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Abstract. We consider periodic piecewise affine functions, defined on the real line, with
two given slopes and prescribed length scale of the regions where the slope is negative.
We prove that, in such a class, the minimizers of s-fractional Gagliardo seminorm den-
sities, with 0 < s < 1, are in fact periodic with the minimal possible period determined
by the prescribed slopes and length scale.

Then, we determine the asymptotic behavior of the energy density as the ratio be-
tween the length of the two intervals where the slope is constant vanishes.

Our results, for s = 1
2
, have relevant applications to the van der Merwe theory of

misfit dislocations at semi-coherent straight interfaces. We consider two elastic materials
having different elastic coefficients and casting parallel lattices having different spacing.
As a byproduct of our analysis, we prove the periodicity of optimal dislocation configu-
rations and we provide the sharp asymptotic energy density in the semi-coherent limit
as the ratio between the two lattice spacings tends to one.
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Introduction

This paper deals with the emergence of periodic patterns arising from the competition between
energy functionals favoring rapid oscillations, and penalizations/constraints fixing the length scale
of such oscillations. Specifically, we prove that minimizers of fractional seminorms among two slope
functions with suitably prescribed length scales are periodic with the minimal allowed period.

Periodicity for minimizers of the local L2 norm has been provided in [11] in the case where the
two slopes are equal in modulus and have opposite sign, and for general (not necessarily equal
in modulus) opposite slopes in [13]. The case of fractional seminorms has been considered in [9],
again for equal (opposite) slopes. Antiferromagnetic energies have been treated in [8].

In this paper we deal with general two slope functions minimizing s-fractional seminorms; this
setting is relevant for modeling misfit dislocations at semi-coherent interfaces. We settle our
analysis in the most comfortable framework where the admissible functions u are piecewise affine
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with fixed slopes 1 and −Λ < 0, and the length scale δ > 0 is prescribed by assuming that the
region where the slope is −Λ is given by union of intervals of length δ whose interiors are mutually
disjoint. In this respect, our framework is much more rigid and easier to be analyzed with respect
to the phase field based models quoted above.

In order to define finite energy densities, we also assume that u is T periodic for some T > 0.
The energy density of any admissible function satisfying the constraints above is given by the
s-fractional Gagliardo seminorm FTs defined in (1.4). It is easily seen that such a functional favors
rapid oscillations of u; prescribing only the two slopes 1 and −Λ, the infimum of the energy would
be zero and any minimizing sequence would converge to zero locally uniformly. On the other
hand, fixing the length scale δ, we expect that minimizers are periodic functions with the minimal
allowed period, which is clearly given by (Λ + 1)δ. This is exactly the result provided by Theorem
1.3. The proof of such a theorem does not rely on reflection positivity arguments used in [9], that
seem to fail in our non-symmetric case; as well, the antiferromagnetic reflection techniques used
in [8] would increase rather than decrease our fractional ferromagnetic type energies. Instead, our
proof is based on easy first variation arguments and comparison principles. It is in this step that
we take advantage of the rigid constraints on the space of our admissible functions. Our variations
consist in moving to the right a δ-interval I := (x0 − δ, x0), where u′ = −Λ and x0 is an absolute
minimizer of u. Such a first variation yields that the average of the s-fractional Laplacian of u
on I has a sign. Then, we superpose the graph of a candidate periodic minimizer ū over that of
u on I. In view of our rigid constraints, ū ≤ u, and exploiting fractional maximum principles we
deduce that ū = u. We remark that if we replace the constraint that the region where u′ = −Λ is
union of δ-intervals with the weaker constraint that each of its connected components has length
at least δ, it would be not clear anymore that ū ≤ u. On the other hand, the fact that there are no
constraints on the region where u′ = 1 leaves enough room to construct and compute continuous
families of first variations.

Then, we are interested in the asymptotic behavior of the energy densities as δ → 0 and
Λ→ +∞. This analysis relies on detecting the precise scales at which the s-fractional seminorms
(for s ≥ 1

2 ) concentrate. In this way the interaction between infinite intervals where the slope is
constant can be reduced, up to lower order terms, to the interaction of a finite number of them,
that could be computed explicitly (Proposition 1.5).

Moreover, in Subsection 1.3, we develop a similar analysis for the extremal cases s = 0 and
s = 1. Trivially, the s-fractional Gagliardo seminorms diverge as s→ 1; but it is well known, since
[1], that, after multiplying by (1− s), they converge to the classical Dirichlet energy. Analogously,
by [10], the s-fractional Gagliardo seminorms multiplied by s converge, as s→ 0, to the squared L2

norm. We refer the reader to [2] for the corresponding Γ-convergence statements in the setting of
compactly supported functions. Here, without developing an asymptotic analysis of our functional
as s → 0+ and s → 1−, we determine the minimizers of the functionals FTs among two slope
functions for s = 0 (corresponding somehow to the case treated in [11, 13]) and s = 1 and we
compute their asymptotic energy density.

In Section 2 we apply the results of Section 1 to the theory of misfit dislocations. Our starting
point is the analysis developed by van der Merwe in [14]. He considers semi-coherent straight
interfaces between two parallel square lattices with different spacing. The two main assumptions
in [14] are the following. First, the top and bottom lattices behave as linearly elastic isotropic
materials, with the same elastic moduli. Second, it is tacitly assumed, as a well understood
and unanimously accepted truth (as in the celebrated Read-Shockley paper [12] for small angle
grain boundaries), that dislocations are periodically distributed along the interface. Under these
assumptions, the optimal transition profile is found using Fourier analysis techniques and the
sharp energy density induced by such a uniform distribution of dislocations is computed.

Here we have a less ambitious goal, that is to find the asymptotics of the energy density in
the semi-coherent limit as the ratio between the top and bottom lattice spacings tends to one.
In fact, the detection of the optimal profile only gives lower order corrections in the asymptotics
of the energy density. This motivated us to consider a simplified model where the transition is
prescribed in a simple, non optimal way; namely, we consider rigid affine transitions. The resulting
difference of the top and bottom traces of the displacement at the interface is a two slope function
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with a “small” positive slope, accommodating elastically the lattice misfits, and a “big” negative
slope, providing the transition at the core length scale of the dislocation. It is here that we are
led to consider the case of two general (non equal in modulus) slopes. Then, the elastic energy
density induced by the resulting trace is given, up to pre-factors, by the 1

2 -fractional seminorm

FT1
2

defined in (1.4), and this leads us to consider fractional rather than local energies. Then, as

a consequence of our results in Section 1, we prove, rather than assume, the periodicity of the
optimal distribution of dislocations. This is our main novelty with respect to the analysis in [14]
and, to the best of our knowledge, it is the first time that periodicity of optimal distributions of
dislocations is proved in a simple but rigorous mathematical framework. A further step is that
we deal with two half-planes having different elastic moduli, providing an explicit energy density
depending on all the elastic moduli and on the lattice spacings of the two square lattices (2.14).

We highlight that a related model for semi-coherent interfaces has been introduced and analyzed
by Γ-convergence in [5]; there, only the asymptotic (in the semi-coherent limit) uniform distribu-
tion of dislocations is proved. Our analysis, up to minor adaptations, provides the periodicity of
optimal configurations of dislocations also for that model, completing the analysis in [5].

Finally, let us mention that it may be worth to consider less rigid models based on phase field
approximations such as those in [8, 9, 11, 13]. Such problems, together with possible further
developments, are discussed in Section 3.

Acknowledgements: LdL is a member of the Gruppo Nazionale per l’Analisi Matematica, la
Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (IN-
dAM). E. S. has been supported by the ERC-STG grant 759229 HiCoS. The authors are grateful
to S. Daneri, M. Morini and E. Runa for interesting discussions on the subject of this paper.

1. Periodicity of two slope functions with minimal fractional seminorms

In this section we introduce the fractional seminorm energies and the class of admissible func-
tions we will deal with. We will prove the periodicity of the minimizers and provide sharp energy
densities.

1.1. Periodicity of minimizers. Let Λ, δ > 0. Let

(1.1) T = L(Λ + 1)δ for some L ∈ N .

We introduce the class of admissible functions A T,Λ,δ defined as

(1.2) A T,Λ,δ :=
{
u ∈ C0(R) : u is T -periodic and piecewise affine, u′ ∈ {1,−Λ} a.e.,

(u′)−1({−Λ}) =
⋃
k∈N

Ik for some intervals Ik with

](Ii ∩ Ij) ≤ 1 for all i 6= j, |Ik| = δ for all k ∈ N},

where ] denotes the cardinality of a set and | · | is the one dimensional Lebesgue measure. Notice
that L = 1 corresponds to the minimal possible period T = (Λ + 1)δ, namely, to functions
alternating δ-intervals where u′ = −Λ with Λδ-intervals where u′ = 1. We denote by ū one of such
(Λ + 1)δ-periodic functions; specifically, the one that on the interval (−δ,Λδ] is defined by

(1.3) ū(x) :=

{
−Λx if − δ < x < 0,

x if 0 ≤ x ≤ Λδ.

Trivially, ū is also L(Λ + 1)δ periodic for all L ∈ N, so that A T,Λ,δ 6= ∅ for all choices of T as in
(1.1).

For every 0 < s < 1 we consider the functional FTs : A T,Λ,δ → R+ defined by

(1.4) FTs (u) :=
1

2T

∫ T

0

dx

∫
R

|u(x)− u(y)|2

|x− y|1+2s
dy.
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For every u ∈ A T,Λ,δ, the s-fractional Laplacian (−∆)su of u can be defined a.e. (in fact,
everywhere except for the jump points of u′) as

(−∆)su(x) := 2 lim
r→0+

∫
R\(x−r,x+r)

u(x)− u(y)

|x− y|1+2s
dy.

We notice that for any u ∈ A T,Λ,δ we have that FTs (u) is finite and that (−∆)su ∈ L1
loc(R).

Let u ∈ A T,Λ,δ and let x0 be a global minimizer of u. We set I = (x0− δ, x0) if x0− δ is a jump
point for u′, while we set I = [x0 − δ, x0) if u′ exists at x0 − δ. Clearly u′ = −Λ on I. Possible
competitors for u are given by functions uh satisfying (for h > 0 small enough)

(u′h)−1({−Λ}) = ((u′)−1({−Λ}) \ {I + kT, k ∈ Z}) ∪ {(x0 − δ, x0) + h+ kT, k ∈ Z} .

Such competitors can be clearly written by means of additive variations as uh = u+hϕh for some
functions ϕh satisfying ϕh → (Λ + 1)χ{I+kT, k∈Z} strongly in L1

loc(R) and weakly star in L∞(R)

as h→ 0+.

Lemma 1.1. Let u ∈ A T,Λ,δ and let, for h > 0 small enough, uh = u + hϕh ∈ A T,Λ,δ for some
functions ϕh satisfying

(1.5) ϕh → (Λ + 1)χ{I+kT, k∈Z}

strongly in L1
loc(R) and weakly star in L∞(R) as h→ 0+, for some interval I. Then,

lim
h→0

FTs (uh)−FTs (u)

h
=

Λ + 1

T

∫
I

(−∆)su(x) dx.

Proof. For every h > 0 we have

(1.6)

TFTs (u+ hϕh)− TFTs (u)

h
=hTFTs (ϕh) +

∫ T

0

dx

∫
R

(u(x)− u(y))(ϕh(x)− ϕh(y))

|x− y|1+2s
dy

=hTFTs (ϕh) +

∫ T

0

ϕh(x)
1

2
(−∆)su(x) dx

+ lim
r→0+

∫ T

0

dx

∫
R\(x−r,x+r)

ϕh(y)
u(y)− u(x)

|x− y|1+2s
dy

=hTFTs (ϕh) +

∫ T

0

ϕh(x)(−∆)su(x) dx,

where, in the last equality, we have used Fubini Theorem and the change of variable x′ = x− kT
and y′ = y − kT to deduce that∫ T

0

dx

∫
R\(x−r,x+r)

ϕh(y)
u(y)− u(x)

|x− y|1+2s
dy

=
∑
k∈Z

∫ T

0

dx

∫
(kT,(k+1)T )\(x−r,x+r)

ϕh(y)
u(y)− u(x)

|x− y|1+2s
dy

=
∑
k∈Z

∫ T

0

dy′ϕh(y′)

∫
(−kT,(1−k)T )\(y′−r,y′+r)

u(y′)− u(x′)

|x′ − y′|1+2s
dx′

=

∫ T

0

dy′ϕh(y′)

∫
R\(y′−r,y′+r)

u(y′)− u(x′)

|x′ − y′|1+2s
dx′.

Furthermore, easy estimates yield hTFTs (ϕh) → 0 as h → 0+. Therefore, by taking the limit as
h→ 0+ in (1.6) and using (1.5) we get the claim. �

Now we observe that the fractional Laplacian of the function ū defined in (1.3) has zero average
on the δ-intervals with negative slope. In fact, since the map y 7→ ū(y − δ

2 ) − ū(− δ2 ) is an odd
function, by an easy symmetry argument (namely, by a change of variable), the following result
holds true.
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Lemma 1.2. The function ū defined by (1.3) satisfies∫ 0

−δ
(−∆)sū(x) dx = 0.

We are in a position to provide the main result of the paper, establishing the (Λ+1)δ-periodicity
of the minimizers of FTs in A T,Λ,δ. In the following results we will always assume T of the form
(1.1), the specific value of L being irrelevant. In this respect, for instance, next theorem establishes
that L can be chosen equal to one.

Theorem 1.3. For every 0 < s < 1, the minimizers of FTs in A T,Λ,δ are the functions ū(· −
x0) + y0, with x0, y0 ∈ R, where ū is defined in (1.3).

Proof. Let u be a minimizer of FTs in A T,Λ,δ and let x0 be a global minimizer of u. By minimality
and by Lemma 1.1 we have

(1.7)

∫ x0

x0−δ
(−∆)su(x) dx ≥ 0.

Set v(·) := ū(· − x0) + u(x0). Then v ≤ u with v ≡ u on (−δ, 0). By Lemma 1.2 and (1.7) it
follows that

0 =

∫ x0

x0−δ
(−∆)sv(x) dx ≥

∫ x0

x0−δ
(−∆)su(x) dx ≥ 0.

Then, all the inequalities above are in fact equalities, from which we conclude u ≡ v. �

1.2. Fractional energy densities. In Proposition 1.4 and Theorem 1.5 below we provide the
asymptotic behavior of the minimal energy density FTs in A T,Λ,δ as δ → 0, Λ→ +∞ with Λδ = 1.
This last condition is not restrictive and it only fixes the oscillation of the admissible functions.
In fact, exploiting the homogeneities of FTs , given any u ∈ A T,Λ,δ and η > 0, the function uη

defined by uη(x) := ηu(xη ) belongs to A ηT,Λ,ηδ, its oscillation is η times the oscillation of u and

FηTs (uη) = η2−2sFTs (u).
We first consider the easy case 0 < s < 1

2 , which follows by the dominated convergence theorem.

Proposition 1.4. Let 0 < s < 1
2 . Let moreover {δn}n∈N be a positive vanishing sequence (as

n → +∞); for all n ∈ N, set Λn := 1
δn

, let Tn be of the form (1.1) (with δ replaced by δn and Λ

replaced by Λn) and let un be a minimizer of FTns in A Tn,Λn,δn . Then

lim
n→+∞

FTns (un) =
1

2

∫ 1

0

∫
R

|w(x)− w(y)|2

|x− y|1+2s
dy dx,

where w(x) := x− bxc is the so called mantissa function.

Now we focus on the case 1
2 ≤ s < 1; in view of our application to misfit dislocations, particularly

relevant will be the critical case s = 1
2 .

Theorem 1.5. Let 1
2 ≤ s < 1. Let moreover {δn}n∈N be a positive vanishing sequence (as

n → +∞); for all n ∈ N, set Λn := 1
δn

, let Tn be of the form (1.1) (with δ replaced by δn and Λ

replaced by Λn) and let un be a minimizer of FTns in A Tn,Λn,δn . Then

lim
n→+∞

1

σn
FTns (un) = 1,

where

(1.8) σn :=


log

1

δn
if s = 1

2

δ1−2s
n

2s(1− s)(2s− 1)(3− 2s)
if 1

2 < s < 1.
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Proof. In view of Theorem 1.3, up to translations we may assume that the minimizers un are the
functions defined by (1.3) for Λ = Λn and δ = δn. We start by observing that, since Tn = L(1+δn)
with L ∈ N,

(1.9) (1 + δn)FTns (un) =
1

2

∫ 1

−δn
dx

∫
R

|un(x)− un(y)|2

|x− y|1+2s
dy.

For every pair of measurable sets (I, J), we define

Ins (I, J) :=
1

2

∫
I

dx

∫
J

|un(x)− un(y)|2

|x− y|1+2s
dy.

Then, by (1.9), we have

(1.10)

(1 + δn)FTs (un) =Ins ((−δn, 0), (−δn, 0)) + Ins ((−δn, 0), (0, 1))

+ Ins ((−δn, 0), (−1− δn,−δn)) + Ins ((−δn, 0),R \ (−1− δn, 1))

+ Ins (0, 1), (−δn, 0)) + Ins ((0, 1), (0, 1)) + Ins ((0, 1), (1, 1 + δn))

+ Ins ((0, 1), (1 + δn, 2 + δn)) + Ins ((0, 1), (−1− δn,−δn))

+ Ins ((0, 1),R \ (−1− δn, 2 + δn))

=:I n
1 + I n

2 + I n
3 + I n

4 + I n
5 + I n

6 + I n
7 + I n

8 + I n
9 + I n

10.

We first discuss the case s = 1
2 . To this end, we observe that, for n large enough,

(1.11) I n
k ≤ 1 for k 6= 8, 9.

Now, by periodicity,

(1.12) I n
8 = I n

9 .

For every 0 < ρ < 1
2 we have that

I n
8 ≥

1

2
(1− 2ρ)2

∫ 1

1−ρ
dx

∫ 1+δn+ρ

1+δn

1

(y − x)2
dy

=
1

2
(1− 2ρ)2

(
log

1

δn
+ log

(δn + ρ)2

δn + 2ρ

)
,

whence, dividing by σn, sending first n→ +∞ and then ρ→ 0, we obtain

(1.13) lim inf
n→+∞

1

σn
I n

8 ≥
1

2
.

Moreover, we have that

I n
8 ≤

1

2

∫ 1

0

dx

∫ 2+δn

1+δn

1

(y − x)2
dy =

1

2

(
log

1

δn
+ log

(δn + 1)2

δn + 2

)
,

whence we obtain

(1.14) lim sup
n→+∞

1

σn
I n

8 ≤
1

2
.

By (1.9), (1.10), (1.11), (1.12), (1.13) and (1.14), we obtain the claim for s = 1
2 .

We pass to the case s > 1
2 . We first notice that, for n large enough,

(1.15) I n
4 ,I

n
10 ≤ 1;

moreover,

(1.16) I n
6 =

1

2

∫ 1

0

dx

∫ 1

0

|x− y|1−2s dy =
1

2(1− s)(3− 2s)
.

Now, as for I n
1 , we have

(1.17) I n
1 =

Λ2
n

2

∫ 0

−δn
dx

∫ 0

−δn
|x− y|1−2s dy =

δ1−2s
n

2(1− s)(3− 2s)
.
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As for I n
2 , we claim that

(1.18) lim
n→+∞

1

δ1−2s
n

I n
2 =

1

4s(3− 2s)
.

To this purpose, we write

(1.19)

I n
2 =

1

2

∫ 0

−δn
dx

∫ 1

0

|Λnx+ y|2

|x− y|1+2s
dy

=
1

2

∫ 0

−δn
dx

∫ 1

0

|(Λn + 1)x+ y − x|2

|x− y|1+2s
dy

=
1

2

∫ 0

−δn
dx

∫ 1

0

(y − x)2

(y − x)1+2s
dy

+
1

2

∫ 0

−δn
dx

∫ 1

0

(Λn + 1)2x2

(y − x)1+2s
dy

+

∫ 0

−δn
dx

∫ 1

0

(y − x)(Λn + 1)x

(y − x)1+2s
dy

=:I n
2,1 + I n

2,2 + I n
2,3.

Straightforward computations yield

(1.20) I n
2,1 ≤

δn
4(1− s)

.

Moreover,

I n
2,2 =

(Λn + 1)2

4s

∫ 0

−δn
(−x)2−2s dx− (Λn + 1)2

4s

∫ 0

−δn
x2(1− x)−2s dx

=
1

4s(3− 2s)
(Λn + 1)2δ3−2s

n − (Λn + 1)2

4s

∫ 0

−δn
x2(1− x)−2s dx;

therefore, using that ∫ 0

−δn
x2(1− x)−2s dx ≤ δ3

n,

we deduce

(1.21) lim
n→+∞

1

δ1−2s
n

I n
2,2 =

1

4s(3− 2s)
.

Furthermore, using (1.20) and (1.21), by Hölder inequality we deduce that

(1.22) lim
n→+∞

1

δ1−2s
n

I n
2,3 = 0 .

Therefore, the claim (1.18) follows by (1.19), (1.20), (1.21), and (1.22).
By easy reflection/symmetry arguments, for every n ∈ N,

(1.23) I n
2 = I n

3 = I n
5 = I n

7 and I n
8 = I n

9 .

Therefore, it remains to compute

lim
n→+∞

1

δ1−2s
n

I n
8 .

To this end, we notice that, for every 0 < ρ < 1
2 ,

(1.24)

I n
8 ≥

1

2
(1− 2ρ)2

∫ 1

1−ρ
dx

∫ 1+δn+ρ

1+δn

1

(y − x)1+2s
dy

=
1

4s(2s− 1)
(1− 2ρ)2

(
δ1−2s
n + (δn + 2ρ)1−2s − 2(δn + ρ)1−2s

)
,
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whence, sending first n→ +∞ and then ρ→ 0, we deduce

(1.25) lim inf
n→+∞

1

δ1−2s
n

I n
8 ≥

1

4s(2s− 1)
.

Moreover, we have that

I n
8 ≤

1

2

∫ 1

0

dx

∫ 2+δn

1+δn

1

(y − x)1+2s
dy =

1

4s(2s− 1)

(
δ1−2s
n + (δn + 2)1−2s − 2(δn + 1)1−2s

)
,

whence we obtain

(1.26) lim sup
n→+∞

1

δ1−2s
n

I n
8 ≤

1

4s(2s− 1)
.

By (1.25) and (1.26), we get

(1.27) lim
n→+∞

1

δ1−2s
n

I n
8 =

1

4s(2s− 1)
.

Finally, by (1.10), (1.15), (1.16), (1.17), (1.18), (1.23), and (1.27), we get the claim. �

1.3. The extremal cases s = 1 and s = 0. Here we discuss the extremal cases s = 1 and s = 0.
As for s = 1, we are led to consider [1, 10, 2] the energy functional

(1.28) FT1 (u) :=
1

2T

∫ T

0

|u′(x)|2 dx.

The functional FT1 is constant on A T,Λ,δ, and hence every u ∈ A T,Λ,δ is a minimizer of FT1
in A T,Λ,δ . We also notice that, if in the definition of A T,Λ,δ we replace the condition that
u is T -periodic with the T -periodicity of u′, then the minimizers of FT1 become the functions
u(x) = x+ c, c ∈ R if 1 ≤ Λ, u(x) = −Λx+ c, c ∈ R if 1 ≥ Λ.

The case s = 0 corresponds [10, 2] to the functional

(1.29) FT0 (u) :=
1

2T

∫ T

0

|u(x)|2 dx.

The periodicity of the minimizers of FT0 has been proven in [11] for Λ = 1 (and extended
in [13] to all Λ > 0), in a less rigid setting, namely, replacing the condition u′ ∈ {±1} with a
Modica-Mortola penalization, whose parameter ε > 0 implicitly fixes the transition scale (δ, in
our model). Theorem 1.6 below concerns with the periodicity of the minimizers of FT0 in A T,Λ,δ.

Theorem 1.6. The minimizers of FT0 in A T,Λ,δ are the functions ū(· − x0)− Λδ
2 , with x0 ∈ R.

Proof. Let u be a minimizer of FTs in A T,Λ,δ and let (x1, x2) be a connected component of
(u′)−1({−Λ}). Let, for h > 0 small enough, uh = u + hϕh ∈ A T,Λ,δ for some functions ϕh
satisfying ϕh → (Λ + 1)χ{(x2−δ,x2))+kT, k∈Z} strongly in L1

loc(R) as h→ 0+. Then, by minimality
of u we have

0 ≤ T lim
h→0

FT0 (uh)−FT0 (u)

h
= (Λ + 1)

∫ x2

x2−δ
u(x) dx.

Analogously, we have

0 ≤ −(Λ + 1)

∫ x1+δ

x1

u(x) dx.

We deduce that

0 ≤
∫ x2

x2−δ
u(x) dx ≤

∫ x1+δ

x1

u(x) dx ≤ 0.

Therefore, x2 = x1 + δ and u(x2) = −u(x1), and such relations hold true for the end points of all
the connected components of (u′)−1({−Λ}). This is equivalent to the fact that u = ū(· −x0)− Λδ

2
for some x0 ∈ R. �

Finally, in the following proposition we determine the asymptotic behavior of the minimal
energy FTs for s = 0, 1.
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Proposition 1.7. Let {δn}n∈N be a positive vanishing sequence (as n→ +∞); for all n ∈ N, set
Λn := 1

δn
, let Tn be of the form (1.1) (with δ replaced by δn and Λ replaced by Λn) and let un be

a minimizer of FTn0 in A Tn,Λn,δn . Then

lim
n→+∞

FTn0 (un) =
1

24
.

Moreover, let un be a minimizer of FTn1 in A Tn,Λn,δn . Then

lim
n→+∞

δnFTn1 (un) =
1

2
.

2. van der Merwe formula for misfit dislocations between two half-planes with
different elastic coefficients

In this section we provide the energy density induced by misfit dislocations at semi-coherent
straight interfaces separating two elastic materials with different elastic moduli and filled with
square lattices having the same orientation but different lattice spacing.

2.1. Elastic energy on the half-plane. Here we introduce well known facts about half-plane
isotropic linearized elasticity, focussing on the energy induced by a given datum on the boundary
of the half-plane.

Let G > 0 and − 1
2 < ν < 1 denote the shear modulus and the Poisson ratio of the elastic

material occupying the half plane H+ := R× R+, respectively. Given U ∈ H1(H+;R2) we denote
by e(U) := 1

2 (∇U +∇TU) the symmetric gradient of U ; the corresponding isotropic elastic energy
is given by

Eel(U) :=
1

2

∫
H+

2Gν

1− 2ν
|tr(e(U))|2 + 2G|e(U)|2 dx =

1

2

∫
H+

σ(U) : e(U) dx

where σ(U) := 2Gν
1−2ν tr(e(U))Id + 2Ge(U) is the stress associated to U .

Set H0 := R × {0}. Given u ∈ H 1
2 (H0) we denote by U the elastic extension of (u, 0) on H+,

namely the function U minimizing Eel(U) among all H1-functions whose trace at H0 equals to
(u, 0). Equivalently, U solves

(2.1)

{
Div σ(U) = 0 in H+

U = (u, 0) on H0.

Denoting by x and x2 the horizontal and the vertical coordinates of x ∈ R2, respectively,
integration by parts yields

(2.2) Eel(U) =
1

2

∫
H0

u(x) · σ12(U) dx,

where σ12(U) at H0 belongs to H−
1
2 , so that its product with u is meant in the sense of duality

between H
1
2 and H−

1
2 . The map u 7→ σ12(U) is a Dirichlet-to-Neumann map; for u regular

enough it can be explicitly computed by means of Fourier analysis methods and it is given by (see
[7, Lemma 2.3])

σ12(U)(x) := − G

(1− ν)π
lim
r→0+

∫
R\(x−r,x+r)

u(x)− u(y)

|x− y|2
dy for all x ∈ R.

By (2.2) we deduce that for all u smooth enough, and in fact, by an easy density argument, for

all u ∈ H 1
2 (H0),

(2.3) Eel(U) =
G

4π(1− ν)

∫
R

dx

∫
R

|u(x)− u(y)|2

|x− y|2
dy .

Assume now that u ∈ H
1
2

loc(R) is T -periodic. Let V be the unique minimizer of the elastic
energy

(2.4) Eel(V ; (0, T )× R+) :=
1

2

∫
(0,T )×R+

σ(V ) : e(V ) dx,
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among functions V ∈ H1((0, T )×R+;R2) with V = (u, 0) on (0, T )×{0} and with V (0, ·) = V (T, ·)
in the sense of traces. By minimality V is traction free on the vertical half lines {0} × R+ and
{T} × R+. Let moreover U be the Te1-periodic extension of V , namely such that U(x, x2) =
U(x + T, x2) for almost all x ∈ R, x2 ∈ R+. Then, U solves the elasticity equations (2.1).
Furthermore, by (2.3) and by standard cut-off arguments it follows that

(2.5) Eel(U ; (0, T )× R+) =
G

2π(1− ν)
TFT1

2
(u),

where FT1
2

is the functional defined in (1.4).

2.2. van der Merwe formula. Let H± := R × R± and assume that H± behave like linearly
elastic isotropic materials with elastic coefficients (G±, ν±). From a microscopic perspective,
assume that H± are filled by square lattices with lattice spacing given by c± with c− ≥ c+ > 0,

and set c := c++c−

2 .

Let U± ∈ H1
loc(H±) be elastic displacements defined on H± with trace on H0 := R×{0} having

only horizontal component, denoted by u± ∈ H
1
2

loc(H0).
We start by describing the structural assumptions of our model. We assume that H0 is divided

into two kinds of regions: an elastic one, where the top and bottom layer perfectly match their
lattices through uniform elastic deformations, and a plastic region, where the lattice misfits are
compensated by the emergence of edge dislocations. We also assume that on each of these regions
the deformation gradient of u± are constants, denoted by m±e and m±p on the elastic and plastic
regions, respectively; these constants will be determined by energy minimization principles, to-
gether with linearization arguments based on the assumption that the interface is semi-coherent,

i.e., c+

c− ≈ 1.
Now, we compute the displacement gradients on the elastic and plastic regions for u±. In the

elastic region, enforcing a perfect matching between the top and the bottom lattices we get the
relation

1 +m+
e

1 +m−e
=
c−

c+
.

Linearizing such a relation around c+ = c− and hence m±e = 0 we get

(2.6) m+
e −m−e =

c− − c+

c
=: m.

Here m is a material constant representing the purely elastic strain needed to produce a perfect
lattice matching. Clearly, m may be distributed on m±e through an auxiliary parameter αe ∈ [0, 1]
such that m+

e = αem, m−e = −(1−αe)m. This condition can be also expressed in terms of m±e as

(2.7) (1− αe)m+
e = −αem

−
e .

Let us focus now on the plastic region. We assume that each edge dislocation corresponds to
a region whose length is given by few lattice spacings where large deformations take place. In
such a region, we deform a bottom string of K atoms in order that its extremal atoms match the
corresponding top extremal atoms of a string of K + 1 atoms. The parameter K represents the
length of the core region in terms of multiples of the lattice spacing. In fact, while the optimal
profile around an edge dislocation has not compact support, the analysis by van der Merwe and
Peierls-Nabarro shows that, up to a small tail, the profile is essentially concentrated on the scale
of the lattice spacing. Therefore, in our simplified model we assume that the profile is supported
on a core region of size between Kc and (K + 1)c for some K ∈ N. Moreover, the specific choice
of K and the sharp profile of the interface will play no role in our analysis, since they affect
the asymptotic behavior of the energy density only by lower order terms. Hence, without loss of
generality, we fix K = 2 and the profile of the interface to be affine.

The picture is the following: Consider three consecutive atoms on the top layer lying on the top
of two consecutive atoms of the bottom layer (so that the central atom on the top is equidistant to
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the two atoms at the bottom); enforcing that the two external atoms on the top perfectly match
the two atoms on the bottom, we get the following relation

(2.8)
1 +m+

p

1 +m−p
=

c−

2c+
.

As done in (2.7) for the elastic strains, we enforce that

(2.9) (1− αp)m+
p = −αpm

−
p for some αp ∈ [0, 1].

Then, taking c± = c in (2.8) and using (2.9), we get

(2.10) m+
p −m−p = − 1

αp + 1
.

Notice that αp = 1 corresponds to configurations where the bottom layer is rigid, and gives back
m+

p −m−p = − 1
2 which is consistent with the analysis done in [5]. Set u := u+ − u−; taking into

account the relations (2.6) and (2.10), we have that

(2.11) u′ ∈
{
m,− 1

αp + 1

}
.

Now we introduce the notion of core radius ε > 0 in our model. To this purpose, we assume
that, in a reference configuration, the plastic region (namely the region where u′ = − 1

αp+1 ) is

given by the union of disjoint intervals of size ε; such a parameter represents the core radius of
the dislocation, and is determined by the following reasoning: Set b+ := −m+

p ε, b
− := m−p ε; such

quantities represent fractional top and bottom portions of the Burgers vector, so that their sum
is equal to |b| := c. In view of (2.10) we deduce ε = c(αp + 1).

Finally, we enforce that the top elastic and plastic regions agree with the bottom ones, and
that u+ and u− are periodic functions (a priori with arbitrarily, possibly different, periods). Let
T > 0 and let le(T ) and lp(T ) be the lengths of the elastic and plastic regions in the interval [0, T ].
Then, in the limit as T → +∞ we easily deduce

−
m±p

m±e
= lim
T→+∞

le(T )

lp(T )
.

(Periodicity ensures that the above limit exists.) Therefore, by (2.7) and (2.9), we get

αp

1− αp
= −

m+
p

m−p
= −m

+
e

m−e
=

αe

1− αe
,

and hence αp ≡ αe =: α. Notice that, up to translations of the reference top and bottom lattices,
we may always assume that u+(x̄) = u−(x̄) = 0 at some point x̄. Then, by (2.7), (2.9) and (2.11),
we have

u+ = αu, u− = −(1− α)u

for some T -periodic function u with

1

m
u ∈ A T, 1

(α+1)m
,(α+1)c,

and T of the form (1.1) (for Λ = 1
(α+1)m and δ = (α + 1)c). Setting Etot := Eel(U+; (0, T ) ×

R+) + Eel(U−; (0, T )× R−), by (2.5) we have

(2.12) Etot = TFT1
2

(u)

(
α2 G+

2π(1− ν+)
+ (1− α)2 G−

2π(1− ν−)

)
.

Minimizing Etot with respect to α yields

(2.13) αmin =
G−(1− ν+)

G+(1− ν−) +G−(1− ν+)
.

Recalling Theorem 1.3, minimizing (2.12) with respect to the functions u such that 1
mu ∈ A T, 1

(α+1)m
,(α+1)c

we get that the minimizer umin is such that 1
mumin is (up to translations) as in (1.3), again with

Λ replaced by 1
(α+1)m and δ replaced by (α+ 1)c.
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Let v(x) := 1
cumin( cmx). Then, v is a minimizer of FT

m
c

1
2

in A T mc ,δ
−1,δ for δ := (α+ 1)m.

Then, by (2.12), Theorem 1.5, and (2.13), we get

1

T
Etot =

(
α2

min

G+

2π(1− ν+)
+ (1− αmin)2 G−

2π(1− ν−)

)
cmFT

m
c

1
2

(v)

=

(
α2

min

G+

2π(1− ν+)
+ (1− αmin)2 G−

2π(1− ν−)

)
cm log

1

m
+ l.o.t.

=
1

2π

G+G−

G−(1− ν+) +G+(1− ν−)
(c− − c+) log

c

c− − c+
+ l.o.t. .

Writing the surface energy in terms of the length of the Burgers vector |b| = c and of the

distance between dislocations ∆ := c
m + ε = c2

c−−c+ + ε, we get

(2.14)
1

T
Etot =

1

2π

G+G−

G−(1− ν+) +G+(1− ν−)
|b|2 1

∆− ε
log
(∆− ε
|b|

)
+ l.o.t.

=
1

2π

G+G−

G−(1− ν+) +G+(1− ν−)
|b|2 1

∆
log
(∆

|b|

)
+ l.o.t.,

where we have used that in the semi-coherent limit ∆ ≈ c
m . Formula (2.14) is consistent with the

analysis of van der Merwe [14, formula (26)] for G+ = G−, ν+ = ν− (and hence αmin = 1
2 ) and it

represents the analogous of the Shockley-Read [12] formula for misfit dislocations.

3. Conclusions and perspectives

We have considered two slope functions with fixed length scale; we have proven periodicity of
minimal configurations for the s-fractional Gagliardo seminorms with s ∈ (0, 1); then, we have

considered also the extremal cases s = 0 and s = 1, corresponding to the L2 norm and to the Ḣ1-
seminorm, respectively. We have also provided the asymptotic behavior of the energy density as
δ → 0, Λ = 1

δ . For s = 1
2 such a result is particularly relevant to compute surface energy densities

stored at semi-coherent interfaces. Specifically, we have computed the surface energy induced by
misfit dislocations between two linearly elastic half planes filled by semi-coherent square lattices,
generalizing the van der Merwe analysis to the case where the two half planes have different elastic
moduli. The main novelty of such a result is that we prove, rather than assume, the optimality of
the periodic distribution of misfit dislocations.

Generalized s-fractional seminorms for all values of s. A natural follow-up of our analysis
would be to consider the Gagliardo s-seminorms when s is negative. For instance, for s = −1 the
energy functional takes the form

FT−1(u) :=
1

2T
inf

v∈L2(0,T )
v′=u

‖v‖2L2(0,T ).

For negative values of s, another possibility is to formally (or by means of Γ-convergence) renor-
malize the integrand in (1.4) by expanding the square |u(x)− u(y)|2 and subtracting the infinite
L2 contributions; similar renormalization procedures have been considered in [4, 2], also for the
critical case s = 0. The resulting energy functional is, in general, non-positive and takes the form
of a Riesz (or weighted XY ) type functional, formally defined (on a suitable functional space to
be specified) by

FTs (u) := − 1

T

∫ T

0

dx

∫
R

u(y)u(x)

|x− y|1+2s
dy.

The first variation of such an energy gives back nonlocal differential operators that could be
understood as generalized fractional Laplacians for negative s, and deserve, in our opinion, further
investigation. On the other hand, from our analysis, and formally writing ‖u‖Ḣs = ‖u′‖Ḣs−1 , it
seems that a natural range for the parameter s is given by 0 < s < 3

2 , s = 1 being a critical value
where a renormalization procedure is needed. Another renormalization of the energy could take
place and be analyzed at s = 3

2 , in order to extend the analysis to all positive values of s (we refer
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to [3] where it is shown that supercritical fractional seminorms of characteristic functions of sets
behave, after suitable renormalization procedures, as the Euclidean perimeter of the sets).

Phase field models. In this paper we have considered rigid affine profiles where u has a constant
negative slope −Λ on essentially disjoint δ-intervals of the type (x0 − δ

2 , x0 + δ
2 ). In fact, any

given symmetric profile could be considered. More precisely, we can assume that u(·) = ψ(· − x0)
on δ-intervals of the type (x0 − δ

2 , x0 + δ
2 ), where ψ : (− δ2 ,

δ
2 ) → R is a given (smooth enough)

non-increasing odd function. Periodicity of minimizers as in Theorem 1.3 would follow as well
with minor changes. Such a generalization would confirm that (2.14) holds true also prescribing
more realistic (still with compact support) plastic profiles for the traces of the displacements in
the core regions of the misfit dislocations.

One could also consider less rigid models, where the length scale is not quantized a priori.
In this respect, a first generalization of our model would consist in replacing the quantization
constraint in the class of admissible configurations with a minimality condition on the length scale
where the negative derivative is assumed.

A natural choice, commonly used in literature, would be to avoid any length scale constraint
in the class of admissible configurations, but to enforce it by an extra small parameter ε > 0. In
what follows we consider for simplicity one-periodic functions, i.e., we fix T = 1. A basic energy
functional could be

Gεs(u) :=
1

2

∫ 1

0

dx

∫
R

|u(y)− u(x)|2

|x− y|1+2s
dy + ε](Su′ ∩ (0, 1]),

to be minimized among two slope functions without further restrictions. Furthermore, the tran-
sition between the two slopes could be relaxed considering a Modica-Mortola penalization such
as

Ḡεs(u) :=
1

2

∫ 1

0

dx

∫
R

|u(y)− u(x)|2

|x− y|1+2s
dy + ε2

∫ 1

0

|u′′|2 dx+

∫ 1

0

W (u′) dx ,

where W is a double well potential with minima at the two desired slopes. This has been (up
to minor differences) done for the L2 norm, corresponding to s = 0, in [11] for two symmetric
opposite slopes and in [13] without any symmetry assumption; furthermore, the case s = 1

2 has
been done in [9] for two symmetric opposite slopes.

The case of two different slopes and s = 1
2 has been already proposed in [5] as a model for misfit

dislocations. There, uniform distribution of dislocations, rather that their periodicity, has been
proved in the semi-coherent limit. In such a paper, another model closely related to the Peierls-
Nabarro formalism of dislocations has been proposed; neglecting all the physical and material
parameters related to dislocations and using instead the set of parameters (1,Λ, δ, s), according
with those appearing in Section 1, the energy functional reads as

PN δ,Λ
s (u) :=

1

2

∫ 1

0

dx

∫
R

|u(y)− u(x)|2

|x− y|1+2s
dy +

1

δ2

∫ 1

0

dist2(u(x)− x, δ(1 + Λ)Z) dx.

Such a model differs from classical Modica-Mortola functionals since the Ḣ1-term is replaced by the
s-fractional seminorm and the potential has infinite periodic wells; such a variant was considered,
for s = 1

2 , in [6] in connection with the energy induced by dislocations at coherent interfaces; a

second novelty of PN δ,Λ
s (u) is due to the presence of the eigenstrain, proposed in [5], related to

the presence of semi-coherent intefaces and possibly enforcing periodic distribution of dislocations.
In fact, we expect that minimizers of such an energy functional exhibit the same behavior of those
of F1

s in A 1,Λ,δ. The analysis of PN δ,Λ
s and its material-dependent variants more closely related

to specific dislocation misfit models (for s = 1
2 ) deserve, in our opinion, further investigations.
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