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THE CHEEGER PROBLEM
IN ABSTRACT MEASURE SPACES

VALENTINA FRANCESCHI, ANDREA PINAMONTI, GIORGIO SARACCO,
AND GIORGIO STEFANI

Abstract. We consider non-negative σ-finite measure spaces coupled with
a proper functional P that plays the role of a perimeter. We introduce the
Cheeger problem in this framework and extend many classical results on
the Cheeger constant and on Cheeger sets to this setting, requiring minimal
assumptions on the pair measure space-perimeter. Throughout the paper,
the measure space will never be asked to be metric, at most topological,
and this requires the introduction of a suitable notion of Sobolev spaces,
induced by the coarea formula with the given perimeter.

1. Introduction

In the Euclidean framework, the Cheeger constant of a given set Ω ⊂ Rn is
defined as

h(Ω) = inf
{

P (E)
L n(E)

: E ⊂ Ω, L n(E) > 0
}

,

where L n(E) and P (E), respectively, denote the n-dimensional Lebesgue mea-
sure of E and the variational perimeter of E. The constant was first introduced
by Jeff Cheeger in a Riemannian setting as a way to bound from below the
first eigenvalue of the Laplace–Beltrami operator [63]. The argument proposed
is sound and robust, as noticed even earlier by Maz’ya [102, 103] (an English
translation is available in [81]).

In the past decades, the Cheeger constant has been extensively studied in
view of its many applications: the lower bounds on the first eigenvalue of the
Dirichlet p-Laplacian operator [88] and the equivalence of such an inequal-
ity with Poincaré’s one [104] (up to some convexity assumptions); the rela-
tion with the torsion problem [33, 34]; the existence of sets with prescribed
mean curvature [6, 95]; the existence of graphs with prescribed mean curva-
ture [78, 94]; the reconstruction of noisy images [47, 61, 74, 113]; and the mini-
mum flow-maximum cut problem [80,117] and its medical applications [17]. In
addition, the Cheeger constant has been employed in elastic-plastic models of
plate failure [90] and (its Euclidean-weighted variant) has found applications
to Bingham fluids [1] and landslide models [84]. Moreover, the Cheeger con-
stant of a square has been recently used to provide an elementary proof of the
Prime Number Theorem [18]. For more literature and a general overview of
the problem, we refer the interested reader to the two surveys [91,112].
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Because of its numerous applications, several authors have been drawn to the
subject and started to investigate the constants and the above-mentioned links
with other problems in several frameworks: weighted Euclidean spaces [8, 27,
96,114]; finite-dimensional Gaussian spaces [52,86]; anisotropic Euclidean and
Riemannian spaces [9, 22, 50, 89]; the fractional perimeter [29] or non-singular
non-local perimeter functionals [100]; Carnot groups [108]; RCD-spaces [71,72];
and lately smooth metric-measure spaces [2].

In the settings mentioned above, the proofs mostly follow those available
in the usual Euclidean space. In the present paper, we are interested in pin-
pointing the minimal assumptions needed on the space and on the perimeter
functional in order to establish the fundamental properties of Cheeger sets, as
well as the links to other problems. In the following, we shall be interested
in non-negative σ-finite measure spaces endowed with a perimeter functional
satisfying some suitable assumptions.

Our approach fits into a broader current of research that has gained popular-
ity in the past decade, aiming to study variational problems, well-known in the
Euclidean setting, in general spaces under the weakest possible assumptions.
Quite often, the ambient space is a (metric) measure spaces. For example, such
a general point of view has been adopted for the variational mean curvature of
a set [20], for shape optimization problems [38], for Anzellotti–Gauss–Green
formulas [79], for the total variation flow [35, 36] and, very recently, for the
existence of isoperimetric clusters [111].

1.1. Structure of the paper and results. In Section 2, we introduce the
basic setting of perimeter σ-finite measure spaces, that is, non-negative σ-finite
measure spaces (X, A ,m) endowed with a proper functional P : A → [0, +∞]
possibly satisfying suitable properties (P.1)–(P.7) that we shall require from
time to time.

A considerable effort goes toward defining BV functions in measure spaces,
where a metric is not available. Indeed, usually, the perimeter functional is
induced by the metric. In our setting, instead, only a perimeter functional is
at disposal, so we use it to define BV functions by defining the total variation
via the coarea formula with the given perimeter.

To properly define Sobolev functions, we need a slightly richer structure,
requiring the measure space to be endowed with a topology, and the perimeter
functional P (·) to arise from a relative (with respect to open sets A) perimeter
functional P ( · ; A). By using the relative perimeter, we refine the notion of
BV function by requiring that the variation is a finite measure. This, in
turn, allows us to define W 1,1 functions as BV functions whose variation is
absolutely continuous with respect to the reference measure. Afterward, via
relaxation, we can define W 1,p functions for any p ∈ (1, +∞). For a more
detailed overview, we refer the reader to Section 1.1.3 and Section 1.1.4.

Once the general framework is set, we then shall start to tackle the problem
of our interest.

1.1.1. Definition and existence. In Section 3, we define the Cheeger constant
of a set Ω in terms of the ratio of the perimeter functional and the measure
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the space is endowed with. Actually, in a more general vein similar to that
of [49], we shall define the N-Cheeger constant as

hN(Ω) = inf
{

N∑
i=1

P (E(i))
m(E(i))

: E = {E(i)}N
i=1 ⊂ Ω is an N -cluster

}
,

where, as usual, an N-cluster is an N -tuple of pairwise disjoint subsets of Ω,
called chambers, each of which with positive finite measure and finite perimeter.

In Theorem 3.6, we provide a general existence result. Unsurprisingly, the
key assumptions on the perimeter are the lower-semicontinuity and the com-
pactness of its sublevels with respect to the L1 norm, besides an isoperimetric-
type property that prevents minimizing sequences to converge toward sets with
null m-measure.

Further, we provide inequalities between the N -Cheeger and M -Cheeger
constants and prove some basic properties of N -Cheeger sets, with a particular
attention to the case N = 1.

1.1.2. Link to sets with prescribed mean curvature. In Section 4, we introduce
the notion of P -mean curvature in the spirit of [20]. With this notion at our
disposal, we show that any 1-Cheeger set has h1(Ω) as one of its P -mean
curvatures, see Corollary 4.3. An analogous result holds for the chambers of
an N -cluster minimizing hN(Ω), see Corollary 4.4.

In Theorem 4.5, we investigate the link between h1(Ω) and the existence of
non-trivial minimizers of the prescribed P -curvature functional

Jκ[F ] = P (F ) − κm(F ),

where κ is a fixed positive constant, among subsets F ⊂ Ω. Such a functional,
again requiring the lower-semicontinuity and the L1 compactness of sublevel
sets of the perimeter, has minimizers. If, additionally, one assumes that the
perimeter functional satisfies P (∅) = 0, then h1(Ω) acts as a threshold for the
existence of non-trivial minimizers, that is, for κ < h1(Ω) negligible sets are
the only minimizers, while for κ > h1(Ω) non-trivial minimizers exist.

1.1.3. Link to the first eigenvalue of the Dirichlet 1-Laplacian. In the Eu-
clidean space, one defines the first eigenvalue of the Dirichlet 1-Laplacian in a
variational way as the infimum

λ1,1(Ω) = inf


∫

Ω
|∇u| dx

∥u∥1
: u ∈ C1

c(Ω), ∥u∥1 > 0

. (1.1)

In Section 5, we investigate the relation between the 1-Cheeger constant and
a suitable reformulation of the constant λ1,1(Ω) in our abstract context.

In the Euclidean setting [88] and, actually, in the more general anisotropic
central-symmetric Euclidean setting [89], the constant λ1,1(Ω) coincides with
h1(Ω) provided that the boundary of the set Ω is sufficiently smooth (e.g.,
Lipschitz regular). In particular, one can equivalently consider either smooth
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functions or BV -regular functions. Moreover, because of the smoothness of
the boundary of Ω, it holds that BV (Ω) = BV0(Ω), where

BV0(Ω) = {u ∈ BV (Rn) : u = 0 a.e. on Rn \ Ω},

see, e.g., [49, Rem. 1.1] or [47]. Thus, under some regularity assumptions on
Ω, one can equivalently restate the problem in (1.1) as

λ1,1(Ω) = inf


∫
Rn

d|Du|

∥u∥1
: u ∈ BV0(Rn), ∥u∥1 > 0

. (1.2)

On a general set Ω in the Euclidean space, the infimum in (1.2) is less than
or equal to that in (1.1), since one only has the inclusion BV (Ω) ⊂ BV0(Ω).

In a (possibly non-metric) perimeter-measure space, the constant λ1,1(Ω)
has to be suitably defined, since neither a notion of derivative (needed to
state (1.1)) nor integration-by-parts formulas (needed to define BV functions
and thus state (1.2)) are at disposal. To overcome this difficulty, we adopt the
usual point of view [60, 122, 123] and define the total variation of a function
via the (generalized) coarea formula

Var(u) =
∫
R

P ({u > t}) dt, (1.3)

provided that the function t 7→ P ({u > t}) is L 1-measurable, and define the
relevant BV space as that of those L1 functions with finite total variation. For
more details, we refer the reader to our Section 2.2.

This approach allows us to consider problem (1.2) without any underlying
metric structure. In addition, no regularity of the set Ω is required, since there
is no need for the problem (1.2) to be equivalent to its regular counterpart (1.1)
that, in the present abstract framework, cannot be even formally stated.

With this notion of total variation at hand, we prove that the constant
λ1,1(Ω) coincides with the 1-Cheeger constant h1(Ω) under minimal assump-
tions on the perimeter, that is, we require that the perimeter of negligible sets
and of the whole space is zero, the perimeter is lower-semicontinuous with re-
spect to the L1 norm, and that the perimeter of a set coincides with that of
its complement set, see Theorem 5.4. Moreover, we prove some inequalities
relating the N -Cheeger constant hN(Ω) with a cluster counterpart of (1.2).
As observed in Remark 5.9, if one slightly modifies the definition of λ1,1(Ω)
by considering non-negative functions as the only competitors, then one can
obtain the relation with the Cheeger constant even for perimeter functionals
which are not symmetric with respect to the complement-set operation.

1.1.4. Link to the Dirichlet p-Laplacian and the p-torsion. In the Euclidean
space, the 1-Cheeger constant comes into play in estimating some quantities
related to the Laplace equation and to the torsional creep equation. More
precisely, it provides lower bounds on the first eigenvalue of the Dirichlet p-
Laplacian for p > 1 and to the L1 norm of the p-torsional creep function. In
Section 6, we extend these results to our more general framework.
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Both these problems require an extensive preliminary work to define Sobolev
spaces in our general (non-metric) context. In order to do so we need a little
more structure on the perimeter-measure space: we require it to be endowed
with a topology, we require the class of measurable sets to be that of Borel
sets, and we require the perimeter P (·) to stem from a relative perimeter when
evaluated relatively to the whole space X.

We here quickly sketch how we construct these Sobolev spaces, and we refer
the interested reader to Section 2.3. A relative perimeter functional allows,
again via the relative coarea formula in a similar fashion to (1.3), to define
the relative variation of an L1 function u with respect to a measurable set.
When this happens to define a measure, we shall say that the function is
in BV(X,m), and this extends the notion briefly discussed in Section 1.1.3
and formally introduced in Section 2.2. When this measure happens to be
absolutely continuous with respect to m, we shall say that the function is in
W1,1(X,m) and that the density of the measure with respect to m is the 1-
slope of u. Via approximation arguments, one can then define the p-slope of
a function and the associated W1,p(X,m) spaces. In turn, the approximation
properties allow to define the Sobolev space W1,p

0 (Ω,m), refer to Definition 6.1.
Summing up, Sobolev spaces can be built as induced by a relative perimeter

on the topological perimeter-measure space. Once this notion is available, one
can define the first eigenvalue of the Dirichlet p-Laplacian for p > 1 in an
analogous manner to the standard, Euclidean one. In the classical setting,
similarly to (1.1), one defines

λ1,p(Ω) = inf


∫

Ω
|∇u|pdx

∥u∥p
p

: u ∈ C1
c(Ω), ∥u∥p > 0

. (1.4)

In our setting we cannot directly consider (1.4), since no notion of derivative
is available. However, the natural space of competitors of such a problem is
the classical space of W 1,p

0 (Ω) functions, and we do have an analogous notion
of Sobolev space at our disposal, and thus, such a way is viable.

In Euclidean settings [88,89], it is known that the inequality
(

h1(Ω)
p

)p

≤ λ1,p(Ω)

holds. In Theorem 6.3 and Corollary 6.4, we prove that this inequality natu-
rally extends to our general framework, provided that the relative perimeter
satisfies some general assumptions.

Finally, we recall that the p-torsional creep function is the solution of the
PDE with homogeneous Dirichlet boundary datum{−∆pu = 1, in Ω,

u = 0, on ∂Ω, (1.5)
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where −∆p is the p-Laplace operator. It is known [33] that the solution wp of
the PDE (1.5) satisfies

h1(Ω) ≤ p

(
m(Ω)
∥wp∥1

) p−1
p

. (1.6)

As usual, we cannot directly consider (1.5), but we can work with the un-
derlying Euler–Lagrange energy among functions in the Sobolev spaces we
defined. In particular, we can prove that minimizers of the energy, if they ex-
ist, satisfy (1.6) up to a slightly worse prefactor of p1+ 1

p , refer to Theorem 6.5,
provided that the relative perimeter satisfies some very general properties.

1.1.5. Examples. In the last section of the paper, we collect several examples
of spaces that meet our hypotheses. In particular, our very general approach
basically covers all results known so far about the existence of Cheeger sets
in finite-dimensional spaces, and the relation of the constant with the first
eigenvalue of the Dirichlet p-Laplacian in numerous contexts. In some of the
frameworks presented in Section 7, the results are new, up to our knowledge.

Unfortunately, our approach does not cover the case of the infinite-dimensio-
nal Wiener space. In this case, one can suitably define the Cheeger constant
and prove the existence of Cheeger sets. Nonetheless, this requires ad hoc
notions of BV function and of perimeter that are quite different from the ones
adopted in the present paper. We refer the interested reader to [52, Sect. 6]
for a more detailed exposition about this specific framework.
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2. Perimeter-measure spaces

The basic setting is that of non-negative σ-finite measure spaces (X, A ,m).
We set that, for any A, B ∈ A , by A ⊂ B we mean that m(A \ B) = 0. We
also let L0(X,m) be the vector space of m-measurable functions and, for p ≥ 1,
we let Lp(X,m) be the usual space of p-integrable functions, that is,

Lp(X,m) =
{

u ∈ L0(X,m) :
∫

X
|u|p dm < +∞

}
.

As usual, we identify m-measurable functions coinciding m-a.e. on X. In case
X is endowed with a topology T ⊂ P(X), we let B(X) be the Borel σ-algebra
generated by T and, in this case, we shall assume that A = B(X).

2.1. Perimeter functional. In the same spirit of [20, Sect. 3], we introduce
the following definition.

Definition 2.1. A perimeter functional P (·) is any map
P : A → [0, +∞], (2.1)

which is proper, i.e., P (A) < +∞ for some A ∈ A . In this case, we call
(X, A ,m, P ) a perimeter-measure space.

Throughout the paper we will assume that the perimeter will satisfy some
of the following properties:

(P.1) P (∅) = 0;
(P.2) P (X) = 0;
(P.3) P (E ∩ F ) + P (E ∪ F ) ≤ P (E) + P (F ) for all E, F ∈ A ;
(P.4) P is lower-semicontinuous with respect to the L1(X,m) convergence;
(P.5) for any Ω ∈ A with m(Ω) < +∞, the family

{χE : E ∈ A , E ⊂ Ω, P (E) ≤ c}
is compact in L1(X,m) for all c ≥ 0;
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(P.6) there exists a function f : (0, +∞) → (0, +∞) such that

lim
ε→0+

f(ε) = +∞

with the following property: if ε > 0 and E ∈ A with m(E) ≤ ε, then
P (E) ≥ f(ε)m(E);

(P.7) P (E) = P (X \ E) for all E ∈ A .
Assuming property (P.7) true, properties (P.1) and (P.2) become equivalent.

Throughout the paper, we often refer to (P.6) as an isoperimetric property.
Notice that, in case an isoperimetric inequality P (E) ≥ Cm(E)

Q−1
Q holds true

for suitable Q > 1 and C > 0, and for all E ∈ A with m(E) < +∞, then
(P.6) clearly follows. Depending on the situation, it could be more convenient
to prove (P.6) directly or to rely on a finer isoperimetric-type inequality, see
Section 7. We remark that all the properties listed above will appear every now
and then throughout the paper, but they are not enforced throughout—every
statement will precisely contain the bare minimum for its validity.

Remark 2.2 (P is invariant under m-negligible modifications). Let property
(P.4) be in force. If A, B ∈ A are such that m(A△B) = 0, then P (A) = P (B).
To see this, consider any measurable set E and any m-negligible set N , look
at the constant sequence {E ∪ N}k converging to E in L1(X,m), and at the
constant one {E}k converging to E ∪ N and exploit (P.4).

Remark 2.3. Let property (P.6) be in force. If P (E) = 0, then the set E is m-
negligible, that is, m(E) = 0. Conversely, if m(E) > 0, then P (E) ∈ (0, +∞].
Thus, property (P.6) says that the only sets with finite measure that could
possibly have zero perimeter are m-negligible sets. Moreover, if properties
(P.1) and (P.4) are in force as well, then m-negligible sets have zero perimeter,
thanks to Remark 2.2.

2.2. Variation and BV functions. We define the variation of a function
u ∈ L0(X,m) as

Var(u) =


∫
R

P ({u > t}) dt, if t 7→ P ({u > t}) is L 1-measurable,

+∞, otherwise.
(2.2)

With this notation at hand, we let

BV (X,m) =
{
u ∈ L1(X,m) : Var(u) < +∞

}
(2.3)

be the set of L1 functions with bounded variation.
We begin with the following result, proving that assuming the validity of

properties (P.1) and (P.2), the variation coincides with the perimeter functional
on characteristic functions.

Lemma 2.4 (Total variation of sets). Let properties (P.1) and (P.2) be in
force. If E ∈ A , then Var(χE) = P (E).
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Proof. By definition, (P.1), and (P.2), the function

t 7→ P ({χE > t}) =


P (X), t ≤ 0,

P (E), 0 < t ≤ 1,

P (∅), t > 1,

is L 1-measurable, so that

Var(χE) =
∫
R

P ({χE > t}) dt =
∫ 1

0
P (E) dt = P (E),

in virtue of (P.1) and of (P.2). □

Remark 2.5. As an immediate consequence of Lemma 2.4, if (P.1) and (P.2)
are in force, then Var: L0(X,m) → [0, +∞] is a proper functional and χE ∈
BV (X,m) whenever E ∈ A is such that m(E) < +∞ and P (E) < +∞. In
particular, 0 ∈ BV (X,m) with Var(0) = 0.

The following result rephrases [60, Prop. 3.2] in the present context.

Lemma 2.6 (Basic properties of total variation). The following hold:
(i) Var(λu) = λ Var(u) for all λ > 0 and u ∈ L0(X,m);

(ii) Var(u + c) = Var(u) for all c ∈ R and u ∈ L0(X,m);
(iii) if (P.1) and (P.2) are in force, then Var(c) = 0 for all c ∈ R;
(iv) if (P.4) is in force, then Var: L1(X,m) → [0, +∞] is lower-semicon-

tinuous with respect to the (strong) convergence in L1(X,m).

Proof. The proofs of the first three points are natural consequences of the
definition.

Proof of (iv). Let uk, u ∈ L1(X,m) be such that uk → u in L1(X,m) as
k → +∞. Without loss of generality, we can assume that

lim inf
k→+∞

Var(uk) < +∞,

so that, up to possibly passing to a subsequence (which we do not relabel for
simplicity), we have Var(uk) < +∞ for all k ∈ N. Following [98, Rem. 13.11],
one has

∥uk − u∥1 =
∫
R
m({uk > t} △ {u > t}) dt,

thus, we immediately deduce that χ{uk>t} → χ{u>t} in L1(X,m) as k → +∞
for L 1-a.e. t ∈ R. Thanks to property (P.4), we have that

P ({u > t}) ≤ lim inf
k→+∞

P ({uk > t})

for L 1-a.e. t ∈ R, and the map t 7→ P ({u > t}) is also L 1-measurable. There-
fore, by Fatou’s Lemma, we conclude that

Var(u) =
∫
R

P ({u > t}) dt ≤
∫
R

lim inf
k→+∞

P ({uk > t}) dt

≤ lim inf
k→+∞

Var(uk) < +∞,

proving (iv). □
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The following result, which can be proved as in [60] up to minor modifica-
tions, states that the variation functional is convex as soon as the perimeter
functional is sufficiently well-behaved.

Proposition 2.7 (Convexity of variation). Let properties (P.1), (P.2), (P.3)
and (P.4) be in force. Then, Var: L1(X,m) → [0, +∞] is convex. As a conse-
quence, BV (X,m) is a convex cone in L1(X,m).

2.3. Relative perimeter and relative variation. In this subsection, we
assume that the set X is endowed with a topology T such that A = B(X),
the Borel σ-algebra generated by T .

Definition 2.8. A relative perimeter functional P is any map
P : B(X) × B(X) → [0, +∞]. (2.4)

Throughout the paper, we will assume that a relative perimeter will satisfy
some of the following properties:
(RP.1) P(∅; A) = 0 for all A ∈ T ;
(RP.2) P(X; A) = 0 for all A ∈ T ;
(RP.3) P(E ∩ F ; A) + P(E ∪ F ; A) ≤ P(E; A) + P(F ; A) for all E, F ∈ B(X)

and A ∈ T ;
(RP.4) for each A ∈ T , P(· ; A) is lower-semicontinuous with respect to the

(strong) convergence in L1(X,m).
We stress that in the properties above, the perimeter is relative to an open set
A, and not to a general element of the Borel σ-algebra.

Moreover, following the same idea of Section 2.2, we let

Var(u; A) =


∫
R

P({u > t}; A) dt, if t 7→ P({u > t}; A) is L 1-meas.,

+∞, otherwise,

(2.5)

be the variation of u ∈ L0(X,m) relative to A ∈ B(X). In analogy with the
approach developed in the previous sections, for each A ∈ T one can regard
the map

P(· ; A) : B(X) → [0, +∞]
as a particular instance of the perimeter functional introduced in (2.1). Specif-
ically, we use the notation

P (E) = P(E; X), Var(u) = Var(u; X), (2.6)
for all E ∈ B(X) and u ∈ L0(X,m) and we consider P (E) as the perimeter
of E in the sense of Section 2.1. Analogously, Var(u) stands as the variation
of u in the sense of Section 2.2. Consequently, the space

BV (X,m) =
{
u ∈ L1(X,m) : Var(u; X) < +∞

}
is the space defined in (2.3).

Below, we rephrase Lemma 2.4, Lemma 2.6 and Proposition 2.7 in the
present setting. Their proofs are omitted, because they are similar to those
already given or referred to.
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Lemma 2.9 (Relative variation of sets). Let properties (RP.1) and (RP.2) be
in force. If E ∈ B(X), then Var(χE; A) = P(E; A) for all A ∈ T .

Lemma 2.10 (Basic properties of relative variation). The following hold:
(i) Var(λu; A) = λVar(u; A) for all λ > 0, A ∈ T and u ∈ L0(X,m);

(ii) Var(u + c; A) = Var(u; A) for all A ∈ T , c ∈ R, and u ∈ L0(X,m);
(iii) if (RP.1) and (RP.2) are in force, then Var(c; A) = 0 for all c ∈ R and

A ∈ T ;
(iv) if (RP.4) is in force, then, for each A ∈ T , the relative variation

Var(· ; A) : L1(X,m) → [0, +∞] is lower-semicontinuous with respect to
the (strong) convergence in L1(X,m).

Proposition 2.11 (Convexity of relative variation). Let properties (RP.1),
(RP.2), (RP.3) and (RP.4) be in force. Then, for each A ∈ T , the functional
Var(· ; A) : L1(X,m) → [0, +∞] is convex.

2.3.1. Variation measure. We now define the perimeter and variation measures
by rephrasing the validity of the relative coarea formula (2.5) in a measure-
theoretic sense.

Definition 2.12 (Perimeter and variation measures). We say that a set E ∈
B(X) has finite perimeter measure if its relative perimeter

P(E; · ) : B(X) → [0, +∞]
defines a finite outer regular Borel measure on X. We hence say that a function
u ∈ L0(X,m) has finite variation measure if the set {u > t} has finite perimeter
for L 1-a.e. t ∈ R and its relative variation

Var(u; · ) : B(X) → [0, +∞)
defines a finite outer regular Borel measure on X.

Adopting the usual notation, if E ∈ B(X) has finite perimeter measure, then
we write P(E; A) = |DχE|(A) for all A ∈ B(X). Similarly, if u ∈ L0(X,m) has
finite variation measure, then we write Var(u; A) = |Du|(A) for all A ∈ B(X).

It is worth noticing that Definition 2.12 is well posed in the following sense.
As soon as properties (RP.1) and (RP.2) are in force, if E ∈ B(X) has fi-
nite perimeter measure, then χE ∈ L0(X,m) has finite variation measure with
Var(χE; · ) = P(E; · ), since they are outer regular Borel measures on X agree-
ing on open sets. This is a simple consequence of Lemma 2.9.

By Definition 2.12, if u ∈ L0(X,m) has finite variation measure, then, for
each A ∈ B(X), we have Var(u; A) < +∞ and thus

t 7→ P({u > t}; A) ∈ L1(R),
so that we can write

|Du|(A) = Var(u; A) =
∫
R

P({u > t}; A) dt =
∫
R

|Dχ{u>t}|(A) dt.

In more general terms, we get the following extension of the relative coarea for-
mula (2.5). Its proof follows from a routine approximation argument (see [13]
for instance) and is thus omitted.
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Corollary 2.13 (Generalized coarea formula). If u ∈ L0(X,m) has finite
variation measure, then∫

A
φ d|Du| =

∫
R

∫
A

φ d|Dχ{u>t}| dt

for all φ ∈ L0(X,m) and A ∈ B(X).

Keeping the same notation used in the previous sections, we let

BV(X,m) =
{
u ∈ L1(X,m) : u has finite variation measure

}
.

Notice that although BV(X,m) ⊂ BV (X,m) and BV (X,m) is a convex cone
in L1(X,m), the set BV(X,m) may not be a convex cone in L1(X,m) as well,
since the validity of the implication

u, v ∈ BV(X,m) =⇒ u + v has finite variation measure

is not automatically granted. For an example of such a phenomenon, we refer
the interested reader to the variation of intrinsic maps between subgroups of
sub-Riemannian Carnot groups [116, Rem. 4.2], but we will not enter into the
details of this issue because it is out of the scope of the present paper.

This being said, we introduce the following additional property for the rela-
tive perimeter P in (2.4) requiring the closure of BV(X,m) with respect to the
sum of functions:

(RP.+) u, v ∈ BV(X,m) =⇒ u + v ∈ BV(X,m).
We now outline some consequences of Lemma 2.10 and Proposition 2.11,

and leave the simple proofs of these statements to the interested reader, see
also the proof of Lemma 2.6.

Corollary 2.14 (Basic properties of variation measure). Let properties (RP.1),
(RP.2), (RP.3) and (RP.4) be in force. The following hold:

(i) if u ∈ L0(X,m) has finite variation measure, then λu has finite varia-
tion measure, with |D(λu)| = λ|Du|, for all λ > 0;

(ii) if u ∈ L0(X,m) has finite variation measure, then u + c has finite
variation measure, with |D(u + c)| = |Du|, for all c ∈ R;

(iii) constant functions have finite variation measure and |Dc| = 0 for all
c ∈ R (in particular, 0 ∈ BV(X,m));

(iv) if {uk}k∈N ⊂ BV(X,m) and uk → u in L1(X,m) as k → +∞ for some
u ∈ BV(X,m), then

|Du|(A) ≤ lim inf
k→+∞

|Duk|(A)

for all A ∈ T ;
(v) if also property (RP.+) is in force and u, v ∈ BV(X,m), then

|D(u + v)| ≤ |Du| + |Dv|

as outer regular Borel measures on X.
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2.3.2. Chain rule. We now establish a chain rule for the variation measure of
continuous functions. To this aim, we need to assume the following locality
property of the relative perimeter functional in (2.4):
(RP.L) E ∈ T =⇒ P(E; A) = 0 for all A ∈ B(X) with P(E; A ∩ ∂E) = 0.
Loosely speaking, property (RP.L) states that, for any open set E ⊂ X, the
relative perimeter functional A 7→ P(E; A) is supported (in a measure-theoretic
sense) on the topological boundary ∂E of the set E.

Theorem 2.15 (Chain rule). Let properties (RP.1), (RP.2) and (RP.L) be
in force and let φ ∈ C1(R) be a strictly increasing function. If u ∈ C0(X) has
finite variation measure, then also φ(u) ∈ C0(X) has finite variation measure,
with

|Dφ(u)| = φ′(u)|Du| (2.7)
as finite outer regular Borel measure on X.

Proof. Since φ is strictly increasing, its inverse function φ−1 : φ(R) → R is well
defined, continuous and strictly increasing, and we can write

{φ(u) > t} =


X, if t ≤ inf φ(R),
{u > φ−1(t)}, if t ∈ φ(R),
∅, if t ≥ sup φ(R).

Therefore, the set {φ(u) > t} has finite perimeter measure for L 1-a.e. t ∈ R,
with

|Dχ{φ(u)>t}| =

|Dχ{u>φ−1(t)}|, if t ∈ φ(R),
0, if t /∈ φ(R).

Hence, given A ∈ B(X), we have
t 7→ |Dχ{φ(u)>t}|(A) = |Dχ{u>φ−1(t)}|(A) χφ(R)(t) ∈ L1(R)

and so,

Var(φ(u); A) =
∫
R

|Dχ{φ(u)>t}|(A) dt =
∫

φ(R)
|Dχ{u>φ−1(t)}|(A) dt.

Performing a change of variables, we can write∫
φ(R)

|Dχ{u>φ−1(t)}|(A) dt =
∫
R

|Dχ{u>s}|(A) φ′(s) ds.

Now, since u ∈ C0(X), we know that {u > s} ∈ T and ∂{u > s} ⊂ {u = s}
for all s ∈ R. Therefore, because of (RP.L), we have |Dχ{u>s}|(B) = 0 for all
B ∈ B(X) such that |Dχ{u>s}|(B ∩ {u = s}) = 0.

Thus, letting B = A ∩ {u ̸= s}, we have that |Dχ{u>s}|(A ∩ {u ̸= s}) = 0 for
all s ∈ R; hence, the following equalities hold∫

R
|Dχ{u>s}|(A) φ′(s) ds =

∫
R

φ′(s)
∫

A
d|Dχ{u>s}| ds

=
∫
R

∫
A

φ′(u) d|Dχ{u>s}| ds.



14 V. FRANCESCHI, A. PINAMONTI, G. SARACCO, AND G. STEFANI

By Corollary 2.13, we can write∫
R

∫
A

φ′(u) d|Dχ{u>s}| ds =
∫

A
φ′(u) d|Du|,

so that, by combining all the above equalities, we conclude that

Var(φ(u); A) =
∫

A
φ′(u) d|Du|

for all A ∈ B(X), proving (2.7) and completing the proof. □

2.3.3. p-slope and Sobolev functions. As customary, we let

W1,1(X,m) = {u ∈ BV(X,m) : |Du| ≪ m}

be the set of Sobolev W1,1 functions on X.
If u ∈ W1,1(X,m), then we let |∇u| ∈ L1(X,m), |∇u| ≥ 0 m-a.e. in X, be

the 1-slope of u, i.e., the unique L1(X,m) function such that

|Du|(A) =
∫

A
|∇u| dm for all A ∈ B(X).

From Corollary 2.14, we immediately deduce the following simple properties
of 1-slopes of W1,1 functions.

Corollary 2.16 (Basic properties of 1-slope). Let properties (RP.1), (RP.2),
(RP.3), (RP.4), and (RP.+) be in force. The following hold:

(i) if u ∈ W1,1(X,m), then λu ∈ W1,1(X,m), with |∇(λu)| = λ|∇u|, for
all λ > 0;

(ii) 0 ∈ W1,1(X,m), with |∇0| = 0;
(iii) if u, v ∈ W1,1(X,m), then u + v ∈ W1,1(X,m) with

|∇(u + v)| ≤ |∇u| + |∇v|.

As a consequence, W1,1(X,m) is a convex cone in L1(X,m).

Having the notion of 1-slope at our disposal, following the standard approach
about slopes (see [14] for instance), we can introduce the notion of p-relaxed
1-slope, for p ∈ (1, +∞).

Definition 2.17 (p-relaxed 1-slope). Let p ∈ (1, +∞). We shall say that a
function g ∈ Lp(X,m) is a p-relaxed 1-slope of u ∈ Lp(X,m) if there exist a
function g̃ ∈ Lp(X,m) and a sequence {uk}k∈N ⊂ W1,1(X,m) ∩ Lp(X,m) such
that:

(i) uk −→ u in Lp(X,m);
(ii) |∇uk| ∈ Lp(X,m) for all k ∈ N and |∇uk| −⇀ g̃ weakly in Lp(X,m);
(iii) g̃ ≤ g m-a.e. in X.

Clearly, according to Definition 2.17 and thanks to the sequential compact-
ness of weak topologies, if {uk}k∈N ⊂ W1,1(X,m) ∩ Lp(X,m) is such that

sup
k∈N

∫
X

|∇uk|p dm < +∞,
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then any Lp(X,m)-limit of {uk}k∈N has at least one p-relaxed 1-slope. Given
any u ∈ Lp(X,m), we define

Slopep(u) = {g ∈ Lp(X,m) : g is a p-relaxed 1-slope of u}.

Following the point of view of [14], one can prove the following basic properties
of p-relaxed 1-slopes that will be useful in the sequel.

Lemma 2.18 (Basic properties of p-relaxed 1-slope). Let properties (RP.1),
(RP.2), (RP.3), (RP.4), and (RP.+) be in force and let p ∈ (1, +∞). The
following hold:

(i) Slopep(u) is a convex subset (possibly empty) for all u ∈ Lp(X,m);
(ii) if u ∈ Lp(X,m) and g ∈ Slopep(u), then there exist a sequence {uk}k ⊂

W1,1(X,m) ∩ Lp(X,m), a sequence {gk}k ⊂ Lp(X,m), and a function
g̃ ∈ Lp(X,m), such that uk −→ u and gk −→ g̃ both in Lp(X,m), with
|∇uk| ≤ gk for all k ∈ N and g̃ ≤ g;

(iii) if {uk}k and {gk} are sequences in Lp(X,m), with gk ∈ Slopep(uk) for
all k ∈ N, such that uk −⇀ u and gk −⇀ g weakly in Lp(X,m), then
g ∈ Slopep(u).

Under the assumptions of the above Lemma 2.18, for each u ∈ Lp(X,m),
the set Slopep(u) is a (possibly empty) closed convex subset of Lp(X,m), and
thus, the following definition is well posed.

Definition 2.19 (Weak p-slope). Let p ∈ (1, +∞) and let properties (RP.1),
(RP.2), (RP.3), (RP.4), and (RP.+) be in force. If u ∈ Lp(X,m) is such that
Slopep(u) ̸= ∅, we let |∇u|p be the element of Slopep(u) of minimal Lp(X,m)
norm and we call it the weak p-slope of u. Finally, we let

W1,p(X,m) = {u ∈ Lp(X,m) : ∃|∇u|p ∈ Lp(X,m)}.

Following the same line of [14], one can show that the weak p-slope can be
actually approximated in Lp(X,m) in the strong sense.

Corollary 2.20 (Strong approximation of weak p-slope). Let p ∈ (1, +∞)
and let properties (RP.1), (RP.2), (RP.3), (RP.4), and (RP.+) be in force. If
u ∈ W1,p(X,m), then there exists a sequence {uk}k ⊂ W1,1(X,m) ∩ Lp(X,m)
such that |∇uk| ∈ Lp(X,m) for all k ∈ N and

uk −→ u and |∇uk| −→ |∇u|p both in Lp(X,m) as k → +∞.

3. Cheeger sets in perimeter-measure spaces

In this section, we work in a measure space endowed with a perimeter func-
tional as in Section 2.1.

3.0.1. N-Cheeger constant and N-Cheeger sets. We begin by introducing the
central notions of the present paper.

Definition 3.1. Let N ∈ N. An N-cluster E is a collection of N measurable
sets E = {E(i)}N

i=1 ⊂ A satisfying:
• 0 < m(E(i)) < +∞ for all i = 1, . . . , N ;
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• m(E(i) ∩ E(j)) = 0 for all i, j = 1, . . . , N with i ̸= j;
• P (E(i)) < +∞ for all i = 1, . . . , N .

Each of the E(i), i = 1, . . . , N , is called a chamber.

Definition 3.2 (N -admissible set). Let N ∈ N. We say that Ω ∈ A is
N-admissible if there exists an N -cluster E = {E(i)}N

i=1 ⊂ Ω.

Remark 3.3. Let N ∈ N. Trivially, if Ω ∈ A is N -admissible, then it is
M -admissible for all integers M ≤ N .

Definition 3.4 (N -Cheeger constant and N -Cheeger sets). Let N ∈ N and
let Ω ∈ A be an N -admissible set. The N-Cheeger constant of Ω is

hN(Ω) = inf
{

N∑
i=1

P (E(i))
m(E(i))

: E = {E(i)}N
i=1 ⊂ Ω is an N -cluster

}
.

If C = {C(i)}N
i=1 is an N -cluster realizing the above infimum, we call it an N -

Cheeger set (or cluster) of Ω. We let CN(Ω) be the collection of all N -Cheeger
sets of Ω.

Remark 3.5. By definition, as Ω is required to be N -admissible, the N -
Cheeger constant of Ω is finite. Moreover, by Remark 3.3, so it is hM(Ω) for
all integers M such that M ≤ N . We also refer to Proposition 3.10.

3.1. Existence of N-Cheeger sets. We prove that the existence of N -
Cheeger clusters of Ω is ensured whenever the perimeter functional possesses
properties (P.4), (P.5), and (P.6), and the set Ω ∈ A is N -admissible with
finite m-measure. These requests are not necessary though, as some examples
at the end of this section show.

Theorem 3.6. Let properties (P.4), (P.5), and (P.6) be in force. Let N ∈ N,
and let Ω ∈ A be an N-admissible set with m(Ω) ∈ (0, +∞). Then there exists
an N-Cheeger set of Ω.

Proof. On the one hand, since Ω is N -admissible, there exists an N -cluster
E ⊂ Ω, which immediately implies that hN(Ω) < +∞. On the other hand, for
any N -cluster E = {E(i)}N

i=1 of Ω, property (P.6) gives
N∑

i=1

P (E(i))
m(E(i)) ≥ Nf(m(Ω)) ,

hence
hN(Ω) ≥ Nf(m(Ω)) > 0 .

Now let {Ek}k∈N ⊂ Ω be a minimizing sequence, i.e.,

lim
k→+∞

N∑
i=1

P (Ek(i))
m(Ek(i)) = hN(Ω).

Clearly, for any k ∈ N sufficiently large and any i = 1, . . . , N , we have

P (Ek(i)) ≤ m(Ω)
N∑

i=1

P (Ek(i))
m(Ek(i)) ≤ 2m(Ω)hN(Ω)
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and thus,

sup
k

{
max

i
{P (Ek(i))}

}
≤ 2m(Ω)hN(Ω),

which is finite, having assumed m(Ω) < +∞.
By (P.4) and (P.5) (recall also Remark 2.2), possibly passing to a subse-

quence, for each i = 1, . . . , N , there exists E(i) ∈ A such that E(i) ⊂ Ω,
with m(E(i)) ∈ [0,m(Ω)], P (E(i)) ≤ 2m(Ω)hN(Ω), and m(Ek(i) △ E(i)) → 0+

as k → +∞. Now, using (P.6), for all k ∈ N sufficiently large and any
i ∈ {1, . . . , N}, we get

f(m(Ek(i))) ≤ P (Ek(i))
m(Ek(i)) . (3.1)

The behavior of f near zero prescribed by (P.6) immediately implies that
m(E(i)) ̸= 0 for all i ∈ {1, . . . , N}, as otherwise a contradiction would arise
with hN(Ω) < +∞. Indeed, on the one hand, being {Ek(i)}k a minimizing
sequence, and owing to (3.1), there exists k̄ ≫ 1 such that for all k ≥ k̄, we
have

f(m(Ek(i))) ≤ 2hN(Ω).
On the other hand, the isoperimetric property (P.6) implies there exists δ > 0
such that f(x) > 2hN(Ω) for all x ≤ δ. Hence, we deduce that m(Ek(i)) ≥ δ
for all i = 1, . . . , N and all k ≥ k̄.

It remains to be proved that E = {E(i)}N
i=1 is an N -cluster contained in Ω,

i.e., that the chambers E(i) are pairwise disjoint, and the reader can easily
check it on its own.

Consequently, thanks to (P.4), we find that

hN(Ω) ≤
N∑

i=1

P (E(i))
m(E(i)) ≤

N∑
i=1

lim inf
k→+∞

P (Ek(i))
m(Ek(i)) ≤ lim inf

k→+∞

N∑
i=1

P (Ek(i))
m(Ek(i)) = hN(Ω),

and the conclusion follows. □

Let us point out that properties (P.4), (P.5), and (P.6) are all crucial in the
above proof. Among them (P.6) looks as the “most artificial”; nevertheless,
it is essential in the reasoning: an example where existence fails when (P.6)
is missing is given in Example 3.7 below. It is also relevant to point out that
these properties provide a sufficient but in no way a necessary condition, as
Example 3.8 and Example 3.9 show.

Example 3.7. Consider the measure space (X, A ,m) = (R2, B(R2), wL 2),
where B(R2) denotes the Borel σ-algebra, w ∈ L1(R2) is defined by

w(x) =

∥x∥− 3
2 , if ∥x∥ ≤ 1,

e−∥x∥, if ∥x∥ > 1,

and P (·) is the Euclidean perimeter. In this setting, properties (P.1) through
(P.5) hold, but (P.6) does not.
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Within this framework, one has h1(Ω) = 0, for any set Ω containing an open
neighborhood of the origin. Indeed, it is enough to consider the sequence of
balls centered at the origin Br ⊂ Ω (for r sufficiently small), for which we have

P (Br) = 2πr,

and
m(Br) =

∫
Br

w(x) dx = 2π
∫ r

0
ϱ− 3

2 ϱ dϱ = 4πr
1
2 .

Were to exist E ∈ C1(Ω), then P (E) = 0, and by the Euclidean isoperimetric
inequality we would have |E| = 0. Being the weight w ∈ L1(R2), this would
eventually lead to

m(E) =
∫

E
w(x) dx = 0,

contradicting the fact that m(E) > 0. This shows that Cheeger sets do not ex-
ist. In more generality, the same happens in any measure space (X, A ,m) and
in any 1-admissible set Ω ∈ A such that h1(Ω) = 0 and the only measurable
subsets E of Ω with P (E) = 0 have zero m-measure.

For the sake of completeness, we shall note that, in the situation depicted
in this remark, N -Cheeger sets exist in any open set Ω not containing the
origin, since the weight w would be L∞(Ω), refer to [20, Prop. 3.3] or to [114,
Prop. 3.2].

We now present two simple examples in which the existence of Cheeger sets
is ensured even if properties (P.5) and (P.6) do not hold.

Example 3.8. Consider any non-negative (σ-finite) measure space (X, A ,m),
and consider P (E) = m(E), for all E ∈ A , as perimeter functional. For
this choice, while (P.4) holds, neither property (P.5) nor (P.6) hold, the latter
because any isoperimetric function f is bounded from above by 1. Nevertheless,
fixed any Ω ∈ A , we have hN(Ω) = N , for any integer N , and any N -cluster
is an N -Cheeger set.

Example 3.9. Consider any non-negative (σ-finite) measure space (X, A ,m),
and consider P (E) = 0, for all E ∈ A , as perimeter functional. While (P.4)
holds, neither property (P.5) nor (P.6) hold. Nevertheless, fixed any Ω ∈ A ,
we have hN(Ω) = 0, for any integer N , and any N -cluster is an N -Cheeger set.

3.2. Inequalities between the N- and M-Cheeger constants.

Proposition 3.10. Let Ω ∈ A be an N-admissible set. Then, for all M ∈ N
with M < N , one has

hM(Ω) + hN−M(Ω) ≤ hN(Ω). (3.2)

Proof. Let M and N be fixed integers, with M < N . Let E be any fixed
N -cluster. For any subset JM of {1, . . . , N} of cardinality M , the M -cluster
{E(i)}i∈JM

provides an upper bound to hM(Ω), whereas the (N − M)-cluster
{E(i)}i/∈JM

to hN−M(Ω).
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Hence, no matter how we choose JM , we have
N∑

i=1

P (E(i))
m(E(i)) =

∑
i∈JM

P (E(i))
m(E(i)) +

∑
i/∈JM

P (E(i))
m(E(i)) ≥ hM(Ω) + hN−M(Ω).

By taking the infimum among all N -clusters, the desired inequality follows. □

Corollary 3.11. Let Ω ∈ A be an N-admissible set. Then, for all M ∈ N
such that for some integer k one has N = kM , one has

khM(Ω) ≤ hN(Ω). (3.3)

Remark 3.12. The inequalities (3.2) and (3.3) hold as equalities in some cases,
as, for instance, it happens anytime a set has multiple disjoint 1-Cheeger sets.
A trivial example of this behavior is given by N disjoint and equal balls in the
usual Euclidean space.

One can also build connected sets that have this feature. For N = 2, it is
enough to consider a standard dumbbell in the usual 2-dimensional Euclidean
space, that is, the set given by two disjoint equal balls, spaced sufficiently
far apart, and connected via a thin tube. Such a set has two connected 1-
Cheeger sets E(1) and E(2) given by small perturbations of the two balls, and
the 2-cluster E = {E(i)} is necessarily a 2-Cheeger set, refer, for instance, to
[93, Ex. 4.5].

An easy connected example for N > 2 is instead given by an (N + 2)-
dumbbell in the usual 2-dimensional Euclidean space, that is, a set formed by
N + 2 disjoint equal balls and linked by a thin tube, say

N+2⋃
i=1

B1((4i, 0)) ∪
(

(4, 4(N + 2)) × (−ε, +ε)
)

,

where B1((4i, 0)) denotes the 2-dimensional Euclidean ball of radius 1 centered
at the point (4i, 0) ∈ R2. For ε sufficiently small, and arguing as in [93, Ex. 4.5],
it can be shown that such a set has N connected and disjoint 1-Cheeger sets,
each corresponding to a small perturbation of the N balls with two neighboring
ones.

3.3. M-subclusters of N-Cheeger sets. Given an N -Cheeger set of Ω, con-
sider any of its M -subcluster. It is natural to imagine that such an M -cluster
is an M -Cheeger set in the ambient space given by Ω minus the N − M cham-
bers not belonging to the subcluster. In this short section, we prove that this
is true.

For the sake of clarity of notation, we let |J | ∈ N ∪ {0} ∪ {+∞} be the
cardinality of a set J ⊂ N.

Proposition 3.13. Let Ω ∈ A be an N-admissible set, and assume that
it has an N-Cheeger set E = {E(i)}N

i=1 ∈ CN(Ω). For any proper subset
J ⊂ {1, . . . , N}, let

ΩJ = Ω \
⋃
j /∈J

E(j), (3.4)
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and let EJ be the |J |-cluster given by
EJ = {E(j)}j∈J .

Then, EJ is a |J |-Cheeger set of ΩJ .

Proof. It is enough to prove the claim for a subset J of cardinality N − 1, and
then to reason by induction. In particular, up to relabeling, we can assume J
to be the proper subset {1, . . . , N − 1}.

As both Ω and E(N) are measurable, so it is the set ΩJ . Moreover, this
latter is (N − 1)-admissible because there exists at least the (N − 1)-cluster
{E(i)}N−1

i=1 .
By contradiction, assume that {E(i)}N−1

i=1 is not an (N − 1)-Cheeger set of
ΩJ . Then, for ε small enough, we find a different (N − 1)-cluster {F(i)}N−1

i=1
with

N−1∑
i=1

P (F(i))
m(F(i)) < hN−1(Ω) + ε <

N−1∑
i=1

P (E(i))
m(E(i)) .

It is then immediate that the N -cluster
{F(i)}N

i=1 = {F(1), . . . , F(N − 1), E(N)}
contradicts the minimality of the N -cluster {E(i)}N

i=1 in Ω. □

3.4. Properties of N-Cheeger sets.

Proposition 3.14 (Basic properties of N -Cheeger sets). Let {Ωk}k ⊂ A be a
collection of N-admissible sets. The following hold for all integers M ≤ N :

(i) if Ω1 ⊂ Ω2, then hM(Ω1) ≥ hM(Ω2);
(ii) if (P.6) is in force, and m(Ωk) → 0+, then hM(Ωk) → +∞;

(iii) if (P.4), (P.5), and (P.6) are in force, and Ωk → Ω in L1(X,m), with
m(Ω) ∈ (0, +∞), then

hM(Ω) ≤ lim inf
k

hM(Ωk).

Moreover, if also (P.3) is in force, P (Ω) is finite, and P (Ωk) → P (Ω),
then

hM(Ω) = lim
k

hM(Ωk).

Proof. Recall that an N -admissible set Ω is also M -admissible for all integers
M ≤ N , see Remark 3.3.

Proof of (i). For any two fixed N -admissible sets with Ω1 ⊂ Ω2, any M -
cluster of Ω1 is also an M -cluster of Ω2. The inequality immediately follows
by definition of M -Cheeger constant.

Proof of (ii). In virtue of (3.3) and the positivity of hM(Ω), it is enough to
prove the claim for M = 1. Fix ε > 0, and for all k, let Ck ⊂ Ωk be such that

h1(Ωk) + ε ≥ P (Ck)
m(Ck) .

Then, by (P.6), we have
h1(Ωk) + ε ≥ f(m(Ck)),
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and the claim follows by the monotonicity of the measure paired with the
hypothesis that the m-measure of Ωk vanishes, that is, m(Ck) ≤ m(Ωk) → 0,
and the behavior of f prescribed by (P.6).

Proof of (iii). Without loss of generality, we can assume there exists a
constant C1 < +∞ independent of k such that

lim inf
k

hM(Ωk) ≤ C1,

as otherwise there is nothing to prove. Let us consider the (not relabeled)
sequence realizing the lim inf. Since Ωk is converging in L1(X,m) to a set of fi-
nite m-measure, we can also assume that m(Ωk) is equibounded, independently
of k, that is,

m(Ωk) ≤ C2.

Thus, by Theorem 3.6, for each k, there exists an M -Cheeger set Ek for Ωk.
Moreover, for any k, we have

M∑
i=1

P (Ek(i)) ≤ hM(Ωk)m(Ωk) ≤ C. (3.5)

Hence, by (P.5), we can extract a (not relabeled) subsequence {Ek(i)}k such
that for all indexes i, the chamber Ek(i) converges in L1(X,m) to a limit set
E(i) necessarily contained in Ω up to m-null sets. Moreover, by (P.6), one
necessarily has m(E(i)) > 0 as otherwise a contradiction with the finiteness
of lim infk hM(Ωk) would arise. Hence, E is an M -cluster of Ω. Thus, owing
to (P.4) and the fact that Ek is an M -Cheeger cluster of Ωk, we have

hM(Ω) ≤
M∑

i=1

P (E(i))
m(E(i)) ≤ lim inf

k

M∑
i=1

P (Ek(i))
m(Ek(i)) = lim inf

k
hM(Ωk),

that is, the first part of the claim.
To show the second part, let us pick an M -Cheeger cluster E of Ω, which

exists since we are under the assumptions of Theorem 3.6. Let us consider the
collections

{Ek(i) = E(i) ∩ Ωk},

which are M -clusters of Ωk for k sufficiently large. Clearly, for each fixed i, we
have that Ek(i) converges in L1(X,m) to E(i), while Ek(i)∪Ωk to Ω. Therefore,
by (P.3), for each i, we have

P (Ek(i)) ≤ P (E(i)) + P (Ωk) − P (E(i) ∪ Ωk).

Taking the lim supk, using the assumption of the convergence of P (Ωk), we
have

lim sup
k

P (Ek(i)) ≤ P (E(i)) + P (Ω) − lim inf
k

P (E(i) ∪ Ωk) ≤ P (E(i)).

Together with (P.4) this implies that, for each i, limk P (Ek(i)) exists and equals
P (E(i)). Combining this fact with the minimality of E for hM(Ω) and the first
part of the claim, we conclude the proof. □
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Remark 3.15. Notice that to prove point (iii), all requests come into play. In-
deed, a priori, one can work with an “almost-infimizing” M -cluster for hM(Ωk)
and find an analogous of (3.5) up to an additive factor εm(Ωk). Then, the
compactness granted by (P.5) is needed, but in order to ensure that the limit-
ing collection E is indeed a cluster, the isoperimetric property (P.6) is needed.
Finally, when talking about a lim inf property, we cannot avoid enforcing (P.4).

Lemma 3.16. Let Ω ∈ A be an N-admissible set with m(Ω) ∈ (0, +∞), and
assume that CN(Ω) ̸= ∅. If (P.6) is in force, then for every N-Cheeger set
{C(i)}N

i=1 ∈ CN(Ω), and for every i = 1, . . . , N , we have
m(C(i)) ≥ c,

where c > 0 is a constant depending only on hN(Ω) and the isoperimetric
function f appearing in (P.6).

Proof. Let {C(i)}N
i=1 ∈ CN(Ω), then owing to (P.6), for every i we have

+∞ > hN(Ω) ≥ P (C(i))
m(C(i)) ≥ f(m(C(i))).

By the assumptions on f given in (P.6), f(ε) → +∞ as ε → 0+. Thus, there
exists a threshold c = c(hN(Ω), f) > 0 such that

f(m(E)) > hN(Ω) for all E ∈ A , with m(E) < c.

Hence, for any N -Cheeger set, the lower bound on the volume of each of its
chambers follows. □

3.5. Additional properties of 1-Cheeger sets. For 1-Cheeger sets, some-
thing more can be said in general, as we show in the next proposition.

Proposition 3.17. Let Ω ∈ A be a 1-admissible set, and assume that C1(Ω)
is not empty. If (P.3) is in force, for any E, F ∈ C1(Ω), the following hold:

(i) E ∪ F ∈ C1(Ω);
(ii) E ∩ F ∈ C1(Ω), provided that m(E ∩ F ) > 0.

Moreover, if also (P.4) is in force, then C1(Ω) is closed with respect to countable
unions and m-non-negligible intersections, that is, given any countable family
{Ej}j of 1-Cheeger sets, one has:

(iii) ⋃j Ej ∈ C1(Ω);
(iv) ⋂j Ej ∈ C1(Ω), provided that m

(⋂
j Ej

)
> 0.

Proof. First, notice that we have the equalities
P (E) = h1(Ω)m(E), P (F ) = h1(Ω)m(F ).

Hence, owing to (P.3), the following chain of inequalities holds:
h1(Ω)(m(E ∪ F ) + m(E ∩ F )) = h1(Ω)(m(E) + m(F ))

= P (E) + P (F )
≥ P (E ∪ F ) + P (E ∩ F )
≥ h1(Ω)(m(E ∪ F ) + m(E ∩ F )),
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and thus, they are all equalities. This implies that
P (E ∩ F ) = h1(Ω)m(E ∩ F ),
P (E ∪ F ) = h1(Ω)m(E ∪ F ),

thus E ∪ F is a 1-Cheeger set, and so it is E ∩ F , provided that it has positive
m-measure. This settles points (i) and (ii).

Now, concerning the proof of (iii) and (iv), let {Ej}j be any countable family
of 1-Cheeger sets. Then, the sequences

Fk =
k⋃

j=1
Ej, Gk =

k⋂
j=1

Ej,

are sequences of 1-Cheeger sets by points (i) and (ii) previously established
(the second one, under the additional assumption that the intersections are
m-non-negligible). Moreover, they converge, respectively, in L1(X,m) to the
sets

F =
⋃
j

Ej, G =
⋂
j

Ej.

The lower-semicontinuity of P granted by (P.4) implies that these sets are
1-Cheeger sets themselves, and this concludes the proof. □

Proposition 3.18 (Maximal Cheeger set). Let Ω ∈ A be a 1-admissible set,
with m(Ω) ∈ (0, +∞), and assume that C1(Ω) is not empty. If (P.4) and (P.5)
are in force, then there exist 1-Cheeger sets with maximal measure, and we
shall call them maximal 1-Cheeger sets. If also (P.3) holds, then there exists
a unique (up to m-negligible sets) maximal 1-Cheeger set E+ ∈ C1(Ω), and it
is such that E ⊂ E+ for all E ∈ C1(Ω).

Proof. Take a sequence {Ck}k in C1(Ω) supremizing the L1(X,m) norm. The
following uniform upper bound on the perimeters of {Ck}k holds

P (Ck) = h1(Ω)m(Ck) ≤ h1(Ω)m(Ω).
Thus, by (P.5), up to extracting a subsequence, Ck converge to some limit set
C, which, by (P.4), is readily proven to be a 1-Cheeger set itself, provided that
m(C) > 0, which holds true as we look for sets maximizing the L1(X,m) norm.

Now additionally assume (P.3), and let C0 be a maximal 1-Cheeger set. For
any other 1-Cheeger set C, if one were not to have C ⊂ C0 a contradiction
would immediately ensue, since C ∪ C0 is itself a 1-Cheeger set by Proposi-
tion 3.17(i). This same reasoning also yields the uniqueness of such a set. □

Example 3.19. An example of metric-measure space (X, A ,m) where exis-
tence of maximal 1-Cheeger sets fails is the following one. Consider (X, A ,m)
as the probability measure space (R2, B(R2), (2π)− 1

2 e−∥ · ∥L 2), and consider
the perimeter functional given by P (E) = 0 for all E ∈ A excluded R2 itself,
and P (R2) = 1. In such a setting neither (P.4) nor (P.5) hold. If we choose
Ω = R2, all m-non-negligible sets are 1-Cheeger sets but for the whole space
R2. No maximal 1-Cheeger set exists, as the supremum of their norms is 1,
and this is the measure of the lone R2.
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Proposition 3.20 (Minimal Cheeger set). Let Ω ∈ A be a 1-admissible set
with finite m-measure, and assume that C1(Ω) is not empty. If (P.4), (P.5),
and (P.6) are in force, then there exist 1-Cheeger sets with minimal L1(X,m)
norm, and we shall call them minimal 1-Cheeger sets.

Proof. The proof is exactly the same as the one of Proposition 3.18, except
that we now need to ensure that the limit set C is a viable competitor, that
is, m(C) > 0. This is exactly why we need to require (P.6). The uniform
lower bound on the volume of any 1-Cheeger set provided by Lemma 3.16
immediately allows to conclude. □

Example 3.21. An example of measure space (X, A ,m) where existence of
minimal 1-Cheeger sets fails is the one of Example 3.19. Chosen any Ω, all of
its subsets but m-negligible ones are 1-Cheeger sets. Hence, minimal 1-Cheeger
sets do not exist, being the infimum of the measures of 1-Cheeger sets equal
to zero.

4. Sets with prescribed mean curvature

In this section, we work in a measure space endowed with a perimeter func-
tional as in Section 2.1. We show that the Cheeger constant acts as a threshold
to determine whether non-trivial minimizers exist for the so-called prescribed
mean curvature functional, under some suitable assumptions on the perimeter
functional. In order to do so, the first result we need to prove is the following
lemma.

Lemma 4.1. Let Ω ∈ A be a 1-admissible set. An m-non-negligible set C is
a 1-Cheeger set of Ω if and only if it is a minimizer of

Jh1(Ω)[F ] = P (F ) − h1(Ω)m(F ) (4.1)
among {F ∈ A : F ⊂ Ω}.

Proof. It is sufficient to note that the inequality Jh1(Ω)[F ] ≥ 0 holds true,
and that the only m-non-negligible sets that can saturate it are 1-Cheeger
sets. The non-negativity of Jh1(Ω) is trivial for m-negligible sets, while for all
m-non-negligible sets, it follows by the definition of 1-Cheeger constant. □

4.1. The P -mean curvature. Lemma 4.1 allows us to infer that any 1-
Cheeger set has a P -mean curvature, defined as follows.

Definition 4.2. Let (X, A ,m) be a measure space, and let Ω ∈ A . A function
H ∈ L1(Ω,m) is said to be a P -mean curvature in Ω of a set E ⊂ Ω if E
minimizes the functional

F 7→ P (F ) −
∫

F
H dm,

among all m-measurable F ⊂ Ω.

A similar definition was first given in measure spaces in [20] under some
assumptions on the perimeter functional, and only when Ω = X, with the
additional request that m(X) < +∞.
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Given Definition 4.2, a direct consequence of Lemma 4.1 is that 1-Cheeger
sets of Ω, if they exist, have h1(Ω) as one of their P -mean curvatures in Ω—
and this without assuming anything on the perimeter, apart from the non-
negativity.

Corollary 4.3. Let (X, A ,m) be a non-negative σ-finite measure space and
let Ω ∈ A be a 1-admissible set. If C ∈ C1(Ω) is a 1-Cheeger set in Ω, then
h1(Ω) is a P -mean curvature in Ω of C.

A similar result can be inferred on each chamber of an N -Cheeger cluster,
by simply using Proposition 3.13.

Corollary 4.4. Let (X, A ,m) be a non-negative σ-finite measure space and
let Ω ∈ A be an N-admissible set. If E = {E(i)}N

i=1 ∈ CN(Ω), then, letting
Ji = {i}, for every i = 1, . . . , N , h1(ΩJi

) is a P -mean curvature in ΩJi
of the

chamber E(i), where ΩJi
is as in (3.4).

Proof. Let i be fixed. By Proposition 3.13, the chamber E(i) is a 1-Cheeger
set of ΩJi

. The conclusion now directly follows from Corollary 4.3. □

4.2. Relation with sets with prescribed P -mean curvature. Let now
Ω ∈ A be fixed, and consider the functional

Jκ[F ] = P (F ) − κm(F ), (4.2)

that is, the same functional introduced in (4.1) but with a general positive
constant κ ∈ R+ in place of h1(Ω). The reason why this functional is referred to
as the prescribed P -mean curvature functional, is that κ is a P -mean curvature
of any minimizer Eκ of the functional Jκ in (4.2).

The next theorem states that if there exists a 1-Cheeger set, and proper-
ties (P.1), (P.4), and (P.5) are in force, then (4.2) has m-non-negligible mini-
mizers if and only κ ≥ h1(Ω).

Theorem 4.5. Let (X, A ,m) be a non-negative σ-finite measure space, and
let Ω ∈ A with finite m-measure. For κ > 0, let Jκ be the functional

Jκ[F ] = P (F ) − κm(F ),

defined over m-measurable subsets of Ω.
Then, if properties (P.4) and (P.5) are in force, minimizers of Jκ exist. In

addition, if property (P.1) is also in force, the following hold true:
(i) if Jκ has m-non-negligible minima, then κ ≥ h1(Ω);

(ii) if κ > h1(Ω), then Jκ has m-non-negligible minima.
Moreover,

(iii) if Ω has a 1-Cheeger set C ∈ C1(Ω), then Jκ has m-non-negligible
minima if and only if κ ≥ h1(Ω).

Proof. First, we show that assumptions (P.4), (P.5), and the finiteness of m(Ω)
imply the existence of minimizers of Jκ.
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Indeed, since the perimeter functional is non-negative, and by the mono-
tonicity of measures, we have the trivial lower bound Jκ ≥ −κm(Ω). There-
fore, we can take an infimizing sequence {Ek}k, for whose perimeters (for k
large enough) we have the uniform upper bound

P (Ek) ≤ κm(Ω) + inf Jκ + 1,

which is finite by the finiteness of m(Ω).
By (P.5), we can extract a converging subsequence in L1(X,m) to some limit

set E, and by (P.4), we have

P (E) − κm(E) ≤ lim inf
k

(
P (Ek) − κm(Ek)

)
= inf Jκ.

Hence, E is a minimizer of the problem.
Let us now turn our attention to points (i), (ii) and (iii). First, note that

requiring (P.1) implies that the minimum of Jκ is non-positive. Indeed, owing
also to (P.4), Remark 2.2 gives that Jκ is zero whenever evaluated on an
m-negligible set.

Suppose that there exists an m-non-negligible minimizer Eκ. Necessarily, by
comparing with an m-negligible set we have

P (Eκ) − κm(Eκ) ≤ 0,

which, rearranged, gives κ ≥ P (Eκ)m(Eκ)−1, and this ratio has to be greater
than or equal to h1(Ω) by definition; thus, point (i) is settled.

Conversely, let κ > h1(Ω), and let ε > 0 be such that κ = h1(Ω) + 2ε. Since
Ω has finite m-measure, just as in the proof of Theorem 3.6, we can find an
infimizing sequence {Cj}j for the 1-Cheeger constant h1(Ω). For j ≫ 1, we
have P (Cj)m(Cj)−1 ≤ h1(Ω) + ε. Hence,

min Jκ ≤ P (Cj) − κm(Cj) < P (Cj) − (h1(Ω) + ε)m(Cj) ≤ 0,

which yields the claim since Jκ is zero when evaluated on m-negligible sets.
This establishes point (ii).

Finally, assuming the existence of a 1-Cheeger set, point (iii) follows directly
from (i), (ii), and Lemma 4.1. □

5. Relation with first 1-eigenvalue

In this section, we work in the setting of Section 2.2, where we introduced
BV functions starting from a given perimeter functional P on a measure space
(X, A ,m).

5.1. First 1-eigenvalue for N-clusters. For a given m-measurable subset
Ω ⊂ X, we let

BV0(Ω,m) =
{
u ∈ BV (X,m) : u|X\Ω = 0

}
.

Here and in the following, we write u|X\Ω = 0 whenever∫
X\Ω

|u| dm = 0.



CHEEGER PROBLEM IN MEASURE SPACES 27

Thanks to Lemma 2.6(iii), under the validity of assumptions (P.1) and (P.2),
we have BV0(Ω,m) ̸= ∅.

Definition 5.1 (First 1-eigenvalue). Let properties (P.1) and (P.2) be in force.
Let Ω ∈ A be a 1-admissible set with m(Ω) ∈ (0, +∞). We call

λ1,1(Ω) = inf
{

Var(u)
∥u∥1

: u ∈ BV0(Ω,m), ∥u∥1 > 0
}

∈ [0, +∞)

the first 1-eigenvalue relative to the variation on Ω.

Analogously, we can define the first 1-eigenvalue in the case of N -clusters as
follows.

Definition 5.2 (First 1-eigenvalue for N -clusters). Let properties (P.1) and
(P.2) be in force. Let Ω ∈ A be an N -admissible set with m(Ω) ∈ (0, +∞).
We define the first 1-eigenvalue for N-clusters relative to the variation on Ω
as the quantity

ΛN(Ω) = inf
N∑

i=1

Var(ui)
∥ui∥1

, (5.1)

where the infimum is sought among the N -tuples {ui}N
i=1 such that

ui ∈ BV0(Ω,m), with ∥ui∥1 > 0 and supp(ui) ∩ supp(uj) = ∅,

for all i ̸= j, i, j = 1, . . . , N .

Clearly, we have that Λ1(Ω) = λ1,1(Ω) for all 1-admissible sets Ω ∈ A with
m(Ω) ∈ (0, +∞). In Theorem 5.4 below, we prove the relation λ1,1(Ω) = h1(Ω),
also see [88, Cor. 6], under the additional (P.7), as a consequence of a more
general inequality involving hN(Ω) and ΛN(Ω) in the spirit of [49, Thm. 3.3].

5.2. Relation with first 1-eigenvalue for N-clusters. We need the fol-
lowing preliminary result, which can be seen as a symmetric version of the
coarea formula (2.2). Note that, in Lemma 5.3, we assume the validity of the
symmetry property (P.7).

Lemma 5.3 (Symmetric coarea formula). Let properties (P.1), (P.2), (P.4),
and (P.7) be in force. If u ∈ BV (X,m) and

F t =

{u > t}, if t ≥ 0,

{u < t}, if t < 0,

then
∥u∥1 =

∫
R
m(F t) dt, (5.2)

and
Var(u) =

∫
R

P (F t) dt. (5.3)

In particular, χFt ∈ BV (X,m) for a.e. t ∈ R. In addition, if u ∈ BV0(Ω,m),
then F t ⊂ Ω for all t.
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Proof. Equation (5.2) is a simple consequence of Cavalieri’s principle, being

∥u∥1 =
∫

X
|u| dm =

∫
X

(u+ + u−) dm

=
∫ +∞

0
m({u+ > t}) dt +

∫ +∞

0
m({u− > t}) dt

=
∫
R
m(F t) dt,

where u+ and u− are the positive and negative parts of u, respectively.
To prove (5.3), we first observe that, by property (P.7),

Var(u) =
∫
R

P ({u > t}) dt

=
∫ 0

−∞
P ({u > t}) dt +

∫ +∞

0
P ({u > t}) dt

=
∫ 0

−∞
P ({u ≤ t}) dt +

∫ +∞

0
P ({u > t}) dt.

Therefore, we just need to show that P ({u ≤ t}) = P ({u < t}) for a.e. t < 0.
Since clearly {u ≤ t} = {u < t} ∪ {u = t}, thanks to property (P.4) and Re-
mark 2.2, it is enough to prove that m({u = t}) = 0 for a.e. t < 0. This is
an immediate consequence of the fact that the function t 7→ m({u ≤ t}) is
monotone non-decreasing for t < 0, so that the set of its discontinuity points
{t < 0 : m({u = t}) > 0} is at most countable.

Now, the fact that χF t ∈ BV (X,m) for a.e. t ∈ R directly follows from (5.3)
and (5.2). Finally, if t > 0 then F t = {u > t} ⊂ Ω by definition of BV0(Ω,m).
In a similar way, if t < 0, then

F t = {u < t} = X \ {u ≥ t} ⊂ X \ {u ≥ 0} ⊂ Ω.

The proof is complete. □

Theorem 5.4 (Relation with first 1-eigenvalue for N -clusters). Let properties
(P.1) and (P.2) be in force. If Ω ∈ A is an N-admissible set with m(Ω) ∈
(0, +∞), then

ΛN(Ω) ≤ hN(Ω).
Moreover, if also properties (P.4) and (P.7) hold, then

Nh1(Ω) ≤ ΛN(Ω),
and thus, in particular, h1(Ω) = λ1,1(Ω).

Proof. Thanks to Lemma 2.4, as Ω is N -admissible, given any N -cluster E =
{E(i)}N

i=1 in Ω, the N -tuple {χE(i) : i = 1, . . . , N} is a viable competitor in the
definition of ΛN(Ω). Hence, the inequality

ΛN(Ω) ≤ hN(Ω)
immediately follows.

We now assume the validity of properties (P.4) and (P.7), so that we can
use Lemma 5.3, and focus on the lower bound on ΛN(Ω).
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We begin with the case N = 1. By contradiction, start by assuming that
Λ1(Ω) < h1(Ω). Fixed any ε > 0 such that Λ1(Ω) + ε ≤ h1(Ω), we let u ∈
BV0(Ω,m) be a competitor in the definition of Λ1(Ω) such that

Var(u)
∥u∥1

≤ Λ1(Ω) + ε. (5.4)

Let {F t : t ∈ R} be the family of sets introduced in Lemma 5.3 relatively to
the function u. We claim that there exists t̄ ∈ [0, +∞) such that

m(F t) > 0 either for all t > t̄ or for all t < −t̄. (5.5)
Indeed, if either t1 < t2 < 0 or t1 > t2 > 0, then F t1 ⊂ F t2 by definition.
Thus, it is enough to find t̄ such that either m(F t̄) > 0 or m(F −t̄) > 0. If no
such t̄ exists, then Cavalieri’s principle (5.2) implies that ∥u∥1 = 0, against our
initial choice of u. Hence, claim (5.5) follows, and so, up to possibly replacing
u with −u, we can suppose that m(F t) > 0 for t > t̄. Now, by Lemma 5.3, we
can rewrite (5.4) as∫

R

(
P (F t) − (Λ1(Ω) + ε)m(F t)

)
dt ≤ 0. (5.6)

Recalling that Λ1(Ω) + ε ≤ h1(Ω) according to our initial assumption, from
inequality (5.6), we immediately get that

0 ≤
∫
R

(
P (F t) − h1(Ω)m(F t)

)
dt ≤

∫
R

(
P (F t) − (Λ1(Ω) + ε)m(F t)

)
dt ≤ 0.

Therefore, we must have that
P (F t) − h1(Ω)m(F t) = 0

for a.e. t ∈ R. Thus, taking into account that F t ⊂ Ω for all t ∈ R, we get
that

Λ1(Ω) + ε ≥ P (F t)
m(F t) ≥ h1(Ω) (5.7)

for a.e. t > t̄, that is, Λ1(Ω) + ε = h1(Ω) for all choices of ε > 0 suitably small,
which is clearly impossible. Therefore, Λ1(Ω) ≥ h1(Ω), as desired.

We now conclude the proof with the case N > 1. Let ε > 0 and let {ui : i =
1, . . . , N} be a viable N -tuple for the definition of ΛN(Ω) such that

N∑
i=1

Var(ui)
∥ui∥1

≤ ΛN(Ω) + ε.

For each i = 1, . . . , N , the function ui provides a viable competitor in the
definition of Λ1(Ω). Consequently, using the inequality proved for the case
N = 1, we get that

ΛN(Ω) + ε ≥ NΛ1(Ω) = Nh1(Ω).
The conclusion thus follows by letting ε → 0+. □

We end the present section with the following simple consequence of Theo-
rem 5.4, and refer to [6, 21] for the Euclidean case, and some final remarks.
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Corollary 5.5. Let properties (P.1), (P.4), and (P.7) be in force. Let Ω ∈ A
be a 1-admissible set with m(Ω) ∈ (0, +∞). A function u ∈ BV0(Ω,m) attains
Λ1(Ω) if and only if the sets F t introduced in Lemma 5.3 are 1-Cheeger sets
of Ω for a.e. t ∈ R such that m(F t) > 0. Moreover, there exists a unique (up
to a multiplicative factor) eigenfunction of the variational problem for Λ1(Ω)
if and only if there exists a unique 1-Cheeger set.

Proof. Recalling that (P.1) and (P.7) imply the validity of (P.2), we can argue
as in the proof of Theorem 5.4, with the exception that we can now choose a
minimizer u ∈ BV0(Ω,m) for Λ1(Ω), with no need to work with some given
ε > 0. In particular, in place of (5.7), we obtain

Λ1(Ω) = P (F t)
m(F t) = h1(Ω)

for all t ∈ R such that m(F t) > 0, proving the first implication. On the other
hand, owing again to Lemma 5.3, if all the level sets {F t : t ∈ R} of a viable
competitor u ∈ BV0(Ω,m) with positive m-measure are 1-Cheeger sets, then

Λ1(Ω)∥u∥1 = h1(Ω)
∫
R
m(F t) dt =

∫
R

P (F t) dt = Var(u),

so that u must be a minimizer attaining Λ1(Ω).
Now, exploiting the first part of the claim, it is easy to show the part re-

garding uniqueness. First, notice that, given any 1-Cheeger set C, the function
u = cχC is a 1-eigenfunction for any c ̸= 0. Thus, two different Cheeger sets
must provide two different 1-eigenfunctions. Conversely, if u1 and u2 are two
distinct 1-eigenfunctions such that u1 ̸= cu2 for all c ̸= 0, then we can find
t̄ ∈ R such that the two level sets

{
u1 > t̄

}
and

{
u2 > t̄

}
have positive m-

measure and are distinct, hence identifying two different 1-Cheeger sets. □

Remark 5.6. Let properties (P.1), (P.4), and (P.7) be in force. Whenever a
1-Cheeger set C exists (for instance under the assumptions of Theorem 3.6),
Corollary 5.5 yields the existence of eigenfunctions of the variational problem
defining Λ1(Ω), by setting u = cχC , with c ̸= 0.

Remark 5.7. In Section 3.2, we already discussed some examples of sets Ω for
which Nh1(Ω) = hN(Ω) (recall Remark 3.12). Thus, whenever Theorem 5.4
applies, we obtain that ΛN(Ω) equals these values for such sets Ω.

Remark 5.8. We point out that, in [49, Thm. 3.1], the authors define ΛN(Ω)
as the infimum of a different variational problem, and prove that it coincides
with hN(Ω). The adaptation of the approach of [49] to our more general
framework will be discussed in the forthcoming paper [115].

Remark 5.9. A key tool for the proof of Theorem 5.4 is the symmetric coarea
formula of Lemma 5.3, which holds provided that also (P.7) is enforced. In
particular, this excludes anisotropic Euclidean settings where the Wulff shape
is not central symmetric. A workaround would be to tweak the variational



CHEEGER PROBLEM IN MEASURE SPACES 31

problem (5.1) by instead considering

Λ̃1(Ω) = inf
{

Var(u)
∥u∥1

: u ∈ BV0(Ω,m), ∥u∥1 > 0, u ≥ 0
}

.

In such a way, in the proof of Theorem 5.4, the symmetric coarea formula
would not be needed (as u ≥ 0), and one could then establish the equality
Λ̃1(Ω) = h1(Ω).

6. Relation with first p-eigenvalue and p-torsion

In this section, we work in a topological non-negative σ-finite measure space
endowed with a relative perimeter functional as in Section 2.3. We discuss the
relations between the 1-Cheeger constant and two other variational quantities,
the first p-eigenvalue and the p-torsion function, extending to the present more
general setting the results obtained in [88,89] and [33].

6.1. Relation with first p-eigenvalue. The following definition is motivated
by the strong approximation proved in Corollary 2.20.

Definition 6.1 (The set W1,p
0 (Ω,m) for p ∈ (1, +∞)). Let properties (RP.1),

(RP.2), (RP.3), (RP.4), and (RP.+) be in force. Let p ∈ (1, +∞) and let Ω ⊂ X
be a non-empty open set. We say that u ∈ W1,p

0 (Ω,m) if u ∈ W1,p(X,m) and
there exists a sequence {uk}k∈N ⊂ W1,1(X,m) ∩ Lp(X,m) as in Corollary 2.20
such that, in addition,

uk ∈ C0(X) and supp uk ⊂ Ω for all k ∈ N.

Under the validity of properties (RP.1), (RP.2), (RP.3), (RP.4), and (RP.+),
since 0 ∈ W1,1(X,m) by Corollary 2.16, we know that 0 ∈ W1,p

0 (Ω,m).
The following definition is focused on open sets for which W1,p

0 (Ω,m) ̸= {0}.

Definition 6.2 (p-regular open set and first p-eigenvalue). Let properties
(RP.1), (RP.2), (RP.3), (RP.4), and (RP.+) be in force. Let p ∈ (1, +∞).
A non-empty open set Ω ⊂ X is p-regular if W1,p

0 (Ω,m) ̸= {0}. In this case,
we let

λ1,p(Ω) = inf
{

∥|∇u|p∥p
p

∥u∥p
p

: u ∈ W1,p
0 (Ω,m), ∥u∥p > 0

}
∈ [0, +∞)

be the first p-eigenvalue relative to the W1,p-energy on Ω. Here, |∇u|p denotes
the weak p-slope of u defined in Definition 2.19.

According to Definition 6.2, if Ω is p-regular, then we can find a non-zero
function u ∈ W1,p

0 (Ω,m). As a consequence, by Definition 6.1, we can also
find a function v ∈ W1,1(X,m) ∩ C0(X) with supp v ⊂ Ω. Consequently,
v ∈ BV0(Ω,m) with ∥v∥1 > 0. Therefore, the first 1-eigenvalue λ1,1(Ω) rela-
tive to the variation Var on Ω introduced in Definition 5.1 is well-posed. In
addition, thanks to Theorem 5.4, λ1,1(Ω) coincides with h1(Ω) whenever Ω is
1-admissible (with respect to the variation functional Var( · ) = Var( · ; X)), it
satisfies m(Ω) ∈ (0, +∞), and the perimeter in (2.6) satisfies (P.7).
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As a corollary of the following result, we prove that the 1-Cheeger constant
h1(Ω) provides a lower bound on the first p-eigenvalue.

Theorem 6.3 (Relation with first p-eigenvalue). Let the properties (RP.1),
(RP.2), (RP.3), (RP.4), (RP.+), and (RP.L) be in force and let p ∈ (1, +∞).
If Ω ⊂ X is a p-regular open set, then

λ1,p(Ω) ≥
(

λ1,1(Ω)
p

)p

. (6.1)

Proof. Let u ∈ W1,p
0 (Ω,m) be such that ∥u∥p > 0. Then, according to Defini-

tion 6.1, we can find uk ∈ W1,1(X,m)∩Lp(X,m)∩C0(X) with |∇uk| ∈ Lp(X,m)
and supp uk ⊂ Ω for all k ∈ N such that uk → u and |∇uk| → |∇u|p both
in Lp(X,m) as k → +∞. Now let φ(r) = r|r|p−1 for all r ∈ R and note that
φ ∈ C1(R) is strictly increasing, with φ′(r) = p|r|p−1 for all r ∈ R. By The-
orem 2.15, we get that φ(uk) ∈ W1,1(X,m) ∩ C0(X) with supp φ(uk) ⊂ Ω
and |∇φ(uk)| = p|uk|p−1|∇uk| m-a.e. in X for all k ∈ N. In particular,
φ(uk) ∈ BV0(Ω,m) for all k ∈ N. Thus, by Hölder’s inequality, we can es-
timate

Var(φ(uk); X) = ∥|∇φ(uk)|∥1 = p
∫

X
|uk|p−1|∇uk| dm

≤ p∥|uk|p−1∥ p
p−1

∥|∇uk|∥p = p∥uk∥p−1
p ∥|∇uk|∥p .

Thus,

λ1,1(Ω) ≤ Var(φ(uk); X)
∥φ(uk)∥1

≤
p∥uk∥p−1

p ∥|∇uk|∥p

∥uk∥p
p

= p∥|∇uk|∥p

∥uk∥p

for all k ∈ N. Letting k → +∞, we obtain

λ1,1(Ω) ≤ p
∥|∇u|p∥p

∥u∥p

for u ∈ W1,p
0 (Ω,m) with ∥u∥p > 0 and the proof is complete. □

Assuming (P.7), we can combine Theorem 6.3 with Theorem 5.4 obtaining
the following corollary.

Corollary 6.4. Let the assumptions of Theorem 6.3 be in force. If the perime-
ter in (2.6) also satisfies (P.7) and Ω ⊂ X is 1-admissible with respect to the
variation in (2.6) with m(Ω) ∈ (0, +∞), then

λ1,p(Ω) ≥
(

h1(Ω)
p

)p

.

6.2. Relation with p-torsional creep function. Assume properties (RP.1),
(RP.2), (RP.3), (RP.4), and (RP.+) to be in force. Let p ∈ (1, +∞) and
let Ω ⊂ X be a non-empty p-regular open set with m(Ω) < +∞. We let
Jp : W1,p

0 (Ω,m) → R, be

Jp(u) = 1
p

∫
Ω

|∇u|pp dm −
∫

Ω
u dm,
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be the p-torsional creep energy functional, see [87]. When enough structure is
available on the ambient space, the Euler–Lagrange equation associated to the
functional Jp is given by{−∆pu = 1, in Ω,

u = 0, on ∂Ω. (6.2)

Thanks to Lemma 2.18(i), the functional Jp is strictly convex on the convex
set W1,p

0 (Ω,m). Hence, the torsional creep problem

Tp(Ω) = inf
{
Jp(u) : u ∈ W1,p

0 (Ω,m)
}

has at most one minimizer. If this exists, we denote it by wp ∈ W1,p
0 (Ω,m). In

particular, since 0 ∈ W1,p
0 (Ω,m), we immediately see that

Jp(wp) ≤ Jp(0) = 0,

so that ∫
Ω

|∇wp|pp dm ≤ p
∫

Ω
wp dm ≤ p

∫
Ω

|wp| dm. (6.3)

Under the assumptions of Corollary 6.4, and assuming the existence of a
non-trivial minimizer wp of Jp, we can show that the 1-Cheeger constant of Ω
provides a bound on the L1(X,m) norm of wp, in a similar fashion to [33].

Theorem 6.5 (Relation with the p-torsional creep function). Let the proper-
ties (RP.1), (RP.2), (RP.3), (RP.4), (RP.+), (RP.L), and (P.7) be in force
and let p ∈ (1, +∞). If Ω ⊂ X is a p-regular open set which is also 1-
admissible with respect to the variation in (2.6) with m(Ω) ∈ (0, +∞), and Jp

has a non-trivial minimizer wp ̸= 0, then

h1(Ω) ≤ p1+ 1
p

(
m(Ω)
∥wp∥1

) p−1
p

. (6.4)

Proof. Using Corollary 6.4, the (non-trivial) torsional creep function wp as a
competitor for λ1,p(Ω), the inequality (6.3) and Hölder’s inequality, we get(

h1(Ω)
p

)p

≤ λ1,p(Ω) ≤
∫

Ω |∇wp|pp dm∫
Ω |wp|p dm

≤ p
∫

Ω |wp| dm∫
Ω |wp|p dm ≤ pm(Ω)p−1

(
∫

Ω |wp| dm)p−1 .

Rearranging, the claimed inequality follows. □

Remark 6.6. If the weak formulation of the torsional creep PDE (6.2) is
available, then one can test it against the solution wp itself, finding that∫

Ω
|∇wp|pp dm =

∫
Ω

wp dm.

Using this equality in place of inequality (6.3), one gets the analog of (6.4)
with a prefactor of p in place of p1+ 1

p . Under additional structural hypotheses
on the space, which allow to identify the p-slope with the p-th power of the
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1-slope, one can altogether remove the prefactor from the inequality, similarly
to [33, Thm. 2].

Remark 6.7. In the statement of Theorem 6.5, we need to assume that Jp

has a minimizer (which in case is the unique one, by strict convexity) and that
this is non-trivial. This can be ensured in suitable spaces, where a Poincaré
inequality holds, allowing to see that Jp is coercive.

7. Applications

In this section, we apply the general results presented above to specific set-
tings. In each of the following examples, we will consider the natural topology
of the ambient space.

7.1. Metric-measure spaces. Let (X, d) be a complete and separable metric
space and let m be a non-negative Borel measure (on the σ-algebra induced by
the distance d) that is finite on bounded Borel sets and such that suppm = X.
In particular, m is a σ-finite measure on X.

Given u : X → R, we define the slope of u (also called the local Lipschitz
constant of u) the function |∇u| : X → [0, +∞] defined as

|∇u|(x) = lim sup
y→x

|u(y) − u(x)|
d(y, x)

for all x ∈ X.
For an open set A ⊂ X, we say that u ∈ Liploc(A) if for each x ∈ Ω,

there is r > 0 such that Br(x) ⊂ A and the restriction u|Br(x) is a Lipschitz
function, where Br(x) ⊂ X denotes the d-ball centered at x ∈ X with radius
r ∈ (0, +∞).

In the present metric-measure setting, one has the following natural defini-
tion of BV functions, see [11,12,107].

Definition 7.1 (BV functions in metric spaces). We say that u ∈ BV (X, d,m)
if u ∈ L1(X,m) and there exists a sequence {uk}k∈N ⊂ Liploc(X) such that

uk → u in L1(X,m) and sup
k∈N

∫
X

|∇uk| dm < +∞.

Moreover, we let

|Du|(A) = inf
{

lim inf
k→+∞

∫
X

|∇uk| dm : uk ∈ Liploc(A), uk → u in L1(A,m)
}

(7.1)
be the variation of u relative to the open set A ⊂ X. As usual, if u = χE

for some measurable set E ⊂ X, then we let P (E; A) = |DχE|(A) be the
perimeter of E relative to A.

If u ∈ BV (X, d,m), then the set function A 7→ |Du|(A) is the restriction to
open sets of a finite Borel measure, for which we keep the same notation. This
result was originally proved in [107] for locally compact metric spaces, and
then generalized to the possibly non-locally compact setting in [11]. Actually,
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as done in [107], the convergence in L1(A,m) in (7.1) may be replaced with
the convergence in L1

loc(A,m) without affecting the overall approach.
In the present setting, the (total) perimeter functional P (E) = |DχE|(X)

given by (7.1) in Definition 7.1 satisfies the properties (P.1), (P.2), (P.3), (P.4),
(P.5), and (P.7). Indeed, properties (P.1), (P.2), and (P.7) immediately follow
from Definition 7.1. For property (P.3), we refer to [107, Prop. 4.7(3)]. Finally,
property (P.4) is a consequence of [107, Prop. 3.6] and property (P.5) follows
from [107, Thm. 3.7].

For what concerns the variation measure introduced in (7.1), from [107,
Prop. 4.2] and the discussion in [11, Sect. 1], we can infer that

|Du|(A) =
∫
R

|Dχ{u>t}|(A) dt =
∫ 0

−∞
|Dχ{u<t}|(A) dt +

∫ +∞

0
|Dχ{u>t}|(A) dt

whenever u ∈ BV (X, d,m), for every Borel set A ⊂ X.
In virtue of the properties listed above, we easily deduce the validity of the

relation between the 1-Cheeger constant of an open set Ω ⊂ X with m(Ω) ∈
(0, +∞) and the first 1-eigenvalue as in Theorem 5.4, meaning that

h1(Ω) = inf
{

|Du|(X)
∥u∥1

: u ∈ BV (X, d,m), u|X\Ω = 0, ∥u∥1 > 0
}

.

Incidentally, we refer the reader to [11, Sect. 6] for the definition of the
1-Laplacian operator in this general context.

Concerning the isoperimetric-type property (P.6), we can state the following
result (inspired by [13, Thm. 3.46]). Notice that inequality (7.2) serves as a
prototype in the present setting. In fact, as discussed in the examples below, if
the ambient metric-measure space (X, d,m) has a richer structure, then finer
results are available. Nonetheless, the isoperimetric-type inequality (7.2) is
sufficient to replace (P.6) in the present context.

Proposition 7.2. Let (X, d,m) be a geodesic Poincaré metric-measure space
as in [107, Def. 2.5]. Let Ω ⊂ X be an open set with m(Ω) ∈ (0, +∞). Assume
that there exists a countable family of open balls Bi = Bri

(xi), i ∈ N, with the
following properties:

(i) Ω ⊂ ⋃
i∈N Bi;

(ii) there exists N ∈ N such that ∑i∈N χBi ≤ N ;
(iii) there exists c0 > 0 such that m(Bi) ≥ c0r

Q
i for all i ∈ N, where Q > 0

is the homogeneous dimension as in [107, Rem. 2.2];
(iv) ε0 = inf{ri : i ∈ N} > 0.

Then, there exists a constant C > 0 such that

m(E)
Q−1

Q ≤ C P (E) (7.2)

whenever E ⊂ Ω is an m-measurable set with m(E) < c0
2 εQ

0 .

Proof. Due to (iv), we can estimate

m(E ∩ Bi) ≤ m(E) <
c0

2 εQ
0 ≤ 1

2m(Bi)
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for all i ∈ N. Consequently, by [107, Thm. 4.5] (since (X, d) is geodesic by
assumption) and (iii), we get

m(E ∩ Bi)
Q−1

Q = min
{
m(E ∩ Bi), m(Ec ∩ Bi)

}Q−1
Q

≤ cri

m(Bi)1/Q
P (E; Bi) ≤ c c

−1/Q
0 P (E; Bi)

for all i ∈ N, where c > 0 is the constant appearing in [107, Thm. 4.5]. Hence,
thanks to (i) and (ii), we conclude that

m(E)
Q−1

Q ≤
∑
i∈N

m(E ∩ Bi)
Q−1

Q ≤ c c
−1/Q
0

∑
i∈N

P (E; Bi) ≤ c c
−1/Q
0 N P (E),

yielding (7.2) with C = c c
−1/Q
0 N . □

Remark 7.3. Note that, if (X, d,m) is as in the statement of Proposition 7.2
and Ω ⊂ X is a bounded open set such that m(Ω) > 0, then Ω is a compact
set, and thus, for any r > 0, we can find N(r) ∈ N open balls Br(xi), xi ∈ Ω,
i = 1, . . . , N(r), satisfying (i), (ii) with N = N(r) (in fact, the assumption that
(X, d) is geodesic is not needed), and (iv) with ε0 = r. The validity of (iii)
holds thanks to [107, Eq. 2 in Rem. 2.2], since Ω ⊂ BR(x̄) for some x̄ ∈ Ω and
some R ∈ (0, +∞). Consequently, Proposition 7.2 always applies to bounded
open sets Ω ⊂ X with positive measure.

In the metric-measure framework, the definition of W 1,1(X, d,m) is not com-
pletely understood, see the discussion in [11, Sect. 8]. As usual, one possibility
is to say that u ∈ W 1,1(X, d,m) if u ∈ BV (X, d,m) and |Du| ≪ m, and then
to proceed as in Section 2.3.3 in order to work out the machinery needed to es-
tablish the relation between the 1-Cheeger constant and the first p-eigenvalue
in Corollary 6.4. However, one can exploit the richer structure of the ambient
space to get a more direct and plainer approach to the relation with the first p-
eigenvalue. Let us briefly detail the overall idea. In the spirit of [64] and in an
analogous way of Definition 7.1 (see the discussion at the end of [107, Sect. 2]),
we say that u ∈ W 1,p(X, d,m) for some p ∈ (1, +∞) if there exists a sequence
{uk}k∈N ⊂ Liploc(X) such that

uk → u in Lp(X,m) and sup
k∈N

∫
X

|∇uk|p dm < +∞. (7.3)

Therefore, we can consider the Cheeger p-energy of u, defined by

Chp(u) = inf
{

lim inf
k→+∞

1
p

∫
X

|∇uk|p dm : uk ∈ Liploc(X), uk → u in Lp(X,m)
}

,

(7.4)
as the natural replacement of the Dirichlet p-energy in this framework.

Accordingly, for a given non-empty open set Ω ⊂ X, we say that u ∈
W 1,p

0 (Ω, d,m) if there exists a sequence {uk}k∈N ⊂ Liploc(X) as in (7.3) (so that,
in particular, u ∈ W 1,p(X, d,m)) with the additional property that supp uk ⋐
Ω for all k ∈ N. Therefore, coherently with what was done in Definition 6.2,
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we let

λ1,p(Ω, d,m) = inf
{

p Chp(u)
∥u∥p

p
: u ∈ W 1,p

0 (X, d,m), ∥u∥p > 0
}

. (7.5)

Now, it is not difficult to see that, in virtue of the definition of the Cheeger
p-energy in (7.4), the infimum in (7.5) can be actually restricted to functions
u ∈ Lp(X,m) ∩ Liploc(X) such that∫

X
|∇u|p dm < +∞ and supp u ⋐ Ω. (7.6)

Now, if u ∈ Lp(X,m) ∩ Liploc(X) satisfies (7.6), then the function v = u|u|p−1

is such that v ∈ L1(X,m) ∩ Liploc(X) with supp v ⋐ Ω and
|∇v| ≤ p|u|p−1|∇u|.

Consequently, by the definition in (7.1) and Hölder’s inequality, we can esti-
mate

|Dv|(X) ≤
∫

X
|∇v| dm ≤ p

∫
X

|u|p−1|∇u| dm ≤ p∥u∥p−1
p ∥|∇u|∥p.

Therefore,

h1(Ω) ≤ |Dv|(X)
∥v∥1

≤
p∥u∥p−1

p ∥|∇u|∥p

∥u∥p
p

= p∥|∇u|∥p

∥u∥p

, (7.7)

and thus,

λ1,p(Ω, d,m) ≥
(

h1(Ω)
p

)p

by the arbitrariness of u in the right-hand side of (7.7), proving Corollary 6.4.
Similar considerations can be done for the relation of the 1-Cheeger constant

with the p-torsional creep function as in Theorem 6.5. We leave the analogous
details to the interested reader.

7.2. Euclidean spaces with density. Let A = B(Rn) be the Borel σ-
algebra in Rn and consider two lower-semicontinuous density functions

g ∈ L∞(Rn; [0, +∞)), and h ∈ L∞(Rn × Sn−1; (0, +∞)),
so that h is convex in the second variable and locally bounded away from zero,
i.e., for any bounded set Ω ⊂ Rn, there exists C > 0 such that

1
C

≤ h(x, ν) ≤ C, ∀x ∈ Ω, ∀ν ∈ Sn−1 . (7.8)

For any E ∈ A , we let the weighted volume and perimeter of E to be defined,
respectively, by

mg(E) =
∫

E
g(x) dx ,

Ph(E) =


∫

∂∗E
h(x, νE(x)) dHn−1(x), if χE ∈ BVloc(Rn),

+∞ , otherwise.
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Here, we let ∂∗E be the reduced boundary of E and, for every x ∈ ∂∗E,
νE(x) ∈ Sn−1 be the outer unit normal vector to E at x (see [13] for definitions
and properties of sets of finite perimeter).

If g and h are identically equal to 1, mg = L n is the Lebesgue measure, and
Ph = PEucl is the standard Euclidean perimeter that satisfies all properties
(P.1)–(P.6) and (P.7) in the measure space (Rn, A ,m). In particular, (P.6)
holds with f(ε) = nω1/n

n ε−1/n, and follows from the standard isoperimetric
inequality

PEucl(E) ≥ nω1/n
n L n(E)1− 1

n , (7.9)
holding for any E ∈ A . The Cheeger problem in this setting is standard, see
[91,112], and its minimizers are now completely characterized for a large class
of planar sets [39, 88, 92, 95, 114], and reasonably well-understood for convex
N -dimensional bodies [6,27]. Recently, Cheeger clusters have been introduced
and studied in [48], see also [31,32,49], and in [26,115] in relation to more gen-
eral combinations than the sum of their Cheeger constants. Interestingly, the
Euclidean Cheeger problem plays a role in the ROF model for regularization
of noisy images, as highlighted in [6], see also [91, Sect. 2.3], and this is also
linked to our Section 4 and to our Corollary 5.5.

We now turn to the case of volume and perimeter with general densities,
for which the Cheeger problem has been considered for N = 1, e.g., in [51,
84,89,96,114]. We discuss properties (P.1)–(P.7) for the general densities h, g
above. Notice that (7.8) implies that sets with locally finite perimeter Ph are
all and only those with locally finite Euclidean perimeter. Properties (P.1)
and (P.2) are immediate from the definitions. Given E, F ∈ A , (P.3) follows
from the validity of the following relations between reduced boundaries and
sets operations:

∂∗(E ∩ F ) ⊆ (F (1) ∩ ∂∗E) ∪ (E(1) ∩ ∂∗F ),
∂∗(E ∪ F ) ⊆ (F (0) ∩ ∂∗E) ∪ (E(0) ∩ ∂∗F ).

Here, E(t) denotes the set of points of density t ≥ 0 for E and we recall that
L n(Rn \(E(0) ∪E(1))) = 0, see, e.g., [98, Thm. 16.3] for more details. Property
(P.4) holds true thanks to Reshetnyak lower-semicontinuity Theorem, see [13,
Thm. 2.38], and uses the lower-semicontinuity and the convexity assumptions
on h. Property (P.5) follows from the standard compactness theorem for sets
with equibounded perimeter and from (7.8). Property (P.7) is equivalent to
assume that h is even in the second variable.

Finally, we discuss (P.6). If (7.8) also holds on Ω = Rn, the isoperimetric
inequality (7.9) extends to this setting by observing that, for any ε > 0 and
E ∈ A such that m(A) ≤ ε, we have

Ph(E) ≥ PEucl(E)
C

≥ nω1/n
n L n(E)1− 1

n

C

≥ nω1/n
n mg(E)1− 1

n

C(sup g)n−1
n

≥ f(ε)mg(E),
(7.10)



CHEEGER PROBLEM IN MEASURE SPACES 39

with f(ε) = nω1/n
n /[Cε1/n(sup g)n−1

n ]. In this case, Theorem 3.6 implies exis-
tence of Cheeger N -clusters of any admissible set Ω ⊂ Rn for perimeter and
volume with double (anisotropic) densities. Observe that, in order for Ω to
be admissible, it is needed that g > 0 on a Borel set of positive measure con-
tained in Ω. This covers the existence results already present in the literature
for N = 1 [51, 89, 114] and double densities, or for Euclidean densities and
N > 1 [48, 49], and generalize it to the case of double densities and N > 1.

In the general case where (7.8) does not extend to a global bound, (P.6)
might not hold. Some specific examples of this type are discussed in the fol-
lowing subsections. Nonetheless, Theorem 4.5 applies to general densities,
establishing the relation between the 1-Cheeger constant with the curvature
functional, as previously discussed, e.g., in [9, 51]. Assuming the symmetry
assumption (P.7), Theorem 5.4 shows that the 1-Cheeger constant h1(Ω) cor-
responds to the first 1-eigenvalue λ1,1(Ω) of Definition 5.1.

Estimates of the first p-eigenvalue in terms of the 1-Cheeger constant are
proved in [89] for anisotropic (symmetric) perimeters whose density does not
depend on the position, and Euclidean volume. In this setting, we observe
that Ph admits the following distributional formulation:

Ph(E; A) = sup
{∫

E
div φ dx : φ ∈ C1

c(A;Rn), sup
x∈A

h∗(φ) ≤ 1
}

,

where h∗ denotes the norm dual to h. The latter yields the validity of (RP.L)
and (RP.+), thus allowing to apply Theorem 6.3 and to establish a relation
between the 1-Cheeger constant and the first p-eigenvalue of Definition 6.2, in
the same spirit of [89]. As far as we know, the relation between the 1-Cheeger
constant for more general densities h = h(x, ν) and the spectrum of specific
“p-Laplace” operators in the spirit of [89] is an open question.

7.2.1. Gaussian space. When (7.8) does not extend to Ω = Rn, property (P.6)
cannot be deduced as in (7.10). A specific setting where this happens is the
Gaussian space, corresponding to the choice g = h = γ, where

γ(x) = 1
(2π)n/2 e− ∥x∥2

2 . (7.11)

Let us notice that (7.8) only holds locally and that (Rn,mγ) is a probability
space, i.e.,

mγ(Rn) = 1
(2π)n/2

∫
Rn

e− ∥x∥2
2 dx = 1 .

Similarly to the Euclidean case, we can define the Gaussian perimeter of a
Borel set E inside an open set Ω ⊂ Rn as

Pγ(E; Ω) = sup
{∫

E
(div φ − φ · x) dmγ(x) : φ ∈ C∞

c (Ω;Rn), ∥φ∥∞ ≤ 1
}

.

(7.12)
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It is easy to see that if a set E has finite Gaussian perimeter, then it also has
locally finite Euclidean perimeter and

Pγ(E) = 1
(2π)n/2

∫
∂∗E

e− ∥x∥2
2 dHn−1(x).

Properties (P.1)–(P.5) and (P.7) follow as above. We discuss the isoperimet-
ric property (P.6). For every Borel set E ⊂ Rn, the following isoperimetric
inequality holds (see [19,28,120])

Pγ(E) ≥ U(mγ(E)),

where U : R → R is the Gaussian isoperimetric function defined as U(t) =
Φ′ ◦ Φ−1(t), t ∈ R, with

Φ(t) = 1√
2π

∫ t

−∞
e− s2

2 ds,

and it has the following asymptotic behavior [52]:

lim
s→0

U(s)
s| ln(s)| 1

2
= 1.

We deduce (P.6) by setting f : (0, +∞) → (0, +∞) as

f(ε) = U(ε)
ε

.

Moreover, using the distributional formulation (7.12), one can deduce the va-
lidity of (RP.+) and (RP.L). Therefore, all of our results apply in this setting.
While the existence of 1-Cheeger sets was already known, see [52, 86], and
the clustering isoperimetric problem has been recently addressed in [106], the
Cheeger cluster problem for N > 1 had never been treated. The relation
with the prescribed curvature functional had been studied in [52], while, up
to our knowledge, the relation with the first eigenvalue of the Dirichlet p-
Laplacian had never been proved, but only quickly observed in [86] for p = 2
(the Ornstein–Uhlenbeck operator).

7.2.2. Monomial and radial weights. Further settings where (P.6) cannot be
deduced from (7.8) are those of monomial and radial densities. Given A =
(a1, . . . , an) ∈ Rn, with ai ≥ 0, for i = 1, . . . , n, a monomial weight is g(x) =
xA, where we used the notation xA = |x1|a1 · · · |xn|an . A radial weight, instead,
is of the type g(x) = ∥x∥q, q ≥ 0.

We have already shown that properties (P.1)–(P.5) and (P.7) hold true. The
isoperimetric property is discussed (for Lipschitz sets) for monomial weights
in [3,8,40,41,65], and for radial weights in [7,69,70]. The Cheeger problem in
the monomial setting has also been considered in [8, 27].

7.3. Non-local perimeters. In this section, we discuss applications to non-
local perimeters.
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7.3.1. Classical non-local perimeters. We focus on the non-local perimeters
considered in [57,101,121]. Let K : Rn → (0, +∞) be such that

min{|x|, 1}K(x) ∈ L1(Rn) and K(x) = K(−x) ∀x ∈ Rn. (7.13)
For a measurable set E ⊂ Rn, we let

PK(E) = 1
2

∫
Rn

∫
Rn

K(x − y)|χE(x) − χE(y)| dy dx. (7.14)

We now discuss the properties of the K-perimeter on the measure space
(Rn, B(Rn), L n). Under the general assumptions (7.13), properties (P.1),
(P.2), and (P.7) are direct consequences of (7.14), whereas for the validity of
(P.3) and (P.4), we refer to [57, Prop. 2.2]. As a consequence, Theorem 5.4 ap-
plies, establishing the link between λ1,1(Ω) and h1(Ω), already proved in [29]
for the fractional s-perimeter and in [100, Thm. 5.3] for kernels satisfying
K ∈ L1(Rn).

The validity of (P.5) holds provided that, besides (7.13), one assumes that
K ∈ L1(Rn \ Br) for all r > 0, see [25, Thm. 2.11]. This yields Theorem 3.6
and Theorem 4.5, also see the discussion in [25, Sect. 3].

The isoperimetric property (P.6) holds, provided that K is radially symmet-
ric decreasing, see [57, Prop. 3.1] and [25, Thm. 2.19]. Moreover, the function

f(ε) = PK(Bε)
ε

, ε > 0 ,

where Bε is the Euclidean ball centered at the origin with volume ε, satisfies
f(ε) → +∞ as ε → 0+, provided that K /∈ L1(Rn), see [57, Lem. 3.2] and [25,
Lem. 2.22], thus yielding (P.6).

For a study of the Cheeger problem for the non-local perimeter functional PK

and the (weighted) Lebesgue measure, as well as for the relation between this
non-local Cheeger problem with the associated non-local L1 denoising model
and the prescribed mean curvature functional, see [25, Sects. 3 and 6.3].

The most relevant example of non-local perimeter functional satisfying all
the aforementioned properties is the fractional s-perimeter, s ∈ (0, 1),

Ps(E) =
∫
Rn

∫
Rn

|χE(x) − χE(y)|
|x − y|n+s

dy dx, (7.15)

corresponding to the choice Ks(x) = |x|−n−s. We mention that the Cheeger
problem for Ps has been introduced and studied in [29], where existence of
N -Cheeger sets of a bounded open set Ω ⊂ Rn is proved for N = 1. Up to
our knowledge, for N > 1, the N -Cheeger problem has never been considered
in this setting, whereas the clustering isoperimetric problem has been treated
in [58]. We also refer to [24, Thm. 1.5] for a discussion of the fractional Cheeger
constant with respect to the existence of minimizers of the prescribed mean
curvature functional.

7.3.2. Fractional Gaussian spaces. For x, y ∈ Rn, t > 0, let Mt(x, y) ≥ 0 be
the Mehler kernel, see [44–46] for the precise definition. For s ∈ (0, 1), we set

Kσ(x, y) =
∫ +∞

0

Mt(x, y)
t

s
2 +1 dt ,
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and we let

P γ
s (E) =

∫
E

∫
Ec

Ks(x, y) dγ(y) dγ(x) (7.16)

be the fractional Gaussian s-perimeter of the measurable set E ⊂ Rn, where
the measure γ is as in (7.11). Properties (P.1) and (P.2) directly follow from
the definition, whereas (P.7) is a consequence of the symmetry of the kernel
Ks(x, y). For the validity of (P.4) and (P.5), we refer to [44–46]. Therefore,
Theorem 4.5 and Theorem 5.4 hold true. Property (P.3) can be proved exactly
as in [57, Prop. 2.2].

Concerning (P.6), the following isoperimetric inequality

P γ
s (E) ≥ Iγ

s (γ(E))

is proved for every measurable set E ⊂ Rn in [110]. Here Iγ
s : (0, 1) → (0, +∞)

is the fractional Gaussian isoperimetric function, i.e., Iγ
s (v) is the fractional

Gaussian s-perimeter of any halfspace H such that γ(H) = v. As far as we
know, the asymptotic behavior of Is(v) as v → 0+ is not known, and hence,
(P.6) cannot be guaranteed.

Remark 7.4. Let (X, A ,m) be a non-negative σ-finite measure space and
let K : X × X → [0, +∞] be a symmetric (m ⊗ m)-measurable function. For
A, B ∈ A , we set

LK,m(A, B) =
∫

A

∫
B

K(x, y) dm(x) dm(y)

and, given E, Ω ∈ A , we let

PK,m(E; Ω) = LK,m(E ∩ Ω, Ec ∩ Ω) + LK,m(E ∩ Ω, Ec ∩ Ωc)
+ LK,m(E ∩ Ωc, Ec ∩ Ω)

be the non-local (K,m)-perimeter of E relative to Ω. Arguing exactly as in
the proof of [73, Lem. 2.4], if Ω1, Ω2 ∈ A are such that m(Ω1 ∩ Ω2) = 0, then

PK,m(E; Ω1 ∪ Ω2) − PK,m(E; Ω1) − PK,m(E; Ω2)
= −LK,m(Ec ∩ Ω1, E ∩ Ωc

1 ∩ Ω2) − LK,m(Ec ∩ Ω2, E ∩ Ω1 ∩ Ωc
2)

for any E ∈ A . In particular, if K(x, y) > 0 for (m ⊗ m)-a.e. (x, y) ∈ X × X,
m(E ∩ Ωc

1 ∩ Ω2) > 0, and m(E ∩ Ω1 ∩ Ωc
2) > 0, then

PK,m(E; Ω1 ∪ Ω2) < PK,m(E; Ω1) + PK,m(E; Ω2) ,

and thus, in particular, the map Ω 7→ PK,m(E; Ω) is not finitely additive. The
reader can easily check that this, in fact, occurs for the non-local perime-
ters (7.14) (assuming that K > 0) and (7.16). Hence, Definition 2.12, and
consequently the subsequent construction of the Sobolev spaces (in particular,
see Section 2.3.3), cannot be applied to such non-local perimeter functionals.
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7.3.3. Distributional fractional perimeters. In [66], a new space BV s(Rn) of
functions with bounded fractional variation on Rn of order s ∈ (0, 1) is in-
troduced via a distributional approach exploiting suitable notions of fractional
gradient and divergence. More precisely, the fractional s-variation of a function
u ∈ L1(Rn) is defined as

|Dsu|(Rn) = sup
{∫

Rn
u divs φ dx : φ ∈ C∞

c (Rn;Rn), ∥φ∥∞ ≤ 1
}

,

where
divs φ(x) = µn,s

∫
Rn

(y − x) · (φ(y) − φ(x))
|y − x|n+s+1 dy, x ∈ Rn,

and µn,s is a renormalization constant. The distributional fractional s-perime-
ter of a Lebesgue measurable set E ⊂ Rn is then defined as the total fractional
variation of its characteristic function |DsχE|(Rn). In [66], the authors show
that

|DsχE|(Rn) ≤ µn,sPs(E)
whenever E is a measurable set, where Ps is as in (7.15), thus showing that
the distributional approach allows to extend the usual notion of fractional
perimeter and enlarge the class of sets with finite fractional perimeter.

Following [66], the functional E 7→ |DsχE|(Rn) enjoys several properties on
measurable sets of Rn. In fact, (P.1) and (P.2) are direct consequences of the
definition, yielding the validity of the first part of Theorem 5.4. Moreover,
properties (P.4), (P.5), and (P.6) are, respectively, proved in [66, Prop. 4.3],
[66, Thm. 3.16], and [66, Thm. 4.4] (provided that n ≥ 2, see [67, Thm. 3.8] for
the case n = 1). In addition, property (P.7) trivially follows from the definition.
In particular, we can apply Theorem 3.6 and Theorem 4.5. Finally, the validity
of (P.3) is open, whereas it is known that (RP.L) is false in general, see [66,
Rem. 4.9]; thus, we cannot apply the results concerning the first eigenvalue of
the general Dirichlet p-Laplacian. It is also worth noticing that the local form
of the chain rule in this context is false [68], so a direct adaptation of the proof
of Theorem 6.3 in this framework is not clear.

We remark that the aforementioned results have never been proved before
in this specific non-local setting.

7.3.4. Non-local perimeter of Minkowski type. Following [62], given r > 0, for
any u ∈ L1

loc(Rn), we let

Er(u) = 1
2r

∫
Rn

oscBr(x)(u) dx,

where
oscA(u) = ess sup

A
u − ess inf

A
u

denotes the essential oscillation of u on the measurable set A ⊂ Rn. The
functional E 7→ Er(χE) is the non-local perimeter of Minkowski type of the
measurable set E ⊂ Rn. As discussed in [62], such perimeter functional
meets properties (P.1), (P.2), (P.3), (P.4), and (P.7), and naturally satisfies
a coarea formula [62, Eq. (2.3)]. Property (P.6) can be easily deduced from
the isoperimetric inequality proved in [59, Lem. 1.12(i)]. Finally, as observed
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in [59, Rem. 1.5], property (P.5) does not hold. As a consequence, our results
allow to infer several properties of N -Cheeger sets for N ≥ 1 (if they exist) in
the perimeter-measure space (Rn, B(Rn), L n, Er).

7.4. Riemannian manifolds. Let (M, g) be a complete Riemannian mani-
fold of dimension n ∈ N. When endowed with its distance, it is a separable
metric space and its volume measure is a non-negative Borel measure that is
finite on bounded Borel sets, so that one can rely on the discussion made in
Section 7.1 to obtain the validity of (P.1), (P.2), (P.3), (P.4), (P.5), and (P.7).
Concerning (P.6), the basic result contained in Proposition 7.2 can be refined
in several ways. If M has non-negative Ricci curvature, then property (P.6) is
a consequence of the sharp isoperimetric inequality recently obtained in [30]
for non-compact manifolds with Euclidean volume growth, also see [4]. If
M is compact, then property (P.6) can be deduced from the celebrated Lévy–
Gromov isoperimetric inequality, see [82, App. C]. If the Ricci curvature bound
is negative, no global isoperimetric inequality can be derived without further
assumptions on the manifold, such as lower bounds on the diameter of M ,
see [105] and the references therein for a more detailed discussion.

Following the strategy presented in Section 7.1, the results contained in
our paper then allow to recover Cheeger inequalities in Riemannian manifolds
with non-negative curvature, in the spirit of the original appearance of Cheeger
inequalities in compact Riemannian manifolds, due to Cheeger [63] for p = 2.
The results of our paper also cover the existence of Cheeger sets, originally
proved in [37] for compact Riemannian manifolds (see also [23]), and the links
with the the prescribed mean curvature. We refer to [42] for the relation
between the Cheeger constant and the torsion problem (6.2) for p = 2 in
compact Riemannian manifolds.

7.5. CD-spaces. CD-spaces are metric-measure spaces generalizing Riemann-
ian manifolds with Ricci curvature bounded from below, via assumptions on
a synthetic notion of curvature, encoded in the so-called curvature-dimension
condition CD(K, n) for K ∈ R and n ≥ 1, see the cornerstones [97, 118, 119].
Geometric Analysis on these non-smooth spaces is subject to a great interest
in the recent years, see [10,14,53,54].

As CD(K, n) spaces for K ∈ R and n ≥ 1 are complete metric spaces
endowed with a Borel measure m that is finite on bounded Borel sets, the
discussion made in Section 7.1 applies to this framework, yielding the validity
of properties (P.1), (P.2), (P.3), (P.4), (P.5), and (P.7). Concerning (P.6), the
simple inequality provided by Proposition 7.2 can be refined in several ways.
For K ≥ 0, a sharp isoperimetric inequality has been recently proved in [16] for
the subclass of RCD(0, n)-spaces with Euclidean volume growth, when m = Hn,
yielding (P.6) with f(ε) = nω1/n

n AVR(X)1/nε−1/n. Here, AVR(X) stands for
the asymptotic volume ratio, assumed to be in (0, 1]. We also refer to [15,
Thm. 3.19 and Rem. 3.20], where the validity of property (P.6) is discussed
in more general metric-measure spaces with particular attention to the case
of CD(K, n) spaces for K ∈ R and 1 < n < +∞, and to the celebrated
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Lévy–Gromov isoperimetric inequality proved in [54,56] holding for essentially
non-branching CD(K, n) spaces with finite diameter.

The equivalence of the Cheeger constant and the first 1-eigenvalue of the
Laplacian was previously pointed out in [55, Sect. 5] for more general metric-
measure spaces including non-branching CD(K, n) spaces. Lower bounds on
the Cheeger constant for (essentially non-branching) CD∗(K, n) spaces are
proved in [54–56].

7.6. Carnot–Carathéodory spaces. Let ω ⊂ Rn be a non-empty connected
open set and let X = {X1, . . . , Xk} be vector fields in ω with real C∞-smooth
coefficients. An absolutely continuous curve γ : [0, T ] → ω is admissible if there
exists u = (u1, . . . , uk) ∈ L1([0, T ]) such that

γ̇(t) =
k∑

i=1
ui(t)Xi(γ(t)).

Given two points x, y ∈ ω, we let dcc(x, y) be the Carnot–Carathéodory distance
between x and y, defined as the shortest length of admissible curves connecting
them. We assume that the Hörmander condition

rank(Lie X ) = n

on the Lie algebra Lie X generated by X holds true. Then, dcc(x, y) < +∞ for
any couple of points x, y ∈ ω thanks to Chow–Rashewski Theorem, see [5] for
the details. The metric space (ω, dcc) is called a Carnot–Carathéodory space,
and it is separable. Assuming (ω, dcc) to be also complete and endowing it
with the Lebesgue measure L n, one is then allowed to rely on the discussion
of Section 7.1 to guarantee the validity of properties (P.1), (P.2), (P.3), (P.4),
(P.5), and (P.7) for the distributional perimeter of Definition 7.1. One can see
that this actually corresponds to the so-called X -perimeter, introduced in [43]
and then systematically studied in [76,77].

We discuss the validity of (P.6). We first observe that, as summarized in [83,
Sect. 11.4], up to taking a smaller ω, we are ensured (globally in ω) the validity
of a doubling property for metric balls and of a (1, 1)-Poincaré inequality for
the horizontal gradient ∇X u = ∑k

i=1 XiuXi, thanks to the celebrated works [85,
109]. This allows to rely on the results of [77, Thm. 1.18], guaranteeing the
validity of the following isoperimetric inequality for any Lebesgue measurable
set E ⊂ ω

PX (E) ≥ CX L n(E)
Q−1

Q .

Here CX is a positive constant depending on ω and X , and Q ≥ n is the
so-called homogeneous dimension. Property (P.6) then follows with f(ε) =
CX ε−1/Q. This refines the basic inequality given by Proposition 7.2.

All the results contained in our paper then apply to this setting, establishing
existence of Cheeger sets (Theorem 3.6), relations with the the prescribed
curvature functional (Theorem 4.5), and Cheeger inequalities following the
strategy presented in Section 7.1. We observe that, following [75, Cor. 11],
and recalling that the topology induced by dcc is equivalent to the Euclidean
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one [5, Thm. 3.31], the Sobolev space W1,p(ω, L n) introduced in Definition 2.19
is given by

W1,p(ω, L n) = {u ∈ Lp(ω, L n) : |∇X u| ∈ Lp(ω, L n)},

where |∇X u| =
√∑k

i=1(Xiu)2. In particular, a sub-Riemannian version of
Green’s identity ensures that, for an admissible bounded open set Ω and u ∈
W 1,2(Ω) with Dirichlet boundary conditions on Ω, we have∫

Ω
|∇X u|2 dx dy = −

∫
Ω

u∆X u dx dy,

where ∆X u = ∑k
i=1 X∗

i Xiu is the so-called hypoelliptic sub-Laplacian associ-
ated with X and X∗

i the formal adjoint of Xi. In particular, (6.1) gives a lower
bound for the bottom of the spectrum of −∆X on Ω. Cheeger’s inequalities
of this type have already been investigated in [108] in the context of Carnot
groups. This paper extends them to more general Carnot–Carathéodory struc-
tures.

7.7. Metric graphs. Let G = (V, E) be a connected compact graph (for
simplicity, with no loops or multiple edges).

We identify each edge e ∈ E with an ordered pair (ie, fe), denoting the
initial and the final vertices of e, and we assume the existence of an increasing
bijection ce : e → [0, ℓe], for some length ℓe ∈ (0, +∞], such that ce(ie) = 0 and
ce(fe) = ℓe, and we let xe = ce(x) be the coordinate of the point x ∈ e. In this
case, G is said a metric graph.

A function on G is identified with a collection of functions defined on (0, ℓe)
for each e ∈ E, so that ∫

G
u(x) dx =

∑
e∈E

∫ ℓe

0
[u]e(x) dx,

where [u]e is the function u defined on the edge e ∈ E. Following [99, Def. 2.9],
the total variation of u ∈ BV (G) is defined as

VarG(u) = sup
{∫

G
u(x) z′(x) dx : z ∈ K(G), ∥z∥∞ ≤ 1

}
, (7.17)

where

K(G) =

z :
∑
e∈E

∥[z]e∥W 1,2(0,ℓe) < +∞,
∑

e∈Ev

[z]e(v) νe(v) = 0, ∀v ∈ int V

,

being Ev the set of edges incident to e, νe(ie) = −1 and νe(fe) = 1, and
int V the set of vertices with more than one incident edge. Accordingly, the
perimeter of E ⊂ G is given by PG(E) = VarG(χE).

Properties (P.1) and (P.2) directly follow from the definition in (7.17),
whereas (P.4), (P.5), (P.6), and (P.7) are established in [99, Prop. 2.12],
[99, Thm. 2.6], and [99, Rem. 2.10], respectively. Finally, (P.3) can be proved
arguing as in [13, Prop. 3.38] using the coarea formula given by [99, Thm. 2.13].
As a consequence, Theorem 3.6 ensures existence of N -Cheeger sets for any
N ∈ N, thus generalizing [99, Thm. 3.2] to the case of N -Cheeger sets.
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