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Abstract. Several optimal control problems in Rd, like systems with uncertainty,
control of �ock dynamics, or control of multiagent systems, can be naturally for-
mulated in the space of probability measures in Rd. This leads to the study of dy-
namics and viscosity solutions to the Hamilton-Jacobi-Bellman equation satis�ed
by the value functions of those control problems, both stated in the Wasserstein
space of probability measures. Since this space can be also viewed as the set of
the laws of random variables in a suitable L2 space, the main aim of the paper is
to study such control systems in the Wasserstein space and to investigate the re-
lations between dynamical systems in Wasserstein space and their representations
by dynamical systems in L2, both from the points of view of trajectories and of
(�rst order) Hamilton-Jacobi-Bellman equations.
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Introduction

During the last years, there has been an increasing interest in the control of the
so-called multiagent systems. Such systems modelize dynamics where the number
of interacting agents is so huge that only a statistical description is available. Under
an assumption of indistinguishability of the agents, instead of studying the evolution
of each invidual agent, it is preferable to consider the macroscopic evolution of a
probability measure describing the fraction of the total amount of agents belonging
to every set of the state space at each time. Such dynamics of measures naturally
appear for instance in control systems or di�erential games with uncertainty [35],
[17], [18], [20], [31], [32], in mean �elds games [7], [34], [19], [22], [26], [29], in �ock
dynamics (see e.g. [37]), in pedestrian and vehicles dynamics (see e.g. [1] and
references therein for an overview of the models).

We consider a multiagent controlled dynamical system at two levels

• The microscopic scale. Every agent, whose instantaneous position at time t is
x(t) ∈ Rd, can choose his velocity in a set which depends on its own position and on
a probability measure µt on Rd which describes the current distribution of all the
other agents. For every (Borel) subset A ⊂ Rd, µt(A) represents the fraction of the
total number of agents that are present in A at time t. In particular, the trajectory
x(·) satis�es an equation of the form

ẋ(t) = f(t, x(t), u(t), µt) for almost every t ∈ [0, T ],
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where f : [0, T ]× Rd × U ×P2(Rd)→ Rd, u(·) : [0, T ] 7→ U is the control function,
U is a subset of some �nite dimensional space, and P2(Rd) denotes the set of Borel
probability measures on Rd with �nite second order moment.

Notice that the case where f is independent on the µ-variable reduces to classical
control dynamics. It is worth pointing out that in this model the indistinguishability
assumption is encoded in the fact that, as expressed by the dynamics, each agent
at position x(t) does not interact individually with every other agents, which are
indistinguable for him, but he interacts only with the total crowd of all the agents
as an aggregate represented by the measure µt. Throughout the paper we do not
need an explicit form of the control, so we introduce the set-valued map F (t, µ, x) :=
{(f(t, x, u, µ), u ∈ U}, and we consider the microscopic dynamic satis�ed by the
trajectory x(·)

ẋ(t) ∈ F (t, µt, x(t)) for almost every t.(1)

• The macroscopic scale. The probability measure t 7→ µt evolves according the
so called continuity equation

∂tµt + div(vtµt) = 0, in the sense of distributions,(2)

which expresses that the total mass of the measure µt is preserved during the evo-
lution (so the curve t 7→ µt remains in the space of probability measures) and
vt(·) : Rd 7→ Rd is a time dependent vector �eld. The above continuity equation
must be understood in the sense of distributions.

• The link between the macroscopic and the microscopic evolution is given by the
vector �eld vt(·) which has to satisfy

(3) vt(x) ∈ F (t, µt, x) for µt-almost every x ∈ Rd and for almost every t.

which is constructed by taking the weighted average of the velocies of all the agent
concurring in time t at position x. Roughly speaking, this relation means that every
point of the support of macroscopic variable µt has to evolves according with the
microscopic scale equation. A di�erent approach to dynamics in Wasserstein space
is discussed in Remark 2.7.

Together with the above dynamical system, we consider an optimization problem
of Bolza type, i.e., the minimization of a functional

(4)

∫ T

s

L(µt) dt+ G (µT ) ∈ R ∪ {+∞},

on trajectories satisfying the above dynamical system with an initial datum µs = µ.
It is natural to associate to this optimal control problem a value function obeying a
dynamic programming principle, and one can expect to characterize it as the unique
solution of a �rst-order Hamilton-Jacobi-Bellman equation (HJB in short) in the
space of probability measures. Of course, since the value function is not smooth in
general, a convenient notion of viscosity solution is needed to study this problem.

The study of a �rst order partial di�erential equation like HJB on the space of
probability measures, which is not a normed space, is not an easy task. We focus
now on two main ways. A direct approach requires to de�ne suitable derivatives and
sub/super-di�erentials for real value functions de�ned on the Wasserstein space; we
refer the reader to various concepts in [3], [17], [4], [30], [33], [35]. Another possi-
bility, commonly used for instance in the mean �eld theory, relies on the fact that
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any probability measure µ ∈ P2(Rd) could be represented as the law of a random
variable X ∈ L2

P(Ω,Rd) de�ned on some atomless probability space (Ω,B(Ω),P)
equipped with its Borel σ-�eld (or equivalently µ is the image measure of the prob-
ability P by the function X : Ω 7→ Rd: we will denote this by X]P = µ). This allows
to study derivatives and sub/super-di�erential for real valued functions de�ned on
the Hilbert space L2

P(Ω,Rd), because a function u : P2(Rd) 7→ R is immediately
"lifted" to a function U : L2

P(Ω,Rd) 7→ R de�ned by U(X) := u(X]P). We refer the
reader to [19], [22], [30], [34]. By construction, U(X) depends only depends only on
the law of X. A general function from L2

P(Ω,Rd) to R having this property is called
rearrangement invariant.

In the framework of multiagent control problems, the above "representation" of
a measure of P2(Rd) by random variables in L2

P(Ω,Rd) leads to several questions.
An immediate observation lies in the fact that the representation of the measure
by a L2 function is not unique: even if we �x from the beginning the probability
space (Ω, B(Ω),P), the same measure has multiple representatives in L2

P(Ω). One
important contribution of the mean �eld approach lies on the fact that when the
lift U is smooth enough, the derivative at X of U depends only of the law X]P of
random variable X (cf e.g [19], [22]). However, the general validity of an analogous
result for sub/super-subdi�erential of nonsmooth function is not yet fully clear.
Consequently, the comparison between viscosity solutions de�ned on P2(Rd) and
viscosity solutions de�ned on L2

P(Ω,Rd) appears to be not straightforward. Another
important question concerns the properties of the absolutely continuous curves in
the two spaces: can any absolutely continuous trajectory in the Wasserstein space
be represented by an absolutely continuous curves in L2

P(Ω,Rd)? Conversely, do the
laws of any absolutely continuous curve of random variables in L2

P(Ω,Rd) provide an
absolutely continuous trajectory in the Wasserstein space? Is it possible to establish
quantitative estimates on the distance between a given absolutely continuous curve
in P2(Rd) and the set of admissible trajectories of the dynamics in P2(Rd)?

The goal of the present paper is to investigate the previous questions.

Before going further, we give an academic example of a multiagent evolution in
the Wasserstein space which is not easily represented by an evolution in the L2

P
space. We de�ne its microscopic dynamic as

(5) ẋ(t) ∈ F (µ) := B(0, φ(µt)) for almost every t,

where φ : P2(Rd) 7→ [0,+∞[ is given by

φ(µ) = 1 if δ ≤ µ

L d
≤ 1 and φ(µ) = 0 otherwise,

and µ
L d denotes the density - when it exists - of the measure µ with respect to the

Lebesgue measure L d on Rd, and δ > 0 is a �xed real number. The multi agent sys-
tem is described by the above microscopic dynamics together with the macroscopic
one (2) and the coupling (3). This could modelize, for instance, dynamics which are
"frozen" as soon as the "density" becomes too big or not big enough, preventing
the point to move in these cases. Clearly this kind of dynamics cannot easily be
represented by a dynamics in L2

P as we will discuss later on.

From the point of view of trajectories in the Wasserstein and in the L2
P spaces,

our �rst main result says that an absolutely continuous curve in the Wasserstein
space provides an absolutely continuous curve in L2

P and conversely. We prove also



4 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

that the L2
P representation obeys an ordinary di�erential equation in L2

P related to
the vector �eld v appearing in (2). In the framework of the multiagent control
problems, the last one is a result of independent interest. However, given the above
curve satisfying the above ordinary di�erential equation in L2

P, if we take another
curve in L2

P which points has the same law for any time, the second curve does
not satisfy in general the di�erential equation. This somehow explain the limits
of representing trajectories of a dynamical system in the Wasserstein space by a
dynamical system in L2

P.

From the point of view of optimal control of the multiagent system, an impor-
tant issue is to prove a minimal regularity result (Lipschitz continuity) for the value
function. This is usually done by a Grönwall-Filippov result. We provide a result of
Filippov type, showing that any absolutely continuous curve t 7→ µt in the Wasser-
stein space, can be approached by a trajectory of the multiagent system with a
suitable quantitative estimate, by adapting a similar result holding for curves in the
L2
P space.

Concerning HJB equations, the value function associated to the multiagent system
is expected to satisfy an HJB in a viscosity sense. As usual in control theory, a proper
de�nition of viscosity solution must allow to prove a comparison theorem, and,
consequently, to characterize the value function as the unique solution of an HJB
equation. Indeed, the relevance of the notion of solution to an HJB lies precisely
in the possibility of obtaining a comparison theorem. There are several available
notions of viscosity solution de�ned directly in the Wasserstein space [3], [4], [17],
[33], [35]. Others approaches consider a concept of viscosity solution through the
representation in a L2

P space [19], [30]: the nice structure of L2
P allows to use the

viscosity theory in Banach spaces [24], [25], where a de�nition of viscosity solution
with smooth test functions is available. Both in Wasserstein and L2

P spaces, some
comparison theorems for HJB equations have been obtained in the quoted literature
(an analysis of these comparison theorems is out of the aims of the present paper).

In analogy with the classical theory, given u : P2(Rd)→ R and ε > 0 it is possible
to introduce a concept of ε-super/subtangent test function to u(·) at µ0 ∈P2(Rd):
namely, v : P2(Rd) → R is an ε-supertangent to u(·) at µ0 if v is continuous,
di�erentiable at µ0, v(µ0) = u(µ0) and u(ν) ≤ v(ν) + εW2(ν, µ0) in a neighborhood
of µ0 (an analogous de�nition holds for ε-subtangent).

Applying the same idea to the lifted version U(·) of u(·), we can consider ε-
super/subtangent test functions V (·) to U(·) at X0 ∈ L2

P(Ω) with X0]P = µ0. Of
course, a natural requirement for the consistency of the construction is to ask that
V (·) is rearrangement invariant.

As usual, the notion of ε-sub/supertangency can be used as an alternative way
to give a notion of viscosity solution for HJB equations, in P2(Rd) and in L2

P(Ω),
respectively. Thus it is a natural question to compare this notion with the other
ones de�ned by using sub/superdi�erentials.

Our second main results says that, under minimal assumptions of the Hamiltonian,
the �rst notion of viscosity sub/super solutions provided by using ε-sub/supertangent
in P2(Rd), the second one provided by lifting HJB and using smooth rearrangement
invariant ε-sub/supertest functions in L2

P(Ω), and the third one provided in [35] and
[33] using a notion of ε-intrinsic sub/superdi�erential, are all equivalent.
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Throughout the paper we make the following simpli�cation : although the value
function associated with (4) and the dynamics (1), (2), (3) clearly depends both
on the initial time s and the initial measure µ, we consider only the dependance
in the µ variable. We will proceed as if the value would depend on µ only. This
makes many expositions simpler and also the HJB equation be considered as if it
was stationary.

The paper is organized as follows: in Section 1 we give some notation and back-
ground. Section 2 is devoted to trajectories of the multiagent control problem in the
Wasserstein space and their L2

P counterpart. Section 3 concerns viscosity solution
to the HJB equations. In the last section we discuss the relevance to study a HJB
equation either in W 2 or in L2. We postponed to Appendix A some basic results
and technical proofs to maintain the �ow of the paper

1. Preliminaries

1.1. De�nitions and Notations. We will use the following notation.

B(x, r) (or Br(x)) the open ball of radius r of a metric space (X, dX);
K the closure of a subset K of a topological space X;
IK(·) the indicator function of K,

i.e. IK(x) = 0 if x ∈ K, IK(x) = +∞ if x /∈ K;
χK(·) the characteristic function of K,

i.e. χK(x) = 1 if x ∈ K, χK(x) = 0 if x /∈ K;
dK(·) the distance function from a subset K of a metric space (X, d),

i.e. dK(x) := inf{d(x, y) : y ∈ K};
C0
b (X;Y ) the set of continuous bounded function from a Banach space X to Y ,

endowed with ‖f‖∞ = sup
x∈X
|f(x)| (if Y = R, Y will be omitted);

C0
c (X;Y ) the set of compactly supported functions of C0

b (X;Y ),
with the topology induced by C0

b (X;Y );
C∞c (X;Y ) the space of smooth real functions with compact support in Rd;
ΓI the set of continuous curves from a real interval I to Rd;
ΓT the set of continuous curves from [0, T ] to Rd;
et the evaluation operator et : Rd × ΓI

de�ned by et(x, γ) = γ(t) for all t ∈ I;
P(X) the set of Borel probability measures on a Banach space X,

endowed with the weak∗ topology induced from C0
b (X);

M (Rd;Rd) the set of vector-valued Borel measures on Rd with values in Rd,
endowed with the weak∗ topology induced from C0

c (Rd;Rd);
|ν| the total variation of a measure ν ∈M (Rd;Rd);
� the absolutely continuity relation between measures
m2(µ) the second moment of a probability measure µ ∈P(X);
r]µ the push-forward of the measure µ by the Borel map r;
µ⊗ πx the product measure of µ ∈P(X) with the Borel family of measures

{πx}x∈X ⊆P(Y ) (see (48));
pri the i-th projection map pri(x1, . . . , xN ) = xi;
Π(µ, ν) the set of admissible transport plans from µ to ν;
Πo(µ, ν) the set of optimal transport plans from µ to ν;
W2(µ, ν) the 2-Wasserstein distance between µ and ν;
P2(X) the subset of the elements P(X) with �nite second moment,

endowed with the 2-Wasserstein distance;
L d the Lebesgue measure on Rd;
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ν

µ
the Radon-Nikodym derivative of the measure ν w.r.t. the measure µ;

Lip(f) the Lipschitz constant of a function f .

Given a metric space (X, dX), an interval I of R, p ≥ 1, we de�ne

ACp(I;X) :=
{
γ : I → X : there exists m(·) ∈ Lp(I) such that for all s, t ∈ I

with s ≤ t, it holds dX(γ(t), γ(s)) ≤
∫ t

s

m(τ) dτ
}
.

Given γ ∈ ACp(I;X), the metric derivative of γ at τ is de�ned as

|γ̇|(τ) := lim
h→0

dX(γ(τ + h), γ(τ))

|τ |
.

By Lebesgue Theorem, this limit exists at a.e. τ ∈ I. Moreover, |γ̇|(·) is the smallest
function m(·) such that the inequality

dX(γ(t), γ(s)) ≤
∫ t

s

m(τ) dτ

holds for every s, t ∈ I, s ≤ t (see [3] for further properties of metric derivative).

Given Banach spaces X, Y , we denote by P(X) the set of Borel probability
measures on X endowed with the weak∗ topology induced by the duality with the
space C0

b (X) of the real-valued continuous bounded functions on X with the uniform
convergence norm. The second moment of µ ∈ P(X) is denoted by m2(µ) =∫
X

‖x‖2
X dµ(x), and we set P2(X) = {µ ∈ P(X) : m2(µ) < +∞}. For any Borel

map r : X → Y and µ ∈P(X), we de�ne the push forward measure r]µ ∈P(Y ) by
setting r]µ(B) = µ(r−1(B)) for any Borel set B of Y . The Wasserstein space P2(Rd)
is equipped with the quadratic Wasserstein distance de�ned by for µ, ν ∈P2(Rd)

W2(µ, ν) := min
π∈Π(µ,ν)

{(∫
Rd×Rd

|y − x|2 dπ(x, y)

)1/2
}

where Π(µ, ν) = {π ∈ P(Rd × Rd), pr1]π = µ, pr2]π = ν} is the set of transport
plans between µ and ν. We also denote by Πo(µ, ν) the set of optimal transport
plans between µ and ν, namely, the set of π ∈ Π(µ, ν) achieving the mininimum in
the above de�nition of W2(µ, ν). Recall that P2(Rd) endowed with the W2-distance
is a complete separable metric space.

1.2. Basic facts on the Wasserstein space and an L2 representation. We
�x some probability space (Ω,B(Ω),P) with Ω a Polish (metrizable, complete, sep-
arable) space, B(Ω) its Borel σ-�eld, and P a probability measure with no atom.
We denote by L2

P(Ω,Rd) (or L2
P in short) the space of square integrable functions

X : Ω 7→ Rd on the probability space (Ω,B(Ω),P).
We recall that for any µ in P2(Rd), there existsX ∈ L2

P(Ω,Rd) such thatX]P = µ
(cf e.g. [38]) and

(6) W2(µ, ν) = min
{
‖X − Y ‖L2

P(Ω,Rd) : X]P = µ, Y ]P = ν
}
.
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The space (P2(Rd),W2) can be identi�ed with the quotient (L2
P(Ω,Rd)/ ∼) equipped

with the quotient topology for the following equivalence relationship (cf appendix):

X ∼ Y ⇔ X]P = Y ]P.
We will make a constant use of the following

Lemma 1.1. (Lemma 5.23 in [22]) Let X, Y ∈ L2
P(Ω,Rd) such that X]P = Y ]P.

Then, for any ε > 0, there exists τ : Ω→ Ω one to one satisfying:

(i) τ and τ−1 are measure-preserving that is τ]P = τ−1]P = P,
(ii) ‖Y −X ◦ τ‖L∞P (Ω,Rd) ≤ ε.

To a function u : P2(Rd)→ R we associate its lift on L2
P given by [34], [19], [22]

U : X ∈ L2
P(Ω,Rd)→ u(X]P) ∈ R.

By Corollary A.5, u is continuous if and only if U is continuous. Moreover U
is rearrangement invariant or law dependent. More precisely an application V :
L2
P(Ω,Rd)→ R is said to be rearrangement invariant if

for all (X, Y ) ∈ (L2
P(Ω,Rd))2, it holds: X]P = Y ]P⇒ V (X) = V (Y ).

1.3. About curves in the Wasserstein space. We give some basic statements
related to the dynamics of the macroscopic evolution.
Given a Borel vector �eld (t, x) 7→ vt(x) ∈ Rd such that

(7)

∫ T

0

∫
Rd
|vt(x)|2 dµt(x) dt < +∞,

a continuous curve µt : [0, T ]→P2(Rd) is a solution to the continuity equation

(8) ∂tµt + div(vtµt) = 0 in Rd×]0, T [

if an only if it holds in the sense of distributions on [0, T ]× Rd namely∫ T

0

∫
Rd

(∂tϕ(t, x) + vt(x) · ∇xϕ(x, t)) dµt(x) dt = 0, ∀ϕ ∈ C∞c (Rd×]0, T [)),

or equivalently in the sense of distributions in [0, T ] (see (8.1.3) in [3])

d

dt

∫
Rd
ϕ(x) dµt(x) =

∫
Rd
〈∇ϕ(x), vt(x)〉 dµt(x), for all ϕ ∈ C1

c (Rd).

According to Theorem 8.3.1 in [3], a continuous µ = {µt}t∈[0,T ] ∈ AC2([0, T ]; P2(Rd))
if and only if there exists a Borel vector �eld v = vt(x) satisfying (7) such that (8)
holds.
We �rst recall the following useful result concerning solutions to the continuity

equation (2) and their equivalent representation by a probability measure on Rd×ΓT
where ΓT denotes the set of continuous functions from [0, T ] to Rd.

Proposition 1.2. [Superposition Principle cf. Theorem 8.2.1 of [3]] Consider µt :
[0, T ]→P2(Rd) a continuous solution of (8) for a Borel vector �eld (t, x) 7→ vt(x)
satisfying (7). Then, there exists a probability measure η on Rd × ΓT such that:

(i) η is concentrated on the set of pairs (x, γ) ∈ Rd ×W 1,2([0, T ],Rd) such that:

(9) γ̇(t) = vt(γ(t)) for a.e. t ∈]0, T [ with γ(0) = x.

(ii) we have µt = et]η for all t ∈ [0, T ] with et de�ned by

et : (x, γ) ∈ Rd × ΓT 7→ γ(t) ∈ Rd.
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Conversely if some η ∈P(Rd × ΓT ) satis�es i) with∫ T

0

∫
Rd×ΓT

|vt(γ)|2 dη(x, γ)dt < +∞,

then t 7→ µt := et]η solves the continuity equation (8) for some v satisfying (7).

1.4. Assumptions on the multiagent control system. Throughout the paper
we suppose that the set valued map F : R+ × P2(Rd) × Rd ⇒ Rd is Lipschitz
continuous, with compact and convex images.
Now we give the precise de�nition of a trajectory of the multiagent system driven

by F on the time interval I = [a, b]

De�nition 1.3. [33] A continuous curve µ = {µt}t∈I ⊆ P2(Rd), is an admissible
trajectory driven by F on I if there exists ν = {νt}t∈I ⊆M (Rd;Rd) such that

• |νt| � µt for a.e. t ∈ I;
• vt(x) :=

νt
µt

(x) ∈ F (t, µt, x) for a.e. t ∈ I and µt-a.e. x ∈ Rd, moreover the

map (t, x) 7→ vt(x) is Borel measurable;
• ∂tµt + div νt = 0 in the sense of distributions on I × Rd.

From the de�nition, it follows that µ ∈ AC2(I,P2(Rd)), i.e., there exists m ∈
L2(I; [0,+∞[) such that

W2(µt, µs) ≤
∫ t

s

m(τ) dτ, for all t, s ∈ I with s ≤ t.

Given µ ∈P2(Rd), we denote by AFI (µ) the set of admissible trajectories on I such
that µa = µ. In [33], we have proved that the set AFI (µ) is nonempty, compact w.r.t.
the natural uniform convergence metric on C0(I; P2(Rd)) de�ned as

dC0(µ(1),µ(2)) = sup
t∈I

W2(µ
(1)
t , µ

(2)
t ),

for every µ(i) = {µ(i)
t }t∈I ∈ C0(I; P2(Rd)), i = 1, 2, and that any admissible trajec-

tory can be equivalently represented by a probability measure on Rd × ΓI (cf also
Theorem A.7 in Appendix).

2. Curves and trajectories in P2(Rd) and L2
P(Ω,Rd)

A natural question that arises is whether a dynamic in the Wasserstein space
can be expressed as a dynamic in L2

P. We answer this question both for absolutely
continuous curves and for trajectories of the multiagent system.
We denote by ΓT the set of continuous curves from [0, T ] to Rd. Given a compact

interval I ⊆ R, we endow C0(I; P2(Rd)) with the structure of a complete metric
space by de�ning the uniform convergence metric

dC0(θ(1),θ(2)) = sup
t∈I

W2(θ
(1)
t , θ

(2)
t ),

for every θ(i) = {θ(i)
t }t∈I ∈ C0(I; P2(Rd)), i = 1, 2. For any µ ∈ P2(Rd), the map

W 2
2 (µ, ·) is convex : given νi ∈ P2(Rd) and πi ∈ Πo(µ, νi), i = 0, 1, λ ∈ [0, 1], we

set µλ := λµ0 + (1− λ)µ1 and πλ := λπ0 + (1− λ)π1 ∈ Π(µ, µλ). Hence

W 2
2 (µ, µλ) ≤

∫
Rd×Rd

|x− y|2 dπλ(x, y) = λW 2
2 (µ, µ0) + (1− λ)W 2

2 (µ, µ1).

So W2-balls are convex, and dC0-balls around a curve θ are convex.
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2.1. Absolutely continuous curves and trajectories. Now we state the main
result of this section comparing trajectories and curves in P2(Rd) and L2

P.

Theorem 2.1 (Representation Theorem).
(i) Let µ : [0, T ]→P2(Rd) be a continuous solution of (8) for a Borel vector �eld

(t, x) 7→ vt(x) such that (7) holds true. Then there exists an absolutely continuous
curve X· ∈ W 1,2([0, T ], L2

P(Ω,Rd)) such that:

Xt]P = µt for all t ∈ [0, T ], Ẋt = vt(Xt) for a.e. t, P-a.s.

Moreover, taking any Y0 ∈ L2
P(Ω,Rd) such that µ0 = Y0]P, for all ε > 0, there exists

Z· ∈ W 1,2([0, T ], L2
P) satisfying:

Zt]P = µt for all t ∈ [0, T ], Żt = vt(Zt) for a.e. t, P-a.s. and ‖Z0−Y0‖L∞P (Ω,Rd) ≤ ε.

(ii) Conversely, �x X· ∈ W 1,2([0, T ];L2
P(Ω,Rd)). Set µt := Xt]P and νt ∈

M(Rd,Rd) de�ned as:∫
Rd

Φ(x) · dνt(x) =

∫
Ω

Φ(Xt(ω)) · Ẋt(ω) dP(ω), ∀Φ ∈ C0(Rd,Rd).

Then |νt| is absolutely continuous with respect to νt and setting vt(·) := νt
µt

(·) for a.e.
t ∈]0, T [, µt-a.e, the curve µt : [0, T ]→P2(Rd) is a continuous solution of (8) with
vt(x) satisfying (7).
(iii) Let µt : [0, T ]→P2(Rd) be a solution of the multiagent system driven by F

associated with the Borel vector �eld vt(x) (namely {µt}t satisfying De�nition 1.3
on [0, T ]). Then there exists an absolutely continuous curve X· ∈ W 1,2([0, T ], L2

P)
(constructed in i) such that

(10) Ẋt(ω) ∈ F (t,Xt]P, Xt(ω)) for P- a.e ω and for a.e. t.

If Y0 ∈ L2
P is �xed such that µ0 = Y0]P, then for any ε > 0 there exists Z· ∈

W 1,2([0, T ], L2
P) satisfying Zt]P = µt

Żt ∈ F (t, Zt]P, Zt) P- a.s ω and for a.e. t with ‖Z0 − Y0‖L∞P ≤ ε.

(iv) Conversely if X· ∈ W 1,2([0, T ];L2
P(Ω,Rd)) satis�es (10), then there exists

a Borel vector �eld vt(x) such that t 7→ Xt]P is an absolutely continuous curve
satisfying (8). So {Xt]P}t∈[0,T ] ∈ AF[0,T ](X0]P).

Proof.
Proof of (i). Consider η ∈P(Rd×ΓT ) associated with {µt}t∈[0,T ] by the superposi-

tion principle (Proposition 1.2). Since P has no atoms, there exists Tη : Ω→ Rd×ΓT
a Borel map such that Tη]P = η (cf [38]). Set Xt = et ◦ Tη for all t. Then:

Xt]P =(et ◦ Tη)]P = et](Tη]P) = et]η = µt, ‖Xt‖2
L2
P

=

∫
|x|2 dµt < +∞,

so Xt ∈ L2
P. Moreover for all Y ∈ L2

P and all 0 ≤ s ≤ t ≤ T , setting π = (Tη×Y )]P ∈
Π(η, Y ]P), using the superposition principle, we get:

〈Xt, Y 〉 =

∫
Ω

et(Tη) · Y dP =

∫
(Rd×ΓT )×Rd

et(σ) · y dπ((x, σ), y)

=

∫
(Rd×ΓT )×Rd

σ(t) · y dπ((x, σ), y)



10 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

=

∫
(Rd×ΓT )×Rd

(
σ(s) +

∫ t

s

σ̇(τ) dτ

)
· y dπ((x, σ), y)

=

∫
σ(s) · y dπ((x, σ), y) +

∫ (∫ t

s

vτ (σ(τ)) · y dτ
)
dπ((x, σ), y)

=

∫
es(σ) · y d((Tη × Y )]P)(σ, y) +

∫ t

s

(∫
vτ (σ(τ)) · y dπ((x, σ), y)

)
dτ

(using Fubini)

=

∫
Ω

es(Tη) · Y dP +

∫ t

s

(∫
Ω

vτ (eτ ◦ Tη) · Y dP
)
dτ

=

∫
Ω

Xs · Y dP +

∫ t

s

〈vτ (Xτ ) · Y 〉dτ = 〈Xs +

∫ t

s

vτ (Xτ )dτ , Y 〉

using again Fubini. As this is true for any Y ∈ L2
P, we get for all 0 ≤ s ≤ t ≤ T :

Xt = Xs +

∫ t

s

vτ (Xτ ) dτ.

So we can conclude {Xt}t is in W 1,1([0, T ];L2
P(Ω,Rd)) and that Ẋt = vt(Xt) a.e t,

P-a.s. We also have that {Xt}t is in W 1,2([0, T ];L2
P(Ω,Rd) because:∫ T

0

∫
Ω

|Ẋt|2 dP dt =

∫ T

0

∫
Rd
|vt(x)|2 dµt(x) dt < +∞.

Now take Y0 ∈ L2
P and ε > 0 �xed such that Y0]P = X0]P. By lemma 1.1, there

exists α measure preserving ‖X0 ◦α−Y0‖L∞(Ω,Rd) ≤ ε. Setting Zt = Xt ◦α, we have

‖Z0 − Y0‖L∞(Ω,Rd) ≤ ε, Zt]P = (Xt ◦ α)]P = Xt]P = µt.

Moreover, repeating the same argument done for Xt, for all Y ∈ L2
P(Ω,Rd) and all

0 ≤ s ≤ t ≤ T , replacing π by πα = ((Tη ◦ α)× Y )]P ∈ Π(η, Y ]P) leads:

〈Zt, Y 〉 =

∫
(es ◦ Tη ◦ α) · Y dP +

∫ t

s

(∫
vτ (eτ ◦ Tη ◦ α) · Y dP

)
dτ

=〈Zs +

∫ t

s

vτ (Zτ )dτ , Y 〉.

Again, this implies {Zt}t ∈ W 1,2([0, T ];L2
P(Ω,Rd)) and Żt = vt(Zt) a.e t, P-a.s.

Proof of (ii). From the de�nition of νt, we get that |νt| is absolutely continuous

with respect to µt. Since {Xt}t is in W 1,2([0, T ];L2
P) one easily deduces (7). Since

W2(µs, µt) ≤ ‖Xs − Xt‖, the curve {µt}t is also continuous. To prove (8), taking
ϕ ∈ C∞c (Rd×]0, T [)) we have because vt(Xt) = Ẋt∫ T

0

∫
Rd

(∂tϕ(t, x)+vt(x) · ∇xϕ(x, t)) dµt(x) dt =

=

∫ T

0

∫
Ω

(∂tϕ(t,Xt) + vt(Xt) · ∇xϕ(Xt, t)) dµt(x) dt =

=

∫
Ω

∫ T

0

d

dt
ϕ(Xt, t) dt dP =

∫
Ω

ϕ(Xt, T )− ϕ(Xt, 0) dt dP = 0.
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Proof of (iii). Consider the curve {Xt}t given by (i) associated to {µt}t∈[0,T ]. Then∫ T

0

∫
Ω

IF (t,Xt]P,Xt(ω))(vt(Xt(ω))) dP(ω)dt =

∫ T

0

∫
Rd
IF (t,µt,x)(vt(x)) dµt(x) dt = 0

from De�nition 1.3. Hence X· satis�es (10). The last part of (iii) is straightforward.

Proof of (iv). Consider the continuous curve t 7→ µt := Xt]P and v associated to

X· as in (ii). Since we already know that Ẋt = vt(Xt) and because X· satis�es (10),∫ T

0

∫
Rd
IF (t,µt,x)(vt(x)) dµt(x) dt =

∫ T

0

∫
Ω

IF (t,Xt]P,Xt(ω))(vt(Xt(ω))) dP

=

∫ T

0

∫
Ω

IF (t,Xt]P,Xt(ω))(Ẋ(t)) dP = 0.

This proves that {µt}t∈[0,T ] ∈ AF[0,T ](X0]P). �

Remark 2.2. Observe that the fact the curve {Xt}t solves (10) does not imply that
another curve {X̄t}t with the same law X̄t]P = Xt]P solves (10). Consequently, the
multiagent dynamical system cannot in general be studied in the space L2

P.
We already noticed that (P2(Rd),W2) is identi�ed with (L2

P/ ∼). Easily, the
equivalence classes are closed for the strong topology of L2

P. Nevertheless, they are
neither convex nor closed for the weak topology of L2

P. So one needs to be very careful
to the topology used when comparing continuity properties of curves in P2(Rd) and
L2
P.

2.2. Approximation of curves in P2(Rd) by trajectories of the multiagent
system. The goal of this section is to construct a trajectory of the multiagent
system which approximates a given trajectory in P2(Rd). This is a crucial property
to obtain regularity of the value of the control problem. So we obtain the following
Grönwall-Filippov type result.

Proposition 2.3. Take I = [0, T ]. Let µ̄ ∈P2(Rd) be given, and F : I×P2(Rd)×
R2 ⇒ Rd be a Lipschitz continuous set-valued map with nonempty compact convex
values. Let µ = {µt}t∈I ⊆ AC2(I; P2(Rd)) satisfying (8) for a Borel vector �eld

(t, x) 7→ vt(x) such that

∫
I

‖vt(·)‖2
L2
µt
dt < +∞. Then there exists a trajectory µ̃ =

{µ̃t}t∈I ∈ AFI (µ̄), such that for all t ∈ I

(11) W2(µt, µ̃t) ≤ eL
′t

(
W2(µ0, µ̄) +

∫ t

0

∫
Rd
dF (s,µs,x)(vs(x)) dµs(x) ds

)
,

for some constant L′ depending only on F , I, and µ̄.

This section is devoted to the proof of this proposition, according to the following
outline.

(1) For a given curve θ = {θt}t∈I ∈ Lip(I; P2(Rd)), de�ne the set ΥF,θ
I (µ̄) of

solutions to the multiagent system associated to (t, x) 7→ F (t, θt, x). Namely,
is the set of µ = {µt}t∈I satisfying (8) for a Borel vector �eld (t, x) 7→ vt(x)
such that vt(x) ∈ F (t, θt, x) for µt-a.e. x ∈ Rd and a.e. t ∈ I.

(2) We obtain a Filippov estimate for solutions in ΥF,θ
I (µ̄) (see Proposition 2.5

below) by using our Representation Theorem 2.1 for the map Gθ : I ×
L2
P(Ω) ⇒ L2

P(Ω) de�ned by

(12) Gθ(t,X(·)) := {Y (·) ∈ L2
P(Ω) : Y (ω) ∈ F (t, θt, X(ω)) for a.e. ω ∈ Ω}
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with a Filippov Theorem in L2
P.

(3) We build the desired trajectory µ̃ as a �xed point of the some submap of

θ 7→ ΥF,θ
I (µ̄) whose values satisfy (11).

We will need the following technical Lemma proved in the Appendix

Lemma 2.4. Fix θ = {θt}t∈I ∈ Lip(I; P2(Rd)). Then Gθ : I × L2
P(Ω) ⇒ L2

P(Ω),
de�ned in (12), is LipF · (1 + Lipθ)-Lipschitz continuous with closed images.

Proposition 2.5. In the assumptions of Proposition 2.3, �x ε > 0 and θ = {θt}t∈I ∈
Lip(I; P2(Rd)). Then there exists µ̃θ = {µ̃θt }t∈I ∈ ΥF,θ

I (µ̄) such that

(13) W2(µt, µ̃
θ
t ) ≤ et·LipF ·(1+Lipθ)

(
W2(µ0, µ̄) +

∫ t

0

∫
Rd
dF (s,θs,x)(vs(x)) dµs(x) ds

)
.

Proof. (of Proposition 2.5) Set L := LipF · (1 + Lipθ).

Step 1 Fix ε > 0. we �rst prove that there exists µ̃θ such that

(14) W2(µt, µ̃
θ
t ) ≤ eLt

(
W2(µ0, µ̄) +

∫ t

0

∫
Rd
dF (s,θs,x)(vs(x)) dµs(x) ds+ ε+ εt

)
,

Take X̃0, Ỹ0 ∈ L2
P(Ω) such that (X̃0, Ỹ0)]P ∈ Πo(µ0, µ̄). By Theorem 2.1 (i), there

exists t 7→ Xt such that Ẋt = vt ◦Xt, ‖X0− X̃0‖L2
P
≤ ε, and Xt]P = µt for all t ∈ I.

By Theorem 1.2 in [27] applied1 to Gθ, there exists t 7→ Yt(·) absolutely continuous
such that Y0 = Ỹ0, Y0]P = µ̄, Ẏt(ω) ∈ F (t, θt, Y (ω)) for a.e. ω and for all t

‖Xt(·)− Yt(·)‖L2
P
≤etL

(
‖X0(·)− Y0(·)‖L2

P
+

∫ t

0

dGθ(s,Xs(·))(vs ◦Xs(·)) ds+ εt

)
≤etL

(
‖X̃0(·)− Ỹ0(·)‖L2

P
+

∫ t

0

dGθ(s,Xs(·))(vs ◦Xs(·)) ds+ ε+ εt

)
=etL

(
W2(µ0, µ̄) +

∫ t

0

dGθ(s,Xs(·))(vs ◦Xs(·)) ds+ ε+ εt

)
.

Set µ̃θt := Yt]P for all t. Notice that W2(µs, µ̃
θ
s) ≤ ‖Xt(·)− Yt(·)‖L2

P
, and

dGθ(s,Xs(·))(vs ◦Xs(·)) = dF (s,θs,·)(vs(·)) ◦Xs(·),
therefore, after integrating in P and having switched the integrals in ds and in dω,
we obtain (14). In particular, by Theorem 2.1(iii), we have that µθ = {µ̃θt }t∈I obeys
the continuity equation

∂tµ̃
θ
t + div(wtµ̃

θ
t ) = 0,

where (t, x) 7→ wt(x) is a measurable selection of (t, x) 7→ F (t, θt, x).

Step 2 We claim that the map θ 7→ ΥF,θ
I (µ̄) from {θ ∈ Lip(I; P2(Rd)) : Lipθ ≤

L} to C0(I; P2(Rd)) is Lipschitz continuous with compact convex images and its
Lipschitz constant is less than e(b−a)·(1+L)LipF · (b− a)LipF .

Without loss of generality we assume I = [0, T ]. Set L′ = (1 + L)LipF . Let

ε > 0, θ(i) ∈ Lip(I; P2(Rd)) with Lipθ ≤ L for i = 1, 2, and µ(1) = {µ(1)
t }t∈I ∈

ΥF,θ(1)

I (µ̄). In particular, µ(1) solves the continuity equation with a Borel vector

1Note that [27] concerns mild solutions which appears to be absolutely continuous solutions
because the in�nitesimal generator is A = 0 in our context.
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�eld (t, x) 7→ vt(x) satisfying vt(x) ∈ F (t, θ
(1)
t , x) for µt-a.e. x ∈ Rd and a.e. t ∈ I.

By the arguments of step 1, there exists µ(2) = {µ(2)
t }t∈I ∈ ΥF,θ(2)

I (µ̄).

W2(µ
(1)
t , µ

(2)
t ) ≤etL′

(∫ t

0

∫
Rd
d
F (s,θ

(2)
s ,x)

(vs(x)) dµ(1)
s (x) ds+ ε+ εt

)
,

≤etL′
(∫ t

0

∫
Rd

LipF ·W2(θ(1)
s , θ(2)

s ) dµ(1)
s (x) ds+ ε+ εt

)
,

≤eTL′ ·
(
TLipF · dC0(θ(1),θ(2)) + ε+ εT

)
.

Thus
d

ΥF,θ
(2)

I (µ̄)
(µ(1)) ≤ eTL

′ ·
(
TLipF · dC0(θ(1),θ(2)) + ε+ εT

)
.

By letting ε → 0+ and interchanging θ(1) and θ(2), we obtain the Lipschitz conti-
nuity of θ 7→ ΥF,θ

I (µ̄).

We show the convexity of ΥF,θ
I (µ̄). Given λ ∈ [0, 1], µ(i) = {µ(i)

t }t∈I ∈ ΥF,θ
I (µ̄),

i = 0, 1 de�ne µ(λ) = {µ(λ)
t }t∈I := λµ(0) + (1− λ)µ(1). By linearity, we have

∂tµ
(λ)
t + div

(
λv

(0)
t µ

(0)
t + (1− λ)v

(1)
t µ

(1)
t

)
= 0,

where v
(i)
t (x) ∈ F (t, θt, x) for µ

(i)
t -a.e. x and a.e. t. Noticing that µ

(i)
t � µ

(λ)
t ,

∂tµ
(λ)
t + div

(
v

(λ)
t µ

(λ)
t

)
= 0,

where for µ
(λ)
t -a.e. x ∈ Rd and a.e. t ∈ I it holds

vλt (x) :=
λv

(0)
t µ

(0)
t + (1− λ)v

(1)
t µ

(1)
t

µ
(λ)
t

(x)

=v
(0)
t (x)

λµ
(0)
t

λµ(0) + (1− λ)µ(1)
(x) + v

(1)
t (x)

(1− λ)µ
(1)
t

λµ(0) + (1− λ)µ(1)
(x).

Therefore vλt (x) ∈ F (t, θt, x) by convexity of the images of F . Thus µ(λ) ∈ ΥF,θ
I (µ̄).

We notice that there exists Cθ1 , C
θ
2 > 0 such that F (t, θt, x) ⊆ B(0, Cθ1 + Cθ2 |x|).

Indeed, take Mθ = max{m1/2
2 (θs) : s ∈ I}, since

F (t, θt, x) ⊆ F (0, δ0, 0) +B(0, 1) · LipF · (T +Mθ + |x|),
we can take

Cθ2 := LipF · (T +Mθ + 1), Cθ1 := max{|v| : v ∈ F (0, δ0, 0)}+ Cθ2 .

Thus

|γ(t)| ≤ |γ(0)|+
∫ t

0

(Cθ1 + Cθ2 |γ(s)|) ds,

hence for the trajectories of γ̇(t) ∈ F (t, θt, γ(t)), we have by Grönwall inequality

|γ(t)| ≤ (|γ(0)|+ TCθ1 )eC
θ
2 T .

So F (t, θt, γ(t)) ⊆ B
(
0, Cθ1 + Cθ2 (|γ(0)|+ TCθ1 )eC

θ
2 T
)
, in particular Lip γ ≤ Cθ1 +

Cθ2 (|γ(0)|+TCθ1 )eC
θ
2 T . Every µ = {µt}t∈I ∈ ΥF,θ

I (µ̄) can be represented as µt = et]η
with a measure η ∈P(Rd×ΓI), concentrated on pairs (x, γ) where γ(0) = x and γ
is a trajectory of the di�erential inclusion. By integrating the above estimates, we
obtain that the elements µ of ΥF,θ

I (µ̄) satisfy
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• uniform boundedness of the images in W 2

W2(δ0, µt) =

(∫
Rd
|γ(t)|2 dη(x, γ)

)1/2

≤ (m
1/2
2 (µ̄) + TCθ1 )eC

θ
2 T .

• uniform Lipschitz continuity

W2(µt, µs) ≤‖et − es‖L2
P

=

(∫
Rd×ΓI

|γ(t)− γ(s)|2 dη(x, γ)

)1/2

≤|t− s| · (Cθ1 + Cθ2 (m
1/2
2 (µ̄) + TCθ1 )eC

θ
2 T ).

• pointwise compactness in W2: the uniform boundedness of the images in
W2 yields the pointwise narrow compactness, thus we have only to show the
uniform integrability of the second-order moments. We notice that for η-a.e.
(x, γ), if |γ(t)| > r, we have

s(r) := max{re−Cθ2 T − TCθ1 , 0} < |γ(0)|.
Thus

(15)

(∫
Rd\B(0,r)

|x|2 dµt(x)

)1/2

≤
(∫∫

(Rd\B(0,s(r)))×ΓI

|γ(t)|2 dη(x, γ)

)1/2

≤

[(∫
Rd\B(0,s(r))

|x|2 dµ̄(x)

)1/2

+ TCθ1 µ̄(Rd \B(0, s(r)))

]
eC

θ
2 T ,

and the right hand side tends to 0 as r → +∞, uniformly w.r.t. µ ∈ ΥF,θ
I (µ̄).

By Ascoli-Arzelà theorem, ΥF,θ
I (µ̄) is relatively compact in C0(I; P2(Rd)). We

prove that it is closed. Given a sequence {µ(n)}n∈N ⊆ ΥF,θ
I (µ̄), converging to µ in

C0(I; P2(Rd)), we can �nd a sequence η(n) ⊆P(Rd× ΓI) such that µ
(n)
t = et]η

(n)

for all t ∈ I and n ∈ N, where η(n) is concentrated on pairs (x, γ) where γ is a
trajectory of the di�erential inclusion and γ(0) = x. Since the functional

(x, γ) 7→

{
|x|2 + |γ(0)|2 + ‖γ̇‖2

∞, if γ ∈ Lip(I;Rd),

+∞, otherwise,

has compact sublevels, by using the estimates on the trajectories we obtain

sup
n∈N

∫
Rd×ΓI

(|x|2 + |γ(0)|2 + ‖γ̇‖2
∞) dη(n)(x, γ) < +∞.

By Remark 5.1.5 in [3] we extract a subsequence {η(nk)}k∈N narrowly convergent to
η. By the continuity of et, we have that µt = et]η for all t. Finally, for a.e. (x, γ) in
the support of η there exists {(xn, γn)}n∈N such that xn → x, ‖γn − γ‖∞ → 0 and
γn is a trajectory of γ̇n(t) ∈ F (t, θt, γn(t)) with γn(a) = x. Since the solution map
of such di�erential inclusion has a compact graph ([6] Th. 3.5.2) γ is a trajectory

starting from x, and therefore µ ∈ ΥF,θ
I (µ̄). This proves Step 2.

Step 3 We now construct µ̃θ satisfying (13).

Consider a sequence εn → 0+. By Step 1, there exists a sequence {µ̃θ,(n)}n∈N ⊂
ΥF,θ
I (µ̄) satisfying

W2(µt, µ̃
θ,(n)
t ) ≤ eLt

(
W2(µ0, µ̄) +

∫ t

0

∫
Rd
dF (s,θs,x)(vs(x)) dµs(x) ds+ εn + εnt

)
,
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where µ̃θ,(n) = {µ̃θ,(n)t }t∈I . By the compactness result obtained in Step 2, we can

�nd a subsequence {µ̃θ,(nk)}k∈N converging in dC0 to µ̃θ = {µ̃θt }t∈I ∈ ΥF,θ
I (µ̄),

satisfying (13). �

Proof. (of Proposition 2.3) Given L, T > 0, µ̄ ∈ P2(Rd), and M > m
1/2
2 (µ̄), we set

I = [0, T ],

C2 := LipF · (T +M + 1), C1 := max{|v| : v ∈ F (0, δ0, 0)}+ C2,

and de�ne SI,L,M(µ̄) to be the set of θ = {θt}t∈I ∈ Lip (I; P2(Rd)) satisfying θ0 = µ̄,
Lipθ ≤ L, W2(δ0, θt) ≤M and for all r > 0, t ∈ I

(16)

(∫
Rd\B(0,r)

|x|2 dµt(x)

)1/2

≤

≤

[(∫
Rd\B(0,s̃(r))

|x|2 dµ̄(x)

)1/2

+ TC1µ̄(Rd \B(0, s̃(r)))

]
eC2T ,

where s̃(r) = max{re−C2T − TC1, 0}.
We have that SI,L,M(µ̄) is uniformly bounded in dC0 , thus we get the point-

wise relative compactness of SI,L,M(µ̄) w.r.t. the narrow topology. We prove that
SI,L,M(µ̄) is also pointwise relative compact in W2. Indeed it is enough to show the
uniform integrability of the second-order moments which comes from the fact from
(16) we have(∫

Rd\B(0,2r)

|x|2 dµt(x)

)1/2

≤
(∫

Rd\B(0,r)

|x|2 dµt(x)

)1/2

≤

≤

[(∫
Rd\B(0,s̃(r))

|x|2 dµ̄(x)

)1/2

+ TC1µ̄(Rd \B(0, s̃(r)))

]
eC2T ,

and that s̃(r)→ +∞ as r → +∞.

The set SI,L,M(µ̄) is nonempty, since it contains the constant curves θt ≡ µ̄. It
is convex from the convexity of the W2-ball. It is also closed in the dC0 topology,
and hence compact by Ascoli-Arzelà theorem. Indeed, it is su�cient to recall that
if W2(ξn, ξ)→ 0 then we have

lim inf
n→+∞

∫
Rd\B(0,r)

|x|2 dξn(x) ≥
∫
Rd\B(0,r)

|x|2 dξ(x).

Suppose now that

M >m
1/2
2 (µ̄) + 1,

L >max{|v| : v ∈ F (0, δ0, 0)}+ LipF · (M + 2) + LipF · (M + 2) · (m1/2
2 (µ̄) + 1)

Then we claim that for all 0 < T < 1 small enough it holds ΥF,θ
I (µ̄) ⊆ SI,L,M(µ̄)

for all θ ∈ SI,L,M(µ̄).

We prove this claim. As in the proof of Proposition 2.5, given θ ∈ SI,L,M(µ̄) we

get for every µ ∈ ΥF,θ
[0,T ](µ̄),

Lip(µ) ≤ Cθ1 + Cθ2 (m
1/2
2 (µ̄) + TCθ1 )eC

θ
2 T ,
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where (recalling that 0 < T < 1)

Cθ2 =LipF · (T +Mθ + 1) ≤ C3 := LipF · (M + 2),

Cθ1 = max{|v| : v ∈ F (0, δ0, 0)}+ Cθ2

≤C4 := max{|v| : v ∈ F (0, δ0, 0)}+ LipF · (M + 2).

Therefore Lip(µ) ≤ f(T ) where

f(T ) = C4 + C3(m
1/2
2 (µ̄) + TC4)eC3T .

We easily get f(0) < L, and therefore, since f(·) is continuous, there exists T0 ∈]0, 1[
such that f(T ) < L for 0 < T < T0, where T0 depends only on F , M and µ̄. In
particular, we have Lipµ ≤ L. Moreover, we have

W2(δ0, µt) ≤ m
1/2
2 (µ̄) + TLip(µ) ≤ m

1/2
2 (µ̄) + LT,

therefore, by possibly further shrinking T0, we have W2(δ0, µt) ≤M . Equation (16)
follows from the estimate on Cθ2 and from (15), our claim is proved.

Given an interval J ⊆ [0, T ], we de�ne

QJ(µ,θ) :=
{
ξ = {ξt}t∈J ∈ C0(J ; P2(Rd)) : for all t ∈ J it holds

W2(µt, ξt) ≤ et·LipF ·(1+Lipθ)

(
W2(µ0, µ̄) +

∫ t

0

∫
Rd
dF (s,θs,x)(vs(x)) dµs(x) ds

)}
,

and we notice that QI(µ,θ) is a convex and dC0-closed set.

Notice that the set-valued map θ 7→ QI(µ,θ), de�ned on C0([0, T ]; P2(Rd)), has

closed graph since for all θ(i) = {θ(i)
t }t∈I , i = 1, 2, and every v ∈ Rd we have

d
F (t,θ

(1)
t ,x)

(v) ≤ d
F (t,θ

(2)
t ,x)

(v) + LipFdC0(θ1,θ2),

and W2(µt, ·) is continuous.
We consider the map SI,L,M(µ̄) ⇒ SI,L,M(µ̄) de�ned as θ 7→ ΥF,θ

I (µ̄)∩QI(µ,θ).
As this map is not suitable to apply Kakutani �xed point theorem, we will use an
embedding given by the following Lemma, whose proof is postponed to the Appendix

Lemma 2.6. Let S ⊆ C0(I; P2(Rd)) be compact and convex, endowed with the
topology induced by dC0. Then there exists a locally convex topological vector space
L and an homeomorphism h : (S , dC0)→ L such that

h(λµ(1) + (1− λ)µ(2)) = λh(µ(1)) + (1− λ)h(µ(2))

for all λ ∈ [0, 1] and µ(i) ∈ S , i = 1, 2, mapping (S , dC0) to a compact convex
subset of L.

The map θ 7→ ΥF,θ
I (µ̄)∩QI(µ,θ) has closed graph, and nonempty convex images.

Its graph is contained in a compact set, so it is upper semicontinuous. According
to Lemma 2.6, there is an a�ne homeomorphism h : SI,L,f (µ̄) → L, where L is a
topological vector space. In particular, we can consider

h(SI,L,f (µ̄)) 3 h(θ) 7→ h(ΥF,θ
I (µ̄) ∩QI(µ,θ)) ⊆ h(SI,L,f (µ̄)).

Recalling that h is an a�ne homeomorphism, we have that h(SI,L,f (µ̄)) is again
compact and convex, and the above set-valued map is upper semicontinuous with
compact convex images. By Kakutani-Fan-Glicksberg �xed point theorem (see e.g.
Theorem 13.1 in [36]), this set-valued map admits a �xed point, i.e., there exists
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` ∈ h(SI,L,f (µ̄)) such that ` ∈ h(Υ
F,h−1(`)
I (µ̄) ∩ QI(µ, h

−1(`))). In particular, there

exists µ̃ := h−1(`) ∈ ΥF,µ̃
I (µ̄) ∩QI(µ,η) thus µ̃ ∈ ΥF,µ̃

I (µ̄) and µ̃ ∈ QI(µ, µ̃), thus

(17) W2(µt, µ̃t) ≤ et·LipF ·(1+L)

(
W2(µ0, µ̄) +

∫ t

0

∫
Rd
dF (s,µ̃s,x)(vs(x)) dµs(x) ds

)
,

for some constant L depending only on F , I, and µ̄. Recalling the Lipschitz conti-
nuity of F , this implies

W2(µt, µ̃t) ≤

et·LipF ·(1+L)

(
W2(µ0, µ̄) +

∫ t

0

∫
Rd

[
dF (s,µs,x)(vs(x)) + LipF ·W2(µs, µ̃s)

]
dµs(x) ds

)
.

Set

g(t) := et·LipF ·(1+L)

(
W2(µ0, µ̄) +

∫ t

0

∫
Rd
dF (s,µs,x)(vs(x)) dµs(x) ds

)
,

we have (recalling 0 ≤ t ≤ T < 1)

W2(µt, µ̃t)

(18)

≤et·LipF ·(1+L)

(
W2(µ0, µ̄) +

∫ t

0

∫
Rd
dF (s,µs,x)(vs(x)) dµs(x) ds+ LipF ·

∫ t

0

W2(µs, µ̃s) ds

)
≤g(t) + LipF · eLipF ·(1+L)

∫ t

0

W2(µs, µ̃s) ds

(19)

Grönwall's inequality yields the desired estimate (18) with

L′ = LipF · eLipF ·(1+L) + LipF · (1 + L),

yielding Proposition 2.3 for T small enough.
We prove now the case of possibly large T > 0. To this aim, we apply Zorn's

lemma to the set

Z := {(τ, µ̃ = {µ̃t}t∈[0,τ ]) : τ ∈ [0, T ], µ̃0 = µ̄, µ̃ ∈ ΥF,µ̃
[0,τ ] ∩QJ(µ, µ̃)}

with the following partial order: (τ (1), µ̃(1)) � (τ (2), µ̃(2)) if and only if τ (1) ≤ τ (2)

and µ̃
(1)
t = µ̃

(2)
t for all t ∈ [0, τ (1)]. Given a totally ordered chain A, set TA = sup{τ ∈

[0, T ] : (τ, µ̃) ∈ A} and de�ne µ̂(A) = {µ̂(A)
t }t∈[0,TA[ by setting µ̂t = µ̃t for all t ∈ τ ,

(τ, µ̃) ∈ A.
Notice that given (τ, µ̃) there exists η̃ ∈ P(Rd × Γ[0,τ ]), supported on the pairs

(x, γ) satisfying γ̇(t) ∈ F (t, µ̃t, γ(t)) for a.e. t ∈ [0, τ ] and γ(0) = x, such that
µ̃t = et]η̃ for all t ∈ [0, τ ]. In particular, we have for η̃-a.e. (x, γ) ∈ Rd × Γ[0,τ ]

F (t, µ̃t, γ(t)) ≤ F (0, δ0, 0) +B(0, 1) · LipF · (t+ m
1/2
2 (µ̃s) + |γ(t)|).

Therefore, since C1 = max{|v| : v ∈ F (0, δ0, 0)}

|γ(t)| ≤ |γ(0)|+
∫ t

0

[
C1 + (s+ m

1/2
2 (µ̃s) + |γ(s)|)

]
ds.
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By taking the L2
η̃-norm and using Jensen's inequality

m
1/2
2 (µ̃t) ≤ m

1/2
2 (µ̄) +

∫ t

0

[
C1 + LipF · (s+ 2m

1/2
2 (µ̃s))

]
ds.

By Grönwall's inequality, and recalling that τ ≤ T

m
1/2
2 (µ̃t) ≤m

1/2
2 (µ̄) + τC1 + LipF

T 2

2
· e2TLipF

Arguing as above, µ̃ is Lipschitz continuous, with Lipschitz constant depending
only on µ̄, T , and F . Since (τ, µ̃) ∈ A are arbitrary, µ̃(A) is Lipschitz on [0, T̂ [

and therefore it can be uniquely extended to a Lipschitz function on [0, T̂ ] still

denoted µ̃(A). One gets easily that µ̃(A) ∈ ΥF,µ̃(A)

[0,T̂ ]
(µ̄), and µ̃(A) ∈ Q[0,T̂ ](µ, µ̃).

Therefore (T̂ , µ̃(A)) ∈ Z majorizes every element of A. By Zorn's lemma there
exist (T ′, µ̂) ∈ A) a maximal element. If T ′ < T , by applying the �rst part of the
proof to extend µ̂ on [T ′, T ′+ ε] for some ε > 0, we contradict the maximality of µ̂.

In particular, we obtain µ̃ ∈ ΥF,µ̃
I (µ̄) ∩ QI(µ, µ̃), and we can conclude by Grön-

wall's inequality as in the case of small T . �

Remark 2.7. In a series of recent papers ([8], [9], [10], [11], [12], [13], [14], [15]),
optimization problems in the Wasserstein space driven by a controlled continuity
equation were studied in the Cauchy-Lipschitz framework, i.e., assuming a local
Lipschitz regularity in space of the (possibly nonlocal) driving vector �eld. It is
well known that in this case the continuity equation is well-posed, and moreover its
unique solution is given by the push-forward of the initial measure along the �ow: in
particular mass splitting along the trajectories is not possible. The concept of tra-
jectory used in the Cauchy-Lipschitz framework yields a powerful tool to extend the
classical �nite-dimensional theory to the Wasserstein space, at the price of restrict-
ing the set of available trajectories for the agents (by adding a hidden interaction
between the velocities of close agents, which must be selected to be closed). A short
comparison of the concept of trajectory used in this paper and the Cauchy-Lipschitz
framework was outlined also in Remark 6 of [12].

Remark 2.8. Another Filippov-like theorem was obtained in [12] with a di�erent
notion of solution to (1)-(2), under more smoothness assumption on the vector �eld.
Also when µ is itself a solution to (1)-(2), a Grönwall-Filippov result was obtained
in [33].

Thanks to Theorem 2.1, we can write the value function V(·) associated to (4) on
admissible trajectories in two di�erent ways: we can write

V(µ, T ) := inf

{∫ T

s

L(µt) dt+ G (µT ) : µ ∈ AF[0,T ](µ)

}
,

and, setting L(Y ) := L(Y ]P) and G(Y ) = G (Y ]P) for all Y ∈ L2
P(Ω,Rd), we can

write also

V(µ, T ) := inf
{∫ T

s

L(Xt) dt+G(XT ) : X· ∈ W 1,2([0, T ],Rd), X0]P = µ,

Ẋt(ω) ∈ F (Xt]P, Xt(ω)) for a.e. t ∈ [0, T ] and P-a.e. ω ∈ Ω
}
.
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It has been shown in [33] that V is a solution of a HJB equation in P2(Rd) of the
type:

(20)
∂u

∂t
+H(µ,Dµu(t, µ)) = 0.

In the next section, we explore some properties of this equation and its meaning in
L2
P(Ω,Rd). (We reduce our study to the sationary equation in order to simplify).

Moreover, we expect that, setting V (X) := V(X]P) for all X ∈ L2
P(Ω,Rd), V should

be a solution of a HJB equation in L2
P(Ω,Rd). In subsection 3.4, we give some insights

on the di�cult question of studying (20) as a classic HJB equation in L2
P(Ω,Rd).

3. Hamilton Jacobi Bellman Equations

The Lipschitz value functions of multiagent control problem should satisfy a HJB
equation in the Wasserstein space in suitable senses [4], [17], [30], [33]. The rele-
vance of the notions of viscosity solutions proposed in the previous references lies
in the fact that the value can be characterized by a HJB equation. This needs
comparison principles discussed in [17], [23], [30], [35], [33]. Here we investigates
several super/subdi�erential needed to obtain viscosity solutions on P2(Rd).
We consider the Hamilton-Jacobi equation satis�ed by a function u : P2(Rd)→ R

H(µ,Dµu(µ)) = 0, µ ∈P2(Rd),(HJ)

with the following hamiltonian

H : (µ0, p) ∈P2(Rd)× L2
µ0

(Rd)→ H(µ0, p) ∈ R.

SinceDµu has not yet been de�ned and because umay not be regular, the meaning of
this equation has to be considered in the viscosity sense, by replacing the derivatives
by suitable super/subdi�erentials.

3.1. Super/sub di�erential in P2(Rd). Now we introduce the following notion
of superdi�erential

De�nition 3.1 (Superdi�erentials in P2 cf [33]). Consider u : P2(Rd)→ R, µ0 ∈
P2(Rd) and ε > 0. The ε-superdi�erential of u at µ0 is the set D

+
ε u(µ0) of elements

p ∈ L2
µ0

(Rd,Rd) such that p ∈ dis+(µ0) and

(21) u(ν)− u(µ0) ≤
∫
p(x) · (y − x) dγ(x, y) + ε(W2(µ0, ν)) + o (W2(µ0, ν))

for all ν ∈ P2(Rd), γ ∈ Πo(µ0, ν). The set dis+(µ0) ⊂ L2
µ0

(Rd,Rd) is the convex
cone generated by optimal "anti"-displacements namely:

dis+(µ0) := {λ(Id−T ) : λ > 0, T an optimal transport map between µ0 and T]µ0}.

Remark 3.2. The de�nition above is not exactly equivalent to those of [35], [33].
The di�erence is that in [35], [33], the elements of D+

ε u(µ0) are optimal anti-
displacements. The set of optimal anti-displacement is not stable under multi-
plication by a non-negative real number. Indeed, let µ0 be the Lebesgue measure
restricted to a ball centered at 0Rd of measure 1. Then IdRd = IdRd − 0Rd is an
optimal anti-displacement as x 7→ 0Rd is an optimal transport map from µ0 to δ0Rd

.
But 2IdRd is not an optimal displacement as −IdRd is not an optimal transport map
(it is not cyclically monotone- see [40]).
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Various concepts of super/subdi�erentials have been proposed [3], [10], [17], [30],
[33], [35]. In our control framework, a "good" super/subdi�erentials should enable
us to prove that the value function is the unique viscosity solution of some HJB
equation. Namely it should allow to obtain a comparison principle. The above def-
inition provides such a comparison principle (proved in less restrictive assumptions
in [35] and [33]).

Symmetrically we can de�ne the ε-subdi�erential:

De�nition 3.3. [Subdi�erentials in P2] The ε-subdi�erential or u at µ0 is the set
D−ε u(µ0) of elements p ∈ L2

µ0
(Rd,Rd) such that p ∈ dis−(µ0) and

u(ν)− u(µ0) ≥
∫
p(x) · (y − x) dγ(x, y)− ε(W2(µ0, ν)) + o (W2(µ0, ν))

for all ν ∈P2(Rd), γ ∈ Πo(µ0, ν), where

dis−(µ0) := {λ(T−IdRd) : λ > 0, T an optimal transport map between µ0 and T]µ0}.
We will discuss several alternative de�nitions of the superdi�erential. Before doing

this, we recall the de�nition of tangent bundle to P2(Rd) at µ ∈P2(Rd) (cf [3])

(22) Tµ(Rd) := {∇ϕ : ϕ ∈ C∞c (Rd)}
L2
µ(Rd,Rd)

,

which is related to optimal displacement thanks to the following relation proved in
[3]

(23) Tµ(Rd) = dis+(µ)
L2
µ(Rd,Rd)

= dis−(µ)
L2
µ(Rd,Rd)

.

We recall an equivalent de�nition of superdi�erential (later on we will use both
de�nitions without citing this equivalence result).

Proposition 3.4 (Equivalent de�nition of superdi�erential [33]). Let u : P2(Rd)→
R be a map, let µ0 ∈P2(Rd), ε > 0 and p ∈ dis+(µ0). Then p is in D+

ε u(µ0) i�

(24) u(ν)− u(µ0) ≤
∫
p(x) · (y − x) dγ(x, y) + ε

[∫
|y − x|2dγ(x, y)

]1/2

+

+ o

([∫
|y − x|2dγ(x, y)

]1/2
)
, ∀ν ∈P2(Rd) and γ ∈ Π(µ, ν).

Indeed, the proof in [33] shows a more general result: p ∈ Tµ0(Rd) satis�es

u(ν)− u(µ0) ≥
∫
p(x) · (y − x) dγ(x, y) + ε(W2(µ0, ν)) + o (W2(µ0, ν))

for all ν ∈ P2(Rd) and all γ ∈ Πo(µ, ν), if and only if it satis�es (24) for all
ν ∈P2(Rd) and all γ ∈ Π(µ, ν).
Now we provide a simpler de�nition of D+

ε u(µ) for atomless µ. Indeed take
ν ∈P2(Rd) with µ having no atom, then we know [38]

W2(µ, ν) = inf
T∈L2

µ(Rd,Rd)

{(∫
|Tx− x|2dµ(x)

)1/2

: T]µ = ν

}
.

This implies that there exists {Tn}n ∈ L2
µ(Rd,Rd) such that

(25) Tn]µ = ν, lim
n→+∞

(∫
|Tnx− x|2dµ(x)

)1/2

= W2(µ, ν).
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Possibly extracting a subsequence, by compactness of Π(µ, ν) , we have also that

(26) γn := (IdRd × Tn)]µ
∗
⇀ γ ∈ Πo(µ, ν).

Note that γ is optimal because π ∈P2(Rd × Rd) 7→
∫
|y − x|2 dπ(x, y) is l.s.c.

This suggests that, for atomless µ, we could restrict the de�nition of D+
ε u(µ) to

transport plans supported on the graph of transport maps.

Proposition 3.5. Let u : P2(Rd)→ R, µ ∈P2(Rd) and ε > 0.
Assume µ has no atom and p belongs to L2

µ(Rd,Rd). Then:

(a) if for all Φ ∈ L2
µ(Rd,Rd) the function p satis�es

(27) u(Φ]µ)− u(µ) ≤

≤
∫
Rd
p(x) · (Φ(x)− x) dµ(x) + ε ·

(
‖Φ− Id‖L2

µ

)
+ o

(
‖Φ− Id‖L2

µ

)
,

then it satis�es (21).

(b) if p satis�es (27) then the projection on Tµ(Rd) of p satis�es (24).

(c) if p ∈ dis+(µ), then p ∈ D+
ε u(µ) if and only if it satis�es (27).

To prove this result, we need the following lemma:

Lemma 3.6. Let µ, {νk}k∈N in P2(Rd) such that limk→+∞W2(µ, νk) = 0. Assume
for some ε > 0, p ∈ L2

µ(Rd,Rd) and �xed γk ∈ Πo(µ, νk) we have:

(28) lim sup
k→+∞

u(νk)− u(µ)−
∫∫

Rd×Rd
p(x) · (y − x) dγk(x, y)

W2(µ, νk)
≤ ε.

Then, taking another sequence {γ̄k}k in Πo(µ, νk), we also have:

(29) lim sup
k→+∞

u(νk)− u(µ)−
∫∫

Rd×Rd
p(x) · (y − x) dγ̄k(x, y)

W2(µ, νk)
≤ ε.

Proof. (of the Lemma) Denote by q the projection of p on Tµ(Rd). We �rst remark
that, since γ̄k is an optimal transport plan for any k, by Lemma A.2, x 7→

∫
ydγx(y)−

x is in dis−(µ) ⊂ Tµ(Rd), and this yields∫∫
Rd×Rd

p(x) · (y − x) dγ̄k(x, y) =

∫
Rd
p(x) ·

[∫
Rd
ydγ̄xk (y)− x

]
dµ(x)

=

∫
Rd
q(x) ·

[∫
Rd
y dγ̄xk (y)− x

]
dµ(x)(30)

=

∫∫
Rd×Rd

q(x) · (y − x) dγ̄k(x, y).

By de�nition of Tµ(Rd), for all δ > 0, there exists ϕδ ∈ C∞c (Rd) such that ‖∇ϕδ −
q‖L2

µ
≤ δ. Then, by using Lemma 3.3. p.10 of [30] and Cauchy-Schwartz inequality,

we have∫
q(x) · (y − x) dγ̄k(x, y) ≤

∫
∇ϕδ(x) · (y − x) dγ̄k(x, y) + δW2(µ, νk)
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≤
∫
∇ϕδ(x) · (y − x) dγk(x, y) + ‖D2ϕδ‖∞W 2

2 (µ, νk) + δW2(µ, νk)

≤
∫
q(x) · (y − x) dγk(x, y) + ‖D2ϕδ‖∞W 2

2 (µ, νk) + 2δW2(µ, νk).

Applying the same argument as in (30), we get:∫
q(x)·(y−x) dγ̄k(x, y) ≤

∫
p(x)·(y−x) dγk(x, y)+‖D2ϕδ‖∞W 2

2 (µ, νk)+2δW2(µ, νk).

Finally, for all δ > 0, by (28):

lim sup
k→+∞

u(νk)− u(µ)−
∫
p(x) · (y − x) dγ̄k(x, y)

W2(µ, νk)

≤ lim sup
k→+∞

u(νk)− u(µ)−
∫
p(x) · (y − x) dγk(x, y)

W2(µ, νk)
+ ‖D2ϕδ‖∞W 2(µ, νk) + 2δ

≤ ε+ 2δ,

and letting δ → 0 yields (29). �

Proof. (of Proposition 3.5) Assume for simplicity that ε = 0.

Proof of a): Let (νk)k a sequence of P2(Rd) and γk ∈ Πo(µ, νk) such that:

lim
k→+∞

W2(νk, µ) = 0, lim
k→+∞

∫
Rd×Rd

|x− y|2 dγk(x, y) = 0.

We aim to prove that:

(31) lim sup
k→+∞

u(νk)− u(µ)−
∫
Rd×Rd p(x) · (y − x) dγk(x, y)

W2(µ, νk)
≤ 0.

Set rk = W2(µ, νk). Take Φk ∈ C∞c (Rd,Rd) such that:

(32) ‖p− Φk‖L2
µ
≤ ‖y − x‖L2

γk
= rk.

By (25) and (26), for all k ∈ N, there exists a sequence (Tk,n)n in L2
µ(Rd,Rd) such

that:

Tk,n]µ = νk, γk,n = (IdRd , Tk,n)]µ
∗
⇀ γ̄k ∈ Πo(µ, νk), lim

n→+∞

∫
|IdRd − Tk,n|2 dµ = r2

k.

It's worth pointing out that γ̄k may be di�erent from γk. Fix k in N. Note that,
uniformly in n, (γ̄k,n)n has uniformly integrable moments of order 2. Then, since
for all x and y we have |Φk(x) · (y− x)| ≤ ‖Φk‖∞(|y|+ |x|), it holds (cf e.g. Lemma
5.1.7. of [3]):

lim
n→∞

∫
Φk(x) · (y − x) dγ̄k,n(x, y) =

∫
Φk(x) · (y − x) dγ̄k(x, y).

As a consequence, for all k ∈ N, we can choose Tk ∈ L2
µ(Rd,Rd) such that:

Tk]µ = νk,

∣∣∣∣‖Id− Tk‖L2
µ
− ‖y − x‖L2

γ̄k

∣∣∣∣ ≤ r2
k,(33)

∣∣∣∣∫
Rd

Φk(x) · (Tk(x)− x) dµ(x)−
∫
Rd

Φk(x) · (y − x) dγ̄k(x, y)

∣∣∣∣ ≤ r2
k.(34)
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Then, using (32), (33), (34) and Cauchy-Schwarz inequality, for k large enough we
have∫

Rd×Rd
p(x) · (y − x) dγ̄k(x, y) ≤

∫
Φk(x) · (y − x) dγ̄k(x, y) + r2

k∫
Rd×Rd

Φk(x) · (Tk(x)− x) dµ(x) + 2r2
k ≤

∫
Rd×Rd

p(x) · (Tk(x)− x) dµ(x) + 4r2
k.

This yields

u(νk)− u(µ)−
∫
Rd×Rd

p(x) · (y − x) dγ̄k(x, y)

rk
≤

≤
u(νk)− u(µ)−

∫
Rd×Rd

p(x) · (Tk(x)− x) dµ(x)

rk
+ 4rk.

Since when k tends to +∞, we have rk → 0 and

∫
Rd
|Id−Tk|2 dµ(x)→ 0, we get the

desired relation (31) with γ̄k instead of γk. The conclusion follows by use of Lemma
3.6.
The proof of b) follows from a), using the same argument as in (30) and a similar

proof to the Proposition 3.4. The proof of c) follows from (23). �

The following example shows that the result is no longer true when µ has atoms.

Example 3.7. Again we set ε = 0. Set d = 1 and u(µ) :=

[
1−

∫
R
ϕ(x) dµ(x)

]1/2

with ϕ ∈ C0
b (R) such that ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 2. So

we have u(δ0) = 0 and D+u(δ0) = ∅, but p = 0 satis�es (27). Indeed, δ0 can

only be transported to some δx by transport maps, moreover W2(δx, δ0) = |x| and

lim sup
x→0

u(δx)

|x|
= 0. We show that D+u(δ0) = ∅. Let us remark that

D+u(δ0) =

a ∈ R : lim sup∫
R |x|2 dν(x)→0

u(ν)−
∫
R
ax dν(x)(∫

R
|x|2 dν(x)

)1/2
≤ 0

 .

Fix a ∈ R. Then, taking νn = (1− 1
n2 )δ0 + 1

n2 δ2 leads to

lim sup
n→+∞

u(νn)−
∫
R
ax dνn(x)(∫

R
|x|2dνn(x)

)1/2
=

1

2
.

So that we deduce D+u(δ0) = ∅.

Remark 3.8. Proposition 3.5 makes the link with viscosity solutions in the Wasser-
stein space introduced in [17] for HJB related to di�erential games. More precisely,
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the super-di�erential D+
CQ,εu(µ) de�ned in [17] is the set of p ∈ L2

µ(Rd,Rd) such that

for all T ∈ L2
µ(Rd,Rd)

u(T]µ)− u(µ) ≤
∫
p(x) · (Tx− x)dµ(x) + ε‖Id− T‖L2

µ
+ o(‖Id− T‖L2

µ
).

By Proposition 3.5, we have for any µ without atom:

D+
CQ,εu(µ) ∩ dis+(µ) = D+

ε u(µ).

The previous example shows that this equality is no longer true when µ has atoms.

Now we provide a result showing that somehow the atomic part and nonatomic
part of µ can be considered separately.

Proposition 3.9. Let u : [0, T ] × P2(Rd) → R, µ ∈ P2(Rd), ε > 0 and p ∈
L2
µ(Rd,Rd). Denote by µ0 the non atomic part of µ and µ] the atomic part of µ. We

consider the following property :

u(Φ]µ0 + ν)− u(µ) ≤
∫
p(x) · (Φ(x)− x) dµ0(x) +

∫
p(x) · (y − x) dγ(x, y)+

(35)

+ ε

((
‖Φ− Id‖2

L2
µ

+ ‖y − x‖2
L2
γ

)1/2
)

+

+ o

((
‖Φ− Id‖2

L2
µ0

+ ‖y − x‖2
L2
γ

)1/2
)
,

for all Φ ∈ L2
µ0

(Rd,Rd), ν positive measure with µ](Rd) = ν(Rd) and γ ∈ Π(µ], ν).
Then

a) if p satis�es (35) then it satis�es (21),
b) if p satis�es (35) then the projection on Tµ(Rd) of p satis�es (24),
c) if p ∈ dis+(µ), then p ∈ D+

ε u(µ) if and only if it satis�es (35).

Proof. We show (35)⇒ (21). Let m ∈P2(Rd) and π ∈ Π(µ,m). By disintegration:

π(x, y) = πx(y)⊗ µ(x) = πx(y)⊗ µ0(x) + πx(y)⊗ µ](x).

Denote by ν the second marginal of γ := πx ⊗ µ] and by ν0 the second marginal of
γ0 = πx ⊗ µ0 ∈ Π(µ0, ν0). The �rst marginal of γ0 has no atom. Arguing as in the
proof of Proposition 3.5, we get the conclusion. �

In the de�nition of the super-di�erential, we can restrict the variations ν:

Lemma 3.10. Let µ ∈ P2(Rd), ε > 0 and u : [0, T ] ×P2(Rd) → R continuous.
Let A ∈ P2(Rd) be dense. Assume p ∈P2(Rd) satis�es for all ν ∈ A

(36) u(ν)− u(µ) ≤
∫
p(x) · (y − x) dγ(x, y) + ε‖y − x‖L2

γ
+ o

(
‖y − x‖L2

γ

)
for all γ ∈ Π(µ, ν). Then (36) is satis�ed for all ν ∈ P2(Rd) and γ ∈ Π(µ, ν). If
moreover p ∈ dis+(µ), then p ∈ D+

ε u(t, µ).

Proof. Take again ε = 0. Let (νk)k∈N, µ in P2(Rd) and γk ∈ Π(µ, νk) such that

(37) lim
k→+∞

∫
R2d

|y − x|2dγk(x, y) = 0.
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As A is dense and u is continuous, we can choose ν̄k ∈ A such that:

(38) W2(ν̄k, νk) ≤ ‖y − x‖2
L2
γk
, |u(ν̄k)− u(νk)| ≤ ‖y − x‖L2

γk
.

Let γ̄k ∈ Πo(νk, ν̄k). We disintegrate γk and γ̄k and glue them to get a transport
plan πk ∈ Π(µ, ν̄k):

γk(x, y) = γyk(x)⊗ νk(y), γ̄k(y, z) = γ̄yk(z)⊗ νk(y),

πk(x, z) =

∫
Rd
γyk(x)⊗ γ̄yk(z) dνk(y).

Then we have(∫
R2d

|z − x|2 dπk(x, z)
)1/2

=

(∫
R3d

|z − y + y − x|2dγyk(x) dγ̄yk(z)dνk(y)

)1/2

≤
(∫

R2d

|z − y|2dγ̄k(y, z)
)1/2

+

(∫
R2d

|y − x|2 dγk(x, y)

)1/2

.

From (38) and the de�nition of γ̄k

(39)

(∫
R2d

|z − x|2dπk(x, z)
)1/2

≤ ‖y − x‖L2
γk

(
1 + ‖y − x‖L2

γk

)
.

Now, we have by (38):

1

‖y − x‖L2
γk

(u(νk)− u(µ)−
∫
R2d

p(x) · (y − x) dγk(x, y))

≤ 1

‖y − x‖L2
γk

(u(ν̄k)− u(µ)−
∫
R3d

p(x) · (y − z + z − x) dγyk(x)dγ̄yk(z)dνk(y))

+ ‖y − x‖L2
γk

≤
u(ν̄k)− u(µ)−

∫
R2d

p(x) · (z − x) dπk(x, z)

‖y − x‖L2
γk

+
‖p‖L2

µ
‖z − y‖L2

γ̄k

‖y − x‖L2
γk

+ ‖y − x‖L2
γk

≤
u(ν̄k)− u(µ)−

∫
R2d

p(x) · (z − x) dπk(x, z)

‖y − x‖L2
γk

+ (1 + ‖p‖L2
µ
)‖y − x‖L2

γk

(by (38) and the de�nition of γ̄k)

≤ (1 + ‖y − x‖L2
γk

) ·
u(ν̄k)− u(µ)−

∫
R2d

p(x) · (z − x) dπk(x, z)

‖z − x‖L2
πk

+ C‖y − x‖L2
γk
.

(by (39), setting C := 1 + ‖p‖L2
µ
). Then using (37), (39) and the assumption of the

lemma:

lim sup
k→+∞

1

‖y − x‖L2
γk

(u(νk)− u(µ)−
∫
R2d

p(x) · (y − x) dγk(x, y))

≤ lim sup
k→+∞

(1 + ‖y − x‖L2
γk

) ·
u(ν̄k)− u(µ)−

∫
R2d

p(x) · (z − x) dπk(x, z)

‖z − x‖L2
πk

≤ 0.

�
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Remark 3.11. The previous result may be used with A ⊆P2(Rd) the set of proba-
bility measures whose support is a �nite set, another example is the set of absolutely
continuous probability measures. Recall that, when ν is absolutely continuous then
Πo(µ, ν) = {(T × Id)]ν)} for some T ∈ L2

ν(Rd,Rd) such that T]ν = µ. With this
remark, it is easily seen that p ∈ dis+(µ) belongs to D+

ε u(µ) if and only if, for all ν
absolutely continuous and all T ∈ L2

ν(Rd,Rd) such that µ = T]ν:

u(ν)− u(µ) ≤
∫
Rd
p(Ty) · (y − Ty) dν(y) + ε‖Id− T‖L2

ν
+ o

(
‖Id− T‖L2

ν

)
.

3.2. Di�erentiability in L2
P(Ω,Rd) and P2(Rd). In what follows the scalar prod-

uct 〈·, ·〉L2
P(Ω,Rd) is shortly denoted by 〈·, ·〉L2

P
and ‖ · ‖L2

P(Ω,Rd) is abbreviated in ‖ · ‖.
We start by de�ning, for every given X ∈ L2

P, the following subspace of L2
P

(40) HX := {Φ ◦X ∈ L2
P(Ω,Rd) : Φ ∈ L2

X]P(Rd,Rd)}.
The space HX is isometric to some L2

P space :

Lemma 3.12. (Lemma 5.10 in [33]) HX is a closed linear subspace of L2
P. Moreover,

the map X∗ : L2
X]P(Rd)→ HX de�ned as X∗(φ) = φ ◦X is a linear isometry.

We denote by prHX : L2
P(Ω,Rd)→ HX the projection on HX .

Consider u : P2(Rd)→ R and its lift U : X ∈ L2
P(Ω,Rd)→ u(X]P). Following [19]

and [34], we say that u is di�erentiable at µ0 ∈P2(Rd) if its lift U is di�erentiable
in L2

P at one X0 ∈ L2
P(Ω,Rd) of law µ0. As already known in [19], [22] for continuous

di�erentiable function and in [30] for speci�c probability spaces (Ω, B(Ω),P), the
gradient of U has a speci�c structure:

Proposition 3.13. Assume that U : L2
P(Ω,Rd) → R is rearrangement invariant

and di�erentiable at X0 of law X0]P = µ0. Then there exists p ∈ Tµ0(Rd) such that
DU(X0) = p ◦X0. Moreover if X1 is also of law µ0 then DU(X1) = p ◦X1.

This allows to introduce the following de�nition:

De�nition 3.14. We say that u : P2(Rd) → R is di�erentiable at µ0 ∈ P2(Rd) if
its lift U is di�erentiable at one X0 of law µ0. That is, there exists some p ∈ Tµ0(Rd)
such that for any ν ∈P2(Rd) and any γ ∈ Πo(µ0, ν):

u(ν)− u(µ0) =

∫
Rd×Rd

p(x) · (y − x) dγ(x, y) + o(W2(µ0, ν)).

We denote by Dµu(µ0) := p.

We refer to [19] and [2] for examples. In this section, we aim to provide a new
proof of Proposition 3.13. As in [30], the proof is based on the following proposition
that will be proved, together with Proposition 3.13, at the end of this section:

Proposition 3.15. Let X ∈ L2
P(Ω,Rd). Assume that U : L2

P(Ω,Rd) → R is re-
arrangement invariant and that Z ∈ L2

P(Ω,Rd) satis�es for all Y ∈ L2
P(Ω,Rd):

(41) U(Y )− U(X) ≤ 〈Z, Y −X〉L2
P

+ o (‖Y −X‖) .

Then we also have for all Y ∈ L2
P(Ω,Rd):

U(Y )− U(X) ≤ 〈prHX (Z), Y −X〉L2
P

+ o (‖Y −X‖) ,

moreover if prHX (Z) = p ◦ X and q is the projection on TX]P (Rd) of p, we have
again:

U(Y )− U(X) ≤ 〈q ◦X, Y −X〉L2
P

+ o (‖Y −X‖) .
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Remark 3.16. Proposition 3.13 has been proved in [30] with some extra assumptions
on the probability space (Ω, B(Ω),P). The proof relies on the Proposition 3.15 and
uses a very technical result in [21]. We provide a di�erent and simpler proof only
requiring that Ω is Polish, without using [21].

3.2.1. Preliminary results. The following result gives a characterization of the pro-
jection on HX :

Lemma 3.17. Let Z,X ∈ L2
P, we have

prHX (Z) = p ◦X, with γ = (X,Z)]P and p(x) :=

∫
zdγx(z).

Proof. Indeed, for all φ ∈ L2
X]P(Rd,Rd)∫

Ω

(φ ◦X) · (p ◦X) dP =

∫
Rd
φ(x) · p(x) d(X]P)(x)

=

∫
Rd
φ(x) ·

[∫
zdγx(z)

]
d(X]P)(x)

=

∫
Rd×Rd

φ(x) · z dγx(z)d(X]P)(x)

=

∫
Rd×Rd

φ(x) · z dγ(x, z) =

∫
Ω

(φ ◦X) · Z dP.

�

Remark 3.18. Another expression of p can be given by disintegrating P with respect
to X (see Theorem A.1). Indeed, P can be written P(ω) = (X]P)⊗ Px and then it
can be proved that

p(x) =

∫
X−1(x)

Z(ω) dPx(ω).

Lemma 3.19. Let U : L2
P(Ω,Rd) → R be rearrangement invariant and let X,Z ∈

L2
P(Ω,Rd) such that for all Y ∈ L2

P(Ω,Rd):

(42) U(Y )− U(X) ≤ 〈Z, Y −X〉L2
P

+ o (‖Y −X‖) .

Then for any couple (X ′, Z ′) ∈ L2
P(Ω,Rd)2 such that (X ′, Z ′)]P = (X,Z)]P:

U(Y )− U(X ′) ≤ 〈Z ′, Y −X〉L2
P

+ o (‖Y −X ′‖)

for all Y ∈ L2
P(Ω,Rd).

Proof. Let (Yn)n be a sequence in L2
P(Ω,Rd) such that limn→+∞ ‖Yn −X ′‖ = 0. By

Lemma 1.1, it exists τn : Ω→ Ω one to one such that τn]P = τ−1
n ]P = P and:

(43) ‖(Z,X)− (Z ′, X ′) ◦ τn‖ ≤ ‖Yn −X ′‖2.

Then, as U is rearrangement invariant and using Cauchy-Schwarz:

U(Yn)−U(X ′)− 〈Z ′, Yn −X ′〉L2
P

= U(Yn ◦ τn)− U(X)− 〈Z ′ ◦ τn, Yn ◦ τn −X ′ ◦ τn〉L2
P

≤U(Yn ◦ τn)− U(X)− 〈Z, Yn ◦ τn −X ′ ◦ τn〉L2
P

+ ‖Yn ◦ τn −X ′ ◦ τn‖ · ‖Z − Z ′‖τn‖
≤U(Yn ◦ τn)− U(X)− 〈Z, Yn ◦ τn −X〉L2

P
+ ‖Z‖‖X −X ′ ◦ τn‖+ ‖Yn −X ′‖3

≤U(Yn ◦ τn)− U(X)− 〈Z, Yn ◦ τn −X〉L2
P

+ ‖Yn −X ′‖2(‖Z‖+ ‖Yn −X ′‖).
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Moreover, using again (43), leads to

(44) ‖Yn◦τn−X‖ ≤ ‖Yn◦τn−X ′◦τn‖+‖X−X ′◦τn‖ ≤ ‖Yn−X ′‖(1+‖Yn−X ′‖).
This gives

U(Yn)− U(X ′)− 〈Z ′, Yn −X ′〉L2
P

‖Yn −X ′‖

≤
U(Yn ◦ τn)− U(X)− 〈Z, Yn ◦ τn −X〉L2

P

‖Yn ◦ τn −X‖
(1 + ‖Yn −X ′‖) + ε(‖Yn −X ′‖),

where ε : R+ → R satis�es limt→0 ε(t) = 0.
Then, since lim

n→+∞
‖Yn ◦ τn −X‖ = 0 by (44), by letting n→ +∞ in the previous

inequality we get the result. �

Remark 3.20. Note that, applying the previous Lemma with Z = p ◦ X, (24) holds
true for all ν ∈P2(Rd) and all γ ∈ Π(µ, ν) i�

U(Y )− U(X) ≤
∫

Ω

(p ◦X) · (Y −X) dP + ε‖Y −X‖L2
P(Ω,Rd) + (‖Y −X‖L2

P(Ω,Rd))

for all X ∈ L2
P(Ω,Rd) of law µ0 and all Y ∈ L2

P(Ω,Rd). Indeed,

• given γ ∈ Π(µ0, ν), there exist X ′, Y ′ ∈ L2
P(Ω,Rd) s.t. (X ′, Y ′)]P = γ,

• given X ∈ L2
P(Ω,Rd) of law µ0, and Y ∈ L2

P(Ω,Rd), then γ = (X, Y )]P ∈
Π(µ0, Y ]P).

Next we will use the following speci�c notations:

πx : (x, y, z) ∈ R3 7→ x, πy : (x, y, z) ∈ R3 7→ z,

πx,y : (x, y, z) ∈ R3 7→ (x, y), πx,z : (x, y, z) ∈ R3 7→ (x, z).

Corollary 3.21. Assume that X,Z satisfy (42). Set γ = (X,Z)]P and µ = X]P
and u : P2(Rd) → R associated to U . Then, for any ν ∈ P2(Rd) and any tri-plan
$ ∈P2(Rd × Rd × Rd) such that πx,z]$ = γ and πy]$ = ν, it holds:

(45) u(ν)− u(µ) ≤
∫

(Rd)3

z · (y − x) d$(x, y, z) + o

(
(

∫
(Rd)2

|y − x|2d$(x, y))1/2

)
.

Conversely, let u : P2(Rd) → R and µ ∈ P2(Rd). Assume γ ∈ P2(Rd) satisfying
πx]γ = µ is such that (45) holds for any for any ν ∈ P2(Rd) and any tri-plan
$ ∈ P2(Rd × Rd × Rd) such that πx,z]$ = γ and πy]$ = ν. Then, denoting by U
the lift of u, the assumptions of Lemma 3.19 holds for any X,Z ∈ L2

P(Ω,Rd) such
that (X,Z)]P = γ.

Proof. The �rst assertion is easily proved by noticing that there exist X ′, Y, Z ′ ∈
L2
P(Ω,Rd) such that (X ′, Y, Z ′)]P = $ and, consequently:

ν = πy]$ = Y, µ = πx]$ = X ′, (X,Z)]P = γ = πx,z]$ = (X ′, Z ′)]P,
and by Lemma 3.19:

u(ν)− u(µ) =U(Y )− U(X ′) ≤ 〈Z ′, Y −X ′〉L2
P

+ o (‖Y −X ′‖)

≤
∫

(Rd)3

z · (y − x) d$(x, y, z) + o

(
(

∫
(Rd)2

|y − x|2d$(x, y))1/2

)
.

The converse is similar. �
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Remark 3.22. Taking u and U as in Corollary 3.21, the previous result makes a direct
link between the notion of super-di�erential in L2

P(Ω,Rd) (namely Z ∈ D+U(X) i�
the assumption of the Lemma 3.19 holds) and the notion of strong Fréchet super-
di�erential introduced in [3] (namely γ ∈ ∂+u(µ) i� (45) holds for any ν and $ as
in the corollary). Precisely, if (X,Z)]P = γ and X]P = µ = πx]γ we have

γ ∈ ∂+u(µ)⇔ Z ∈ D+U(X).

3.2.2. Proof of Proposition 3.15 and Proposition 3.13.

Proof. (of Proposition 3.15) Let Y ∈ L2
P(Ω,Rd) arbitrary. We set:

γ := (X,Z)]P, µ := X]P, ν = Y ]P, ρ = (X, Y )]P.
By disintegration, γ and ρ write as

γ(x, z) = γx(z)⊗ µ(x), ρ(x, y) = ρx(y)⊗ µ(x).

Then, setting $(x, y, z) = γx(z)⊗ ρx(y)⊗ µ(x) we get a tri-plan satisfying:

πx,y]$ = ρ, πy]$ = πy]ρ = ν, πx,z]$ = γ.

We apply the �rst assertion of Corollary 3.21:

U(Y )− U(X) =u(ν)− u(µ)

=

∫
(Rd)3

z · (y − x) d$(x, y, z) + o

(
(

∫
(Rd)2

|y − x|2d$(x, y, z))1/2

)
≤
∫

(Rd)3

z · (y − x) dγx(z)dρx(y) dµ(x) + o

(
(

∫
(Rd)2

|y − x|2dρ(x, y))1/2

)
=

∫
(Rd)2

[

∫
Rd
zdγx(z)] · (y − x) dρ(x, y) + o

(
(

∫
(Rd)2

|y − x|2dρ(x, y))1/2

)
.

Recalling Lemma 3.17, we have p(x) = [
∫
Rd zdγ

x(z)] with p ◦X = prHX (Z), and as
(X, Y )]P = ρ:

U(Y )− U(X) ≤
∫

(Rd)2

p(x) · (y − x) dρ(x, y) + o

(
(

∫
(Rd)2

|y − x|2dρ(x, y))1/2

)
=〈p ◦X, Y −X〉L2

P
+ o (‖Y −X‖) .

The �rst assertion of the Proposition is proved.
To prove the second assertion, notice that by the computation above, for any

ν ∈P2(Rd), an any optimal ρ ∈ Πo(µ, ν):

u(ν)− u(µ) ≤
∫

(Rd)2

p(x) · (y − x) dρ(x, y) + o

(
(

∫
(Rd)2

|y − x|2dρ(x, y))1/2

)
.

Now, x 7→
∫
y dρx(y)− x being an optimal displacement, it is in Tµ(Rd) and:

u(ν)− u(µ) ≤
∫
Rd
p(x) ·

[∫
y dρx(y)− x

]
dµ(x) + o(W2(µ, ν))

≤
∫
Rd

prTµ(p)(x) ·
[∫

y dρx(y)− x
]
dµ(x) + o(W2(µ, ν))

=

∫
Rd

prTµ(p)(x) · (y − x) dρ(x, y) + o

(
(

∫
(Rd)2

|y − x|2dρ(x, y))1/2

)
.

The conclusion follows by Proposition 3.4 and Remark 3.20 . �
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Proof. (of Proposition 3.13). We have that, for all Y ∈ L2
P(Ω,Rd):

U(Y )− U(X0) = 〈DU(X0), Y −X0〉L2
P

+ o (‖Y −X0‖) ,
so that by Proposition 3.15, we also have:

U(Y )− U(X0) ≤ 〈p ◦X0, Y −X0〉L2
P

+ o (‖Y −X0‖) ,

where p is the projection on TX0]P(Rd) of p̃ ◦X =: prHX0
(DU(X0)). In a symmetric

way, we could get:

U(Y )− U(X0) ≥ 〈p ◦X0, Y −X0〉L2
P

+ o (‖Y −X0‖) ,

so that DU(X) = p◦X and p is in TX0]P(Rd). The last assertion follows from Lemma
3.19. �

3.3. Viscosity solutions. We recall the de�nition of viscosity sub and supersolu-
tion associated to the previous de�nitions of sub and superdi�erential (see [33]).

De�nition 3.23 (Viscosity Solutions). A function w : P2(Rd)→ R is

• a subsolution of (HJ) if w is upper semicontinuous and there exists C > 0
such that for all µ ∈P2(Rd), p ∈ D+

ε w(µ), and ε > 0

H(µ, p) ≥ −Cε.
• a supersolution of (HJ) if w is lower semicontinuous and a constant C > 0
exists such that µ ∈P2(Rd), p ∈ D−ε w(t, µ), and ε > 0

H(µ, p) ≤ Cε.

• a solution of (HJ) if w is both a supersolution and a subsolution.

We refer to [35], [33] for comparison principle using these notions with some quite
weak assumptions.
We will assume some regularity for the Hamiltonian associated with (HJ):

(A) For all µ0 ∈ P2(Rd), the map p ∈ Tµ0(Rd) 7→ H(µ0, p) is continuous in
L2
µ0

(Rd,Rd).

We also introduce a Hamiltonian on the set

{(X, p ◦X) : X ∈ L2
P(Ω,Rd), p ∈ TX]P(Rd)}

by H(X, p ◦X) := H(X]P, p), and the corresponding Hamilton Jacobi equation:

(HJ) H(X,DU(X)) = 0.

3.3.1. Properties of the superdi�erential. We provide some properties of D+
ε u(µ0)

and relations with the following superdi�erential introduced in [4]: p ∈ Tµ0(Rd)
belongs to D+

AGu(µ0) if it satis�es for all γ ∈ Πo(µ0, ν):

u(ν)− u(µ0) ≤
∫
p(x) · (y − x) dγ(x, y) + o (W2(µ0, ν)) .

Remark 3.24. By Proposition 3.5 and Remark 3.8, when µ has no atom, taking
ε = 0

prTµ(Rd)(D
+
CQ,0u(µ)) = D+

AGu(µ).

We prove that superdi�erentials are nonempty when µ0 belongs to some dense
set. Moreover we give a link between superdi�erentials of [35],[33],[30].

Proposition 3.25. Let u : P2(Rd) → R be continuous. Then there exists A a
dense subset of P2(Rd) such that we have:
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(i) D+
AGu(µ0) is non empty for any µ0 ∈ A,

(ii) for all ε > 0, D+
ε u(µ0) is non empty for any µ0 ∈ A,

(iii) it holds D+
AGu(µ0) = {p = limε→0 pε : pε ∈ D+

ε u(µ0)}.
The last assertion is true even when u is not continuous.

Proof. We prove (i) and (iii), assertion (ii) follows.
(i) Let U the lift of u and X0 ∈ L2

P(Ω,Rd) a random variable of law µ0. Note that
U is also continuous. Take also R > 0, ε > 0 and consider the following function:

Vε(Y ) :=

U(Y )− ‖Y −X0‖2

ε
, if ‖Y −X0‖ ≤ R,

−∞, otherwise.

This function being upper semi-continuous, by Stegall's variational principle (The-
orem 8.8 p 55 of [19]), there exists ξ ∈ L2

P with ‖ξ‖ ≤ ε and such that Vε − 〈ξ, ·〉
attains its maximum at some X∗. By de�nition of Vε, we have ‖X∗ − X0‖ ≤ R.
Since Vε(X0)− 〈ξ,X0〉 ≤ Vε(X

∗)− 〈ξ,X∗〉 we get
‖X∗ −X0‖2 ≤ ε(U(X∗)− U(X0)) + ε2‖X∗ −X0‖.

Then, for ε small, ‖X∗ − X0‖ < R, and for Y in a neighborhood of X0, Vε(Y ) −
〈ξ, Y 〉 ≤ Vε(X

∗)− 〈ξ,X∗〉 implies

U(Y )− U(X∗) ≤ 〈2
ε

(X∗ −X0) + ξ, Y −X∗〉+
‖Y −X∗‖2

ε
.

This means 2
ε
(X∗ − X0) + ξ satis�es the condition of Proposition 3.15. Then, by

applying the proposition, we get some p ∈ TX∗]P(Rd) such that:

U(Y )− U(X∗) ≤ 〈p ◦X∗, Y −X∗〉+ o(‖Y −X∗‖).
The conclusion follows using Lemma 3.19 and Remark 3.20.

(iii) First we show D+
AGu(µ0) ⊂ {p = limε→0 pε : pε ∈ D+

ε u(µ0)}. Let p ∈
D+
AGu(µ0), by de�nition of Tµ(Rd), there exists {pε}ε in dis+(µ0) such that ‖pε −

p‖L2
µ0
≤ ε. Then for all ν in P2(Rd) and all γ ∈ Πo(µ0, ν):

u(ν)− u(µ0) ≤
∫
p(x) · (y − x) dγ(x, y) + o (W2(µ0, ν))

≤
∫
pε(x) · (y − x) dγ(x, y) + ‖pε − p‖L2

µ0
W2(µ0, ν) + o (W2(µ0, ν))

≤
∫
pε(x) · (y − x) dγ(x, y) + εW2(µ0, ν) + o (W2(µ0, ν)) .

So we have the desired inclusion. We prove the converse. Let p = limε→0 pε with
pε ∈ D+

ε u(µ0). As, for any ε, pε ∈ dis+(µ0) we have p ∈ Tµ0(Rd). Now take {νk}k a
sequence of P2(Rd) and γk ∈ Πo(µ, νk) such that:

lim
k→+∞

W 2
2 (µ, νk) =

∫
Rd×Rd

|y − x|2 dγk(x, y) = 0.

We have by Cauchy-Schwarz:

u(νk)− u(µ0)−
∫
p(x) · (y − x)dγk(x, y)

≤ u(νk)− u(µ0)−
∫
pε(x) · (y − x)dγk(x, y) + ‖pε − p‖L2

µ0
.
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So for every ε > 0:

lim sup
k→+∞

u(νk)− u(µ0)−
∫
p(x) · (y − x)dγk(x, y)

W2(νk, µ0)
≤ ε+ ‖pε − p‖L2

µ0
.

Letting ε→ 0+ yields the result. �

Proposition 3.26. Let u : P2(Rd)→ R be k-Lipschitz, µ in P2(Rd). Then:

(i) For all ε > 0, and all q ∈ D+
ε u(µ) we have ‖q‖L2

µ
≤ k + ε.

(ii) Take pε ∈ D+
ε u(µ) for all ε > 0. Up to a subsequence {pε}ε admits an

L2
µ(Rd,Rd)-weak limit p as ε tend to 0. Moreover p ∈ D+

AG(µ).

Proof. Denote by U the lift of u and let X ∈ L2
P(Ω,Rd) of law µ. By Corollary A.5

3), the map U is k-Lipschitz. We have for all Y ∈ L2
P(Ω,Rd),

U(Y )− U(X) ≤ 〈q ◦X, Y −X〉+ ε‖Y −X‖+ o(‖Y −X‖).
Then, applying this inequality with Y = −t(q ◦X) with t ∈ R leads:

U(−t(q ◦X))− U(X) ≤ −t‖q ◦X‖2 + εt‖q ◦X‖+ o(t)

and using the Lipschitz property of U :

t‖q ◦X‖2 ≤ (k + ε)t‖q ◦X‖+ o(t).

The property (i) follows by dividing by t and letting t→ 0+.
Then, take the sequence {pε}ε de�ned in (ii). Up to a subsequence (similarly

denoted) {pε}ε admits an L2
P-weak limit p as ε→ 0+. Now let {νn}n∈N be a sequence

in P2(Rd) and γn ∈ Πo(µ, νn). Possibly extracting a subsequence, we may assume
that

lim sup
n→+∞

u(νn)− u(µ)−
∫
Rd×Rd p(x) · (y − x)dγn(x, y)

W2(µ, νn)

= lim
n→+∞

u(νn)− u(µ)−
∫
Rd×Rd p(x) · (y − x)dγn(x, y)

W2(µ, νn)
.

Setting rn := W2(µ, νn), by Jensen's inequality, it holds:(∫
Rd

∣∣∣∣ 1

rn

(∫
Rd
y dγxn(y)− x

)∣∣∣∣2 dµ(x)

)1/2

=

(∫
Rd

∣∣∣∣ 1

rn

∫
Rd
y − x dγxn(y)

∣∣∣∣2 dµ(x)

)1/2

≤

(∫
Rd
|y − x|2 dγ(x, y)

)1/2

W2(µ, νn)
≤ 1.

Then, set qn : x 7→ 1

rn

(∫
Rd
y dγxn(y) − x

)
, the sequence {qn}n∈N is bounded, so

we can extract a subsequence {qnk}k∈N weakly convergent to some q ∈ L2
µ. For all

ε > 0 we have

lim sup
n→+∞

1

rn
·
[
u(νn)− u(µ)−

∫
Rd×Rd

p(x) · (y − x)dγn(x, y)

]
=

= lim
k→+∞

1

rnk
·
[
u(νnk)− u(µ)−

∫
Rd×Rd

p(x) · (y − x)dγnk(x, y)

]
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= lim
k→+∞

1

W2(µ, νnk)
·
[
u(νnk)− u(µ)−

∫
Rd×Rd

pε(x) · (y − x)dγnk(x, y)

]
+

+
1

rnk
·
[∫

(pε − p)(x) · (y − x) dγnk(x, y)

]
≤ε+ lim

k

∫
(pε − p)(x) · 1

rnk

(∫
ydγxnk(y)− x

)
dµ(x)

=ε+ lim
k

∫
(pε − p)(x) · qnk(x) dµ(x) = ε+

∫
(pε − p)(x) · q(x) dµ(x).

By letting ε→ 0+, we obtain (ii). �

Proposition 3.25 provides some links between notions of subsolutions:

Corollary 3.27. Assume assumption (A) holds. Let u : P2(Rd) → R be a subso-
lution of (HJ) and let C > 0 the constant appearing in de�nition 3.23. Then
(i) H(µ, p) ≥ 0 for all p ∈ D+

AGu(µ0),
(ii) For all ε > 0 and all p ∈ Tµ(Rd) such that for all ν ∈P2(Rd), all γ ∈ Πo(µ0, ν)

u(ν)− u(µ0) ≤
∫
p(x) · (y − x) dγ(x, y) + ε(W2(µ0, ν)) + o(W2(µ0, ν)),

we have H(µ, p) ≥ −Cε.

Proof. We only prove (ii). Arguing as in the previous proof, for any δ > 0 there
exists pδ ∈ D+

ε+δu(µ0) such that ‖pδ − p‖L2
µ0
≤ δ and

H(µ, p) ≥ −C(ε+ δ).

The result follows by letting δ → 0+. �

3.3.2. Test Functions. We want to express the notion of Hamilton-Jacobi solution
in P2(Rd) in terms of test functions, de�ned as follows.

De�nition 3.28. Let u : P2(Rd)→ R, µ0 ∈P2(Rd) and ε > 0.
v : P2(Rd)→ R is an ε-supertest function for u at µ0 if it is continuous, di�eren-

tiable at µ0 and there exists r > 0 such that: u(µ0) = v(µ0) and

u(ν) ≤ v(ν) + εW2(µ0, ν) ∀ν ∈P2(Rd) such that W2(µ0, ν) < r.

v is an ε-subtest function for u at µ0 if −v is a ε-supertest function for −u at µ0

We also have similar ε-test functions in L2
P(Ω,Rd):

De�nition 3.29. Let U : L2
P(Ω,Rd)→ R, X0 ∈ L2

P(Ω,Rd) and ε > 0.
V : L2

P(Rd) → R is an ε-supertest function for U at X0 if it is continuous, di�er-
entiable at X0 and there exists r > 0 such that:

U(X0) = V (X0)

U(Y ) ≤ V (Y ) + ε‖Y −X0‖ ∀Y ∈ L2
P(Ω,Rd) such that ‖Y −X0‖ < r.

V is an ε-subtest function for U at X0 if −V is ε-supertest function for U at X0.

We wish to give a result comparing both above notions

Theorem 3.30. Let u : P2(Rd)→ R be continuous and U : L2
P → R be its lift.

Assume (A) holds. Then the following assertions are equivalent:

(i) u is a viscosity subsolution of (HJ),
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(ii) there exists C > 0 such that for all ε > 0, all µ0 ∈P2(Rd) and all ε-supertest
function v of u at µ0 it holds

H(µ0, Dµv(µ0)) ≥ −Cε.
(iii) there exists C > 0 such that for all ε > 0, all µ0 ∈ P2(Rd) and all re-

arrangement invariant ε-supertest function V of U at some X0 of law µ0 it
holds

H(X0, DV (X0)) ≥ −Cε.

To prove this theorem we need some preliminary results.

Lemma 3.31. Let U : L2
P → R be rearrangement invariant, X0 ∈ L2

P and ε > 0. Let
V be a rearrangement invariant ε-supertest function of U at X0. Let r > 0 be the
constant appearing in the de�nition of supertest function. Then V is an ε-supertest
function of U at any X ∈ L2

P with the same law of X0 and the constant r.

Proof. By Lemma 1.1, for any n ∈ N∗, there exists τn : Ω → Ω, (measurable,
invertible with τn]P = τ−1

n ]P = P) such that: ‖X − X0 ◦ τn‖ ≤ 1
n
. Let Y ∈ L2

P
satis�es ‖X − Y ‖ < r, then for n big enough we have:

‖X0 − Y ◦ τ−1
n ‖ = ‖X0 ◦ τn − Y ‖ ≤ ‖X − Y ‖+ ‖X0 ◦ τn −X‖ < r.

Then as V is an ε-supertest function at X0, we have:

U(Y ◦ τ−1
n ) ≤ V (Y ◦ τ−1

n ) + ε‖X0 − Y ◦ τ−1
n ‖.

As U and V are rearrangement invariant, this leads to

U(Y ) ≤ V (Y )+ε‖X0−Y ◦ τ−1
n ‖ ≤ V (Y )+ε‖X0 ◦ τn−Y ‖ ≤ V (Y )+ε‖X−Y ‖+

ε

n
.

Letting n tend to the in�nity gives the result. �

The representation of Wasserstein distance (6) gives immediately

Corollary 3.32. Let u : P2(Rd)→ R and U : L2
P(Ω,Rd)→ R its lift.

a) Let ε > 0 and µ0 ∈P2(Rd) and v an ε-supertest function of u at µ0. Then
the lift V of v is an ε-supertest function of U at any X0 of law µ0.

b) Let ε > 0, X0 ∈ L2
P(Ω,Rd) and V an ε-supertest function of U at X0. Assume

V is rearrangement invariant. Given any ν ∈P2(Rd,Rd), set

v(ν) := V (Y ) for any Y of law ν.

Then the map v is an ε-supertest function of the lift u at µ0 the law of X0.

Proposition 3.33. Take u continuous on P2(Rd), ε > 0 and µ0 ∈P2(Rd). Then:

a) if v an ε-supertest function of u at µ0, its gradient Dµv(µ0) can be approxi-
mate in L2

µ0
(Rd,Rd) by a sequence {pn}n such that pn ∈ D+

ε+1/nu(µ0).

b) if p ∈ L2
µ0

(Rd,Rd) belongs to D+
ε u(µ0), there exists a sequence {vn}n of

(ε+ 1/n)-supertest functions of u at µ0 such that:

lim
n→+∞

‖Dµvn(µ0)− p‖ = 0.

We need a technical Lemma whose proof is very similar to Lemma 3.1.8 in [16]

Lemma 3.34. Let R > 0 and ω :]0, R] → R be a lower semicontinuous such that
limt→0+ ω(t) = 0. Then there exists ω0 : [0, R

2
]→ R such that:

a) ω(τ) ≤ ω0(τ) for all τ ∈]0, R
2

],
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b) ω0 is continuous on [0, R
2

[,
c) ω0(τ) = 0.

Proof. (of Proposition 3.33)
a) As Dµv(µ0) ∈ Tµ0(Rd), there exists {pn}n∈N∗ in dis+

0 (µ0) such that:

‖pn −Dµv(µ0)‖L2
µ0

(Rd,Rd) ≤
1

n
.

Then, for all ν ∈P2(Rd) and all γ ∈ Π0(µ0, ν):

u(ν)− u(µ0) ≤ v(ν)− v(µ0) + εW2(µ0, ν) ≤

≤
[∫

Dµv(µ0)(x) · (y − x)dγ(x, y) + o (W2(µ0, ν))

]
+ εW2(µ0, ν)

≤
∫
pn(x) · (y − x)dγ(x, y) + (ε+ 1/n)W2(µ0, ν) + o (W2(µ0, ν)) .

b) As p ∈ Tµ0(Rd), there exists a sequence (ϕn)n∈N∗ in C
∞
c (Rd) such that:

(46) ‖∇ϕn − p‖L2
µ0
≤ 1

n
.

Then setting wn(ν) =
∫
ϕn(x)dν for all ν ∈P2(Rd), it is continuous and

Dµwn(µ0) = ∇ϕn, ‖Dµwn(µ0)− p‖L2
µ0
≤ 1

n
.

Moreover as p ∈ D+
ε u(µ0) we have in view of (46)

lim sup
W2(µ0,ν)→0
γ∈Πo(µ0,ν)

u(ν)− u(µ0)−
∫
∇ϕn(x) · (y − x) dγ(x, y)

W2(µ0, ν)
≤

≤ lim sup
W2(µ0,ν)→0
γ∈Πo(µ0,ν)

u(ν)− u(µ0)−
∫
p(x) · (y − x) dγ(x, y)

W2(µ0, ν)
+

1

n
≤
(
ε+

1

n

)
.

Since Dµwn(µ0) = ∇ϕn

α := lim sup
W2(µ0,ν)→0

u(ν)− u(µ0)− wn(ν) + wn(µ0)

W2(µ0, ν)
− (ε+ 1/n) ≤ 0

If α < 0 then setting v(ν) := u(µ0) + wn(ν)− wn(µ0) the proof is concluded.
Assume α = 0. Then set for all r > 0

ω(r) = sup
W2(µ0,ν)≤r

u(ν)− u(µ0)− wn(ν) + wn(µ0)

W2(µ0, ν)
− (ε+ 1/n)

This function is non-decreasing, bounded on some ]0, R[, and it satis�es lim
r→0+

ω(r) =

0. Assume that this function is measurable (we will prove it later). Then we use
the previous lemma and set for all ν with W2(µ0, ν) < R

2

vn(ν) := u(µ0) + wn(ν)− wn(µ0) +W2(µ0, ν)ω0(W2(µ0, ν)).

Moreover we have

lim
W2(µ0,ν)→0

W2(µ0, ν)ω0(W2(µ0, ν))−W2(µ0, µ0)ω0(W2(µ0, µ0))

W2(µ0, ν)
= 0.
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Thus vn is continuous and di�erentiable at µ0 and

Dµvn(µ0) = ∇ϕn and vn(µ0) = u(µ0)

∀ν such that W2(µ0, ν) <
R

2
: u(ν) ≤ vn(ν) + (ε+ 1/n)W2(µ0, ν).

The result is proved.

It remains to prove that ω is l.s.c., hence measurable. Indeed let ρ0 ∈]0, R[ and
take ρk → ρ0 such that lim infρ→ρ0 ω(ρ) = limk→+∞ ω(ρk). We want to show that
limk→+∞ ω(ρk) ≥ ω(ρ0). If (ρk)k admits a non-increasing sub-sequence we are done
because ω is non-decreasing.
Let us assume (ρk)k is non-decreasing. Let δ > 0 and ν be δ-optimal for ω(ρ0). Take
t ∈ [0, 1] → νt a geodesic curve joining ν and µ0. For k big enough we can �nd νtk
such that W2(µ0, νtk) = ρk. Then:

(ε+ 1/n) + ω(ρk) ≥
u(νtk)− u(µ0)− wn(νtk) + wn(µ0)

ρk
.

As W2(νtk , ν) = W2(µ0, ν)−W2(νtk , µ0) = (ρ0 − ρk), by continuity of u and wn,

lim
k→+∞

ω(ρk) ≥
u(ν)− u(µ0)− wn(ν) + wn(µ0)

ρ0

− (ε+ 1/n) ≥ ω(ρ0)− δ.

By the arbitrariness of δ > 0, we get the desired regularity. �

Proof. (of Theorem 3.30) First we show (i)⇒ (ii). Let C be the constant appearing
in de�nition 3.23. We take ε > 0, µ0 ∈P2(Rd) and v any ε-supertest function of u
at µ0. By Proposition 3.33, a), there exists (pn)n in D+

ε+1/nu(µ0) such that

lim
n→+∞

‖pn −Dµv(µ0)‖L2
µ0

= 0.

Then, by (i),
H(µ0, pn) ≥ −C(ε+ 1/n)

and using (A) and letting n→ +∞
H(µ0, Dµv(µ0)) ≥ −Cε.

Using Corollary 3.32 and Theorem 3.13, we have (ii)⇔ (iii).
The proof of (ii)⇒ (i) follows from Proposition 3.33, b). �

3.4. To study Hamilton Jacobi equations in L2
P(Ω;Rd) or in P2(Rd)? It's a

natural question to ask weather HJB can be studied as an equation in L2
P(Ω,Rd)

with the usual notion of viscosity solution in L2
P. This leads to several questions:

1) In order to give a de�nition of H(X,DV (X)) for any test function V : L2
P → R,

we need to extend H to the whole L2
P(Ω,Rd)2.

2) The extension H̃ should be chosen in order to get some equivalences between
L2
P-solutions of the extended equation and P2-solutions of (HJ). More precisely,

provided H̃ is rearrangement invariant (see de�nition 3.35), it is easily seen that
any rearrangement invariant L2

P-solution of the extended equation is the lift of a
P2-solution of (HJ). The opposite property is more involved.
3) As we would like to apply usual results in L2

P to the extended equation, we

want H̃ to preserve the regularity of H.
We try here to give some re�exions on the subject.
In this section, we will use consider the following sets

F2(Rd) :={(µ, p) : p ∈ L2
µ(Rd;Rd), µ ∈P2(Rd)},
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F2 :={(X, p) : X]P ∈P2(Rd), p ∈ L2
X]P(Rd;Rd)}.

We also give the de�nition:

De�nition 3.35 (Rearrangement invariance of Hamiltonians). GivenD ⊆ L2
P(Ω;Rd)×

L2
P(Ω;Rd), a function Ĥ : D → R is called rearrangement invariant on D if

Ĥ(X, ξ) = Ĥ(Y, ζ) for all (X, ξ), (Y, ζ) ∈ D satisfying (X, ξ)]P = (Y, ζ)]P.

Note that the lift H is rearrangement invariant on F2.

3.4.1. Comparing convergences in L2
P and P2(Rd). For any sequence {(Xn, p◦Xn)}n

in F2, we consider here two natural types of convergences in L
2
P(Ω,Rd)2: the strong/weak

convergence and the strong/strong convergence. In this section we study the corre-
sponding notions in F2(Rd). First, we introduce the following distance in F2(Rd):

dF2 ((µ1, p1), (µ2, p2)) := W2((IdRd , p1)]µ1, (IdRd , p2)]µ2).

In addition to the topology induced by dF2 , following [3], we introduce the follow-
ing notion of convergence.

De�nition 3.36 (Strong/weak onvergence in F2(Rd)). Let {(µn, pn)}n∈N and (µ, p)
be in F2(Rd). We say that {(µn, pn)}n∈N converges strong/weak (s/w-converges in
short) to (µ, p) if

• lim
n→+∞

W2(µn, µ) = 0;

• pnµn
∗
⇀ pµ as a sequence of vector-valued measures, i.e., for all Φ ∈ C0

b (Rd,Rd)

lim
n→+∞

∫
Rd

Φ(x) · pn(x) dµn(x) =

∫
Rd

Φ(x) · p(x) dµ(x);

• sup
n∈N

∫
Rd
|pn|2dµn < +∞.

By [3] Theorem 5.4.4. p127, {(µn, pn)}n∈N converges to (µ, p) for dF2 i� {(µn, pn)}n∈N
converges s/w to (µ, p) and satis�es lim supn→+∞

∫
|pn|2 dµn ≤

∫
|p|2 dµ.

The following Lemma gives the correspondence with converges in L2
P:

Lemma 3.37 (Alternative characterization for convergence).

i) Given {(µn, pn)}n∈N and (µ, p) in F2(Rd), the following are equivalent
(1) W2 ((IdRd , pn)]µn, (IdRd , p)]µ)→ 0;
(2) there exists {Xn}n∈N ⊆ L2

P(Ω), X ∈ L2
P(Ω) such that Xn]P = µn for all

n ∈ N, X]P = µ and Xn → X, pn ◦Xn → p ◦X strongly in L2
P.

ii) Let {Xn}n∈N, {ξn}n∈N ⊆ L2
P and X, ξ ∈ L2

P. Suppose that Xn → X strongly
and ξn ⇀ ξ weakly in L2

P. Then, set µn = Xn]P, µ = X]P, prHXn (ξn) =

pn ◦Xn, prHX (ξ) = p◦X, the sequence {(µn, pn)}n∈N s/w converges to (µ, p).

iii) Let {(µn, pn)}n∈N ⊂ F2(Rd) s/w converging to (µ, p).
Then there exist {(µnk , pnk)}k∈N, and {Xnk}k∈N ⊆ L2

P, X, ξ ∈ L2
P satisfying

Xnk]P = µnk , X]P = µ, prHX (ξ) = p ◦ X, with Xnk → X strongly and
pnk ◦Xnk ⇀ ξ weakly in L2

P.

Proof. i) follows from Lemma A.3.
ii) The convergence of the Wasserstein distance in De�nition 3.36 (1) follows easily

from (6). Moreover, by weak convergence of ξn:

sup
n∈N
‖pn‖L2

µn
= sup

n∈N
‖pn ◦Xn‖L2

P
≤ sup

n∈N
‖ξn‖L2

P
< +∞.
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To get the second assertion, note that, setting πn = (X,Xn)]P:
W2(πn, (IdRd , IdRd)]µ) ≤ ‖(X,Xn)− (X,X)‖L2

P
→ 0,

thus for all Φ ∈ C0
b (Rd,Rd), it holds∫

Ω

|Φ(X(ω))− Φ(Xn(ω))|2 dP(ω) =

∫
Rd×Rd

|Φ(x)− Φ(y)|2 dπn(x, y) = 0.

Finally:

lim
n→+∞

∫
Rd
p(x) · Φ(x) dµn(x) = lim

n→+∞

∫
Ω

(pn ◦Xn(ω)) · (Φ ◦Xn(ω)) dP(ω)

= lim
n→+∞

〈ξn,Φ ◦Xn〉L2
P

= 〈ξ,Φ ◦X〉L2
P

=

∫
Rd
p(x) · Φ(x) dµ(x).

iii) By Lemma A.3, there exists Xn, X in L2
P such that Xn → X in L2

P, µn = Xn]P,
µ = X]P. Moreover, since sup

n∈N
‖pn ◦ Xn‖L2

P
= sup

n∈N
‖pn‖L2

µn
< +∞, there exists

{pnk ◦Xnk}k∈N weakly converging in L2
P to some ξ. Then for any regular Φ, we have:

〈ξ,Φ ◦X〉L2
P

= lim
k→+∞

〈pnk ◦Xnk ,Φ ◦X〉L2
P

= lim
k→+∞

∫
Rd
pnk(x) · Φ(x) dµnk(x)

=

∫
Rd
p(x) · Φ(x)dµ(x) = 〈p ◦X,Φ ◦X〉L2

P
.

hence prHX (ξ) = p ◦X. �

Lemma 3.37 provides some consequences on the regularity of the Hamiltonian.

Corollary 3.38. a ) Hamiltonian H is Lipschitz (respectively continuous) w.r.t. to
dF2 on F2(Rd) i� its lift H is Lipschitz (respectively continuous) w.r.t. the strong
topology on F2.
b) If H is s/w continuous in F2(Rd) then H is s/w continuous on F2.

3.4.2. Some insights on the regularity of the extension proposed in [30]. The authors
of [30] propose to consider the following Hamiltonian on L2

P(Ω,Rd):

Ĥ(X, ξ) = H(X]P, prTX]P(p)) with prHX (ξ) = p ◦X,

together the following extended HJB in L2
P(Ω,Rd)

(ĤJ) Ĥ(X,DU(X)) = 0.

The Hamiltonian Ĥ is rearrangement invariant and satis�es:

Ĥ(X, p ◦X) = H(X]P, p)

for all (X, p ◦X) ∈ TF2 := {(X, p ◦X) : p ∈ TX]P(Rd), X]P ∈P2(Rd)}.
The interest of this extension, as emphasized in [30], is that the lift of any solution

of (HJ) in the P2-sense is a solution of (ĤJ) in the L2
P-sense (using ε-subdi�erential

an using the de�nition of P2-viscosity solutions of the present paper.) This result
is a consequence of Proposition 3.15.
Here we want to determine whether Ĥ is regular if H is so. As pointed out

previously, the regularity of Ĥ is crucial in order to apply the L2
P-theory of viscosity

solution.

Lemma 3.39.



39

(i) The map PH : (L2
P, ‖ · ‖L2

P
) × (L2

P, σ) → (F2(Rd), s/w), de�ned by (X, ξ) 7→
(X]P, p) where prHX (ξ) = p◦X, is continuous (σ denotes the weak topology).

(ii) The map PH : (L2
P, ‖·‖L2

P
)×(L2

P, ‖·‖L2
P
)→ (F2(Rd), dF2), de�ned by (X, ξ) 7→

(X]P, p) where prHX (ξ) = p ◦X, is not continuous.

(iii) The map F : (L2
P, ‖ · ‖L2

P
)× (L2

P, ‖ · ‖L2
P
)→ (F2(Rd), dF2), de�ned by (ξ,X) 7→

(prTX]P(Rd)(p), X]P), where prHX (ξ) = p ◦X is not continuous.

Proof. (i) is an immediate consequence of Lemma 3.37.
(ii)-(iii) Let x̄ ∈ Rd and {µn}n∈N ⊆P2(Rd) with µn � L d satisfying µn → δx̄. Let
ν ∈ P2(Rd) be without atoms , and choose πn = (IdRd , Tn)]µn ∈ Πo(µn, ν). Up to
a subsequence, we can assume that πn → π0 = δx̄ ⊗ ν which is the unique element
of Π(δx̄, ν). Then, by A.3, there exist {Xn}n∈N ⊆ L2

P, Y ∈ L2
P, such that

Xn]P = µn, (Xn, Tn ◦Xn)]P = πn, (x̄, Y )]P = π0,

lim
n
‖(Xn, Tn ◦Xn)− (x̄, Y )‖L2

P×L
2
P

= 0.

Then the sequence {(Xn, Tn ◦Xn −Xn)}n∈N strongly converges to (x̄, Y − x̄) but

PH(Xn, Tn ◦Xn −Xn) = F (Xn, Tn ◦Xn −Xn) = (µn, Tn − IdRd)

does not converge s/s to

PH(x̄, Y − x̄) = F (x̄, Y − x̄) =: (δx̄, p).

Indeed, set γ the transport plan de�ned by:∫
ϕ(x, y)dγ(x, y) =

∫
ϕ(x̄, y−x̄)dν(y) =

∫
ϕ(x̄, Y−x̄) dP for any regular ϕ : R2d → R.

Then, recalling that ν has no atom, clearly γ 6= (Id× p)]δx̄ and
lim

n→+∞
W2((Tn − IdRd)]µn, γ) = 0 6= lim

n→+∞
W2((Tn − IdRd)]µn, (Id× p)]δx̄).

�

Remark 3.40.

• According to the previous result, even if H is Lipschitz for the distance dF2 ,
in general the extension H̃ may fail to be continuous for the L2

P × L2
P norm.

• If H is s/w regular, and supposing that the composition with the projection
on Tµ(Rd) preserves this regularity, then H̃ is also s/w regular.
• It is still an open problem to establish if {(µ, p) : p ∈ Tµ(Rd) : µ ∈P2(Rd)}
is s/w or dF2 closed, and the regularity of (µ, p) ∈ F2(Rd) 7→ (µ, prTµ(Rd)(p)).
w.r.t. these types of convergence.

Even assuming H is quite regular, it seems a very di�cult question to �nd, in the
general case, a regular extension giving equivalence of solutions in L2

P and P2(Rd).
Nevertheless, in some cases, this can be done in a quite natural way as shown in the
next example.

3.4.3. Example. As in [17], we consider the following Hamiltonian:

H(µ, p) := inf
u∈U

sup
v∈V

∫
Rd
f(x, u, v) · p(x) dµ(x),

with f : Rd×U × V → Rd where f is bounded, continuous and Lipschitz in its �rst
variable. The sets U and V are compact subsets of some �nite dimensional spaces.
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We also consider the following time dependent HJB (cf [17]) :

(HJt)

{
∂tu+H(µ,Dµu) = 0 on [0, T ]×P2(Rd)

u(T, µ) = G(µ) on P2(Rd)}.
where G is Lipschitz and bounded. We slightly modify the notion of solution:
(pt, pµ) ∈ R× L2

µ(Rd,Rd) ∈ D+
ε u(t, µ) i� pµ ∈ dis+(µ) and for all γ ∈ Π(µ, ν):

u(s, ν)− u(t, µ) ≤
∫
pµ(x) · (y − x) dγ(x, y) + pt(s− t)

− ε(
√

(t− s)2 +W 2
2 (µ0, ν)) + o

(√
(t− s)2 +W 2

2 (µ0, ν)

)
.

A natural L2
P-extension of H is H̃(X, Y ) = inf

u∈U
sup
v∈V

∫
Ω

f(X, u, v) · Y dP. We set:

(H̃J t)

{
∂tU + H̃(X,DU) = 0, on [0, T ]× L2

P(Ω,Rd)}
u(T,X]P) = G(X]P) on L2

P(Ω,Rd)}.
Note that:

(47) H̃(X, Y ) = H̃(X, prHX (Y )).

Then,

• H̃ is rearrangement invariant and continuous (so in L2
P, we can consider

approximate superdi�erentials or subdi�erentials);
• H̃ and H both satisfy the assumptions needed to obtain a comparison prin-
ciple (cf Theorem 2 of [24], Theorem 5.6. of [20] also Lemma 6 in [17]);

• using Proposition 4.5. of [30], if (H̃J t) has a unique solution, it is rearrange-
ment invariant.

From all these considerations, we can deduce that, assuming (H̃J t) has a bounded
uniformly continuous solution, it is unique, rearrangement invariant, and it is also
the unique solution of (HJt). Then, it can easily be seen (using for instance (47),
Proposition 3.15, and Proposition 3 of [17]) that the lift of the value function V of

[17] is the unique solution of (H̃J t) and V is the unique solution of (HJt). In this

case solving (H̃J t) or (HJt) is equivalent.

Appendix A

A.1. Measure Theory. Let X, Y be a complete metric space. Given µ ∈ P(X)
and a Borel family {νx}x∈X ⊆P(X×Y ) of probability measures (i.e., x 7→ νx(B) is
a Borel map for every Borel set B ⊆ X). The product measure µ⊗ νx ∈P(X ×Y )
is de�ned (see e.g. Section 5.3 in [3]) by setting for all f ∈ C0

b (X × Y )

(48)

∫∫
X×Y

f(x, y) d(µ⊗ νx)(x, y) =

∫
X

∫
Y

f(x, y) dνx(y) dµ(x)

Theorem A.1 (Disintegration Theorem, Th 5.3.1 in [3]). Given a measure µ ∈
P(X) and a Borel map r : X → X, there exists a family of probability measures
{µx}x∈X ⊆P(X), uniquely de�ned for r]µ-a.e. x ∈ X, such that µx(X\r−1(x)) = 0
for r]µ-a.e. x ∈ X, and for any Borel map ϕ : X × Y → [0,+∞] we have∫

X
ϕ(z) dµ(z) =

∫
X

[∫
r−1(x)

ϕ(z) dµx(z)

]
d(r]µ)(x).
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We will write µ = (r]µ)⊗ µx. If X = X × Y and r−1(x) ⊆ {x} × Y for all x ∈ X,
we can identify each measure µx ∈P(X × Y ) with a measure on Y .

We recall a characterization of optimal displacement of dis−(µ) ( de�nition 3.3).

Lemma A.2 ([33] lemma 5.2). Let µ ∈ P2(Rd), p ∈ L2
µ(Rd). The map p is an

optimal displacement in dis−(µ) i� there exists ν ∈ P2(Rd) and γ ∈ Πo(µ, ν) such
that p(x) =

∫
Rd y dγ

x(y)− x, where γ = µ⊗ γx is a disintegration of γ.

A.2. Wasserstein space and L2
P. In section 1.2, we have already de�ned the rela-

tion ∼ allowing to identify (P2(Rd),W2) with the quotient (L2
P(Ω,Rd)/ ∼) equipped

with the quotient topology. Let us denote by [X] the equivalence class of X ∈ L2
P,

it is clear that the following map is one to one:

[X] ∈
(
L2
P(Ω, Rd)/ ∼

)
7→ X]P ∈ P2(Rd).

Consider also pr : X 7→ [X] the canonical projection on the quotient space.
It is well-known that if sequence {Xn}n∈N converge to X in L2

P then it converges
also in law i.e W2(Xn]P, X]P)→ 0 (while the converse is false). On the other hand,
we have

Lemma A.3. If a sequence µn ∈ P2(Rd) converge to µ for the distance W2 then for
any εn → 0 there exist {Xn}n∈N, X in L2

P such that X]P = µ and

W2(µn, µ) ≤ ‖Xn −X‖L2
P
≤ W2(µn, µ) + εn.

Proof. Take X such that X]P = µ. There exists Yn, X such that:

W2(µ, µn) = ‖Yn − Zn‖L2
P
, Yn]P = µ, Zn]P = µn.

Then, arguing as in Lemma 1.1, there exists τn one to one such that τn and τ−1
n are

measure preserving such that ‖X − Yn ◦ τn‖L∞P ≤ εn. Then we have:

W2(µ, µn) ≤‖Zn ◦ τn −X‖L2
P

= ‖Zn −X ◦ τ−1
n ‖L2

P
≤ ‖Zn − Yn‖L2

P
+ ‖Yn −X ◦ τ−1

n ‖L2
P

=W2(µ, µn) + ‖Yn ◦ τn −X‖L2
P
≤ W2(µ, µn) + εn.

So with Xn := Zn ◦ τn the proof is complete. �

We recall a useful known result:

Proposition A.4. A subset F of the quotient space is closed if and only if for all
([Xn])n in F and X ∈ L2

P(Ω,Rd),

lim
n→+∞

W2(Xn]P, X]P) = 0⇒ [X] ∈ F.

The previous results then easily imply the useful

Corollary A.5. a) Take U : L2
P(Ω,Rd) → R a rearrangement invariant and

set u(X]P) = U(X). Then

U is continuous for the L2
P- norm ⇔ u is continuous for the distance W2.

b) Let u : P2(Rd)→ R and U : L2
P(Ω,Rd)→ R its lift. Then

U is continuous for the L2
P - norm ⇔ u is continuous for the distance W2.

c) Let u : P2(Rd)→ R and U : L2
P(Ω,Rd)→ R its lift. Let k > 0, then:

U is k-Lipschitz ⇔ u is k-Lipschitz.
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Now we show a very close relationship between geodesics in the Wasserstein space
and goedesics in the space L2

P(Ω,Rd). Recall that t ∈ [0, 1] → µt ∈ P2(Rd) is a
constant speed geodesic if

W2(µt, µs) = (t− s)W2(µt, µ0) ∀ 0 ≤ s ≤ t ≤ 1.

Proposition A.6. Let {µt}t∈[0,1] be a constant speed geodesic and (T0, T2) two ran-
dom variables of L2

P(Ω,Rd) such that γ := (T0, T1)]P is an optimal transport plan
from µ0 to µ1. Then:

µt = [(1− t)T0 + tT1]]P, ∀ t ∈ [0, 1]

W2(µs, µt) = ‖Tt ◦ S − Ts ◦ S‖L2
P
, ∀ s, t ∈ [0, 1]

where S is any map in L2
P such that S]P = µ0. In particular, (Tt ◦ S)t∈[0,1] is a

geodesic in L2
P(Ω,Rd).

Proof. By Lemma 7.2.1. p158 of [3], denoting by π0, π1 : Rd × Rd → Rd the projec-
tions on the �rst and second variable, it holds: µt = [(1 − t)π0 + tπ1]]γ. Then as
γ = (T0, T1)]P, we get the �rst equality. To prove the second equality just notice:

W2(µs, µt) = |t− s|W2(µ0, µ1) = |t− s|‖T1 − T0‖L2
P
.

�

We also recall a result concerning the existence and representation of solution of
the multiagent control system

Theorem A.7 (Theorem 3.6 in [33]). Consider a Lipschitz continuous set valued
map F : R+ ×P2(Rd) × Rd ⇒ Rd with compact and convex images. Then for
all µ ∈ P2(Rd) there exists µ = {µt}t∈[0,T ] ⊆ P2(Rd) ∈ A F

[0,T ](µ) an admissible

trajectory driven by F . Moreover, there exists η ∈P(Rd × ΓT ) such that
(1) µt = et]η for all t ∈ [0, T ];
(2) for η-a.e. (x, γ) ∈ Rd × ΓT , we have

γ(0) = x and γ̇(t) ∈ F (et]η, γ(t)), for a.e. t ∈ [0, T ].

Conversely, if η ∈ P(Rd × ΓT ) satis�es (2) above, then µ := {µt := et]η}t∈[0,T ] ∈
A F

[0,T ](µ) is an admissible trajectory driven by F , with ν = {vtµt}t∈[0,T ] and for a.e.

t ∈ [0, T ] and µt-a.e. y ∈ Rd

vt(y) =

∫
e−1
t (y)

γ̇(t) dηyt (x, γ),

and ηyt is given by the disintegration η = µt ⊗ ηyt .

A.3. Technical proofs.

Proof. (of Lemma 2.4) Given {Yn(·)}n∈N ⊆ L2
P(Ω) and Y (·) ∈ L2

P(Ω) such that Yn →
Y in L2

P and Yn(·) ∈ Gθ(t,X(·)), we can extract a subsequence {Ynk(·)}k∈N satisfying
Ynk(ω)→ Y (ω) for a.e. ω ∈ Ω, and therefore we conclude that Y (ω) ∈ F (t, θt, X(ω))
for a.e. ω ∈ Ω by the closedness of F (t, θt, X(ω)). Thus Y (·) ∈ Gθ(t,X(·)).
Given t1 ∈ I and X1(·) ∈ L2

P(Ω), consider the set-valued map Gθt1,X1
: Ω ⇒ Rd

de�ned as Gθt1,X1
(ω) = F (t1, θt1 , X1(ω)).
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Since the map x 7→ F (t1, θt1 , x) is continuous with compact convex nonempty
images, there exists a countable family of continuous map {fn}n∈N such that fn(x) ∈
F (t1, θt1 , x) and F (t1, θt1 , x) =

⋃
n∈N fn(x) for all x ∈ Rd. In particular, we have that

Gθt1,X1
(ω) = F (t1, θt1 , X1(ω)) =

⋃
n∈N

fn(X1(ω)).

Since fn ◦ X1(·) are measurable, Gθt1,X1
is a measurable. Given t2 ∈ I, X2(·) ∈ L2

P
and Y2(·) ∈ Gθ(t2, X2(·)). By Corollary 8.2.13 in [5], since Y2(·) is measurable there
exists a measurable selection Y1(·) of Gθt1,X1

such that

|Y2(ω)− Y1(ω)| = dGθt1,X1
(ω)(Y2(ω)) = dF (t1,θt1 ,X1(ω))(Y2(ω)).

So by the Lipschitz continuity of F we get easily

‖Y1 − Y2‖L2
P
≤ LipF · (1 + Lipθ) · (|t1 − t2|+ ‖X1 −X2‖L2

P
).

Interchanging X1 and X2, we have LipGθ ≤ LipF · (1 + Lipθ). �

Proof. (of Lemma 2.6) According to [28] and [39] it is enough to show that every
point of S has a fundamental system of open convex neighborhoods and that the
convex structure on S is compatible in a suitable sense with the topology induced
on S by dC0 , more precisely that the function ψ : C0(I; P2(Rd))×C0(I; P2(Rd))×
[0, 1]→ C0(I; P2(Rd)) de�ned by ψ(θ(1),θ(2), λ) = λθ(1)+(1−λ)θ(2) is continuous.
Intersecting each element of the dC0-open balls of positive rational radius around
θ ∈ S provides a fundamental system of open convex neighborhoods of θ w.r.t. the
topology induced by dC0 on S .
For i = 0, 1, let θi,n = {θi,nt }t∈I be a sequence dC0-converging to θi = {θit}i∈I , and
{λn}n∈N ⊆ [0, 1] converging to λ. Let

θλ :={θλt }t∈I , where θλt = λθ0
t + (1− λ)θ1

t ,

θλn,n :={θλn,nt }t∈I , where θλn,nt := λnθ
0,n
t + (1− λn)θ1,n

t ,

and, chosen πi,n ∈ Πo(θ
i,n
t , θi,ns ), i = 0, 1, for all n ∈ N, t, s ∈ I, set

πnt→s = λnπ
0,n + (1− λn)π1,n ∈ Π(θλn,nt , θλn,ns ).

We show that {θλn,n}n∈N are equibounded. Since {θi,n}n∈N are dC0-converging for
i = 0, 1, in particular they are bounded therefore, considering for instance the
constant curve ξ = {ξt}t∈I with ξt ≡ δ0, there exists R > 0 such that dC0(θi,n, ξ) ≤
R, i = 1, 2. From the convexity of the dC0-ball we have that dC0(θλn,n, ξ) ≤ R.

We show that {θλn,n}n∈N are equicontinuous. It holds

W 2
2 (θλn,nt ,θλn,ns ) ≤

∫∫
Rd×Rd

|x− y|2 dπnt→s(x, y)

=λnW
2
2 (θ0,n

t , θ0,n
s ) + (1− λn)W 2

2 (θ1,n
t , θ1,n

s ) ≤ W 2
2 (θ0,n

t , θ0,n
s ) +W 2

2 (θ1,n
t , θ1,n

s ).

Since for i = 0, 1 the set {θi,n}n∈N ∪ {θi} in dC0-compact, in particular it is
equicontinuous, therefore there exists a continuous increasing ωi : [0,+∞[→ [0,+∞[
satisfying ωi(0) = 0 and W 2

2 (θi,nt , θi,ns ) ≤ ωi(|t − s|) for all t, s ∈ I, n ∈ N, i = 0, 1.

Therefore {θλn,n}n∈N are equicontinuous with modulus ω(·) :=
√
ω2

0(·) + ω2
1(·).
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We show that {θλn,n}n∈N pointwise converges to θλ. Indeed, given any ϕ ∈
C0
b (Rd), t ∈ I, we have∫

Rd
ϕ(x) dθλn,nt (x) = λn

∫
Rd
ϕ(x) dθ0,n

t (x) + (1− λn)

∫
Rd
ϕ(x) dθ1,n

t (x),

and by passing to the limit on n and recalling that |λn| ≤ 1 and that the convergence
in d0 implies that θi,nt converges in W2 and narrowly to θit for i = 0, 1, we have that

lim
n→+∞

∫
Rd
ϕ(x) dθλn,nt (x) =

∫
Rd
ϕ(x) dθλt (x),

and so we have narrow pointwise convergence. We prove the uniform integrability
of the second order moments, indeed∫
Rd\B(0,R)

|x|2 dθλn,nt (x) =λn

∫
Rd\B(0,R)

|x|2 dθ0,n
t (x) + (1− λn)

∫
Rd\B(0,R)

|x|2 dθ1,n
t (x),

≤
∫
Rd\B(0,R)

|x|2 dθ0,n
t (x) +

∫
Rd\B(0,R)

|x|2 dθ1,n
t (x),

and uniform integrability of the second order moments follows from the uniform in-
tegrability of the second moments for {θi,nt }n∈N, which areW2-converging sequences.
By Ascoli-Arzela theorem we conclude that dC0(θλn,n,θλ)→ 0, thus Ψ is contin-

uous and so the assumptions of [28] and [39] are satis�ed. �

References

[1] Albi, G. ; Bellomo, N. ; Fermo, L. ; Ha, S.-Y. ; Kim, J. ; Pareschi, L. ; Poyato, D. ; Soler, J. Ve-
hicular tra�c, crowds, and swarms: from kinetic theory and multiscale methods to applications

and research perspectives Math. Models Methods Appl. Sci. 29 (2019), no. 10, 1901�2005.
[2] A. Alfonsi, B. Jourdain, Squared quadratic Wasserstein distance: optimal couplings and Lions

di�erentiability. ESAIM Probab. Stat. 24 (2020), 703�717.
[3] L. Ambrosio, N. Gigli, G. Savaré, Gradient �ows in metric spaces and in the space of proba-

bility measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, 2008.
[4] L. Ambrosio, W. Gangbo, Hamiltonian ODEs in the Wasserstein space of probability measures,

Comm. Pure Appl. Math., 61, (2008), 1, 18�53, doi=10.1002/cpa.20188.
[5] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, (Birkhäuser, 1990).
[6] J.-P. Aubin, Viability Theory , (Birkhäuser, 1991).
[7] A.Bensoussan, Alain; J. Frehse; P. Yam, Mean �eld games and mean �eld type control theory.

SpringerBriefs in Mathematics. Springer, New York, 2013
[8] Bonnet, Benoît; Frankowska, Hélène; Semiconcavity and Sensitivity Analysis in Mean-Field

Optimal Control and Applications, preprint (2021), https://arxiv.org/pdf/2108.02609.pdf
[9] Bonnet, Benoît; Frankowska, Hélène; On the Properties of the Value Function As-

sociated to a Mean-Field Optimal Control Problem of Bolza Type, preprint (2021),
https://arxiv.org/abs/2107.13912

[10] Bonnet, Benoît; Frankowska, Hélène; Necessary Optimality Conditions for Optimal Control
Problems in Wasserstein Spaces, preprint (2021), https://arxiv.org/abs/2101.10668

[11] Bonnet, Benoît; Rossi, Francesco; Intrinsic Lipschitz regularity of mean-�eld optimal controls.
SIAM J. Control Optim. 59 (2021), no. 3, 2011�2046.

[12] Bonnet, Benoît; Frankowska, Hélène; Di�erential inclusions in Wasserstein spaces: the Cauchy-
Lipschitz framework. J. Di�erential Equations 271 (2021), 594�637.

[13] Bonnet, Benoît; Frankowska, Hélène; Mean-Field Optimal Control of Continuity Equations
and Di�erential Inclusions, preprint (2020), https://arxiv.org/abs/2009.06467

[14] Bonnet, Benoît; A Pontryagin maximum principle in Wasserstein spaces for constrained opti-
mal control problems. ESAIM Control Optim. Calc. Var. 25 (2019), Paper No. 52, 38 pp.

[15] Bonnet, Benoît; Rossi, Francesco; The Pontryagin maximum principle in the Wasserstein
space. Calc. Var. Partial Di�erential Equations 58 (2019), no. 1, Paper No. 11, 36 pp.



45

[16] Cannarsa, P.; Sinestrari, C. Semiconcave functions, Hamilton-Jacobi equations, and optimal
control. Birkhäuser,2004

[17] P. Cardaliaguet and M. Quincampoix, Deterministic di�erential games under probability
knowledge of initial condition, Int. Game Theory Rev. (2008) 10(1):1-16.

[18] P. Cardaliaguet, Di�erential games with asymmetric information, SIAM J. Control Optim.,
46 (2007), 816�838.

[19] P. Cardaliaguet, Notes on Mean Field Games, Unpublished notes (2013).
[20] P. Cardaliaguet, C.Jimenez, M. Quincampoix, Pure and random strategies in di�erential game

with incomplete informations. J. Dyn. Games 1 (2014), no. 3, 363�375.
[21] L. Caravenna and S. Daneri, The disintegration of the Lebesgue measure on the faces of a

convex function, J. Funct. Anal. 258 (2010), 3604-3661.
[22] R. Carmona, F. Delarue, Probabilistic theory of mean �eld games with applications. I. & II

in: Probability Theory and Stochastic Modelling, vol. 83 & 84, Springer, 2018.
[23] G. Cavagnari, A. Marigonda, M. Quincampoix, Compatibility of State Constraints and Dy-

namics for Multiagent Control Systems, J. Evol. Equ. (2021).
[24] M. G. Crandall, P. L. Lions, Hamilton-Jacobi equations in in�nite dimensions. I. Uniqueness

of viscosity solutions. J. Funct. Anal. 62 (1985), no. 3, 379�396.
[25] M. G. Crandall, P. L. Lions, Hamilton-Jacobi equations in in�nite dimensions. II. Existence

of viscosity solutions. J. Funct. Anal. 65 (1986), no. 3, 368�405.
[26] M.Fornasier, S. Lisini, C. Orrieri, G. Savaré, Mean-�eld optimal control as gamma-limit of

�nite agent controls, European J. Appl. Math., 30, 6, pp 1153�1186, 2019.
[27] H. Frankowska, A priori estimates for operational di�erential inclusions, J. Di�erential Equa-

tions 84 (1990), no. 1, 100�128.
[28] R.E. Jamison, R.C. O'Brien, P.D. Taylor, On embedding a compact convex set into a locally

convex topological vector space. Paci�c J. Math. 64 (1976), no. 1, 193�205.
[29] M. Huang, R. Malhamé, P.E. Caines, Large population stochastic dynamic games: closed-loop

McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6
(2006), no. 3, 221�251.

[30] W. Gangbo, A. Tudorascu, On di�erentiability in the Wasserstein space and well-posedness for

Hamilton-Jacobi equations, Journal de Mathématiques Pures et Appliquées, 125, p. 119�174,
(2019).

[31] C.Jimenez, M. Quincampoix, Hamilton Jacobi Isaacs equations for di�erential games with
asymmetric information on probabilistic initial condition. J. Math. Anal. Appl. 457 (2018),
no. 2, 1422�1451.

[32] C.Jimenez, A zero sum di�erential game with correlated informations on the initial position.
A case with a continuum of initial positions, J. of Dynamics & Games, 2021, 8(3): 233-266.

[33] C. Jimenez, A. Marigonda, M. Quincampoix, Optimal Control of Multiagent Systems in the

Wasserstein Space, Calculus of Variations and Partial Di�erential Equations. 59 (2020), no.
2, Paper No. 58, 45 pp.

[34] J.-M. Lasry, P.-L. Lions, Mean Field Games, Jpn. J. Math. 2 (2007), no. 1, 229�260.
[35] A. Marigonda, M. Quincampoix, Mayer control problem with probabilistic uncertainty on ini-

tial positions, J. Di�erential Equations, 264, 2018, 5, p. 3212�3252.
[36] V. Pata, Fixed point theorems and applications. Unitext, 116. La Matematica per il 3+2.

Springer, Cham, 2019.
[37] B. Piccoli, F. Rossi, E. Trélat, Control to �ocking of the kinetic Cucker-Smale model, SIAM

J. Math. Anal. 47 (2015), no. 6, 4685�4719.
[38] A. Pratelli, On the equality between Monge's in�mum and Kantorovich's minimum in optimal

mass transportation, Ann. Inst. H. Poincaré Probab. Statist., 1 (2007), 1�13.
[39] J. W. Roberts, The embedding of compact convex sets in locally convex spaces. Canadian J.

Math. 30 (1978), no. 3, 449�454.
[40] F. Santambrogio, "Optimal transport for applied mathematicians," Calculus of variations,

PDEs, and modeling. Progress in Nonlinear Di�erential Equations and their Applications, 87.
Birkhäuser/Springer, Cham, 2015.

[41] C. Villani, Topics in optimal transportation, Graduate studies in Mathematics, 58, AMS, 2003.
[42] C. Villani, Optimal transport. Old and new. 338. Springer-Verlag, Berlin, 2009.



46 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Chloé Jimenez: Laboratoire de Mathématiques de Bretagne Atlantique,

Univ Brest, CNRS UMR 6205,

6, avenue Victor Le Gorgeu,

29200 Brest , France.

Email address: chloe.jimenez@univ-brest.fr

Antonio Marigonda: Department of Computer Science,

University of Verona

Strada Le Grazie 15,

I-37134 Verona, Italy.

Email address: antonio.marigonda@univr.it

Marc Quincampoix: Laboratoire de Mathématiques de Bretagne Atlantique,

Univ Brest, CNRS UMR 6205,

6, avenue Victor Le Gorgeu, ,

29200 Brest, France.

Email address: marc.quincampoix@univ-brest.fr


