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Abstract. We consider a class of attractive-repulsive energies, given by the sum of two
nonlocal interactions with power-law kernels, defined over sets with fixed measure. It has
recently been proved by R. Frank and E. Lieb that the ball is the unique (up to translation)
global minimizer for sufficiently large mass. We focus on the issue of the stability of the ball,
in the sense of the positivity of the second variation of the energy with respect to smooth
perturbations of the boundary of the ball. We characterize the range of masses for which
the second variation is positive definite (large masses) or negative definite (small masses).
Moreover, we prove that the stability of the ball implies its local minimality among sets
sufficiently close in the Hausdorff distance, but not in L1-sense.

1. Introduction

In [BCT18] the following minimization problem among measurable sets E ⊂ Rd with fixed
volume |E| = m is considered:

min
{
F(E) : E ⊂ Rd, |E| = m

}
, (1.1)

where the functional F is a prototypical attractive-repulsive energy with power-law kernels

F(E) :=

∫
E

∫
E

1

|x− y|α
dx dy +

∫
E

∫
E
|x− y|β dx dy, α ∈ (0, d), β > 0. (1.2)

Such nonlocal interaction energies arise in descriptions of systems of uniformly distributed
interacting particles, in particular in models of collective behavior of many-agent systems
related to swarming (see e.g. [BT11,FHK11,TBL06]). For an introductory survey on this and
related problems, see [Fra21].

As a simple scaling argument shows, the first term in (1.2) is a repulsive interaction and
is dominant in the small mass regime, whereas the second term is attractive and is dominant
in the large mass regime. It is convenient to introduce a notation for the kernels and for the
attractive and repulsive parts of the energy: for σ > −d we set

Kσ(r) := rσ, Jσ(E) :=

∫
E

∫
E
|x− y|σ dx dy. (1.3)

With this notation F(E) = J−α(E) + Jβ(E).
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Several results appeared recently in the mathematical literature about the minimization of
energies of the form (1.2) (also for more general kernels) and about the corresponding relaxed
problem among uniformly bounded densities

min

{
F(ρ) :=

∫
Rd

∫
Rd

ρ(x)ρ(y)

|x− y|α
dx dy +

∫
Rd

∫
Rd

ρ(x)ρ(y)|x− y|β dx dy :

ρ ∈ L1(Rd) ∩ L∞(Rd), 0 ⩽ ρ ⩽ 1,

∫
Rd

ρ(x) dx = m

}
.

(1.4)

Existence of minimizers for (1.4) is proved in [CFT15], whereas in [BCT18] it is shown that
a set E is a minimizer for (1.1) if and only if its characteristic function ρ = χE solves the
relaxed problem (1.4). While the minimization problem (1.4) has also been studied over
probability measures, in [CDM16] it is shown that for d− 2 ⩽ α < d and β > 0 the optimal
measures are actually L∞-functions. Recently, in [CP22], this result is extended to a wide
class of interaction kernels, where the authors also provide an a priori bound on the L∞-
norm of minimizers. The problem (1.4) is in particular relevant to models of crowd motion
as investigated in [MRCS10,MRCSV11] where the density ρ describing the distribution of
individuals is uniformly bounded. A question of interest is when the optimal densities are
uniformly distributed on their support and when the constraint is saturated. In this case the
problem (1.4) reduces to (1.1) where ρ is described by the characteristic function of a set.

It is known that, for certain ranges of the parameters α, β, balls are global minimizers
of (1.2) for large mass: more precisely, by using quantitative rearrangement inequalities
Frank and Lieb in [FL21] proved that for all β > 0 and 0 < α < d − 1 there is a threshold
mball ∈ (0,∞) such that the ball with mass m is the only (up to translation) minimizer of
F for m > mball. This result had already been obtained in the special case of quadratic
attraction (β = 2) by Burchard, Choksi and the third author in [BCT18], by exploiting the
convexity of the energy among densities ρ with zero center of mass; a similar argument was
afterwards used by Lopes in [Lop19] to prove that, for 2 < β ⩽ 4 (and any α < d) minimizers
of (1.4) are unique up to translation and radially symmetric. It is worth to remark that, as
observed in [FL21], for α ∈ [d− 1, d) characteristic functions of balls are never critical points
for the relaxed energy and therefore they are never minimizers (see also Remark 4.3).

Concerning the small mass regime, in [BCT18] it is shown that for β = 2 and α ∈ [d−2, d)
the minimization problem (1.1) does not have a solution for all masses m sufficiently small:
indeed, in this case the minimizer of (1.4), which is unique by convexity of the energy, satisfies
ρ(x) < 1 almost everywhere. In [FL18] the same is proved for d = 3, α = 1, and any β > 0.

Finally, in the Coulomb case (α = d−2) with quadratic attraction (β = 2) the minimization
problem (1.1) is completely solved in [BCT18]: the unique solution is the ball if m ⩾ mball,

while there is no solution if m < mball, and mball =
(d−2)

2 ωd, where ωd := |B1| denotes the

volume of the ball in Rd with radius 1. The explicit value of mball is also computed in [Lop19]
for the cases d = 3, α = 1, and β = 3, 4.

In this paper we address the issues of the stability and local optimality of the ball. In our
main result we characterize the range of masses for which the ball is a volume-constrained
stable set for F and for −F (in the sense of nonnegativity of the second variation of the
energy with respect to smooth perturbations of the boundary of the ball, see Section 2.1
for the precise definition). Moreover, we prove that the strict stability of the ball yields
its (quantitative) local minimality/maximality among sets with the same volume and whose
boundary is contained in a small uniform neighbourhood of the boundary of the ball. The
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mass thresholds which separate the volume-constrained stability/instability regions for the
ball are determined explicitly in terms of the parameters α ∈ (0, d− 1), β > 0, and are given
by the following constants:

m∗ = m∗(d, α, β) :=


ωd

(
α(d− α)(2d+ 2 + β)

β(d+ β)(2d+ 2− α)
· J−α(B1)

Jβ(B1)

) d
α+β

if β ⩾ β∗,

ωd

(
α(d− α)(2d− α)(d− 1 + β)

β(d+ β)(2d+ β)(d− 1− α)
· J−α(B1)

Jβ(B1)

) d
α+β

if β < β∗,

(1.5)

where

β∗ = β∗(d, α) :=
6d+ 2 + α(d− 1)

d− 1− α
, (1.6)

and

m∗∗ = m∗∗(d, α, β) := ωd

(
α(d− α)

β(d+ β)
· J−α(B1)

Jβ(B1)

) d
α+β

. (1.7)

The values of J−α(B1) and Jβ(B1) which appear in the previous formulas can be expressed
in terms of the Γ function (see Remark 2.10), so that m∗ and m∗∗ can be computed explicitly.
For every m > 0 we also denote by r(m) > 0 the radius of a ball with volume m, |Br(m)| = m.
We have the following theorem, which is the main result of the paper.

Theorem 1.1. Let α ∈ (0, d − 1), β > 0, and let m∗, m∗∗ be defined by (1.5) and (1.7)
respectively. Then:

(i) the ball Br(m) with mass m is a volume-constrained stable set for the functional F if
and only if m ⩾ m∗,

(ii) the ball Br(m) with mass m is a volume-constrained stable set for the functional −F
if and only if m ⩽ m∗∗.

Moreover, for every m ∈ (0,m∗∗) ∪ (m∗,∞) there exist C > 0 and ε̄ > 0 (depending only on
d, α, β, and m) with the following property: for every measurable set E ⊂ Rd with |E| = |m|
and such that

Br(m)(1−ε̄)(x0) ⊂ E ⊂ Br(m)(1+ε̄)(x0) (1.8)

for some x0 ∈ Rd, one has

F(E)−F(Br(m)) ⩾ C(∆(E))2 if m > m∗, (1.9)

F(E)−F(Br(m)) ⩽ −C(∆(E))2 if m < m∗∗, (1.10)

where ∆(·) denotes the asymmetry

∆(E) := inf
y∈Rd

|E△Br(|E|)(y)|. (1.11)

The thresholds m∗ and m∗∗ are determined by means of a spherical harmonics expansion
of the quadratic form associated to the second variation of the energy (for stability analyses
using similar techniques see [BC14, FFM+15, FL19, FP20, Asc22]). The second part of the
statement, namely the local optimality of the ball, is proved in two steps. In the first one
(see Section 3) we show by a standard Fuglede-type argument that the stability inequalities
(1.9)–(1.10) are valid whenever E is a nearly-spherical set, that is, the boundary of E is a
normal graph over the boundary of the ball and is uniformly close to it. The second step
amounts to improve the local optimality to the larger class of competitors whose boundary is
contained in a small tubular neighbourhood of the boundary of the ball, in the sense of (1.8):
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in this case we exploit a transport argument devised by Fusco and Pratelli in [FP20] which
allows to replace any such set by a nearly-spherical set and hence to exploit the previous step
of the proof. This strategy is similar in spirit to the argument that Christ used in [Chr17]
(see also [FL19,FL21]).

It would be natural to see whether or not the previous result can be further extended to an
L1-neighbourhood of the ball, namely whether (1.9) holds for every set E such that ∆(E) is
small enough. This is indeed usually the case in similar problems where the attractive part of
the energy is given by the perimeter. However, in our case the lack of the regularizing effect
of the perimeter prevents such a possibility. In Section 5 we discuss a necessary condition
for the ball to be an L1-local minimizer; in particular, we show that there are values of the
parameters such that this condition is not satisfied for somem > m∗, so that the result cannot
actually be improved.

Notice that the same question for (1.10) has obviously a negative answer, since the energy
can be made arbitrarily large in any L1-neighbourhood of the ball. Indeed, for every r > 0 the

family of sets E
(r)
k := (B1\Br) ∪ Br(ke1), k ∈ N, obtained by removing a little ball from B1

and sending it to infinity, are such that F(E
(r)
k ) → ∞ as k → ∞, whereas |E(r)

k △B1| ⩽ 2|Br|
can be made arbitrarily small.

Remark 1.2. In the case α = d−2, β = 2, the stability threshold m∗ coincides with the global

minimality threshold mball =
(d−2)

2 ωd computed in [BCT18]. This fact is not surprising, since
for quadratic attraction the functional is strictly convex among densities with zero center of
mass. In the other cases in which the global minimality threshold is known explicitly (d = 3,
α = 1 and β = 3, 4, see [Lop19]) one has instead the strict inequality m∗ < mball: there is
therefore an intermediate regime in which the ball is a local minimizer among perturbations
as those considered in Theorem 1.1, but ceases to be a global minimizer. In these cases, for
m∗ < m < mball the potential of the ball does not satisfy the necessary condition for the
L1-local minimality discussed in Section 5.

In the rest of the paper, it will be convenient to normalize the volume constraint and to
work with sets having the fixed mass |E| = |B1|. By scaling (see the proof of Theorem 1.1
at the end of Section 4) this amounts to introduce a parameter in the functional F : we will
consider for γ > 0 the energy

Fγ(E) :=

∫
E

∫
E

1

|x− y|α
dx dy + γ

∫
E

∫
E
|x− y|β dx dy (1.12)

so that in particular F = F1.

Structure of the paper. In Section 2 we compute the second variation of the energy and
we determine its sign by means of a spherical harmonics expansion. We then show the local
minimality/maximality of the ball among nearly-spherical sets in Section 3, and among more
general perturbations which are close in the Hausdorff distance in Section 4, where the proof
of Theorem 1.1 is completed. In Section 5 we discuss a necessary condition for the L1-local
minimality of the ball in terms of its potential.

2. Stability of the ball

In this section we discuss the volume-constrained stability of the unit ball for the family of
functionals Fγ , γ > 0, see (1.12). In the main result of this section, Theorem 2.7, we obtain
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two explicit thresholds 0 < γ∗∗ < γ∗ < ∞ separating the stability/instability regions for Fγ

and −Fγ .

2.1. First and second variations. We start by recalling the notions of volume-constrained
stationary set and stable set for the energy Fγ . Given a vector field X ∈ C∞

c (Rd;Rd), the

flow {Φt}t induced by X is the map Φ : (t, x) ∈ R × Rd 7→ Φt(x) implicitly defined by the
system of ODE’s {

∂tΦ(t, x) = X(Φ(t, x)),

Φ(0, x) = x,
(2.1)

which is a smooth family of diffeomorphisms for |t| < ε, for some ε > 0. Given a set E ⊂ Rd

with finite volume, we say that X induces a volume-preserving flow on E if |Φt(E)| = |E| for
every t ∈ (−ε, ε).

Given a set E with finite volume and a vector field X ∈ C∞
c (Rd;Rd), we define the first

and second variations of Fγ at E, along the flow {Φt}t induced by X, as

δFγ(E)[X] :=
d

dt
Fγ(Φt(E))

∣∣∣
t=0

, δ2Fγ(E)[X] :=
d2

dt2
Fγ(Φt(E))

∣∣∣
t=0

. (2.2)

We then say that the set E is a volume-constrained stationary set for Fγ if δFγ(E)[X] = 0 for
every vector field X which induces a volume-preserving flow on E, and that E is a volume-
constrained stable set for Fγ if it is stationary and in addition δ2Fγ(E)[X] ⩾ 0 for every
vector field X which induces a volume-preserving flow on E.

Analogous definitions can be of course given for the nonlocal interaction Jσ alone, see
(1.3). The following theorem provides explicit formulas for the first and second variation of
Jσ, for σ ∈ (−d,∞). The result is proved, for instance, in [FFM+15, Theorem 6.1] in the
case σ ∈ (−d, 0), but it is straightforward to check that the proof extends to σ ⩾ 0.

Theorem 2.1 (First and second variation of Jσ). Let σ ∈ (−d,∞), let E ⊂ Rd be an open
and bounded set with C2 boundary, and let X ∈ C∞

c (Rd;Rd). Then, denoting by ζ = X · νE
the normal component of the vector field X on ∂E, one has

δJσ(E)[X] =

∫
∂E
Hσ,∂E(x)ζ(x) dHd−1

x , (2.3)

δ2Jσ(E)[X] = −
∫
∂E

∫
∂E
Kσ(|x− y|)|ζ(x)− ζ(y)|2 dHd−1

x dHd−1
y +

∫
∂E
c2σ,∂Eζ

2 dHd−1

+

∫
∂E
Hσ,∂E

(
(divX)ζ − divτ (ζXτ )

)
dHd−1, (2.4)

where divτ is the tangential divergence on ∂E, Xτ := X − ζνE, and for x ∈ ∂E we define

Hσ,∂E(x) := 2

∫
E
Kσ(|x− y|) dy, c2σ,∂E(x) :=

∫
∂E
Kσ(|x− y|)|νE(x)− νE(y)|2 dHd−1

y . (2.5)

Remark 2.2. Notice that, if E is a volume-constrained stationary set for Jσ and X induces a
volume-preserving flow on E, then the last integral in the formula (2.4) of the second variation
vanishes (see [FFM+15, Remark 6.2]).

Obviously the unit ball B1 is a volume-constrained stationary set for Fγ , sinceHσ,∂B1 is con-

stant on ∂B1 for all σ, and ifX induces a volume-preserving flow on B1 then
∫
∂B1

ζ dHd−1 = 0.
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With the purpose of studying the stability of B1, and in view of (2.4), we introduce the qua-
dratic form

QFγ(u) := −
∫
∂B1

∫
∂B1

|u(x)− u(y)|2

|x− y|α
dHd−1

x dHd−1
y + c2−α,∂B1

∫
∂B1

u2 dHd−1

− γ

∫
∂B1

∫
∂B1

|x− y|β|u(x)− u(y)|2 dHd−1
x dHd−1

y + γc2β,∂B1

∫
∂B1

u2 dHd−1,

(2.6)

so that if X ∈ C∞
c (Rd;Rd) induces a volume-preserving flow, then by Theorem 2.1 and

Remark 2.2 the second variation of Fγ at B1 with respect to X is

δ2Fγ(B1)[X] = QFγ(X · νB1). (2.7)

Remark 2.3. The following expression for the constant c2σ,∂B1
will be useful later on:

c2σ,∂B1
(x) =

(d+ σ)(2d+ σ)

dωd
Jσ(B1), for all x ∈ ∂B1. (2.8)

To prove (2.8), we observe that by using the divergence theorem we have for x ∈ ∂B1

c2σ,∂B1
(x) =

1

dωd

∫
∂B1

∫
∂B1

Kσ(|x− y|)|x− y|2 dHd−1
x dHd−1

y

=
2

dωd

∫
∂B1

∫
∂B1

Kσ(|x− y|)(x− y) · x dHd−1
x dHd−1

y

=
2

dωd

∫
∂B1

∫
B1

divx

(
Kσ(|x− y|)(x− y)

)
dx dHd−1

y

=
2(σ + d)

dωd

∫
∂B1

∫
B1

Kσ(|x− y|) dx dHd−1
y

=
σ + d

dωd

d

dr
Jσ(Br)

∣∣∣
r=1

=
σ + d

dωd

d

dr

(
r2d+σJσ(B1)

)∣∣∣
r=1

=
(d+ σ)(2d+ σ)

dωd
Jσ(B1).

2.2. Decomposition in spherical harmonics. The quadratic form QFγ(u) can be conve-
niently expressed in terms of the Fourier decomposition of u with respect to the orthonormal
basis of spherical harmonics. We denote by Sk the finite dimensional subspace of spherical

harmonics of degree k ∈ N ∪ {0}, and by {Y i
k}

d(k)
i=1 an orthonormal basis (of dimension d(k))

for Sk in L2(∂B1) (see for instance [Gro96]). For u ∈ L2(∂B1), we let

aik(u) :=

∫
∂B1

uY i
k dHd−1 (2.9)

be the Fourier coefficient of u corresponding to Y i
k . We have

∥u∥2L2(∂B1)
=

∞∑
k=0

d(k)∑
i=1

(
aik(u)

)2
. (2.10)

We can also express the seminorm
∫
∂B1

∫
∂B1

Kσ(|x− y|)|u(x)− u(y)|2 dHd−1
x dHd−1

y in terms
of the Fourier coefficients of u, as shown in the following proposition.

Proposition 2.4. For σ > −(d− 1) we have∫
∂B1

∫
∂B1

Kσ(|x− y|)|u(x)− u(y)|2 dHd−1
x dHd−1

y =

∞∑
k=0

d(k)∑
i=1

µk(σ)
(
aik(u)

)2
, (2.11)
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where the sequence (µk(σ))k, for σ ∈ (−(d− 1),∞), is defined as

µk(σ) := (d− 1)ωd−12
d−1+σ Γ

(
d−1+σ

2

)
Γ
(
d−1
2

)
Γ
(
2d−2+σ

2

) [
1−

k−1∏
j=0

j − σ
2

j + d− 1 + σ
2

]
(2.12)

for k ⩾ 1, and µ0(σ) = 0.

Proof. The formula is derived in [FFM+15, (7.5) and (7.12)] in the case σ ∈ (−(d − 1), 0),
and in [Asc22, Lemma 4.3, Corollary 3.6, and Lemma 3.7] in the case σ > 0. □

Remark 2.5. Also in the case σ ∈ (−d,−(d−1)] a representation formula as in Proposition 2.4
holds true, but in this case the expression of the coefficients µk(σ) is different: see [FFM+15,
equations (7.4), (7.6)].

We collect in the following lemma some useful properties of the sequence (µk(σ))k, defined
by (2.12).

Lemma 2.6 (Properties of (µk(σ))k). Let σ > −(d− 1). Then:

(i) If σ < 0, then µk+1(σ) > µk(σ) for all k, and in particular

µk(σ)− µ1(σ) ⩾ µ2(σ)− µ1(σ) = −σµ1(σ)
2d+ σ

> 0 for all k ⩾ 2. (2.13)

(ii) If σ > 0, then max
k⩾1

µk(σ) = µ1(σ) and

µ1(σ)− µk(σ) ⩾ Cd,σ > 0 for all k ⩾ 2, (2.14)

for some constant Cd,σ depending only on d and σ.

Furthermore, the sequence (µk(σ))k is bounded, with

lim
k→∞

µk(σ) = (d− 1)ωd−12
d−1+σ Γ

(
d−1+σ

2

)
Γ
(
d−1
2

)
Γ
(
2d−2+σ

2

) . (2.15)

Finally, one has
µ1(σ) = c2σ,∂B1

(2.16)

where c2σ,∂B1
is the constant in (2.8).

Proof. The behaviour of the sequence (µk)k is studied in detail in [Asc22] for σ > 0 and
in [FFM+15] for σ < 0. We only show for completeness the properties that are not explicitly
proved in those papers.

From the definition (2.12) of µk(σ) and a straightforward calculation one has

µk+1(σ)− µk(σ) = (d− 1)ωd−12
d−1+σ Γ

(
d−1+σ

2

)
Γ
(
d−1
2

)
Γ
(
2d−2+σ

2

) ·
(d− 1 + σ)

∏k−1
j=0(j −

σ
2 )∏k

j=0(j + d− 1 + σ
2 )

,

from which it follows immediately that if σ ∈ (−(d − 1), 0) the sequence µk(σ) is monotone
increasing; equation (2.13) is an immediate consequence. In the case σ > 0, (2.14) is proved
in [Asc22, Proposition 3.8]. The limit value in (2.15) can be easily computed from (2.12) by
observing that

k−1∏
j=0

j − σ
2

j + d− 1 + σ
2

−→ 0 as k → ∞. (2.17)

Finally, formula (2.16) is proved in [Asc22, Lemma 4.4] in the case σ > 0 and in [FFM+15,
Proposition 7.5] in the case σ < 0. □
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2.3. The stability thresholds. In view of (2.10), (2.11), and (2.16), we have that the
quadratic form (2.6) can be expressed in terms of the Fourier coefficients of u ∈ L2(∂B1) as

QFγ(u) =
∞∑
k=0

d(k)∑
i=1

[(
µ1(−α)− µk(−α)

)
+ γ
(
µ1(β)− µk(β)

)](
aik(u)

)2
. (2.18)

In the following theorem, which is the main result of this section, we address the issue of the
stability of the unit ball B1 for the family of functionals Fγ and −Fγ .

Theorem 2.7 (Stability of B1). Let α ∈ (0, d− 1) and β > 0, and let

γ∗ = γ∗(d, α, β) := sup
k⩾2

µk(−α)− µ1(−α)
µ1(β)− µk(β)

, (2.19)

γ∗∗ = γ∗∗(d, α, β) := inf
k⩾2

µk(−α)− µ1(−α)
µ1(β)− µk(β)

. (2.20)

Then 0 < γ∗∗ < γ∗ <∞ and the following holds:

(i) the unit ball is a volume-constrained stable set for Fγ if and only if γ ⩾ γ∗;
(ii) the unit ball is a volume-constrained stable set for −Fγ if and only if γ ⩽ γ∗∗.

Moreover, one has the explicit values

γ∗ =


α(d− α)(2d+ 2 + β)

β(d+ β)(2d+ 2− α)
· J−α(B1)

Jβ(B1)
if β ⩾ β∗,

α(d− α)(2d− α)(d− 1 + β)

β(d+ β)(2d+ β)(d− 1− α)
· J−α(B1)

Jβ(B1)
if β < β∗,

(2.21)

and

γ∗∗ =
α(d− α)

β(d+ β)
· J−α(B1)

Jβ(B1)
, (2.22)

where β∗ is defined in (1.6).

Proof. By (2.7), we have that B1 is a volume-constrained stable set for Fγ if and only if

QFγ(u) ⩾ 0 for every u ∈ C∞(∂B1) with

∫
∂B1

udHd−1 = 0, (2.23)

and similarly B1 is a volume-constrained stable set for −Fγ if and only if

QFγ(u) ⩽ 0 for every u ∈ C∞(∂B1) with

∫
∂B1

udHd−1 = 0. (2.24)

Indeed, the condition (2.23) implies that δ2Fγ(B1)[X] ⩾ 0 for every vector field X inducing

a volume-preserving flow, since for every such vector field it must be
∫
∂B1

X · νB1 dHd−1 = 0.

The converse implication can be proved by arguing as in [FFM+15, Proof of Theorem 7.1].
Hence the goal is to show that (2.23) is equivalent to γ ⩾ γ∗ and that (2.24) is equivalent to

γ ⩽ γ∗∗. This is based on the expression (2.18) of QFγ(u) in terms of the Fourier coefficients

of u. Indeed, notice first that if
∫
∂B1

u dHd−1 = 0, then a10(u) = 0 and therefore the sum in

(2.18) starts from k = 2 (as the term in brackets vanishes identically for k = 1):

QFγ(u) =
∞∑
k=2

d(k)∑
i=1

[(
µ1(−α)− µk(−α)

)
+ γ
(
µ1(β)− µk(β)

)](
aik(u)

)2
(2.25)
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for every u ∈ L2(∂B1) with
∫
∂B1

udHd−1 = 0. In view of (2.25), we have that the condition

(2.23) (which is equivalent to the stability of B1 for Fγ) is satisfied if and only if γ ⩾ γ∗,
whereas the condition (2.24) (which is equivalent to the stability of B1 for −Fγ) is satisfied
if and only if γ ⩽ γ∗∗, where γ∗ and γ∗∗ are defined in (2.19) and (2.20) respectively.

Notice that, in view of the properties listed in Lemma 2.6, we have γ∗, γ∗∗ ∈ (0,+∞). To
complete the proof, it only remains to prove the explicit expression of the thresholds in (2.21)
and (2.22). We postpone the technical proof of this fact to Appendix A, see in particular
Corollary A.2. □

Remark 2.8. In Lemma A.1 we show that the supremum in (2.21) is attained for k = 3 if
β ⩾ β∗, and in the limit as k → ∞ if β < β∗. This suggests that the loss of stability of the
ball is related to a perturbation by the third mode of spherical harmonics in the first case
whereas it is related to fine mixing in the latter case. It would be interesting to perform a
bifurcation analysis to further investigate the symmetry breaking at the stability threshold.

Remark 2.9. In the case γ > γ∗, by using (2.19) and (2.25) we have for every u ∈ L2(∂B1)
with

∫
∂B1

udHd−1 = 0 that

QFγ(u) ⩾
( γ
γ∗

− 1
) ∞∑

k=2

d(k)∑
i=1

[
µk(−α)− µ1(−α)

](
aik(u)

)2
.

Since µk(−α)− µ1(−α) ⩾ Cd,α > 0 for all k ⩾ 2 by (2.13), we conclude that

QFγ(u) ⩾
( γ
γ∗

− 1
)
Cd,α∥u∥2L2(∂B1)

if γ > γ∗. (2.26)

By a similar argument we can show that

QFγ(u) ⩽ −
(
1− γ

γ∗∗

)
Cd,α∥u∥2L2(∂B1)

if γ < γ∗∗. (2.27)

Remark 2.10. We can express the value of Jσ(B1) in terms of the Γ function, and thus get
an explicit value of the thresholds γ∗ and γ∗∗. Indeed, by (2.8), (2.16), and (2.12) we find

Jσ(B1) =
dωd

(d+ σ)(2d+ σ)
µ1(σ)

= 2d+σ d(d− 1)(d− 1 + σ)ωdωd−1

(d+ σ)(2d+ σ)(2d− 2 + σ)

Γ
(
d−1+σ

2

)
Γ
(
d−1
2

)
Γ
(
2d−2+σ

2

) .

(2.28)

Remark 2.11. In the case α ∈ [d− 1, d) one has µk(−α) → +∞ as k → ∞ (see Remark 2.5)
and therefore γ∗ = +∞: the unit ball is never stable for the functional Fγ and, given any
γ > 0, one can always find u ∈ L2(∂B1) such that QFγ(u) < 0. It is worth to recall that in
this case B1 is not even a critical point for the relaxed problem (1.4), see [FL21].

3. A Fuglede-type result for nearly-spherical sets

In this section we prove the local optimality, in a quantitative form, of the unit ball for the
functional Fγ (local minimality in the case γ > γ∗ and local maximality in the case γ < γ∗∗)

among nearly spherical sets, i.e. sets E ⊂ Rd with |E| = |B1|, barycenter at the origin, and
whose boundary can be represented in the form

∂E =
{
(1 + u(x))x : x ∈ ∂B1} (3.1)
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for some u ∈ L∞(∂B1) with ∥u∥L∞(∂B1) ⩽ ε0, for some ε0 > 0 sufficiently small. The main
result of this section is the following.

Theorem 3.1. Let α ∈ (0, d − 1), β > 0, γ > 0. There exist positive constants C0 =
C0(d, α, β), C

′
0 = C ′

0(d, α, β), and ε0 = ε0(d, α, β, γ) with the following property. For ev-
ery nearly-spherical set E ⊂ Rd as in (3.1) with |E| = |B1|, barycenter at the origin, and
∥u∥L∞(∂B1) ⩽ ε0, it holds

Fγ(E)−Fγ(B1) ⩾ C0

( γ
γ∗

− 1
)
∥u∥2L2(∂B1)

⩾ C ′
0

( γ
γ∗

− 1
)
|E△B1|2 if γ > γ∗, (3.2)

Fγ(E)−Fγ(B1) ⩽ −C0

(
1− γ

γ∗∗

)
∥u∥2L2(∂B1)

⩽ −C ′
0

(
1− γ

γ∗∗

)
|E△B1|2 if γ < γ∗∗. (3.3)

Proof. The proof follows the lines of [FFM+15, Lemma 5.3]. Replacing u by tu, we can
consider a generic open set Et ⊂ Rd with |Et| = |B1|, barycenter at the origin, and

∂Et =
{
(1 + tu(x))x : x ∈ ∂B1}, (3.4)

where ∥u∥L∞(∂B1) ⩽
1
2 and t ∈ (0, 2ε0), with ε0 ∈ (0, 18) to be chosen later.

By the same computations as in the proof of [FFM+15, Lemma 5.3] we have that, for every
σ ∈ (−d,∞),

Jσ(Et)− Jσ(B1) =
Jσ(B1)

dωd

(
hσ(t)− hσ(0)

)
− t2

2
gσ(t), (3.5)

where

hσ(t) :=

∫
∂B1

(
1 + tu(x)

)2d+σ
dHd−1

x , (3.6)

gσ(t) :=

∫
∂B1

dHd−1
x

∫
∂B1

dHd−1
y

∫ u(x)

u(y)
dr

∫ u(x)

u(y)
fσ(1 + tr, 1 + tρ, |x− y|) dρ, (3.7)

and

fσ(r, ρ, θ) := rd−1ρd−1Kσ

(
(|r − ρ|2 + rρθ2)

1
2
)
. (3.8)

We now consider separately the two terms on the right-hand side of (3.5).

Estimate on hσ. Observe that the condition |Et| = |B1| yields hσ(0) = dωd = d|Et| =∫
∂B1

(1 + tu)d dHd−1. Therefore,

hσ(t)− hσ(0) =

∫
∂B1

(
1 + tu(x)

)d[(
1 + tu(x)

)d+σ − 1
]
dHd−1

x

= (d+ σ)t

∫
∂B1

udHd−1 +
1

2
(d+ σ)(3d+ σ − 1)t2

∫
∂B1

u2 dHd−1 +Od,σ

(
t3∥u3∥L1(∂B1)

)
,

where |Od,σ(s)| ⩽ Cs for every s ∈ [−1
2 ,

1
2 ], for a constant C depending only on d and σ.

Next, using again the condition |Et| = |B1|, we have

0 =

∫
∂B1

[(
1 + tu(x)

)d − 1
]
dHd−1

x

= dt

∫
∂B1

udHd−1 +
1

2
d(d− 1)t2

∫
∂B1

u2 dHd−1 +Od(t
3∥u3∥L1(∂B1)).
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By combining this identity with the previous one we eventually obtain

hσ(t)− hσ(0) =
t2

2
(d+ σ)(2d+ σ)

∫
∂B1

u2 dHd−1 +Od,σ

(
t3∥u3∥L1(∂B1)

)
. (3.9)

Estimate on gσ. In order to estimate |g′σ(s)|, we compute for r, ρ ∈ [−1
2 ,

1
2 ], θ ∈ (0, 2], and

s ∈ (0, 2ε0)∣∣∣∣ d

ds
fσ(1 + sr, 1 + sρ, θ)

∣∣∣∣ = (1 + sr)d−1(1 + sρ)d−1×

×
∣∣∣∣(d− 1)

(
r

(1 + sr)
+

ρ

(1 + sρ)

)
Kσ

((
s2|r − ρ|2 + (1 + sr)(1 + sρ)θ2

) 1
2
)

+
σ

2

Kσ

((
s2|r − ρ|2 + (1 + sr)(1 + sρ)θ2

) 1
2
)

s2|r − ρ|2 + (1 + sr)(1 + sρ)θ2

[
2s(r − ρ)2 +

(
r(1 + sρ) + ρ(1 + sr)

)
θ2
]∣∣∣∣

⩽ Cd,σKσ

((
s2|r − ρ|2 + (1 + sr)(1 + sρ)θ2

) 1
2
)[
1 +

2s(r − ρ)2

s2|r − ρ|2 + (1 + sr)(1 + sρ)θ2

]
(3.10)

for a uniform constant Cd,σ depending only on d and σ, which in the following might change
from line to line.

Consider first the case σ ∈ (−(d − 1), 0). In this case Kσ is monotone decreasing, hence
from (3.10) we have∣∣∣∣ d

ds
fσ(1 + sr, 1 + sρ, θ)

∣∣∣∣ ⩽ Cd,σKσ(θ)

[
1 +

2s(r − ρ)2

s2|r − ρ|2 + (1 + sr)(1 + sρ)θ2

]
.

Let Cs := {(x, y) ∈ ∂B1×∂B1 : |x− y| ⩾
√
s} and Ds := {(x, y) ∈ ∂B1×∂B1 : |x− y| <

√
s}.

Then

|g′σ(s)| ⩽ Cd,σ

∫
∂B1

∫
∂B1

Kσ(|x− y|)|u(x)− u(y)|2 dHd−1
x dHd−1

y

+ Cd,σ

∫∫
Cs

dHd−1
x dHd−1

y

∫ u(x)∨u(y)

u(x)∧u(y)
dr

∫ u(x)∨u(y)

u(x)∧u(y)

2s(r − ρ)2Kσ(|x− y|)
s2|r − ρ|2 + (1 + sr)(1 + sρ)|x− y|2

dρ

+ Cd,σ

∫∫
Ds

dHd−1
x dHd−1

y

∫ u(x)∨u(y)

u(x)∧u(y)
dr

∫ u(x)∨u(y)

u(x)∧u(y)

2s(r − ρ)2Kσ(|x− y|)
s2|r − ρ|2 + (1 + sr)(1 + sρ)|x− y|2

dρ

⩽ Cd,σ

∫
∂B1

∫
∂B1

Kσ(|x− y|)|u(x)− u(y)|2 dHd−1
x dHd−1

y

+
Cd,σ

s

∫∫
Ds

Kσ(|x− y|)|u(x)− u(y)|2 dHd−1
x dHd−1

y

⩽ Cd,σ

∫
∂B1

∫
∂B1

Kσ(|x− y|)|u(x)− u(y)|2 dHd−1
x dHd−1

y

+
Cd,σ

s

∫
∂B1

(∫
{y∈∂B1 : |y−x|<

√
s}
Kσ(|x− y|) dHd−1

y

)
|u(x)|2 dHd−1

x

= Cd,σ

∫
∂B1

∫
∂B1

Kσ(|x− y|)|u(x)− u(y)|2 dHd−1
x dHd−1

y + Cd,σs
d−1+σ

2
−1∥u∥2L2(∂B1)

, (3.11)

where in the last step we used the fact that σ > −(d− 1).
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Next, we consider the case σ ⩾ 0. In this case Kσ

((
s2|r − ρ|2 + (1 + sr)(1 + sρ)θ2

) 1
2
)

is uniformly bounded in the range of parameters that we consider. Then, arguing as in the
previous case, from (3.10) we deduce that

|g′σ(s)| ⩽ Cd,σ

∫∫
Cs∪Ds

∫ u(x)∨u(y)

u(x)∧u(y)
dr

∫ u(x)∨u(y)

u(x)∧u(y)

[
1 +

2s(r − ρ)2

s2|r − ρ|2 + (1 + sr)(1 + sρ)|x− y|2

]
dρ

⩽ Cd,σ

∫
∂B1

∫
∂B1

|u(x)− u(y)|2 dHd−1
x dHd−1

y

+ Cd,σ

∫∫
Cs

dHd−1
x dHd−1

y

∫ u(x)∨u(y)

u(x)∧u(y)
dr

∫ u(x)∨u(y)

u(x)∧u(y)

2|x− y|2(r − ρ)2

(1 + sr)(1 + sρ)|x− y|2
dρ

+ Cd,σ

∫∫
Ds

dHd−1
x dHd−1

y

∫ u(x)∨u(y)

u(x)∧u(y)
dr

∫ u(x)∨u(y)

u(x)∧u(y)

2s(r − ρ)2

s2|r − ρ|2
dρ

⩽ Cd,σ

∫
∂B1

∫
∂B1

|u(x)− u(y)|2 dHd−1
x dHd−1

y +
Cd,σ

s

∫∫
Ds

|u(x)− u(y)|2 dHd−1
x dHd−1

y

⩽ Cd,σ∥u∥2L2(∂B1)
+
Cd,σ

s

∫
∂B1

(∫
{y∈∂B1 : |y−x|<

√
s}

dHd−1
y

)
|u(x)|2 dHd−1

x

⩽ Cd,σ

(
1 + s

d−1
2

−1
)
∥u∥2L2(∂B1)

. (3.12)

Therefore, from (3.11) and (3.12) we conclude that for every σ > −(d − 1) and for every
t ∈ (0, 2ε0)

gσ(t) = gσ(0) +

∫ t

0
g′σ(s) ds

=

∫
∂B1

∫
∂B1

Kσ(|x− y|)|u(x)− u(y)|2 dHd−1
x dHd−1

y +Rσ(t),

(3.13)

with

|Rσ(t)| ⩽ Cd,σt

∫
∂B1

∫
∂B1

Kσ(|x− y|)|u(x)− u(y)|2 dHd−1
x dHd−1

y

+ Cd,σt∥u∥2L2(∂B1)
+ Cd,σω̃(t)∥u∥2L2(∂B1)

,

(3.14)

and

ω̃(t) :=

{
t
d−1+σ

2 if σ < 0,

t
d−1
2 if σ ⩾ 0.

Conclusion of the proof. By inserting (3.9) and (3.13) into (3.5) we obtain

Jσ(Et)− Jσ(B1) =
t2

2

[
(d+ σ)(2d+ σ)

dωd
Jσ(B1)

∫
∂B1

u2 dHd−1

−
∫
∂B1

∫
∂B1

Kσ(|x− y|)|u(x)− u(y)|2 dHd−1
x dHd−1

y

]
+Od,σ

(
t3∥u3∥L1(∂B1)

)
+ t2Rσ(t),

(3.15)

where Rσ(t) obeys the estimate (3.14).
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Recalling (2.6) and (2.8), in the term in brackets we recognize the quadratic form associated
to the second variation of the functional Jσ. Hence by combining the formula (3.15) in the
two cases σ = −α and σ = β we obtain for the full energy Fγ

Fγ(Et)−Fγ(B1) =
t2

2
QFγ(u) +R(t), (3.16)

with

|R(t)| ⩽ Cd,α,βt
2ω(t)

(∫
∂B1

∫
∂B1

|u(x)− u(y)|2

|x− y|α
dHd−1

x dHd−1
y

+ γ

∫
∂B1

∫
∂B1

|x− y|β|u(x)− u(y)|2 dHd−1
x dHd−1

y + (1 + γ)∥u∥2L2(∂B1)

)
(3.17)

for a uniform constant Cd,α,β depending only on d, α, β, which in the following might change
from line to line, and some modulus of continuity ω(t) → 0 as t→ 0, also uniform in t and u.

To conclude the proof, we rely once again on the spherical harmonic representation of the
previous quantities. Denoting by aik(u) the Fourier coefficients of u as in (2.9), we preliminary
observe that exploiting the condition |Et| = |B1| we have

|a10(u)| =
∣∣∣∣ 1√
dωd

∫
∂B1

udHd−1

∣∣∣∣ ⩽ Cdt∥u∥2L2(∂B1)
, (3.18)

and similarly since the barycenter of Et is at the origin we have
∫
∂B1

(1+ tu)d+1x dHd−1
x = 0,

which yields

|ai1(u)| =
∣∣∣∣ 1
√
ωd

∫
∂B1

uxi dHd−1

∣∣∣∣ ⩽ Cdt∥u∥2L2(∂B1)
for i = 1, . . . , d. (3.19)

We first consider the case γ > γ∗. Using (2.10), (2.11) and (2.18), and inserting them into
(3.16)–(3.17), we obtain

Fγ(Et)−Fγ(B1)

⩾
t2

2

∞∑
k=0

d(k)∑
i=1

[(
µ1(−α)− µk(−α)

)
+ γ
(
µ1(β)− µk(β)

)](
aik(u)

)2
− Cd,α,βt

2ω(t)

∞∑
k=0

d(k)∑
i=1

[
µk(−α) + γµk(β) + (1 + γ)

](
aik(u)

)2
⩾
t2

2

(
1 + Cd,α,βω(t)

) ∞∑
k=0

d(k)∑
i=1

[(
µ1(−α)− µk(−α)

)
+ γ
(
µ1(β)− µk(β)

)](
aik(u)

)2
− Cd,α,βt

2ω(t)
[
µ1(−α) + γµ1(β) + (1 + γ)

]
∥u∥2L2(∂B1)

.

Recalling that µ0(−α) = µ0(β) = 0 and in view of the expression (2.19) of γ∗, we then obtain

Fγ(Et)−Fγ(B1) ⩾
t2

2

(
1 + Cd,α,βω(t)

)( γ
γ∗

− 1
) ∞∑

k=2

d(k)∑
i=1

[
µk(−α)− µ1(−α)

](
aik(u)

)2
− Cd,α,βt

2ω(t)
[
µ1(−α) + γµ1(β) + 1 + γ

]
∥u∥2L2(∂B1)

.
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By Lemma 2.6, µk(−α)− µ1(−α) ⩾ Cd,αµ1(−α) for all k ⩾ 2 with Cd,α > 0, hence

Fγ(Et)−Fγ(B1)

⩾
t2

2

(
1 + Cd,α,βω(t)

)( γ
γ∗

− 1
)
Cd,αµ1(−α)

∞∑
k=2

(
aik(u)

)2
− Cd,α,βt

2ω(t)
[
µ1(−α) + γµ1(β) + 1 + γ

]
∥u∥2L2(∂B1)

=
t2

2

(
1 + Cd,α,βω(t)

)( γ
γ∗

− 1
)
Cd,αµ1(−α)

(
∥u∥2L2(∂B1)

− |a10(u)|2 −
d∑

i=1

|ai1(u)|2
)

− Cd,α,βt
2ω(t)

[
µ1(−α) + γµ1(β) + 1 + γ

]
∥u∥2L2(∂B1)

.

Thanks to (3.18) and (3.19), and recalling that ω(t) → 0 as t→ 0, it is now easy to conclude
that (3.2) holds in the case γ > γ∗ provided that we choose ε0 small enough.

The argument in the case γ < γ∗∗ is very similar and we will only sketch here the main
differences with the previous one. Starting once again from (3.16)–(3.17) and using the
spherical harmonics representation we have

Fγ(Et)−Fγ(B1) ⩽
t2

2

∞∑
k=0

d(k)∑
i=1

[(
µ1(−α)− µk(−α)

)
+ γ
(
µ1(β)− µk(β)

)](
aik(u)

)2
+ Cd,α,βt

2ω(t)
∞∑
k=0

d(k)∑
i=1

[
µk(−α) + γµk(β) + (1 + γ)

](
aik(u)

)2
.

By similar computations as before and using the representation (2.20) of γ∗∗ we then find

Fγ(Et)−Fγ(B1) ⩽
t2

2

(
1− Cd,α,βω(t)

)(
1− γ

γ∗∗

) ∞∑
k=2

d(k)∑
i=1

[
µ1(−α)− µk(−α)

](
aik(u)

)2
+ Cd,α,βt

2ω(t)
[
µ1(−α) + γµ1(β) + 1 + γ

]
∥u∥2L2(∂B1)

,

and eventually, using µk(−α) − µ1(−α) ⩾ Cd,αµ1(−α), (3.18), and (3.19), we conclude as
before that (3.3) holds. □

4. Local optimality of the ball

Having showed the local optimality of the ball among nearly-spherical sets in Theorem 3.1,
the next step consists in proving that B1 is a local minimizer (resp. maximizer) of Fγ , for

γ > γ∗ (resp. γ < γ∗∗), among all measurable sets E ⊂ Rd with |E| = |B1| and whose
boundary is uniformly close to the boundary of the ball, in the sense that they satisfy the
inclusions

B1−ε1(x0) ⊂ E ⊂ B1+ε1(x0) (4.1)

for some x0 ∈ Rd and ε1 > 0 sufficiently small. More precisely, we will prove the following
result.

Theorem 4.1. Let α ∈ (0, d − 1), β > 0, γ > 0. Then, there exist C1 > 0 and ε1 > 0
(depending only on d, α, β, γ) such that

Fγ(E)−Fγ(B1) ⩾ C1(∆(E))2 if γ > γ∗, (4.2)
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Fγ(E)−Fγ(B1) ⩽ −C1(∆(E))2 if γ < γ∗∗, (4.3)

for every measurable set E ⊂ Rd with |E| = |B1| and satisfying (4.1) for some x0 ∈ Rd, where
∆(E) denotes the asymmetry defined in (1.11).

For the proof, we need to pass from the optimality of the ball among nearly-spherical
sets, proved in Theorem 3.1, to the larger class of sets uniformly close to the ball. The
proof follows the construction in [FP20, Proposition 2.10], where the same strategy is used
to prove the quantitative maximality of the ball for the Riesz energy E 7→

∫
E

∫
E

1
|x−y|α (see

also [Asc22, Proposition 5.12], where the same is done for the attractive term
∫
E

∫
E |x− y|β).

The proof is based on a transport argument and on estimates on the variation of the energy
which are strongly dependent on the monotonicity of the potential of the ball (defined in
(4.4) below). The combination of the two energies destroys the global monotonicity of the
potential; however, what is actually needed is just the strict monotonicity in a neighbourhood
of ∂B1, which is still true in the case γ ∈ (0, γ∗∗) ∪ (γ∗,∞), as Lemma 4.2 below shows. In
view of this property, the proof of Theorem 4.1 is almost identical to that in [FP20,Asc22].

Lemma 4.2. Let α ∈ (0, d − 1), β > 0, γ > 0, and define the potential of the unit ball as
the function

ψ(x) :=

∫
B1

dy

|x− y|α
+ γ

∫
B1

|x− y|β dy. (4.4)

Then ψ is a radial function of class C1 and, writing with abuse of notation ψ(x) = ψ(|x|),

ψ′(1) > 0 if γ > γ∗, (4.5)

ψ′(1) < 0 if γ < γ∗∗. (4.6)

Proof. The C1-regularity of the first term in (4.4) is standard and is proved, for instance,
in [BC14, Proposition 2.1] (notice that here the assumption α < d − 1 is essential); the
regularity of the second term is straightforward.

We now express the quadratic formQFγ associated to the second variation of the functional,
see (2.6), in terms of the derivative of ψ. Recalling (2.5) we have for all u ∈ L2(∂B1)

QFγ(u) = −
∫
∂B1

∫
∂B1

(
1

|x− y|α
+ γ|x− y|β

)
|u(x)− u(y)|2 dHd−1

x dHd−1
y

+

∫
∂B1

(∫
∂B1

(
1

|x− y|α
+ γ|x− y|β

)
|x− y|2 dHd−1

y

)
(u(x))2 dHd−1

x

= 2

∫
∂B1

∫
∂B1

(
1

|x− y|α
+ γ|x− y|β

)
u(x)u(y) dHd−1

x dHd−1
y

− 2

∫
∂B1

(∫
∂B1

(
1

|x− y|α
+ γ|x− y|β

)
x · y dHd−1

y

)
(u(x))2 dHd−1

x .

Observing now that for x ∈ ∂B1, by the divergence theorem∫
∂B1

(
1

|x− y|α
+ γ|x− y|β

)
x · y dHd−1

y =

∫
B1

∇y

(
1

|x− y|α
+ γ|x− y|β

)
· x dy

= −
∫
B1

∇x

(
1

|x− y|α
+ γ|x− y|β

)
· x dy
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= −∇ψ(x) · x = −ψ′(1),

we obtain

QFγ(u) = 2ψ′(1)∥u∥2L2(∂B1)
+2

∫
∂B1

∫
∂B1

(
1

|x− y|α
+γ|x−y|β

)
u(x)u(y) dHd−1

x dHd−1
y . (4.7)

By standard arguments, it is possible to construct a sequence (un)n∈N ⊂ L∞(∂B1) such
that

∫
∂B1

un dHd−1 = 0, ∥un∥L2(∂B1) = 1, and

lim
n→∞

∫
∂B1

∫
∂B1

(
1

|x− y|α
+ γ|x− y|β

)
un(x)un(y) dHd−1

x dHd−1
y = 0.

In view of this property, the conclusion of the lemma follows by (4.7) and by the quadratic
bounds (2.26)–(2.27). □

Remark 4.3. The unit ball B1 is a critical point for the relaxed problem (1.4) provided

ψ(r1) ⩽ ψ(1) ⩽ ψ(r2) for r1 < 1 < r2. (4.8)

When α ∈ (0, d − 1), for large γ, the attractive part dominates and ψ′(1) > 0 as shown
above, suggesting that (4.8) holds. This is indeed proved in [FL21, Lemma 3.1]. In the case
α ∈ [d− 1, d), instead, the derivative of the potential of the repulsive term blows up near the
boundary of B1. Due to this fact, no matter how large γ is the potential ψ has the opposite
monotonicity than required by (4.8), and therefore the ball is never a critical point of (1.4)
(see [FL21, Remark 3.2] for details).

Thanks to the local strict monotonicity of ψ in a neighbourhood of ∂B1 proved in Lemma 4.2,
the proof of Theorem 4.1 follows by repeating line by line the argument in [FP20]. We just
sketch here the general strategy discussing only the modifications needed in our setting.

Lemma 4.4. There exist c̃ > 0 and ε̃ > 0 (depending on d, α ∈ (0, d − 1), β > 0, γ > 0)
with the following property. For every ε ∈ (0, ε̃) and for every measurable set E ⊂ Rd with
|E| = |B1| and B1−ε(z) ⊂ E ⊂ B1+ε(z), z ∈ Rd, there exist functions u± : ∂B1 → [0, ε) such
that the set

E1 :=
{
z + tx : x ∈ ∂B1, t ∈ [0, 1− u−(x)) ∪ (1, 1 + u+(x))

}
satisfies |E1| = |B1| and

Fγ(E1) ⩽ Fγ(E) if γ > γ∗, (4.9)

Fγ(E1) ⩾ Fγ(E) if γ < γ∗∗. (4.10)

Furthermore, either

∆(E1) ⩾
1

2
∆(E), (4.11)

or

Fγ(E)−Fγ(E1) ⩾ c̃∆(E)2 if γ > γ∗, (4.12)

Fγ(E1)−Fγ(E) ⩾ c̃∆(E)2 if γ < γ∗∗. (4.13)
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Proof (sketch). The construction of the set E1 is the same as in [FP20, Lemma 2.11], [Asc22,
Lemma 5.11], and it is straightforward to check that the same proof can be reproduced in our
setting with minor changes.

In particular, by using Lemma 4.2 we deduce that there exists ε̃ > 0 such that inf{ψ′(r) :
r ∈ (1 − ε̃, 1 + ε̃)} > 0 if γ > γ∗, and sup{ψ′(r) : r ∈ (1 − ε̃, 1 + ε̃)} < 0 if γ < γ∗∗. This is
what is needed to obtain the estimate [FP20, (2.30)] (in the case γ < γ∗∗, whereas in the case
γ > γ∗ one has the opposite inequality).

Moreover, the bounds [FP20, (2.29)] are valid also in our setting, using [FP20, Lemma 2.4]
and [Asc22, Lemma 5.5]. □

Proof of Theorem 4.1 (sketch). Fix ε < ε̃, where ε̃ is given by Lemma 4.4 (later in the proof
we will posssibly reduce the value of ε). Let E ⊂ Rd with |E| = |B1| satisfy

B1−ε2(x0) ⊂ E ⊂ B1+ε2(x0)

(without loss of generality we assume x0 = 0).
Fix now any z ∈ Rd with |z| < ε

2 . We have that B1−ε(z) ⊂ E ⊂ B1+ε(z) with ε < ε̃, and
we can therefore construct the set E1 = E1(z) using Lemma 4.4. We want to further modify
E1 in order to obtain a nearly-spherical set, so that we can exploit the result in Theorem 3.1.
We also fix a small number η > 0, and we divide the construction into three steps.

Step 1: replace u± by locally constant functions. By approximation, we can find two new
functions ũ± : ∂B1 → [0, ε̃) as close as we want to u± in L∞(∂B1), such that ∂B1 can be
decomposed as a disjoint union of finitely many measurable sets ∂B1 =

⋃
i Ui, ũ

± ≡ u±i is

constant on each Ui, and diam(Ui) ⩽ min{u+i , u
−
i } for each i such that min{u+i , u

−
i } > 0.

Moreover, by defining the set E2 = E2(z) as

E2 :=
{
z + tx : x ∈ ∂B1, t ∈ [0, 1− ũ−(x)) ∪ (1, 1 + ũ+(x))

}
,

we can guarantee that |E2| = |B1|,

∆(E2) ⩾
1

3
∆(E1), Fγ(E1)− η ⩽ Fγ(E2) ⩽ Fγ(E1) + η. (4.14)

Step 2: construction of the nearly-spherical set. We next define a function u : ∂B1 → (−ε, ε)
on each set Ui as follows. If min{u+i , u

−
i } = 0, we set u := u+i if u−i = 0, and u := −u−i if

u+i = 0. If instead min{u+i , u
−
i } > 0, we write Ui as the disjoint union of two sets Li, Ri such

that Hd−1(Li)(1− (1− u−i )
d) = Hd−1(Ri)((1 + u+i )

d − 1) and we define u := χLiu
+
i − χRiu

−
i

on Ui = Li ∪Ri.
We then let E3 = E3(z) be the nearly-spherical set around B1(z) corresponding to u,

according to (3.1). Then by construction |E3| = |B1| and, arguing as in the proof of [FP20,
Proposition 2.10] (see also [Asc22, Proposition 5.12])

|E3△B1(z)| ⩾
1

2
|E2△B1(z)| ⩾

1

2
∆(E2)

(4.14)

⩾
1

6
∆(E1), (4.15)

and (by possibly reducing the value of ε)

Fγ(E3)−Fγ(E2) ⩽ 0 if γ > γ∗, (4.16)

Fγ(E3)−Fγ(E2) ⩾ 0 if γ < γ∗∗. (4.17)

Step 3: adjustment of the barycenter. The sets E1(z), E2(z), E3(z) constructed in the previous
steps depend continuously on z ∈ Bε/2. In order to apply Theorem 3.1, we need a final
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modification of the set E3 so that its barycenter coincides with z. This can be done as
in [FP20, Lemma 2.13 and Lemma 2.14]: by the same argument, it is possible to find z with
|z| < ε

2 such that the barycenter of E3(z) is z itself.

Conclusion of the proof. Summing up what we have done so far, choosing ε1 = ε2 and
starting from a set E satisfying (4.1) (without loss of generality x0 = 0) we have consecutively
constructed three sets E1, E2, E3, with E3 nearly-spherical around a ball B1(z) and with
barycenter at the point z. In particular, Theorem 3.1 applies to E3 − z.

Let us conclude the proof by showing (4.2) in the case γ > γ∗. We distinguish two cases:
in the first case, the set E1 (constructed by Lemma 4.4) satisfies (4.11). Then

Fγ(E)−Fγ(B1)
(4.9)

⩾ Fγ(E1)−Fγ(B1)
(4.14)

⩾ Fγ(E2)−Fγ(B1)− η

(4.16)

⩾ Fγ(E3)−Fγ(B1)− η
(3.2)

⩾ C ′
0

( γ
γ∗

− 1
)
|E3△B1(z)|2 − η

(4.15)

⩾
C ′
0

36

( γ
γ∗

− 1
)
∆(E1)

2 − η
(4.11)

⩾
C ′
0

144

( γ
γ∗

− 1
)
∆(E)2 − η.

Since η > 0 is arbitrary, we obtain (4.2). If instead the set E1 does not satisfy (4.11), then
(4.12) holds. In this case

Fγ(E)−Fγ(B1)
(4.12)

⩾ Fγ(E1)−Fγ(B1) + c̃∆(E)2

(4.14)

⩾ Fγ(E2)−Fγ(B1)− η + c̃∆(E)2

(4.16)

⩾ Fγ(E3)−Fγ(B1)− η + c̃∆(E)2

(3.2)

⩾ −η + c̃∆(E)2,

and again we obtain (4.2) since η > 0 is arbitrary. This completes the proof of (4.2); the
proof of (4.3) is completely analogous, using the corresponding estimates valid in the case
γ < γ∗∗. □

Proof of Theorem 1.1. By scaling, if |E| = m then the set Ẽ :=
(
ωd
m

)1/d
E satisfies |Ẽ| = |B1|

and

F1(E) =
(m
ωd

)2−α
d Fγ(Ẽ) with γ :=

(m
ωd

)α+β
d
.

In view of this identity the theorem follows by Theorem 2.7 and Theorem 4.1. □

5. A necessary condition for L1-local minimality

A natural question is whether the stability of the ball for γ > γ∗ implies its local minimality
among small L1-perturbations, that is whether Fγ(E) > Fγ(B1) for all measurable set E ⊂ Rd

such that |E| = |B1| and ∆(E) is sufficiently small.
An argument by Frank and Lieb [FL21] allows to pass from sets with small asymmetry to

sets which are uniformly close to the ball (in the sense of (1.8)), and this idea is crucial in
their proof of the global minimality of the ball for large γ. A similar argument is also used
by Fusco and Pratelli [FP20] for their proof of the quantitative Riesz inequality. However,
both arguments are based on the global monotonicity of the potential ψ of the unit ball (see
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(4.4)), which is valid only in the asymptotic regime γ ≫ 1 and is not necessarily true for all
γ > γ∗.

Notice that, for γ < γ∗∗, it is never possible to extend the local maximality of the ball to
an L1-neighbourhood, as observed in the Introduction.

The following proposition gives a necessary condition for the unit ball to be an L1-local
minimizer in terms of its potential ψ. In Remark 5.2 we show that there are values of the
parameters α and β such that this necessary condition is not satisfied for some γ > γ∗: hence,
in these cases the unit ball is a stable set, but is not a local minimizer with respect to the
L1-topology.

Proposition 5.1. Let ψ be the potential of the unit ball, defined in (4.4). Assume that there
exists r ∈ (0, 1) such that ψ(r) > ψ(1), or that there exists R > 1 such that ψ(R) < ψ(1).
Then for every δ > 0 there exists a set E ⊂ Rd such that |E| = |B1|, |E△B1| < δ, and
Fγ(E) < Fγ(B1). In particular, B1 is not an L1-local minimizer.

Proof. Assume that ψ(r) > ψ(1) for some r ∈ (0, 1). Then we can find η > 0 and ε1, ε2 > 0
(with ε1 + ε2 < 1− r) such that

min
|ρ−r|⩽ε1

ψ(ρ) ⩾ max
|ρ−1|⩽ε2

ψ(ρ) + η. (5.1)

Obviously, we only need to prove the statement for all δ sufficiently small. Let δ > 0 be
such that δ < min{ε1, ε22 } and consider the two balls D1 := Bδ(re1), D2 := Bδ((1 + δ)e1).
Notice that D1 ⊂ B1 and D2 ∩B1 = ∅, and that r − ε1 < |x| < r + ε1 for every x ∈ D1, and
1 < |y| < 1 + ε2 for every y ∈ D2.

We claim that the set E := (B1\D1)∪D2 satisfies the conditions in the statement. Indeed,
clearly |E| = |B1| and |E△B1| = 2|Bδ|. Moreover, denoting by

I(F,G) :=
∫
F

∫
G

(
1

|x− y|α
+ γ|x− y|β

)
dx dy, I(F ) := I(F, F ),

we have that

Fγ(E)−Fγ(B1) = I(B1\D1) + I(D2) + 2I(B1\D1, D2)− I(B1)

= I(B1)− I(D1)− 2I(B1\D1, D1) + I(D2) + 2I(B1\D1, D2)− I(B1)

= 2I(B1\D1, D2)− 2I(B1\D1, D1)

= 2I(B1, D2)− 2I(B1, D1)− 2I(D1, D2) + 2I(D1).

Observe now that I(D1, D2) ⩾ 0 and that I(D1) ⩽ C(d, α, β)δ2d−α by a simple scaling
argument. Then

Fγ(E)−Fγ(B1) ⩽ 2

∫
D2

ψ(x) dx− 2

∫
D1

ψ(x) dx+ 2C(d, α, β)δ2d−α

⩽ 2
(
max
D2

ψ −min
D1

ψ
)
|Bδ|+ 2C(d, α, β)δ2d−α

(5.1)

⩽ −2η|Bδ|+ 2C(d, α, β)δ2d−α.

Since 2d− α > d, we conclude that Fγ(E)−Fγ(B1) < 0 if δ is small enough.
The proof in the case ψ(R) < ψ(1) for some R > 1 follows a similar construction. Indeed,

in this case we can find η > 0 and ε1, ε2 > 0 such that

max
|ρ−R|⩽ε1

ψ(ρ) ⩽ min
|ρ−1|⩽ε2

ψ(ρ)− η,
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Figure 1. Numerical plot of the potential ψ of the unit ball, defined in (4.4),
in the case d = 3, α = 1, β = 4 and γ = 1

7 . Notice that this value of γ is larger

than the stability threshold γ∗ = 1
8 (see Remark 5.2) and that the potential

does not satisfy the necessary condition in Proposition 5.1.

and construct the competitor as E := (B1\Bδ((1 − δ)e1)) ∪ Bδ(Re1). The details are left to
the reader. □

Remark 5.2. In the case d = 3, α = 1, β = 4, the computation in [Lop19] shows that the
unit ball is a global minimizer for Fγ if and only if γ ⩾ γball =

1
6 , and that for γ < γball

the necessary condition in Proposition 5.1 is not satisfied (see Figure 1 for a numerical plot
of the potential ψ in this case). For these values of the parameters the stability threshold is
γ∗ = 1

8 < γball. Therefore for γ ∈ (γ∗, γball) = (18 ,
1
6) the ball is stable but is not an L1-local

minimizer. A similar explicit computation can be made in the case d = 3, α = 1, β = 3.

Appendix A. Explicit values of the stability thresholds

Here we complete the proof of Theorem 2.7 by computing the values of the constants γ∗
and γ∗∗, defined in (2.19) and (2.20) respectively, and showing that the identities (2.21) and
(2.22) hold.

From the definition (2.12) of µk(σ) and a straightforward computation, we can write for
all k ⩾ 2

µk(−α)− µ1(−α)
µ1(β)− µk(β)

= κ(d, α, β)Xk, (A.1)

where

Xk :=

1−
k−1∏
j=1

(
j + α

2

)(
j + 2d−2−α

2

)
1−

k−1∏
j=1

(
j − β

2

)
(
j + 2d−2+β

2

)
(A.2)

and

κ(d, α, β) := 2−(α+β) · α(2d− 2 + β)

β(2d− 2− α)
·
Γ
(
d−1−α

2

)
Γ
(2d−2+β

2

)
Γ
(d−1+β

2

)
Γ
(
2d−2−α

2

) > 0. (A.3)
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Figure 2. Numerical plot of the first points of sequence (Xk)k⩾2, defined in
(A.2), for two different values of β, for the choice of parameters d = 3 and
α = 1 (for which β∗ = 22). Left: the case β < β∗ (β = 5). Right: the case
β > β∗ (β = 155).

Hence to determine the value of the constants γ∗ and γ∗∗ we need to study the behaviour
of the sequence (Xk)k⩾2, and in particular to compute its supremum and its infimum. The
following analysis is similar to the one in [FFM+15, Appendix C].

Lemma A.1. We have that

inf
k⩾2

Xk = X2, sup
k⩾2

Xk =

{
X3 if β ⩾ β∗(d, α),

lim
k→∞

Xk = 1 if β < β∗(d, α),
(A.4)

where β∗(d, α) is the constant defined in (1.6).

Proof. We start with a few observations. First notice that, thanks to (2.17), it is immediate
to check that limk→∞Xk = 1. Following [FFM+15], we introduce some notation to simplify
the computations below. We set

ℓ :=
d− 1

2
, t := ℓ− α

2
, τ := ℓ+

β

2

(notice that 0 < t < τ). We also define, for k ⩾ 2,

ak :=
k−1∏
j=1

(j + ℓ− t), bk :=
k−1∏
j=1

(j + ℓ+ t), ck :=
k−1∏
j=1

(j + ℓ− τ), dk :=
k−1∏
j=1

(j + ℓ+ τ).

With these positions, we have

Xk =
1− ak

bk

1− ck
dk

. (A.5)

We are now ready to prove the properties in the statement.

Step 1. We show that infk⩾2Xk = X2. Suppose first that 0 < β < 2, and note that in this

case ck =
∏k−1

j=1

(
j − β

2

)
> 0 for all k ⩾ 2.

Hence, by a simple calculation, we observe that X2 < Xk is equivalent to

(ãkd̃k − b̃k c̃k)tτ + (1 + ℓ)
[
(̃bk − ãk)d̃kτ − (d̃k − c̃k )̃bkt

]
> 0,
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where ãk := ak
a2
, b̃k := bk

b2
, c̃k := ck

c2
, and d̃k := dk

d2
. Therefore, to obtain X2 < Xk it suffices to

show

ãkd̃k − b̃k c̃k > 0 for all k ⩾ 3, (A.6)

(̃bk − ãk)d̃kτ − (d̃k − c̃k )̃bkt > 0 for all k ⩾ 3. (A.7)

To prove (A.6), note that

(j + ℓ− t)(j + ℓ+ τ)− (j + ℓ+ t)(j + ℓ− τ) = 2(j + ℓ)(τ − t) > 0.

Since β < 2 by assumption, j + ℓ− τ > 0 for all j = 2, . . . , k − 1; hence,

ãkd̃k =

k−1∏
j=2

(j + ℓ− t)(j + ℓ+ τ) >

k−1∏
j=2

(j + ℓ+ t)(j + ℓ− τ) = b̃k c̃k.

We prove (A.7) by induction. For k = 3 an explicit calculation yields

(̃b3 − ã3)d̃3τ − (d̃3 − c̃3)̃b3t = 2tτ(τ − t) > 0.

Now assume that (A.7) holds for some k. Then, by a straightforward computation and by
noting that t < τ , we have

(̃bk+1 − ãk+1)d̃k+1τ − (d̃k+1 − c̃k+1)̃bk+1t = 2tτ b̃kd̃k(k + ℓ+ τ)− 2tτ b̃kd̃k(k + ℓ+ t)

+ (k + ℓ− t)(k + ℓ+ τ)(̃bk − ãk)d̃kτ

− (k + ℓ− τ)(k + ℓ+ t)(d̃k − c̃k )̃bkt

(A.7)

⩾ 2(k + ℓ)(τ − t)(d̃k − c̃k )̃bkt > 0,

and (A.7) follows by induction. This completes the proof of the claim in the case 0 < β < 2.
Now suppose β ⩾ 2, and consider

Xk

X2
=

1− ak
bk

1− a2
b2

1− c2
d2

1− ck
dk

.

Note that
k−1∏
j=2

(j + ℓ+ t) >

k−1∏
j=2

(j + ℓ− t) ⇐⇒
1− ak

bk

1− a2
b2

> 1,

and the inequality on the left-hand side hold trivially since all factors are positive. On the
other hand,

1 + ℓ− τ

1 + ℓ+ τ
⩽

k−1∏
j=1

j + ℓ− τ

j + ℓ+ τ
⇐⇒

1− c2
d2

1− ck
dk

⩾ 1.

The inequality on the left-hand side holds since we have that
∏k−1

j=2
j+ℓ−τ
j+ℓ+τ ⩽ 1, and τ ⩾ 1 + ℓ

thanks to the assumption β ⩾ 2. Therefore Xk > X2 for any k ⩾ 3.

Step 2. To complete the proof it remains to determine the supremum of the sequence (Xk)k⩾2.
We preliminary observe that, by (A.5), the condition Xk < 1 is equivalent to

(bk − ak)dk − (dk − ck)bk
(dk − ck)bk

< 0.
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Since bk > 0 and dk − ck > 0 for every k, as it is easy to check, we obtain the equivalence of
the two conditions

Xk < 1 ⇐⇒ akdk − bkck > 0. (A.8)

In particular, we can compare the value of X3 with 1, which is the limit value of the sequence
as k → ∞. By a straightforward calculation one can check that

X3 < 1 ⇐⇒ a3d3 − b3c3 > 0 ⇐⇒ 2 + 3ℓ+ ℓ2 − tτ > 0 ⇐⇒ β < β∗ (A.9)

where β∗ = β∗(d, α) is the constant defined in (1.6). This computation also explains the role of
the constant β∗: it is the unique value of β, for given d and α, such that X3 = 1 = limk→∞Xk.

We first consider the case β < β∗ and we prove that in this case the supremum of the
sequence (Xk)k is exactly 1, that is the limit value as k → ∞. More precisely, we claim that

if β < β∗, then Xk < 1 for all k ⩾ 3. (A.10)

Recalling (A.8), we will obtain the proof of the claim by showing that

|bkck| ⩽ akdk for all k ⩾ 3. (A.11)

We prove this inequality by induction. For k = 3 we have b3c3 < a3d3 since we are assuming
β < β∗ (recall (A.9)). On the other hand, we need to show that b3c3 + a3d3 > 0. We have by
definition

b3c3 + a3d3 = (1 + ℓ+ t)(2 + ℓ+ t)(1− β
2 )(2−

β
2 ) + (1 + α

2 )(2 +
α
2 )(1 + ℓ+ τ)(2 + ℓ+ τ).

From this expression, it is clear that if β ⩽ 2 or β ⩾ 4 both terms are positive (or zero) and
we obtain b3c3 + a3d3 > 0, as desired. If 2 < β < 4, the first term is negative, however the
sum of the two terms is positive, as

0 < (1 + ℓ+ t)(2 + ℓ+ t) < (1 + ℓ+ τ)(2 + ℓ+ τ), |(1− β
2 )(2−

β
2 )| < 1 < (1 + α

2 )(2 +
α
2 ).

We next prove the induction step. Suppose that the inequality (A.11) holds for some k ⩾ 3,
and let us prove it for k + 1. We have

bk+1ck+1 = bkck(k + ℓ+ t)(k + ℓ− τ), ak+1dk+1 = akdk(k + ℓ− t)(k + ℓ+ τ).

By the inductive step |bkck| < |akdk|, therefore in view of the previous identities it is enough
to show that

|(k + ℓ+ t)(k + ℓ− τ)| < (k + ℓ− t)(k + ℓ+ τ).

This can be checked directly: indeed (k + ℓ + t)(k + ℓ − τ) − (k + ℓ − t)(k + ℓ + τ) =
−2(k + ℓ)(τ − t) < 0, and on the other hand (k + ℓ+ t)(k + ℓ− τ) + (k + ℓ− t)(k + ℓ+ τ) =
2(k2 + 2kℓ+ ℓ2 − tτ) > 2(3 + 2ℓ+ ℓ2 − tτ) > 0 by (A.9). This completes the proof of (A.10).

Step 3. We finally determine the supremum of the sequence (Xk)k in the case β ⩾ β∗, and
we show that it is attained for k = 3: we claim that

if β ⩾ β∗, then Xk ⩽ X3 for all k ⩾ 4. (A.12)

We first prove (A.12) for k even, by showing that Xk ⩽ 1 for all k even. By (A.8)
we have that Xk ⩽ 1 if and only if ck

dk
⩽ ak

bk
, which can be written as hk(τ) ⩽ hk(t) for

hk(x) :=
∏k−1

j=1
j+ℓ−x
j+ℓ+x . Since t ∈ (0, ℓ) and τ ∈ (ℓ,∞), we obtain that Xk ⩽ 1 for k even, if we

show that

sup
x∈(ℓ,∞)

hk(x) ⩽ inf
x∈(0,ℓ)

hk(x) for all k even. (A.13)
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By differentiating it is easy to see that hk is decreasing in (0, ℓ + 1). Moreover, hk(x) < 0
for all x > ℓ + k − 1 and k even, since in this case hk(x) is the product of an odd number
of negative terms. It follows by the previous properties that hk(x) < hk(y) for all x ∈
(ℓ, ℓ+1]∪ [ℓ+k−1,∞) and y ∈ (0, ℓ). Then to complete the proof of (A.13), bearing in mind
the monotonicity of hk, it is enough to show that hk(ℓ) > hk(x) for all x ∈ (ℓ+ 1, ℓ+ k − 1),
which is equivalent to

k−1∏
j=1

j

j + 2ℓ
>

k−1∏
j=1

j + ℓ− x

j + ℓ+ x
for all x ∈ (ℓ+ 1, ℓ+ k − 1). (A.14)

Let r ∈ {1, . . . , k− 2} be such that x ∈ [ℓ+ r, ℓ+ r+1): then by reordering the terms on the
left-hand side we can write (A.14) as(

r∏
j=1

r − j + 1

r − j + 1 + 2ℓ

)(
k−1∏

j=r+1

j

j + 2ℓ

)
>

(
r∏

j=1

j + ℓ− x

j + ℓ+ x

)(
k−1∏

j=r+1

j + ℓ− x

j + ℓ+ x

)
.

By the condition x ∈ [ℓ + r, ℓ + r + 1) it is now easily checked that | j+ℓ−x
j+ℓ+x | ⩽

r−j+1
r−j+1+2ℓ for

all j ∈ {1, . . . , r}, and | j+ℓ−x
j+ℓ+x | ⩽

j
j+2ℓ for all j ∈ {r + 1, . . . , k − 1}. Hence every term in the

product on the right-hand side is, in absolute value, smaller than the corresponding term in
the product on the left-hand side. This proves (A.14) and completes the proof of the fact
that Xk ⩽ 1 for all k ⩾ 4 even. Since X3 ⩾ 1 (by the assumption β ⩾ β∗) this proves (A.12)
in the case k even.

Eventually, we prove (A.12) in the case k odd. By (A.5) and a simple calculation, the
condition Xk ⩽ X3 is equivalent to

ck
dk
d3t−

ak
bk
b3τ + (2 + 3ℓ+ ℓ2 − tτ)(τ − t) ⩽ 0.

Letting σk := ck
dk
d3t− ak

bk
b3τ and η := −(2 + 3ℓ+ ℓ2 − tτ)(τ − t), we need to show that

σk ⩽ η for all k ⩾ 3 odd. (A.15)

Notice that σ3 = η and limk→∞ σk ⩽ η, since the assumption β ⩾ β∗ gives limk→∞Xk ⩽ X3.
In view of these two properties, to prove (A.15) it is enough to show the following claim:

if σk+2 > σk for some k ⩾ 3 odd, then σk+4 > σk+2. (A.16)

By a straightforward computation one has

σk+2 > σk ⇐⇒
k−1∏
j=1

j + ℓ− t

j + 2 + ℓ+ t
>

k−1∏
j=1

j + ℓ− τ

j + 2 + ℓ+ τ
. (A.17)

Assume now that σk+2 > σk for some k ⩾ 3 odd. We distinguish three cases depending on
the value of k. If k > τ − ℓ, then

(k + ℓ− t)(k + 1 + ℓ− t)

(k + 2 + ℓ+ t)(k + 3 + ℓ+ t)
>

(k + ℓ− τ)(k + 1 + ℓ− τ)

(k + 2 + ℓ+ τ)(k + 3 + ℓ+ τ)
(A.18)

(since τ > t and the factors on the right-hand side are positive). Then by the assumption
σk+2 > σk, (A.17), and (A.18), we obtain

k+1∏
j=1

j + ℓ− t

j + 2 + ℓ+ t
>

k+1∏
j=1

j + ℓ− τ

j + 2 + ℓ+ τ
, (A.19)
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which is equivalent to σk+4 > σk+2, as desired.
Consider next the case τ − ℓ− 1 ⩽ k ⩽ τ − ℓ. In this case the inequality (A.19) is trivially

satisfied, since the left-hand side is positive and the right-hand side is negative or zero (as k
is odd). Hence also in this case σk+4 > σk+2.

Finally, let k < τ − ℓ− 1. We claim that

0 <
τ − k − ℓ

k + 2 + ℓ+ τ
<

k + ℓ− t

k + 2 + ℓ+ t
, 0 <

τ − (k + 1)− ℓ

k + 3 + ℓ+ τ
<
k + 1 + ℓ− t

k + 3 + ℓ+ t
. (A.20)

Indeed, first notice that

τ − j − ℓ

j + 2 + ℓ+ τ
⩾

j + ℓ− t

j + 2 + ℓ+ t
⇐⇒ t+ τ + tτ ⩾ j2 + 2j + 2jℓ+ 2ℓ+ ℓ2.

If the first inequality in (A.20) fails, then t+τ+tτ ⩾ k2+2k+2kℓ+2ℓ+ℓ2 > j2+2j+2jℓ+2ℓ+ℓ2

for all j ∈ {1, . . . , k − 1}, hence
τ − j − ℓ

j + 2 + ℓ+ τ
>

j + ℓ− t

j + 2 + ℓ+ t
for all j ∈ {1, . . . , k − 1}.

In view of (A.17) this contradicts the assumption σk+2 > σk. Similarly, also the second
inequality in (A.20) must be true. By (A.20) we deduce that the inequality (A.18) holds also
in this case and, arguing as before, we obtain (A.19), which is equivalent to σk+4 > σk+2.

Therefore we proved the implication (A.16) in all cases, which yields (A.15) and, in turn,
the conclusion of the lemma. □

Corollary A.2. The identities (2.21) and (2.22) hold.

Proof. By the definition (2.19)–(2.20) of γ∗ and γ∗∗, the identity (A.1), and Lemma A.1, we
have that

γ∗ =

{
κ(d, α, β)X3 if β ⩾ β∗(d, α),

κ(d, α, β) if β < β∗(d, α),
γ∗∗ = κ(d, α, β)X2. (A.21)

Therefore to conclude the proof it is enough to check that the values in (A.21) coincide with
those in (2.21) and (2.22).

We first express κ(d, α, β) in terms of the energies J−α(B1) and Jβ(B1). Indeed, by using
(2.28) we compute

J−α(B1)

Jβ(B1)
= 2−(α+β) (d+ β)(2d+ β)(d− 1− α)(2d− 2 + β)

(d− α)(2d− α)(d− 1 + β)(2d− 2− α)

Γ
(
d−1−α

2

)
Γ
(2d−2+β

2

)
Γ
(d−1+β

2

)
Γ
(
2d−2−α

2

) .
By inserting this expression into (A.3) we find

κ(d, α, β) =
α(d− α)(2d− α)(d− 1 + β)

β(d+ β)(2d+ β)(d− 1− α)
· J−α(B1)

Jβ(B1)
. (A.22)

Moreover, it is straightforward to compute

X2 =
d− 1− α

d− 1 + β
, X3 =

(d− 1− α)(2d+ β)(2d+ 2 + β)

(d− 1 + β)(2d− α)(2d+ 2− α)
. (A.23)

By inserting (A.22) and (A.23) into (A.21) we obtain the explicit values of γ∗ and γ∗∗. □
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