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Abstract. We consider a region Ω ⊂ R2 where a mass f is transported to the boundary and
the aim is to find an optimal free transport region E that minimizes the total cost outside E
of this transport problem plus a penalization term on E. First, we study the regularity of the
transport density σ in this transport problem to the boundary. Then, we show existence of an
optimal set E for this shape optimization problem and, we prove regularity on this optimal
set E in the case where the penalization term on E is given by the perimeter (or the fractional
perimeter) of E.

1. Introduction

In this paper, we study a shape optimization problem where the functional to be minimized
will be given by the total cost outside a free transport set E of a transport problem to the
boundary. More precisely, we will consider a shape optimization problem of the form:

(1.1) min

{
J (E) + P (E) : E ⊂ Ω

}
,

where J (E) represents the total work outside E of transporting a mass to the boundary, while
P (E) is some penalization on E. In order to describe this functional J , we need to introduce
first some well known facts, terminology and notations concerning the transport problem to
the boundary. Let f be a nonnegative Borel measure on a compact domain Ω ⊂ R2 and assume
that we want to transport this mass f to the boundary ∂Ω paying a transport cost |x − y|
for each unit of mass that moves from a point x to a destination y ∈ ∂Ω plus an additional
boundary cost g(y) at the exit point y, where g is a given continuous function on ∂Ω. In other
words, we consider
(1.2)

min

{∫
Ω×Ω

|x− y|dγ +

∫
∂Ω

g d[(Πy)#γ] : γ ∈ M+(Ω× Ω), (Πx)#γ = f, spt[(Πy)#γ] ⊂ ∂Ω

}
,

where M+(Ω×Ω) is the set of nonnegative Borel measures on Ω×Ω, Πx and Πy are the two
canonical projections of Ω × Ω onto Ω. We note that this transport problem with boundary
cost g has been already considered in [18, 15, 16]. While in [14, 7], the authors studied the
same problem but the boundary ∂Ω was assumed to be a free Dirichlet region, which means
a region where transportation is free (i.e. g = 0).

From now on, we assume that g is 1−Lipschitz on ∂Ω. Then, one can show that Problem
(1.2) has a dual formulation which is the following (see [18, 15]):

(1.3) sup

{∫
Ω
udf : u ∈ Lip1(Ω), u = g on ∂Ω

}
.

We note that g is assumed to be 1−Lip over ∂Ω since if this is not the case, then clearly there
will be no admissible function u for Problem (1.3) (i.e., a 1−Lip function u on Ω with u = g
on ∂Ω).

1



2 S. DWEIK

In fact, it is easy to see that we have the following inequality sup (1.3) ≤ min (1.2). Indeed,
if γ is a transport plan in Problem (1.2) and u is admissible in the dual problem (1.3), then
one has∫
Ω
udf ≤

∫
Ω×Ω

[|x−y|+u(y)] dγ =

∫
Ω×Ω

[|x−y|+g(y)] dγ =

∫
Ω×Ω

|x−y|dγ +

∫
∂Ω

g d[(Πy)#γ].

From the duality sup (1.3) = min (1.2), we see that if γ is an optimal transport plan in Problem
(1.2) and u is a Kantorovich potential (i.e. a maximizer) in Problem (1.3), then we must have

(1.4) u(x)− u(y) = |x− y| for γ − a.e. (x, y).

Since u is 1-Lip on Ω, then u must be linear on the line segment [x, y] for γ−a.e. (x, y).
In the sequel, any maximal line segment [x, y] that satisfies the equality (1.4) will be called
a transport ray. In other words, the optimal transport plan γ moves the mass f onto the
boundary through these transport rays. In fact, one can show that u is differentiable in the
interior of any transport ray [x, y] and ∇u will be given by the opposite unit direction of the
transport ray [x, y] (i.e., ∇u(z) = x−y

|x−y| for all z ∈]x, y[). Thanks to this fact, we infer that

two different transport rays cannot intersect at an interior point of at least one of them.
For this transport problem, one can see that γ = (Id, T )#f , where T is a Borel selector

function of the following multivalued map (notice that T̃ has a closed graph):

T̃ (x) := argmin{|x− y|+ g(y) : y ∈ ∂Ω}, for all x ∈ Ω,

is an optimal transport plan for Problem (1.2) while the Kantorovich potential is given by

u(x) = min{|x− y|+ g(y) : y ∈ ∂Ω}, for all x ∈ Ω.

This follows from the fact that sup (1.3) ≤ min (1.2), γ and u are admissible in Problems (1.2)
& (1.3) respectively and, we have the following:∫

Ω
udf =

∫
Ω
[|x− T (x)|+ g(T (x))] df(x) =

∫
Ω×Ω

|x− y|dγ +

∫
∂Ω

g d[(Πy)#γ].

Moreover, if γ′ is an optimal transport plan for Problem (1.2) then we have y ∈ T̃ (x), for
γ′−a.e. (x, y), since∫

Ω×Ω
[|x− y|+ g(y)] dγ′ ≥

∫
Ω×Ω

[|x− T (x)|+ g(T (x))] dγ′ =

∫
Ω×Ω

[|x− y|+ g(y)] dγ.

On the other hand, it is not difficult to see that if g is λ−Lip with λ < 1 then T̃ (x) is a
singleton at every point x where the Kantorovich potential u is differentiable. This follows

immediately from the fact that if {y, y′} ⊂ T̃ (x), then we have ∇u(x) = x−y
|x−y| =

x−y′

|x−y′| so that

|g(y)− g(y′)| = ||x− y′| − |x− y|| = |y − y′|, which is a contradiction as soon as y ̸= y′. But,
u is Lipschitz and so, the set of points where u is not differentiable is negligible. Therefore,
γ = (Id, T )#f will be the unique optimal transport plan for Problem (1.2) provided that
f ∈ L1(Ω).

In the theory of optimal transport with distance cost, it is classical to associate with an
optimal transport plan γ a nonnegative measure σ on Ω (called transport density) which
represents the amount of transport taking place in each region of Ω. This measure σ is defined
as follows:

(1.5) < σ,φ >=

∫
Ω×Ω

∫ 1

0
φ((1− t)x+ ty)|x− y|dt dγ(x, y), for all φ ∈ C(Ω).
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The Lp summability of this transport density σ was already studied in [11, 12, 13, 19]. In
particular, the authors prove that σ ∈ Lp(Ω) as soon as f ∈ Lp(Ω) and p < 2. While in [15],
the author has improved this Lp result on σ for all p ∈ [1,∞], under the assumptions that
f ∈ Lp(Ω), Ω satisfies a uniform exterior ball condition (see [15, Definition 3.1]) and, g is a
λ−Lip (with λ < 1) and semi-concave function on ∂Ω. However, the higher order regularity
of this transport density σ is still an open question (but, we will give in Section 2 a partial
answer)!

This transport density σ has also applications to some shape optimization problems (see,
for instance, [4]). In addition, this σ arises in the following minimal flow formulation (or the
so-called Beckmann problem):

(1.6) min

{∫
Ω
|v|+

∫
∂Ω

g dν : v ∈ L1(Ω,R2), ν ∈ M+(∂Ω), ∇ · v = f − ν

}
.

More precisely, consider the flow v := −σ∇u. First, it is easy to check that ∇ · v = f − T#f
in Ω. Indeed, for every φ ∈ C1(Ω), one has

−
∫
Ω
∇φ · dv =

∫
Ω×Ω

∫ 1

0
[∇φ · ∇u]((1− t)x+ ty)|x− y|dt dγ(x, y)

=

∫
Ω×Ω

∫ 1

0
∇φ((1−t)x+ty)·[x−y] dtdγ(x, y) =

∫
Ω×Ω

[φ(x)−φ(y)] dγ(x, y) =

∫
Ω
φd[f−T#f ].

Moreover, using that |∇u| = 1 σ − a.e., we get∫
Ω
|v|+

∫
∂Ω

g d[T#f ] = σ(Ω) +

∫
∂Ω

g d[T#f ] =

∫
Ω×Ω

|x− y|dγ(x, y) +
∫
∂Ω

g d[(Πy)#γ].

Hence, min (1.6) ≤ min (1.2). On the other hand, let v ∈ L1(Ω,R2) be such that ∇· v = f −ν,
where ν ∈ M+(∂Ω), and u be a smooth 1 − Lip function on Ω with u = g on ∂Ω. Then, we
have ∫

Ω
|v|+

∫
∂Ω

g dν ≥ −
∫
Ω
∇u · v dx+

∫
∂Ω

g dν =

∫
Ω
udf.

This implies that min (1.6) ≥ sup (1.3). Hence, the flow v (with the boundary measure ν =
T#f) solves Problem (1.6) and, we have

min (1.6) = sup (1.3) = min (1.2).

Thanks to [19, Chapter 4], one can also show that this flow v (with the measure T#f) is the
unique minimizer for Problem (1.6). In addition, the pair (σ, u) is the unique solution for the
following Monge-Kantorovich system:

(1.7)


−∇ · [σ∇u] = f in

◦
Ω,

u = g on ∂Ω,

|∇u| ≤ 1 in Ω,

|∇u| = 1 σ − a.e.

We note that this system (1.7) describes the growth of a sandpile on a bounded table, with a
wall on the boundary of height g, under the action of a vertical source here modeled by f (see
[7, 10]).

In Section 2, we will study the regularity of the transport density σ in (1.5). More precisely,
we will show continuity and Lipschitz regularity on σ, under some assumptions on the data
f, g and Ω.
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Finally, the shape optimization problem that we will consider in Section 3 consists in finding
a free transport region E that minimizes the total transportation cost outside E, which is given
by the quantity σ(Ω\E) (where σ always denotes the transport density in Problem (1.2)), plus
a penalization term P (E) on E, among all subsets E ⊂ Ω. To be more precise, we minimize

(1.8) min

{
σ(Ω\E) + P (E) : E ⊂ Ω

}
.

In fact, two cases of penalizations will be studied in Section 3: the simplest case is when the
penalization P (E) involves the perimeter of E; in this situation an optimal region E is shown
to exist and a second order regularity on E will be proved thanks to the regularity of the
transport density σ that we will prove in Section 2. The second case which is more delicate
is when P (E) is given by the “fractional” perimeter of E; here we also prove existence of an
optimal region E but the difficulty appears when proving regularity on E. We will be able to
prove only a first order regularity on E.

2. Regularity of the transport density in the transport problem to the
boundary

In this section, we study the higher order regularity of the transport density σ in Problem
(1.2) (or equivalently, in the system (1.7)). The continuity of this transport density σ was
already studied in [7] but in the particular case when g = 0. More precisely, the authors
show that σ is continuous on Ω as soon as f ∈ C(Ω) and ∂Ω is of class C2. We recall that
the nonhomogeneous case (i.e. g ̸= 0) has been already considered in several works (see, for
instance, [18, 10]) but there are no results concerning the regularity of the transport density
σ in this case, apart the Lp estimates proved in [15]. In the present paper, we will extend the
continuity result of [7] on σ to the case of a general λ−Lip (with λ < 1) function g on ∂Ω.
Moreover, we will study the Lipschitz regularity of this transport density σ.

First of all, we need to prove some regularity on the transport map T and the Kantorovich
potential u (see Section 1). In the sequel, we will denote by Σ the set of points where T̃ is not
a singleton (or equivalently, where u is not differentiable). Throughout this section, we will
assume that g is λ−Lip with λ < 1. Let us start by the following:

Lemma 2.1. Assume that Ω has boundary of class C2 and g ∈ C2(∂Ω). Then, for every

x ∈
◦
Ω, we have

x− T (x)

|x− T (x)|
· t(T (x)) = ∂tg(T (x))

and

1− ∂tg(T (x))
2 −K(x)d(x) ≥ 0

with

d(x) = |x− T (x)|,

K(x) =

√
1− ∂tg(T (x))

2 κ(T (x))− ∂2
ttg(T (x))− ∂ng(T (x))κ(T (x)),

where the vector n := n(T (x)) denotes the unit interior normal vector to ∂Ω at T (x) while
t := t(T (x)) is the corresponding tangent vector (the rotation with angle −π

2 of the normal

vector n) and κ(T (x)) denotes the curvature of the boundary at T (x). Moreover, if x /∈ Σ,
then one has

1− ∂tg(T (x))
2 −K(x)d(x) > 0.
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Proof. Fix x ∈
◦
Ω and let α(s) be a parametrization of ∂Ω around T (x) with |α′(s)| = 1. We

define

u(s) = |x− α(s)|+ g(α(s)).

Then, we have

u′(s) =
−[x− α(s)] · α′(s)

|x− α(s)|
+∇g(α(s)) · α′(s)

and

u′′(s) =

[
α′(s)

|x− α(s)|
− (x− α(s))⊗ (x− α(s))α′(s)

|x− α(s)|3

]
· α′(s)− [x− α(s)] · α′′(s)

|x− α(s)|

+∇g(α(s)) · α′′(s) +D2g(α(s))α′(s) · α′(s).

Let s⋆ be such that α(s⋆) = T (x), so s⋆ is a minimizer of u(s). Then, the proof follows
immediately thanks to the fact that u′(s⋆) = 0 and u′′(s⋆) ≥ 0. On the other hand, we

note that for all x ∈ Ω and y ∈ T̃ (x), we have T̃ (z) = {y} for every z ∈]x, y], since one has
|z − y| + g(y) = |x − y| − |x − z| + g(y) ≤ |x − y′| − |x − z| + g(y′) < |z − y′| + g(y′), for all
y′ ̸= y ∈ ∂Ω (using that g is λ−Lip with λ < 1, we recall that if z, y and y′ are aligned then
|z− y|+ g(y) < |z− y′|+ g(y′)). Thanks to this fact, we see that if x /∈ Σ then there will be a
point x0 /∈ Σ such that x ∈]x0, T (x0)[. In particular, we have T (x) = T (x0). Yet, one has

1− ∂tg(T (x0))
2 −K(x0)d(x0) ≥ 0.

But, it is clear that we have d(x0) = d(x) + |x− x0| and K(x0) = K(x). Hence, we get

1− ∂tg(T (x))
2 −K(x)d(x) ≥ K(x)|x− x0|.

Consequently, we infer that

□(2.1) 1− ∂tg(T (x))
2 −K(x)d(x) ≥ max{K(x)|x− x0|, 1− λ2 −K(x)d(x)} > 0.

Now, we are ready to prove regularity on the transport map T and the Kantorovich potential
u. First, we note that T is clearly continuous on Ω\Σ. Moreover, we have the following:

Proposition 2.2. Assume ∂Ω is C2 and g ∈ C2(∂Ω). Then, the map T is C1 on Ω\Σ and,
we have

(2.2) DT (x) =
1− ∂tg(T (x))

2

1− ∂tg(T (x))
2 −K(x)d(x)

t⊗ t−
∂tg(T (x))

√
1− ∂tg(T (x))

2

1− ∂tg(T (x))
2 −K(x)d(x)

t⊗ n.

Moreover, u is C2 on Ω\Σ with

(2.3) D2u(x) =
−K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

e(x)⊗ e(x),

where, for every x ∈ Ω\Σ, e(x) denotes the orthogonal vector to ∇u(x) given by

e(x) :=

√
1− ∂tg(T (x))

2 t(T (x))− ∂tg(T (x))n(T (x)).
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Proof. Fix x0 ∈ Ω\Σ. Let α(s), s ∈ (−ε, ε), be the unit parametrization of ∂Ω around
T (x0) = α(0) with α′(s) = t(α(s)). For every x in a small neighbourhood of x0, let s :=
s(x) ∈ (−ε, ε) be such that T (x) = α(s(x)). Recalling the estimates in the proof of Lemma
2.1, we have

(2.4)
−(x− α(s)) · α′(s)

|x− α(s)|
+∇g(α(s)) · α′(s) = 0.

Differentiating (2.4) with respect to x, we get

∇xs− α′(s)

|x− α(s)|
+

(x− α(s)) · α′(s)

|x− α(s)|3
[(I −∇xs⊗ α′(s))(x− α(s))]− [x− α(s)] · α′′(s)

|x− α(s)|
∇xs

+[∇g(α(s)) · α′′(s)]∇xs+ [D2g(α(s))α′(s) · α′(s)]∇xs = 0.

Hence, we have

∇xs− ∂tg(T (x))
2∇xs− d(x)

√
1− ∂tg(T (x))

2 κ(T (x))∇xs+ d(x) ∂ng(T (x))κ(T (x))∇xs

+d(x) ∂2
ttg(T (x))∇xs = t(T (x))− ∂tg(T (x))[∂tg(T (x))t(T (x)) +

√
1− ∂tg(T (x))

2n(T (x))].

Thanks to Lemma 2.1 and the fact that T is continuous on Ω\Σ, this implies that x 7→ s(x)
is C1 on Ω\Σ and, we have

∇xs =
1− ∂tg(T (x))

2

1− ∂tg(T (x))
2 −K(x)d(x)

t(T (x))−
∂tg(T (x))

√
1− ∂tg(T (x))

2

1− ∂tg(T (x))
2 −K(x)d(x)

n(T (x)).

Consequently, writing DT (x) = α′(s)⊗∇xs we get (2.2). On the other hand, one has

(2.5) ∇u(x) =
x− T (x)

d(x)
= ∂tg(T (x))t(T (x)) +

√
1− ∂tg(T (x))

2 n(T (x)).

Hence, we get

D2u(x) =
I −DT (x)

d(x)
− (x− T (x))⊗∇d(x)

d(x)2
=

1

d(x)
[I −DT (x)−∇u(x)⊗∇d(x)].

Yet,

∇d(x) = ∇u(x)− [DT (x)]t∇g(T (x)).

Then, we get

D2u(x) =
1

d(x)
[I −DT (x)−∇u(x)⊗∇u(x) +∇u(x)⊗ [DT (x)]t∇g(T (x))].

By (2.5), we have

∇u(x)⊗∇u(x)

= ∂tg(T (x))
2 t⊗ t+ [1− ∂tg(T (x))

2]n⊗ n+ ∂tg(T (x))

√
1− ∂tg(T (x))

2 [t⊗ n+ n⊗ t].
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Recalling (2.2), we have

[DT (x)]t∇g(T (x)) =
∂tg(T (x))[1− ∂tg(T (x))

2]

1− ∂tg(T (x))
2 −K(x)d(x)

t−
∂tg(T (x))

2
√

1− ∂tg(T (x))
2

1− ∂tg(T (x))
2 −K(x)d(x)

n.

Hence,
∇u(x)⊗ [DT (x)]t∇g(T (x))

=
∂tg(T (x))

2[1− ∂tg(T (x))
2]

1− ∂tg(T (x))
2 −K(x)d(x)

t⊗ t− ∂tg(T (x))
2[1− ∂tg(T (x))

2]

1− ∂tg(T (x))
2 −K(x)d(x)

n⊗ n

+
∂tg(T (x))[1− ∂tg(T (x))

2]
√

1− ∂tg(T (x))
2

1− ∂tg(T (x))
2 −K(x)d(x)

n⊗ t−
∂tg(T (x))

3
√

1− ∂tg(T (x))
2

1− ∂tg(T (x))
2 −K(x)d(x)

t⊗ n.

Consequently, we get that

D2u(x) = β1 t⊗ t+ β2[t⊗ n+ n⊗ t] + β3 n⊗ n,

where

β1 =
−[1− ∂tg(T (x))

2]K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

, β2 =
∂tg(T (x))

√
1− ∂tg(T (x))

2K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

,

and

β3 =
−∂tg(T (x))

2K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

.

Finally, we infer that

D2u(x) =
−K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

e(x)⊗ e(x),

where

e(x) =

√
1− ∂tg(T (x))

2 t(T (x))− ∂tg(T (x))n(T (x)). □

Thanks to Proposition 2.2, one can characterize the closure of the singular set Σ. More
precisely, we have the following:

Lemma 2.3. Under the assumptions that ∂Ω is C2 and g ∈ C2(∂Ω), we have Σ ⊂
◦
Ω. In

addition, one has

Σ = Σ ∪ {x ∈ Ω\Σ : 1− ∂tg(T (x))
2 −K(x)d(x) = 0}.

Moreover, for all x ∈ Ω and y ∈ T̃ (x), the transport ray [x, y] does not intersect Σ at an
interior point (i.e., we have ]x, y[∩Σ = ∅).

Proof. Fix x ∈ Σ and let {y, z} ⊂ T̃ (x). Then, we have x = y + [u(x) − g(y)]∇u(y) =
z + [u(x)− g(z)]∇u(z). Hence,

y − z = [u(x)− g(y)][∇u(z)−∇u(y)] + [g(y)− g(z)]∇u(z).

Then,
|y − z| ≤ C|x− y||y − z|+ λ|y − z|.



8 S. DWEIK

This implies that

|x− y| ≥ 1− λ

C
.

On the other hand, we have

|x− y|+ g(y) ≤ |x− p(x)|+ g(p(x)),

where p(x) is a projection point of x on the boundary. Thanks to the fact that g is λ−Lip
with λ < 1, we get

(2.6) |x− y| ≤ 1 + λ

1− λ
|x− p(x)|.

Consequently,

d(x, ∂Ω) ≥ (1− λ)2

C(1 + λ)
,

where d(·, ∂Ω) denotes the distance to the boundary. Therefore, Σ ⊂
◦
Ω. For the second

statement: thanks to Lemma 2.1, we clearly have

Σ ∪ {x ∈ Ω\Σ : 1− ∂tg(T (x))
2 −K(x)d(x) = 0} ⊂ Σ.

Now, fix a point x ∈ Σ\Σ. Let (xn)n ⊂ Σ be a sequence of points converging to x. For

every n ∈ N, let {yn, zn} ⊂ T̃ (xn). Then, we have xn = yn + [u(xn) − g(yn)]∇u(yn) =
zn + [u(xn)− g(zn)]∇u(zn) and so,

yn − zn
|yn − zn|

+ [u(xn)− g(yn)]
∇u(yn)−∇u(zn)

|yn − zn|
− g(yn)− g(zn)

|yn − zn|
∇u(zn) = 0.

Then, passing to the limit when n → ∞, we get

t+ d(x)D2u(T (x))t− ∂tg(T (x))∇u(T (x)) = 0,

where we recall that t denotes the tangent vector to ∂Ω at T (x). Thanks to (2.5), (2.3) and
the fact that d(T (x)) = 0, this implies that

t− K(x)d(x)

1− ∂tg(T (x))
2 [e(x)⊗ e(x)]t− ∂tg(T (x))[∂tg(T (x))t+

√
1− ∂tg(T (x))

2 n] = 0.

Yet,

e(x) · t =
√
1− ∂tg(T (x))

2.

Hence, we have

t− K(x)d(x)

1− ∂tg(T (x))
2

[
[1− ∂tg(T (x))

2] t− ∂tg(T (x))

√
1− ∂tg(T (x))

2 n

]
− ∂tg(T (x))

2 t

−∂tg(T (x))

√
1− ∂tg(T (x))

2 n = 0.

Then, we get

[1− ∂tg(T (x))
2 −K(x)d(x)]t− ∂tg(T (x))

√
1− ∂tg(T (x))

2

[
− K(x)d(x)

1− ∂tg(T (x))
2 + 1

]
n = 0.

This yields that

1− ∂tg(T (x))
2 −K(x)d(x) = 0.
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Fix x ∈ Ω, y ∈ T̃ (x) and z ∈]x, y[. We recall that ]x, y[∩Σ = ∅ and so, z /∈ Σ. If z ∈ Σ, then
we must have

(2.7) 1− ∂tg(T (z))
2 −K(z)d(z) = 0.

Yet, we have T (z) = y, d(x) = |x− z|+ d(z) and K(x) = K(z). Then, by Lemma 2.1, we get
that

0 ≤ 1− ∂tg(y)
2 −K(x)d(x) = −K(x)|x− z|.

Consequently, this implies that K(x) ≤ 0. But, this is in contradiction with (2.7) since we get

1− ∂tg(T (z))
2 −K(z)d(z) ≥ 1− λ2 > 0.

This concludes the proof. □

Similarly to [7], let us denote by τ(x) the distance from a point x along the transport ray
containing x to the closure of the singular set Σ, i.e. the map τ is defined as follows (we
assume that τ is extended by 0 on Σ):

τ(x) = min{t ≥ 0 : x+ t∇u(x) ∈ Σ}, for all x ∈ Ω\Σ.

In fact, this map τ will play an important role in the proof of regularity of the transport
density σ. Notice that, thanks to Lemma 2.1, we have

1− ∂tg(T (x))
2 −K(x)τ(x) ≥ 0, for all x ∈ Ω.

First, we see that we have the following:

Lemma 2.4. Assume that ∂Ω is C2 and g ∈ C2(∂Ω). Then, τ is continuous on Ω.

Proof. Fix x ∈ Ω and let (xn)n be a sequence of points in Ω\Σ converging to x. For every
n, let tn > 0 be such that τ(xn) = tn. Up to a subsequence, tn → t⋆ ≥ 0, d(xn) → d ≥ 0
and ∇u(xn) → p with |p| = 1. In particular, we have xn + tn∇u(xn) ∈ Σ → x+ t⋆p ∈ Σ and

xn − d(xn)∇u(xn) ∈ T̃ (xn + tn∇u(xn)) → x − dp ∈ T̃ (x + t⋆p). Thanks to Lemma 2.3, this
implies that τ(x) = t⋆ and so, τ(xn) → τ(x). □

We are ready to prove continuity on the transport density σ.

Proposition 2.5. Assume ∂Ω is C2, g ∈ C2(∂Ω) with |∇g| ≤ λ < 1 and, f is continuous

in
◦
Ω. Then, the transport density σ is continuous in

◦
Ω. In addition, σ ∈ C(Ω) as soon as

f ∈ C(Ω).

Proof. Recalling the definition of the transport density σ (see (1.5)): for all φ ∈ C(Ω), we
have

< σ,φ >=

∫
Ω

∫ 1

0
φ((1− t)x+ tT (x))|x− T (x)|f(x) dt dx.

Yet, we know that Σ meets each transport ray at exactly one point and so, thanks to [19,
Chapter 3], Σ is negligible. Hence, taking a change of variable y = (1− t)x+ t T (x) on Ω\Σ,
we get that

< σ,φ >=

∫ 1

0

∫
Ωt

φ(y)
d(y)

1− t
f

(
y − tT (y)

1− t

)
Jt(y)

−1 dy dt,

where

Ωt := [(1− t)Id+ t T ](Ω\Σ) and Jt(y) = det[(1− t)Id+ tDT (x)].
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This implies that

σ(y) =

∫ 1

0

d(y)

1− t
f

(
y − tT (y)

1− t

)
χΩt(y)Jt(y)

−1 dt, for a.e. y ∈ Ω.

Yet, it is easy to see that y ∈ Ωt if and only if 0 ≤ t ≤ 1− d(y)
τ(T (y)) . Hence, we get that

σ(y) =

∫ 1− d(y)
τ(T (y))

0

d(y)

1− t
f

(
y − tT (y)

1− t

)
Jt(y)

−1 dt, for a.e. y ∈ Ω.

Let us compute the Jacobian Jt(y). Without loss of generality, one can assume that T (x) =
(0, 0) and t(T (x)) =< 1, 0 >. Hence, by (2.2), we have

Jt(y) = det[(1− t)Id+ tDT (x)]

= det

[
1− t+ t 1−∂tg(T (x))2

1−∂tg(T (x))2−K(x)d(x)
t
−∂tg(T (x))

√
1−∂tg(T (x))2

1−∂tg(T (x))2−K(x)d(x)

0 1− t

]

= (1− t)

(
1− t+ t

1− ∂tg(T (x))
2

1− ∂tg(T (x))
2 −K(x)d(x)

)
= (1− t)

(
1− t+ t

1− ∂tg(T (y))
2

1− ∂tg(T (y))
2 −K(y)d(y)1−t

)

= (1− t)

(
(1− t)(1− ∂tg(T (y))

2)− (1− t)K(y)d(y)

(1− t)(1− ∂tg(T (y))
2)−K(y)d(y)

)
.

For all y ∈ Ω\Σ, we get that

σ(y) =

∫ 1− d(y)
τ(T (y))

0

d(y)

(1− t)2
f

(
y − tT (y)

1− t

)
(1− t)(1− ∂tg(T (y))

2)−K(y)d(y)

(1− t)(1− ∂tg(T (y))
2)− (1− t)K(y)d(y)

dt.

Set s = t d(y)
1−t (so, t = s

s+d(y)). Then, using the fact that τ(T (y))− d(y) = τ(y), we infer that

(2.8) σ(y) =

∫ τ(y)

0
f(y + s∇u(y))

[
1− s

K(y)

1− ∂tg(T (y))
2 −K(y)d(y)

]
ds.

Now, fix y ∈ Ω\Σ and let (yn)n be a sequence of points in Ω\Σ converging to y. Thanks to
Lemmas 2.1 & 2.4, we see that σ(yn) → σ(y). Hence, σ is continuous on Ω\Σ. On the other
hand, we have

σ(y) ≤ ||f ||∞
[
1 + τ(y)

max{0,−K(y)}
1− λ2

]
τ(y).

Consequently, σ is continuous on Σ as well (σ = 0 on Σ). This concludes the proof that the
transport density σ is continuous on Ω. □

Moreover, one can prove Lipschitz regularity on the transport density σ as soon as we show
that τ is Lipschitz. We note that the Lipschitz regularity of τ was already proved in [7,
Theorem 2.12] but in the particular case g = 0. In the next proposition, we will extend this
result to the case of a general (λ−Lip with λ < 1) function g on ∂Ω and so, the steps of the
proof here will follow those in the proof of [7, Theorem 2.12].

Proposition 2.6. Assume that ∂Ω is C2,1, g ∈ C2,1(∂Ω) and, f is locally Lipschitz in
◦
Ω.

Then, the transport density σ is locally Lipschitz in
◦
Ω\Σ. Moreover, σ is locally Lipschitz in

Ω\Σ as soon as f ∈ Lip(Ω).
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Proof. First, we prove that τ is locally Lipschitz on Ω\Σ. We claim that there is a uniform
constant C depending only on λ, diam(Ω), ||κ||∞, ||∇κ||∞, ||D2g||∞ and ||D3g||∞ such that
for every x ∈ ∂Ω, there is a neighbourhood V (x) ⊂ ∂Ω of x such that

(2.9) τ(y) ≤ τ(x) + C|y − x|, for all y ∈ V (x).

Fix x ∈ ∂Ω. Assume that 1−∂tg(x)
2−K(x)τ(x) = 0. From (2.6), we have τ(x) ≤ (1+λ)diam(Ω)

2(1−λ)

and then, K(x) ≥ 2(1−λ)2

diam(Ω)
. Hence, there is a small ε > 0 such that K(y) ≥ (1−λ)2

diam(Ω)
, for all

y ∈ ∂Ω ∩B(x, ε), and so we have

τ(y) ≤ 1− ∂tg(y)
2

K(y)
=

1− ∂tg(y)
2

K(x)
+

[1− ∂tg(y)
2](K(x)−K(y))

K(x)K(y)

= τ(x) +
∂tg(x)

2 − ∂tg(y)
2

K(x)
+

[1− ∂tg(y)
2](K(x)−K(y))

K(x)K(y)
≤ τ(x) + C|x− y|,

where the constant C depends only on λ, diam(Ω), ||D2g||∞, ||D3g||∞, ||κ||∞ and ||∇κ||∞.

Now, assume that 1 − ∂tg(x)
2 −K(x)τ(x) > 0 (we note that this case is more delicate). Set

x̄ = x + τ(x)∇u(x). Let us denote by D+u(x̄) the superdifferential of u at x̄. We note that
u is locally semi-concave in Ω and so, we have D+u(x̄) = co[D⋆u(x̄)] (the convex hull of the
set of limiting gradients D⋆u(x̄)). Set e2 = ∇u(x) and e1 = R−π

2
e2. We claim that there is

a Lipschitz arc β : [−δ, δ] 7→ Σ (for some δ > 0) such that β(0) = x̄, |β′| = 1 and β′(0) = n1,
where n1 is a unit normal vector to [p1, e2], for some vector p1 ∈ D⋆u(x̄), with n1 · e1 > 0. For
this aim, we start by proving that e2 is isolated in the set of limiting gradients D⋆u(x̄). Assume
that this is not the case, then there will be a sequence {pn} ⊂ D⋆u(x̄) such that e2 = limn pn.

But, it is not difficult to see that, for every n ∈ N, there is a point xn ∈ T̃ (x̄) such that
pn = ∇u(xn). In particular, we have x̄ = x+ [u(x̄)− g(x)]∇u(x) = xn + [u(x̄)− g(xn)]∇u(xn)
and so,

xn − x

|xn − x|
+ [u(x̄)− g(xn)]

∇u(xn)−∇u(x)

|xn − x|
− g(xn)− g(x)

|xn − x|
∇u(x) = 0.

Passing to the limit when n → ∞ and using the fact that xn → x, we infer that

t(x) + τ(x)D2u(x) t(x)− ∂tg(x)∇u(x) = 0.

Hence,

t(x)− K(x)τ(x)

1− ∂tg(x)
2 [e(x)⊗ e(x)]t(x)− ∂tg(x)[∂tg(x)t(x) +

√
1− ∂tg(x)

2 n(x)] = 0.

This implies that

[1− ∂tg(x)
2 −K(x)τ(x)]t(x)− ∂tg(x)

√
1− ∂tg(x)

2

[
− K(x)τ(x)

1− ∂tg(x)
2 + 1

]
n(x) = 0,

which contradicts the fact that 1− ∂tg(x)
2 −K(x)τ(x) > 0. Assume that dim(D+u(x̄)) = 1.

Then, there is a vector p1 ̸= e2 ∈ D⋆u(x̄) such that D+u(x̄) = [p1, e2]. Let n1 be a unit
normal vector to [p1, e2] such that n1 · e1 > 0. Thanks to [1, Lemma 4.5], there exists a
Lipschitz arc β : [−δ, δ] 7→ Σ such that β(0) = x̄, |β′| = 1 and β′(0) = n1. Now, assume that
dim(D+u(x̄)) = 2. As e2 is isolated in D⋆u(x̄), then there exist two vectors p1 ̸= p2 ∈ D⋆u(x̄)
such that the segments [p1, e2] and [p2, e2] are contained in ∂D+u(x̄). Let n1 and n2 be the
outward unit normal vectors to D+u(x̄) exposing the faces [p1, e2] and [p2, e2], respectively. It
is easy to see that there exist two numbers λ1, λ2 > 0 such that e2 = λ1n1 + λ2n2. Hence,
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we either have n1 · e1 > 0 or n2 · e1 > 0 (without loss of generality, assume that n1 · e1 > 0).
Again by [1, Lemma 4.5], we know that there is a Lipschitz arc β : [−δ, δ] 7→ Σ such that
β(0) = x̄, |β′| = 1 and β′(0) = n1. So, the claim is proved.

Let α : [−ε, ε] 7→ ∂Ω be such that α(0) = x and α′(0) = t(x) =
√
1− ∂tg(x)

2 e1+∂tg(x) e2.

One can see that, for every s ∈ [0, ε] (resp. s ∈ [−ε, 0]), there exists a value t(s) ∈ [0, δ] (resp.

t(s) ∈ [−δ, 0]) such that α(s) ∈ T̃ (β(t(s))). In particular, we have

(2.10) [β(t(s))− α(s)] ·Rπ
2
∇u(α(s)) = 0.

Yet,

(2.11) β(t(s))− α(s) = τ(x)e2 + t(s)β′(0)− s t(x) + o(s) + o(t(s)).

Moreover,

∇u(α(s)) = e2 +D2u(x)(α(s)− x) + o(s).

From (2.3), one has

D2u(x) =
−K(x)

1− ∂tg(x)
2 e1 ⊗ e1.

Hence, we get

∇u(α(s)) = e2 −
K(x)

1− ∂tg(x)
2 [e1 · s t(x)]e1 + o(s) = e2 −

K(x)√
1− ∂tg(x)

2
s e1 + o(s).

Then,

(2.12) Rπ
2
∇u(α(s)) = −e1 −

K(x)√
1− ∂tg(x)

2
s e2 + o(s).

Consequently, by (2.11) & (2.12), we get

[β(t(s))−α(s)]·Rπ
2
∇u(α(s)) = [τ(x)e2+t(s)β′(0)−s t(x)+o(s)+o(t(s))]·

[
−e1−

sK(x)√
1− ∂tg(x)

2
e2+o(s)

]

=
1− ∂tg(x)

2 −K(x)τ(x)√
1− ∂tg(x)

2
s− [β′(0) · e1]t(s)−

K(x)√
1− ∂tg(x)

2
[β′(0) · e2]s t(s) + o(s) + o(t(s)).

Thanks to (2.10), this yields that the right hand term in the last equality is 0. And so, this
implies that

t(s) =
1− ∂tg(x)

2 −K(x)τ(x)√
1− ∂tg(x)

2 [β′(0) · e1]
s+ o(s).

Now, let y ∈ ∂Ω be a point in the neighbourhood of x and s ∈ [−ε, ε] be such that y = α(s).
Then, we have

τ(y) = |β(t(s))− α(s)| = [τ(x)e2 + t(s)β′(0)− s t(x) + o(s)] ·
[
e2 −

sK(x)√
1− ∂tg(x)

2
e1 + o(s)

]

= τ(x)+ t(s)[β′(0) ·e2]−∂tg(x) s+o(s) = τ(x)+

[
[1− ∂tg(x)

2 −K(x)τ(x)][β′(0) · e2]√
1− ∂tg(x)

2
[β′(0) · e1]

−∂tg(x)

]
s+o(s)

(2.13) ≤ τ(x) +

[
1− ∂tg(x)

2 −K(x)τ(x)√
1− λ2 [β′(0) · e1]

+ λ

]
s+ o(s).
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Notice that

(2.14) β′(0) · e1 = n1 · e1 =
[e2 − p1]

|e2 − p1|
· e2 =

1− p1 · e2
|p1 − e2|

=
|p1 − e2|

2
.

Let x′ ∈ T̃ (x̄) be such that ∇u(x′) = p1. So, we have x
′ := x̄− [u(x̄)− g(x′)]p1. Then, one has

(2.15) x′ − x = −[u(x̄)− g(x′)]p1 + [u(x̄)− g(x)]e2

= [u(x̄)− g(x)][e2 − p1] + [g(x′)− g(x)]p1 = τ(x)[e2 − p1] + [g(x′)− g(x)]p1.

On the other hand, recalling Proposition 2.2, we have

|∇u(x′)−∇u(x)−D2u(x)[x′ − x]| ≤ C|x′ − x|2.
Therefore,
(2.16)∣∣∣∣p1−e2+

K(x)

1− ∂tg(x)
2 e1⊗e1

(
τ(x)[e2−p1]+[g(x′)−g(x)]p1

)∣∣∣∣ ≤ C|τ(x)[e2−p1]+[g(x′)−g(x)]p1|2.

We have

e1 ⊗ e1

(
τ(x)[e2 − p1] + [g(x′)− g(x)]p1

)
= −τ(x)[e1 · p1]e1 + [g(x′)− g(x)][e1 · p1]e1

= [−τ(x) + g(x′)− g(x)][e1 · p1]e1.
Yet,

p1 − e2 = [e1 · p1]e1 + ([e2 · p1]− 1)e2 = [e1 · p1]e1 −
|p1 − e2|2

2
e2.

Then,

e1 ⊗ e1

(
τ(x)[e2 − p1] + [g(x′)− g(x)]p1

)
= [−τ(x) + g(x′)− g(x)]

[
p1 − e2 +

|p1 − e2|2

2
e2

]
.

Hence, by (2.16), we get∣∣∣∣p1−e2+
K(x)

1− ∂tg(x)
2 [−τ(x)+g(x′)−g(x)]

[
p1−e2+

|p1 − e2|2

2
e2

]∣∣∣∣ ≤ C|τ(x)[e2−p1]+[g(x′)−g(x)]p1|2.

Then,

1− ∂tg(x)
2 −K(x)τ(x)

1− ∂tg(x)
2 |p1−e2|−

|K(x)|τ(x)
1− ∂tg(x)

2

|p1 − e2|2

2
− |K(x)|
1− ∂tg(x)

2 |g(x
′)−g(x)|

[
|p1−e2|+

|p1 − e2|2

2

]
≤ C[|p1 − e2|2 + |g(x′)− g(x)|2].

Recalling (2.15), we have

|g(x′)− g(x)| ≤ λ|x′ − x| ≤ λ

1− λ
τ(x)|p1 − e2|.

Consequently,

1− ∂tg(x)
2 −K(x)τ(x)

1− ∂tg(x)
2 |p1 − e2| ≤ C|p1 − e2|2.

By (2.14), this yields that

1− ∂tg(x)
2 −K(x)τ(x)

β′(0) · e1
≤ C,

where C is a uniform constant depending only on λ, diam(Ω), ||κ||∞, ||∇κ||∞, ||D2g||∞ and
||D3g||∞. Recalling (2.13), this concludes the proof of our claim (2.9). Now, fix x ∈ Ω\Σ.
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Then, for all y in the neighbourhood of x such that T (y) ∈ V (T (x)) (we recall that T is
continuous on Ω\Σ), we have

τ(y)−τ(x) = τ(T (y))−τ(T (x))+d(x)−d(y) ≤ C|T (y)−T (x)|+u(x)−u(y)+g(T (y))−g(T (x))

(2.17) ≤ C

dist(x,Σ)
|x− y|,

where we used the bound ||DT ||L∞(B(x,ε)) ≤ C
dist(x,Σ)

, which follows immediately from the

estimate (2.1) as well as the proposition 2.2. Thanks to [9, Theorem 7.3], (2.17) implies that
the map τ is locally Lipschitz on Ω\Σ. Finally, recalling (2.8), we have

σ(x) =

∫ τ(x)

0
f(x+ s∇u(x))

[
1− s

K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

]
ds, for all x ∈ Ω\Σ.

Hence, one has

∇σ(x) = f(x+ τ(x)∇u(x))

[
1− τ(x)

K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

]
∇τ(x)

+

∫ τ(x)

0

[I + sD2u(x)]∇f(x+ s∇u(x))

[
1− s

K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

]
ds

−
∫ τ(x)

0

s f(x+ s∇u(x))

[
∇K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

+
K(x)[∇[∂tg(T (x))

2
] +∇[K(x)d(x)]]

(1− ∂tg(T (x))
2 −K(x)d(x))2

]
ds.

For the first term in ∇σ(x), we have∣∣∣∣f(x+ τ(x)∇u(x))

[
1− τ(x)

K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

]
∇τ(x)

∣∣∣∣ ≤ ||f ||∞
[
1+

||K||∞
1− λ2

diam(Ω)

]
||∇τ ||∞.

Thanks to the smoothness of u on Ω\Σ (see Proposition 2.2), one can bound the second term
of ∇σ(x) as follows:∣∣∣∣ ∫ τ(x)

0
[I + sD2u(x)]∇f(x+ s∇u(x))

[
1− s

K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

]
ds

∣∣∣∣
≤ C

∫ τ(x)

0

|∇f |(x+ s∇u(x))

[
1− s

K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

]
ds ≤ C||∇f ||∞

[
1+

||K−||∞
1− λ2

diam(Ω)

]
,

where K−(x) := max{0,−K(x)}. To show the last inequality, we have to consider two cases:
K(x) ≥ 0 and K(x) < 0. If K(x) ≥ 0, we have

0 ≤
[
1− s

K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

]
≤ 1.

If K(x) < 0, then one has

0 ≤
[
1− s

K(x)

1− ∂tg(T (x))
2 −K(x)d(x)

]
≤

[
1− K(x)

1− λ2
diam(Ω)

]
.

In the same way, we bound the third term of ∇σ(x). Consequently, this implies that the
transport density σ is locally Lipschitz in Ω\Σ. □
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3. Shape optimization: existence, properties and regularity of optimal sets

In this section, we assume again that f ∈ L1(Ω) represents the distribution of some mass
in the region Ω ⊂ R2 that we want to export to the boundary, paying the transport cost plus
a boundary tax which will be given by a λ−Lip function g on ∂Ω with λ < 1 (see Problem
(1.2)). Let σ be the transport density in this transport problem; we recall that σ(Ω) represents
the total transportation cost. Let us assume now that we may have a set E ⊂ Ω where the
traffic inside E is free of charge. Then, the aim of this section is to find an optimal region
E ⊂ Ω where the traffic may travel without paying any transport cost. However, since E is a
cost-free transportation region then a term P (E) will be added (due to roads improvement,
traffic devices, ...) to describe the cost of improving the set E, then penalizing too large free
traffic regions. In other words, we study the following shape optimization problem:

(3.1) min {σ(Ω\E) + P (E) : E ⊂ Ω} .

In fact, one can also consider a more general version of Problem (3.1) by assuming that the
traffic cost in E is not completely free but still less than the traffic cost on Ω\E. In other
words, we may study the following problem:

min {σ(Ω\E) + θ σ(E) + P (E) : E ⊂ Ω} ,

where 0 ≤ θ < 1. Or more generally, assume that H1 and H2 are two continuous functions
with 0 ≤ H1 ≤ H2, then one can consider instead

(3.2) min

{∫
Ω\E

H2(x) dσ(x) +

∫
E
H1(x) dσ(x) + P (E) : E ⊂ Ω

}
.

For simplicity of exposition, we will consider Problem (3.1), but it is not difficult to check that
all the results in the next subsections hold true in the general case (3.2).

3.1. Penalization with the perimeter. In this subsection, we consider the simplest version
of Problem (3.1) where the penalization term P (E) involves the perimeter of E. In this case,
an optimal region E is shown to exist and some classical properties and regularity results on
E will be established. Fix Λ > 0, then we consider the following problem:

(3.3) min {σ(Ω\E) + ΛPer(E) : E ⊂ Ω} ,

where Per(E) denotes the perimeter of the set E in the sense of De Giorgi (see [3]).

Proposition 3.1. Assume that f ∈ L1(Ω). Then, the shape optimization problem (3.3)
reaches a minimum.

Proof. Let {En}n∈N ⊂ Ω be a minimizing sequence in Problem (3.3). It is clear that one can
assume that there is a uniform constant C such that

σ(Ω\En) + ΛPer(En) ≤ C, for every n ∈ N.

As σ ≥ 0, the previous immediately gives a uniform bound on the perimeter of the sequence
{En}. Moreover, |En| ≤ |Ω|. This in turn implies that the sequence {1En}n∈N weakly*
converges in BV (Ω) (and then, strongly converges in L1(Ω)) to a function φ, which has the
form φ = 1E for some measurable set E ⊂ Ω. By using the latter, the lower semicontinuity of
the total variation of the distributional gradient of 1En and the fact that σ ∈ L1(Ω) (see [19]),
we get

σ(Ω\E) + ΛPer(E) ≤ lim inf
n

[σ(Ω\En) + ΛPer(En)].

This concludes the proof of existence of an optimal set E for Problem (3.3). □
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Now, we introduce the notion of Ω−convexity, which coincides by the way with the notion
of convexity provided that Ω is convex.

Definition 3.1. For a subset E ⊂ Ω, we define the Ω−convex hull of E as the union of all the
segments included in Ω with both vertices in E. We say that E is Ω−convex if the Ω−convex
hull of E is the set E itself.

Then, we have the following:

Proposition 3.2. Let E be an optimal set, then any connected component of E is Ω−convex.
Moreover, any connected subset of E is contained in the Ω−convex hull of some connected
subset of spt(σ).

Proof. Assume without loss of generality that the set E is connected. Suppose that E is

not Ω−convex. Let Ẽ be the Ω−convex hull of E. Then, it is not difficult to see that

Per(Ẽ) < Per(E). Hence, we get

σ(Ω\Ẽ) + ΛPer(Ẽ) < σ(Ω\E) + ΛPer(E),

which is a contradiction since E minimizes Problem (3.3). The second statement follows in a
similar fashion. □

On the other hand, one can show that the map Λ 7→ EΛ, where EΛ is an optimal set in
Problem (3.3), is monotone.

Proposition 3.3. Let Λ1 > Λ2 > 0 and EΛ1 , EΛ2 be two corresponding optimal sets, then we
have EΛ1 ⊂ EΛ2.

Proof. From the optimality of EΛ1 and EΛ2 in Problem (3.3), we clearly have the following
inequalities:

σ(Ω\EΛ1) + Λ1Per(EΛ1) ≤ σ(Ω\(EΛ1 ∩ EΛ2)) + Λ1 Per(EΛ1 ∩ EΛ2)

and

σ(Ω\EΛ2) + Λ2 Per(EΛ2) ≤ σ(Ω\(EΛ1 ∪ EΛ2)) + Λ2 Per(EΛ1 ∪ EΛ2).

Using the inequality

Per(E ∪ F ) + Per(E ∩ F ) ≤ Per(E) + Per(F ),

we get

1

Λ1
[σ(Ω\EΛ1)− σ(Ω\(EΛ1 ∩ EΛ2))] ≤

1

Λ2
[σ(Ω\(EΛ1 ∪ EΛ2))− σ(Ω\EΛ2)].

Hence, (
1

Λ2
− 1

Λ1

)
σ(EΛ1\EΛ2) ≤ 0.

Thanks to the fact that Λ1 > Λ2, this implies that σ(EΛ1\EΛ2) = 0 and so, we have EΛ1 ⊂ EΛ2

σ−a.e. □

Moreover, we have the following:

Proposition 3.4. Let E, F be two optimal sets. Then, E ∪ F and E ∩ F are also optimal
sets. In particular, there exist two optimal sets Emax and Emin such that for any optimal set
E, we have Emin ⊂ E ⊂ Emax.
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Proof. From the optimality of E and F in Problem (3.3), we have obviously the following
inequalities

(3.4) σ(Ω\E) + ΛPer(E) ≤ σ(Ω\(E ∩ F )) + ΛPer(E ∩ F )

and

(3.5) σ(Ω\F ) + ΛPer(F ) ≤ σ(Ω\(E ∪ F )) + ΛPer(E ∪ F ).

Yet, we clearly have σ(Ω\(E ∩ F )) + σ(Ω\(E ∪ F )) = σ(Ω\E) + σ(Ω\F ). Hence, taking the
sum of (3.4) & (3.5) yields that

Per(E) + Per(F ) ≤ Per(E ∪ F ) + Per(E ∩ F ).

This implies that

Per(E) + Per(F ) = Per(E ∪ F ) + Per(E ∩ F ).

Consequently, the two inequalities in (3.4) & (3.5) are in fact equalities and so, E ∪ F and
E ∩ F minimize Problem (3.3). □

Now, let us study the regularity of optimal sets.

Proposition 3.5. Let E be an optimal set for Problem (3.3). Then, we have the following
statements:
• If f ∈ Lp

loc(Ω) with p > 2, then ∂E ∩
◦
Ω is of class C1. Moreover, ∂E is globally C1 on Ω as

soon as f ∈ Lp(Ω) with p > 2, Ω satisfies a uniform exterior ball condition with a boundary
of class C1 and, g is semi-concave.

• If f is continuous in
◦
Ω, ∂Ω is C2 and g ∈ C2(∂Ω), then ∂E is C2 in the interior of Ω.

Moreover, ∂E is globally C1,1 on Ω provided that f ∈ C(Ω).

• If f is locally Lipschitz in
◦
Ω, ∂Ω ∈ C2,1 and g ∈ C2,1(∂Ω), then ∂E\Σ is C2,1 in

◦
Ω.

Proof. The first part of the first statement follows immediately from [17, Theorem 3.2] thanks
to the fact that the transport density σ ∈ Lp

loc(Ω) (see [19, Theorem 4.20] and takes into
account that the target measure is supported on ∂Ω). Moreover, assume that ∂E is not C1

at some point x ∈ ∂E ∩ ∂Ω. Let (s, α(s)) be a parametrization of ∂E around x. Thanks to
the Ω−convexity of E (see Proposition 3.2) and the C1 regularity of ∂Ω, there exists a δ > 0

such that we either have {(s, α(s)) : s ∈ [−δ, δ]\{0}} ⊂
◦
Ω, {(s, α(s)) : s ∈ [−δ, 0[} ⊂

◦
Ω and

{(s, α(s)) : s ∈ [0, δ]} ⊂ ∂Ω, or {(s, α(s)) : s ∈]0, δ]} ⊂
◦
Ω and {(s, α(s)) : s ∈ [−δ, 0]} ⊂ ∂Ω.

In all these three possibilities, one can always assume that after a rotation and translation of
axes, x = (0, 0) and |α′(s)| ≥ c > 0, for a.e. s ∈ (ε−, ε+), where ε− ∈] − δ, 0[ and ε+ ∈]0, δ[
are small enough such that α(ε+) = α(ε−); we set ε := ε+ − ε− > 0. If we denote by C the

part of ∂E between (ε+, α(ε+)) and (ε−, α(ε−)) and Ĉ the segment joining these two points,

then we see that Ĉ ⊂ Ω. Now, let Ê be such that ∂Ê = (∂E \C) ∪ Ĉ. Hence, we have

Per(Ê)− Per(E) = ε−
∫ ε+

ε−

√
1 + α′(s)2 ds ≤ (1−

√
1 + c2) ε.

On the other hand, by [15], we have σ ∈ Lp(Ω) as soon as f ∈ Lp(Ω), Ω satisfies a uniform
exterior ball condition and g is λ−Lip (with λ < 1) and semi-concave. Then, we have

σ(Ω\Ê)−σ(Ω\E) =

∫
E\Ê

σ ≤ ||σ||Lp(E\Ê)|E\Ê|
1
q = ||σ||Lp

[ ∫ ε+

ε−
[α(ε+)−α(s)]ds

] 1
q

≤ C||σ||Lp(E\Ê) ε
2
q ,
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where q is the conjugate of p, i.e. 1
p + 1

q = 1. Consequently, we get

σ(Ω\Ê) + ΛPer(Ê)− [σ(Ω\E) + ΛPer(E)] ≤
[
Λ(1−

√
1 + c2) + C||σ||Lp(E\Ê) ε

2
q−1

]
ε.

But, this yields to a contradiction with the optimality of E provided that ε > 0 is small
enough and p ≥ 2.

For the second statement, let x ∈ ∂E be a fixed point inside Ω. Let (s, α(s)) be a
parametrization of ∂E around x. Fix ε > 0, then it is clear that α minimizes

min

{∫ ε

−ε

∫ γ(s)

0
σ(s, t) dtds+ Λ

∫ ε

−ε

√
1 + γ′(s)2 ds : γ(ε) = α(ε), γ(−ε) = α(−ε)

}
.

From the optimality conditions on α and thanks to the continuity of the transport density σ
(see Proposition 2.5), we get that α′(s)√

1 + α′(s)2

′

=
1

Λ
σ(s, α(s)).

This implies that the optimal region E has boundary of class C2 in the interior of Ω and the
curvature k of ∂E is given by

(3.6) k =
σ

Λ
.

Now, assume that x ∈ ∂E ∩ ∂Ω and that ∂Ω is the graph of a smooth function β. Then, α
solves

min

{∫ ε

−ε

∫ γ(s)

0
σ(s, t) dtds+ Λ

∫ ε

−ε

√
1 + γ′(s)2ds : γ(ε) = α(ε), γ(−ε) = α(−ε), γ ≥ β

}
.

The optimality conditions on α as well as the fact that α ≥ β and β is C2 yield that the
curvature k of ∂E satisfies

−||κ||∞ ≤ k ≤ σ

Λ
,

where κ denotes the curvature of ∂Ω. Finally, the last statement follows immediately from the
estimate (3.6) and the proposition 2.6. □

3.2. Penalization with the fractional perimeter. In this subsection, we consider another
version of Problem (3.1) which is somehow more complicated than the one considered in
Subsection 3.1, where the penalization term P (E) will be given now by the fractional perimeter
of E (we note that this penalization was already used for the fractional Cheeger problem in
[5]). Fix s ∈ (0, 1), then we consider the following problem:

(3.7) min {σ(Ω\E) + Pers(E) : E ⊂ Ω} ,
where for every Borel set E ⊂ R2, we define its s−perimeter as the W s,1 semi-norm of the
characteristic function of E:

Pers(E) =

∫
R2

∫
R2

|1E(x)− 1E(y)|
|x− y|2+s

dx dy.

We note that the s−perimeter of E is somehow an interpolation between the perimeter and
the Lebesgue measure of E. More precisely, we have the following inequality (see [5, Corollary
4.4]):

Pers(E) ≤ C Per(E)s |E|1−s.

Proposition 3.6. Assume that f ∈ L1(Ω). Then, the fractional shape optimization problem
(3.7) has a solution.
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Proof. Let {En}n∈N ⊂ Ω be a minimizing sequence in Problem (3.7). It is clear that one can
assume that there is a constant C such that

Pers(En) ≤ C, for every n ∈ N.
Thanks to the fact that En ⊂ Ω, for all n ∈ N, we infer that the W s,1 norm of 1En is uniformly
bounded and so, up to a subsequence, {1En}n∈N converges strongly in L1(Ω) to a function 1E ,
for some measurable set E ⊂ Ω. By using the latter, the lower semicontinuity of the W s,1

seminorm and the fact that σ ∈ L1(Ω), we get that

σ(Ω\E) + Pers(E) ≤ lim inf
n

[σ(Ω\En) + Pers(En)]. □

In order to study the regularity of optimal sets in Problem (3.7), we will follow the same
technique that is already used in [5] to prove regularity on the fractional Cheeger set. First,
we define

Ls(A,B) =

∫
A

∫
B

1

|x− y|2+s
dx dy, for all Borel sets A, B ⊂ R2.

Then, for every E ⊂ R2, we set

Js(E,Ω) := Ls(E ∩ Ω, Ec) + Ls(E\Ω, Ec ∩ Ω).

Notice that if E ⊂ Ω, then we have Js(E,Ω) = Ls(E,Ec) = 1
2Pers(E). Now, we introduce

the notion of almost minimality for the functional Js (which extends the notion introduced by
Almgren for the perimeter; see [2]) as follows:

Definition 3.2. Let δ > 0 and ρ : (0, δ) 7→ R+ a modulus of continuity. We say that a
measurable set E is (Js, ρ, δ)−minimal in Ω (or simply that E is almost s−minimal in Ω)
if for all x0 ∈ ∂E and any measurable set F such that F∆E ⊂ B(x0, r) for some r <
min{δ, d(x0, ∂Ω)}, we have

Js(E,Ω) ≤ Js(F,Ω) + ρ(r)r2−s.

Moreover, we will say that E is a s−minimal set in Ω if for any set F with F\Ω = E\Ω, we
have

Js(E,Ω) ≤ Js(F,Ω).

In order to prove regularity on the optimal regions of Problem (3.7), we will introduce some
results on the almost s−minimal sets that generalize those given in [6] where the authors
considered instead the s−minimal sets (i.e. ρ = 0). In fact, some of these results have already
been proven in [8] and so, we will omit some details. First, we start by the following:

Lemma 3.7. Assume G is a (Js, ρ, δ)−minimal set in B1 := B(0, 1) and 0 ∈ ∂G. For every
n ∈ N, set Gn := nG. Then, Gn is (Js, ρn, nδ)-minimal in B1 with ρn(t) = ρ( t

n), for all n.

Moreover, Gn → C in L1
loc(R2) and, C is a s−minimal cone (i.e. tC = C for all t > 0) in

Br0, for r0 < min{δ, 1}.

Proof. First, it is easy to see that

Js(Gn, B1) = n2−s Js(G,B 1
n
), for all n ∈ N.

Now, fix n ∈ N. Let xn ∈ ∂Gn and Fn is a set such that Fn∆Gn ⊂ B(xn, r), for some
r < min{nδ, n − |xn|}. Set F := 1

nFn and x0 = 1
nxn. So, it is clear that F∆G ⊂ B(x0,

r
n).

Thus, we have

Js(Gn, B1) = n2−s Js(G,B 1
n
) ≤ n2−s

[
Js(F,B 1

n
) + ρ

(
r

n

)(
r

n

)2−s]
= Js(Fn, B1) + ρn(r) r

2−s.
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Hence, Gn is a (Js, ρn, nδ)−minimal set in B1, for all n. Let us show that C is s−minimal
in some neighborhood of the origin. Let F be a set such that F∆C ⊂ Br0 , for some r0 <
min{δ, 1}. For every n ∈ N, set

Fn = [F ∩Br0 ] ∪ [Gn\Br0 ].

Since Gn is (Js, ρn, nδ)−minimal in B1 (and so, in Br0 as Br0 ⊂ B1), then we have

Js(Gn, Br0) ≤ Js(Fn, Br0) + ρn(r0)r
2−s
0 .

Moreover, it is not difficult to check that

|Js(Fn, Br0)− Js(F,Br0)| ≤ Ls(Br0 , (Gn∆C)\Br0).

But, one can show that we have (see the proof of [6, Theorem 3.3]):

lim
n→∞

Ls(Br0 , (Gn∆C)\Br0) = 0.

Hence, we get

lim sup
n→∞

Js(Gn, Br0) ≤ Js(F,Br0).

On the other hand, by [6, Proposition 3.1], Js(·, Br0) is lower semicontinuous and, since Gn →
C in L1

loc(R2), then we have

Js(C,Br0) ≤ lim inf
n→∞

Js(Gn, Br0).

Consequently, we get

Js(C,Br0) ≤ Js(F,Br0).

This yields that C is s−minimal in Br0 . In order to show that C is a cone, we need a
monotonicity formula for (almost) s−minimal sets that generalize the classical one for minimal
sets. In fact, it is well known that if E is a minimal set in some neighborhood of 0 ∈ ∂E, then
the functional

ϕE(r) :=
H1(∂E ∩Br)

r
is monotone increasing (i.e. [ϕE(r)]

′ ≥ 0) and, it is constant as soon as E is a cone. In [6,
Section 7] and [8, Section 7], the authors extend this monotonicity formula to the (almost)
s−minimal sets. Let E be a (Js, ρ, δ)−minimal set in B1 with 0 ∈ ∂E. So, we define the
extension ũE : R2 × R+ 7→ R of the function uE := 1E − 1Ec as the solution of{

∇ · [z1−s∇ũ] = 0 in R2 × R+,

ũ = uE on {z = 0}.

Now, we introduce as in [6, 8] the functional ΦE as follows (where B+
r := Br ∩ {z > 0}):

ΦE(r) :=

∫
B+

r
z1−s|∇ũE |2

r2−s
+ (2− s)

∫ r

0
ρ(t)t1−s dt.

Then, one can show that ΦE is monotone increasing in r (see [6, Theorem 8.1] or [8, Lemma
7.3]). Using [6, Proposition 9.1], since Gn → C in L1

loc(R2) then we have ΦGn(r) → ΦC(r), for
every r. Yet, it is easy to check that

(3.8) ΦGn(r) = ΦG

(
r

n

)
− (2− s)

∫ r
n

0
ρ(t)t1−s dt+ (2− s)

∫ r

0
ρn(t)t

1−s dt.

Passing to the limit in (3.8) when n → ∞, we get the following:

ΦC(r) = lim
ε→0

ΦG(ε), for all r.
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In other words, this means that ΦC is constant. Consequently, by [6, Corollary 8.2], we infer
that C is a cone. □

Hence, we have the following (see also [6, Theorem 9.4] and [8, Theorem 7.4]):

Lemma 3.8. If the set G is (Js, ρ, δ)−minimal in B1 and 0 ∈ ∂G, then ∂G is C1 in a
neighborhood of the origin.

Proof. Thanks to Lemma 3.7, we know that nG → C in L1
loc(R2) and C is a s−minimal cone.

But, by [20, Theorem 1], we infer that C is a half-plane. This concludes the proof. □

Moreover, we get

Lemma 3.9. If E is (Js, ρ, δ)−minimal in Ω, then ∂E is C1 in the interior of Ω.

Proof. Fix x0 ∈ ∂E ∩
◦
Ω. Let r0 > 0 be small enough so that B(x0, r0) ⊂ Ω. So, E is

(Js, ρ, δ)−minimal in B(x0, r0). Now, set G = E−x0
r0

. Then, it is easy to see that G is

(Js, ρ0, δ0)−minimal in B1 with ρ0 = ρ(r0r) and δ0 =
δ
r0
, since we have

Js(G,B1) =
1

r2−s
0

Js(E,Br0).

Thanks to Lemma 3.8, ∂G is C1 in a neighborhood of the origin. By scaling and translating
back, we infer that ∂E is C1 in a neighborhood of x0. □

Finally, we are ready to state our regularity results.

Proposition 3.10. Let E be a minimizer for Problem (3.7). Assume that g is λ−Lip with

λ < 1 and f ∈ Lp
loc(Ω) with p > 2

s . Then, ∂E ∩
◦
Ω is C1.

Proof. Thanks to Lemma 3.9, it is sufficient to prove that for every point x0 ∈ ∂E ∩
◦
Ω, the set

E is (Js, ρ, δ)−minimal in B(x0, r0), for some 0 < r0 < d(x0, ∂Ω), δ > 0 and, a modulus of
continuity ρ. For all x ∈ ∂E ∩ B(x0, r0), r < r0 − |x− x0| and, F such that E∆F ⊂ B(x, r),
we have F ⊂ Ω and then thanks to the minimality of E in Problem (3.7), we get that

Pers(E)−
∫
E
σ ≤ Pers(F )−

∫
F
σ.

Hence,

Pers(E) ≤ Pers(F ) +

∫
E∩B(x,r)

σ −
∫
F∩B(x,r)

σ

≤ Pers(F ) + C||σ||Lp(B(x0,r0)) r
2
q .

This implies that E is (Js, ρ, δ)−minimal in B(x0, r0) with ρ(r) = C||σ||Lp(B(x0,r0)) r
s− 2

p (we

recall that σ ∈ Lp
loc(Ω) thanks to the fact that f belongs to Lp

loc(Ω) and the target measure is
concentrated on ∂Ω; see [19]), since we have

Js(E,Ω) ≤ Js(F,Ω) + ρ(r)r2−s. □

Moreover, one can prove regularity on the optimal set E at points touching ∂Ω provided
that ∂Ω is smooth.

Proposition 3.11. Let E be a minimizer for Problem (3.7). Assume that f ∈ Lp(Ω) with
p > 2

s , g is λ−Lip with λ < 1 and semi-concave, ∂Ω is C1,α and Ω satisfies a uniform exterior

ball condition. Then, ∂E is C1 on Ω.
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Proof. From Proposition 3.10, we know that ∂E ∩
◦
Ω is C1. Now, fix x ∈ ∂E ∩ ∂Ω and ε > 0.

We show that E is (Js, ρ, δ)−minimal in B(x, ε), for some δ > 0 and a modulus of continuity
ρ. Let x0 ∈ ∂E ∩ B(x, ε), r < d(x0, ∂B(x, ε)) and F be such that E∆F ⊂ B(x0, r). We note
that F is not necessarily contained in Ω. But anyway, F ∩ Ω is admissible in Problem (3.7)
and so, we have

Pers(E)−
∫
E
σ ≤ Pers(F ∩ Ω)−

∫
F∩Ω

σ.

Thanks to [15], we get that

Pers(E) ≤ Pers(F ∩ Ω) +

∫
E∩B(x0,r)

σ −
∫
F∩Ω∩B(x0,r)

σ

≤ Pers(F ∩ Ω) + C||σ||Lp r
2
q .

Yet, we have Js(E,Ω) = 1
2Pers(E) and Ls(F ∩ Ω, (F ∩ Ω)c) = 1

2Pers(F ∩ Ω). Hence, we get
that

Js(E,Ω) ≤ Ls(F ∩ Ω, (F ∩ Ω)c) + ρ(r)r2−s,(3.9)

where ρ(r) = C||σ||Lp r
s− 2

p . But, Js(F,Ω) = Ls(F ∩ Ω, F c) + Ls(F\Ω, F c ∩ Ω). Hence, by
(3.9), we have

Js(E,Ω) ≤ Js(F,Ω) + Ls(F ∩ Ω, F c ∪ Ωc)− Ls(F ∩ Ω, F c)− Ls(F\Ω, F c ∩ Ω) + ρ(r)r2−s.

On the other hand, one has

Ls(F ∩ Ω, F c ∪ Ωc)− Ls(F ∩ Ω, F c)− Ls(F\Ω, F c ∩ Ω)

= Ls(F ∩ Ω, F c) + Ls(F ∩ Ω, F ∩ Ωc)− Ls(F ∩ Ω, F c)− Ls(F\Ω, F c ∩ Ω)

= Ls(F ∩ Ω, F ∩ Ωc)− Ls(F\Ω, F c ∩ Ω) ≤ Ls(Ω, B(x0, r) ∩ Ωc).

Yet, thanks to [8, Section 3] and the fact that ∂Ω is C1,α, we have the following estimate:

Ls(Ω, B(x0, r) ∩ Ωc) =

∫
Ω

∫
B(x0,r)∩Ωc

1

|x− y|2+s
dx dy ≤ C r2−s+α.

This implies that

Js(E,Ω) ≤ Js(F,Ω) + ρ̃(r)r2−s

with ρ̃(r) = Crβ and β = min{α, s− 2
p}. Hence, E is (Js, ρ̃, δ)−minimal in B(x, ε) and so, ∂E

is C1 inside B(x, ε). □

We conclude this paper by the following:

Remark 3.1. In fact, it seems difficult to prove higher regularity (for instance, C2) on an
optimal set E of Problem (3.7) and so, the second order regularity of optimal set E is still an
open question! On the other hand, it is not easy to go beyond C2,1 regularity on an optimal
region E for Problem (3.3), since this requires to show some smoothness on the transport
density σ (and then, on the map τ) which seems to be tricky.
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