌞Γ-almost every x ∈ G.

in the forthcoming Corollary 3.3.





CHAPTER 3

Marstrand–Mattila rectifiability criterion for P-rectifiable
measures

In this chapter we prove a generalization of Marstrand–Mattila rectifiability criterion
in the setting of Carnot groups. For the classical Marstrand–Mattila rectifiability criterion
in Rn, we refer the reader to [174]. The content of this chapter comes from a work in
collaboration with A. Merlo [32].

In this introductory part we give the statement of the theorem, see the forthcoming
Theorem 3.1. We also present a couple of corollaries that can be readily deduced from
it. Namely, the one-dimensional Preiss’s theorem in the first Heisenberg group H1 endowed
with the Korányi distance, see Theorem 3.2, and an enhanced characterization of the P-
rectifiability in the co-normal case, see Corollary 3.3.

In Section 1 we give the complete proof of Theorem 3.1. First, in Section 1.1 we show
that in a Carnot group of homogeneous dimension Q, every P∗

h-rectifiable measure (see
Definition 1.58), with 1 ≤ h ≤ Q, is such that, at almost every point, the possible tangents,
even if different, share the same stratification vector. Moreover the function that associates
to each point the (unique) stratification vector of the tangents at that point is measurable,
see Proposition 3.12. Finally, in Section 1.2 we complete the technical part of the proof,
whose strategy follows the lines of Preiss’s work [202].

In this chapter we aim at proving the following, which is one of the main results of [28].
Theorem 3.1 (Co-normal Marstrand–Mattila rectifiability criterion). Let G be a Carnot
group of homogeneous dimension Q endowed with a homogeneous norm ∥ · ∥ that induces a
left-invariant homogeneous distance. Let h ∈ {1, . . . , Q}, and let ϕ be a P∗,⊴

h -rectifiable, i.e.,
a P∗

h-rectifiable measure with tangents that ϕ-almost everywhere admit at least one normal
complementary subgroup (see Definition 1.61).

Then ϕ is a Pc
h-rectifiable measure, see Definition 1.61. Moreover, there are countably

many homogeneous Carnot subgroups Vi of homogeneous dimension h, and Lipschitz maps
Φi : Ai ⊆ Vi → G, where Ai’s are compact, such that

ϕ
(
G \

⋃
i∈N

Φi(Ai)
)

= 0.

Notice that passing from a P∗-rectifiable measure to a P-rectifiable measure is by far
non-trivial. Indeed, we recall that in the definition of P∗-rectifiability we just ask that the
tangents are flat, but not necessarily unique almost everywhere. On the contrary, in the
definition of P-rectifiability we also ask that, almost everywhere, the tangent is unique.

Let us notice that a converse of Theorem 3.1 holds as well. Namely if ϕ is a Radon
measure on G with positive h-lower density and finite h-upper density ϕ-almost everywhere,
and there are countably many homogeneous Carnot subgroups Vi of homogeneous dimension
h, and Lipschitz maps Φi : Ai ⊆ Vi → G, where Ai’s are compact, such that

ϕ
(
G \

⋃
i∈N

Φi(Ai)
)

= 0,

89
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hence ϕ is Ph-rectifiable (and a fortiori P∗
h-rectifiable). The proof is reached first by a

classical reduction to measures of the type Sh⌞Γ, and hence using the Rademacher theorem,
and the area formula, which hold for the maps Φi. The resulting reasoning is exactly the
same as in the last part of the proof of Theorem 3.4.

Let us further notice that the conclusion of Theorem 3.1 also implies that the support
of the measure ϕ is Pauls’s rectifiable, i.e., it is Hh-almost everywhere covered by the count-
able union of Lipschitz images of subsets of Carnot groups of homogenous dimension h, see
Definition 4.8 for additional information.

A Marstrand–Mattila rectifiability criterion for codimension-one rectifiable measures in
arbitrary Carnot groups has been proved by Merlo in [180]. The techniques used in [180] are
likely to be adapted to show the same result in the more general co-horizontal case. Apart
from these cases, and the result in Theorem 3.1, we presently do not know if a Marstrand–
Mattila rectifiability criterion holds in the generality of P∗-rectifiable measures with comple-
mented tangents. We believe that such a result could be really challenging to prove because
of the lack of regularity of the projection maps onto complemented subgroups in the general
case.

Question 5. Determine whether a Marstrand–Mattila type rectifiability criterion holds
in the generality of P∗-rectifiable measures with complemented tangents.

We remark that we are able to prove Theorem 3.1 because of the following two key
observations: whenever V admits a normal complementary subgroup L, then the projection
PV : G → V related to the splitting G = V ·L is a Lipschitz homogeneous homomorphism, see
Proposition 1.48, and moreover V is a Carnot subgroup, see [29, Remark 2.1]. This allows
us to adapt Preiss’s machinery in [202] not without some difficulties that are essentially due
to the fact that, on the contrary with respect to the Euclidean setting, we do not have a
canonical choice of a normal complementary subgroup of V when there is at least one. We
also stress that, for the Marstrand–Mattila rectifiability criterion, the assumption on the
strictly positive lower density is necessary already in the Euclidean case, see [202, 5.9].

The hypotheses of Theorem 3.1 are satisfied whenever we have a P∗
h-rectifiable measure

with horizontal tangents. Hence, the previous Marstrand–Mattila rectifiability criterion can
be used to prove the following Preiss-type theorem for one-dimensional rectifiable measures
in H1 endowed with the Korányi norm. For the sake of clarity, let us recall that if we identify
H1 ≡ R3 = {(x, t) : x ∈ R2, t ∈ R} through exponential coordinates, then the Korányi norm
is ∥(x, t)∥ := (∥x∥4

eu + t2)1/4, where ∥ · ∥eu is the standard Euclidean norm.
Theorem 3.2 (One-dimensional Preiss’s theorem in H1). Let H1 be the first Heisenberg group
endowed with the Korányi norm. Let ϕ be a Radon measure on H1 such that the one-density
Θ1(ϕ, x) exists positive and finite for ϕ-almost every x ∈ H1.

Then H1 can be covered ϕ-almost all with countably many images Φi(Ai) of Lipschitz
functions Φi : Ai ⊆ R → H1, and moreover ϕ is absolutely continuous with respect to the
one-dimensional Hausdorff measure H1.

Proof of Theorem 3.2. From the fact that the one-density exists at ϕ-almost every x ∈ H1

we deduce that at ϕ-almost every x ∈ H1 the tangent measures are uniform measures. The
argument to obtain the latter assertion is classical, see [89, Proposition 3.4], or cf. [181,
Proposition 2.2]. Then from [80, Theorem 1.3] we get that the tangent measures, at ϕ-
almost every x ∈ H1, are S1⌞L, where L is a horizontal line. Finally from Theorem 3.1, since
every horizontal line admits a normal complementary subgroup, we get the first part of the
sought conclusion. The absolute continuity is a consequence of Proposition 1.56. □
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Let us notice that Theorem 3.2 is one of the few cases in which Preiss’s theorem [202]
is nowadays known to hold beyond the Euclidean space. The characterization of the k-
rectifiability of a measure through the existence of the k-density in Euclidean spaces was
one of the great achievement of Geometric Measure Theory, see [202]. Another Preiss’s type
result has been proved by A. Lorent [159] in ℓ3∞. Recently, Merlo has accomplished to prove
the analogue of Theorem 3.2 for the three-density, which requires a deeper understanding of
three-uniform measures in the first Heisenberg group H1, see [180,181].

A result related to Theorem 3.2 in the broad generality of metric spaces is contained
in [203]. Nevertheless we stress that here we prove Theorem 3.2 in the general setting of
Radon measures and we ask no bound on the density, just its existence: namely, we prove
that whenever the one-density of a Radon measure exists on H1 endowed with the Korányi
norm, hence we have that it is one-rectifiable à la Federer. We remark that, even if we take
advantage of the fact that the classification of the one-uniform measures on H1 was known
from [80], the result in Theorem 3.2 is non-trivial by using our approach, since it requires
the Marstrand–Mattila rectifiability criterion in Theorem 3.1.

We stress that very recently David Bate in [46] has proved a general Marstrand–Mattila
rectifiability criterion to deduce the rectifiability à la Federer of a set in a complete metric
space by means of the existence of possibly rotating tangents that are bi-Lipschitz to Eu-
clidean spaces. As kindly pointed out to the author of this thesis by Bate, this criterion will
give the one-rectifiability Preiss’s theorem in arbitrary complete metric spaces, see [43], thus
generalizing Theorem 3.2.

Let us end this introductory part, by giving a complete picture of measures with density
in the first Heisenberg group H1. If in H1 endowed with the Korányi norm we have a Radon
measure ϕ such that there exists α ≥ 0 for which the α-density Θα(ϕ, x) exists positive and
finite for ϕ-almost every x ∈ H1 we first get that α is an integer, see [77, Theorem 1.1]. Thus
the only non-trivial cases are

• α = 1. In this case ϕ is P1-rectifiable, see Theorem 3.1. Moreover we can cover
ϕ-almost all of H1 with countably many images of Lipschitz maps from subsets of R
to H1.

Notice that we can improve the latter conclusion. Indeed, we can cover ϕ-almost
all of H1 with countably many images of C1

H-functions defined on open subsets of R
to H1. This last improvement comes from Pansu–Rademacher theorem for Lipschitz
maps between Carnot groups, see [200], and the Whitney exstension theorem proved
in [130, Theorem 6.5].

• α = 2. In this case ϕ is P2-rectifiable, see [180, Theorem 3.7]. This means that
the tangent measure is ϕ-almost everywhere unique and it is a Haar measure of the
vertical line in H1.

• α = 3. In this case ϕ is P3-rectifiable, see [181], and [180, Theorem 4]. Moreover
we can cover ϕ-almost all of H1 with countably many C1

H-hypersurfaces, see [180,
Theorem 4].

As it is clear from the list above, an interesting line of investigation could be a finer study of
the structure of P2-rectifiable measures in H1.

We end this introductory part by stressing here the following immediate corollary of
Theorem 2.30, Theorem 3.1, and the main result in [29], which is a Rademacher theorem
for intrinsically Lipschitz functions with normal target. The following Corollary 3.3 gives a
rather complete picture of the rectifiability in the co-normal case in arbitrary Carnot groups,
that in turn becomes very similar to the Euclidean one. Compare also with Remark 2.40.
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Corollary 3.3. Let G be a Carnot group of homogeneous dimension Q endowed with a homo-
geneous norm ∥ · ∥ that induces a left-invariant homogeneous distance d. Let h ∈ {1, . . . , Q},
and let Γ ⊆ G be a Borel set such that 0 < Sh(Γ) < +∞, where Sh is the h-dimensional
spherical Hausdorff measure. Then the following are equivalent

(1) Sh⌞Γ is a P∗
h-rectifiable measure with tangents complemented by at least one normal

subgroup, or, in other words, a P∗,⊴
h -rectifiable measure, see Definition 1.61,

(2) Sh⌞Γ is a Ph-rectifiable measure with tangents complemented by at least one normal
subgroup,

(3) For Sh⌞Γ-almost every x ∈ G we have
Tan(Sh⌞Γ, x) = {λSh⌞V(x) : λ > 0,V(x) is a homogeneous subgroup

of G that admits at least one normal compl. subgroup, dimhomV(x) = h},
(4) There are countably many compact intrinsic graphs Γi that are h-dimensional in-

trinsically differentiable graphs at Sh-almost every x ∈ Γi (see Definition 1.94), that
have Hausdorff tangents complemented by at least one normal subgroup at Sh-almost
every x ∈ Γi, and such that

Sh(Γ \ ∪+∞
i=1 Γi) = 0,

(5) There are countably many compact intrinsic graphs Γi that are graphs of intrinsically
Lipschitz functions φi : Ui ⊆ Vi → Li, where Li is a normal subgroup, Vi,Li are
homogeneous complementary subgroup, dimhomVi = h, and such that

Sh(Γ \ ∪+∞
i=1 Γi) = 0.

Moreover, denoting with Ch the centered Hausdorff measure of dimension h, see Defini-
tion 1.1, if any of the previous holds, then Θh(Ch⌞Γ, x) = 1 exists for Ch⌞Γ-almost every
x ∈ G, the tangent V(x) is unique Sh-almost everywhere, and

r−h(Tx,r)∗(Ch⌞Γ) ⇀ Ch⌞V(x), as r → 0, for Ch⌞Γ-almost every x ∈ G,
where the convergence of measures is meant in the duality with Cc(G).

1. Proof

This section is devoted to the proof of the following result, which is a restatement of the
main result in Theorem 3.1. From now on, if not otherwise specified, G will be a fixed Carnot
group of homogeneous dimension Q endowed with a homogeneous norm ∥ · ∥ that induces
a homogeneous left-invariant distance d. Moreover, h will be a natural number in the set
{1, . . . , Q}.
Theorem 3.4 (Co-normal Marstrand–Mattila rectifiability criterion). Let G be a Carnot
group of homogeneous dimension Q endowed with a homogeneous norm ∥ · ∥ that induces
an arbitrary left-invariant homogeneous distance. Let h ∈ {1, . . . , Q}, and let ϕ be a P∗,⊴

h -
rectifiable measure. Then there are countably many Wi ∈ Gr⊴(h), that are in addition Carnot
subgroups, compact sets Ki ⊆ Wi, and Lipschitz functions fi : Ki → G such that

ϕ

G \
⋃
i∈N

fi(Ki)

 = 0.

As a consequence, ϕ is Pc
h-rectifiable.

We stress again, as done right after Theorem 3.1, that passing from a P∗-rectifiable mea-
sure to a P-rectifiable measure is by far non-trivial. We now briefly discuss the strategy of
the proof of Theorem 3.4, which is ultimately an adaptation of Preiss’s technique in [202, Sec-
tion 4.4(4), Lemma 5.2, Theorem 5.3, and Corollary 5.4] in our setting, see Proposition 1.75,
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Proposition 3.15, and Proposition 3.18, respectively. In particular we show that whenever a
Radon measure satisfies precise structure conditions, see the hypotheses of Proposition 3.15,
that are always verified whenever ϕ is P∗

h-rectifiable with tangents that admit at least one
normal complementary subgroup, see Proposition 3.17, then it is possible to find a Lipschitz
function f : K ⊆ V → G, with a Carnot subgroup V ∈ Gr⊴(h), such that ϕ(f(K)) > 0.
Then, by a classical measure theoretic argument, this implies that G can be covered ϕ-almost
all with ∪i∈Nfi(Ki), where fi : Ki ⊆ Vi → G are Lipschitz functions, and Vi are Carnot
subgroups in Gr⊴(h), see the first part of the proof of Theorem 3.4.

The last part of Theorem 3.4 is reached from the first part and the following key ob-
servation: if a homogeneous subgroup of a Carnot group admits a normal complementary
subgroup, then it is a Carnot subgroup, see [29, Remark 2.1]. Thus the maps fi are Lipschitz
maps between Carnot groups and we can apply Pansu–Rademacher theorem, see [200], Mag-
nani’s area formula, see [161], and a classical argument (compare with [178]) to conclude
that Sh⌞fi(Ki) is a Pc

h-rectifiable measure, see the last part of the proof of Theorem 3.4.
From this latter observation, the proof of Theorem 3.4 is concluded.

Proof of Theorem 3.1. It is an immediate consequence of Theorem 3.4. □

Memorandum: Throughout all this chapter we let G be a Carnot group of homogeneous
dimension Q equipped with the box norm introduced in Definition 1.16. This does not result
in a loss of generality since our aim is to prove Theorem 3.4 that is clearly independent on
the choice of the particular homogeneous norm ∥·∥ that induces a left-invariant homogeneous
distance on G, since all left-invariant homogeneous distances are bi-Lipschitz equivalent on
G. So, from now on, we may suppose that G is endowed with the left-invariant homogeneous
distance induced by the box norm introduced in Definition 1.16.

1.1. Rigidity of the stratification of P∗
h-rectifiable measures. In this section we

show that in a Carnot group of homogeneous dimension Q, every P∗
h-rectifiable measure,

with 1 ≤ h ≤ Q, is such that, at almost every point, the possible tangents, even if different,
all share the same stratification vector.

We let φ : G → [0, 1] be a positive, smooth, radially symmetric function with respect
to ∥ · ∥ (see the discussion before Proposition 1.29), supported in B(0, 2), and such that
φ ≡ 1 on B(0, 1). We shall denote by g its profile function, that is defined right above the
statement of Proposition 1.29. Let us recall that s(·) denotes the stratification vector, see
Definition 1.20, and S(h) denotes all the possible stratification vectors of the homogeneous
subgroups of homogeneous dimension h.
Proposition 3.5. For every h ∈ {1, . . . , Q} there exists a constant ,φ,G)ג h) = ג > 0 such
that for every V ∈ Gr(h) and every s ∈ S(h) \ {s(V)}, we have

inf
W∈Gr(h)
s(W)=s

ˆ
φ(z)dist(z,W)dCh⌞V > ,ג

where the stratification vector s(·) was introduced in Definition 1.20.

Proof. Suppose by contradiction this is not the case. Thus there are two sequences {Wi} ⊆
Gr(h) and {Vi} ⊆ Gr(h) such that for every i ∈ N we have s(Wi) ̸= s(Vi) and

(3.1)
ˆ
φ(z)dist(z,Wi)dCh⌞Vi ≤ 1/i.

Thanks to the pidgeonhole principle and the fact that S(h), see Definition 1.20, is a finite
set we can assume up to passing to a non re-labelled subsequence that

s(Wi) = s1 ̸= s2 = s(Vi), for every i ∈ N.
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Furthermore, thanks to Proposition 1.22, we can also assume, up to passing to a non re-
labelled subsequence, that

Wi →
dG

W ∈ Gr(h), and Vi →
dG

V ∈ Gr(h).

Furthermore, thanks to Proposition 1.23, we also deduce that

s(W) = s1 ̸= s2 = s(V).

In order to conclude the proof of the proposition we first note for every U ∈ Gr(h) and every
R > 0, if z ∈ B(0, R), then every element u ∈ U for which dist(z,U) = d(u, z) is contained in
B(0, 2R). Hence, the same argument as in (1.22) and (1.24) allows us to conclude that for
every z ∈ B(0, 2) the following inequality holds

(3.2) dist(z,Wi) ≥ dist(z,W) − 8dG(W,Wi), for all i ∈ N.

Putting together (3.1) and (3.2) thanks to Proposition 1.29 we infer

1/i ≥
ˆ
φ(z)dist(z,Wi)dCh⌞Vi ≥

ˆ
φ(z)dist(z,W)dCh⌞Vi − 8dG(W,Wi)

ˆ
φ(z)dCh⌞Vi

=
ˆ
φ(z)dist(z,W)dCh⌞Vi − 8dG(W,Wi)h

ˆ
sh−1g(s)ds.

(3.3)

Therefore, since φ(z)dist(z,W) is a continuous function with compact support, thanks to
Proposition 1.30 and sending i to +∞ in the previous inequality we concludeˆ

φ(z)dist(z,W)dCh⌞V = 0.

In particular dist(z,W) = 0 for Sh⌞V-almost every z ∈ V, and since both Lie(V) and Lie(W)
are vector subspaces of Lie(G) we have V ⊆ W. On the one hand this allows us to infer that

dim(Vi ∩ V) ≤ dim(Vi ∩ W), for every i ∈ {1, . . . , κ},

and on the other hand, since s(V) ̸= s(W), there must exist an ℓ ∈ {1, . . . , κ} such that
dim(Vℓ ∩ V) < dim(Vℓ ∩ W). This however contradicts the fact that W ∈ Gr(h), indeed

h = dimhom V =
κ∑

i=1
i · dim(Vi ∩ V) <

κ∑
i=1

i · dim(Vi ∩ W) = dimhom(W).

□

Proposition 3.6. Let s ∈ S(h). For every Radon measure ψ we define

Fs(ψ) := inf
W∈Gr(h)
s(W)=s

ˆ
φ(z)dist(z,W)dψ.

Then, the functional Fs on Radon measures is continuous with respect to the weak* topology
in the duality with the functions with compact support on G.

Proof. Let ψi ⇀ ψ and note that for every V ∈ Gr(h) for which s(V) = s, we have

(3.4) lim
i→+∞

ˆ
φ(z)dist(z,V)dψi =

ˆ
φ(z)dist(z,V)dψ,

since φ(z)dist(z,V) is a continuous function with compact support. Let us first prove that

Fs(ψ) ≤ lim inf
i→∞

Fs(ψi).
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Indeed, if by contradiction Fs(ψ) > lim inf i→∞ Fs(ψi), up to passing to a non re-labelled
subsequence in i that realizes the lim inf and up to choosing a quasi-minimizer for Fs(ψi),
we can find δ > 0, and Wi ∈ Gr(h) with s(Wi) = s such that

(3.5) Fs(ψ) >
ˆ
φ(z)dist(z,Wi)dψi + δ, for all i ∈ N.

We can assume that Wi → W ∈ Gr(h), with s(W) = s, up to a non re-labelled subsequence,
see Proposition 1.22 and Proposition 1.23. Thus since ψi ⇀ ψ passing to the limit the right
hand side of (3.5)1 we obtain Fs(ψ) >

´
φ(z)dist(z,W)dψ, that is a contradiction with the

definition of Fs. The proof of the proposition is concluded if we prove that
Fs(ψ) ≥ lim sup

i→∞
Fs(ψi).

In order to prove the previous inequality let us fix ε > 0 and Vε ∈ Gr(h) with s(Vε) = s such
that

(3.6)
ˆ
φ(z)dist(z,Vε)dψ − ε ≤ Fs(ψ).

Putting together (3.4) and (3.6), we infer

lim sup
i→∞

Fs(ψi) − ε ≤ lim sup
i→∞

ˆ
φ(z)dist(z,Vε)dψi − ε

=
ˆ
φ(z)dist(z,Vε)dψ − ε ≤ Fs(ψ).

(3.7)

The arbitrariness of ε concludes the limsup inequality and the proof of the proposition. □

Definition 3.7. For every T ⊆ M(h), where we recall that M(h) is the set of h-flat measures,
we define s(T ) to be the set

s(T ) := {s(V) : there exists a non-null Haar measure of V in T }.
Namely we are considering all the possible stratification vectors of the homogeneous subgroups
that are the support of some element of T .

In the following theorem we prove that whenever we have a P∗
h-rectifiable measure, at

almost every point the tangents have the same stratification vector.
Theorem 3.8. Assume ϕ is a P∗

h-rectifiable measure. Then, for ϕ-almost every x ∈ G the
set s(Tanh(ϕ, x)) ⊆ S(h) is a singleton.
Remark 3.9. In the notation of the above proposition, since for ϕ-almost every x ∈ G we
have Tanh(ϕ, x) ⊆ M(h), the set s(Tanh(ϕ, x)) is well defined ϕ-almost everywhere.

Proof. Suppose by contradiction there exists a point x ∈ G where
(i) 0 < Θh

∗(ϕ, x) ≤ Θh,∗(ϕ, x) < ∞,
(ii) Tanh(ϕ, x) ⊆ M(h),
(iii) there are V1,V2 ∈ Gr(h) with s(V1) ̸= s(V2) and λ1, λ2 ≥ 0 such that

λ1Ch⌞V1, λ2Ch⌞V2 ∈ Tanh(ϕ, x).
Assume that {ri}i∈N and {si}i∈N are two infinitesimal sequences such that ri ≤ si and for
which

Tx,riϕ

rh
i

⇀ λ1Ch⌞V1, and Tx,siϕ

sh
i

⇀ λ2Ch⌞V2.

1Setting fi(z) := φ(z)dist(z,Wi) and f(z) := φ(z)dist(z,W) we notice that fi → f uniformly on B(0, 2)
since Wi → W. Thus |

´
fdψ−

´
fidψi| ≤ |

´
fdψ−

´
fdψi| + |

´
fdψi −

´
fidψi| and the limit is zero because

ψi ⇀ ψ, supi ψi(B(0, 2)) < +∞ and fi → f uniformly on B(0, 2).
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Note that thanks to Lemma 1.62, we have in particular that Θh
∗(ϕ, x) ≤ λ1, λ2 ≤ Θh,∗(ϕ, x).

Throughout the rest of the proof we let s := s(V1) and we define

f(r) := inf
W∈Gr(h)
s(W)=s

ˆ
φ(z)dist(z,W)dTx,rϕ

rh
.

Thanks to Proposition 3.5 and Proposition 3.6 we infer that the function f is continuous on
(0,∞) and that

lim
i→∞

f(ri) = 0 and lim
i→∞

f(si) > λ2ג ≥ Θhג
∗(ϕ, x).

Let us choose, for i sufficiently large, σi ∈ [ri, si] in such a way that f(σi) = Θhג
∗(ϕ, x)/2 and

f(r) ≤ Θhג
∗(ϕ, x)/2 for every r ∈ [ri, σi]. Up to passing to a non re-labelled subsequence,

since ϕ is P∗
h-rectifiable, we can assume that σ−h

i Tx,σiϕ ⇀ λ3Ch⌞V3 for some λ3 > 0 and
some V3 ∈ Gr(h). Thanks to Lemma 1.62, we infer that Θh

∗(ϕ, x) ≤ λ3 ≤ Θh,∗(ϕ, x) and
thanks to the continuity of the functional Fs in Proposition 3.6, we conclude that
(3.8) Θhג

∗(ϕ, x)/2 = lim
i→∞

f(σi) = lim
i→∞

Fs(σ−h
i Tx,σiϕ) = λ3Fs(Ch⌞V3).

The chain of identities (3.8) together with the bounds on λ3 imply
(3.9) 0 < Θhג

∗(ϕ, x)/2Θh,∗(ϕ, x) ≤ Fs(Ch⌞V3) ≤ .2/ג
Since V3 ∈ Gr(h), (3.9) on the one hand implies by means of Proposition 3.5 that s(V3) = s.
On the other hand, since Fs(Ch⌞V3) > 0, we have that s(V3) ̸= s, resulting in a contradiction.

□

Definition 3.10. Assume ϕ is a P∗
h-rectifiable measure. Recall that κ is the step of the

group G. For every x ∈ G we define the map s(ϕ, x) ∈ Nκ in the following way

s(ϕ, x) :=
{
s if Tanh(ϕ, x) ⊆ M(h) and s(Tanh(ϕ, x)) is the singleton {s},
0κ otherwise,

where 0κ denotes the κ-tuple vector with 0 entries.
Remark 3.11. The map s(ϕ, ·) is well defined and different from 0κ ϕ-almost everywhere
thanks to Theorem 3.8.
Proposition 3.12. Assume ϕ is a P∗

h-rectifiable measure. Then, the map x 7→ s(ϕ, x) is
ϕ-measurable, where on Nκ we consider the discrete topology.

Proof. Let ℏG be the constant introduced in Proposition 1.23. Let us first prove that there
exists α̃ := α̃(G) such that the following assertion holds
(3.10)

for every 1 ≤ h ≤ Q and for every V,W ∈ Gr(h), if V ⊆ CW(α̃), then dG(V,W) ≤ ℏG.
Indeed, if this was not the case, we can find an 1 ≤ h ≤ Q and sequences {Vi}, {Wi} in Gr(h)
such that Vi ⊆ CWi(i−1) and for which dG(Vi,Wi) > ℏG, for all i ∈ N. Thus, up to non
re-labelled subsequences, we can assume that Vi → V and Wi → W, for some V,W ∈ Gr(h),
thanks to Proposition 1.22. Thanks to the aformentioned convergences and the fact that
Vi ⊆ CWi(i−1) for every i ∈ N we deduce that V ⊆ W and thus V = W since they both have
homogeneous dimension h. But this latter equality is readily seen to be in contradiction with
the fact that dG(Vi,Wi) > ℏG, for all i ∈ N, since Wi → W and Vi → V.

The proof will be similar to the proof of Lemma 1.83, so we will not give complete
details. Let {Vℓ}ℓ=1,...,N be a finite α̃/3-dense set in Gr(h), where α̃ is defined above. For
every r ∈ (0, 1) ∩ Q and ℓ = 1, . . . , N we define the functions on G

fr,ℓ(x) := r−hϕ({w ∈ B(x, r) : dist(x−1w,Vℓ) ≥ α̃∥x−1w∥}) =: r−hϕ(I(x, r, ℓ)).
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We claim that the functions fr,ℓ are upper semicontinuous. Indeed, one can run the very
same argument starting with (1.69) in Lemma 1.83. This implies that the function

fℓ := lim inf
r∈Q,r→0

fr,ℓ,

is ϕ-measurable and as a consequence, since Tanh(ϕ, x) ⊆ M(h) for ϕ-almost every x ∈ G,
we infer that the set

Bℓ := {x ∈ G : fℓ(x) = 0} ∩ {x ∈ G : Tanh(ϕ, x) ⊆ M(h)},

is ϕ-measurable as well. If we prove that for ϕ-almost every x ∈ Bℓ there exists a non-
zero Haar measure ν in Tanh(ϕ, x) relative to a homogeneous subgroup V of G such that
dG(V,Vℓ) ≤ ℏG, we infer that

(3.11) s(Tanh(ϕ, x)) = {s(Vℓ)}, for ϕ-almost every x ∈ Bℓ,

and thus s(ϕ, x) = s(Vℓ) for ϕ-almost every x ∈ Bℓ. Indeed, if we are able to find such a
measure ν relative to V, (3.11) is an immediate consequence of the fact that if dG(V,Vℓ) ≤ ℏG,
Proposition 1.23 implies that V and Vℓ have the same stratification vector; and the fact that,
from Theorem 3.8, ϕ-almost everywhere the tangent subgroups have the same stratification.

In order to construct such a non-zero Haar measure ν, we fix a point x ∈ Bℓ in the
ϕ-full-measure subset of Bℓ such that the following conditions hold

(i) 0 < Θh
∗(ϕ, x) ≤ Θh,∗(ϕ, x) < ∞,

(ii) Tanh(ϕ, x) ⊆ M(h),
and we let {ri}i∈N be an infinitesimal sequence of rational numbers such that limi→∞ fri,ℓ(x) =
0.

Thanks to item (i) above and the compactness of measures, see [12, Proposition 1.59],
we can find a non re-labelled subsequence of ri such that

r−h
i Tx,riϕ ⇀ ν.

Such a ν belongs by definition to Tanh(ϕ, x) and thus there is a λ > 0 and a V ∈ Gr(h) such
that ν = λCh⌞V. Thanks to [89, Proposition 2.7], and arguing as in (1.72), we conclude in
particular that

V ⊆ {w ∈ G : dist(w,Vℓ) ≤ α̃∥w∥} = CVℓ
(α̃),

and then, from (3.10) we conclude that dG(V,Vℓ) ≤ ℏG, that was what we wanted to prove.
An immediate consequence of (3.11) is that

(3.12) if ℓ,m ∈ {1, . . . , N} and s(Vℓ) ̸= s(Vm) then ϕ(Bℓ ∩Bm) = 0.

On the other hand, the Bℓ’s cover ϕ-almost all G. To prove this latter assertion, we note that
since ϕ is P∗

h-rectifiable, for ϕ-almost all x ∈ G there is an infinitesimal sequence ri → 0, a
λ > 0 and a V ∈ Gr(h) such that r−h

i Tx,riϕ ⇀ λCh⌞V. Since the set {Vℓ : ℓ = 1, . . . , N} is
α̃/3-dense in Gr(h), there must exist an ℓ ∈ {1, . . . , N} such that

(3.13) V ⊆ {w ∈ G : dist(w,Vℓ) < α̃∥w∥}.

This last inclusion follows since there exists ℓ such that dG(V,Vℓ) ≤ α̃/3 and the observation
that every point in ∂B(0, 1)∩V is such that every point at minimum distance of it from Vℓ is
in B(0, 2) ∩ Vℓ. The previous inclusion, jointly with [89, Proposition 2.7], and arguing with
(1.73), implies that fℓ(x) = 0. This proves that x ∈ Bℓ and as a consequence that the Bℓ’s
cover ϕ-almost all G.

We are ready to prove the measurability of the map x 7→ s(ϕ, x). Fix an s ∈ S(h) and let
D(s) := {x ∈ G : s(ϕ, x) = s} ∩

⋃N
ℓ=1Bℓ. Since by the previous step the Bℓ’s cover ϕ-almost
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all G we know that {x ∈ G : s(ϕ, x) = s} \
⋃N

ℓ=1Bℓ is ϕ-null and thus it is ϕ-measurable.
Furthermore, thanks to (3.11) and (3.12) we know that up to ϕ-null sets we have

D(s) =
⋃

s∈S(h)
{Bℓ : s(Vℓ) = s}.

Since the sets Bℓ are ϕ-measurable, this concludes the proof that {x ∈ G : s(ϕ, x) = s} is
ϕ-measurable for every s ∈ S(h), taking also into account that s(ϕ, ·)−1(0) is ϕ-null. □

1.2. Proof of Theorem 3.4. This long and technical subsection is devoted to the core
of the proof of Theorem 3.4. The main ingredient for the proof is Proposition 3.18, which is
proved exploiting Proposition 3.15 and Proposition 3.17, together with Proposition 3.16.
Definition 3.13. Let C > 0 be a real number. Through the rest of this subsection we let

C10(C) := 1 + 2/C,
and

C11(C) := (10(1 + C10))2(Q+10).

Remark 3.14. Let h ∈ {1, . . . , Q}, and let s ∈ S(h) be fixed, let C > 0, and let V ∈ Gs
⊴(h)

with e(V) ≥ C, where e is defined in (1.35). Let L be a complementary subgroup of V and
P := PV the projection on V related to this splitting. Note that with the previous choices of
C10 and C11, thanks to Proposition 1.47 and Remark 1.27, we have

2(1 + C10)hCh(P (B(0, 1))) < C11/2h+3,

since Ch(P (B(0, 1))) ≤ Ch⌞V(B(0, C10)) = Ch
10.

Proposition 3.15. Let h ∈ {1, . . . , Q}, s ∈ S(h), and let G be a subset of Grs⊴(h) such that
there exists a constant C > 0 for which

e(V) ≥ C for all V ∈ G ,

where we recall that e was defined in (1.35). Further let r > 0, ε ∈ (0, 5−h−5C−3h
11 ],

r1 := (1 − ε/h)r, and µ := 2−7h−3C−5h
11 ε2, where C10 and C11 are defined in terms of C

in Definition 3.13.
Let ϕ be a Radon measure and let z ∈ supp (ϕ). We define Z(z, r1) to be the set of the

triplets (x, s,V) ∈ B(z, C11r1) × (0, C11r] ×Grs⊴(h) such that

(3.14) ϕ(B(y, t)) ≥ (1 − ε)(t/C11r)hϕ(B(z, C11r)),
whenever y ∈ B(x,C11s)∩xV and t ∈ [µs,C11s]. We moreover ask that we can find a compact
subset E of B(z, C11r1) such that z ∈ E,

(3.15) ϕ(B(z, C11r1) \ E) ≤ µh+1C−h
11 ϕ(B(z, C11r1)),

and such that for every x ∈ E and every s ∈ (0, C11r − d(x, z)] there is a V ∈ Grs⊴(h)
such that (x, s,V) ∈ Z(z, r1). Furthermore we assume that there exists W ∈ G such that
(z, r,W) ∈ Z(z, r1), and let us fix L a normal complementary subgroup of W such that
Proposition 1.48 holds. Let us denote P := PW the projection on W related to the splitting
G = W · L.

Let us recall that with the notation T (u, r) we mean the cylinder with center u ∈ G and
radius r > 0 related to the projection P = PW, see Definition 1.50. For every u ∈ P (B(z, r1))
let s(u) ∈ [0, r] be the infimum of the numbers λ with the following property: for every
λ < s ≤ r we have

(1) E ∩ T (u, s/4h) ̸= ∅, and
(2) ϕ

(
B(z, C11r) ∩ T (u,C10s)) ≤ µ−h(s/C11r)hϕ(B(z, C11r)).

Finally, we define
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(α) A := {u ∈ P (B(z, r1)) : s(u) = 0},
(β)

A1 :=
{
u ∈ P (B(z, r1)) : s(u) > 0, and ϕ

(
B(z, C11r) ∩ T (u,C10s(u))

)
≥ ε−1(s(u)/C11r)hϕ(B(z, C11r))

}
,

(γ) A2 :=
{
u ∈ P (B(z, r1)) : s(u) > 0, and ϕ

(
(B(z, C11r) \ E) ∩ T (u, s(u)/4h)

)
≥

2−1(s(u)/4hC11r)hϕ(B(z, C11r))
}

.
Then we have

(i) s(u) ≤ C11hµr for every u ∈ P (B(z, r1)),
(ii) The function u 7→ s(u) is lower semicontinuous on P (B(z, r1)) and as a consequence

A is compact,
(iii) P (B(z, r1)) ⊆ A ∪A1 ∪A2,
(iv) Ch(P (B(z, r)) \A) ≤ 5h+3C3h

11 Ch(P (B(0, 1)))εrh,
(v) P (E ∩ P−1(A)) = A, Sh(E ∩ P−1(A)) > 0 and there is a constant C > 1 such that

C−1Sh(E ∩ P−1(A)) ≤ ϕ(E ∩ P−1(A)) ≤ CSh(E ∩ P−1(A)).

Proof. We prove each point of the proposition in a separate paragraph. For the sake of
notation we write Z := Z(z, r1), and without loss of generality we will always assume that z =
0, since PW is a homogeneous homomorphism, see Proposition 1.48, and thus the statement
is left-invariant. Since it will be used here and there in the proof, we estimate ϕ(B(0, C11r) \
B(0, C11r1)). Since (0, r,W) ∈ Z, we infer that

ϕ(B(0, C11r1)) ≥ (1 − ε)(r1/r)hϕ(B(0, C11r)).
This implies that

ϕ(B(0, C11r) \B(0, C11r1)) = ϕ(B(0, C11r)) − ϕ(B(0, C11r1))
≤ ϕ(B(0, C11r))(1 − (1 − ε)(r1/r)h)
= ϕ(B(0, C11r))(1 − (1 − ε)(1 − ε/h)h) ≤ 2εϕ(B(0, C11r)),

(3.16)

where in the last inequality we used that h 7→ (1 − ε/h)h is increasing.
Proof of (i): Let u ∈ P (B(0, r1)) and let C11µhr < s ≤ r. Then

ϕ(B(0, C11r) ∩ T (u,C10s)) ≤ ϕ(B(0, C11r)) ≤ µ−h(s/C11r)hϕ(B(0, C11r)),
where the last inequality comes from the fact that C11µhr < s. Defined v := uδµ(u−1), we
immediately note that v ∈ W and that, from Proposition 1.47, d(v, u) = µd(u, 0) ≤ C10µr.
Furthermore, for every ∆ ∈ B(0, µr) we have

d(0, uδµ(u−1)∆) ≤ µ∥u∥ + ∥u∥ + ∥∆∥ ≤ µC10r1 + C10r1 + µr

≤ (C10(1 + µ) + 2µ)r1 ≤ C11r1,
(3.17)

where in the inequality above we used the fact that r1 > r/2, and C11 > 2(C10 + 1) >
C10(1 + µ) + 2µ. Thus, on the one hand we have B(v, µr) ⊆ B(u, (1 + C10)µr) and on the
other, thanks to (3.17), we deduce that
(3.18) B(v, µr) ⊆ B(0, C11r1),
Since (0, r,W) ∈ Z, this implies thanks to the definition of Z and E that

(3.19) ϕ(B(v, µr)) ≥ (1 − ε)µhC−h
11 ϕ(B(0, C11r1)) > ϕ(B(0, C11r1) \ E).
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Furthermore, thanks to (3.18), (3.19) and the definition of T (·, ·), we also infer that

∅ ≠ E ∩B(v, µr) ⊆ E ∩B(u, (1 + C10)µr) ⊆ E ∩ T (u, s/4h),

where the last inclusion is true since (1 + C10)µr ≤ C11µr/4 < s/(4h).
Proof of (ii): Let u ∈ P (B(0, r1)) and let 0 < s ≤ s(u). By definition of s(u), up to

eventually increasing s such that it still holds 0 < s ≤ s(u), there are two cases. Either

(3.20) ϕ(B(0, C11r) ∩ T (u,C10s)) > (1 + τ)hµ−h(s/C11r)hϕ(B(0, C11r)),

for some τ > 0 or

(3.21) E ∩ T (u, s/4h) = ∅.

If v ∈ P (B(0, r1)) is sufficiently close to u then s+C−1
10 d(u, v) ≤ (1+τ)s and s+C−1

10 d(u, v) ≤
r, since s(u) ≤ r thanks to point (i). If (3.20) holds, this implies that

ϕ(B(0, C11r) ∩ T (v, C10(s+ C−1
10 d(u, v)))) > ϕ(B(0, C11r) ∩ T (u,C10s))

≥ (1 + τ)hµ−h(s/C11r)hϕ(B(0, C11r))
≥ µ−h((s+ C−1

10 d(u, v))/C11r)hϕ(B(0, C11r)),

(3.22)

where the last inequality is true provided d(u, v) is suitably small. On the other hand, if
(3.21) holds, then

(3.23) E ∩ T (v, (s− 4hd(u, v))/4h) ⊆ E ∩ T (u, s/4h) = ∅.

Taking into account (3.22) and (3.23), this shows that

s(v) ≥ min{s− 4hd(u, v), s+ C−1
10 d(u, v)} = s− 4hd(u, v),

provided v is sufficiently close to u. This implies that lim infv→u s(v) ≥ s for every s ≤ s(u)
for which at least one between (3.20) and (3.21) holds. In particular, from the definition of
s(u), we deduce that there exists a sequence si → s(u)− such that at each si at least one
between (3.20) and (3.21) holds. In conclusion we infer

lim inf
v→u

s(v) ≥ s(u).

Proof of (iii): Suppose that u ∈ P (B(0, r1)) \ (A ∪ A1). Since u ̸∈ A ∪ A1, then s(u) > 0
and

(3.24) ϕ
(
B(0, C11r) ∩ T (u,C10s(u))

)
< ε−1(s(u)/C11r)hϕ(B(0, C11r)).

Thanks to the definition of s(u), for every 0 < s < s(u), up to eventually increasing s in such
a way that it still holds 0 < s < s(u), we have either

(3.25) ϕ(B(0, C11r) ∩ T (u,C10s)) > µ−h(s/C11r)hϕ(B(0, C11r)),

or

(3.26) E ∩ T (u, s/4h) = ∅.

Let us assume that (3.26) does not hold for some s < s(u). Then (3.26) does not hold for
any t such that s ≤ t < s(u). Thus, in this case, we deduce the existence of ti < s(u) such
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that ti → s(u) for which (3.25) holds. Thus we have
µ−h(s(u)/C11r)hϕ(B(0, C11r)) = lim

i→+∞
µ−h(ti/C11r)hϕ(B(0, C11r))

≤ lim sup
i→+∞

ϕ(B(0, C11r) ∩ T (u,C10ti))

≤ ϕ(B(0, C11r) ∩ T (u,C10s(u)))
≤ ε−1(s(u)/C11r)hϕ(B(0, C11r)),

(3.27)

that is a contradiction thanks to the choice of µ and ε. This proves that for every 0 < ρ < s(u)
we have E ∩ T (u, v/4h) = ∅ and thus

E ∩ int(T (u, s(u)/4h)) = ∅.

Let us now define the constants
s := 16hs(u)/ε, and σ := (2h− 1)ε/32h2.

Thanks to item (i), from which s(u) ≤ C11hµr, and from the very definition of µ, we deduce
that
(3.28) 0 < s(u) ≤ s = 16hs(u)/ε ≤ r − r1, and µ ≤ σ ≤ 1.
Thanks to the compactness of E and the definition of s(u) we have that

E ∩ T (u, s(u)/4h) ̸= ∅.
Let us fix x ∈ E ∩ T (u, s(u)/4h) and assume V ∈ Grs⊴(h) to be such that (x, s,V) ∈ Z. We
claim that
(3.29) ∥P (x−1y)∥ ≥ σ∥x−1y∥, for every y ∈ xV.
Assume by contradiction that there is a y ∈ xV such that ∥x−1y∥ = 1 and for which
∥P (x−1y)∥ < σ. Let us fix w ∈ B(0, σs) and let t ∈ R be such that |t| ≤ C10s(u)/(4hσ).
Then, we have

(3.30) d(0, xδt(x−1y)w) ≤ d(0, x) + |t|∥x−1y∥ + σs ≤ d(0, x) + C10s(u)
4hσ + σs.

Thanks to the choice of the constants and item (i), according to which s(u) ≤ C11hµr, we
infer that

C10s(u)
4hσ + σs ≤ C10s(u)(1 − 1/2h+ 8h/((2h− 1)ε))

≤ C102−7h−2ε2r(1 − 1/2h+ 8h/((2h− 1)ε)) ≤ C10εr/h,
(3.31)

where in the first inequality above we are using the fact that C10 ≥ 1, and in the second we
are using the explicit expression µ = 2−7h−3C−5h

11 ε2 and the fact that C−5h+1
11 < 1. Hence,

since x ∈ B(0, C11r1) putting together (3.30) and (3.31) we infer that
(3.32) d(0, xδt(x−1y)w) ≤ C11r1 + C10εr/h < C11r,

where the second inequality comes from the definition of r1 and the fact that C11 ≥ C10. As
a consequence of the previous computations we finally deduce that

B(xδt(x−1y), σs) ⊆ B(0, C11r), for every |t| ≤ C10s(u)/(4hσ).
We now prove that for every |t| ≤ C10s(u)/(4hσ) and every w ∈ B(0, σs), we have
(3.33) xδt(x−1y)w ∈ T (u,C10s(u)).
Indeed, thanks to Proposition 1.48, we have that

P (xδt(x−1y)w) = P (x)δt(P (x−1y))P (w),
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and thus since x ∈ T (u, s(u)/4h) by means of Proposition 1.51 we infer that

d(u, P (x)) ≤ C10s(u)/4h.

Thanks to this, and together with the fact that ∥P (w)∥ ≤ C10σs due to Proposition 1.47, we
can estimate

d(u, P (x)δt(P (x−1y))P (w)) ≤ d(u, P (x)) + |t|∥P (x−1y)∥ + C10σs

≤ C10s(u)
4h + C10s(u)

4h + C10σs

≤ C10s(u)
2h + C10

(
1 − 1

2h
)
s(u) ≤ C10s(u),

where in the second inequality of the last line we are using σs = s(u)(1 − 1/(2h)). Summing
up, the above computations yield that

(3.34) B(xδt(x−1y), σs) ⊆ B(0, C11r) ∩ T (u,C10s(u)), for every |t| ≤ C10s(u)/(4hσ).

Now we are in a position to write the following chain of inequalities

ϕ(B(0, C11r) ∩ T (u,C10s(u))) ≥ (2σs)−1
ˆ s(u)/4hσ

−s(u)/4hσ
ϕ(B(xδt(x−1y), σs))dt

≥ (2σs)−1(s(u)/2hσ)(1 − ε)(σs/rC11)hϕ(B(0, C11r))
= (1 − ε)(1 − 1/2h)h16h2(2h− 1)−2ε−1(s(u)/C11r)hϕ(B(0, C11r))
≥ ε−1(s(u)/C11r)hϕ(B(0, C11r)),

(3.35)

where the first inequality is true by applying Fubini theorem to the function F (t, z) :=
χB(0,σs)(δt(y−1x)x−1z) on the domain [−s(u)/(4hσ), s(u)/(4hσ)] × G, and by noticing that
when |t| ≤ s(u)/(4hσ) we have (3.34); the second inequality is true since x ∈ E and
then (x, s,V) ∈ Z for some V ∈ Grs⊴(h); and the last inequality is true since (1 − ε)(1 −
1/(2h))h16h2(2h− 1)−2 ≥ 1. Since (3.35) is a contradiction with the assumption u /∈ A1 we
get that (3.29) holds and thus P |V is injective, since it is also a homomorphism. Furthermore,
since V has the same stratification as W, Proposition 1.35 implies that V ·L = G, where L is
the chosen normal complementary subgroup of W. Thanks to [109, Proposition 3.1.5], there
exists an intrinsically linear function ℓ : W → L such that V = graph(ℓ) and thus P |V is also
surjective. In particular we can find a w ∈ xV in such a way that P (w) = u and, by using
(3.29) and d(u, P (x)) ≤ C10s(u)/4h, that follows from Proposition 1.51, and the fact that P
is a homogeneous homomorphism, we conclude that the following inequality holds

(3.36) ∥x−1w∥ ≤ σ−1∥P (x)−1P (w)∥ = σ−1∥P (x)−1u∥ ≤ C10s(u)
4hσ .

We now claim that the inclusion

(3.37) B(w, s(u)/4h) ⊆ (B(0, C11r) \ E) ∩ int(T (u, s(u)/4h)),

concludes the proof of item (iii). Indeed, we have (x, s,V) ∈ Z, and since w ∈ B(x,C11s)∩xV,
see (3.36), and we have µs ≤ s(u)/4h ≤ C11s, we infer, by approximation and using the
hypothesis, that

(3.38) ϕ(B(w, s(u)/4h)) ≥ (1 − ε)(s(u)/4hC11r)hϕ(B(0, C11r)).

Putting together (3.37) and (3.38) we deduce that

ϕ
(
(B(0, C11r) \ E) ∩ int(T (u, s(u)/4h))

)
≥ (1 − ε)(s(u)/4hC11r)hϕ(B(0, C11r)).
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and thus u ∈ A2, which proves item (iii). In order to prove the inclusion (3.37) we note that
since ∥x−1w∥ ≤ C10s(u)/(4hσ), see (3.36), we have thanks to the same computation we per-
formed in (3.30), (3.31), and (3.32), that B(w, s(u)/(4h)) ⊆ B(0, C11r). Furthermore, since
P (w) = u the inclusion (3.37) follows thanks to the fact that B(w, s(u)/4h) ⊆ T (u, s(u)/4h),
see Proposition 1.51, and the fact that int(T (u, s(u)/4h)) ∩ E = ∅.

Proof of (iv): Let τ > 1. Thanks to [102, Theorem 2.8.4], we deduce that there exists a
countable set D ⊆ A1 such that the following two hold

(1) the family {B(w,C2
10s(w)) ∩ W : w ∈ D} is a disjointed subfamily of

{B(w,C2
10s(w)) ∩ W : w ∈ A1},

(2) for every w ∈ A1 there exists a u ∈ D such that B(w,C2
10s(w))∩B(u,C2

10s(u))∩W ̸=
∅ and s(w) ≤ τs(u).

Furthermore, if we define for every u ∈ A1 the set

B̂(u,C2
10s(u)) :=

⋃
{B(w,C2

10s(w)) ∩ W : w ∈ A1,

B(u,C2
10s(u)) ∩B(w,C2

10s(w)) ∩ W ̸= ∅, s(w) ≤ τs(u)},
(3.39)

we have, thanks to [102, Corollary 2.8.5], that

A1 ⊆
⋃

u∈A1

B(u,C2
10s(u)) ∩ W ⊆

⋃
w∈D

B̂(w,C2
10s(w)).

An easy computation based on the triangle inequality, which we omit, leads to the following
inclusion

(3.40) B̂(u,C2
10s(u)) ⊆ W ∩B(u, (1 + 2τ)C2

10s(u)), for every u ∈ A1.

Since D ⊆ A1, and since T (u,C10s(u)) ⊆ P−1(B(u,C2
10s(u)) ∩ W) for every u ∈ A1, see

Proposition 1.51, we conclude, by exploiting the fact that

{B(w,C2
10s(w)) ∩ W : w ∈ D},

is a disjointed family, the following inequality

ϕ(B(0, C11r)) ≥
∑
u∈D

ϕ(B(0, C11r) ∩ T (u,C10s(u))) ≥ ε−1 ∑
u∈D

(s(u)/C11r)hϕ(B(0, C11r)),

where the last inequality above comes from the fact that D ⊆ A1. The above inequality can
be rewritten as

∑
u∈D s(u)h ≤ Ch

11εr
h. In particular, thanks to Remark 1.27, and (3.40) we

infer that
Ch(A1) ≤

∑
u∈D

Ch(B(u, (1 + 2τ)C2
10s(u)) ∩ W)

= C2h
10 (1 + 2τ)h

∑
u∈D

s(u)h ≤ C2h
10C

h
11(1 + 2τ)hεrh.

(3.41)

With a similar argument we used to prove the existence of D, we can construct a countable
set D′ ⊆ A2 such that the family {B(u,C10s(u)/4h)∩W : u ∈ D′} is disjointed and the family
{B̂(u,C10s(u)/4h) : u ∈ D′}, constructed as in (3.39), covers A2. In a similar way as in (3.40)
we have B̂(u,C10s(u)/(4h)) ⊆ W ∩ B(u, (1 + 2τ)C10s(u)/4h) for every u ∈ A2. Moreover,
since

T (u, s(u)/4h) ⊆ P−1(B(u,C10s(u)/4h) ∩ W),
for every u ∈ A2, see Proposition 1.51, we conclude by exploiting the fact that

{B(u,C10s(u)/(4h)) ∩ W : w ∈ D′},
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is a disjointed family, the following inequality

ϕ(B(0, C11r) \ E) ≥
∑

u∈D′

ϕ((B(0, C11r) \ E) ∩ T (u, s(u)/4h))

≥ 2−1ϕ(B(0, C11r))
∑

u∈D′

(s(u)/4hC11r)h,
(3.42)

where the last inequality holds since D′ ⊆ A2. From the previous inequality, (3.16), and the
fact that 0 ∈ E, we infer that∑

u∈D′

(s(u)/4hC11r)h ≤ 2ϕ(B(0, C11r) \ E)
ϕ(B(0, C11r))

≤ 2 · ϕ(B(0, C11r) \B(0, C11r1)) + ϕ(B(0, C11r1) \ E)
ϕ(B(0, C11r))

≤ 2 · 2εϕ(B(0, C11r)) + µh+1C−h
11 ϕ(B(0, C11r))

ϕ(B(0, C11r))
≤ 10ε.

(3.43)

Consequently, we deduce that

Ch(A2) ≤
∑

u∈D′

Ch(W ∩B(u, (1 + 2τ)C10s(u)/4h))

= (1 + 2τ)hCh
10
∑

u∈D′

(s(u)/4h)h ≤ 10(1 + 2τ)hCh
10C

h
11εr

h.
(3.44)

Finally, putting together (3.41), (3.44), item (iii) of this proposition, and Remark 1.27, we
conclude the following inequality

Ch(P (B(0, r)) \A) ≤ Ch(P (B(0, r)) \ P (B(0, r1))) + Ch(A1) + Ch(A2)
≤ Ch(P (B(0, 1)))rh(1 − (1 − ε/h)h) + C2h

10C
h
11(1 + 2τ)hεrh

+ 10(1 + 2τ)hCh
10C

h
11εr

h

≤ 50(1 + 2τ)hC3h
11 Ch(P (B(0, 1)))εrh,

where in the last inequality we used that 1 ≤ C10 ≤ C11, and that Ch(P (B(0, 1)) ≥ 1 since
P (B(0, 1)) ⊇ B(0, 1) ∩ W and Ch(B(0, 1) ∩ W) = 1, thanks to Remark 1.27. With the choice
τ = 2, item (iv) follows.

Proof of (v): Let u ∈ A and note that since s(u) = 0, for every s > 0 we have that

E ∩ T (u, s/4h) ̸= ∅.

Since the sets E ∩T (u, s/4h) are compact we infer the following equality thanks to the finite
intersection property

∅ ≠ E ∩
⋂
s>0

T (u, s/4h) = E ∩ P−1(u).

This implies that u ∈ P (E ∩ P−1(u)) for every u ∈ A, and as a consequence A ⊆ P (E ∩
P−1(A)). Since the inclusion P (E ∩P−1(A)) ⊆ A is obvious we finally infer that A = P (E ∩
P−1(A)). Moreover, thanks to item (iv) and to the choice of ε < 5−h−5C−3h

11 , we conclude
that Sh(A) > 0 thanks to the fact that Ch⌞W and Sh⌞W are equivalent, see Proposition 1.24,
and thanks to the following chain of inequalities

Ch(A) ≥ Ch(P (B(0, r))) − Ch(P (B(0, r)) \A)

≥ Ch(P (B(0, 1)))rh − 5h+3C3h
11 Ch(P (B(0, 1)))εrh ≥ 24

25r
h.
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Thanks to the fact that P is C10-Lipschitz, see Proposition 1.48, we further infer that

0 < Sh(A) = Sh(P (E ∩ P−1(A))) ≤ Ch
10Sh(E ∩ P−1(A)).

For every s sufficiently small and u ∈ A, by definition of s(u) and A, we have the following
chain of inequalities

ϕ(B(x,C10s)) ≤ ϕ
(
B(0, C11r) ∩ T (u,C10s)) ≤ µ−h(s/C11r)hϕ(B(0, C11r)),

whenever x ∈ E ∩ P−1(u), where the first inequality comes from the fact that x ∈ E ⊆
B(0, C11r1), and Proposition 1.51. Finally by [102, 2.10.17(2)] and the previous inequality
we infer

(3.45) ϕ⌞(E ∩ P−1(A)) ≤ C−h
10 C

−h
11 µ

−hϕ(B(0, C11r))
rh

Sh⌞(E ∩ P−1(A)).

On the other hand, if we assume x ∈ E and s sufficiently small, we have (x, s,V) ∈ Z for
some V ∈ Grs⊴(h). This implies that, by using the very definition of Z, that

ϕ(B(x, s)) ≥ (1 − ε)(s/C11r)hϕ(B(0, C11r)),

and thus by [102, 2.10.19(3)], we have

(3.46) ϕ⌞E ≥ (1 − ε)ϕ(B(0, C11r))
(C11r)h

Sh⌞E.

Putting together (3.45) and (3.46), we conclude the proof of item (v). □

Proposition 3.16. Let ϕ be a P∗,⊴
h -rectifiable measure such that there exists an s ∈ Nκ for

which for ϕ-almost every x ∈ G we have

(3.47) Tanh(ϕ, x) ⊆ {λSh⌞V : λ > 0 and V ∈ Grs⊴(h)}.

Then, the set

(3.48) G (x) := {V ∈ Grs⊴(h) : there exists Θ > 0 such that ΘSh⌞V ∈ Tanh(ϕ, x)},

is a compact subset of Grs⊴(h) for all x ∈ G for which (3.47) holds, and the sets

(3.49) GC := {x ∈ G : e(V) ∈ (C,∞) for every V ∈ G (x)},

where e is defined in (1.35), are ϕ-measurable for every C > 0.

Proof. The fact that G (x) is compact is an immediate consequence of Proposition 1.64,
the compactness of the Grassmannian in Proposition 1.22, and the convergence result in
Proposition 1.30. For every λ, k, r > 0 define the function Mλ,k,r(x,V) : G×Grs⊴(h) → R as

Mλ,k,r(x,V) := F0,k(r−hTx,rϕ, λCh⌞V),

where F0,k is defined in Definition 1.65. We claim that, for any choice of the parameters,
the function Mλ,k,r is continuous when G×Grs⊴(h) is endowed with respect to the topology
induced by the metric d+ dG, where dG is the metric on the Grassmannian. Indeed, assume
{xi}i∈N ⊆ G and {Vi} ⊆ Grs⊴(h) are two sequences converging to x ∈ G and V ∈ Grs⊴(h)
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respectively. Thanks to the triangle inequality we have

lim sup
i→∞

|Mλ,k,r(x,V) − Mλ,k,r(xi,Vi)| ≤ lim sup
i→∞

(
|Mλ,k,r(x,V) − Mλ,k,r(xi,V)|

+ |Mλ,k,r(xi,V) − Mλ,k,r(xi,Vi)|
)

≤ lim sup
i→∞

F0,k(r−hTx,rϕ, r
−hTxi,rϕ) + lim sup

i→∞
F0,k(λCh⌞V, λCh⌞Vi)

≤ lim sup
i→∞

r−(h+1)d(x, xi)ϕ(B(x, kr + d(x, xi)))

+ lim sup
i→∞

F0,k(λCh⌞V, λCh⌞Vi) = 0,

where the inequality in the fourth line comes from a simple computation that we omit and
the last identity comes from Proposition 1.30. This in particular implies that the function

M(x,V) := sup
k>0
k∈Q

inf
λ>0
λ∈Q

lim inf
r→0
r∈Q

Mλ,k,r(x,V)
kh+1 ,

is Borel measurable.
We now claim that for ϕ-almost every x ∈ G we have that V ∈ G (x) if and only if

M(x,V) = 0. Indeed if V ∈ G (x), there is a λ > 0 and an infinitesimal sequence {ri}i∈N such
that limi→∞ F0,k(r−h

i Tx,riϕ, λCh⌞V) = 0 for every k > 0, see Lemma 1.73. However, by the
scaling properties of F , see Remark 1.66, we can choose an another infinitesimal sequence
{si}i∈N ⊆ Q such that ri/si → 1, and then limi→∞ F0,k(s−h

i Tx,siϕ, λCh⌞V) = 0 for every
k > 0 as well, proving the first half of the claim. Vice-versa, if M(x,V) = 0, then for every
j ∈ N there exists a λj > 0, with λj ∈ Q, and an infinitesimal sequence {ri(j)} ⊆ Q such
that limi→∞ F0,1(ri(j)−hTx,ri(j)ϕ, λjCh⌞V) ≤ 1/j. Since 0 < Θh

∗(ϕ, x) ≤ Θh,∗(ϕ, x) < ∞ for
ϕ-almost every x ∈ G, we can argue as in the last part of the proof of Proposition 1.64 and
hence we can assume without loss of generality that λj converge to some non-zero λ and
that, for every j ∈ N, there exists ij ∈ N such that rij (j) is an infinitesimal sequence and
rij (j)−hTx,rij

(j)ϕ ⇀ λCh⌞V. This eventually concludes the proof of the claim.
Furthermore, since e, by Proposition 1.45, is lower semicontinuous on Grs⊴(h), we know

that for every C > 0 the set G × {W ∈ Grs⊴(h) : e(W) ≤ C} is closed in G ×Grs⊴(h) and in
particular, the set

M−1(0) ∩ G × {W ∈ Grs⊴(h) : e(W) ≤ C} = {(x,V) ∈ G ×Grs⊴(h) such that
M(x,V) = 0 and e(V) ≤ C},

(3.50)

is Borel. Now, since the projection on the first component of the above set is an analytic set,
by the very definition of analytic sets, and since every analytic set is universally measurable,
see for example [98, Section 2.2.4], we get that the set

{x ∈ G such that there exists V ∈ Grs⊴(h) with M(x,V) = 0 and e(V) ≤ C},

is ϕ-measurable. In particular its complement, that is GC up to ϕ-null sets - since M(x,V) = 0
if and only if V ∈ G (x) for ϕ-almost every x ∈ G - is ϕ-measurable as well. □

Proposition 3.17. Let h ∈ {1, . . . , Q}, s ∈ S(h), and ϕ be a P∗,⊴
h -rectifiable measure

supported on a compact set K and for which for ϕ-almost every x ∈ G we have

(3.51) Tanh(ϕ, x) ⊆ {λSh⌞V : λ > 0 and V ∈ Grs⊴(h)}.

Let us further assume that there exists a constant C > 0 such that ϕ(G\GC) = 0, where GC is
defined in (3.49). Throughout the rest of the statement and the proof we will always assume
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that C10 and C11 are the constants introduced in Definition 3.13 in terms of C. Furthermore,
let ε ∈ (0, 5−10(h+5)C−3h

11 ] and µ := 2−7h−3C−5h
11 ε2.

Then, there are ϑ, γ ∈ N, a ϕ-positive compact subset E of E(ϑ, γ) (see Definition 1.9),
and a point z ∈ E ∩ GC such that

(i) There exists a ρz > 0 for which ϕ(B(z, C11ρ)\E) ≤ µh+1C−h
11 ϕ(B(z, C11ρ)) for every

0 < ρ < ρz;
(ii) There exists an r0 ∈ (0, 5−10(h+5)C−3h

11 γ−1] such that for every w ∈ E and every
0 < ρ ≤ C11r0 we can find a Vw,ρ ∈ Grs⊴(h) such that e(Vw,ρ) ≥ C, see (1.35), and
(1) Fw,4C11ρ(ϕ,ΘCh⌞wVw,ρ) ≤ (4−1ϑ−1C−1

11 µ)(h+3) · (4C11ρ)h+1 for some Θ > 0,
(2) whenever y ∈ B(w,C11ρ) ∩ wVw,ρ and t ∈ [µρ,C11ρ] we have ϕ(B(y, t)) ≥

(1 − ε)(t/C11ρ)hϕ(B(w,C11ρ)),
(3) There exists a normal complementary subgroup Lw,ρ of Vw,ρ as in Proposi-

tion 1.47 such that
(1 − ε)ϕ(B(w,C11ρ) ∩ wTVw,ρ(0, ρ)) ≤ C−h

11 Ch(P (B(0, 1)))ϕ(B(w,C11ρ)),
where TVw,ρ is the cylinder related to the splitting G = Vw,ρ · Lw,ρ, see Defini-
tion 1.50, and where P := PVw,ρ denotes the projection relative to the splitting
G = Vw,ρ · Lw,ρ.

(iii) There exists an infinitesimal sequence {ρi(z)}i∈N ⊆ (0,min{r0, ρz}] such that for
every i ∈ N, every w ∈ E and every ρ ∈ (0, C11ρi(z)] we have ϕ(B(w,C11ρ)) ≥
(1 − ε)(ρ/ρi(z))hϕ(B(z, C11ρi(z))).

Proof. For every positive a, b ∈ R we define F (a, b) to be the set of those points in K for
which

brh ≤ ϕ(B(x, r)), for every r ∈ (0, a).
One can prove, with the same argument used in the proof of Proposition 1.10, see [180,
Proposition 1.14], that the sets F (a, b) are compact. As a consequence, this implies that the
sets

F̃ (a, b) :=
∞⋂

p=1
F (C11a, (1 − ε)b) \ F (C11a/p, b),

are Borel. Since ϕ is P∗
h-rectifiable, G can be covered ϕ-almost all by countably many

sets F̃ (a, b). Indeed, ϕ(G \ ∪a,b∈Q+F̃ (a, b)) = 0 since 0 < Θh
∗(ϕ, x) < +∞ holds ϕ-almost

everywhere. In particular thanks to Proposition 1.11 we can find a, b ∈ R and ϑ, γ ∈ N
such that ϕ(F̃ (a, b) ∩ E(ϑ, γ)) > 0. Since F̃ (a, b) ∩ E(ϑ, γ) is measurable, there must exist
a ϕ-positive compact subset of F̃ (a, b) ∩ E(ϑ, γ) that we denote with F . Notice that since
ϕ(G \ GC) = 0 the set F ∩ GC is measurable and ϕ-positive as well.

Let us denote by Grs,C⊴ (h) the set {V ∈ Grs⊴(h) such that e(V) ≥ C}. Since by the
very definition of GC we have Tanh(ϕ, x) ⊆ M(h,Grs,C⊴ (h)) for ϕ-almost every x ∈ F ∩ GC ,
we infer that Proposition 1.74 together with Severini-Egoroff theorem, that can be applied
since the functions x → dx,kr(ϕ,M(h,Grs,C⊴ (h))) are continuous in x for every k, r > 0 - see
Remark 1.72 - yield a ϕ-positive compact subset E of F ∩ GC and an r0 ≤ 5−10(h+5)C−3h

11 γ−1

such that

dx,4C11ρ(ϕ,M(h,Grs,C⊴ (h))) ≤ (4−1ϑ−1C−1
11 µ)(h+4) for every x ∈ E and every 0 < ρ ≤ C11r0.

(3.52)

Let us fix z to be a density point of E with respect to ϕ, and let us show that E and z satisfy
the requirements of the proposition. First, by construction E is ϕ-positive and contained in
E(ϑ, γ). Second, since z is a density point of E, item (i) follows if we choose ρz small enough.
Moreover, the bound (3.52) directly implies item (ii.1). Let us prove the remaining items.
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Since E ⊆ E(ϑ, γ), 4C2
11r0 < γ/2 and 4−1ϑ−1C−1

11 µ ≤ 2−10(h+1)ϑ, Proposition 1.75(i)
implies that for every w ∈ E and every 0 < ρ < C11r0 - choosing σ = 4−1ϑ−1C−1

11 µ and
t = 4C11ρ in Proposition 1.75 - there exists a Vw,ρ ∈ Grs,C⊴ (h) such that

ϕ(B(y, r) ∩B(wV, 4−1C−1
11 ϑ

−2µ2ρ)) ≥ (1 − 210(h+1)4−1C−1
11 µ)(r/s)hϕ(B(v, s)),

whenever y, v ∈ B(w, 2C11ρ) ∩ wVw,ρ and ϑ−1µρ ≤ r, s ≤ 2C11ρ. Since

210(h+1)4−1C−1
11 µ ≤ ε,

with the choices s = C11ρ and v = w, we finally infer
ϕ(B(y, r)) ≥ (1 − ε)(r/C11ρ)hϕ(B(w,C11ρ)),

for every µρ ≤ r ≤ C11ρ and every y ∈ B(w,C11ρ) ∩ wVw,ρ, and this proves item (ii.2). For
every w ∈ E and every 0 < ρ < C11r0 we choose one normal complementary subgroup Lw,ρ

of Vw,ρ as in Proposition 1.47, and we denote with P := PVw,ρ the projection relative to this
splitting. Eventually, Proposition 1.75(ii), with the choice k := C11, implies that for every
0 < ρ < C11r0 we have

ϕ(B(w,C11ρ) ∩ wTVw,ρ(0, ρ)) ≤ (1 + (2C11h+ 1)ϑ−1C−1
11 µ)C−h

11 Ch(P (B(0, 1)))ϕ(B(w,C11ρ))
≤ (1 + ε)C−h

11 Ch(P (B(0, 1)))ϕ(B(w,C11ρ)),

(3.53)

where the last inequality comes from the fact that (2C11h+1)ϑ−1C−1
11 µ < ε. Hence also item

(ii.3) is verified. In order to verify item (iii), note that since z ∈ E ⊆ F̃ (a, b) on the one hand
then there is an infinitesimal sequence {ρi(z)}i∈N such that

(3.54) ϕ(B(z, C11ρi(z)))
(C11ρi(z))h

≤ b.

On the other hand for every w ∈ E, and every 0 < ρ < a we have

(3.55) b ≤ 1
1 − ε

ϕ(B(w,C11ρ))
(C11ρ)h

.

Putting together (3.54) and (3.55) we finally infer that for every i ∈ N, every w ∈ E and
every ρ ∈ (0, a) we have

ϕ(B(z, C11ρi(z)))
ρi(z)h

≤ 1
1 − ε

ϕ(B(w,C11ρ))
ρh

,

concluding the proof of item (iii) and thus of the proposition. □

Let us now exploit Proposition 3.15, Proposition 3.16, and Proposition 3.17 to show the
following result which is at the core of the proof of Theorem 3.4.
Proposition 3.18. Assume ϕ is a P∗,⊴

h -rectifiable measure supported on a compact set K.
Then, there exists a Carnot subgroup W ∈ Gr⊴(h), a compact set K ′ ⊆ W, and a Lipschitz
function f : K ′ → G such that ϕ(f(K ′)) > 0.

Proof. Theorem 3.8 implies that for ϕ-almost every x ∈ G the elements of Tanh(ϕ, x) all share
the same stratification vector. Furthermore, thanks to Proposition 3.12, for every s ∈ S(h)
the set Ts := {x ∈ K : s(ϕ, x) = s} is ϕ-measurable. Thus, if we prove that for every s ∈ S(h)
there exists a Lipschitz function as in the thesis of the proposition whose image has positive
ϕ⌞Ts-measure, the proposition is proved since the sets Ts cover ϕ-almost all K and since
the locality of tangents hold, see Proposition 1.55. Thanks to this argument, we can assume
without loss of generality that there exists a s ∈ S(h) such that for ϕ-almost every x ∈ K
we have s(ϕ, x) = s.
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Let us further reduce ourselves to the setting in which there exists a constant C > 0 such
that ϕ(G \ GC) = 0, where GC is defined in (3.49). Thanks to Proposition 3.16, we know that
for ϕ-almost every x ∈ G the set G (x) defined in (3.48) is compact. Hence, taking item (i)
of Proposition 1.45 into account, for ϕ-almost every x ∈ G there exists a constant C(x) > 0
such that e(V) ≥ C(x) for every V ∈ G (x). This readily implies that

ϕ(G \ ∪n∈NG1/n) = 0.
Hence, since G1/n is ϕ-measurable for every n ∈ N, see Proposition 3.16, we can reduce, with
the same argument used in the previous paragraph, to deal with the case in which there exists
C > 0 such that ϕ(G \ GC) = 0.

Let C10 := C10(C) and C11 := C11(C) be defined as in Definition 3.13, and let ε̃ ≤
5−10(h+5)C−3h

11 , and µ̃ := 2−7h−3C−5h
11 ε̃2. Let E ⊆ K be the compact set and let z ∈ E∩GC be

a point yielded by Proposition 3.17 with respect to ε̃, µ̃. Furthermore let ε̃ ≤ ε ≤ 5−h−5C−3h
11 ,

and µ := 2−7h−3C−5h
11 ε2 such that (1 − ε̃)2 ≥ (1 − ε). We define

r := ρ1(z), and r1 := (1 − ε/h)r,
where ρ1(z) is the first term of the sequence {ρi(z)}i∈N yielded by item (iii) of Proposi-
tion 3.17.

Let us check that the compact set E ∩ B(z, C11r1) satisfies the hypothesis of Proposi-
tion 3.15 with respect to the choiches ε, µ, r. First of all, since r < ρz, item (i) of Proposi-
tion 3.17 implies that (3.15) holds since µ̃ ≤ µ. Secondly, since r ≤ r0, item (ii.2) of Proposi-
tion 3.17 implies that for every w ∈ E and every 0 < ρ < C11r there exists a Vw,ρ ∈ Grs⊴(h)
such that whenever y ∈ B(w,C11r) ∩ wVw,ρ and t ∈ [µρ,C11ρ] we have

ϕ(B(y, t)) ≥ (1 − ε̃)(t/C11ρ)hϕ(B(w,C11ρ)).
Furthermore, since r = ρ1(z), thanks to item (iii) of Proposition 3.17 we finally infer that for
every w ∈ E and every 0 < ρ < C11r we have

ϕ(B(y, t)) ≥ (1 − ε̃)(t/C11ρ)hϕ(B(w,C11ρ)) ≥ (1 − ε̃)2(t/C11r)hϕ(B(z, C11r))
≥ (1 − ε)(t/C11r)hϕ(B(z, C11r)),

(3.56)

whenever y ∈ B(w,C11r) ∩ wVw,ρ and t ∈ [µρ,C11ρ]. The above paragraph shows that the
hypotheses of Proposition 3.15 are satisfied by z and E ∩ B(z, C11r1) with the choices of
r, r1, ε, µ as above.

Throughout the rest of the proof, for the sake of readability, E will stand for
E ∩ B(z, C11r1), and in order to conclude the argument we will need to use the other two
pieces of information yielded by Proposition 3.17. Indeed, since r < C11r0, item (ii.3) of
Proposition 3.17 implies that
(3.57) (1 − ε)ϕ(zTVz,r (0, r) ∩B(z, C11r)) ≤ Ch(P (B(0, 1)))C−h

11 ϕ(B(z, C11r)),
where T is the cylinder related to the splitting G = Vz,r · Lz,r, and Lz,r is one normal
complementary subgroup of Vz,r chosen as in item (ii.3) of Proposition 3.17. Furthermore,
thanks to item (ii.1) of Proposition 3.17 and the fact that r < r0 we know that there exists
Θ > 0 such that
(3.58) Fz,4C11r(ϕ,ΘCh⌞zVz,r) ≤ (4−1ϑ−1C−1

11 µ)h+3 · (4C11r)h+1.

The bound (3.58) together with Proposition 2.5, that we can apply since 4C11r ≤ γ−1, and
2−1(4−1ϑ−1C−1

11 µ)h+3 ≤ δG, where δG was introduced in Definition 2.4, imply that
(3.59)

sup
w∈E∩B(z,C11r)

dist
(
w, zVz,r

)
4C11r

≤ 21+1/(h+1)ϑ1/(h+1)(2−1(4−1ϑ−1C−1
11 µ)h+3)

1
h+1 ≤ 2C−1

11 µ.
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The above bound shows that the set E inside the ball B(z, C11r) is very squeezed around
the plane Vz,r. From now on we should denote W := Vz,r, P := PVz,r , L := Lz,r, and
T (·, r) := TW(·, r). In order to simplify the notation, since all the statements are invariant
up to substituting ϕ with Tz,1ϕ, we can assume that z = 0. Let us recall once more that
e(Vz,r) ≥ C from item (ii) of Proposition 3.17.

Since it will turn out to be useful later on, we estimate the distance of the points w of
E ∩ T (0, r1) from 0. Thanks to Proposition 1.51 and the fact that w ∈ T (0, r1), we have
∥PW(w)∥ ≤ C10r1. On the other hand, (1.38) and (3.59) imply that

∥PL(w)∥ ≤ C10dist(w,W) ≤ 8C10µr1.

This in particular implies that

d(0, w) ≤ ∥PW(w)∥ + ∥PL(w)∥ ≤ C10r1 + 8C10µr1 ≤ 2C10r1,

showing that

(3.60) E ∩ T (0, r1) ⊆ B(0, 2C10r1).

In the following A, A1 and A2 are the sets inside P (B(0, r1)) constructed in the statement
of Proposition 3.15 with respect to the 0 and the plane W. Now, let Ã be the set of those
u ∈ A for which there exists ρ(u) > 0 such that

(3.61) ϕ(B(0, C11r) ∩ T (u, s)) ≤ 2(1 − ε)4(s/C11r)hCh(P (B(0, 1)))ϕ(B(0, C11r)),

for all 0 < s < ρ(u). We claim that Ã is a Borel set. To prove this, we note that

Ã =
⋃

k∈N
{u ∈ A : (3.61) holds for every 0 < s < 1/k} =:

⋃
k∈N

Ãk.

Let us show that Ãk is a compact set for every k ∈ N, and in order to do this, let us assume
{ui}i∈N is a sequence of points of Ãk. Since Ãk ⊆ A, and A is compact, we can suppose that,
up to a non re-labelled subsequence, ui converges to some u ∈ A. Thus, we have that for
every 0 < s < 1/k the following chain of inequality holds

ϕ(B(0, C11r) ∩ T (u, s)) ≤ lim sup
i→∞

ϕ(B(0, C11r) ∩ T (ui, s+ d(u, ui)))

≤ 2(1 − ε)4Ch(P (B(0, 1)))(s/C11r)hϕ(B(0, C11r)).

This concludes the proof of the fact that Ãk is compact and thus Ã is an Fσ set, and thus
Borel.

Let us notice that, since r1 < r, by a compactness argument one finds that there exists a
s̃ := s̃(r1, r) such that whenever u ∈ P (B(0, r1)), then P (B(u, s̃)) ⊆ P (B(0, r)). The family

B := {P (B(u, s)) : u ∈ A \ Ã, and s ≤ s̃ does not satisfy (3.61)}

is a fine cover of A\Ã by the very definition of Ã. Thus [102, 2.8.17] with a routine argument
implies that B is a Sh⌞(A \ Ã)-Vitali relation ([102, 2.8.16]). Therefore, the set A \ Ã can
be covered Sh-almost all by a sequence of disjointed projected balls {P (B(uk, sk))}k∈N such
that uk ∈ A \ Ã and

ϕ(B(0, C11r) ∩ T (uk, sk)) > 2(1 − ε)4Ch(P (B(0, 1)))(sk/C11r)hϕ(B(0, C11r)),

for every k ∈ N. Note that since T (uk, sk) = P−1(P (B(uk, sk))), see Proposition 1.51, we get
that {T (uk, sk)}k∈N is a disjointed family of cylinders. Moreover, from the very definition of
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s̃, since uk ∈ P (B(0, r1)) and sk ≤ s̃, we have that P (B(uk, sk)) ⊆ P (B(0, r)). This implies
that

ϕ(T (0, r) ∩B(0, C11r)) ≥
∑
k∈N

ϕ(B(0, C11r) ∩ T (uk, sk))

> 2(1 − ε)4Ch(P (B(0, 1)))C−h
11 r

−hϕ(B(0, C11r))
∑
k∈N

sh
k .

(3.62)

Therefore, we have

Ch(A \ Ã) =
∑
k∈N

Ch(P (B(uk, sk))) ≤ Ch(P (B(0, 1)))
∑
k∈N

sh
k

< 2−1(1 − ε)−4ϕ(T (0, r) ∩B(0, C11r))Ch
11r

h

ϕ(B(0, C11r))
≤ 2−1(1 − ε)−5Ch(P (B(0, 1)))rh

≤ 27
50Ch(P (B(0, 1)))rh,

where the second inequality on the second line above follows from (3.57). Furthermore, from
the previous inequality and from item (iv) of Proposition 3.15 we deduce that

Ch(Ã) = Ch(P (B(0, r))) − Ch(P (B(0, r)) \A) − Ch(A \ Ã)

> Ch(P (B(0, 1)))rh − 5h+3C3h
11 εCh(P (B(0, 1)))rh − Ch(P (B(0, 1)))27

50r
h

≥ (1 − 1/25 − 27/50)Ch(P (B(0, 1)))rh >
2
5Ch(P (B(0, 1)))rh.

Since Ã is measurable, we can find a compact set Â ⊆ Ã and a δ ∈ (0, εr/h) such that
Ch(Â) > 0 and (3.61) holds for every u ∈ Â and s ∈ (0, δ). This can be done by taking an
interior approximation with compact sets of Ã.

Thanks to item (v) of Proposition 3.15 we know that

(3.63) Â ⊆ A = P (E ∩ P−1(A)),

and thus for every u ∈ Â we can find a x ∈ E such that P (x) = u. We claim that for every
x ∈ E for which P (x) ∈ Â, every s < min{r/4, δ/(1 + C11)} and every w ∈ Vx,s we have

(3.64) ∥P (w)∥ > ∥w∥/2C11.

Suppose by contradiction that there are an s < min{r/4, δ/(1 + C11)} and a w ∈ Vx,s with
∥w∥ = 1 such that ∥P (w)∥ ≤ 1/2C11. This would imply that for every k = 0, . . . , ⌊C11/4⌋−1
and every p ∈ B(0, s/2) we have, by exploiting P (x) = u and that P is a homogeneous
homomorphism, that

d(P (xδ2ks(w)p), u) = d(δ2ks(P (w))P (p), 0) ≤∥δ2ks(P (w))∥ + ∥P (p)∥
≤ 2ks∥P (w)∥ + ∥P (p)∥ ≤ ks/C11 + C10s ≤ (1 + C10)s.

(3.65)

Since u ∈ Â ⊆ A ⊆ P (B(0, r1)), and since P (x) = u, we conclude that x ∈ T (0, r1). Hence,
taking into account that r1 < r, thanks to the inclusion (3.60), we have

d(xδ2ks(w)p, 0) ≤ ∥x∥ + 2ks+ s ≤ 2C10r + (2k + 1)s < 2C10r + 3C11r/4 < C11r.(3.66)

Putting together (3.65) and (3.66), we infer that for every k = 0, . . . , ⌊C11/4⌋ − 1 we have

B(xδ2ks(w), s/2) ⊆ T (u, (1 + C10)s) ∩B(0, C11r).
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Furthermore, since x ∈ E, B(xδks(w), s/2) are disjoint and contained in B(x,C11s), we have
by items (ii.2) and (iii) of Proposition 3.17 that

ϕ
(
B(0, C11r) ∩ T (u, (1 + C10)s)

)
≥

⌊C11/4⌋−1∑
k=1

ϕ(B(xδks(w), s/2))

≥ (1 − ε)C11
8

( s/2
C11s

)h
ϕ(B(x,C11s))

≥ (1 − ε)2C11
8

( s/2
C11r

)h
ϕ(B(0, C11r))

= (1 − ε)2 C11
2h+3

( s

C11r

)h
ϕ(B(0, C11r)).

(3.67)

Since by assumption u ∈ Â ⊆ Ã and (1 + C10)s < δ, we infer thanks to (3.67) and the
definition of Â that

(1 − ε)2 C11
2h+3

( s

C11r

)h
ϕ(B(0, C11r)) ≤ ϕ

(
B(0, C11r) ∩ T (u, (1 + C10)s)

)
≤ 2(1 − ε)4(1 + C10)h

( s

C11r

)h
Ch(P (B(0, 1)))ϕ(B(0, C11r)).

(3.68)

The chain of inequalities (3.68) is however in contradiction with the choice of C11 thanks to
Remark 3.14, and thus the claim (3.64) is proved.

Since P restricted to E ∩ P−1(A) is surjective on Â as remarked after (3.63), thanks to
the axiom of choice there exists a function f : Â → E ∩ P−1(A) such that P (f(u)) = u.
We claim that for ϕ-almost every x ∈ f(Â) there exists a r(x) > 0 such that for every
y ∈ f(Â) ∩B(x, r(x)) we have

(3.69) ∥P (x)−1P (y)∥ = ∥P (x−1y)∥ > C−2
11 ∥x−1y∥ = C−2

11 ∥f(P (x))−1f(P (y))∥,
where the last identity comes from the fact that f is bijective on its image and thus the left
and right inverse must coincide. In order to prove the latter claim, assume by contradiction
that there exists an x ∈ f(Â) such that Tanh(ϕ, x) ⊆ M(h,Grs⊴(h)) and a sequence {yi}i∈N ⊆
f(Â), with yi → x, such that

(3.70) ∥P (x−1yi)∥ ≤ C−2
11 ∥x−1yi∥, for every i ∈ N.

Defined ρi := ∥x−1yi∥, thanks to the hypothesis on x and the definitions of yi and ρi we can
assume without loss of generality that

(1) for every i ∈ N we have ρi ≤ min{r/4, δ/(1 + C11)},
(2) the points gi := δ1/ρi

(x−1yi) converge to some y ∈ ∂B(0, 1) such that ∥P (y)∥ ≤ C−2
11 ,

(3) ρ−h
i Tx,ρiϕ ⇀ λCh⌞V for some λ > 0 and V ∈ Grs⊴(h).

Since Ch⌞V(∂B(p, s)) = 0, see e.g., [132, Lemma 3.5], for every p ∈ G and every s ≥ 0,
thanks to [89, Proposition 2.7] we infer that

λCh⌞V(B(y, ρ)) = lim
i→∞

Tx,ρiϕ(B(y, ρ))/ρh
i ≥ lim

i→∞
Tx,ρiϕ(B(gi, ρ− d(gi, y)))/ρh

i

≥ lim
i→∞

ϕ(B(yi, ρiρ/2))/ρh
i ≥ ϑ−1(ρ/2)h > 0,

where we stress that in the second inequality in the second line we are using that there
exists ϑ, γ ∈ N such that E ⊆ E(ϑ, γ), since E is provided by Proposition 3.17. The above
computation shows that the (contradiction) assumption (3.70) implies that at x there is a flat
tangent measure whose support V contains an element y ∈ ∂B(0, 1) such that ∥P (y)∥ ≤ C−2

11 .
Let us prove that if
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(HC) there exists a suitably big i0 ∈ N such that we can find a qi0 ∈ Vx,ρi0
such that

d(y, qi0) ≤ µ,

then we achieve a contradiction with (3.64), and thus we prove the claim (3.69). Indeed, the
claim (HC) above would imply thanks to the definition of µ, (3.64), Proposition 1.47, and
Proposition 1.48, that

(4C11)−1 < (1 − µ)/2C11 ≤ (∥y∥ − ∥y−1qi0∥)/2C11 ≤ ∥qi0∥/2C11

< ∥P (qi0)∥ ≤ ∥P (y)∥ + ∥P (y−1qi0)∥ ≤ C−2
11 + C10µ < 2C−2

11 ,

which is a contradiction since C11 > 10Q.
In this paragraph we prove the claim (HC), which is sufficient to conclude the proof of

the claim (3.69). Let Θi be the positive numbers yielded by item (ii.1) of Proposition 3.17
with the choices ρ := ρi around the point x, and notice that

lim sup
i→∞

F0,4C11(λCh⌞V,ΘiCh⌞Vx,ρi) ≤ lim sup
i→∞

F0,4C11

(Tx,ρiϕ

ρh
i

, λCh⌞V
)

+ lim sup
i→∞

F0,4C11

(Tx,ρiϕ

ρh
i

,ΘiCh⌞Vx,ρi

)
= lim sup

i→∞
F0,4C11

(Tx,ρiϕ

ρh
i

,ΘiCh⌞Vx,ρi

)

= lim sup
i→∞

Fx,4C11ρi

(
ϕ,ΘiCh⌞xVx,ρi

)
ρh+1

i

≤ (ϑ−1µ)(h+3),

(3.71)

where the identity in the third line above comes from Lemma 1.73, the second identity from
the scaling property in Remark 1.66 and the last inequality from item (ii.1) of Proposition 3.17
and some algebraic computations that we omit. Defined g(w) := (min{1, 2 − ∥w∥})+ by
Proposition 1.29 for every V′ ∈ Gr(h) we have

ˆ
gdCh⌞V′ = h

ˆ
sh−1(min{1, 2 − |s|})+ds

= h

(ˆ 1

0
sh−1 +

ˆ 2

1
sh−1(2 − s)ds

)
= 2h+1 − 1

h+ 1 .

(3.72)

Therefore, since supp (g) ⊆ B(0, 4C11), thanks to (3.71) we infer that

lim sup
i→∞

|λ− Θi| = lim sup
i→∞

|λ
´
gdCh⌞V − Θi

´
gdCh⌞Vx,ρi |´

gdCh⌞V

≤ lim sup
i→∞

(h+ 1)F0,4C11(λCh⌞V,ΘiCh⌞Vx,ρi)
2h+1 − 1 ≤ (h+ 1)(ϑ−1µ)(h+3)

2h+1 − 1
≤ 2(ϑ−1µ)(h+3).

(3.73)

Let p ∈ V ∩ B(0, 1) and ℓ(w) := (µ∥p∥ − ∥p−1w∥)+. The function ℓ is a positive 1-Lipschitz
function whose support is contained in B(0, (1+µ)∥p∥) and therefore, thanks to Remark 1.66,
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we deduce that

lim inf
i→∞

λ

ˆ
ℓ(w)dCh⌞Vx,ρi ≥ λ

ˆ
ℓ(w)dCh⌞V − lim sup

i→∞
λ

∣∣∣∣ ˆ ℓ(w)dCh⌞V −
ˆ
ℓ(w)dCh⌞Vx,ρi

∣∣∣∣
≥ λ

ˆ
ℓ(w)dCh⌞V − lim sup

i→∞
|λ− Θi|

ˆ
ℓ(w)dCh⌞Vx,ρi

− lim sup
i→∞

∣∣∣∣ ˆ ℓ(w)dλCh⌞V −
ˆ
ℓ(w)dΘiCh⌞Vx,ρi

∣∣∣∣
≥ λ

ˆ
ℓ(w)dCh⌞V − lim sup

i→∞
|λ− Θi|

ˆ
ℓ(w)dCh⌞Vx,ρi

− lim sup
i→∞

F0,(1+µ)∥p∥(λCh⌞V,ΘiCh⌞Vx,ρi).

(3.74)

Let us bound separately the two last terms in the last line above. Thanks to the triangle
inequality the points qi ∈ Vx,ρi of minimal distance of p from Vx,ρi are contained in B(0, 2∥p∥).
This, together Remark 1.27, implies that

(3.75)
ˆ
ℓ(w)dCh⌞Vx,ρi ≤ µ∥p∥Ch⌞Vx,ρi(B(qi, (3 + 2µ)∥p∥)) ≤ (3 + 2µ)h+1∥p∥h+1.

On the other hand, thanks to Remark 1.66 and the fact that Ch⌞V and Ch⌞Vx,ρi are invariant
under rescaling, we infer that

(3.76) F0,(1+µ)∥p∥(λCh⌞V,ΘiCh⌞Vx,ρi) =
((1 + µ)∥p∥

4C11

)h+1
F0,4C11(λCh⌞V,ΘiCh⌞Vx,ρi).

Putting together (3.71), (3.73), (3.74), (3.75) and (3.76) we finally infer that

lim inf
i→∞

λ

ˆ
ℓ(w)dCh⌞Vx,ρi ≥ λ

ˆ
ℓ(w)dCh⌞V − 2(ϑ−1µ)(h+3)(3 + 2µ)h+1∥p∥h+1

−
((1 + µ)∥p∥

4C11

)h+1
(ϑ−1µ)(h+3)

≥ λ

ˆ
ℓ(w)dCh⌞V − (ϑ−1µ)(h+3)∥p∥h+1(2(3 + 2µ)h+1 + 1

)
.

(3.77)

Finally, Lemma 1.62 and the fact that x ∈ E(ϑ, γ) imply that λ ≥ ϑ−1. This together with
a simple computation that we omit, based on Proposition 1.29, shows that

(3.78) λ

ˆ
ℓ(w)dCh⌞V ≥ ϑ−1(µ∥p∥)h+1/(h+ 1).

Putting together (3.77) and (3.78) we eventually infer that

lim inf
i→∞

λ

ˆ
ℓ(w)dCh⌞Vx,ρi ≥ ϑ−1(µh+1/(h+ 1) − 22(h+2)µ(h+3))∥p∥h+1 > 0,

proving that for every p ∈ B(0, 1) ∩ V we have B(p, µ∥p∥) ∩ Vx,ρi ̸= ∅ provided i is chosen
suitably big. Thus the claim (HC) is proved taking p = y.

Let us conclude the proof of the proposition exploiting the claim (3.69) that we have
proved. Defined B to be the set of full measure in f(Â) on which (3.69) holds, we note that
since B(P (x), r) ⊆ P (B(x, r)), the (3.69) implies the following one: for every u ∈ P (B) there
exists a r(u) > 0 such that

(3.79) ∥f(u)−1f(w)∥ ≤ C2
11∥u−1w∥, whenever w ∈ Â ∩B(u, r(u)).
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Furthermore, note that thanks to the proof of item (v) of Proposition 3.15 and recalling that
f(Â) ⊆ E ∩P−1(A), we deduce that Sh⌞f(Â) is mutually absolutely continuous with respect
to ϕ and by Proposition 1.34 we finally infer that

Sh(Â \ P (B)) = Sh(P (f(Â) \ B)) = 0,
where the first equality above comes from the fact that f : Â → f(Â) is bijective.

We now prove that if r(u) is chosen to be the biggest radius for which (3.79) holds, then
the map u 7→ r(u) is upper semicontinuous on Â. Indeed, assume {ui}i∈N is a sequence in
Â such that ui → u ∈ Â and lim supi→∞ r(ui) = r0 ≥ 0. If r0 = 0, then the inequality
lim supi→∞ r(ui) ≤ r(u) is trivially satisfied. Thus, we can assume that r0 > 0, and, without
loss of generality, also that the lim sup is actually a lim. For every fixed 0 < s < r0 there
exists an i0 ∈ N such that

s+ d(u, ui) < r(ui) for every i ≥ i0.

As a consequence B(u, s) ⊆ B(ui, r(ui)) and thus for every y ∈ Â ∩ B(u, s) and i ≥ i0 we
have

∥f(u)−1f(y)∥ ≤ ∥f(u)−1f(ui)∥ + ∥f(ui)−1f(y)∥ ≤ C2
11∥u−1

i u∥ + C2
11∥u−1

i y∥.(3.80)

Sending i to +∞, thanks to (3.80) we conclude that for every y ∈ B(u, s) ∩ Â we have
∥f(u)−1f(y)∥ ≤ C2

11∥u−1y∥ and thus s ≤ r(u). The arbitrariness of s concludes that r is
upper semicontinuous and thus for every j ∈ N the sets

Lj := {w ∈ Â : r(w) ≥ 1/j},
are Borel. Furthermore, since r(u) > 0 everywhere on P (B), we infer that P (B) ⊆ ∪j∈NLj .
This, jointly with the fact that Sh(Â) > 0, and that Sh(Â \ P (B)) = 0 tells us that we can
find a j ∈ N and compact subset A of Lj such that Sh(A) > 0 and diam(A) < 1/2j.

Let us conclude the proof by showing that f is Lipschitz on A and that ϕ(f(A)) > 0.
The fact that f(A) is ϕ-positive follows from Proposition 1.47, item (v) of Proposition 3.15
and the following computation

0 < Sh(A) = Sh(P (f(A))) ≤ Ch
10Sh(f(A)).

On the other hand, for every u, v ∈ A we have d(u, v) ≤ 1/2j and since u, v ∈ Lj then
∥f(u)−1f(v)∥ ≤ C2

11∥u−1v∥.
This eventually concludes the proof of the proposition. □

Let us now conclude the chapter with the proof of Theorem 3.4.

Proof of Theorem 3.4. If we prove the result for ϕ⌞B(0, k) for every k ∈ N, the general case
follows taking into account the locality of tangents and the Lebesgue Differentiation Theorem
in Proposition 1.55. Therefore, we can assume without loss of generality that ϕ is supported
on a compact set. Let us set

F := {∪i∈Nfi(Ki) : Ki compact subset of Wi ∈ Gr⊴(h), and fi : Ki → G is Lipschitz}.
(3.81)

Let m := infF ∈F {ϕ(G \ F )}. We claim that if m = 0 the proof of the proposition is
concluded. Indeed, if m = 0 we can take Fn ∈ F such that ϕ(G \ Fn) < 1/n and then
ϕ(G \ ∪n∈NFn) = 0. Let us prove that m = 0. Indeeed, if by contradiction m > 0, we can
take, as before, F ′

n ∈ F such that 0 < ϕ(G \ ∪n∈NF
′
n) ≤ m. Since F ′ := ∪n∈NF

′
n is Borel,

we have, thanks to the locality of tangents and to the Lebesgue Differentiation Theorem in
Proposition 1.55, that ϕ⌞F ′ is a P∗,⊴

h -rectifiable measure with compact support. Thus we
can apply Proposition 3.18 to conclude that there exists W ∈ Gr⊴(h), K a compact subset
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of W, and a Lipschitz function f : K → G such that ϕ⌞F ′(f(K)) > 0. Thus we get that
ϕ(G \ (f(K) ∪ F ′)) < m, that is a contradiction with the definition of m.

In order to prove the last part of the theorem, let us notice that, thanks to the locality of
tangents and to the Lebesgue Differentiation Theorem in Proposition 1.55, we can reduce to
ϕ⌞E(ϑ, γ), thanks also to Proposition 1.11. Moreover, taking into account that Sh⌞E(ϑ, γ)
is mutually absolutely continuous with respect to ϕ⌞E(ϑ, γ), see Proposition 1.56, we can
finally reduce to prove that Sh⌞f(K) is a Pc

h-rectifiable measure whenever K is a compact
subset of W ∈ Gr⊴(h) and f : K → G is a Lipschitz function. The fact that Sh⌞f(K)
is a Pc

h-rectifiable measure follows from the following claim: if K is a compact subset of
W ∈ Gr⊴(h) and f : K → G is a Lipschitz function, then for Sh⌞f(K)-almost every x ∈ G
we have that there exists W(x) ∈ Gr(h) such that the following convergence of measures
holds
(3.82) r−hTx,rSh⌞f(K) ⇀ Sh⌞W(x), as r goes to 0.
Let us finally sketch the proof of (3.82). Since W ∈ Gr⊴(h), i.e., it admits a normal comple-
mentary subgroup, we get that W is a Carnot subgroup of G, see [29, Remark 2.1]. Thus
we can apply Pansu–Rademacher theorem to f : K ⊆ W → G, see [161, Theorem 3.4.11], to
obtain that f is Pansu-differentiable Sh-almost everywhere, with Pansu differential df , and
the area formula holds, see [161, Corollary 4.3.6]. The proof of (3.82) with W(x) := df(x)(W)
for Sh⌞f(K)-almost every x is now just a routine task, building on [161, Proposition 4.3.1
and Proposition 4.3.3], and by using the area formula in [161, Corollary 4.3.6]. We do not
give all the details as the proof follows verbatim as in the argument contained in [178, pages
716-717], with the obvious substitutions taking into account that the authors in [178] only
deal with Heisenberg groups Hn in the case W is horizontal. □



CHAPTER 4

Pauls’s rectifiability and intrinsically C1 rectifiability

In this chapter we are going to discuss the relationship between the intrinsically C1

rectifiability and Pauls’s rectifiability in Carnot groups. The content of this chapter comes
from a work in collaboration with my PhD advisor E. Le Donne [25].

In the following introductory part we introduce the definition of Pauls’s rectifiability and
we state the two theorems that we will prove throughout this chapter, namely Theorem 4.1
and Theorem 4.2.

In Section 1 we introduce and discuss several notions of rectifiability which generalize the
notions proposed by Pauls and Cole–Pauls in [84,201]. In Section 2 we construct a Carnot al-
gebra of topological dimension 8 that has uncountably many pairwise non-isomorphic Carnot
sub-algebras of topological dimension 7. Hence, in Section 3 we exploit the construction in
Section 2 to build the example that proves Theorem 4.1. Finally, in Section 4 we prove The-
orem 4.2. In particular in Section 4.1 we introduce some notation on Carnot groups of step
2, and in Section 4.2 we prove a length-comparison result for curves on intrinsically Lipschitz
graphs in Carnot groups of step 2. In Section 4.3 we use the latter estimate to prove the
equivalence between the intrinsic and the induced distance on intrinsically Lipschitz graphs
in Hn, with n ≥ 2. Finally, in Section 4.4 we complete the proof of Theorem 4.2.

At the beginning of 2000 S. Pauls proposed a notion of rectifiability in Carnot groups
that is different from the one discussed in Chapter 2, see [201, Definition 4.1]. According to
his definition, given a Carnot group G of homogeneous dimension Q, a subset E of another
Carnot group is G-rectifiable if it can be covered HQ-a.e. by countably many Lipschitz images
of subsets of G. The relation between the notion of rectifiability of Pauls and the intrinsically
C1 rectifiability firstly introduced by Franchi, Serapioni and Serra Cassano and taken to its
utmost level of generality in Definition 1.104, is not so well understood nowadays. Notice
that in [84, Definition 3] the authors propose another definition of rectifiability in which they
allow G in the previous definition to be a homogeneous subgroup of a Carnot group.

One of the queries that has been left open is whether a k-dimensional C1
H-submanifold in a

Carnot group is Lipschitz (or better bi-Lipschitz) parametrizable by subsets of k-dimensional
homogeneous subgroups of a Carnot group. One positive result in this direction has been
obtained in [84] in which the authors proved that every C1-hypersurface in H1 is N -rectifiable,
where N is a vertical plane in H1, and the maps used for the parametrization could be even
defined on open sets. Then this result was improved by Bigolin and Vittone in [60] showing
that every non-characteristic point of a C1-hypersurface in H1 admits a neighbourhood U and
a bi-Lipschitz chart between an open subset of N and U . In [60] the authors also provided
a partial negative answer to the query: they showed the existence of a C1

H-hypersurface in
H1 that has a point with no bi-Lipschitz map from an open subset of N and any of its
neighbourhoods.

Recently, using some ideas coming from the theory of quantitative differentiability, in
[92] the authors showed that every intrinsically C1,α hypersurface, with α > 0, in the n-
th Heisenberg group Hn is Lipschitz parametrizable with subsets of an arbitrary vertical
homogeneous subgroup, and actually it has big pieces of bi-Lipschitz images of an arbitrary

117
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vertical homogeneous subgroup, see [92, Theorem 1.6]. The intrinsically C1,α condition
can be relaxed in the first Heisenberg group H1 just asking for an intrinsically Lipschitz
condition together with some extra Hölder regularity along the vertical direction, see [92,
Theorem 1.11]. Anyway, as far as we know nowadays the following question is still open, as
pointed out in [92].

Question 7. Determine whether a codimension-one intrinsically Lipschitz graph (or a
C1

H-hypersurface) in H1 is almost everywhere covered by (bi)-Lipschitz images of subsets
of codimension-one subgroups of H1. In the opposite direction determine whether a (bi)-
Lipschitz image of a subset of a codimension-one subgroup of H1 is almost everywhere covered
by intrinsically Lipschitz hypersurfaces (or even better by C1

H-hypersurfaces).
We stress that in the n-th Heisenberg group Hn, with n ≥ 2, the second question above

has a positive answer. Indeed, as a consequence of the same reasoning in the final part of the
proof of Theorem 3.1, we have that every Lipschitz image of a subset of a codimension-one
subgroup in Hn, with n ≥ 2, is Pc

h-rectifiable. Hence an application of Theorem 2.25, together
with [180, Proposition B.11], implies that such a Lipschitz image can be covered almost
everywhere by C1

H-hupersurfaces. Another way of seeing this is to use [201, Theorem 4.3]
together with the criterion in [178, Theorem 3.15]. We stress that a more detailed study of
the so-called Rickman rugs, i.e., bi-Lipschitz images of codimension-one subgroups in H1, is
contained in [198]. We point out that some results about quantitative rectifiability in the
Heisenberg groups are contained also in [76,79]. See [101] or [177, Section 9.7] for a survey
on the subject.

We stress that recently, in a slightly different direction, Le Donne and Young in [151]
proved that a sub-Riemannian manifold with constant Gromov-Hausdorff tangents G, is
countably G-rectifiable, where G is a Carnot group. This result gives a possible way to
show that smooth hypersurfaces in Carnot groups - sufficiently smooth in order to carry a
sub-Riemannian structure - are G-rectifiable for some G. This is exactly what we do in the
second part of this chapter with smooth non-characteristic hypersurfaces in Hn with n ≥ 2.

In this chapter we prove the following theorem, according to which in arbitrary Carnot
groups a smooth non-characteristic hypersurface, which is in particular a C1

H-hypersurface,
might not be rectifiable according to Pauls’s definition. We recall that a point on a smooth
submanifold in a Carnot group is said to be non-caharacteristic if the horizontal bundle at
the point is not contained in the Euclidean tangent at the point, see Definition 4.17.
Theorem 4.1. There exist a Carnot group G and an analytic non-characteristic hypersurface
S ⊆ G that is not Pauls Carnot rectifiable, see Definition 4.8.

Pauls Carnot rectifiability is a generalization of Pauls rectifiability defined in [201, Defi-
nition 4.1] in which we allow countably many Carnot groups models, see Definition 4.8. Our
result shows that even very regular objects, such as analytic non-characteristic hypersurfaces,
which for sure are intrinsically C1 rectifiable, may not be Pauls Carnot rectifiable.

In this chapter, we also show that such an example does not exist in the n-th Heisenberg
group Hn with n ≥ 2 (see Theorem 4.46 and Remark 4.47 for a more exhaustive statement).
We stress that the following Theorem 4.2 could also be obtained as a consequence of the
main result of the paper [92], which appeared after our work [25], and which is indeed more
general. Anyway our proof is slightly different than the one in [92].
Theorem 4.2. Let S be a C∞-hypersurface in the n-th Heisenberg group Hn with n ≥ 2.
Then S is Hn−1 × R-rectifiable according to Pauls’s definition of rectifiability, even with bi-
Lipschitz maps.

Let us briefly comment on the proofs of the two theorems above. To prove Theorem 4.1,
whose proof is in Section 3, we will show the existence of an analytic hypersurface S - of
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Hausdorff dimension 12 in a Carnot group of topological dimension 8 - that cannot be H12-
a.e. covered by countably many Lipschitz images of subsets of Carnot groups of Hausdorff
dimension 12.

We will actually show a more general property for the set S that we propose: for every
Carnot group G of Hausdorff dimension 12, every Lipschitz map f : U ⊆ G → S satisfies
H12(f(U)) = 0, see the proof of Theorem 4.1. We will call this property purely Pauls Carnot
unrectifiability (Definition 4.8), which implies that S is not Pauls Carnot rectifiable, see
Remark 4.11. The key property for the proof of the previous result is that every H12-positive
subset of S has uncountably many points with pairwise non-isomorphic Carnot groups as
tangents, see the statement and the proof of Theorem 4.24, and Theorem 4.31.

The idea to build such a hypersurface is the following: at first, in Proposition 4.16, we
show the existence of a Carnot algebra g of dimension 8 that has uncountably many pairwise
non-isomorphic Carnot sub-algebras of dimension 7. This is done by exploiting the existence
of an uncountable family F of Carnot algebras of dimension 7 that are known to be pairwise
non-isomorphic, see [119]. Notice that 7 is the minimal dimension for which this fact holds.
Indeed, there are, up to isomorphisms, only finitely many Carnot algebras of dimension ≤ 6,
see again [119]. Then we construct an example of a smooth non-characteristic hypersurface
S, see the proof of Theorem 4.24, in the Carnot group whose Lie algebra is g, with the
property that the tangent spaces of S form an uncountable subfamily of F , and such that
every H12-positive subset of S has uncountably many points with pairwise non-isomorphic
Carnot groups as tangents. Similar examples were previously constructed in [151,211].

Having in our hands the pathological example S, we prove our main result in Theorem 4.1.
We do it via a blow up analysis and using the area formula for Lipschitz maps between Carnot
groups proved by Magnani in [160].

We point out that we also construct, in every Carnot group G, a smooth non-characteristic
hypersurface that has every subgroup of G of codimension-one as tangent, see Lemma 4.21.

We also prove a variant of Theorem 4.1. Namely, we show in Corollary 4.25 that our
example S is not bi-Lipschitz homogeneous rectifiable, see Definition 4.5. More precisely, it
is impossible to H12-a.e. cover S by countably many bi-Lipschitz images of subsets of metric
spaces of Hausdorff dimension 12 that have bi-Lipschitz equivalent tangents. Actually, again,
we prove more: we show that S is purely bi-Lipschitz homogeneous unrectifiable according to
Definition 4.5, after having provided a general criterion for purely bi-Lipschitz homogeneous
unrectifiability (Lemma 4.7).

Notice that, from this last result, it follows that S is not rectifiable according to the
countable bi-Lipschitz variant of the definition given in [84, Definition 3], that is, the one
that allows the parametrizing spaces to be homogeneous subgroups of Carnot groups, see
also Remark 4.6. Nevertheless, we are still not able to prove that our counterexample is not
rectifiable according to [84, Definition 3], see Remark 4.26.

We remark here that, from how we are going to construct the example S, it follows that
every tangent to S is a Carnot group. Consequently, together with the previously discussed
results, we immediately deduce that S is also an example of metric space that cannot be
Lipschitz parametrized by countably many of its tangents, see Remark 4.30.

To prove Theorem 4.2, we will use [210, Theorem 1.1], [82, Proposition 3.8], and [151,
Theorem 2]. The proof is contained in Section 4.

The idea is the following: first we show that every smooth non-characteristic hypersurface
S in Hn, with n ≥ 2, carries a structure of polarized manifold (Proposition 4.45). Indeed,
we show that the intersection of the horizontal bundle of Hn with the tangent bundle of S
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is a step-2 bracket generating distribution (Proposition 4.42). This was already known from
[210, Theorem 1.1], but we give a different proof based on simple explicit computations.

Before going on, let us notice that Proposition 4.45 is very likely to hold for C1,1 non-
characteristic hypersurfaces. The reason for which we stated it in the C∞-cathegory is merely
technical. Indeed, Proposition 4.42 is stated for C2 non-characteristic hypersurfaces, but its
proof can be adapted to work in the C1,1 case. Moreover, in the proof of Proposition 4.45, we
use the fundamental results in [185], and [52] (see also [129]), which require C∞-regularity,
but can be very likely adapted to C1,1-regularity in our case. The serious difficult point seems
to pass from this C1,1-regularity to C1

H, that would probably require a completely different
argument.

In order to conclude the proof we show that every sub-Riemannian structure on the
polarized manifolds S gives rise to a distance that is locally bi-Lipschitz equivalent to the
distance on S seen as subset of Hn (Proposition 4.43). We will call these distances the intrinsic
distance and the induced distance, respectively. The equivalence is due to the general fact
that in Hn, with n ≥ 2, the intrinsic distance and the induced distance on the graph of an
intrinsically Lipschitz function are equivalent (Proposition 4.41). This tells us also that in
Proposition 4.43, we are merely using the fact that S is locally the graph of an intrinsically
Lipschitz function. The proof of Proposition 4.41 was suggested to us by Fässler and Orponen,
and it is reminiscent of the result already known from [82, Proposition 3.8].

Eventually we use the fundamental tool [151, Theorem 2] and the key fact that the tan-
gents to the hypersurface are all isomorphic to Hn−1 × R (Lemma 4.44). With these three
steps we conclude the proof of Theorem 4.2.

1. Notions of rectifiability

In this section we are going to introduce the general notion of (F , µ)-rectifiability, see
Definition 4.3, and a specialization of it, namely the notion of bi-Lipschitz homogeneous
rectifiability, see Definition 4.5. Finally, we are going to introduce and discuss the notion of
Pauls Carnot rectifiability, see Definition 4.8.
Definition 4.3 ((F , µ)-rectifiability). Given a family F of metric spaces we say that a metric
space (X, d), with an outer measure µ on it, is (F , µ)-rectifiable if there exist countably many
bi-Lipschitz embeddings fi : Ui ⊆ (Xi, di) → (X, d) where (Xi, di) ∈ F , i ∈ N, and

µ

X \
⋃
i∈N

fi(Ui)

 = 0.

We say that a metric space (X, d) is purely (F , µ)-unrectifiable if for every (X ′, d′) ∈ F and
every bi-Lipschitz embedding f : U ⊆ (X ′, d′) → (X, d) it holds

µ(f(U)) = 0.

In Definition 4.5, we are going to specialize the notion of (F , µ)-rectifiability by taking F
as the class of metric spaces that are locally compact, locally doubling and with bi-Lipschitz
equivalent tangents. In Remark 4.6 we discuss further specializations of this notion.

Then we shall give the notion of Pauls Carnot rectifiability in Definition 4.8, generalizing
the definition given in [201, Definition 4.1]. In Remark 4.10 we briefly discuss some Lipschitz
variants of (F , µ)-rectifiability, for specific families F .

We stress here that from now on every metric space (X, d) will be separable. We also
remark that if (X, d) is locally complete we can equivalently ask each set Ui in Definition 4.3
to be closed. Indeed, in this case every bi-Lipschitz map fi : Ui → (X, d) extends, locally to
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the closure Ui, to a bi-Lipschitz map. We will freely use this last observation throughout the
chapter.
Remark 4.4. Having a look at Definition 4.3, assuming we have µ(X) > 0, which will be
always in our case, we see that one necessary condition for the (F , µ)-rectifiability of (X, d)
is the existence of at least one bi-Lipschitz map f : U ⊆ (X ′, d′) → (X, d), where (X ′, d′) ∈ F
and µ(f(U)) > 0. So if a metric space (X, d), with an outer measure µ on it such that
µ(X) > 0, is (F , µ)-purely unrectifiable then it cannot be (F , µ)-rectifiable.

Before giving Definition 4.5, first we recall two definitions. Given a separable metric space
(X, d) and a Borel regular measure µ on X that is finite on bounded sets, we say that µ is
locally doubling if for each a ∈ X there exists Ra > 0 and Ca > 0 such that

0 < µ(B(x, 2r)) ≤ Caµ(B(x, r)) < +∞, ∀x ∈ B(a,Ra), ∀0 ≤ r ≤ Ra.

In this case we say that (X, d, µ) is a locally doubling metric measure space.
For a locally compact locally doubling metric measure space, as a consequence of the

Gromov compactness theorem, we know that for every x ∈ X, the set of Gromov-Hausdorff
tangents Tan(X, d, x) is nonempty. Indeed, for every sequence of positive numbers λi → 0,
up to subsequences it holds

(X,λ−1
i d, x) → (X∞, d∞, x∞),

in the pointed Gromov-Hausdorff convergence. For general definitions and theory about
(pointed) Gromov-Hausdorff convergence one can see [212, Chapter 27], [68, Chapters 7, 8],
and [118]. We say that the metric space (X, dX) is bi-Lipschitz equivalent to the metric space
(Y, dY ) if there exists a bijective map f : X → Y such that

1
C
dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ CdX(x1, x2), for all x1, x2 ∈ X.

Definition 4.5 (bi-Lipschitz homogeneous rectifiability). Let (X, d) be a metric space of
Hausdorff dimension k. Set Tk := {(Xi, di)}i∈I to be the family of all the metric spaces
(Xi, di) such that:

• (Xi, di,Hk) is a locally compact locally doubling metric measure space, with k =
dimH Xi;

• every two tangent spaces, at every two points of Xi, are bi-Lipschitz equivalent.
We say that (X, d) is bi-Lipschitz homogeneous rectifiable if it is (Tk,Hk)-rectifiable according
to Definition 4.3. We say that (X, d) is purely bi-Lipschitz homogeneous unrectifiable if it is
purely (Tk,Hk)-unrectifiable according to Definition 4.3.
Remark 4.6. The family Tk defined in Definition 4.5 is very rich. For example it contains
all homogeneous Lie groups G equipped with a left-invariant homogeneous distance dG, with
Hausdorff dimension k. Indeed, by homogeneity, every tangent space at every point of such
a group G is isometric to (G, dG), moreover (G, dG) is locally compact and k-Ahlfors-regular
[149, Theorem 4.4, (iii)], and then Hk is a doubling measure on it. We remark here that
the larger class of self-similar metric Lie groups of Hausdorff dimension k, whose definition
is in [149], is still a subclass of Tk. Going beyond Lie groups, we remark that in Tk one has
all those Carnot-Carathéodory spaces whose nilpotentization is constantly equal to a fixed
Carnot group of homogeneous dimension k. This last statement is a consequence of Mitchell’s
theorem (see [185], [52], and [129]) and the bi-Lipschitz equivalence of left-invariant homo-
geneous distances on Carnot groups.

In the very rich class of homogeneous Lie groups we distinguish homogeneous subgroups
of homogeneous dimension k of arbitrary Carnot groups, with the restricted distance, and
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obviously also Carnot groups of homogeneous dimension k endowed with arbitrary homoge-
neous left-invariant distances. We can then give different notions of rectifiability for each of
these subfamilies of Tk.

Notice that if we take the subfamily of Tk made of arbitrary homogeneous subgroups, of
dimension k, of Carnot groups endowed with arbitrary homogeneous left-invariant distances,
we obtain a notion of rectifiability that is a variation of [84, Definition 3] where we now allow
countably many homogeneous subgroups but we require bi-Lipschitz maps. Similarly, if we
only consider Carnot groups, we obtain a similar variation of [201, Definition 4.1].

We give next a criterion for purely bi-Lipschitz homogeneous unrectifiability.
Lemma 4.7. Let (X, d,Hk) be a locally compact locally doubling metric measure space, with
k = dimH X. If every Hk-positive measure subset of X contains two points that have two tan-
gent spaces that are not bi-Lipschitz equivalent, then (X, d) is purely bi-Lipschitz homogeneous
unrectifiable (according to Definition 4.5).

Proof. We prove that there is no bi-Lipschitz map f : U ⊆ (X ′, d′) → (X, d), where
Hk(f(U)) > 0 and (X ′, d′) ∈ Tk. As (X, d) is locally compact, we can restrict ourselves
to consider U to be closed.

If there exists such a map, first of all notice that Hk(U) > 0 because f is bi-Lipschitz.
Now we can restrict ourselves to the set of the points of density one of U with respect to Hk,
say W , and W is a set of full Hk-measure in U as a consequence of Lebesgue Differentiation
Theorem [125, page 77] that can be applied due to [125, Theorem 3.4.3]. Then, by the fact
that f is bi-Lipschitz, the set f(W ) has full Hk-measure in f(U). The set Z of points in
f(W ) of density one of f(U) with respect to Hk, is still a set of full Hk-measure in f(U)
because it is the intersection of two sets of full Hk-measure in f(U). Then it holds Hk(Z) > 0
since Hk(f(U)) > 0.

By hypothesis there exist two points x, y ∈ W and p = f(x), q = f(y) ∈ Z with two non-
bi-Lipschitz tangent spaces Tp and Tq. Because of the fact that we are dealing with points of
density one, we can say that Tan (U, d′, x) = Tan (X ′, d′, x) and Tan(f(U), d, p) = Tan(X, d, p)
and the same holds with y and q, see [143, Proposition 3.1]. Passing to the tangents in p and
x we get, as in [151, Section 5.2], some induced bi-Lipschitz map between Tp and one element
of Tan (X ′, d′, x). In the same way we get a bi-Lipschitz map between Tq and one element
of Tan (X ′, d′, y). By hypothesis each element of Tan (X ′, d′, x) is bi-Lipschitz equivalent
to each element of Tan (X ′, d′, y), so that Tp is bi-Lipschitz equivalent to Tq, which is a
contradiction. □

Let us point out that in Definition 4.3 we require the parametrizing maps to be bi-
Lipschitz while for the classical definitions of rectifiability one may just ask for the maps
to be Lipschitz. We next give the Lipschitz counterpart of Definition 4.3 for the family of
Carnot groups.
Definition 4.8 (Pauls Carnot rectifiability). Let (X, d) be a metric space of Hausdorff di-
mension k. We say that (X, d) is Pauls Carnot rectifiable if there exist countably many Carnot
groups Gi of homogeneous dimension k enowed with homogeneous left-invariant distances di,
and Lipschitz maps fi : Ui ⊆ (Gi, di) → (X, d) such that

Hk

X \
⋃
i∈N

fi(Ui)

 = 0.

We say that (X, d) is purely Pauls Carnot unrectifiable if for every Carnot group G of homo-
geneous dimension k endowed with a left-invariant homogeneous distance dG, every Lipschitz
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map f : U ⊆ (G, dG) → (X, d) satisfies

Hk(f(U)) = 0.
Remark 4.9. The definition given in Definition 4.8 is a generalization of [201, Definition 4.1]
where it was considered only one Carnot group for the parametrization of X. The definition of
purely G-unrectifiability, with one Carnot group G, was already given in [162, Definition 3.1].
That is, given a Carnot group G of homogeneous dimension k, we say that a metric space
(X, d) is purely G-unrectifiable if every Lipschitz map f : U ⊆ G → X satisfies Hk(f(U)) = 0.
Remark 4.10. In this paper we will not focus on the Lipschitz counterpart to Definition 4.5.
Restricting to the subfamily of Tk made of homogeneous subgroups of Carnot groups, such
Lipschitz counterpart would lead to a variant of [84, Definition 3] allowing countably many
possibly different subgroups. We think there are pathological examples and more easy-to-ask
questions that we are not able to answer up to now.

For example Peano’s curve tells that the Euclidean plane R2 can be Lipschitz rectified
with

(
R, ∥ · ∥1/2

)
. Notice that

(
R, ∥ · ∥1/2

)
is isometric to the vertical line in the Heisenberg

group.
Question 8. Forcing the topological dimension to be the same, we wonder whether there

exists a Lipschitz map
f : U ⊆

(
R3, ∥ · ∥3/4

)
→ H1,

with H4(f(U)) > 0.
Remark 4.11. As in Remark 4.4, if (X, d) has Hausdorff dimension k and Hk(X) > 0, it
holds that if (X, d) is purely Pauls Carnot unrectifiable then it is not Pauls Carnot rectifiable.

2. A Carnot algebra with uncountably many non-isomorphic Carnot
sub-algebras

In this section we prove that there exists a Carnot algebra g of dimension 8 that has
uncountably many pairwise non-isomorphic Carnot sub-algebras of dimension 7. The Lie
algebra g is constructed in Definition 4.14, and in Proposition 4.16 we prove the claimed
result.
Definition 4.12. Given µ ∈ R, we denote by gµ the Carnot algebra of step 3 and dimension
7 given by

gµ := V 1
µ ⊕ V 2

µ ⊕ V 3
µ ,

where
V 1

µ := span{X1, X2, X3}, V 2
µ := span{X4, X5, X6}, V 3

µ := span{X7},

with the following relations

(4.1)
[X1, X2] = X4, [X1, X3] = −X6, [X2, X3] = X5;
[X1, X5] = −X7, [X2, X6] = µX7, [X3, X4] = (1 − µ)X7,

where all the other commutators between two vectors of the basis {X1, . . . , X7} that are not
listed above are zero.
Remark 4.13. The family {gµ}µ∈R in Definition 4.12 contains a subfamily that consists of
uncountably many pairwise non-isomorphic Carnot algebras, which are called of type 147E,
see [119]. Indeed, if µ1, µ2 /∈ {0, 1}, the Lie algebra gµ1 is isomorphic to gµ2 if and only if
I(µ1) = I(µ2), where

I(µ) := (1 − µ+ µ2)3

µ2(µ− 1)2 .
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Our plan is to add a direction X0 in the first stratum of a specific Carnot algebra given
by Definition 4.12, namely the one with µ = 0. Then, we show the existence of uncountably
many pairwise non-isomorphic Carnot sub-algebras of dimension 7 in this new Carnot algebra
of dimension 8.
Definition 4.14. In this section we denote by g the Carnot algebra of step 3 and dimension
8 given by

g := V 1 ⊕ V 2 ⊕ V 3,

where

V 1 := span{X0, X1, X2, X3}, V 2 := span{X4, X5, X6}, V 3 := span{X7},

with the following bracket relations

(4.2)
[X1, X2] = X4, [X1, X3] = −X6, [X1, X0] = −X4, [X2, X3] = X5;
[X1, X5] = −X7, [X3, X4] = X7, [X0, X6] = X7,

and all the other commutators between two elements of the basis {X0, X1, . . . , X7} that are
not listed above are 0.
Remark 4.15. Let us show that the one defined in Definition 4.14 is a Lie algebra. It suffices
to verify Jacobi identity on triples of pairwise different vectors of the basis. Since the step of
the stratification is equal to 3, it suffices to show the Jacobi identity on vectors in the first
stratum V 1. Then, as we are extending g0 in Definition 4.12, we just have to check the Jacobi
identity on the triples {X1, X2, X0}, {X2, X3, X0} and {X1, X3, X0}. A simple computation
yields
(4.3)

[X1, [X2, X0]] + [X2, [X0, X1]] + [X0, [X1, X2]] = 0 + [X2, X4] + [X0, X4] = 0,
[X2, [X3, X0]] + [X3, [X0, X2]] + [X0, [X2, X3]] = 0 + 0 + [X0, X5] = 0,
[X1, [X3, X0]] + [X3, [X0, X1]] + [X0, [X1, X3]] = 0 + [X3, X4] − [X0, X6] = X7 −X7 = 0,

which is what we wanted.
Now we are ready for the main proposition of this section.

Proposition 4.16. If g is the Carnot algebra of dimension 8 and step 3 in Definition 4.14,
then there exist uncountably many Carnot sub-algebras of dimension 7 of g that are pairwise
non-isomorphic.

Proof. We present explicitly an uncountable family of Carnot sub-algebras of dimension 7
of g, indexed by λ ∈ R, that are isomorphic to gλ in Definition 4.12 if λ ̸= 1. Then by
Remark 4.13 we get the conclusion.

Given λ ∈ R, with λ ̸= 1, let us define the following vector in V 1 ⊆ g,

(4.4) Y2 := X2 + λX0.

Then {X1, Y2, X3} are linearly independent vectors of V 1. By explicit computations, using
the relations in (4.2), we have

(4.5)
[X1, Y2] = (1 − λ)X4 =: Y4,

[X1, X3] = −X6,

[Y2, X3] = X5;
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(4.6)

[X1, Y4] = 0,
[X1, X5] = −X7,

[X1, X6] = 0,
[Y2, Y4] = 0,
[Y2, X5] = 0,
[Y2, X6] = λX7,

[X3, Y4] = (1 − λ)X7,

[X3, X5] = 0,
[X3, X6] = 0,

and all the other commutators between two elements of the linearly independent vectors
{X1, Y2, X3, Y4, X5, X6, X7}, that are not listed above, vanish. Then in view of (4.5) and
(4.6), if λ ̸= 1, the subspace w1 := span{X1, Y2, X3} generates a Carnot sub-algebra of step
3 and dimension 7 in g, that is isomorphic to gλ in Definition 4.12. □

3. Proof of the main results

In this section we construct the example that satisfies Theorem 4.1. We build the hyper-
surface S in the Carnot group G whose Lie algebra g is as in Definition 4.14. Before that, let
us discuss some notions related to hypersurfaces.
Definition 4.17 (Characteristic points). Let G be a Carnot group. Let S be a Euclidean
C1-hypersurface in G ≡ Rn. We say that x ∈ S is a characteristic point of S if

(4.7) V1(x) ⊆ TxS,

where V1(x) is the horizontal bundle at x, see (1.7), and TxS is the Euclidean tangent of S,
i.e., the tangent space of S seen as submanifold of G ≡ Rn. We shall use the term Euclidean
in contrast with the intrinsic sub-Riemannian one.

We will say that a C1-hypersurface S is non-characteristic if it does not have characteristic
points as in (4.7).
Remark 4.18. We identify G with Rn by means of exponential coordinates as in (1.4)
associated to a basis {X1, . . . , Xn} of g, and we call m the dimension of the first stratum of
the Lie algebra. If we take f ∈ C1(G) we will denote with ∇f |x the full gradient of f at x,
i.e., the vector

∑n
i=1(∂xif)(x)∂xi |x, and with ∇Hf |x the horizontal gradient of f at x, i.e.,

the vector
∑m

i=1(Xif)(x)Xi|x.
If S is a Euclidean C1-hypersurface in G, for every point p ∈ S there exist an open

neighbourhood Up of it and f ∈ C1(Up) such that

(4.8) S ∩ Up = {x ∈ Up : f(x) = 0},

with ∇f ̸= 0 on S ∩ Up. The Euclidean tangent space of S at an arbitrary point x ∈ S ∩ Up

is

(4.9) TxS := {v : ⟨v,∇f |x⟩x = 0},

where ⟨·, ·⟩x is the usual inner product, i.e., ⟨∂xi |x, ∂xj |x⟩x = δij , and v =
∑n

i=1 vi∂xi |x. Then
x ∈ Up is a characteristic point (4.7) if and only if (see (4.9)) it holds that Xif(x) = 0 for all
i = 1, . . . ,m.

Thus a Euclidean C1-hypersurface S in G with non-characteristic points is C1
H, because

we have the representation in (4.8) with (X1f, . . . ,Xmf) ̸= 0 on Up, see Definition 1.104 and
the coordinates representation in Definition 1.110.
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Given a C1
H-hypersurface S, a point p ∈ S and a representative f around p as in (1.81), we

stress that the homogeneous tangent subgroup of S at p (see Definition 1.104, Definition 1.111
for this notion, and Remark 1.114 for properties), that we will also call tangent group, or the
intrinsic tangent of S at p, has the following representation in exponential coordinates

(4.10) T I
pS :=

{
v ∈ G ≡ Rn :

m∑
i=1

viXif(p) = 0
}
.

Let us recall that the set defined in (4.10) is the intrinsic tangent of S at p in the local
Hausdorff topology, compare with Remark 1.114.

Now we give the definition of vertical surface. Loosely speaking, a vertical surface in a
Carnot group G is a C1-surface that depends only on the horizontal coordinates.
Definition 4.19. Let G be a Carnot group identified with Rn by means of exponential
coordinates associated to a basis {X1, . . . , Xn} of g. Let m be the dimension of the first
stratum of the Lie algebra. A vertical surface V is

V := {x ∈ Ω × Rn−m : f(x1, . . . , xm) = 0},
where f : Ω ⊆ Rm → R, with Ω open, is a C1-function with ∇f ̸= 0 on the set {ω ∈
Ω : f(ω1, . . . , ωm) = 0}. Moreover, if f is linear we say that V is a vertical subgroup of
codimension one.
Remark 4.20. An arbitrary vertical surface as in Definition 4.19 is a C1-hypersurface with no
characteristic points, i.e., points that satisfy (4.7). This is due to the fact that, if 1 ≤ i ≤ m,
in exponential coordinates we have

Xi = ∂xi + ri(x),
where ri(x) is a polynomial combination of ∂xi+1 , . . . , ∂xn , see [112, Proposition 2.2], and
then, for all x ∈ ω,

Xif(x) = ∂xif(x),
as f depends only on the first m variables. Thus, from Remark 4.18, a vertical surface is also
a C1

H-hypersurface.
Before going on let us show that, in arbitrary Carnot groups, we always have a surface

that has every vertical subgroup of codimension one as tangent.
Lemma 4.21. Given a Carnot group G, there exists a vertical surface V such that for every
vertical subgroup W of codimension one in G there exists p ∈ V such that T I

pV = W.

Proof. Let us consider

V :=
{
x ∈ G ≡ Rn :

m∑
i=1

x2
i = 1

}
,

where m is the rank of G. At an arbitrary point p = (x1, . . . , xm, xm+1 . . . , xn),we have that,
by Equation (4.10) and Remark 4.20,

T I
pV =

{
v ∈ G ≡ Rn :

m∑
i=1

vixi = 0
}
,

and then, as every linear function f : Rm → R can be written as f(v) =
∑m

i=1 vixi for a
vector (x1, . . . , xm) of norm 1, we get the desired conclusion. □

Let us now pass to the proof of Theorem 4.1. First of all let us identify G with R8 by
using exponential coordinates and the ordered basis (X0, X1, . . . , X7)

(4.11)
x = (x0, x1, x2, x3, x4, x5, x6, x7) →

→ exp (x0X0 + x1X1 + x2X2 + x3X3 + x4X4 + x5X5 + x6X6 + x7X7) .
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In these coordinates we can express the left-invariant vector fields X0(x), X1(x), X2(x), X3(x)
that extend X0, X1, X2, X3, in this way, see [112, Proposition 2.2]:

(4.12)

X0(x) = ∂x0 + r0(x),
X1(x) = ∂x1 + r1(x),
X2(x) = ∂x2 + r2(x),
X3(x) = ∂x3 + r3(x),

where r0(x), r1(x), r2(x), r3(x) are combinations, with polynomial coefficients of the coordi-
nates, of ∂x4 , ∂x5 , ∂x6 , ∂x7 . Now we are ready to state and prove one of the main results of
this chapter.
Proposition 4.22. There exist a Carnot group G and an analytic non-characteristic hyper-
surface S ⊆ G with uncountably many pairwise non-isomorphic tangent groups.

Proof. Let us consider the Carnot algebra g in Definition 4.14 and G := exp g identified with
R8 by means of the exponential coordinates in (4.11). Let us consider the vertical surface

(4.13) S =
{
x ∈ G ≡ R8 : f(x) := 1

3x
3
2 + x0 = 0

}
.

By Remark 4.20 this is an analytic non-characteristic hypersurface. From easy computations
due to the particular form of Xi’s in (4.12) and from the expression of the tangent group in
(4.10), it follows that

Lie(T I
xS) = span{X1, X2 − x2

2X0, X3, X4, X5, X6, X7},

and then Lie(T I
xS) is isomorphic to the Carnot algebra generated by w1 defined at the end of

the proof of Proposition 4.16, where the λ there is now equal to −x2
2. Then, the Lie algebra

Lie(T I
xS) is isomorphic to g−x2

2
defined in Definition 4.12. Because of the fact that given

any λ ≤ 0 there is always a point in S satisfying λ = −x2
2, Remark 4.13 grants us that the

family {Lie(T I
xS)}x∈S contains uncountably many pairwise non-isomorphic Carnot algebras

and then the family {T I
xS}x∈S contains uncountably many pairwise non-isomorphic Carnot

groups. □

Remark 4.23. In particular, every S as in Proposition 4.22 is not bi-Lipschitz equivalent to
an open set in a Carnot group. This follows from a blow-up argument and Pansu’s differ-
entiability theorem [200]. The argument will be made clear in the proof of the forthcoming
Theorem 4.24. We stress that even for some sub-Riemannian manifolds the constancy of the
tangent may not give bi-Lipschitz local equivalence with the tangent Carnot group, see [150].

We are now ready to give the first negative result about rectifiability for a hypersurface
as in Proposition 4.22.
Theorem 4.24. There exist a Carnot group G and an analytic non-characteristic hypersur-
face S ⊆ G, of Hausdorff dimension 12, such that on every H12-positive measure subset of
it there are two points with non-isomorphic tangents. Moreover, one can find such an S in
such a way that S is in addition purely bi-Lipschitz homogeneous unrectifiable according to
Definition 4.5.

Proof. Let us consider g the Carnot algebra in Definition 4.14. Let us identify G := exp g
with R8 by means of the exponential coordinates in (4.11), and let us fix a left-invariant
homogeneous distance d on G. Let us consider S as in the proof of Proposition 4.22.

We claim that

(4.14) H12(S ∩ {x2 = λ}) = 0, ∀λ ∈ R.
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Indeed, we know that S ∩ {x2 = λ} is the intersection of two C1
H-hypersurfaces. Moreover

the tangent subgroup to S ∩ {x2 = λ} at an arbitrary point x is

W := {v ∈ G ≡ R8 : x2
2v2 + v0 = 0} ∩ {v ∈ G ≡ R8 : v2 = 0} = {v ∈ G ≡ R8 : v0 = v2 = 0}.

Since W is complemented by the horizontal subgroup H := {exp(tX0 + sX2) : t, s ∈ R}, we
can apply [96, Theorem A.5] to get that S ∩ {x2 = λ} is locally the graph of an intrinsically
Lipschitz function defined on W with values in H. Notice that H is a subgroup because
[X0, X2] = 0. Since W has homogeneous and thus Hausdorff dimension 11 with respect to
the distance d, then by the estimate on the Hausdorff measure in [109, Theorem 2.3.7] we
get (4.14).

Now we claim that each subset U of S that satisfies H12(U) > 0 has at least two points
with two non-bi-Lipschitz Gromov-Hausdorff tangents. Indeed, the equation (4.14) tells us
that for each U ⊆ S with H12(U) > 0, the coordinate function x2 takes on U uncountably
many values. This, according to the fact that T I

xS is a Carnot group isomorphic to the
one with Lie algebra g−x2

2
(see the proof of Proposition 4.22), immediately tells that there

are in U at least two points with two non-isomorphic (because of Remark 4.13) Carnot
groups as tangent. By Pansu’s version of Rademacher theorem, see Theorem 1.100, two non-
isomorphic Carnot groups cannot be bi-Lipschitz equivalent, so the claim follows. Now the
proof is completed by using the criterion shown in Lemma 4.7. □

From Remark 4.4 we have the following consequence to Theorem 4.24.
Corollary 4.25. There exist a Carnot group G and an analytic non-characteristic hypersur-
face S ⊆ G that is not bi-Lipschitz homogeneous rectifiable according to Definition 4.5
Remark 4.26. Notice that from Corollary 4.25 it follows that S is not rectifiable according
to the countable bi-Lipschitz variant of [84, Definition 3], see Remark 4.6 for details. We
notice here that we still are not able to prove that our counterexample is not rectifiable
according to [84, Definition 3], see Remark 4.10 for further discussions. Nevertheless, in
the forthcoming proof of Theorem 4.1, we show that the same S as in Theorem 4.24 is not
rectifiable according to [201, Definition 4.1].

Hence, we are now ready for the proof of Theorem 4.1

Proof of Theorem 4.1. Let us take S and G as in the proof of Proposition 4.22. Let us fix
on G a homogeneous left-invariant distance d. Then from Remark 1.115 we get that the
Hausdorff dimension of S is 12, because the homogeneous dimension of G is 13. We will
show there is no Lipschitz map f : U ⊆ Ĝ → (S, d), with Ĝ a Carnot group of homogeneous
dimension 12, and H12(f(U)) > 0.

Suppose by contradiction there is such a map. We can assume U closed, because S is
complete. By composing the map f with the inclusion i : S ↪→ G we get a Lipschitz map
f̃ : U ⊆ Ĝ → G.

Let us call UND ⊆ U the set of points where f̃ is non-differentiable, UI ⊆ U the set
of differentiability points x of f̃ for which df̃x : Ĝ → G is injective and UNI ⊆ U the set of
differentiability points x of f̃ for which df̃x is not injective. We thus have U = UND ⊔UI ⊔UNI,
f̃(U) = f̃(UND)∪f̃(UI)∪f̃(UNI) and we know, from Rademacher theorem, see Theorem 1.100,
and the fact that f̃ is Lipschitz, that H12(f̃(UND)) = H12(UND) = 0.

We claim that H12(f̃(UI)) > 0. Indeed, the homogeneous dimension of Ĝ is 12. Thus, for
x ∈ UNI, we get that df̃x(Ĝ) is a homogeneous subgroup of G of homogeneous dimension at
most 11, see Lemma 4.28 below. Then

J12(df̃x) = H12(df̃x(B(0, 1)))
H12(B(0, 1)) = 0,
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and from Theorem 1.103 applied to f̃ : UNI → G we get H12(f̃(UNI)) = 0. Now we conclude
the proof of the claim:

H12(f̃(UI)) = H12(f̃(UI)) + H12(f̃(UNI)) + H12(f̃(UND))
≥ H12(f̃(U)) > 0.

For every point z in UI there exists an injective Carnot homomorphism df̃z : Ĝ → G. For
how it is constructed the differential df̃z (see Remark 1.101) we know that for ω in a dense
subset Ω of Ĝ we have

df̃z(ω) = lim
zδtω∈U,t→0

δ1/t

(
f̃(z)−1f̃(zδtω)

)
.

From the very construction we thus get that df̃z(ω) is in the Hausdorff tangent of S at
f̃(z). Then from the discussion slightly before Definition 4.19 we get that df̃z(ω) takes values
in T I

f̃(z)S for ω ∈ Ω. Now taking into account that df̃z is defined on all of Ĝ by density
(see Remark 1.101) and considering that T I

f̃(z)S is closed, we get that df̃z takes values in
T I

f̃(z)S, which is a Carnot subgroup of G of homogeneous dimension 12, thanks to the explicit
expression of the tangent in the proof of Proposition 4.22 and [149, Theorem 4.4, (iii)].
Thus as Ĝ has homogeneous dimension 12 itself and df̃z is injective, we get that df̃z is an
isomorphism and so Ĝ is isomorphic to T I

f̃(z)S for every z ∈ UI.
In order to conclude, we notice that in the proof of Theorem 4.24 we showed that on

every H12-positive measure subset of S there are at least two non-isomorphic tangent spaces,
so that, because H12(f̃(UI)) > 0 holds, we should have at least two non-isomorphic tan-
gent spaces on f̃(UI). But we proved that all of them are isomorphic to Ĝ, thus we get a
contradiction.

Hence, we proved that there is no Lipschitz map f : U ⊆ Ĝ → (S, d), with Ĝ a Carnot
group of homogeneous dimension 12, and H12(f(U)) > 0. From Remark 4.11 we thus get the
conclusion of the proof. □

We shall prove the auxiliary Lemma 4.28 that has been exploited in the proof of Theo-
rem 4.1. Let us start with a remark.
Remark 4.27. Every Carnot homomorphism induces a linear map φ∗ : g → h that is a Lie
algebra homomorphism such that φ∗ ◦ δλ = δλ ◦φ∗. From this property it easily follows that
for every 1 ≤ i ≤ κ, where κ is the step of the group G, we get φ∗(V g

i ) ⊆ V h
i , where V g

i and
V h

i are the i-th strata of g and h, respectively.
Lemma 4.28. Let φ : G → H be a Carnot homomorphism between two Carnot groups. If φ
is not injective then the homogeneous dimension of G is strictly greater than the homogeneous
dimension on φ(G).

Proof. By definition of Carnot homomorphism we get that Kerφ is a homogeneous subgroup
of G and φ(G) is a homogeneous subgroup of H. If an element g ∈ g is in V g

i for some i, we
say that i is the degree of g and write deg g = i. We take {e1, . . . , el, el+1, . . . , en} ⊆ ∪κ

i=1Vi

a basis of g, such that {e1, . . . , el} is a basis of Kerφ, and κ is the step of the group G. Then
{φ∗(el+1), . . . , φ∗(en)} is a basis of the Lie algebra of φ(G). By the fact that φ∗ preserves
the stratification (see Remark 4.27), we get

degφ∗(ei) = deg ei
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for each l + 1 ≤ i ≤ n. Then by [149, Theorem 4.4, (iii)] and the previous equation we get

dimhom φ(G) =
n∑

i=l+1
degφ∗(ei) =

n∑
i=l+1

deg ei <
n∑

i=1
deg ei = dimhom G.

where we used in the strict inequality that l > 0 being φ not injective. □

Remark 4.29. The example of Theorem 4.1 is actually a C1
H-hypersurface because it is

analytic and non-characteristic, see Remark 4.18. Thus they are rectifiable in the sense of
Franchi, Serapioni and Serra Cassano (see also Definition 1.105) but we proved they are not
in the sense of [201, Definition 4.1]. Indeed, the definition of Pauls Carnot rectifiability we
are adopting here is a generalization of [201, Definition 4.1], see Remark 4.9.
Remark 4.30. We notice that every tangent group to S as in the proof of Theorem 4.24 is a
Carnot group. So S is an example of a Euclidean non-characteristic hypersurface in a Carnot
group that cannot be Lipschitz parametrizable by countably many subsets of its intrinsic
tangents.

We state here as a theorem something we already proved in Theorem 4.24.
Theorem 4.31. There exists a locally compact and locally doubling metric measure space
(X, d,Hk), where k is the Hausdorff dimension of X, that satisfies the following two proper-
ties:

(1) For each x ∈ X, there exists (up to isometry) only one element in Tan(X, d, x) and
it is a Carnot group;

(2) For each U ⊆ X with Hk(U) > 0 there exists an uncountable family {xi}i∈I ⊆ U
of points such that the tangent spaces at these points are pairwise non-bi-Lipschitz
equivalent.

Proof. The example and the proof are exactly the same as in the proof of Theorem 4.24. □

Remark 4.32. Another example (a sub-Riemannian manifold) that satisfies Theorem 4.31
was presented in [151, Proposition 16].

4. Pauls rectifiability of C∞-hypersurfaces in Heisenberg groups

In this section we prove that C∞-hypersurfaces in the n-th Heisenberg group Hn, with
n ≥ 2, are rectifiable according to [84, Definition 3], see Theorem 4.46 and Remark 4.47
for details. We start with a Lipschitz-type estimate, which more generally holds for Carnot
groups of step 2, see Proposition 4.38.

We remark here that, in order to prove the main result of this section, we will use
Proposition 4.38 only for Heisenberg groups, but we prove it in the general case of Carnot
groups of step 2. We point out that the result in Proposition 4.41 requires the latter Lipschitz-
type estimate, plus a connectibility argument that makes that proof work only for Hn, with
n ≥ 2. For arbitrary Carnot groups of step 2, the intrinsic distance dΓ in the statement of
Proposition 4.41 might not even be finite.

Then in Section 4.3 we show the equivalence of the intrinsic distance and the induced
distance for intrinsically Lipschitz graphs in Heisenberg groups. This statement has been
suggested to us by Fässler and Orponen, adapting an argument of [82]. After that, in
Section 4.4, we prove that C∞ non-characteristic hypersurfaces in Hn, with n ≥ 2, carry a
sub-Riemannian structure, see Proposition 4.42 and [210, Theorem 1.1]. Therefore, we show
that the sub-Riemannian distance is locally equivalent to the distance induced from Hn, see
Proposition 4.43. By means of [151, Theorem 2] we are able to conclude the result: see
Theorem 4.46.
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4.1. Carnot Groups of step 2. In this subsection we recall the structure of step-2
groups in exponential coordinates. We stress here that sometimes we use Einstein notation:
we do not use the summand symbol Σ and we remind that, in this case, we are tacitly
taking the sum over the repeated indices. Every Carnot group of step-2 arises as follows in
coordinates.

Let (B1
jl), . . . , (Bn

jl) be n linearly independent skew-symmetric m×m matrices with j, l =
1, . . . ,m. Consider the homogeneous group (Rm × Rn, ·, δλ), which turns out to be a Carnot
group, where the operation is

(4.15)
(x1, . . . , xm, y1, . . . , yn) · (x̃1, . . . , x̃m, ỹ1, . . . , ỹn) :=(

x1 + x̃1, . . . , xm + x̃m, y1 + ỹ1 + 1
2B

1
jlx̃jxl, . . . , yn + ỹn + 1

2B
n
jlx̃jxl

)
,

and the dilations are

(4.16) δλ(x1, . . . , xm, y1, . . . , yn) := (λx1, . . . , λxm, λ
2y1, . . . , λ

2yn),

for every λ > 0. We shall endow the previous Carnot group with an arbitrary homogeneous
norm that induces a homogeneous left-invariant distance.

In the Carnot groups defined above we call Xj , with j = 1, . . . ,m, the left-invariant vector
fields that agrees with ∂xj at the origin. We call Yk, with k = 1, . . . , n, the left-invariant vector
fields that agrees with ∂yk

at the origin. It holds, by simple computations,

(4.17) Xj = ∂xj + 1
2B

k
jlxl∂yk

,

Yk = ∂yk
.

We shall consider the following two homogeneous subgroups

(4.18) L := {(x1, 0, . . . , 0)}, W := {(0, x2, . . . , xm, y1, . . . , yn)}.

For what concerns this section, we say that f : U ⊆ W → L is L-intrinsically Lipschitz
in U , with L > 0, if

CW,L

(
p,

1
L

)
∩ graph(f) = {p}, for all p ∈ graph(f),

where CW,L
(
p, 1

L

)
is defined in (1.21).

In what follows φ̃ : W → L will be an intrinsically L Lipschitz function and φ : Rm+n−1 →
R is defined as

(4.19) φ̃(0, x2, . . . , xm, y1, . . . , yn) = (φ(x2, . . . , xm, y1, . . . , yn), 0, . . . , 0).

Let us introduce the following family of vector fields. We stress that whenevery φ is C1, the
vector field Dφ applied to φ gives precisely the intrinsic gradient ∇φφ of φ in coordinates,
compare with Remark 1.98.
Definition 4.33. Given φ̃ and φ as in (4.19) we define, for j = 2, . . . ,m, the vector fields on
W at x̄ := (0, x2, . . . , xm, y1, . . . , yn) as

(4.20) Dφ
j |x̄ := Xj |x̄ + φ(x2, . . . , xm, y1, . . . , yn)Bk

j1Yk|x̄.

Definition 4.34. We will say that an absolutely continuous curve γ̃ : I → W is horizontal
for the family of vector fields {Dφ

j }j=2,...,m, if there exist (a2(t), . . . , am(t)) ∈ L1(I;Rm−1)
such that

(4.21) γ̃′(t) = aj(t)Dφ
j |γ̃(t), for a.e. t ∈ I.
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Then the φ-length of γ̃ is defined as

(4.22) ℓφ(γ̃) :=
ˆ

I

√
a2(s)2 + · · · + am(s)2ds.

Remark 4.35. Notice that, due to the specific form of Xj , Yk and Dφ
j in (4.17) and (4.20)

respectively, if
(4.23) γ̃(t) := (0, x2(t), . . . , xm(t), y1(t), . . . yn(t)),
then

(4.24) ℓφ(γ̃) =
ˆ

I

√
x′

2(s)2 + · · · + x′
m(s)2ds.

Remark 4.36. Using the notation in Section 4.1, the Heisenberg group Hn̄ is obtained when
m = 2n̄, n = 1 and B1

ij = 1 if and only if i = j + n̄, otherwise it is zero.

4.2. Length comparison for Carnot groups of step 2. In this subsection we shall
exploit the notation introduced in Section 4.1. We shall show that for Carnot groups of step
2, the length of the curve γ̃ · φ̃(γ̃) measured with a left-invariant homogeneous distance d in
the group G is controlled from above by ℓφ(γ̃) up to a multiplicative constant.
Remark 4.37. For the general theory of sub-Riemannian manifolds, including the Finsler
case, one can check [146, Chapter 3], or also [2]. We recall that in G we have two inter-
pretations for the length of an absolutely continuous curve. Indeed, as in every Carnot-
Carathéodory space, if the distance d on G is induced by a norm ∥ · ∥ on the horizontal
bundle V1 of G, cf. (1.8), the length of an absolutely continuous curve γ : I → G equals the
following values

(4.25) length(γ) := sup
{

n∑
i=1

d(γ(si−1), γ(si))
}

=
ˆ

I
∥γ′(t)∥dt,

where the sup is over the partitions ⊔n
i=0[si, si+1] of I.

The proof of the forthcoming proposition was pointed out to us by Fässler and Orponen
in the Heisenberg group and it is substantially contained in [82, Proposition 3.8]. We present
here a general proof for step-2 groups.
Proposition 4.38. Let G be a step-2 Carnot group with the choice of coordinates as in
Section 4.1 and W and L as in (4.18). Assume G is endowed with a Carnot–Carathéodory
distance d coming from the choice of a norm ∥ · ∥ on the horizontal layer of the Lie algebra of
G. Let φ̃ : W → L be intrinsically L Lipschitz. Set φ,Dφ

j , ℓφ as in (4.19), (4.20), and (4.22),
respectively. If γ̃ : I → W is horizontal with respect to {Dφ

j }j=2,...,m, then

length(γ̃ · φ̃(γ̃)) ≤ C · ℓφ(γ̃),
where C = C(G, L).

Moreover, if the L1-norm of the controls aj(t) of γ̃ as in Definition 4.34 is bounded by
K, the projection on the first component of the curve s 7→ φ̃(γ̃(s)) is L′-Lipschitz, with
L′ = L′(L,K,G).

Proof. Set γ : I → Rm+n−1 to be the curve
γ(t) := (x2(t), . . . , xm(t), y1(t), . . . , yn(t)),

where we use the notation (4.23). By the fact that γ̃ is horizontal with respect to {Dφ
j }j=2,...,m

we get by easy computations that for each k = 1, . . . , n

(4.26) y′
k(t) = x′

j(t)
(1

2B
k
jlxl(t) + φ(γ(t))Bk

j1

)
, for a.e. t ∈ I,
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where we sum over j and l from 2 tom. Now we consider the curve γ̃ between two intermediary
times t < t1 and we claim that

(4.27)
m∑

i=2
|xi(t1) − xi(t)| ≤ C1ℓφ

(
γ̃|[t,t1]

)
,

with C1 = C1(m). Indeed, this is a consequence of the fundamental theorem of calculus,
Cauchy-Schwarz and (4.24).

Set Φ(γ̃(t)) := γ̃(t) · φ̃(γ̃(t)). By the definition of length it suffices to show that for all
[t, t1] ⊆ I there exists a constant C = C(L,G) such that

(4.28) d(Φ(γ̃(t)),Φ(γ̃(t1)) ≤ C · ℓφ(γ̃|[t,t1]).

By the fact that φ̃ is intrinsically Lipschitz and [109, Proposition 2.3.4] one has that, setting
∥ · ∥ the homogeneous norm on G associated to d, there exists a constant C0 = C0(L) such
that

(4.29) d(Φ(γ̃(t)),Φ(γ̃(t1)) ≤ C0
∥∥∥πW (Φ(γ̃(t))−1 · Φ(γ̃(t1))

)∥∥∥ .
Then we leave to the reader to verify the algebraic equality, which depends on the fact that
W is a normal subgroup,

(4.30) πW
(
Φ(γ̃(t))−1 · Φ(γ̃(t1))

)
= φ̃(γ̃(t))−1 · γ̃(t)−1 · γ̃(t1) · φ̃(γ̃(t)).

By exploiting the formula for the group law, it holds

(4.31)
φ̃(γ̃(t))−1 · γ̃(t)−1 · γ̃(t1) · φ̃(γ̃(t)) =
= (0, x2(t1) − x2(t), . . . , xm(t1) − xm(t), σ1(t1, t), . . . , σn(t1, t)),

where for each k = 1, . . . , n we have

(4.32) σk(t1, t) := yk(t1) − yk(t) +Bk
1jφ(γ(t))(xj(t1) − xj(t)) − 1

2B
k
jlxj(t1)xl(t),

where the sums on indices j and l run from 2 to m.
Then by (4.31) and the fact that ∥ · ∥ is equivalent to any other homogeneous norm on

G, we have that

(4.33) ∥φ̃(γ̃(t))−1 · γ̃(t)−1 · γ̃(t1) · φ̃(γ̃(t))∥ ∼
m∑

i=2
|xi(t1) − xi(t)| +

n∑
k=1

√
|σk(t1, t)|.

Using (4.26) and that Bk
jlxj(t)xl(t) = 0 by skew-symmetry of Bk we can rewrite σk(t1, t) as

follows

(4.34)
σk(t1, t) =

(ˆ t1

t
y′

k(ξ)dξ
)

+Bk
1jφ(γ(t))(xj(t1) − xj(t)) − 1

2B
k
jlxj(t1)xl(t)

=
ˆ t1

t

(
x′

j(ξ)Bk
j1 (φ(γ(ξ)) − φ(γ(t))) + 1

2x
′
j(ξ)Bk

jl(xl(ξ) − xl(t))
)
dξ.

Set
f(t1, t) := sup

ξ∈[t,t1]
|φ(γ(ξ) − φ(γ(t)))|.

It follows from (4.34), (4.27) and Cauchy-Schwarz inequality that

(4.35) |σk(t1, t)| ≤ C2
(
ℓφ(γ̃|[t,t1]) + f(t1, t)

)
ℓφ(γ̃|[t,t1]),
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where C2 = C2(m,B) and B := max |Bk
jl|. Now for each ξ ∈ [t, t1] we get by the fact φ is

intrinsically Lipschitz, (4.30), (4.33), (4.27) and (4.35) with ξ instead of t1, that

(4.36)

|φ(γ(ξ)) − φ(γ(t))| ≤ L
∥∥∥πW (Φ(γ̃(t))−1 · Φ(γ̃(ξ))

)∥∥∥
= ∥φ̃(γ̃(t))−1 · γ̃(t)−1 · γ̃(ξ) · φ̃(γ̃(t))∥

∼
m∑

i=1
|xi(ξ) − xi(t)| +

n∑
k=1

√
|σk(ξ, t)|

≤ C3

(
ℓφ(γ̃|[t,ξ]) +

√
f(ξ, t)

√
ℓφ(γ̃|[t,ξ])

)
,

where C3 = C3(m,B,L). Now passing to the supremum as ξ ∈ [t, t1] in both sides of (4.36)
we get

f(t1, t) ≤ C3

(
ℓφ(γ̃|[t,t1]) +

√
f(t1, t)

√
ℓφ(γ̃|[t,t1])

)
,

from which there exists C4 = C4(m,B,L) such that

(4.37) f(t1, t) ≤ C4ℓφ
(
γ̃|[t,t1]

)
.

Finally by chaining (4.29), (4.30), (4.33), (4.27), (4.35), and (4.37), we get (4.28) which was
what we wanted. For the second part of the lemma we just chain (4.36) and (4.37) with ξ
instead of t1, and use the fact that ℓφ(γ̃|[t,ξ]) is bounded from above by C(K,m)|ξ− t| by the
definition of ℓφ in (4.22). □

4.3. Equivalence of intrinsic distance and induced distance on intrinsically
Lipschitz graphs in the Heisenberg groups. In this subsection we shall prove that on
intrinsically Lipschitz codimension-one graphs on Hn, with n ≥ 2, the intrinsic distance is
globally equivalent to the distance induced by Hn.
Definition 4.39. Given φ̃ and φ as in (4.19) we define the intrinsic length distance on the
graph Γ := graph(φ̃) = {w · φ̃(w) : w ∈ W} ⊆ G as follows

(4.38) dΓ(x, y) := inf{length(γ)|γ : [0, 1] → Γ, γ(0) = x, γ(1) = y, γ horizontal}.

Remark 4.40. Up to a globally bi-Lipschitz change of distance, we can suppose to work
with a left-invariant homogeneous distance d on G coming from a scalar product g on the
horizontal bundle V1. Notice that if Γ is a smooth submanifold of G and the horizontal
bundle V1 intersects the tangent bundle of Γ in a bracket generating distribution, then the
distance dΓ(x, y) is exactly the sub-Riemannian distance, let us call it dint(x, y), associated
to the sub-Riemannian structure

(
Γ,V1 ∩ TΓ,g|(V1∩T Γ)×(V1∩T Γ)

)
.

We now stress that in the specific case of the Heisenberg groups the distance d induced
from Hn is bi-Lipschitz equivalent to dΓ defined in (4.38). The proof was suggested to us by
Fässler and Orponen.
Proposition 4.41. With the same assumptions and notation as in Proposition 4.38, if G =
Hn with n ≥ 2, then

(4.39) d(x, y) ∼ dΓ(x, y), ∀x, y ∈ Γ,

where dΓ is defined in (4.38) and d is the induced distance, restriction of the one in Hn. We
recall that with (4.39) we mean that there exists a constant C > 1 such that C−1d(x, y) ≤
dΓ(x, y) ≤ Cd(x, y) for every x, y ∈ Γ.
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Proof. First of all notice that, using the notation in (4.20) and taking into account Re-
mark 4.36, if G = Hn, then Dφ

j |x̄ = Xj |x̄ for all j = 2, . . . , 2n and j ̸= n + 1, while
Dφ

n+1|x̄ = Xn+1|x̄+φ(x2, . . . , x2n, y1)Y1|x̄. We also have [Xj , Xn+j ] = Y1 for every j = 1, . . . , n
and all the other commutators are zero. By definition of dΓ (4.38), exploiting the definition
of length (4.25) and the triangle inequality, we get

d(x, y) ≤ dΓ(x, y), ∀x, y ∈ Γ.

Now we want to prove the opposite inequality up to a multiplicative constant. First of all,
by a left translation, we can assume x = 0 and y = w · φ̃(w) for w ∈ W. It holds that

(4.40) d(x, y) = d(0, y) = ∥w · φ̃(w)∥d ≥ C0∥w∥d,

where ∥ · ∥d is the homogeneous norm associated to d and C0 = C0(W,L), see [109, Propo-
sition 2.2.2]. From now on, in this proof, we will set ∥ · ∥d := ∥ · ∥.

We claim that we conclude the proof if we show that for each w ∈ W there exists γ̃ ⊆ W,
connecting 0 to w, horizontal for {Dφ

j }j=2,...,2n+1, such that

(4.41) ℓφ(γ̃) ≤ C1∥w∥,

for some constant C1 independent on w. Indeed, if (4.41) holds, then from the first part of
Proposition 4.38 and (4.40) we get that, setting Φ(γ̃) := γ̃ · φ̃(γ̃),

length(Φ(γ̃)) ≤ C2d(x, y),

where C2 is a constant independent on w, and Φ(γ̃) is a curve contained in Γ connecting
x = 0 to y = w · φ̃(w). Since the length of Φ(γ̃) is finite, we get that it is a horizontal curve
[146, Theorem 2.4.5] and then we get

dΓ(x, y) ≤ C2d(x, y),

that finishes the proof.
Now we show the existence of γ̃, with the required properties, such that (4.41) holds. We

concatenate two curves γ̃1 and γ̃2, horizontal for {Dφ
j }j=2,...,2n+1, to reach

w := (0, x2, . . . , x2n, y1) from 0. Due to the fact that φ is continuous, because of [109,
Theorem 2.3.6], Peano’s theorem [122, Theorem 1.1] ensures that there exists a local solution
to the continuous ODE

(4.42)
{
τ ′(s) = φ(0, . . . , 0, s, 0, . . . , 0, τ(s)),
τ(0) = 0,

where s in the (n+ 1)-th coordinate. Set

γ̃1(s) := (0, . . . , 0, s, 0, . . . , 0, τ(s)),

the curve with values in W ⊆ Hn, with s in the (n + 1)-th coordinate. By (4.42) it holds,
whenever γ̃1(s) is defined,

(4.43) γ̃′
1(s) = Dφ

n+1|γ̃1(s).

We show that τ(s) is defined globally on R, arguing as in [78, (4.1) and after]. Indeed,
whenever τ(s) exists,

(4.44) τ(s) =
ˆ s

0
τ ′(ξ)dξ =

ˆ s

0
φ̃(γ̃1(ξ))dξ.

Notice that here there is a little abuse of notation: by φ̃ (γ̃1(ξ)), that a priori has values in
L, we mean the projection of it on the first coordinate in Hn. By (4.43) and the second part
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of Proposition 4.38 we have that s 7→ φ̃(γ̃1(s)) is L′-Lipschitz, with L′ = L′(L). Then, by
(4.44) and the fact that φ(0) = 0, because we are assuming x = 0, we have

(4.45) |τ(s)| ≤ 1
2L

′s2.

Thus, as every solution to (4.42) escapes every compact set [122, Theorem 2.1], we get from
(4.45) that τ(s) is globally defined. Then τ(s) is defined up to s = xn+1 and by the previous
argument

(4.46) |τ(xn+1)| ≤ 1
2L

′x2
n+1.

We notice that we can identify the arbitrary point (x2, . . . , xn, xn+2, . . . , x2n, y1) with a point
in Hn−1. Thus we can connect the point (0, . . . , 0, τ(xn+1)), where we just removed the first
and the (n + 1)-th coordinate from γ̃1(xn+1), to the point (x2, . . . , xn, xn+2, . . . , x2n, y1), by
using a horizontal geodesic in Hn−1 with respect to the Carnot-Carathéodory distance dg in-
duced, on Hn−1, by the scalar product g that makes X2, . . . , Xn, Xn+2, . . . , X2n orthonormal.
We set γ̃2 : I → W to be the lifting of this horizontal geodesic in Hn, where the (n + 1)-th
coordinate of γ̃2 is constantly equal to xn+1. We notice that it is horizontal with respect to
the family {Dφ

j }j=2,...,n,n+2,...,2n, because Dφ
j = Xj for j = 2, . . . , 2n and j ̸= n+ 1. Then we

have

(4.47)

ℓφ(γ̃2) = dg((0, . . . , 0, τ(xn+1)), (x2, . . . , xn, xn+2, . . . , x2n, y1))

≤ C3

|y1 − τ(xn+1)|1/2 +
2n∑

i=2,i ̸=n+1
|xi|


≤ C4

(
|y1|1/2 +

2n∑
i=2

|xi|
)

≤ C5∥w∥,

where the first equality follows by the definition of ℓφ (4.22) and the fact that γ̃2, restricted to
the copy of Hn−1 made of points with zero in the first coordinate and xn+1 in the (n+ 1)-th
coordinate, is a dg-geodesic; the second is true because every two homogeneous norms are
equivalent, the third one is true because of (4.46), and the last one again by the fact that
every two homogeneous norms are equivalent. Now we have

(4.48) ℓφ
(
γ̃1|[0,xn+1]

)
= |xn+1| ≤ |y1|1/2 +

2n∑
i=2

|xi| ≤ C6∥w∥,

where the first equality is true by the definition of ℓφ and (4.43) and the third is true again
because of the equivalence of homogeneous norms. Now if we set γ̃ := γ̃1|[0,xn+1] ⋆ γ̃2 the
concatenation of the two curves, we get that γ̃ is horizontal and connects 0 to w. Summing
(4.47) and (4.48) we get (4.41) with C1 := C5 + C6, which was what was left to prove. □

4.4. Sub-Riemannian structure of a C∞ non-characteristic hypersurface in the
Heisenberg groups. In this subsection we finally prove in four steps the main theorem in
Theorem 4.2.

4.4.1. The restriction of the horizontal bundle is bracket generating. Now we are going
to prove that for non-characteristic C2-hypersurfaces (see Definition 4.17) in Hn, with n ≥ 2,
the intersection between the horizontal bundle of Hn and the tangent bundle of S is bracket
generating. This result was already known and it is a consequence of a more general one [210,
Theorem 1.1]. Nevertheless we give here a simple proof by making explicit computations.
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Proposition 4.42. Consider in Hn, with n ≥ 2, a C2-hypersurface S. If S has no charac-
teristic points, then the bundle

(4.49) x 7→ Dx := V1(x) ∩ TxS,

gives a step-2 bracket generating distribution on the hypersurface S.

Proof. We refer, for the notation, to Section 4.1. In particular, for the Heisenberg groups
Hn, see Remark 4.36. We need to prove that

∀x ∈ S, Dx + [D,D]x = TxS.

Let us give the proof first for n = 2. We work locally around x ∈ S so that we can assume
that there exists f ∈ C2(Hn) such that

S = {x ∈ Hn : f(x) = 0}.

We define locally the vector fields

Z1 := −(X2f)X1 + (X1f)X2 − (X4f)X3 + (X3f)X4,

Z2 := −(X3f)X1 + (X4f)X2 + (X1f)X3 − (X2f)X4,

Z3 := −(X4f)X1 − (X3f)X2 + (X2f)X3 + (X1f)X4.

We have that for each x ∈ S, the linear space Dx is a three-dimensional subspace of TxS,
because x is a non-characteristic point (Definition 4.17). Then, because Z1|x, Z2|x and Z3|x
are linearly independent and are in Dx, we have

(4.50) Dx = span{Z1|x, Z2|x, Z3|x}, ∀x ∈ S.

Now by doing the computations exploiting the definition of Zi, and using that [X1, X3] =
[X2, X4] = Y1, we can show that

[Z1, Z2] = ⋆1 − 2(X1fX2f +X3fX4f)Y1,

[Z1, Z3] = ⋆2 + ((X1f)2 + (X3f)2 − (X2f)2 − (X4f)2)Y1,

[Z2, Z3] = ⋆3 + 2(X1fX4f −X2fX3f)Y1,

where ⋆1, ⋆2, ⋆3 are some combinations of X1, X2, X3, X4 with function coefficients.
It is easy to check that it is not possible to have, at some point x ∈ S,

X1f(x)X2f(x) +X3f(x)X4f(x) = 0,
(X1f)2(x) + (X3f)2(x) − (X2f)2(x) − (X4f)2(x) = 0,

X1f(x)X4f(x) −X2f(x)X3f(x) = 0,

because otherwise X1f(x) = X2f(x) = X3f(x) = X4f(x) = 0, which is impossible because
there are no characteristic points. Then, for every x ∈ S, at least one among [Z1, Z2]|x,
[Z1, Z3]|x, and [Z2, Z3]|x has a component along Y1|x. Thus, as X1|x, X2|x, X3|x, X4|x and
Y1|x are linearly independent, this means that there exists at least one among [Z1, Z2]|x,
[Z1, Z3]|x, and [Z2, Z3]|x which is not in Dx. Then as [D,D]x ⊆ TxS, and it holds that there
exists an element in [D,D]x which is not in Dx, we get the conclusion.

If n > 2 we can argue exactly in the same way. Indeed, because there are no characteristic
points, for every x ∈ S there exists i with 1 ≤ i ≤ 2n such that Xif(x) ̸= 0 and one runs the
same computations substituting X1, X2, X3, X4 with Xi, Xj , Xi+n, Xj+n with j ̸= i. □
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4.4.2. Local equivalence of the sub-Riemannian distance and the induced distance. Let
S be a smooth non-characteristic hypersurface in the Heisenberg group Hn, n ≥ 2. From
Proposition 4.42 we have a bracket generating distribution D in the Euclidean tangent bundle
TS of S. Hence S has the structure of sub-Riemannian manifold: we fix a scalar product g
on V1, the horizontal bundle of Hn, which induces a scalar product on D. This scalar product
defines a sub-Riemannian distance on S by taking the infimum of the length - measured with
the norm ∥ · ∥g associated to g - of all the horizontal - according to D - curves in S. We will
call this distance dint, the intrinsic distance on S. We can also equip S with the restriction
of the distance of Hn, which we will call induced distance, and with a little abuse of notation
we denote it by d.
Proposition 4.43. Let (Hn, d), with n ≥ 2, be the Heisenberg group equipped with the sub-
Riemannian distance coming from a scalar product on the horizontal distribution. Let S be a
C∞ non-characteristic hypersurface in Hn. For each p ∈ S there exists an open neighbourhood
Up of p such that

(4.51) d(x, y) ∼ dint(x, y) ∀x, y ∈ Up.

We recall that with (4.51) we mean that there exist C ≥ 1 such that C−1d(x, y) ≤ dint(x, y) ≤
Cd(x, y) for every x, y ∈ Up.

Proof. By Remark 4.18, S is a C1
H-hypersurface. Then, by the implicit function theorem,

we get that locally around p ∈ S the hypersurface S is the graph Γ of a globally defined
intrinsically Lipschitz function on the tangent group W := T I

xS. By changing coordinates if
necessary (see also Lemma 4.44), we can assume W as in (4.18). Then by Proposition 4.41
we get that dΓ ∼ d and from Remark 4.40 we get that, in a neighbourhood of p, dint = dΓ,
so that we get the result. □

4.4.3. Tangents of C∞ non-characteristic hypersurfaces. Now we know that a C∞ non-
characteristic hypersurface in the Heisenberg groups Hn, n ≥ 2, carries a sub-Riemannian
structure. With the aim of using the rectifiability result from [151, Theorem 2], we cal-
culate the possible tangents of S. We recall this well-known lemma, see for example [115,
Lemma 3.26].
Lemma 4.44. Every vertical subgroup of codimension one in Hn, n ≥ 2, is isomorphic to
Hn−1 × R, which is a Carnot group.
Proposition 4.45. Let S be a C∞-hypersurface in Hn, n ≥ 2, with no characteristic points.
Let D be as in (4.49) and g be a scalar product on the horizontal bundle V1 of Hn.

Then the triple (S,D,g|D×D) is an equiregular sub-Riemannian manifold with Hausdorff
dimension 2n+ 1. At each point x ∈ S we have that the Gromov-Hausdorff tangent is unique
and it is isometric the Carnot group Hn−1 × R endowed with some Carnot-Carathéodory
distance.

Proof. Because of the fact that S is non-characteristic it follows that Dx has dimension 2n−1
at each point x ∈ S. Also it is a direct consequence of Proposition 4.42 that, for each x ∈ S,
the linear space Dx + [D,D]x has dimension 2n. Then (S,D,g|D×D) is an equiregular sub-
Riemannian manifold with weights (2n−1, 1). Then the Hausdorff dimension of S with respect
to the sub-Riemannian distance dint is 2n+1, since dint is equivalent to d, see Proposition 4.43.

By [52] (see also [129, Theorem 2.5], [129, page 25]) it follows, as we are in the equiregular
case, that the Gromov-Hausdorff tangent at every point x ∈ S is isometric to the Carnot
group, endowed with some Carnot distance, that has Lie algebra

Vx := Dx ⊕ ((Dx + [D,D]x)/Dx),
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with the bracket operation inherited by the brackets in the Heisenberg group. Then Vx is
isomorphic to a vertical subgroup of Hn of codimension one and thus it is isomorphic to
Hn−1 × R by Lemma 4.44. □

4.4.4. Carnot-rectifiability of C∞-hypersurfaces. We conclude with the main result of this
section.
Theorem 4.46. Let (Hn, d), with n ≥ 2, be the n-th Heisenberg group equipped with a left-
invariant homogeneous distance d. If S is a C∞-hypersurface in Hn, then the metric space
(S, d) has Hausdorff dimension 2n+ 1 and it is ({Hn−1 × R},H2n+1)-rectifiable according to
the Definition 4.3.

Proof. The fact that (S, d) has Hausdorff dimension 2n+ 1 follows from Remark 1.115. Let
us assume first that S has no characteristic points. In this case it directly follows from [151,
Theorem 2] and Proposition 4.45 that the metric space (S, dint) has Hausdorff dimension 2n+1
and it is ({Hn−1×R},H2n+1

dint
)-rectifiable according to Definition 4.3. Then by Proposition 4.43

we obtain that (S, d) is ({Hn−1 × R},H2n+1
d )-rectifiable.

In the general case, calling ΣS the set of characteristic points, we know that H2n+1 (ΣS) =
0 by [40, Theorem 1.1] (see also [168, Theorem 2.16]). Moreover if x ∈ S is a non-
characteristic point, there exists Ux open subset of S containing x such that Ux is a smooth
non characteristic hypersurface. Then we can use the previous argument to conclude that
(Ux, d) is ({Hn−1 × R},H2n+1)-rectifiable and by covering S \ ΣS with countably many Ux’s
we get the conclusion. □

Remark 4.47. By Theorem 4.46 it follows that every smooth hypersurface S in Hn, n ≥
2, is Hn−1 × R-rectifiable according to the bi-Lipschitz variant of Pauls’s definition [84,
Definition 3], see Remark 4.6 for more details about this definition.
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