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Abstract

Following a celebrated paper by Jordan, Kinderleherer and Otto it is possible to
discretize in time the Fokker-Planck equation ∂t% = ∆%+∇·(%∇V ) by solving a sequence
of iterated variational problems in the Wasserstein space, and the sequence of piecewise
constant curves obtained from the scheme is known to converge to the solution of the
continuous PDE. This convergence is uniform in time valued in the Wasserstein space
and also strong in L1 in space-time. We prove in this paper, under some assumptions on
the domain (a bounded and smooth convex domain) and on the initial datum (which is
supposed to be bounded away from zero and infinity and belong to W 1,p for an exponent
p larger than the dimension), that the convergence is actually strong in L2

tH
2
x, hence

strongly improving the previously known results in terms of the order of derivation in
space. The technique is based on some inequalities, obtained with optimal transport
techniques, that can be proven on the discrete sequence of approximate solutions, and
that mimic the corresponding continuous computations.
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1 Introduction

More than 20 years ago Jordan, Kinderleherer and Otto wrote their seminal paper [15],
where they identified a variational structure in the Fokker-Plank equation

∂t% = ∆%+∇ · (ρ∇V )

as a gradient flow of the functional J(%) =
∫
%(V + log %) in the Wasserstein space W2. This

is remarkable since the same equation has no gradient-flow structure for Hilbertian distances
such as the L2 or H−1 norms, differently from the heat equation (obtained for V = 0). The
gradient flow interpretation also gives a natural discretization in time, where a time step
τ > 0 is fixed and a sequence (%τk)k is iteratively defined using

%τk+1 ∈ argmin%

{
J(%) +

W 2
2 (%, %τk)

2τ

}
.

This sequence is then used to define a curve t 7→ %τ (t) in the space of probability measures
via %τ (0) = %0 and

%τ (t) = %τk+1 for t ∈ (kτ, (k + 1)τ ].

In [15] the convergence of %τ to the solution of the Fokker-Planck equation was
proven when the domain on which the equation is set is the whole space (of course
under suitable decay assumptions on the initial datum, namely that it has finite second
moment

∫
|x|2d%0(x) < +∞), and the convergence is weak in L1 for every t and strong in

L1([0, T ] × Rd). The analysis of the convergence can be adapted to the case of a bounded
domain Ω (and in this case there is no moment condition) and the results are essentially the
same. This is, for instance, the object of Chapter 8 in [24], where the Fokker-Plank equation
is chosen as an example to present the JKO scheme and the gradient-flow approach to some
diffusion equations. As it is a linear equation, it is also the simplest case where this analysis
can be performed.

The goal of the present paper is to improve the nature of the above convergence, under
some possible assumptions on the initial datum. We do not mean obtaining a better rate of
convergence in terms of τ (note that [1] proves a convergence of order O(τ) in the Wasserstein
distance W2 whenever V is semi-convex), but obtaining strong convergences in the best
possible spaces.

In particular, we obain in this paper strong convergence results for the space derivatives
up to order two of the solutions (more precisely, we obtain strong L2

tH
2
x convergence under

some assumptions). Besides its per se mathematical interest, the main application of this
fact is numerical, since this means that one can “trust” the approximation found via the JKO
scheme (which can be attacked by different numerical methods, see, for instance, [23, 22] or
[25] for a general presentation) not only in order to predict the behavior of the true solution,
but also of its derivatives. Of course, the interest of these estimates in the very case of
the Fokker-Plack equation is limited, since this equation is a simple linear variant of the
heat equation, for which efficient numerical solvers exist independently of its gradient-flow
interpretation, and it would be interesting to generalize this approach to other PDEs which
have a gradient flow structure in the Wasserstein space but feature non-linear diffusion,
such as the porous medium or the fast diffusion equation (see, for instance, [21]). Yet, this
extesion is not within reach so far and will be a matter of further study.
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The paper will undergo these proofs of convergence by analyzing different steps. The
first one consists in proving a very classical L2

tH
1
x bound on the discrete solutions %τ , which

is obtained by a discrete analogue of a very standard computation, which is itself based
on a simple integration-by-parts: the time derivative of

∫
1
2%

2 equals −
∫
|∇%|2 + %∇% · ∇V

whenever % solves the Fokker-Planck equation. A similar computation can be done for
the sequence obtained via the JKO scheme, but strongly relies on the geodesic convexity
of the functional % 7→

∫
1
2%

2 (see [20] or [24, Chapter 7]). This estimate provides strong
L2 compactness in space, and allows to obtain convergence in L2

tL
2
x via the Aubin-Lions

lemma when coupled with bounds in time on a suitable interpolation. This L2
tL

2
x is just a

small refinement of the original L1 convergence already proven by Jordan-Kinderlehrer-Otto,
but is a necessary step to go on. The next step consists in the strong convergence in
L2
tH

1
x. This is obtained by refining the same computations. Once we have a bound on∫ T

0

∫
Ω |∇%

τ |2, this provides weak convergence in L2
tH

1
x and the limit can only be the solution

% to the limit Fokker-Planck equation. We do have strong convergence if we are able to prove
lim supτ→0

∫ T
0

∫
Ω |∇%

τ |2 ≤
∫ T

0

∫
Ω |∇%|

2, which can be obtained by the very same estimates
(using the strong L2

tL
2
x convergence to handle the extra term involving ∇V ). This proof is

presented in Section 4, after two preliminary sections, one on the properties of the solution
in continuous-time (Section 2) and one on the properties of the JKO scheme (Section 3).

Then, a similar argument is proposed for the convergence of the second derivatives in
space. The strategy consists in finding a first-order quantity which decreases along iterations
of the JKO scheme such that its dissipation is a second-order quantity identical to the one
which could be obtained along the continuous-in-time flow of the PDE up to terms which
tend to 0 when τ → 0. This is done by looking at the evolution in time of the quantities

Fp(%) :=
1

p

∫
Ω

∣∣∣∣∇%% +∇V
∣∣∣∣p d%.

The particular case p = 2 is the most important one, as the functional F2, sometimes called
Fisher information (in particular in the case V = 0) naturally appears in the Fokker-Planck
equation as the dissipation of the entropy J along the solution of the equation (more precisely,
we do have ∂tJ(%t) = −2F2(%t)). This fact is widely used in functional inequalities as for
instance in the Bakry-Emery theory (see [2], for instance). Our analysis will be based on
the evolution in time of the functionals Fp along the JKO scheme, and on the evolution of
F2 on both the JKO and the continuous-in-time equation. It is possible to differentiate F2

in time and obtain several terms including the main one −
∫

Ω %|D
2(log % + V )|2. The same

computation may be done on the JKO scheme using the so-called five-gradients inequality
introduced by the second author and collaborators in [11] and applied to the Fokker-Planck
equation in [12]. This requires a finer analysis than what is done in [12] since the remainders
of the inequality will be crucial. Moreover, the dissipation along the steps of the JKO scheme
does not provide exactly the desired term −

∫
Ω %

τ |D2(log %τ +V )|2 but includes an error term
of the order of ||D2ϕτk||L∞ , where ϕτk is the Kantorovich potential in the optimal transport
from %τk to %τk−1.

In order to get rid of this error term we need uniform upper and lower bounds
together with uniform C0,α estimates on %τ , which provide (using Caffarelli’s theory for
the Monge-Ampère equation, [5, 6, 7, 8, 9, 10]) a uniform bound ϕτk ∈ C2,α; this, combined
with simpler bounds on ∇ϕτk allows to obain ||D2ϕτk||L∞ → 0. Uniform C0,α bounds on %τ
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are obtained in a non-optimal way: we indeed suppose Fp(%0) < +∞ for p > d and prove that
this quantity stays bounded in time, which implies the Hölder behavior because of standard
Sobolev embeddings.

Once we get rid of the error terms, the fact that the estimates in discrete and in continuous
time are essentially the same allows to obtain

∫ T
0

∫
Ω %

τ |D2(log %τ+V )|2 →
∫ T

0

∫
Ω %|D

2(log %+
V )|2 which provides strong L2

t,x convergence of
√
%τD2 log %τ and, after carefully using again

the upper and lower bounds on %τ , we obtain D2%τ → D2% in L2
t,x.

The experienced reader can see that some of the assumptions on th initial data are
crucial, and some or essentially technical: first of all, we assume %0 to be bounded from
above and from below which simplifies many statements and proofs in order to obtain, with
our technique, dirct bounds on %τ and not on functions of it; once these bounds are accepted,
the condition F2(%0) < +∞ becomes absolutely necessary since the solution of the PDE is
L2
tH

2
x if and only if %0 ∈ H1; on the other hand, Fp(%0) < +∞ for p > d is not a natural

assumption, and is chosen for technical reasons. Getting rid of these extra assumptions,
as well as extending this kind of results to other diffusion equations, would of course be
interesting, but since this is, to the best of our knowledge, the first higher-order strong
convergence result for a JKO scheme we believe that it has its own interest.

Acknowledgement. The first author acknowledges the support of the ANR project
MAGA (ANR-16-CE40-0014), of the Lagrange Mathematics and Computation Research
Center project on Optimal Transportation, and then of the European Union via the ERC
AdG 101054420 EYAWKAJKOS project. The second author acknowledges the partial
support of the Austrian Science Fund (FWF) through the project F65 “Taming Complexity
in Partial Differential Systems”, as well as the support of École normale supérieure de Lyon
and its scholarship program Ampère for the year spent in Lyon when the work leading to
this paper started as a part of his master thesis.

2 Basics on the Fokker-Planck equation

In the present paper we will consider the Fokker-Planck equation in a finite interval [0, T ]
and a convex bounded domain Ω ⊂ Rd whose boundary ∂Ω is smooth enough. The drift in
the equation will be of gradient type and autonomous. We denote by ~n the exterior unit
normal vector of the boundary ∂Ω. We consider the Cauchy problem for the Fokker-Planck
equation with no-flux boundary condition, i.e.,

∂t%(t, x) = ∆%(t, x) + div(%(t, x)∇V (x)), (t, x) ∈ (0, T ]× Ω,

∇%(t, x) · ~n(x) + %(t, x)∇V (x) · ~n(x) = 0, (t, x) ∈ [0, T ]× ∂Ω,

%(0, x) = %0(x), x ∈ Ω,

(1)

where %0 ∈ P(Ω) ∩ L1
+(Ω).

The initial total mass is
∫

Ω %0(x)dx = 1 and it can be formally seen that it is preserved.
The meaning of the no-flux boundary condition in (1) is the following: we only consider
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solutions which are at least L2([0, T ];H1(Ω))∩C([0, T ];L2(Ω)) and we require them to satisfy∫ T

0

∫
Ω
%(t, x)∂tϕ(t, x)dxdt−

∫ T

0

∫
Ω

(∇%(t, x) + %(t, x)∇V (x)) · ∇ϕ(t, x)dxdt

=

∫
Ω
ϕ(T, x)%(T, x)dx−

∫
Ω
ϕ(0, x)%(0, x))dx

for every test function ϕ ∈ C1([0, T ]× Ω), without requiring ϕ to vanish on ∂Ω.
Well-known results on parabolic differential equations (see [16], [19] ) let us to state the

following properties of (1):

Proposition 2.1. Let [0, T ] be a finite interval and Ω be bounded domain whose boundary
∂Ω is Lipschitz continuous. Then the following hold:

• if V is Lipschitz continuous and the initial data %0 ∈ L2(Ω), then there exists a unique
solution % of (1) in L2([0, T ];H1(Ω)) ∩ C([0, T ];L2(Ω)). If %0 ∈ H1(Ω), then we have
% ∈ L2([0, T ];H2(Ω)) ∩ C([0, T ];H1(Ω)).

• if %0 ∈ C(Ω̄) and V ∈ C2(Ω̄), then % ∈ C([0, T ]× Ω) is differentiable with respect to t
in (0, T ]× Ω̄; %(t, ·) belongs to W 2,p(Ω) for every p ≥ 1.

• If %0 is bounded from below and above by two positive constants, then the same (for
possibly different constants) holds for %.

• if %0 ∈ C(Ω̄), ∂Ω has C2+α regularity and V ∈ C2+α(Ω̄) for α ∈ (0, 1), then % ∈
C1+α

2
,2+α((0, T ] × Ω̄). If moreover ∂Ω and V are C3+α, then %(t, ·) ∈ C3+α(Ω̄) for

every t > 0.

Once we know that the solution of (1) exists, is unique, and is smooth, we are interested
in evaluating, and in particular differentiating in time, some quantities involving the solution.
First we consider the following classical statement

Proposition 2.2. Let %0 ∈ L2(Ω) and %t be the unique solution of (1). Then we have∫
Ω
%2
T (x) dx−

∫
Ω
%2

0(x) dx = −2

∫ T

0

∫
Ω
|∇%t(x)|2 dxdt− 2

∫ T

0

∫
Ω
%t(x)∇%t(x) · ∇V (x) dxdt.

Proof. In order to obtain this result it is enough to differentiate in time the function t 7→∫
Ω %

2
t . To do this, we use a Lemma 2.3, which is a general lemma from functional analysis.

Since %t ∈ L2([0, T ];H1(Ω)) we have ∂t%t = ∆%t + div(%t∇V ) ∈ L2([0, T ];H−1(Ω)). Thus, %t
satisfies Lemma 2.3 in the case of V = H1(Ω) and H = L2(Ω). Consequently, we have that
%t ∈ C([0, T ];L2(Ω)) and∫

Ω
%2
T (x) dx−

∫
Ω
%2

0(x) dx = 2

∫ T

0
〈∂t%t, %t〉H−1,H1 dt

and it is enough to use the expression for ∂t% and integrate in time to obtain the result.
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In the above proof we mentioned a general functional analysis fact, which is recalled here
below. To introduce it, let us consider a Hilbert space H endowed with the norm || · ||H ,
a Banach space V , and we assume that V is reflexive, V ⊂ H with dense and bounded
embedding. The following Lemma is proven, for instance in [27, Lemma 1.2, page 260].

Lemma 2.3. The following inclusion

L2([0, T ];V ) ∩H1([0, T ];V ′) ⊂ C([0, T ];H)

holds true. Moreover, for any g ∈ L2([0, T ];V ) ∩H1([0, T ];V ′) there holds

t→ ||g(t)||2H ∈W 1,1(0, T )

and
d

dt
||g(t)||2H = 2〈g′(t), g(t)〉V ′,V a.e. on (0, T ). (2)

In the above computation, we saw that a zero-order quantity (here
∫
%2) is the integral

in time of a first-order quantity (which is in our case given by
∫
|∇%2|+ %∇% · ∇V ). We now

need to look at higher-order quantities. In particular, we will consider the functional

Fp(%) :=
1

p

∫
Ω

∣∣∣∣∇%% +∇V
∣∣∣∣p d% (3)

defined for % ∈W 1,1(Ω) ∩ P(Ω). We will mainly look at F2.

Lemma 2.4. Suppose 0 < T < +∞, Ω is a bounded domain with C3+α boundary, V ∈
C3+α(Ω̄) for some α ∈ (0, 1) and %0 ∈ C(Ω̄) is positive. If % is the solution of (1), then for
t > 0 we have

∂tF2(%t) = −
∫

Ω
|D2(log %+ V )|2% dx−

∫
Ω

(∇(log %+ V ))T ·D2V · ∇(log %+ V )% dx+∫
∂Ω

(∇(log %+ V ))T ·D2(log %+ V ) · ~n% dHd−1. (4)

Proof. The assumptions provide that %(t, ·) is also positive and belongs to C3+α(Ω̄) for every
t ∈ (0, T ]. We have

2∂tF2(%t) = ∂t

∫
Ω

d∑
i=1

(
∂i%

%
+ ∂iV

)2

% dx =

d∑
i=1

∫
Ω
∂t%

(
∂i%

%
+ ∂iV

)2

dx+ 2
d∑
i=1

∫
Ω

(
∂i%

%
+ ∂iV

)(
∂t∂i%−

∂i% ∂t%

%

)
dx =

∫
Ω

d∑
i=1

∂t%

[
(∂iV )2 −

(
∂i%

%

)2
]
dx+ 2

d∑
i=1

∫
Ω

(
∂i%

%
+ ∂iV

)
∂t∂i% dx.

We look at the different parts of the last integral. First we use the equation ∂t% = ∆% +
div(%∇V ) and integrate by parts.∫

Ω

d∑
i=1

∂t%

[
(∂iV )2 −

(
∂i%

%

)2
]
dx =

∫
Ω

d∑
i,j=1

[
(∂iV )2 −

(
∂i%

%

)2
]
∂j (∂j%+ % ∂jV ) dx =
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−2
d∑

i,j=1

∫
Ω

[
% ∂iV ∂ijV −

∂i% ∂ij%

%
+

(∂i%)2 ∂j%

%2

](
∂j%

%
+ ∂jV

)
dx+

d∑
i,j=1

∫
∂Ω

[
(∂iV )2 −

(
∂i%

%

)2
](

∂j%

%
+ ∂jV

)
%nj dHd−1.

We now compute the second part

2
d∑
i=1

∫
Ω

(
∂i%

%
+ ∂iV

)
∂t∂i% dx = 2

d∑
i,j=1

∫
Ω

(
∂i%

%
+ ∂iV

)
(∂ijj%+ ∂ij(%∂jV )) dx =

−2

d∑
i,j=1

∫
Ω

(
∂ij%

%
+ ∂ijV −

∂i% ∂j%

%2

)
(∂ij%+ %∂ijV + ∂i% ∂jV ) dx+

2

d∑
i,j=1

∫
∂Ω

(
∂i%

%
+ ∂iV

)
(∂ij%+ %∂ijV + ∂i% ∂jV )nj dHd−1 =

−2

d∑
i,j=1

∫
Ω

(
∂ij%

%
+ ∂ijV −

∂i% ∂j%

%2

)2

% dx

−2
d∑

i,j=1

∫
Ω

(
∂ij%

%
+ ∂ijV −

∂i% ∂j%

%2

)
∂i%

(
∂j%

%
+ ∂jV

)
dx

+2
d∑

i,j=1

∫
∂Ω

(
∂i%

%
+ ∂iV

)
(∂ij%+ %∂ijV + ∂i% ∂jV )nj dHd−1.

We consider the integrals over the boundary of Ω. Because of the no-flux boundary condition
the first boundary integral vanishes:

d∑
i,j=1

∫
∂Ω

[
(∂iV )2 −

(
∂i%

%

)2
](

∂j%

%
+ ∂jV

)
%nj dHd−1 = 0.

Because of the same reason the second boundary integral can be written as follows

2

d∑
i,j=1

∫
∂Ω

(
∂i%

%
+ ∂iV

)
(∂ij%+ %∂ijV + ∂i% · ∂jV )nj dHd−1 =

2
d∑

i,j=1

∫
∂Ω
%

(
∂i%

%
+ ∂iV

)(
∂ij%

%
+ ∂ijV −

∂i% · ∂j%
%2

)
nj dHd−1.

Consequently, we have

∂tF2(%) = −
d∑

i,j=1

∫
Ω

(
∂ij%

%
+ ∂ijV −

∂i% ∂j%

%2

)2

% dx−
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∑
i,j=1

∫
Ω

(
∂i%

%
+ ∂iV

)
∂ijV

(
∂j%

%
+ ∂jV

)
% dx

+
d∑

i,j=1

∫
∂Ω
%

(
∂i%

%
+ ∂iV

)(
∂ij%

%
+ ∂ijV −

∂i% ∂j%

%2

)
nj dHd−1.

If we take into account that we have

∂i(log %+ V ) =

(
∂i%

%
+ ∂iV

)
and ∂i,j(log %+ V ) =

∂ij%

%
+ ∂ijV −

∂i% ∂j%

%2
,

we get the desired equality.

The last term in formula (4) can be re-written using the following lemma.

Lemma 2.5. Suppose Ω = {h < 0} for a smooth function h : Rd → R with ∇h 6= 0 on
{h = 0}, so that the exterior normal vector at x ∈ ∂Ω is given by ~n(x) = ∇h(x)/|∇h(x)|.
Let v : Ω→ Rd be a smooth vector field such that v ·~n = 0 on ∂Ω. Then we have the following
equality for every x ∈ ∂Ω

v(x)T ·Dv(x) · n(x) = −v(x)T ·D2h(x) · v(x)

|∇h(x)|
.

Proof. Given x ∈ ∂Ω, we consider a smooth curve γ : (−t0, t0) → ∂Ω with γ(0) = x and
write the equality v(γ(t)) · ∇h(γ(t)) = 0 for every t. Differentiating w.r.t. t we obtain

γ′(t)T ·Dv(γ(t)) · ∇h(γ(t)) + v(γ(t))T ·D2h(γ(t)) · γ′(t) = 0.

We can take t = 0 and choose a curve with γ′(0) = v(x) since v is tangent to the surface ∂Ω,
thus obtaining

v(x)T ·Dv(x) · ∇h(x) = −v(x)T ·D2h(x) · v(x).

It is then enough to divide by |∇h(x)| in order to get the claim.

We then obtain the following formula.

Corollary 2.6. Suppose 0 < T < +∞, take Ω = {h < 0} a bounded domain defined as
the negativity set of a function h ∈ C2 with ∇h 6= 0 on {h = 0}, and V ∈ C2(Ω̄). Given a
strictly positive %0 ∈ H1(Ω) initial datum, let % be the solution of (1). We then have

F2(%T )− F2(%0) = −
∫ T

0
dt

∫
Ω
|D2(log %+ V )|2% dx

−
∫ T

0
dt

∫
Ω

(∇(log %+ V ))T ·D2V · ∇(log %+ V )% dx

−
∫ T

0
dt

∫
∂Ω

(∇(log %+ V ))T ·D2h · (∇(log %+ V ))% dHd−1.

Proof. The result is obtained by first generalizing formula (4) to the case of C2 regularity by
approximation, then integrating in time, using the continuity in H1 of the solution at t = 0,
and finally re-writing the boundary term using Lemma 2.5
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3 The JKO scheme for the Fokker-Planck equation

We define the functional J : P(Ω)→ R as follows

J(µ) =


∫

Ω

dµ

dx
log

(
dµ

dx

)
dx+

∫
Ω
V dµ if µ� dx

+∞ otherwise.
(5)

The main achievement of [15] is to view the Fokker-Planck equation (1) as a gradient
flow of the functional J in the metric space (P(Ω),W2) (see also [1, 24, 28]) and to define
a discrete iterated scheme converging to the solution. This scheme is nowadays called
Jordan-Kinderlehrer-Otto scheme.

Given N ∈ N, we set τ := T
N and we assume that the initial data %0 satisfies J(%0) <∞.

We define recursively a sequence of probability measures {%τk}Nk=0 such that %τ0 := %0 and

%τk+1 ∈ argmin%

{
J(%) +

W 2
2 (%, %τk)

2τ

}
(6)

We use this sequence to build a curve %τ in the space of probability measures defined via
%τ (0) = %0 and

%τ (t) = %τk+1 for t ∈ (kτ, (k + 1)τ ] and k ∈ N ∪ {0}.

In the original work by R. Jordan, D. Kinderlehrer and F. Otto ([15]) the above scheme was
considered for Ω = Rd, and the following important theorem was proven.

Theorem 3.1. Let V ∈ C∞(Rd), %0 ∈ P2(Rd) satisfies J(%0) <∞, and for given τ > 0, let
{%τk}k∈N be defined recursively by (6). Define the interpolation

%τ (t) = %τk+1 for t ∈ (kτ, (k + 1)τ ] and k ∈ N ∪ {0}.

Then as τ → 0, %τ (t)→ %(t) weakly in L1(Rd) for all t ∈ (0,∞), where % ∈ C∞((0,∞)×Rd)
is the unique solution of

∂t% = ∆%+ div(%∇V )

with initial condition %(t)→ %0 strongly in L1(Rd) for t→ 0. Moreover, %τ → % strongly in
L1((0, T )× Rd) for all T <∞.

In this paper we are instead interested in the case where Ω is an open bonded subset of Rd.
The details of the JKO scheme for bounded domains are, for instance, given in [24, Chapter
8]. In this case it is important to emphasize that the limit curve of the JKO scheme not only
solves the Fokker-Planck equation but also satisfies the no-flux boundary condition. More
precisely, we summarize here the properties we need about the JKO scheme for bounded Ω :

Theorem 3.2. Let [0, T ] be a finite interval and Ω be a bounded domain of Rd whose
boundary ∂Ω is Lipschitz continuous. We assume V is Lipschitz continuous and the initial
data %0 ∈ P(Ω) ∩ L1

+(Ω) satisfies J(%0) <∞. Then the following hold:

1. The functional J has a unique minimum over P(Ω). In particular J is bounded from
below. Moreover, for each τ > 0, the sequence {%τk}Nk=0 defined by the formula (6) is
well-defined (there is a unique minimizer at every step).

9



2. For any k ∈ {1, ..., N}, the optimizer %τk is strictly positive, Lipschitz continuous, and
satisfies

log %τk+1 + V +
ϕk
τ

= constant (7)

where ϕk is the Kantorovich potential from %τk+1 to %τk.

3. For every τ > 0, the sequence {%τk}Nk=0 satisfies

N−1∑
k=0

W 2
2 (%τk, %

τ
k+1)

τ
≤ 2(J(%0)− inf J). (8)

4. There exists a 1
2 -Hölder and absolutely continuous curve % in (P(Ω),W2) such that

W2(%τt , %t) → 0 uniformly as τ → 0. Moreover, % satisfies the Fokker-Planck equation
(1) in the distributional sense.

Some estimates in Lp have been established in [12] when the domain Ω is convex.

Theorem 3.3. Let [0, T ] be a finite interval and Ω be a convex bounded domain of Rd whose
boundary ∂Ω is Lipschitz continuous. We assume V is Lipschitz continuous and the initial
data %0 ∈ P(Ω) ∩ L1

+(Ω) satisfies J(%0) <∞.
(i) Given f : R+ → R satisfying the d-McCann condition (i.e. [0,∞) 3 s 7→ f(s−d)sd is

convex and decreasing), then we have∫
Ω
f(%τk) dx ≥

∫
Ω
f(%τk+1) dx+τ

∫
Ω

(
f ′′(%τk+1)|∇%τk+1|2 + %τk+1f

′′(%τk+1)∇%τk+1 · ∇V
)
dx. (9)

(ii) Suppose %0 ∈ Lp(Ω), with p <∞. Then, for any k ∈ {1, ..., N}, we have∫
Ω

(%τk)pdx ≥
(

1− τ p(p− 1)

4
Lip(V )2

)∫
Ω

(%τk+1)pdx. (10)

(iii) In particular, if τ is small enough (depending on V and p) and under the assumptions
of (i) and (ii), the norm ||%τt ||Lp grows at most exponentially in time for p ∈ [1,∞]

4 Weak and strong convergence of the JKO scheme

In this section we use the bounds provided by Theorem 3.3 on the solutions of the JKO
scheme to improve its convergence to the solution of the Fokker-Planck equation up to strong
convergence in L2([0, T ];H1(Ω)). As a starting point, we first consider weak convergence in
the same space.

Proposition 4.1. Under the same assumptions of Theorem 3.3 and %0 ∈ L2(Ω), the curve %τ

is uniformly bounded with respect to τ in L∞([0, T ];L2(Ω)) and L2([0, T ];H1(Ω)). Moreover,
if % is the solution of (1), then %τ ⇀ % in L2([0, T ];H1(Ω)).

Proof. We use in the inequality (9) in Theorem 3.3 for the function f(s) = s2. Then, for
each k ∈ {0, , ..., N − 1}, %τk+1 ∈ L2(Ω) and we have∫

Ω
(%τk)2 dx ≥

∫
Ω

(%τk+1)2 dx+ 2τ

∫
Ω

(
|∇%τk+1|2 + %τk+1∇%τk+1 · ∇V

)
dx. (11)

10



By the Young’s inequality we have∫
Ω
%τk+1∇%τk+1 · ∇V dx ≥ −

1

2

∫
Ω
|∇%τk+1|2 −

1

2

∫
Ω

(%τk+1)2|∇V |2 dx

The estimate above implies∫
Ω

(%τk)2dx−
∫

Ω
(%τk+1)2dx+ τ Lip(V )2

∫
Ω

(%τk+1)2dx ≥ τ
∫

Ω
|∇%τk+1|2dx.

We sum the inequalities above with respect to k, then∫
Ω

(%τ0)2dx−
∫

Ω
(%τN )2dx+ Lip(V )2

N−1∑
k=0

τ

∫
Ω

(%τk+1)2dx ≥
N−1∑
k=0

τ

∫
Ω
|∇%τk+1|2dx. (12)

By the definition of the curve %τ we have

||%τ ||2L2([0,T ];L2(Ω)) =

N−1∑
k=0

τ

∫
Ω

(%τk+1)2dx

and

||%τ ||2L2([0,T ];H1(Ω)) =
N−1∑
k=0

(
τ

∫
Ω

(%τk+1)2 dx+ τ

∫
Ω
|∇%τk+1|2dx

)
.

The inequality (10) in Theorem 3.3 (which is actually proven exactly as in the computations
above, choosing better coefficients in the Young inequality so that the H1 part disappears),
provides uniform bounds on ||%τt ||L2(Ω), which guarantees the bound in L∞([0, T ];L2(Ω))
and, using (12), also in L2([0, T ];H1(Ω)).

Since L2([0, T ];H1(Ω)) is reflexive, when τ → 0 it is easy to find a weak limit ρ ∈
L2([0, T ];H1(Ω)) and this limit necessarily coincides with the limit in the Wasserstein sense,
i.e. the unique solution of (1), which proves the last part of the statement.

We now want to start proving strong convergences of %τ to %. A first step will make
use of the well-known Aubin-Lions lemma for time-dependent functions valued into function
spaces, but we need to handle the time derivative. As the functions t 7→ %τ are discontinuous,
for simplicity (instead of evoking modified versions of the Aubin-Lions compactness criterion
using functions which are BV in time), we define a new family of interpolations which help
in obtaining the desired result.

Given ε ∈ (0, 1), we consider another curve %τ,ε such that %τ,ε0 = %0 and for t ∈ (0, T ]

%τ,εt =


%τk+1 if t ∈ (kτ, kτ + (1− ε)τ ] and k ∈ {0, ..., N − 2}
%τk+1

(k+1)τ−t
ετ + %τk+2

t−(k+1)τ+ετ
ετ if t ∈ (kτ + (1− ε)τ, (k + 1)τ ] and k ∈ {0, ..., N − 2}

%τN if t ∈ ((N − 1)τ,Nτ ]

.

This curve is Lipschitz continuous in space and time and it time-derivative equals

∂t%
τ,ε
t =

N−2∑
k=0

%τk+2 − %τk+1

ετ
· 1(kτ+(1−ε)τ,(k+1)τ) a.e. t ∈ [0, T ]. (13)
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Let X := {ψ ∈ Lip(Ω) :
∫

Ω ψ = 0} and || · ||Lip be the Lipschitz semi-norm, which is actually
a norm on this space where the average is prescribed, then it is easy to check that (X , || · ||Lip)
forms a Banach space. We denote by X ′ the dual space of X . This space includes all measures
on Ω and it is well-known that we have W1(µ, ν) = ||µ− ν||X ′ for every µ, ν ∈ P(Ω).

Proposition 4.2. Under the same assumptions of Theorem 3.3 and %0 ∈ L2(Ω), the
following facts hold:

1. the curve %τ,ε converges to the solution of the Fokker-Planck equation uniformly in W2

distance when τ → 0 (i.e. for every sequence εj ∈ (0, 1) and τj → 0 we do have this
convergence).

2. the curve %τ,ε is uniformly bounded in L∞([0, T ];L2(Ω)) and L2([0, T ];H1(Ω)) with
respect to ε and τ.

3. we have ||%τ − %τ,ε||L2([0,T ];H1(Ω)) ≤ C
√
ε for a constant C independent of τ and ε.

4. ∂t%
τ,ε
t is uniformly bounded in L1([0, T ];X ′) with respect to ε and τ.

Proof. Using the convexity of µ 7→W 2
2 (µ, ν) it is easy to check that we have

W2(%τt , %
τ,ε
t ) ≤ sup

k
W2(%τk, %

τ
k+1) ≤

√
τ ·
√

2(J(%0)− inf J). (14)

This shows that, as τ → 0, the curves %τ and %τ,ε tend to the same limit (which is the
solution of the Fokker-Planck equation), independently of ε.
Since the curve %τ is uniformly bounded with respect to τ in L∞([0, T ];L2(Ω)) by
C(T )||%0||L2(Ω), and %τ,ε is obtained by convex combinations of values of %τt , the same bound
is also true for %τ,ε. Moreover, we have

||%τ − %τ,ε||L2([0,T ];L2(Ω)) =

√√√√ε

3

N−2∑
k=0

τ

∫
Ω

(%τk+2 − %τk+1)2dx ≤ C(T )
√
ε · ||%0||L2(Ω). (15)

Similar computations show

||%τ − %τ,ε||L2([0,T ];H1(Ω)) =

√√√√ε

3

N−2∑
k=0

τ ||%τk+2 − %τk+1||2H1

≤ C
√
ε

√√√√N−2∑
k=0

τ ||%τk+2||2H1 + τ ||%τk+1||2H1 ≤ C
√
ε||%τ ||L2([0,T ];H1(Ω)).

By Proposition 4.1 and the last two estimates we have ||%τ−%τ,ε||L2([0,T ];H1(Ω)) → 0 as ε→ 0,
uniformly in τ . We now look at the time derivative and we use the inequality W1 ≤ W2

together with the identification of the distance W1 as the dual norm of X . We then have

N−1∑
k=0

1

τ
||%τk − %τk+1||2X ′ ≤ 2(J(%0)− inf J). (16)
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By the Cauchy–Schwarz inequality

N−1∑
k=0

||%τk−%τk+1||X ′ ≤

√√√√N

N−1∑
k=0

||%τk − %τk+1||2X ′ =

√√√√T

τ

N−1∑
k=0

||%τk − %τk+1||2X ′ ≤
√

2T (J(%0)− inf J).

(17)
The estimate (17) and the expression (13) we obtain

||∂t%τ,ε||L1([0,T ];X ′) =
N−2∑
k=0

ετ ||(%τk+2−%τk+1)/ετ ||X ′ ≤
N−1∑
k=0

||%τk−%τk+1||X ′ ≤
√

2T (J(%0)− inf J).

(18)
The estimate above shows that ∂t%

τ,ε
t is uniformly bounded in L1([0, T ];X ′).

We state here a version of the Aubin-Lions-Simon Compactness Theorem which gives
a compactness criterion in Lp([0, T ];B) for a Banach space B. Its proof can be found, for
instance, in [26, Corollary 6, page 87].

Theorem 4.3. Let X,B and Y be Banach spaces such that X ⊂ B ⊂ Y with compact
embedding X ↪→ B. Let E be a bounded set in Lq([0, T ];B)∩L1

loc([0, T ];X) for 1 < q ≤ ∞. If
∂E
∂t :=

{
∂f
∂t : f ∈ E

}
is bounded in L1

loc([0, T ];Y ), then E is relatively compact in Lp([0, T ];B)

for all p < q.

Corollary 4.4. Under the same assumptions of Theorem 3.3 and supposing %0 ∈ L2(Ω),
then the curves %τ and %τ,ε converge strongly to the solution of the Fokker-Planck equation
in L2([0, T ];L2(Ω)) as τ → 0.

Proof. Let us consider Theorem 4.3 for the Banach spaces X = H1(Ω), B = L2(Ω), Y = X ′
and the indexes p = 2, q = +∞. By the result of Proposition 4.2, for each ε ∈ (0, 1),
the family of curves E := (%τ,ε)τ>0 satisfies Theorem 4.3, thus it is relatively compact
in L2([0, T ];L2(Ω)). By the first part of Proposition 4.2, the curve %τ,ε converges to the
unique solution of (1) in W2 distance. Both the strong convergence in L2([0, T ];L2(Ω)) and
the convergence in W2 imply the weak convergence as measures in space-time, so we can
conclude that the whole family of curves E = (%τ,ε)τ>0 converges strongly to this solution
in L2([0, T ];L2(Ω)).
Let % be the unique solution of (1). By limτ→0 ||%− %τ,ε||L2([0,T ];L2(Ω)) = 0 and (15), we have

lim
τ→0
||%− %τ ||L2([0,T ];L2(Ω)) ≤ lim

τ→0
||%− %τ,ε||L2([0,T ];L2(Ω)) + lim

τ→0
||%τ,ε − %τ ||L2([0,T ];L2(Ω))

≤
√
ε · C(T )||%0||L2(Ω).

Letting ε→ 0, we get limτ→0 ||%− %τ ||L2([0,T ];L2(Ω)) = 0.

The strong convergence in L2 that we just obtained is not surprising, and is a necessary
preliminary to pass on to the main goal of this section, which is a higher-order strong
convergence result.

Theorem 4.5 (Main Theorem I). Let [0, T ] be a finite interval and Ω be a convex domain
of Rd whose boundary ∂Ω is Lipschitz continuous. We assume V is Lipschitz continuous
and the initial data %0 is in P(Ω) ∩ L2(Ω). As τ → 0, the curve %τ strongly converges to the
solution of the Fokker-Planck equation (1) in L2([0, T ];H1(Ω)).
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Proof. Denote by %t the unique solution of (1). We saw in Proposition 2.2 that we have∫
Ω
%2
T (x) dx−

∫
Ω
%2

0(x) dx = −2

∫ T

0

∫
Ω
|∇%t(x)|2 dxdt− 2

∫ T

0

∫
Ω
%t(x)∇%t(x) · ∇V (x) dxdt.

(19)
By the estimate (11), we have∫

Ω
(%τT )2 dx−

∫
Ω
%2

0 dx =

∫
Ω

(%τN )2dx−
∫

Ω
%2

0 dx ≤

−2
N−1∑
k=0

τ

∫
Ω

(
|∇%τk+1|2 + %τk+1∇%τk+1 · ∇V

)
dx =

− 2

∫ T

0

∫
Ω

(
|∇%τt |2 + %τt ∇%τt · ∇V

)
dxdt. (20)

The estimate (20) implies that

lim sup
τ→0

∫
Ω

(%τT )2 dx−
∫

Ω
%2

0 dx ≤ −2 lim sup
τ→0

∫ T

0

∫
Ω

(
|∇%τT |2 + %τt ∇%τt · ∇V

)
dxdt.

By Theorem 3.2, we know that for any t ∈ [0, T ],

W2(%τt , %t)→ 0

uniformly as τ → 0. The convergence in Wasserstein distance for every t implies

lim inf
τ→0

||%τt ||L2(Ω) ≥ ||%t||L2(Ω). (21)

As a consequence of (21), we have

lim sup
τ→0

∫
Ω

(%τT )2 dx ≥
∫

Ω
(%T )2 dx. (22)

Since %τt tends to %t strongly in L2([0, T ];L2(Ω)) and weakly in L2([0, T ];H1(Ω)), we have

lim
τ→0

∫ T

0

∫
Ω
%τt ∇%τt · ∇V dxdt =

∫ T

0

∫
Ω
%t∇%t · ∇V dxdt (23)

and

lim inf
τ→0

∫ T

0

∫
Ω
|∇%τt |2 dxdt ≥

∫ T

0

∫
Ω
|∇%t|2 dxdt. (24)

Equations (22) and (23) show that

2 lim sup
τ→0

∫ T

0

∫
Ω
|∇%τt |2dxdt ≤

∫
Ω
%2

0dx−
∫

Ω
%2
Tdx− 2

∫ T

0

∫
Ω
%t · ∇%t · ∇V dxdt.

Using (19) and (24), we obtain

lim
τ→0

∫ T

0

∫
Ω
|∇%τt |2 dxdt =

∫ T

0

∫
Ω
|∇%t|2 dxdt.

Together with the weak L2 convergence of ∇%τ to ∇% this implies that %τ converges strongly
to % in L2([0, T ];H1(Ω)).
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5 Sobolev estimates on the JKO scheme

In this section we want to present important estimates in Sobolev spaces which were
established in [12]. These type estimates require to consider some important inequalities in
optimal transportation.

Lemma 5.1. [Five-gradients inequality] Let Ω be a bounded, uniformly convex domain
with C2 boundary and %, g ∈W 1,1(Ω)∩Cα(Ω̄), 0 < α < 1, be two strictly positive probability
densities. Let H ∈ C2(Rd) be a radially symmetric convex function. Then the following hold∫

Ω
(∇% · ∇H(∇ϕ) +∇g · ∇H(∇ψ)) dx

=

∫
Ω
%Tr{D2H(∇ϕ)·(D2ϕ)2·(I−D2ϕ)−1}dx+

∫
∂Ω

(%∇H(∇ϕ) · ~n+ g∇H(∇ψ) · ~n) dHd−1 ≥ 0,

(25)

where (ϕ,ψ) is a choice of Kantorovich potentials in the transport from % to g.

Proof. Because of our assumptions on the densities, Caffarelli’s regularity theory (see [5]-[10])
implies that the Kantorovich potentials, ϕ and ψ, are in C2+α(Ω̄), so we can use integration
by part to write∫

Ω
(∇% ·H(∇ϕ) +∇g ·H(∇ψ)) dx =

−
∫

Ω
(%div[∇H(∇ϕ)] + g div[∇H(∇ψ)]) dx+

∫
∂Ω

(%∇H(∇ϕ) · ~n+ g∇H(∇ψ) · ~n) dHd−1

Due to the radial symmetry of H we have

∇H(∇ψ) = −∇H(−∇ψ), (26)

and ∇H(z) is a positive scalar multiple of z for every vector z. Since the gradients of the
Kantorovich potentials ∇ϕ and ∇ψ calculated at boundary points are pointing outward Ω,
(as a consequence of the optimal transport map T (x) = x − ∇ϕ(x) ∈ Ω and its inverse
S(x) = x−∇ψ ∈ Ω) we see that the boundary term is non-negative:

∇H(∇ϕ(x)) · ~n(x) ≥ 0 and ∇H(∇ψ(x)) · ~n(x) ≥ 0 (27)

We now consider the term with the divergence, and we have

div[∇H(∇ϕ)] = Tr(D2H(∇ϕ) ·D2ϕ), div[∇H(∇ψ)] = Tr(D2H(∇ψ) ·D2ψ).

We then use g = T#% to write∫
Ω
gTr(D2H(∇ψ) ·D2ψ) =

∫
Ω
%Tr(D2H(∇ψ ◦ T ) ·D2ψ ◦ T ).
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Since H is radially symmetric and hence even, D2H is also even, and using ∇ψ ◦ T = −∇ϕ
we can write∫

Ω
(%div[∇H(∇ϕ)] + g div[∇H(∇ψ)]) dx =

∫
Ω
%Tr(D2H(ϕ) · (D2ϕ+D2ψ ◦ T )).

We now use the relation (id−∇ψ)◦T = id with T = id−∇ϕ to see that we have D2ψ ◦T =
I− (I−D2ϕ)−1 and then D2ϕ+D2ψ ◦T = −(D2ϕ)2(I−D2ϕ)−1, which proves the claimed
formula. We are only left to see the positivity of the integral on Ω on the r.h.s. but the
integrand is pointwise positive as a consequence of D2H ≥ 0, (D2ϕ)2 ≥ 0 and I −D2ϕ ≥ 0

since |x|
2

2 − ϕ is convex.

The result of previous lemma, that we proved in details, was first proven in [11] , but both
in [11] and in [12] only the positivity was used, without considering the precise remainder
terms. Indeed, even ignoring these terms and just using the positivity of

∫
∇% · ∇H(∇ϕ) +

∇g ·∇H(∇ψ), it is possible to obtain estimates on the optimizers of the JKO scheme for the
Fokker-Planck equation, as it is explained in [12].

More precisely, we have the following estimates.

Proposition 5.2. Suppose Ω is a bounded and uniformly convex domain with C2 boundary,
and V : Ω̄ → R is Lipschitz continuous. Let %0 ∈ W 1,1(Ω) ∩ Cα(Ω̄), 0 < α < 1, (%τk) be the
sequence obtained in the JKO scheme (6) and H be a convex radially symmetric function.
Let (ϕk, ψk) denote the pair of Kantorovich potentials in the transport from %τk+1 to %τk and
Tk the corresponding optimal map, i.e. Tk(x) = x−∇ϕk(x). Then we have∫

Ω
H(∇(log %τk + V ))d%τk ≥

∫
Ω
H(∇(log %τk+1 + V ))d%τk+1

+

∫
Ω
∇H

(
∇ϕk
τ

)
· (∇V −∇V ◦ Tk)d%τk+1 +R, (28)

where R ≥ 0 is the remainder term in the statement of Lemma 5.1, i.e.

R :=
1

τ

∫
Ω
%Tr{D2H

(
∇ϕk
τ

)
· (D2ϕk)

2 · (I −D2ϕk)
−1}dx+∫

∂Ω
(%τk+1∇H

(
∇ϕk
τ

)
· ~n+ %τk∇H

(
∇ψk
τ

)
· ~n)dHd−1.

In particular, when H(z) = |z|p
p , V ∈ V

2(Ω̄) and λ ∈ R such that D2V ≥ λI, ignoring
the positive terms and using ∇H(z) · z = pH(z), we obtain

Fp(%
τ
k) ≥ (1 + pλτ)Fp(%

τ
k+1).

Proof. The proof is exactly the same as in Lemma 5.1 of [12], with the only difference that
the above statement requires to keep track of the positive remainder terms. We observe
that at every step of the JKO scheme the obtained densities are smooth enough to justify
the application of Lemma 5.1 of our paper (it is only by chance that the lemmas are both
numbered 5.1 in the two different papers).
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We now proceed to some uniform estimates on the minimizers of the JKO scheme and
on the corresponding potentials.

Proposition 5.3. Suppose Ω is a bounded and uniformly convex domain with C2 boundary,
and V ∈ C2(Ω̄). Let (%τk) be the sequence obtained in the JKO scheme (6), (ϕk, ψk) denote
the pair of Kantorovich potentials in the transport from %τk+1 to %τk and Tk the corresponding
optimal map, i.e. Tk(x) = x−∇ϕk(x). Suppose that %0 is bounded from below and above by
positive constants and denote by a, b two constants such that a ≤ log %0 + V ≤ b. Suppose
moreover that we have %0 ∈W 1,p(Ω) for some exponent p > d. Then we have:

1. For each k we have a ≤ log(%τk) + V ≤ b. In particular, all %τk are bounded from below
and above by some uniform positive constants.

2. All the potentials ϕk satisfy ||id− Tk||L∞ = ||∇ϕk||L∞ ≤ Cτ1/(d+2).

3. If τ is small enough (depending on V and p), then the values of Fp(%
τ
k) are uniformly

bounded by a constant depending on %0 and on T . In particular, the densities %τk are
bounded in C0,α for α = 1− d

p > 0.

4. All the potentials ϕk belong to C2+α(Ω̄) and ||ϕk||C2+α(Ω̄) is bounded by a uniform
constant.

5. The potentials ϕk also satisfy ||D2ϕk|| ≤ Cτβ for a certain exponent β > 0.

Proof. 1. The uniform estimates on %τ , already cited in [12], is the same as in Lemma 2.4
of [14].

2. Whenever µ, ν are two measures in a convex domain Ω ⊂ Rd and T is the corresponding
optimal map sending µ onto ν, if the density of µ is bounded from below by a constant
c0 > 0, then the following remarkable estimate is proven in [4] :

||T − id||L∞ ≤ C(d, c0)W2(µ, ν)2/(d+2).

If we combine this with

W 2
2 (%τk+1, %

τ
k) ≤ 2τ (J(%τk)− J(%τk+1)) ≤ Cτ.

and the fact that the density %τk+1 is bounded from below by a universal constant, we
then have

||∇ϕk||2+d
L∞(Ω) = ||id− Tk||2+d

L∞(Ω) ≤ CW
2
2 (%τk+1, %

τ
k) ≤ Cτ. (29)

3. First we note that, since %0 is bounded and W 1,p, we have Fp(%0) < +∞. Then,
Proposition 5.2 guarantees that Fp(%

τ
k) grows at most exponentially (here we use the

smallness assumption on τ , as we need 1 +pλτ > 0, where λ is the lower bound for the
second derivatives of V , which could be negative). We then obtain a uniform bound
on Fp(%

τ
k) and on ||%τk||W 1,p , as a consequence of the uniform lower bound on %τk. The

well-known injection of Sobolev spaces into Hölder spaces gives the rest of the claim.
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4. The bound on ||ϕk||C2+α(Ω̄) is a consequence of Caffarelli’s regularity theory for the
Monge-Ampère equation (see [5]-[10]), once we have proven that the densities are
uniformly bounded from above, from below, and in C0,α, when the domain is uniformly
convex and C2.

5. If we apply the interpolation inequality (30) to u = ∇ϕ in the case γ = 1 + α and
θ = 1, we get

||∇ϕk||C1(Ω̄) ≤ c||∇ϕk||
1

1+α

C1+α(Ω̄)
||∇ϕk||

α
1+α

C(Ω̄)
.

Using (29) and the uniform bounds on ||ϕk||C2+α(Ω̄) we obtain the claim with β =
α

(1+α)(2+d) .

We mentioned an interpolation inequality involving higher-order Hölder norms: here
below is a precise statement, whose proofs can be found in [19, Proposition 1.1.3] .

Theorem 5.4 (Interpolation inequality for Hölder continuous functions). Let 0 <
θ < γ and Ω be a open set in Rd with uniformly Cγ boundary. Then there exists a positive
constant c depending on Ω̄, θ and γ such that

||u||Cθ(Ω̄) ≤ c||u||
θ
γ

Cγ(Ω̄)
||u||

1− θ
γ

C(Ω̄)
(30)

for all u ∈ Cγ(Ω̄).

6 Strong convergence for second derivatives

In this section we are going to prove that the approximate solution which comes from the
JKO scheme (6) convergences strongly to the solution of Fokker-Planck equation in higher
order Sobolev spaces.

We assume Ω is a bounded and uniformly convex domain given by

Ω = {x ∈ Rd : h(x) < 0} and ∂Ω = {x ∈ Rd : h(x) = 0}, (31)

where h is a uniformly convex function of C2(Rd) such that D2h ≥ cId for some positive
constant c. We also assume that 0 ∈ h(Rd) is a regular value of h, i.e. |∇h(x)| 6= 0 for all
x ∈ {x ∈ Rd : h(x) = 0}. Then, it is easy to show that the boundary ∂Ω is a regular surface
of class C2 and its exterior unit normal vector ~n at x ∈ ∂Ω is defined by

~n(x) =
∇h(x)

|∇h(x)|
.

Let {%τk}Nk=0 be the sequence defined in the JKO scheme (6) and %τt be obtained from it
by piecewise constant interpolation.

We consider the integral

F2(%τt ) =
1

2

∫
Ω

∣∣∣∣∇%τt (x)

%τt (x)
+∇V (x)

∣∣∣∣2 %τt (x) dx. (32)
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and we will prove that the approximate curve constructed in the JKO scheme satisfies a
discrete analogue of what is shown in Lemma 2.4. To get our purpose we mention here the
trace theorem in the Sobolev spaces and some properties of Hausdorff measures.

Theorem 6.1 (Trace Theorem). Assume p ∈ [1,+∞), Ω is a bounded open set of Rd and
∂Ω is C1. Then there exists a bounded operator

Tr : W 1,p(Ω)→ Lp(∂Ω)

such that
(i) Tru = u |∂Ω for all u ∈W 1,p(Ω) ∩ C(Ω̄).
(ii)

||Tru||Lp(∂Ω) ≤ C||u||W 1,p(Ω)

for each u ∈W 1,p(Ω), with constant C depending on only p and Ω.

Proof. See [17, section 18].

Proposition 6.2. Let Hk be the k−dimensional Hausdorff measure on a metric space (X, d).
If Y ⊂ X is any set and f, g : Y → X satisfy d(f(y), f(z)) ≤ Cd(g(y), g(z)) for all y, z ∈ Y,
then Hk(f(A)) ≤ CkHk(g(A)) for all A ⊂ Y.

Proof. See [13, Proposition 11.18].

In the following computations, ε(τ) denotes any quantity which depends only on Ω̄, %0, V
and τ such that ε(τ)→ 0 as τ → 0.

Lemma 6.3. Under the assumptions in Proposition 5.3 and the above assumptions on Ω we
have

F2(%0)− F2(%τT ) ≥
∫ T

0

∫
Ω
|D2(log %τt (x) + V (x))|2%τt (x) dxdt+∫ T

0

∫
Ω

(∇ log %τt (x) +∇V (x))T ·D2V (x) · (∇ log %τt (x) +∇V (x))%τt (x) dxdt+∫ T

0

∫
∂Ω

%τt (x)

|∇h(x)|
(∇ log %τt (x)+∇V (x))T ·D2h(x)·(∇ log %τt (x)+∇V (x)) dHd−1dt+ε(τ). (33)

Proof. We apply Proposition 5.2 for %τk−1 and %τk (k ∈ {1, ..., N}) in the case of H(z) = 1
2 |z|

2,
and get

1

2

∫
Ω

∣∣∣∣∣∇%τk−1

%τk−1

+∇V

∣∣∣∣∣
2

d%τk−1 − 1

2

∫
Ω

∣∣∣∣∇%τk%τk +∇V
∣∣∣∣2d%τk (34)

≥ 1

τ

∫
Ω
∇ϕk · (∇V −∇V ◦ Tk) d%τk

+
1

τ

∫
Ω

tr[(D2ϕk)
2 · (Id−D2ϕk)

−1] d%τk

+
1

τ

∫
∂Ω

(
%τk∇ϕk · ~n+ %τk−1∇ψk · ~n

)
dHd−1.
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If we sum the discrete inequality above with respect to k, we obtain

F2(%0)− F2(%τT ) ≥ 1

τ

N∑
k=1

∫
Ω
∇ϕk · (∇V −∇V ◦ Tk) d%τk (35)

+
1

τ

N∑
k=1

∫
Ω

tr[(D2ϕk)
2 · (Id−D2ϕk)

−1] d%τk

+
1

τ

N∑
k=1

∫
∂Ω

(
%τk∇ϕk · ~n+ %τk−1∇ψk · ~n

)
dHd−1.

Each of the three terms in the right-hand side of this inequality corresponds to one of
the terms in the right-hand side of the inequality of the claim. In particular,

• the term 1
τ

∫
Ω∇ϕk · (∇V −∇V ◦ Tk) d%

τ
k corresponds to the term involving D2V ; the

main difficulty here consists in replacing the difference of ∇V in two points with a
Hessian in a intermediate point, and estimating the error due to changing the point
where D2V is computed;

• the term 1
τ

∫
Ω tr[(D2ϕk)

2 · (Id − D2ϕk)
−1] d%τk corresponds to the one involving

|D2(log %τt (x) + V (x))|2; here the main difficulty consists in getting rid of the matrix
factor (Id−D2ϕk)

−1 which should be very close to the identity.

• finally, the boundary term will also correspond to the boundary term of the claim; here
we will use the characterization of ∂Ω as {h = 0} and a second-order Taylor expansion
of h, which also requires to bound the error in the expansion.

We consider now each term of the inequalities (34) and (35) separately. First, the equality
Tk = id−∇ϕk and the optimality condition (7) imply

1

τ
∇ϕk · (∇V −∇V ◦ Tk) =

1

τ
∇ϕTk ·D2V ◦ ξ · ∇ϕk,

where ξ(x) is, for every point x, a suitable point on the line segment connecting x and T (x),
obtained from the Taylor expansion of V . This can be re-written as

1

τ
∇ϕk · (∇V −∇V ◦ T ) = τ∇(log %τk + V )T ·D2V · ∇(log %τk + V )

+τ∇(log %τk + V )T (D2V ◦ ξ −D2V ) · ∇(log %τk + V ).

Since ξ satisfies

|ξ − x| ≤ |T (x)− x| = |∇ϕk(x)| ≤ ||∇ϕk||L∞(Ω) ≤ C τ
1

2+d ,

the uniform continuity of D2V implies |D2V ◦ ξ −D2V | = ε(τ), while the uniform bounds
on || log %τk + V ||W 1,p with respect to k and τ show that

1

τ

N∑
k=1

∫
Ω
∇ϕk · (∇V −∇V ◦ Tk) d%τk =
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τ

N∑
k=1

∫
Ω

(∇ log %τk(x) +∇V (x))T ·D2V (x) · (∇ log %τk(x) +∇V (x))%τk(x) dx+ ε(τ) =

∫ T

0

∫
Ω

(∇ log %τt (x) +∇V (x))T ·D2V (x) · (∇ log %τt (x) +∇V (x))%τt (x) dxdt+ ε(τ). (36)

Let us now consider the matrix D2ϕk. Point 5 in Proposition 5.3 insures that D2ϕk tends
uniformly to zero as τ → 0. This enables us to write

1

τ

∫
Ω

tr[(D2ϕk)
2 · (Id−D2ϕk)

−1] d%τk =
(1 + ε(τ))

τ

∫
Ω
|D2ϕk|2 d%τk

= (1 + ε(τ))τ

∫
Ω
|D2(log %τk + V )|2 d%τk,

where we used again the optimality condition (7). Subsequently, we have

1

τ

N∑
k=1

∫
Ω

tr[(D2ϕk)
2·(Id−D2ϕk)

−1] d%τk = (1+ε(τ))

∫ T

0

∫
Ω
|D2(log %τt (x)+V (x))|2%τt (x) dxdt.

(37)
We now concentrate on the boundary integrals. Since the optimal transport map Tk

sends Ω̄ to itself, for any x ∈ ∂Ω, we have Tk(x) = x−∇ϕk(x) ∈ Ω̄. Thus,

0 ≥ h(x−∇ϕk(x)) = h(x)−∇h(x) · ∇ϕk(x) +
1

2
(∇ϕk(x))T ·D2h(ζ(x)) · ∇ϕk(x)

for some point ζ(x) lying in the line connecting x and Tk(x) = x−∇ϕk(x). If we use h(x) = 0
and ∇h(x) = |∇h(x)|~n(x)

|∇h(x)|~n(x) · ∇ϕk(x) = ∇h(x) · ∇ϕk(x) ≥ 1

2
(∇ϕk(x))T ·D2h(ζ(x)) · ∇ϕk(x).

If we multiply the inequality above by
%τk(x)

τ |∇h(x)| and integrate over ∂Ω, we get

1

τ

∫
∂Ω
%τk(x)∇ϕk(x) · ~n(x) dHd−1 ≥ 1

2τ

∫
∂Ω

%τk(x)

|∇h(x)|
(∇ϕk(x))T ·D2h(ζ(x)) · ∇ϕk(x) dHd−1 =

τ

2

∫
∂Ω

%τk(x)

|∇h(x)|
(∇ log %τk(x) +∇V (x))T ·D2h(ζ(x)) · (∇ log %τk(x) +∇V (x)) dHd−1. (38)

The uniform continuity of D2h in Ω̄ and the uniform estimates

|ζ(x)− x| ≤ |x− Tk(x)| ≤ C τ
1

2+d

show that we have
D2h(ζ(x)) = D2h(x) + ε(τ). (39)

As a result of (39) and the uniform bounds on %τk, (38) equals

τ

2

∫
∂Ω

%τk(x)

|∇h(x)|
(∇ log %τk(x) +∇V (x))T ·D2h(x) · (∇ log %τk(x) +∇V (x)) dHd−1+
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τε(τ)||∇ log %τk +∇V ||2L2(∂Ω). (40)

Since the inverse of the optimal transport map Sk := T−1
k is defined by Sk(x) = x −

∇ψk(x) ∈ Ω̄, similar arguments as we have done above show that we have

1

τ

∫
∂Ω
%τk−1(x)∇ψk(x) · ~n(x)dHd−1 ≥ 1

2τ

∫
∂Ω

%τk−1(x)

|∇h(x)|
(∇ψk(x))T ·D2h(ζ ′(x)) · ∇ψk(x) dHd−1

(41)
for some point ζ ′(x) lying in the line connecting x and Tk(x) = x−∇ϕk(x) and satisfying

|ζ ′(x)− x| ≤ |x− Tk(x)| ≤ C τ
1

2+d . (42)

By the equalities

−∇ψk(x) = Sk(x)− x = Sk(x)− Tk(Sk(x)) = ∇ϕk(Sk(x)),

∇ϕk(Sk(x)) = −τ∇ log %τk(Sk(x))− τ∇V (Sk(x))

and the Monge-Ampére equation

det(DSk(x))%τk(Sk(x)) = %τk−1(x),

the right hand side of (41) equals

τ

2

∫
∂Ω

det(DSk(x))%τk(Sk(x))

|∇h(x)|
([∇ log %τk+∇V ]◦Sk(x))T ·D2h(ζ ′(x))·([∇ log %τk+∇V ]◦Sk(x)) dHd−1.

(43)
Let (Sk)]Hd−1 denotes the image measure of Sk on ∂Ω with respect to the Hausdorff measure
defined by (Sk)]Hd−1(A) := Hd−1(S−1

k (A)) = Hd−1(Tk(A)) for all measurabele (w.r.t Hd−1)
A ⊂ ∂Ω. Our assumptions provide that the maps Tk, Sk : ∂Ω→ ∂Ω are homeomorphisms and
hence (Sk)]Hd−1 is well-defined. With the help of this image measure, (43) can be written
in the following form

τ

2

∫
∂Ω

%τk(x)

|∇h(Tk(x))|
(∇ log %τk(x)+∇V (x))T ·D2h(ζ ′(Tk(x)))·(∇ log %τk(x)+∇V (x)) d(Sk)]Hd−1.

(44)
On the one hand, the estimate |Tk(x)−Tk(y)| ≤ Lip(Tk) |x−y| for all x, y ∈ ∂Ω and Theorem
6.2 show that

(Sk)]Hd−1(A) = Hd−1(Tk(A)) ≤ (Lip(Tk))
d−1Hd−1(A)

for all A ⊂ ∂Ω. On the other hand, the estimate |x − y| = |Sk(Tk(x)) − Sk(Tk(y))| ≤
Lip(Sk) |Tk(x)− Tk(y)| for all x, y ∈ ∂Ω and again Theorem 6.2 show that

Hd−1(A) ≤ (Lip(Sk))
d−1Hd−1(Tk(A)) = (Lip(Sk))

d−1(Sk)]Hd−1(A).

Therefore, we have

1

(Lip(Sk))d−1
Hd−1(A) ≤ (Sk)]Hd−1(A) ≤ (Lip(Tk))

d−1Hd−1(A) (45)
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for all A ⊂ ∂Ω. Using DTk(x) = I − D2ϕk(x), DSk(x) = I − D2ψk(x) = (DTk)
−1 ◦ Sk

together with ||D2ϕk|| = ε(τ) we have

Lip(Sk) = 1 + ε(τ), Lip(Tk) = 1 + ε(τ). (46)

The estimate (45) and (46) show that

(Sk)]Hd−1(A) = (1 + ε(τ))Hd−1(A) (47)

for all A ⊂ ∂Ω. The regularity of h and point 2 in Proposition 5.3 provide

1

|∇h(Tk(x))|
=

1

|∇h(x)|
|∇h(x)|
|∇h(Tk(x))|

= (1 + ε(τ))
1

|∇h(x)|
(48)

and
D2h(ζ ′(Tk(x))) = D2h(x) + ε(τ). (49)

By considering (44), (47), (48) and (49), the right hand side of (41) equals

τ

2

∫
∂Ω

%τk(x)

|∇h(x)|
(∇ log %τk(x) +∇V (x))T ·D2h(x) · (∇ log %τk(x) +∇V (x)) dHd−1+

τε(τ)||∇(log %τk + V )||2L2(∂Ω). (50)

Since h is convex function, the integrals (38) and (41) are positive. The positivity of
these integrals and the estimates (36) and (37) provide the inequality

F2(%0)− F2(%τT ) ≥
∫ T

0

∫
Ω
|D2(log %τt (x) + V (x))|2%τt (x) dxdt+

∫ T

0

∫
Ω

(∇ log %τt (x) +∇V (x))T ·D2V (x) · (∇ log %τt (x) +∇V (x))%τt (x) dxdt

We proved in the previous sections that %τ is bounded in L2([0, T ];H1(Ω)), which provides
a bound on the last integral term. This, together with the lower bounds on ρτ , implies that
log %τt + V is uniformly bounded in L2([0, T ];H2(Ω)). Theorem 6.1 lets us conclude that
∇(log %τ + V ), i ∈ {1, ..., d}, is uniformly bounded in L2([0, T ];L2(∂Ω)).

Considering (38), (40), (41), (50) and the fact that log %τt + V and ∇ log %τt + ∇V are
bounded in L2([0, T ];H2(Ω)) and L2([0, T ];L2(∂Ω)) respectively, we conclude that

1

τ

N∑
k=1

∫
∂Ω

(
%τk∇ϕk · ~n+ %τk−1∇ψk · ~n

)
dHd−1 ≥

N∑
k=1

τ

∫
∂Ω

%τk(x)

|∇h(x)|
(∇ log %τk(x) +∇V (x))T ·D2h(x) · (∇ log %τk(x) +∇V (x)) dHd−1 + ε(τ) =

∫ T

0

∫
∂Ω

%τt (x)

|∇h(x)|
(∇ log %τt (x)+∇V (x))T ·D2h(x)·(∇ log %τt (x)+∇V (x)) dHd−1dt+ε(τ). (51)

The estimates (36), (37) and (51) give the desired estimate.
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Lemma 6.4. Let D be bounded Lipschitz domain of Rd, {uk}∞k=1 be a sequence in
L2([0, T ];H2(D)) and bounded in L∞([0, T ]×D). If there exists u ∈ L∞([0, T ];C2(D)) such
that uk → u strongly in L2([0, T ];H2(D)), then, for any f ∈ C2(R), {f(uk)}∞k=1 converges
to f(u) in L2([0, T ];H2(D)).

Proof. Using our assumptions and the Gagliardo-Nirenberg inequality (see [3, section 9])

||∇v||4L4(D) ≤ C||v||
2
H2(D)||v||

2
L∞(D) (52)

applied to v = uk−u we obtain uk → u in L4([0, T ];W 1,4(D)). A simple computation shows

D2(f(uk)) = f ′(uk)D
2uk + f ′′(uk)∇uk ⊗∇uk

and the L2 convergence of this matrix-valued function to D2(f(u)) = f ′(u)D2u+f ′′(u)∇u⊗
∇u is due to the following facts:

• D2uk → D2u in L2([0, T ]×D);

• ∇uk ⊗∇uk → ∇u⊗∇u in L2([0, T ]×D);

• both f ′′(uk) and f ′(uk) converge a.e. (to f ′′(u) and f ′(u), respectively) as a
consequence of the convergence of uk to u; moreover, these terms are bounded in
L∞ as a consequence of the regularity of f and of the L∞ bound on uk.

We are now ready to prove our main theorem.

Theorem 6.5 (Main Theorem II). Suppose 0 < T < +∞, Ω is a bounded and uniformly
convex domain given by (31). Let V ∈ C2(Ω̄), %0 ∈ W 1,p(Ω) for p > d, λ ≤ %0 ≤ Λ for
some strictly positive constants λ,Λ and % be the solution of the Fokker-Planck equation (1).
Then, %τ → % strongly in L2([0, T ];H2(Ω)) as τ → 0.

Proof. In Lemma 6.3 and its proof, we get the estimate (33) and showed that log %τt + V is
uniformly bounded in L2([0, T ];H2(Ω)) with respect to τ. Since the space L2([0, T ];H2(Ω))
is reflexive and %τ converges strongly in L2([0, T ];H1(Ω)) to % (see Theorem 4.5), we obtain
that log %τ + V converges weakly to log % + V in L2([0, T ];H2(Ω)). This also implies that
∇ log %τ +∇V converges weakly to ∇ log %+∇V in L2([0, T ];L2(∂Ω)). If τ tends to zero in
(33), then by the lower semicontinuity of the norm for the weak convergence, we obtain

F2(%0)−F2(%T ) ≥ F2(%0)−lim inf
τ→0

F2(%τT )) ≥ lim sup
τ→0

∫ T

0

∫
Ω
|D2(log %τt (x)+V (x))|2%τt (x) dxdt+

lim sup
τ→0

∫ T

0

∫
Ω

(∇ log %τt (x) +∇V (x))T ·D2V (x) · (∇ log %τt (x) +∇V (x))%τt (x) dxdt+

lim sup
τ→0

∫ T

0

∫
∂Ω

%τt (x)

|∇h(x)|
(∇ log %τt (x) +∇V (x))T ·D2h(x) · (∇ log %τt (x) +∇V (x)) dHd−1dt ≥

lim sup
τ→0

∫ T

0

∫
Ω
|D2(log %τt (x) + V (x))|2%τt (x) dxdt+
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∫ T

0

∫
Ω

(∇ log %t(x) +∇V (x))T ·D2V (x) · (∇ log %t(x) +∇V (x))%t(x) dxdt+∫ T

0

∫
∂Ω

%t(x)

|∇h(x)|
(∇ log %t(x) +∇V (x))T ·D2h(x) · (∇ log %t(x) +∇V (x)) dHd−1dt

The estimate above and Corollary 2.6 imply∫ T

0

∫
Ω
|D2(log %t(x) + V (x))|2%t(x) dxdt ≥ lim sup

τ→0

∫ T

0

∫
Ω
|D2(log %τt (x) + V (x))|2%τt (x) dxdt.

Because of weak convergence of log %τ + V to log %+ V in L2([0, T ];H2(Ω)) we have

lim inf
τ→0

∫ T

0

∫
Ω
|D2(log %τt (x) + V (x))|2%τt (x) dxdt ≥

∫ T

0

∫
Ω
|D2(log %t(x) + V (x))|2%t(x) dxdt.

Therefore, we have

lim
τ→0

∫ T

0

∫
Ω
|D2(log %τt (x) + V (x))|2%τt (x) dxdt =

∫ T

0

∫
Ω
|D2(log %t(x) + V (x))|2%t(x) dxdt.

(53)
The limit above and the upper and lower boundson %τ show that D2 log %τ is bounded
in L2([0, T ];L2(Ω)). Since L2([0, T ];L2(Ω)) is reflexive and %τ converges strongly in
L2([0, T ];H1(Ω)) to %, then D2 log %τ converges weakly to D2 log % in L2([0, T ];L2(Ω)). By
adding D2V and multiplying times

√
%τ , which converges a.e. to

√
% and is bounded by

a constant, we also have weak convergence in L2([0, T ];L2(Ω)) of
√
%τD2(log %τ + V ) to√

%D2(log % + V ). Yet, this convergence becomes strong because of the convergence of the

norm in (53). We can then multiply times (%τ )−1/2 and subtract D2V and obtain strong
convergence in L2([0, T ];H2(Ω)) for log %τ to log %.

We then apply Lemma 6.4 to obtain %τ → % in L2([0, T ];H2(Ω)).
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