SOME CANONICAL METRICS VIA AUBIN’S LOCAL DEFORMATIONS

G. CaTiNO', D. DAMENO 2, P. MASTROLIA °.

ABSTRACT. In this paper, using special metric deformations introduced by Aubin, we con-
struct Riemannian metrics satisfying non-vanishing conditions concerning the Weyl tensor,
on every closed manifolds. In particular, in dimension four, we show that there are no

topological obstructions for the existence of metrics with non-vanishing Bach tensor.

1. INTRODUCTION

Let (M, g) be a Riemannian manifold of dimension n > 3. It is well-known that its Riemann
curvature tensor, Riemy, admits the decomposition

. 1 R,
Riem, = W +7—5 Riey B ~ 50—y —5)¢ O

where W, Ricy, R, are the Weyl tensor, the Ricci tensor and the scalar curvature of (M, g),
respectively, and ® denotes the Kulkarni-Nomizu product.

If we require that the curvature of (M, g) satisfies certain condition, several obstructions
to the validity of these properties may occur: indeed, the topology of M may not allow the
existence of such metrics. Famous examples of this relation between curvature and topology
are given, for instance, by metrics with positive scalar curvature ([11], [12], [15], [17]) or by
locally conformally flat metrics, which, for n > 4, are the ones with vanishing Weyl tensor
(4], [6], [13], [14]).

On the contrary, there are curvature conditions which can be realized on every Riemannian
manifold (and we say that they are “non-obstructed”): for instance, Aubin ([3]) showed that,
it M is closed and n > 3, there always exists a Riemannian metric g such that Ry = —1;
he also proved that, if M is closed and n > 4, there always exists a Riemannian metric g
such that the Weyl tensor W, never vanishes ([2], [3]). The first author generalized these
results showing that, given a Riemannian manifold (M, g), for every ¢ € R, there exists a
Riemannian metric g such that the scalar- Weyl curvature Rq + t|Wg|g =—1on M ([7]); on
the other hand, the first and the third authors, together with D. D. Monticelli and F. Punzo,
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2 SOME CANONICAL METRICS VIA AUBIN’S LOCAL DEFORMATIONS

used Aubin’s result concerning the Weyl tensor to show the existence of weak harmonic- Weyl
metrics on every closed Riemannian four-manifold ([9]). More precisely, these metrics arise

as minimizers of the functional
1
g+ D(g) := Vol (M)2 /M |64 Wyl2 dV

in the conformal class with non-vanishing Weyl tensor constructed by Aubin.

Our main task in this paper is to investigate other curvature conditions which can be
imposed without any topological obstruction: in particular, we focus on some properties
involving geometric tensors related to W, on closed manifolds of dimension n > 4.

First, for the sake of completeness, we provide a detailed proof of Aubin’s result (see
Theorem 3.1). Then, we focus on the case n = 4: it is well-known that, on an oriented
four- dimensional Riemannian manifold (M, g), the Hodge operator * induces a splitting of
the bundle of 2-forms into two subbundles A = Ay @ A

corresponding to the eigenvalue +1. This leads to a decomposition of the Weyl tensor into a

where Ay is the eigenspace of %

-

self-dual and an anti-self-dual part; namely,
Wy =W, +W, .
Exploiting Aubin’s deformation method, we are able to prove the following

Theorem 1.1. Let M be a closed smooth manifold, with dim M = 4. Then, there exists a

Riemannian metric g such that
W5 ]; =1 on M.

The same result holds for the anti-self-dual component Wy .

As a consequence, using the metric gg constructed in Theorem 1.1 and following the same
strategy as in [9], it is immediate to prove the

Corollary 1.2. On every smooth, closed four-manifold M, there exists a Riemannian metric
go such that, in its conformal class [go], there exist weak half harmonic Weyl metrics, i.e.
minimizers of the quadratic curvature functional

g — DE(g) := Vol, (M)? /M 16,2 v,

(see also Remark 4 in [9]).
Moreover, we generalize this statement, showing a ”"mixed-type” condition:

Theorem 1.3. Let (M, g) be a closed Riemannian manifold, with dim M = 4. Then, for
every t € R, there exists a Riemannian metric g: such that

|W3; +t Wz, =1 on M.
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In the subsequent sections, we focus on two other relevant geometric tensors: the Cotton
tensor and the Bach tensor, which we denote as C,4 and By, respectively (see Subsection 2.1
for the definitions and the main properties of these tensors).

First, we obtain a "non-obstructed” condition for C4 on a closed Riemannian manifold of

dimension n > 4:

Theorem 1.4. Let M be a closed smooth manifold of dimension n > 4. Then, there exists
a metric g such that the Cotton tensor Cy of (M,g) vanishes only at finitely many points
P1y - Pk € M.

The final section of the paper is dedicated to the tensor B,, which has many applications,
for instance, in General Relativity ([5]). This tensor is especially relevant when n = 4: indeed,
in this case By is also divergence-free and conformally covariant, i.e., given a conformal change
g = €%"g of g, the Bach tensor transforms as

" Bjj = Byj,
which, in global notation, means

e®B; = B,

When By = 0, we say that (M, g) is Bach-flat: these metrics are critical points of the Weyl

functional
g W)= [ W2,

which is a conformally invariant functional, playing an important role in the study of Einstein
four-manifolds: indeed, Bach-flatness is a necessary condition for a metric g to be conformally
Finstein (i.e., there exists a metric g in the conformal class [g] such that (M, g) is an Einstein
manifold). We point out that, in general, this condition is not sufficient (see [1]): however,
Derdzinski [10] showed that Bach-flatness is a sufficient condition for positive definite Kéhler
four-manifolds and recently LeBrun ([16]) classified Bach-flat compact Ké&hler complex sur-
faces.

Although the existence of topological obstructions for Bach-flat metrics on Riemannian
four-manifolds is an open problem, in this paper we provide an answer to the ”opposite”
question, i.e. if the topology of the manifold plays a role in the existence of metrics with
never vanishing Bach tensor. More precisely, we exploit Aubin’s construction in the four-
dimensional case to obtain the following:

Theorem 1.5. Let M be a smooth manifold with dim M = 4. Then, there exists a Riemann-
ian metric g such that

\Bg\gzl on M.
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2. AUBIN’S DEFORMATION

2.1. Preliminaries. The (1,3)-Riemann curvature tensor of a smooth Riemannian manifold
(M™, g) is defined by

R(X,Y)Z =VxVyZ —VyVxZ —VixyZ.

Throughout the article, the Einstein convention of summing over the repeated indices will
be adopted. In a local coordinate system the components of the (1,3)-Riemann curvature

tensor are given by Ré jk% = R(%, 6%,“) a?;i and we denote by Riemy its (0,4) version with
components by R;jx = gimRﬁl. The Ricci tensor is obtained by the contraction R, = ¢’ lRijkl
and R = ¢* Ry, will denote the scalar curvature (g% are the coefficient of the inverse of the
metric g). As recalled in the Introduction, the Weyl tensor W, is defined by the decomposition

formula, in dimension n > 3,

1
Wikt = Rijm — 3 (Rikgji — Ragjrk + Rjigir — Rjrgir)
R
(2.1) +m (9ikgjt — 9iajk) -

The Weyl tensor shares the algebraic symmetries of the curvature tensor. Moreover, as it can
be easily seen by the formula above, all of its contractions with the metric are zero, i.e. W is
totally trace-free. In dimension three, W is identically zero on every Riemannian manifold,
whereas, when n > 4, the vanishing of the Weyl tensor is a relevant condition, since it is
equivalent to the local conformal flatness of (M™,g). We also recall that in dimension n = 3,
local conformal flatness is equivalent to the vanishing of the Cotton tensor C4, whose local

components are

1
(2.2) Cijk = Rije — Rirj — =1 (Rrgij — Rjgin) = Aijg — Ak

here R;;, = ViR;; and R, = VR denote, respectively, the components of the covariant
derivative of the Ricci tensor and of the differential of the scalar curvature, and A;;; denote
the components of the covariant derivative of the Schouten tensor

Ag = Rng —Q(le)g,

hence, the Cotton tensor represents the obstruction for Ay to be a Codazzi tensor (i.e.,

(Vx A)Y = (Vy A)X for every pair of vector fields X,Y). By direct computation, we can
see that C, satisfies the symmetries

(2.3) Cijk = —Ciny, Cijk + Cjki + Crij = 0,
moreover it is totally trace-free,

(2.4) 99C5 = 9" Cijp = ¢?*Cij = 0,
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by its skew—symmetry and Schur lemma. We also recall that, for n > 4, the Cotton tensor
can be defined as one of the possible divergences of the Weyl tensor:

n—2 n—2 n—2
(2.5) Cijk = <n> Whikje = — <n — 3>Wtijk,t I 3(5W)ijk .
A computation shows that the two definitions coincide (see e.g. [8]).

The Bach tensor By of (M, g) is defined, in components, as

1
(2.6) Bij = ——5 (gkscjik,s + gksgltRleisjt>-

It is immediate to show that B, is a traceless tensor; moreover, since (n — 3)Wjgi i =
(n — 2)Cyjik, exploiting the second covariant derivative commutation formulas, it can be
shown that B, is symmetric (see, for instance, [8, Lemma 2.8]). Also, recall that, if n = 4, the

Bach tensor acquires two additional features: it is divergence-free and conformally covariant.

2.2. Aubin’s local deformations. Let us introduce the following deformation of the metric

(2.7) g=g+dp®dg,

where ¢ € C°°(M). We denote the Weyl tensor of (M, g) as Wy. If U is a local chart of M
and x1,...,, are local coordinates on U, the local components of the (0, 4)-version of Wy,
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Wijke, are given by the following expression (see also [8], Chapter 2):

(2.8)
Wijke = Wigke + %(@bik%’t — itdjk)+
+ ﬁ(RMﬁj@ — Ritdjor + Rjtdidr — Rjndidr)
+ (n_lin_Q)(gik%qﬁt — Git®ibk + gjtdidk — gjkPide)+
+ m[}%kq (gjt + @50t) — Riptq(gjk + ¢i0k) + Riptg(gik + Gidr) — Rjphq(git — ¢icoe)|+
a w(r?}—gpiipfq— 2) 9ikgjt — girgjn + GikPiPt — Git®j Ok + 9jtidk — GinPice] +
~ =y (00w — o + 0500 = [(A0)6 = b+ 500} +
~ g (8065 — 63601 au + i) — (Ao — Dyl + 660} +
gy [ (80 = [Hess(0) ] gy — g + 901 — g+ gyt — gyt
(Gt — i) 0+ 6100) — (Bt — b s+ y00))
i — ) g+ 660) = (B — G + 6100+
— i (AP — 0yt ) s — 9usie )+
2

- 'LU2(7’L — 1)(7’L — 2) [(Agb)gbquq@pq - ¢p¢pq¢qT¢T](gik¢j¢t - gzt¢]¢k‘ + g]tqbzd)k; - g]k¢l¢t)7

where w = 1+ |V¢|?* and

¢; = 0;¢p = gjﬂ
¢' = 9"y,

¢ij = 0i0j¢ — I ¢y,

85 = 9" bp; = 0;¢' + ¢'T},
o7 = g7,

3. A DETAILED PROOF OF AUBIN’S RESULT

In this section we give a complete proof of Aubin’s result (see [2] and [3]), i.e. we prove
the following
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Theorem 3.1 (Aubin ([2], [3])). On every smooth manifold of dimension at least 4 there
exists a Riemannian metric g whose Weyl tensor never identically vanishes.

Proof. Let g any Riemannian metric on M and consider the metric g given by (2.7). Let
po € M be such that W, vanishes in pg and B, an open ball of radius r and centered in py.
Moreover, let us consider normal coordinates 1, ..., z, on B, such that py = (0, ...,0). Thus,

at pp we have
9ij =97 =0ij, di=¢", i = 0i0j¢p = ¢ = ¢

From now on, we denote the local components of W, (Wg, resp.) on B, as Wik (Wijkl,

resp.).
We construct the function ¢ as follows: let f € C°°([0, +o0)) such that

fly)=0,ify>1
flly) >0,f"(y) <0,if0<y<1

For instance, we may choose

—e(%) fo<z<l1

(3.1) fla) = _
0 ifx>1

where b > 0 is sufficiently large. Now, let A, a1, ..., a; be n 4+ 1 real numbers in the interval
[1,2] and let

(3.2) ¢:)\r2f<a1x%+...+anaz%>.

2 r2

By definition, ¢ € C°°(B,) and it vanishes outside B,. Indeed, if x1,...,x, are such that
a12? + ..z < r?, then, since o; € [1,2] for every i,

n n

2 2 2
in SZaixi <rs,
i=1 i=1

ie. p=(z1,...,2) € By; in particular, this means that ¢ vanishes outside B,.
The partial derivatives of ¢ satisfy

(3.3) ¢ = Af' - aizi = O(r),

for a sufficiently small radius r. Since we chose a system of normal coordinates, for small

radii the second partial derivatives of ¢ satisfy

(671071
(3.4) gﬁij = )\(aif’éij + QTzjixjf”) = 0(1)
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Now, let us consider equation (2.8); for sufficiently small radii r, we can rewrite the ex-
pression as

(3.5) Wijki = Wiji + dindji — dudji+
1
— mAqﬁ(@Mﬂ — Gidjk + dj16ik — Pjrir)+

+ m(qbipﬁbpkdjl — GipPpidjk + ipPpidik — jpPprdit)
+ S — (Ag)? — [Hess()[*| (6051 — 6udj) + r*0ij1
(n—1)(n—2) J J IR
where rzﬁijkl contains all the terms in (2.8) whose order is the same as r or higher (i.e., all
the terms involving the derivatives ¢;) . Thus, we informally distinguish a “principal part”
and a “remainder” in the expression of the components W ;. Then, the key of the proof is
to show that the principal parts of the components Wj;;; cannot be simultaneously zero on
B,.
Now, let i # j # k # [; inserting (3.3) and (3.4) into (3.5), we obtain
(3.6) Wijig = Wijig + Mlai; ()2 + big /'] + 05535
Wijik = Wajir + Maigif' " zjan + r20;j0;

2
Wikt = Wijkr + 770381,

where

1 2
(3.7) aij = (n — 4oy — (o + ay) Z'ak + 1 Zakal ;

k1, k<l
bij = =22 (n — 4)(au + aaf)oioy — (0fa] + afad) Y apt
k#i,j
2 n
_(ai+aj) Zai$i+mzak ZO&IQI‘IQ ;
ki, k=1 I1#k
2050
Qijk = m (n— 3)0[1 — Z (6%}

16,5,k
It is important to note that there exist suitable choices for aj, ..., a, such that, for every
i # j # k, a;; and a;j;, never vanish on B, (observe that a;; and a;j;, are scalars, while b;; is a
polynomial of degree 2 in the variables x1, ..., x, for every i # j # k). For instance, we may
define
(a1y.a) = (2,2,1,1,...,1), if n > 4;

ap, 2, 03,04) = 175,3,2 if n=4.
432

A direct inspection of (3.7) shows that, with this choice, a;;, a;jr # 0.
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Note that, for n = 4, a; # «a; if i # j. For n > 4, observe that a;; and a;;; can be seen
as homogeneous polynomials in the n variables aq, ..., o, therefore, in particular, they are
smooth functions of these variables: hence, since we found a n-tuple (o, ..., ;) such that
aij, a;j, 7 0, we know that there exist sufficiently small €; # ... # €,, with ¢ > 0 for every 1,
such that a;j, a;;, # 0 for

(o, oyal) i =(2—€1,2— €2, 1+ €3, 1 +e4,..., 1 +€p)

and a; # o for i # j. Therefore, without loss of generality, we may assume that o; # a;
whenever i # j.

Now, we show that, for every p € B,, the Weyl tensor W3, whose local components are
defined in (3.6), does not identically vanish. Consequently, since M is closed, we can repeat
the argument finitely-many times on M and, therefore, the Theorem will be proven.

Let us distinguish three cases.

Case 1 (p = po). By hypothesis, W, vanishes in p and, since pyp = (0,...,0) in our local
coordinates, by (3.6) we obtain

Wijij = Naii(f')? + 2035
Wijik = °0ji
as r — 0, since a;j, f’, A # 0, we have that

(Wal2 > 2> W2, = )Y (a)? > 0.

i<j 1<j
Case 2 (p € B, \ {po}). Since p lies in the open ball of radius r/2 and centered in po, by

Taylor’s Theorem we have that
Wyl < C-r+o(r?), asr — 0.

Let us suppose Wijij = ka =0 for every i # j # k. By (3.6), we can write

aij(f')? +bij ' f" + o(r) = 0;

a;jrr;xr + o(r) = 0.

Letting r» — 0, the previous equations become
(3.8a) aij(f)? + by f'f" =0;
(3.8b) {

Note that we obtained an overdetermined system in the variables xi,...x,: indeed, since

Ak TjTh = 0.

i # j # k and the coefficients a;;, are symmetric with respect to the indices j and k, we have
n(n —1)/2 equations of the form (3.8b). Moreover, the polynomials a;;(f')* + b;; f'f" are
symmetric with respect to ¢ and j and a straightforward computation shows that

Z aj; = Z bi; = 0, for every j

i#] i#]
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(this can also be seen as a consequence of the fact that the Weyl tensor is traceless). Thus,
we have
n(n —1) e n(n —3)
2 2
equations of the form (3.8a). Therefore, our system is made by
n(n—3) n(n—1)
2 + 2

independent equations, and n(n — 2) > n+ 1 > n for every n > 4.

=n(n—2)

Now, let us show that the system admits only the solution z; = --- = x,, = 0, which will
lead to a contradiction, since p # pg. Since a;;, # 0, we obtain that x;z;, = 0 for every j # k.
This implies that at least n — 1 coordinates of p must be zero; since p # pg, there is exactly
one coordinate x; which is non-zero.

Let us consider j # t # s # i (note that this is possible since n > 4): by Wiﬂj = Wmt =

Wms = 0 we obtain

1 2 2
0:n_2 (n —4aia; — (i + ) Z"Oék‘i‘mzakal (f)*+
k#i,j k<l
2)r2 (n—4)afaef — ol Y o o Zak > ajad || £
k#i,j k 1 I#k

2
(n —4)azon — (a; + ay) Zak—l-mZakal

kit k<l

—I-m (n — 4)a?aa? — ol Zakﬂ—iZak Za%:ﬂ? A
kit I#k

Ozn_2 (n —4)oas — (o + ag) ZakjtiZakal (f")*+
k#i,s k<l
2
+m (n — 4)afasa? Z ak+72ak Zalscl A
k#i,s k=1 l#k

subtracting the second and the third equations from the first, since a; # oy # a5 and
' f” # 0 on B,, we get

! 2 2.2 1
0= [(n—3)a; — Z ag f—i—T—Z(n—S)ozlacz ,
k#i,5,t

2
_ / 2 2
0= (n—S)ai—k;‘ ap | f +T2(n—3)aaz
i,y
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It is immediate to observe that these two equations hold simultaneously if and only if
Z QR = Z Q= g = 0y,
ki, gt ki j,s

which is impossible. Thus, not all the components of Wy vanish at p.

Case 3 (p € By \ Bz). Let us suppose again that Wim = ka = 0 for every ¢ # j # k. As
r — 0, the first two equations in (3.6) become

(3.92) Wijij + N (ai; (f')° + bis f1 ") = 0;
(3.9b) Wijir + Nagezjopf " = 0.
If Wijij = Wijie = 0 at p, we get a contradiction by the conclusions of Case 2. Thus, let
us suppose that |Wg|§ > 0 at p: for instance, let Wi, # 0 for some 4, j, k. The equation
Wijik = 0 allows us to compute A:

Wijik
aijkxj:pk

A=

This equation holds for every point whose coordinates are solutions of the system above;
however, \ € [1,2] appears as a free parameter in (3.2), therefore it is sufficient to choose
A1 € [1,2] such that A\? # A\? and repeat the argument of the proof to obtain a contradiction.
Thus, Wi, = 0. If, for instance, A; is such that the equation

‘/I/i/j’i’k/ —+ )\%ai/j/k/,fj/xk,f/f/l -0

holds for some i’ # j' # k', it is sufficient to choose A2 € [1,2] such that A3 # A? to get the
same contradiction. Note that we can repeat the procedure for every equation of the system
above.

Therefore, eventually choosing A in (3.2) out of a finite set {\1,..., Ay}, we can conclude
that the system holds if and only if Wjj;;; = Wi = 0 at p: however, by the argument of Case
2, this leads to a contradiction.

Hence, not all the components of the Weyl tensor W5 vanish at p and this ends the proof.
O

Remark 3.2. If ‘W§|§

> 0 for every point of M, then, operating the conformal change
g:=[Wslg,
we obtain that the metric g is such that its Weyl tensor Wy satisfies

|W§|§ =1on M.
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4. PROOF OF THEOREMS 1.1 AND 1.3

In this section we extend Aubin’s result in dimension four to the self-dual and anti-self
dual components of the Weyl tensor in order to prove Theorem 1.1.

Proof of Theorem 1.1. First, note that, by Remark 3.2, it is sufficient to show that there
exists a Riemannian metric whose self-dual Weyl tensor never vanishes on M.

Let g any Riemannian metric on M and let again p € B,., where B, is an open ball in M of
radius r and centered in a point pg € M. Moreover, let x1, x2, 3, x4 be normal coordinates on
B, such that py = (0,0,0,0). Let g be the metric defined in (2.7), with the same ¢ introduced
in (3.2).

By definition

)

Wigkt = Wik + Wi
moreover, it is not hard to show that, for every 4, j, k,l = 1,...,4 such that i # j and k # [,
there exist indices k' and I’ such that
+ +
Wz‘jkl = iWijk’l"

This implies immediately that

1
+
Wi = §(Wz‘jkz + Wijkrrr)-

Let us now focus on W By (3.6) and (3.7), for i # j one can easily obtain

— 1 — —
(4.1) Wi = o Wijij + Wigujr) =

1
= 5 Wijij + Wigirgr + X(aij (') + bis /' ") + r°0i535] =

)\2
= Wi + ?(aij(f,)Q + bii f' f") + 205

(note that (¢',5") = (k,1) are such that i # j # k # ). Analogously, for i # j # k, we obtain

_ 1~ —~
(42) Wigir = 5 (Wi + Wijin) =
1
- §[ka £ Wjiji + N agezjor £ agaziz) f 7+ r* (0 + 05i31)] =
A2 2
= Wi + 5 (ignajor + aguwic) f " + 0.

Here, & appears in the equations since we may have (', k') = (I,5) or (¢, k') = (4,1).
Now, we are ready to prove the statement. Let us choose

5 3
(a17a27a37a4) = <]—7 17 272>7
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thus, an easy computation shows that

_ 5 _ __ 15 __1

a2 = 35 = G34 a123 = —g,7, (214 = — 5,3

_ 1 __5 _ 09

(43) a1z — _R — ag4 a:nd a124 = —p7 a213 = _W
—_1 _ _ 3 _ 5

a4 = —13 = 423 134 = — gz, (312 = —gz2

We recall that
Zaij = 0 for every j and Z a;jr, = 0 for every j # k.
i#] i#jk

As before, we distinguish three cases.

Case 1 (p = po). As we did for Aubin’s result, since a;; # 0 for every i # j, by (4.1) and
(3.7) we have

‘W+§‘; = QZ(WJZJ)Z = ()‘f/)42(aij)2 > 0.

i<j i<j
Case 2 (p € B2 \ {po}). We can apply again Taylor’s Theorem to conclude that
‘W;‘ <C-r+4o(r?), asr — 0.

o T — T
Let us suppose W 7;. = Wiﬂ

x = 0 for every i # j # k. By (4.2), letting r — 0 we have
A5k T 5T + Q1T T = 0.
More explicitly, we obtain the system

a123T2r3 + 21471704 = 0
a124T2T4 — 213123 =0 3
1342374 + az12r122 = 0
by (4.3), the system becomes
dxix4 = —152973
9x123 = 102274
9r1xy = —bx374
If z; # 0 for every i = 1,2,3,4, a straightforward computation shows that the system does
not admit any real solution: therefore, the components W;k cannot simultaneously vanish.
Thus, without loss of generality, we may suppose x4 = 0. This implies immediately that two

out of the three remaining variables must be zero. Let us suppose that xo = x3 = 24 = 0 and

x1 # 0 (the other cases are analogous). By Wit = 0, letting r — 0, (4.1) implies that

ijij
aij(f’)2 + bijf,f// =0.
However, since using (4.3) and (3.7) one has
2 f/
4

‘ =3

ars(f)2+bisf'f" =0 = af
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we get a contradiction, since, by definition of f, the ratio f’/f" is negative on B,.

Case 3 (p € B, \ Bg). As before, let us suppose that W:;U = ka = 0 for every i # j # k.
Asr — 0, by (4.1) and (4.2) we obtain the system

2
VVJW + %(aij(f,)z + bijf/fﬁ) =0
2
Wz—;zk + %(aijkxjxk + ajilxixl)f’f” =0
As in the proof of Theorem 3.1, if we suppose that W' does not identically vanish at p,
eventually choosing A outside of a finite set of values, we obtain a contradiction: therefore,

W =0 at p, which is impossible for the conclusions of Case 2.
Thus,
‘W;f E >0
on B,: since M is closed, we can repeat the argument finitely-many times to prove the claim.
Note that the proof is analogous if we consider WE_' O

Now, we prove the general condition defined in Theorem 1.3

Proof of Theorem 1.3. First, note that, if ¢ = 1, there is nothing to show: indeed W =
W + W-, therefore Aubin’s Theorem guarantees that the claim is true. If ¢ = 0, we obtain
Theorem 1.1.

Now, let us suppose t = —1. A straightforward computation shows that
+ =
Wijz’j = Wijig — Wit
+ T =
Wijir. = Wijir. = Wik

+ - .
W’jkl - W’jkl = £Wijij;

)

hence, we can apply again Theorem 3.1 to show the claim.
Therefore, let t # —1,0,1. We consider again the deformed metric g; defined by (2.7), with
¢ as in (3.2). It is easy to obtain the system

— —~ _ 22
(4.4a) W;inj + Wi = Wz‘;j +tWij + ?(1 + t)[ai (f)? + big f "]+ 103545
— — 22
(4.4b) Wik Wi = Wik +tW o, + 3[(1 + taijraor £ (1= tagazia] f' f + r20;j
N . B A2
(4.4c) WiJ;kl + Wi = WiJ;kl Wi 7(1 — t)ag; (f)? +big £ "]+ r*0ijn
where ¢ # j # k # 1. As we did for the proof of Aubin’s Theorem, let pg € M be a point such
that W; +t Wy |p = 0 and let B, be an open ball of radius r and centered in pg; moreover,
0

let us define normal coordinates x1,...z4 such that py = (0,0,0,0) and let p € B,. Finally,
we choose the coefficients (aq, ..., a4) such that a;j,a;j, # 0 for every i,j,k: note that the
coefficients can be chosen in such a way that the numbers a;j;, have the same sign. By (4.3),
it is easy to see that a = (1,5/4,3/2,2) is a suitable choice.
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Case 1 (p =po). As usual, since a;; # 0, we have that

— )\2 ~ A2
Wi + W5 = 5 1+ Dai(f)? #0, Wiy + W, = -5 1= t)aij(f")? # 0

at po; therefore Wgt +t Wgt Z 0 at po.
Case 2 (p € B,j3 \ {po}). For a sufficiently small radius 7, we again have that
|W;r —l—th_‘ < Ci+o(r?), as r — 0.
Let us suppose that WJM + tWi;kl = 0 at p: therefore, as r — 0 the subsystem consisting of
the equations of the form (4.4b) becomes
(1 + t)alggl‘gxg + (1 - t)a214:c1x4 =0
(14 t)arpaxoxy — (1 —t)agizzizs =0
(1 +t)argazszy + (1 — t)agioxiza =0
Let us suppose that x1, ..., 24 # 0: hence, we have

2
1—1t ajps mowa @123 Tox3 o M Ty i

- I
1+t az13 T1T3 a214 T1T4 a213 .I'% azi4

which is impossible, since, by hypothesis, the coefficients a;j;, all have the same sign. Thus,
at least one coordinate x; must vanish and, by the system above, this implies that there
is just one coordinate of p different from zero. Without loss of generality, we may suppose
that 1 # 0. However, by choosing the coefficients a1, ...cs in such a way that a;; and the
coefficient of z% in b;; have opposite signs for some i # j, we get a contradiction, since (f”)?
and f’f” have opposite signs on B,: for instance, if « = (1,5/4,3/2,2), by (3.7) we have

5 1,
a12 = E and b12 = _ﬁxl'
Thus, the only solution of the system is 1 = ... = x4 = 0, which is impossible, since p # po:

hence, we conclude that Wgt +t Wi does not identically vanish at p.

Case 3 (p € B, \ B, /3). If we suppose that Wgt +t Wz, identically vanish at p, as r — 0 the
system consisting of the equations (4.4a), (4.4b) and (4.4c) becomes

0 =W +iW;, +% (1+t)[am(f’)2+bijf'f"]

ijij 1jij
0 Wz—]’_zk ijlc [(1 + t)al]kxjxk + (1 - t)ajzlxle}f/f“ .
0 =W, +tWiy, + 4 (1 )aii (f')? +bij ' "]

However, if we suppose that W;‘ +t W, does not identically vanish at p, as we did in the
proofs of Theorem 3.1 and Theorem (1.1), by eventually choosing A out of a finite set of
values, we get a contradiction. Therefore, W;r +t W, must vanish at p, which is impossible.

By the hypothesis of compactness on M, the claim is proven. O
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5. PROOF OF THEOREM 1.4

In this section we prove Theorem 1.4. If we use again Aubin’s deformation of g as described
in (2.7), we can write the components of the Cotton tensor with respect to the deformed metric
g as
(5.1)
~ 1
Cijh = Cij = — (018" + 010" ) Ritjs — (856" + 050") Ratws]+

¢p 1 t s . . A X 4
- E(bzk ij - E [d’ d) (Rptjs + ¢]p¢t5 - ¢pt¢js) - ( ¢)¢jp + ¢pt¢j] +

+ %‘bw {Rkp - % [¢t¢S(Rptks + ¢kp¢ts - ¢pt¢k8) - (A¢)¢kp + ¢pt¢1]§c] } +

+ l[(A@k@j — (A¢);¢ik + (A)d° Ryijie — ¢50° Ratjie + Ohdity — @itk + 0'0°(Ritjs ke — Ritks )]+

+ £[¢t¢s(¢kpRitjs — GjpRitks) + jp((AP)bik, — Dird}.) — Prp((Ad)dij — Piedd’)]+
1
- ﬁ {gbp[d)zw)ljd)sp - ¢is¢jp) - ¢§(¢zk‘¢pt - ¢zt¢kp)]} +

1
= —5 {107 (bis bps — Pip@ss) — S(Pindpt — Sipdre)]} +

g

[\

1
2 {0°0"(¢" (Rrijidrs — Rrsjedit) + Grskdij — Prsjbik — Gitkbis + GitjOrs) | +

4
- §¢t¢s [qbkp(gbij(bts - Qbitd)js) - ¢jp(¢ik¢ts - ¢zt¢ks)]+

- 2w(n1 .y [0 Rpq ke + 2Rpq @ d5 + 2(A) (M) — 207 Bpare] (955 + dich)+
t Qw(nl_ 1) (676 Rpq,j + 2qu¢p¢3' + 2(A0)(Ad); — 20" dpq;(gik + Pidk)+
B 2w2<i—1) {W% 266"~ (B0) + 60 + (AN — &7 6s0"60) | +

+ (A¢)k¢p¢q¢pq + (A¢)¢p¢q¢qu + 2(A¢)¢p¢z¢pq - 2¢p¢q¢;¢sqk - 2¢p¢pq¢qs¢sk} (gij + ¢i¢j)+
+ 2102(;_1) {2¢p¢pj _QRst¢s¢t — (A9)? + ¢s10™ + g((A@(ﬁs(ﬁt(ﬁst — ¢ rs 0 ) [+
+ (B0);07 605 + (ADP 6 p05 + 2 DG G50 — 2066305 — 207 6308005 } (i + Gi60)+

- L(szfﬁj — Sjoidr)-

n—1

Proof. Let g any Riemannian metric on M and consider the deformed metric g defined in
(2.7), where ¢ is chosen as in (3.2), with aq, ..., ay, € [1,2] and such that the derivatives of f
satisfies the following inequalities

f >0, " <o, >0 on [0,1)
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(for instance, we can choose (3.1) with a sufficiently large b). Let us choose a point py € M
where the Cotton tensor C of (M, g) vanishes and let us consider again normal coordinates
in po. Note that, in addition to (3.3) and (3.4), for sufficiently small radii » we have

2 205 1
(5.2) Gijk = ﬁai [(O&jwi(sj'k + a0k + akmk&j)f// + %xz T f/”:| O <r> .

By (3.4) and (5.2), we obtain

(5.3) Ap=A[ D ap+ = 1y alal
p=1 p=1
54 A 2 902 . w20k - 2.2
(5.4) (Ag)y, = ) akxk—i—akaﬁkz:ap 4+ g —f Zapxp
p=1 p=1

As we did for W in (3.5), for sufficiently small radii we can consider the principal part of the

transformed Cotton tensor:

(5.5) Cijk = Ciji + (AQ)rdij — (AD)jbik + binbity — drjitk+

1

= 1 [(AR)(AP)k — pgbpar)9ij — (AD)(AP)j — dpqPpqs)gik] + 10ijk,

where the expression 7051, contains all the terms in (5.5) whose order is the same as r or
higher. By inserting (5.2), (5.3) and (5.4) into (5.5), we obtain

(56) 5@]1 — Cz]z + )\Q{Gijf,f// + bz] [f/f/// + (f/l)2:| }mj + TG'LJ
Cijk = Ciji + Nagrziz;ze[(f")? + ]+ rOijr,
where i # j # k and

2005
(5.7) aij = TTJ —dajoy — oy Y oy, ol dar+ Y akar ||
k#i,j k#j k<l
4o
bij = T‘lj —ai | e —i—Zakazk + 720% Zalxl ;
ki I#k
404i0éj04k
aijk = 7744 (Ozk — Odj).

Note that it is sufficient to choose a1, ...,y such that a; # «; for every i # j to obtain
a;ji 7 0 for every i # j # k.

It is immediate to observe that, by (5.6), the deformed cotton tensor Cj vanish at py. Thus,
we want to show that Cz does not identically vanish on B, \ {po}: by the compactness of M,
since we can cover M with a finite open cover {BZ i—1» we will conclude that the Cotton
tensor Cj does not identically vanish on M \ {py = Doy s PEY =2 M\ {p1, .., Dk }-

Now, let p € B, and let us consider Cy at p.
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Case 1 (p € B2 \ {po}). As usual, we have that

ICyl €D -7+ o0(r?), asr — 0;

if we suppose that @ﬂ = Nijk = 0 for every i # j # k, we have that

aijf,f” 4 b” [flf//l + (f”)ﬂxj 0
Wik TiT T, [(f”)Q + f/f///] =0

as v — 0. By the properties of f and our choice of a1, ..., ay, we have that x;xz;x;, = 0 for
every i # j # k, which implies that at most two coordinates of p are not zero.

Therefore, let us suppose that z;,z; # 0. By hypothesis, ém = Njij = 0: hence, by (5.6)
and (5.7) we obtain the following equations

2
= |:4a2-o¢j — ng + m Qa; Zak + Zakal) f’f"—&—
k#t,j k#j k<l
2
+ 5| e (i} + afx; +7Zak > ajai ] FORES i E

14k

k#i,j ki k<l

+ 3 —aj(ogajal + ofa]

E 041301

14k

+ f f,”]

2
0= —40@0@—0@20%4-; aizak+zakal) ff”+

subtracting the second equation from the first, it is easy to obtain

aj—ai)Zak—i—% ajZak—aiz:ak :Oﬁz:i’(aj—ai)Zak:O,

ki k#j k#i ki,
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which is impossible, since o; # o by hypothesis. This implies that exactly one coordinate of
p is different from zero (say, ;). Since n > 4, if i # ¢ # j, by Cjj; = Ctjv = 0 we obtain

2
0= —4aiaj—ai2ak+m Oéjzak+zakal f/f"+

ki, k#j k<l

2 1
+ 17204]2'55? —Q; + o1 Z Qg [(f”)Q + 1 1";
py

2
0= —4ataj—ozt2ak+ﬁ Oljzak+zakal f/f//‘l-

k#t,j k#j k<l
1
21 11\2 ! et
J at+n E ag | [(f")?+ 11"

It is not hard to see that, for a suitable choice of a1 # ... # ay,, the coefficients of [(f”)2 4 f' "]
in the equations do not vanish: this allows us to compute x? as
2
2
) r [4aiaj + QD i Ok — m(aj Dkt Ok D akal)} 13

2080+ 1 Sy en (2 4 171

However, inserting this into the other equation, we obtain

4&taj+atzak*% Oéjzak+zakal *ai+ﬁzak =

i kL) k] k<l ] k]
= 4aiaj+ai2akf% ajZak+Zakal —othr% ok |
~ n—1 / n—14~
i ki) k] k<l 11 k]
which implies
4
— (i — ) Zak + o (o — o)+
k#j
1 2
—i—n_l(ozt—ozi) Z oy Zal —i—m(at—ai) ajZozk—i—Zakal =0
k#i,5,t I#5 k#j k<l

and this is clearly impossible. Since p # po, we have that the Cotton tensor Cj cannot
identically vanish at p.

Case 2 (p € B, \ B,/2). As usual, let us suppose that Cy identically vanishes at p. If C does
not vanish at p, we can exploit the argument of Theorem 3.1 to conclude that, if we eventually
choose A out of a finite set of values, this is impossible. Therefore, C = 0 at p, which is a
contradiction, by the proof of Case 1; hence, Cz does not vanish at p.
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By the hypothesis of compactness on M, we repeat the argument of the proof finitely-many
times to conclude that

2
‘Cg‘?] >0on M \ {ph ---7Pk}-
O
Remark 5.1. We point out that Aubin’s method in the proof of Theorem 1.4 does not lead
to a sharp conclusion: indeed, one can prove the existence of left-invariant, non-Einstein
metrics on the standard sphere whose Cotton tensor never vanishes for every n > 3 (we

would like to thank Professor A. Derdzinski for the useful suggestion). Moreover, if n = 3,
the method used in the proof does not work, due to the lack of independent equations in the

case p € Byja \ {po}.

6. PROOF OF THEOREM 1.5

In this section, we focus on four-dimensional manifolds and we prove Theorem 1.5. If
n = 4, the Bach tensor acquires two additional properties: it is conformally invariant and
divergence-free (see [8], Section 1.4 and Section 2.2.2).

Proof. As we did in the proof of Theorem 3.1, let ¢ any Riemannian metric on M and let
po € M such that B, vanishes and let B, an open ball of radius » and centered in py. Let us
choose normal coordinates x1, ..., x4 such that po = (0,0,0,0) and let us define the function ¢
asin (3.2), with f defined as in (3.1). We know that f € C*°(]0, +0o0)): therefore, ¢ € C*°(B,)
and it vanishes outside B,. Moreover, for a sufficiently large b, the function f satisfies the
following inequalities

f'>0, f"<o0, f”>0 fIV<0 onl0,1).
By (5.2) and (5.3), we obtain the following additional expressions:
(6.1)

2 4
Dijkt = rjAai {?Aajakatl'i$jl‘kl'tflv + (o Oktdij + ;85ubir + 0idin) ' +

2
+ T—Q[ajak(éit:cjxk + (5jt33i33k + 5kta:,-xj) + at:ct(éijaka:k + (Sikajl"j + 5jk04jxi)]fm} .

(6.2)

(D) = Qifj { (20@' 2 %) T
p

ay, <2aj + Z ap> TjTE + 205578 + Z aimgéjk
P P

L2
r2

4oy,
"+ =5 <Z 0@5) l’jxkflv} :

p
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2
(63) (A¢)kk = % 220&2 + (Z aq) f” N <Qza + ZQPZO‘ > ///
2
+ r4 (Za ) fIV

Note that, for a sufficiently small radius r,

Gijit = O (:2>

We consider the principal part of the transformed Bach tensor: by (5.1), (5.5) and the defi-

nition of the Bach tensor, we obtain

(6.4) Bij = Bij + (Ad)rxdij + (Ad)rdije — (A0)jkdin — (AD);Pinnt
+ GikkPitj + Gk Pitjk — PrikPitk — Pt Pitkk+
1

- nf [((A¢)k(A¢)k =+ (A(Z)) (A¢)kk - ¢qu¢qu - ¢pq¢quk)5ij+
—((A®)i(Ad); + (AP)(AD)ji — PpgiPpej — PpaPpaji)] + bij

where 6;; is the usual “remainder” term. Note that, as » — 0, the terms given by ﬁklAW/ijkl in
the definition of the Bach tensor (2.6) do not appear in (6.4), since their order is lower than
the order of @jkyk; however, as we did for the Cotton tensor, we make explicit the coefficients
of By, since they do not depend on f (and, therefore, they do not a priori vanish as the

argument of f goes to 1).
Inserting (3.4), (5.3), (5.2), (6.1) and (6.2) into (6.4), for a sufficiently small radius r we
obtain the following expression for the Bach tensor:

(6.5)

2
B”—B”Jr {QZ[SZCZP+4ZOA¢1<ZO&O¢Z)8%] Zap[ZaiJr(Zat)
4/\2 3 2
{4Zapxp (1404,- — SZap> Zaqa)q—i—

¢ e ooyt ) + St -2 S ) [{ [ (7]

8N~ o o
+ 376 T, ol xq + Z Qg <3ai — Zat>
n 4/\;(;:'% T QZa + (Zaq> —2( a +a + 6aia;) — (v +aj);at:| [flf/"Jr (f//)2]+

. sA;t:éaa‘ i1, 22%3:,, (3041-—!—304] Zaq> Zatmt] (f £V +3f”f’”)

+2Zai}f’f”&j+
P

(£ 357 1" Yo+

Let
A= f,f”, B .= f/f/// + (f//)Q7 C = f/fIV i 3f//f///
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and let us choose (aq, a9, ag, aq) = (1, 4, 2, 2). For i # j, we obtain the following equations
(6.6) Bis = By + ?i 7?2<x xQ + :c3 + 12z >0 + 12‘13} L1290
B13—313+g 22<31 T+ 75 a3 42 3 + 923 >C’—|—118§B]x1x3
l§14 =DBu+ ii\z - 7“22< Zi % + 96 Sxi)C - 1963] T124
Egg—Bzg—i-Zﬁ_fQ( 2x1+2x3+6 >C—|—29.B:|3}2(E3
§24 = Boy + 130§ [—1?2 <x% + ?7)2932 + Zm%)C 7833] ToT4

AN2]T 2 /11 225 63 287
B34 = B34 + — |: 7"72 (41’% 4+ — 64 g + 161% + 31’4)0 — 6B:| T34,

for ¢ = j, we have the additional expressions

~ 323)\2 A2 /7 4175 2727
(6.7) Bji =By —- — A+ — <2x§ — a2 — a2 - 217z )

12r2 3rd 32 16
—i—i)\z [( 1+f2 %—1—91'3—1—41'4)( Z 2 ;;ﬁ—ﬁﬁ—i%ﬁ)—i—
+ a:1<Z s 26245 5+ 51)2 31 15:1:4” c
By = Boy — 4617“);2 i\i<9673:2 + ;Z 22122 + 31‘4) B+
+ 3);26 [<8$1 + 2253:% + 1823 + 32:@21) < x3 — Zi 2 - Zw§>+
+ 23 (28536% + %7;37% + %m% + 2359@21)] C

612 rd\ 12 24727 '8 3

2)\2 5 16 1 9
+ 5 |:<3$%+1 x5+ 323+ = 3 2)(—4x§+16x§+3xi)+

1 22 2
+m3< 5:13% 52 724—9 >]C

~ 5312 A2/ 43 25 39 209
Bs3 = Bszs + — A+~ <—x§ +xs+ —ad o+ 2> B+

4 6472 1673
2092 A2 (223 3775 1167
By =B A 3 x3 + 227 | B
= Put o (125614r 96 27T g AT ) *
82 25 9 52,75 5 63 5
+W .'13+ 62+43+4{I}4 4 +37 2+ 63+9ZE4 +

375 , 117 ,

—$4<17 1+T6 2+T 3—|—36 >:|C
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Of course, the equations in (6.7) cannot be all independent, since the Bach tensor is traceless.
As we did for Theorem 3.1, we consider three cases.

Case 1 (p = po). In our local coordinates, py = (0,0,0,0); therefore, since By = 0 in py and
A < 0on By, by (6.6) and (6.7) we obtain

4
Bgl; =2 B} =CA”>0,
i=1
where ' = 1038452%

3614

Case 2 (p € B2 \ {po}). In this case, we have again that
|By| < C -7+ o(r?), asr — 0.

Thus, we may consider just the principal parts in the system defined by (6.6) and (6.7).

Let us suppose that Eij = 0 for every i,j at p = (z1, z2, z3,24). We want to show that the
only solution of the system is given by a; = 0 for every ¢, which leads to a contradiction for
the previous argument.

If we suppose that x; # 0 for every i, we have that, for instance,

14172 2

by the first equation in (6.6). Since B > 0 and C < 0 in B, and z1,...,x4 # 0, inserting this
into the other equations in (6.6), we obtain a system of five equations in the variables x1, ..., x4:

16 75 9
B = (x% + 3—2:6% + —x3 + 12xi)0

a straightforward computation shows that this system admits only the trivial solution and,
therefore, one of the variables 1, ..., x4 must be zero.

Now, let us suppose that x; # 0 for at least two indices ¢. If x; # 0 for one index i, by
(6.6) and (6.7) we obtain a system of 5 independent equations in x;, xy, x;, where j, k,1 # i
by an analogous argument, we can show that the system admits no solutions, which implies
that at least two variables x; and x; must be zero. In this case, expressing B in terms of C' as
before, by (6.7) we can express A in terms of C' as well and, therefore, obtain two independent
equations in xj,;; however, by our choice of the coefficients aq, ..., a4, the system is once
again inconsistent.

Therefore, as in the proof of Theorem 3.1, we obtain that exactly one variable x; is different
from zero. Let us suppose that, for instance, 1 # 0. By (6.7), we have that

323)\2 ™%,
*7127“2 A + W$1B > O,

since A < 0 and B > 0 on B,. Thus, the system admits no solution. The other cases can be

Ell =

shown in an analogous way. Hence, we conclude that ‘Bg}g must be strictly positive at p.
We also point out that the same system was solved wvia technical computing through Wol-
fram Mathematica (see Appendix A for the code). Also note that the system in the Appendix

is more general than the one we are considering in this proof: indeed, we showed that the
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system (6.6)+(6.7), with B;; = 0, would admit no real solutions even if A, B and C were free
real parameters satisfying A, B, C' # 0.
Case 3 (p € B, \ B,/3). In this case, we need to consider the components of the Bach tensor
By in (6.6) and (6.7).

If B, = 0 at p, we can immediately conclude that ‘Bg}; > 0 at p, by the proof of Case 2.

Thus, let us suppose that Ei]- = 0 at p for every i,j and that |Bg]§ > 0 at p. In particular,
we may suppose that Bia # 0 at p. By the first equation in (6.6), we obtain that

3r4Bis

A2 =—
2 75 9 141

at p. However, we may choose A\; € R such that A\? # A\? in (3.2), since ) is a free parameter:
if we repeat the argument of the proof with A\; instead of A, we get a contradiction and,
therefore, we conclude that Bis = 0 at p.

Now, if B1s # 0 at p, the second equation in (6.6) implies that

)\% _ 7’4313
2 /1 75 45 189
2 [7“2 (430% + 6—4:13% + Ex% + 9mﬁ> C+ 163} 123

I

again, possibly choosing Ay such that A2 # A\?  we obtain that Bj3 = 0 at p. Iterating this
argument for every component B;;, we conclude that, possibly choosing ) outside a finite set
{\, ..., Ak}, the components B;; must all vanish at p. Therefore, we repeat the argument of
Case 2 to conclude that
[Bg[2 > 0 at p.
Now, as in the proof of Theorem 3.1, since M is compact, we can deform the metric g on
a finite cover of M: using the argument of Remark 3.2, the claim is proven. O

Remark 6.1. As we recalled in the Introduction, when dim M = 4, Bach-flatness is a neces-
sary condition for (M, g) to be an Einstein manifold; therefore, an immediate consequence of
Theorem 1.5 is that, given a smooth manifold M of dimension four, one can always choose
a conformal class [g] of Riemannian metrics which contains no Einstein metrics. In fact,
we can say more: since we found a quadruple aj, ..., a4 such that the system of equations
(6.6)4+(6.7) admits no solutions, there exists an open neighborhood Uz of o = («q, ..., q) in
Q :=1[1,2] x [1,2] x [1,2] x [1, 2] such that, for every o’ € Ug, the system admits no solutions
on M. Therefore, there exist infinitely-many conformal classes of Riemannian metrics on M
which contain no Einstein metrics.

Although we did not prove it in this paper, we expect that, given any Riemannian metric
g on M, the subset

Q = {a €qQ: |Bga|§a =1, where g, = g + dpo @ dd, and ¢, is defined as in (3.2) }

is such that @ \ @’ has Lebesgue measure zero in Q.
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APPENDIX A. SOLUTIONS OF THE SYSTEMS (6.6) AND (6.7) IN THE HOMOGENEOUS CASE

)= B12 1= (2/rA2 (X1A2+75/32Xx2A2+9/2x3A2+12x412) C+141/8B) x1+x2;
B13 := (2/rA2:(1/4Xx1A24+75/64X272+45/16x342+9x472) C+189/16B) x1+x3}
Bl4 := (-2/rA2-(5/4Xx17A2+75/64x272+9/16x3A2-3x4A2) C-9/16B) x1x4;
B23 := (2/r"2:(-1/2x172+9/8x3/2+6x472) C+19/4B) x2+x3;
B24 := (-2/rA2 (x1A2+75/32x2A24+9/4x34A2) C-73/8B) x2 x4}
B34 := (-2/rA2-(11/4x172+225/64Xx272+63/16x342+3x4/2) C-287/16B) x3 +Xx4}
Bll:=-323/12/rA2A+1/3/rN4« (7/2x172-4175/32Xx272-2727/16Xx372-217Tx4A2) B+
8/3/r"6 ((X1A"2+25/16X202+9/4X37"2+4X4M2) (-T/4X1LA2-75/32X2"2-45/16X372-3X4M2) +
X1A2 (7/4X17A2+225/64x2A2+99/16x372+15x472)) C;
B22 :=-41/6/rA2A+1/rA4~ (-97/6X172+75/24x2A2-21x3A2+2/3x4A2)B+
1/3/rA6 ((8X1A2+25/2x27A2+18x3MA2+32x4A2) (-x1A2-T75/64Xx272-9/8x3A2) +
X2A2 (25/8x1A2+1875/128 X242 +1125/32x372+225/2x442)) C;
B33:=53/6/rA2A+1/rAh4.(-43/12x17A24+25/24x2A2+39/8x3A24+209/3x4A2) B+
2/r7"6 ((4/3x172+25/12x2A2+3x322+16/3x472) « (-1/4x1A2+9/16x312+3Xx472) +
X3A2 (-15/4x17A2-225/64Xx272-27/16x372+9x4A2)) C;

in@g}= Solve[{B12=- 0, B13 == 0, B14 == 0, B23 - 0, B24-=:- 0, B34 - 0, B11 == 0, B22 =0, B33 == 0},
{x1, x2, x3, x4, A, B, C}]

out[9]= {{A—)O, B-0,C-»0}, {(X2>50, A»>0,B->0, C»0}, {X1)1 50, A>0,B->0,C->0}, {x350, A>0,B->0,C->0},

{x4 >0, A»0,B->0,C-»0}, {XL>0, X250, A>0,B->0,C—>0}, {x1 50, x350,A->0,B->0, C->0},

41 x4 8 /2 x4 41 x4
{xl—>0,x3—>— ,A->0,B->0,c—>0},{x1—>0, X2 5> - -2 w3 ,A—>@,B—>0},
V3 5
[ .
8 /2 x4 4 i x4 4 i x4
{x1->0,x2—> , X3 5 - ,A—>0,B—>o},{x1—>o, x3 > ,A—>0,B—>0,C—>0},
5 /3 /3
Y Y
82 x4 41 x4 8 /2 x4 41 x4
{x1->0, x2 5 - — 277 %35 ,A—>0,B—>o},{x1—>o, x2 5> Y277 %35 ,A—>0,B—>O},
5 NE) 5 NE)

{x1->0, x250, x350, x4-50, A»>0}, {x2-0, x3 50, A->0,B->0, C>0},
{x2->0, x35-2i42x1,A-0,B-0, c->0}, {x2—>0, X35 2 i2x1, A0, 850, c->0},

{x2->0, X450, A»0,B->0,C->0}, {Xx1 50, X450, A>0,B->0, C>0},
{x1-0, x2-50, x350, X450, A->0}, {x3>0, X450, A-0,B->0, C>0},
2 x1

4 2 x1
{x3—>— , X450, A>0, B0, c_>0}, {x2—>—giy‘2 X1, x3 -2, x4 50, Ao, B—>0},

4 2x1 2x1
{x2—>—1y‘2xl,x3—>—7,x4—>0,A—>0,B—>0},{x3—>7,x4—>0,A—>0,B—>0,C—>0},

5 3 3

4 2x1 4 2 x1
{x2—>——1\j2x1,x3—>7,x4—>0,A—>0,B—>0},{x2—>—1\j2x1,x3—>7,x4—>0,A—>0,B—>0},

5 3 5 3

2. x1 2 x1

{x2—>0, x3—>-§jlw2x1,x4—>-7,A—>0,B—>0},{x2—>@, X352 102 xl,x4—>—7,A—>0,B—>0},

2 = x1 2 = x1
{x2->0, X35-2i2x1, x4 5, A0, B—>0}, {x2—>0, X35 2 a2 x1, x4 2, A0, B—>0},

{x1-0, x2-50, x350, A>0,B->0,C->0}, {x1 50, x2-50, X450, A>0,B->0, C->0},
{x1-0, x2-50, x40, A>0,B->0,C->0}, {x1 50, x350, x40, A>0,B->0,C->0},
{x1->0, X250, x350, X450, A>0, B>0}, {x1 >0, X250, X450, A>0,B->0, C>0},
{x1-0, x350, x4>50, A>0,B->0,C->0}, {x1 50, x250, x350, x40, A>0,B->0},
{x2-50, x350, x4>50,A>0,B->0,C->0}, {x250, x350, X450, A>0,B->0, C—>@}}
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