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ABSTRACT. Several optimal control problems in R, like systems with uncertainty,
control of flock dynamics, or control of multiagent systems, can be naturally for-
mulated in the space of probability measures in R%. This leads to the study of dy-
namics and viscosity solutions to the Hamilton-Jacobi-Bellman equation satisfied
by the value functions of those control problems, both stated in the Wasserstein
space of probability measures. Since this space can be also viewed as the set of
the laws of random variables in a suitable L? space, the main aim of the paper is
to study such control systems in the Wasserstein space and to investigate the re-
lations between dynamical systems in Wasserstein space and their representations
by dynamical systems in L2, both from the points of view of trajectories and of
(first order) Hamilton-Jacobi-Bellman equations.
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INTRODUCTION

During the last years, there has been an increasing interest in the control of the
so-called multiagent systems. Such systems modelize dynamics where the number
of interacting agents is so huge that only a statistical description is available. Under
an assumption of indistinguishability of the agents, instead of studying the evolution
of each invidual agent, it is preferable to consider the macroscopic evolution of a
probability measure describing the fraction of the total amount of agents belonging
to every set of the state space at each time. Such dynamics of measures naturally
appear for instance in control systems or differential games with uncertainty [35],
[17], |18], [20], [31], [32], in mean fields games |7], |34], [19], 22|, [26], |29], in flock
dynamics (see e.g. [37]), in pedestrian and vehicles dynamics (see e.g. [1] and
references therein for an overview of the models).

We consider a multiagent controlled dynamical system at two levels

e The microscopic scale. Every agent, whose instantaneous position at time t is
x(t) € R?, can choose his velocity in a set which depends on its own position and on
a probability measure p, on R? which describes the current distribution of all the
other agents. For every (Borel) subset A C RY, 1i;(A) represents the fraction of the
total number of agents that are present in A at time ¢. In particular, the trajectory
x(-) satisfies an equation of the form

(t) = f(t,x(t),u(t), u) for almost every t € [0, 77,
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where f:[0,7] x R x U x P5(R?) — R?, u(-) : [0,T] — U is the control function,
U is a subset of some finite dimensional space, and &2,(R?) denotes the set of Borel
probability measures on R? with finite second order moment.

Notice that the case where f is independent on the p-variable reduces to classical
control dynamics. It is worth pointing out that in this model the indistinguishability
assumption is encoded in the fact that, as expressed by the dynamics, each agent
at position x(t) does not interact individually with every other agents, which are
indistinguable for him, but he interacts only with the total crowd of all the agents
as an aggregate represented by the measure p;. Throughout the paper we do not
need an explicit form of the control, so we introduce the set-valued map F(t, u, ) :=
{(f(t,z,u,n), uw € U}, and we consider the microscopic dynamic satisfied by the
trajectory x(-)

(1) x(t) € F(t, g, x(t)) for almost every t.

e The macroscopic scale. The probability measure ¢ +— p; evolves according the
so called continuity equation

(2) Oty + div(vepe) = 0, in the sense of distributions,

which expresses that the total mass of the measure y; is preserved during the evo-
lution (so the curve ¢ — p; remains in the space of probability measures) and
v(-) : R = R? is a time dependent vector field. The above continuity equation
must be understood in the sense of distributions.

e The [link between the macroscopic and the microscopic evolution is given by the
vector field vy(+) which has to satisfy

(3) ve(z) € F(t, py, x) for py-almost every = € R? and for almost every t.

which is constructed by taking the weighted average of the velocies of all the agent
concurring in time ¢ at position x. Roughly speaking, this relation means that every
point of the support of macroscopic variable y; has to evolves according with the
microscopic scale equation. A different approach to dynamics in Wasserstein space
is discussed in Remark 2.7.

Together with the above dynamical system, we consider an optimization problem
of Bolza type, i.e., the minimization of a functional

(4) / () dt + % (ur) € RU {400},

on trajectories satisfying the above dynamical system with an initial datum pu, = p.
It is natural to associate to this optimal control problem a value function obeying a
dynamic programming principle, and one can expect to characterize it as the unique
solution of a first-order Hamilton-Jacobi-Bellman equation (HJB in short) in the
space of probability measures. Of course, since the value function is not smooth in
general, a convenient notion of viscosity solution is needed to study this problem.

The study of a first order partial differential equation like HJB on the space of
probability measures, which is not a normed space, is not an easy task. We focus
now on two main ways. A direct approach requires to define suitable derivatives and
sub/super-differentials for real value functions defined on the Wasserstein space; we
refer the reader to various concepts in [3|, [17], [4], [30], [33], [35]. Another possi-
bility, commonly used for instance in the mean field theory, relies on the fact that
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any probability measure u € Z5(R?) could be represented as the law of a random
variable X € L2(Q,RY) defined on some atomless probability space (2, 8(Q),P)
equipped with its Borel o-field (or equivalently p is the image measure of the prob-
ability P by the function X : Q +— R we will denote this by X#P = p). This allows
to study derivatives and sub/super-differential for real valued functions defined on
the Hilbert space L2(£2,R%), because a function u : P5(R?) — R is immediately
"ifted" to a function U : L(2,R?) — R defined by U(X) := u(X#P). We refer the
reader to [19], [22], [30], [34]. By construction, U(X) depends only depends only on
the law of X. A general function from L3(2,R?) to R having this property is called
rearrangement invariant.

In the framework of multiagent control problems, the above "representation" of
a measure of Zy(RY) by random variables in L2(€, R?) leads to several questions.
An immediate observation lies in the fact that the representation of the measure
by a L? function is not unique: even if we fix from the beginning the probability
space (Q, B(Q2),P), the same measure has multiple representatives in L3(€2). One
important contribution of the mean field approach lies on the fact that when the
lift U is smooth enough, the derivative at X of U depends only of the law XgP of
random variable X (cf e.g [19], [22]). However, the general validity of an analogous
result for sub/super-subdifferential of nonsmooth function is not yet fully clear.
Consequently, the comparison between viscosity solutions defined on %, (R?) and
viscosity solutions defined on L2(Q2, R?) appears to be not straightforward. Another
important question concerns the properties of the absolutely continuous curves in
the two spaces: can any absolutely continuous trajectory in the Wasserstein space
be represented by an absolutely continuous curves in L2(Q, R%)? Conversely, do the
laws of any absolutely continuous curve of random variables in L2(€, R?) provide an
absolutely continuous trajectory in the Wasserstein space? Is it possible to establish
quantitative estimates on the distance between a given absolutely continuous curve
in Z,(R?) and the set of admissible trajectories of the dynamics in 2 (R%)?

The goal of the present paper is to investigate the previous questions.

Before going further, we give an academic example of a multiagent evolution in
the Wasserstein space which is not easily represented by an evolution in the L2
space. We define its microscopic dynamic as

(5) t(t) € F(p) := B(0,¢(u)) for almost every t,
where ¢ : P5(R?) — [0, +o00| is given by
o(p) =110 < ﬁ <1 and ¢(u) = 0 otherwise,

and 27 denotes the density - when it exists - of the measure p with respect to the
Lebesgue measure .24 on RY, and § > 0 is a fixed real number. The multi agent sys-
tem is described by the above microscopic dynamics together with the macroscopic
one (2) and the coupling (3). This could modelize, for instance, dynamics which are
"frozen" as soon as the "density" becomes too big or not big enough, preventing

the point to move in these cases. Clearly this kind of dynamics cannot easily be
represented by a dynamics in L2 as we will discuss later on.

From the point of view of trajectories in the Wasserstein and in the L2 spaces,
our first main result says that an absolutely continuous curve in the Wasserstein
space provides an absolutely continuous curve in L2 and conversely. We prove also
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that the L2 representation obeys an ordinary differential equation in L related to
the vector field v appearing in (2). In the framework of the multiagent control
problems, the last one is a result of independent interest. However, given the above
curve satisfying the above ordinary differential equation in L%, if we take another
curve in L2 which points has the same law for any time, the second curve does
not satisfy in general the differential equation. This somehow explain the limits
of representing trajectories of a dynamical system in the Wasserstein space by a
dynamical system in L32.

From the point of view of optimal control of the multiagent system, an impor-
tant issue is to prove a minimal regularity result (Lipschitz continuity) for the value
function. This is usually done by a Gronwall-Filippov result. We provide a result of
Filippov type, showing that any absolutely continuous curve ¢ +— p; in the Wasser-
stein space, can be approached by a trajectory of the multiagent system with a
suitable quantitative estimate, by adapting a similar result holding for curves in the
L3 space.

Concerning HJB equations, the value function associated to the multiagent system
is expected to satisfy an HJB in a viscosity sense. As usual in control theory, a proper
definition of viscosity solution must allow to prove a comparison theorem, and,
consequently, to characterize the value function as the unique solution of an HJB
equation. Indeed, the relevance of the notion of solution to an HJB lies precisely
in the possibility of obtaining a comparison theorem. There are several available
notions of viscosity solution defined directly in the Wasserstein space [3], [4], [17],
[33], [35]. Others approaches consider a concept of viscosity solution through the
representation in a L2 space [19], [30]: the nice structure of L2 allows to use the
viscosity theory in Banach spaces [24], [25], where a definition of viscosity solution
with smooth test functions is available. Both in Wasserstein and L% spaces, some
comparison theorems for HJB equations have been obtained in the quoted literature
(an analysis of these comparison theorems is out of the aims of the present paper).

In analogy with the classical theory, given u : 225(R%) — R and £ > 0 it is possible
to introduce a concept of e-super/subtangent test function to u(-) at py € P5(RY):
namely, v : P(RY) — R is an e-supertangent to u(-) at po if v is continuous,
differentiable at pg, v(uo) = u(po) and u(v) < v(v) + eWa(v, po) in a neighborhood
of 119 (an analogous definition holds for e-subtangent).

Applying the same idea to the lifted version U(-) of wu(:), we can consider e-
super /subtangent test functions V(-) to U(+) at Xy € L2(Q) with XofP = po. Of
course, a natural requirement for the consistency of the construction is to ask that
V(+) is rearrangement invariant.

As usual, the notion of e-sub/supertangency can be used as an alternative way
to give a notion of viscosity solution for HJB equations, in & (R%) and in L2(2),
respectively. Thus it is a natural question to compare this notion with the other
ones defined by using sub /superdifferentials.

Our second main results says that, under minimal assumptions of the Hamiltonian,
the first notion of viscosity sub/super solutions provided by using e-sub/supertangent
in 2,(R?), the second one provided by lifting HJB and using smooth rearrangement
invariant e-sub /supertest functions in L3(f2), and the third one provided in [35] and
[33] using a notion of e-intrinsic sub/superdifferential, are all equivalent.
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Throughout the paper we make the following simplification : although the value
function associated with (4) and the dynamics (1), (2), (3) clearly depends both
on the initial time s and the initial measure p, we consider only the dependance
in the p variable. We will proceed as if the value would depend on p only. This
makes many expositions simpler and also the HJB equation be considered as if it
was stationary.

The paper is organized as follows: in Section 1 we give some notation and back-
ground. Section 2 is devoted to trajectories of the multiagent control problem in the
Wasserstein space and their L2 counterpart. Section 3 concerns viscosity solution
to the HJB equations. In the last section we discuss the relevance to study a HJB
equation either in W2 or in L?. We postponed to Appendix A some basic results
and technical proofs to maintain the flow of the paper

1. PRELIMINARIES

1.1. Definitions and Notations. We will use the following notation.

B(z,r) (or B,(x)) the open ball of radius 7 of a metric space (X, dx);
K the closure of a subset K of a topological space X;
Ik(+) the indicator function of K,
ie. Ig(x)=0ifx e K, Ix(z) =+ if z ¢ K
Xk () the characteristic function of K,
ie. xg(x)=1lifzx e K, xg(z)=0if x ¢ K;
dg(+) the distance function from a subset K of a metric space (X, d),

ie. di(x) :=inf{d(z,y) : y € K};
CY(X;Y)  the set of continuous bounded function from a Banach space X to Y,
endowed with || f||co = sup |f(x)| (if Y =R, Y will be omitted);
rzeX

Co(X;Y)  the set of compactly supported functions of Cp(X;Y),
with the topology induced by CP(X;Y);
C®(X:;Y) the space of smooth real functions with compact support in R%;

Iy the set of continuous curves from a real interval I to R
I'r the set of continuous curves from [0, T] to R?;
e; the evaluation operator e; : R? x 'y
defined by e (z,y) = ~(¢t) for all t € I;
2(X) the set of Borel probability measures on a Banach space X,

endowed with the weak* topology induced from CP(X);
A (R%RY)  the set of vector-valued Borel measures on R? with values in R,
endowed with the weak* topology induced from CY(R%; R%);

4 the total variation of a measure v € . (R%R%);

< the absolutely continuity relation between measures

mo () the second moment of a probability measure y € Z(X);

T the push-forward of the measure p by the Borel map 7;

Rt the product measure of p € Z(X) with the Borel family of measures
(7" }eex C 2(Y) (see (43));

pr; the i-th projection map pr;(x1,...,xN) = 24;

II(p, v) the set of admissible transport plans from u to v;

Iy (u,v) the set of optimal transport plans from p to v;

Wo(u,v) the 2-Wasserstein distance between p and v;

Py(X) the subset of the elements &7(X) with finite second moment,
endowed with the 2-Wasserstein distance;

z1 the Lebesgue measure on R%;
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the Radon-Nikodym derivative of the measure v w.r.t. the measure y;

A

ip(f) the Lipschitz constant of a function f.
Given a metric space (X, dx), an interval [ of R, p > 1, we define
ACP(; X) = {'y : I — X : there exists m(-) € LP(I) such that for all s,t € [

with s < ¢, it holds dx(y(t),v(s)) < /tm(r) dT}.

Given v € ACP(I; X)), the metric derivative of v at 7 is defined as

41(r) = Tim %X (v (T + 1), y(7))
" hs0 7| )

By Lebesgue Theorem, this limit exists at a.e. 7 € I. Moreover, |¥|(-) is the smallest
function m(-) such that the inequality

dx (1(1).1(s)) < / m(r) dr

holds for every s,t € I, s <t (see [3] for further properties of metric derivative).

Given Banach spaces X,Y, we denote by Z2(X) the set of Borel probability
measures on X endowed with the weak* topology induced by the duality with the
space CP(X) of the real-valued continuous bounded functions on X with the uniform
convergence norm. The second moment of p € Z(X) is denoted by mo(u) =

/ 2|5 di(x), and we set Po(X) = {u € P(X) : my(u) < +oo}. For any Borel
be

map r: X — Y and p € Z(X), we define the push forward measure riu € 2(Y) by
setting riu(B) = u(r~*(B)) for any Borel set B of Y. The Wasserstein space Z,(R?)
is equipped with the quadratic Wasserstein distance defined by for pu, v € 22, (R9)

1/2
Waer) = min & ([ =P droy)
weIl(p,v) Rd x R4

where II(p,v) = {7 € Z(R? x R?Y), pryfimr = pu, profm = v} is the set of transport
plans between p and v. We also denote by Il,(u,v) the set of optimal transport
plans between 1 and v, namely, the set of m € II(u, v) achieving the mininimum in
the above definition of Wy (1, v). Recall that 22, (R?) endowed with the W)-distance
is a complete separable metric space.

1.2. Basic facts on the Wasserstein space and an L? representation. We
fix some probability space (€2, (Q2),P) with Q a Polish (metrizable, complete, sep-
arable) space, H(2) its Borel o-field, and P a probability measure with no atom.
We denote by L2(Q,R?) (or L% in short) the space of square integrable functions
X : Q +— R? on the probability space (Q, %(Q),P).

We recall that for any p in P5(R?), there exists X € L3(, R?) such that X{P = p
(cf e.g. [38]) and

(6) Wap v) = min {|X = V| : XtP=pi, YEP = v},
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The space (P5(R?), Wy) can be identified with the quotient (L3(2, R?)/ ~) equipped
with the quotient topology for the following equivalence relationship (cf appendix):
X ~Y & XtP = YiP.
We will make a constant use of the following

Lemma 1.1. (Lemma 5.23 in [22]) Let X,Y € L3(Q,RY) such that XiP = YHP.
Then, for any € > 0, there exists T : {0 — ) one to one satisfying:
(i) 7 and 771 are measure-preserving that is TP = 7P = P,
(i) [Y = X o 7|1z (ore) < €.
To a function u : P, (R?) — R we associate its lift on L2 given by [34], [19], [22]
U:X € L3(Q,RY) — u(XtP) € R.

By Corollary A.5, w is continuous if and only if U is continuous. Moreover U
is rearrangement invariant or law dependent. More precisely an application V' :
L3(Q,R?) — R is said to be rearrangement invariant if

for all (X,Y) € (L3(Q,R))?, it holds: XHP = VP = V(X) = V(Y).
1.3. About curves in the Wasserstein space. We give some basic statements

related to the dynamics of the macroscopic evolution.
Given a Borel vector field (¢, z) — v;(z) € R? such that

© [ [ 1) o) at < voc

a continuous curve g : [0,T] — P5(R?) is a solution to the continuity equation
(8) Oy + div(vepes) = 0 in REx]0, T

if an only if it holds in the sense of distributions on [0, 7] x R? namely

/0 /Rd (Oup(t, ) +v(x) - V(b)) duy(z) dt =0, Ve € C(R*x]0,TY)),

or equivalently in the sense of distributions in [0, 7] (see (8.1.3) in [3])
d
G | e du) = [ (Vele) v duu(a), for al o € ClR)
Rd Rd

According to Theorem 8.3.1in [3], a continuous p = {4 }reor) € AC?([0,T7]; P2(R?))
if and only if there exists a Borel vector field v = v;(z) satisfying (7) such that (8)
holds.

We first recall the following useful result concerning solutions to the continuity
equation (2) and their equivalent representation by a probability measure on R? x 'y
where T'r denotes the set of continuous functions from [0, 7] to R<.

Proposition 1.2. [Superposition Principle cf. Theorem 8.2.1 of |3|] Consider yu; :
[0, T] = P5(R?) a continuous solution of (8) for a Borel vector field (t,z) — vy(x)
satisfying (7). Then, there exists a probability measure n on R? x T'r such that:

(i) n is concentrated on the set of pairs (z,v) € R* x WL2([0,T],RY) such that:
9) A(t) = vi(y(t)) for a.e. t €]0,T[ with v(0) = .
(ii) we have puy = eifin for all t € [0,T) with e; defined by
er: (z,7) € R x I'p = (1) € R
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Conversely if some n € P(R? x ') satisfies i) with

T
/ / (I diy(ars 7)dt < +oo,
0 JRIxTp

then t — p; := e fin solves the continuity equation (8) for some v satisfying (7).

1.4. Assumptions on the multiagent control system. Throughout the paper
we suppose that the set valued map F : Rt x Z%(R?) x R? = R? is Lipschitz
continuous, with compact and convex images.

Now we give the precise definition of a trajectory of the multiagent system driven
by F on the time interval I = [a, b]

Definition 1.3. [33] A continuous curve pu = {u;}er € P(R?), is an admissible
trajectory driven by F on [ if there exists v = {v; ey C . (R%R?) such that

o || < forae. t el
o v (x) := &(x) € F(t,py,z) for a.e. t € I and p-a.e. x € RY moreover the
e

map (¢, x) — v(x) is Borel measurable;
e O,y + divy, = 0 in the sense of distributions on I x R%.

From the definition, it follows that p € AC?(I, 225(R%)), i.e., there exists m €
L*(I;[0,+00[) such that

t
W, ps) < / m(7)dr, forall t,s € I with s <t.

Given p € P5(R%), we denote by A (1) the set of admissible trajectories on I such
that 1, = p. In [33], we have proved that the set AI'(u) is nonempty, compact w.r.t.
the natural uniform convergence metric on C°(I; %, (R%)) defined as

1 2
deo(p), p?) = sup Wap?, 1),
€

for every pl) = {Mgi)}tej € O%I; P2,5(RY)), i = 1,2, and that any admissible trajec-
tory can be equivalently represented by a probability measure on R? x I'; (cf also
Theorem A.7 in Appendix).

2. CURVES AND TRAJECTORIES IN Z,(RY) AND L3(Q2,RY)

A natural question that arises is whether a dynamic in the Wasserstein space
can be expressed as a dynamic in L3. We answer this question both for absolutely
continuous curves and for trajectories of the multiagent system.

We denote by I'z the set of continuous curves from [0, 7] to R%. Given a compact
interval I C R, we endow C°(I; 2,(RY)) with the structure of a complete metric
space by defining the uniform convergence metric

deo (0D, 0P = sup Wo(), 01)),
tel
for every 0@ = {"},c; € CO(I; P5(RY)), i = 1,2. For any y € P5(R?), the map
W2(u,-) is convex : given v; € Po(R?) and m; € IL,(u,v;), i = 0,1, X € [0,1], we
set py = Ao + (1 — Ny and 7y := Amg + (1 — Ny € I1(u, py). Hence

W21, 1) < / & — g dma(,y) = AW2 (i, 10) + (1 — N2 (s, ).

R xR4
So Ws-balls are convex, and dgo-balls around a curve @ are convex.
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2.1. Absolutely continuous curves and trajectories. Now we state the main
result of this section comparing trajectories and curves in %, (R?) and L32.

Theorem 2.1 (Representation Theorem).

(i) Let p : [0, T] — P5(R%) be a continuous solution of (8) for a Borel vector field
(t,z) — vi(x) such that (7) holds true. Then there exists an absolutely continuous
curve X. € WH2([0,T7], L2(Q, R?)) such that:

XP = py for allt €[0,T), X, =v(X,) for a.e. t, P-a.s.

Moreover, taking any Yy € LA(Q,R?) such that o = YoilP, for all € > 0, there exists
Z. € WY2([0,T], L3) satisfying:

ZP = iy for all t € [0, T, Zy = vi(Z,) for a.e. t, P-a.s. and 1Zo—Yol L (ray < €

(ii) Conversely, fir X. € W2([0,T]; L2(,RY)). Set u; = X P and vy €
M(R® R?) defined as:

/]Rd O(x) - dyy(x) = /Q<P(Xt(w)) - Xy(w) dP(w), Y& e Cy(R% RY).

Then || is absolutely continuous with respect to vy and setting v,(-) := 7£(-) for a.e.
t €]0,T|, p-a.e, the curve p; : [0,T] — Po(RY) is a continuous solution of (8) with
v(z) satisfying (7).

(iii) Let p; : [0, T] — Po(R?) be a solution of the multiagent system driven by F
associated with the Borel vector field vi(x) (namely {u} satisfying Definition 1.3
on [0,T]). Then there exists an absolutely continuous curve X. € W12([0,T], L3)
(constructed in i) such that

(10) X, (w) € F(t, XfP, X;(w)) for P- a.e w and for a.e. t.

If Yo € L3 is fized such that py = YofP, then for any ¢ > 0 there exists Z. €
WH2([0, T, L3) satisfying ZiP =

Zy € F(t, Z4P, Z,) P- a.s w and for a.e. t with || Zy — Yol < e

(iv) Conversely if X. € WY2([0,T]; LA(2,R?)) satisfies (10), then there emists
a Borel vector field v(x) such that t — X P is an absolutely continuous curve
satisfying (8). So {XifP}iejom € A[FO’T](XOMP’).

Proof.
Proof of (i). Consider n € Z(R%x'y) associated with {yi }seo.7) by the superposi-

tion principle (Proposition 1.2). Since P has no atoms, there exists 7, : Q — R¢x T'p
a Borel map such that 7,4P =7 (cf [38]). Set X; = e, o T), for all . Then:

XP =(e; 0 Tn)jjIP’ = etjj(TntﬂP’) = edin = i, ||XtH%R2I = / ’1’|2 dpy < 400,

so X; € L3. Moreover forallY € L and all 0 < s <t < T, setting 7 = (T, xY)fP €
I1I(n, Y£P), using the superposition principle, we get:

(X, V) :/Qet<T">'YdP:/(Rd ) (o))

:/ o(t) -ydn((x,0),y)
(RExDp) xR
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:/a(s)-ydﬂ((:c,a),y)—i—/ (/:UT(aﬁ))cydT) dn((z,0).y)
:/65(0) -y d((T,, x Y)4P)(0,y) + /: (/UT(U(T)) ~ydw((x,a>,y)) dr

(using Fubini)

t

:/ es(T)) -Yd]P’+/ (/ v.(er 0 T)) -YdIP’) dr

Q s Q

t t

:/ X, Y dP +/ (0:(X,) - Vdr = (X, +/ (X )dr | Y)

Q s s

using again Fubini. As this is true for any Y € L2, we get forall 0 < s <t < T
t
X=X, +/ v, (X;) dr.

So we can conclude {X;}; is in WH1([0, T]; L3(Q,R%)) and that X; = v(X,) a.e t,
P-a.s. We also have that {X;}; is in W12([0, T]; L3(©2, R?) because:

T T
/ / X2 dP dt = / @) dpel) di < +oo.
0 Q 0 R

Now take Yy € L2 and ¢ > 0 fixed such that YpffP = X fP. By lemma 1.1, there
exists v measure preserving || Xo o a — Yy||peo(qre) < €. Setting Z; = X o a, we have

120 — YEJHLoo(Q,Rd) <e, ZfP = (X; 0 a)fP = Xyl = .

Moreover, repeating the same argument done for X;, for all Y € L3(Q,R?) and all
0 <s<t<T,replacing m by 7, = (T}, 0 ) x Y)iP € II(n, Y{P) leads:

<Zt,Y>:/(esoTnoa)-YdIP’+/: (/UT(eToTnoa)-YdIP’) dr

=(Zs + /t v (Z7)dr | Y).

Again, this implies {Z,}, € W2([0,T]; L3(Q,R%)) and Z;, = v,(Z,) a.e t, P-as.
Proof of (ii). From the definition of v;, we get that 14| is absolutely continuous
with respect to p. Since {X;}; is in WH2([0,T]; L2) one easily deduces (7). Since
Walps, ) < || X — Xif|, the curve {s}, is also continuous. To prove (8), taking
¢ € C*(R¥x]0,T[)) we have because v;(X;) = X;
T
| [ ot orvute)- Duptot) dunte) e =
o Jr
T
= [ [ @it )+ 0(X) - Vapl(X0,0)) il e =
o Jo

Td
:// _SO(Xt,t)dth:/cp(Xt,T)—¢(Xt,0)dtdIP’:0.
oo dt 0
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Proof of (iii). Consider the curve { X;}; given by (i) associated to {s }icjo,r)- Then

[ [ s e = [ i) dut) a=o

from Definition 1.3. Hence X. satisfies (10). The last part of (iii) is straightforward.
Proof of (iv) Consider the continuous curve t — p, := X P and v associated to

X. as in (ii). Since we already know that X, = v:(Xy) and because X. satisfies (10),

//RdIthx () dye(z) dt = //thth (X)) dP

/ | T xae s (X() d =
This proves that {iu }eo1] € A[o 71 (XodP). O

Remark 2.2. Observe that the fact the curve {X;}; solves (10) does not imply that
another curve {X;}; with the same law X #P = X #P solves (10). Consequently, the
multiagent dynamical system cannot in general be studied in the space L3.

We already noticed that (P25(R9), W) is identified with (L2/ ~). Easily, the

equivalence classes are closed for the strong topology of L%. Nevertheless, they are
neither convex nor closed for the weak topology of L2. So one needs to be very careful
to the topology used when comparing continuity properties of curves in %y(R%) and
L2,
2.2. Approximation of curves in %,(R%) by trajectories of the multiagent
system. The goal of this section is to construct a trajectory of the multiagent
system which approximates a given trajectory in Z2,(R?). This is a crucial property
to obtain regularity of the value of the control problem. So we obtain the following
Gronwall-Filippov type result.

Proposition 2.3. Take I = [0,T]. Let i € P5(R?) be given, and F : I x P5(R?) x
R? = R? be a Lipschitz continuous set-valued map with nonemptly compact convex
values. Let p = {p;}er © AC?(I; Po(R?)) satisfying (8) for a Borel vector field
(t,z) — v(x) such that /||vt( )||L2 dt < +oo. Then there ezists a trajectory 1 =

{iis}ier € AT (), such that for allt € I

(11) Woa(pe, fie) < (W2 Mo, [ / /Rd Ap(sps,0)(Vs(2)) dpis() ds ) ;

for some constant L' depending only on F, I, and [i.

This section is devoted to the proof of this proposition, according to the following
outline.
(1) For a given curve @ = {6,},c; € Lip(I; 25(R?)), define the set Y5°(z) of
solutions to the multiagent system associated to (t,z) — F(t, 0, ). Namely,
is the set of p = {pu }es satistying (8) for a Borel vector field (¢, z) — v(z)
such that vy(z) € F(t,0;,z) for pi-a.e. x € R and a.e. t € I.
(2) We obtain a Filippov estimate for solutions in Tf’e(ﬂ) (see Proposition 2.5

below) by using our Representation Theorem 2.1 for the map G¢ : I x
L3(Q) = Li(2) defined by

(12) GOt X(-) == {Y() € L2(Q) : Y(w) € F(t, 0, X(w)) for ae. w € Q}
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with a Filippov Theorem in L2.
(3) We build the desired trajectory fi as a fixed point of the some submap of
0 — TH(fi) whose values satisfy (11).

We will need the following technical Lemma proved in the Appendix

Lemma 2.4. Fiz 0 = {0;:}c; € Lip(I; 22(R?)). Then G® : I x L3(Q) = L3(),
defined in (12), is Lip F' - (1 + Lip 0)-Lipschitz continuous with closed images.

Proposition 2.5. In the assumptions of Proposition 2. 3 fire >0and @ = {0, }1er €
Lip(I; 25(R%)). Then there exists i® = {i}er € Y5 (1) such that

(13) Wg(ut,ﬂf) < tlip F(14Lip6) <W2 Lo, ji / /d dp(s,0,,2)(Vs(x)) dps () ds )
R

Proof. (of Proposition 2.5) Set L := Lip F' - (1 + Lip 8).
Step 1 Fix € > 0. we first prove that there exists i such that

(14)  Walm, i) < <W2(M07 / /RddFsé ) (vs(2)) dps (@ )d3+5+5t)

Take X,,Yy € L3(Q) such that (Xo, Yo) P € T,(p0, ). By Theorem 2.1 (i), there
exists t — X, such that X; = v, 0 Xy, || Xo — X0HL2 <e,and X P =y, forall t € I.

By Theorem 1.2 in [27] apphed1 to G?, there exists t — Y;(+) absolutely continuous
such that Yy = Y, YoffP = i, Yi(w) € F(t,6,,Y (w)) for a.e. w and for all ¢

t
1X:(-) — Kf(')HLH% <etk <HX0(-) — Y()(')HL[% —|—/ dGe(s,XS(~))(Us o X4(+))ds + &?t)

0

t
(1% = Tl + [ domccp(vro XD e+ =t
0
t
=ctt <W2(Moyﬂ) +/ dgo(s x,()) (Vs 0 Xs(+)) ds + ¢ + 575) :
0

Set i? := Y P for all t. Notice that Wy (us, %) < || X:(+) — t(')HLﬂ%,a and
dGe(S,Xs(-))@s o Xi(+) = dF(S,%,-)(”S(')) o Xi(+),

therefore, after integrating in P and having switched the integrals in ds and in dw,
we obtain (14). In particular, by Theorem 2.1(iii), we have that pu’ = {ji},c; obeys
the continuity equation

O i? 4 div(w,a?) = 0,
where (¢,x) — w;(x) is a measurable selection of (¢, x) — F(t, 0, x).

Step 2 We claim that the map 8 — T+°(7) from {6 € Lip(I; Z,(R%)) : Lip8 <
L} to C°(I; 225(R%)) is Lipschitz continuous with compact convex images and its
Lipschitz constant is less than e~ (+DMPE () _ g)Lip F.

Without loss of generality we assume [ = [0,7]. Set L’ = (1 4+ L)Lip F. Let
e > 0,00 ¢ Lip(/ u@g(Rd)) with Lip@ < L for i = 1,2, and p(V) = {ugl)}tef €

Tf’g(l)(ﬂ). In particular, u(") solves the continuity equation with a Borel vector

!Note that [27] concerns mild solutions which appears to be absolutely continuous solutions
because the infinitesimal generator is A = 0 in our context.
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field (¢,x) — v,(z) satisfying vy(x) € F(t,@t1 , ) for p-a.e. © € R and ae. t € 1.

(2)
(i)
t
Wl i) < ([ [y (0D ) ds b2 421
R

ett (// Lip F - Wa(0, 69 dpV (x )ds+5—i—at>,
R4
<™ (TLip F - deo(8M,0@) ¢ +£T) .

By the arguments of step 1, there exists u® = {ut }tg € TFQ

Thus

d (pW) < e™ . (TLip F - deo (8™, 0®)) + & +£T) .

), _
TE% (m)

By letting ¢ — 0% and interchanging 8™ and (™), we obtain the Lipschitz conti-
nuity of 6 — TH8(7).

We show the convexity of YE(f1). Given A € [0,1], p® = {uii)}tez e T%(n),
i =0,1 define p® = {uM e == Ap© + (1 — \)p®. By linearity, we have

8tu§A) + div ()\vfo)ut + (1 - )\)vfl)ugl)> =0,
where v\ (z) € F(t,0,, ) for u{”-a.e. z and a.e. t. Noticing that u\” < uiV,
&,ug + div (vt )ug )> =0,
where for uV-a.e. 2 € R% and a.e. t € I it holds

)\U(O)M(O)+(1 A ()#(1)
o () =2 S T " (2)
Ly

(1)
(0) ALy (1) (1 — Ny

Therefore v)(z) € F(t, 6, ) by convexity of the images of F. Thus u® € TH9(7).

We notice that there exists C?,C¢ > 0 such that F(t,0;,7) C B(0,C? + C9|x|).
Indeed, take My = max{mé/Q(Hs) : s € 1}, since

F(t,0:, ) C F(0,60,0) + B(0,1) - Lip F' - (T' + Mg + |z|),

we can take
Co :=LipF - (T + Mg +1), C? .= max{|v| : v € F(0,8,0)} + C?.
Thus .
1< O+ [ (2 +CEho) ds
hence for the trajectories of (t) € F(t,0;,v(t)), we have by Gronwall inequality
Y ®] < (WO)] +TCT)eT.

So F(t,6;,~(t)) € B(0,C + C9(]7(0)] —I—TC"’) C3T), in particular Lipy < C? +
CO(I(0)|+TC®)e%T. Every p = {1 }rer € THP(f1) can be represented as p, = e,fn
with a measure 1 € QZ(R xT'r), concentrated on pairs (x,v) where 7(0) = z and ~
is a trajectory of the differential 1nclusi0n By integrating the above estimates, we
obtain that the elements g of Y5 (1) satisty
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e uniform boundedness of the images in W?

2
Wa(00, i) :(/ e Pdnm) < (ml/(7) + TC?)eCE.

e uniform Lipschitz continuity

Wapes p1s) <llew — el 2 = (/R o, v (t) - ’V(S)IZcl'n(:zc,’y))l/2

<|t — |- (C? + CO(my* (i) + TC?)e%ET).

e pointwise compactness in Ws: the uniform boundedness of the images in
Wy yields the pointwise narrow compactness, thus we have only to show the
uniform integrability of the second-order moments. We notice that for n-a.e.
(x,7), if |7(t)| > r, we have

s(r) := max{re" T — TC?, 0} < |y(0)].
Thus

(15) (/]Rd\B(O,r) |x| d:U“t > (//Rd\B(Os (r))xTr | ( )|2d?7<x 7)> !

1/2
( / |1’|2du(x)> TR B(O, 5(r))
R\ B(0,s(r))

cdT

< € )

and the right hand side tends to 0 as r — oo, uniformly w.r.t. g € Y5 (z).
By Ascoli-Arzela theorem, Y¥°(7i) is relatively compact in C°(I; 22,(R%)). We
prove that it is closed. Given a sequence {u},cy € T1°(fi), converging to p in
CO(I: 25(R%)), we can find a sequence n(™ C P (R? x I';) such that u{™ = e,tn™
for all t € I and n € N, where n(™ is concentrated on pairs (z,7) where 7 is a
trajectory of the differential inclusion and (0) = z. Since the functional

(2.7) > > + [y (0)]* + [9l1%,  if v € Lip(/;RY),
’ 400, otherwise,

has compact sublevels, by using the estimates on the trajectories we obtain

sup [l + O + 512 dn ™) (z.) < o
neN RdXFI

By Remark 5.1.5 in [3] we extract a subsequence {n(™)},cy narrowly convergent to
1. By the continuity of e;, we have that u; = e;fin for all ¢. Finally, for a.e. (x,v) in
the support of n there exists {(x,, V) tnen such that x, — x, |7, — ¥]|ec — 0 and
Yo 18 a trajectory of 4, (t) € F(t, 6, v,(t)) with v,(a) = z. Since the solution map
of such differential inclusion has a compact graph ([6] Th. 3.5.2) v is a trajectory
starting from x, and therefore p € Tf’e(ﬂ). This proves Step 2.

Step 3 We now construct i satisfying (13).
Consider a sequence ¢, — 0%. By Step 1, there exists a sequence {% (™}, oy C

TH9(1i) satisfying

Wit ) < e (Walpo) + [ [ ot (0ne) dna) ds 4 20+ 20t
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where %™ = {/lte’(n)}tg. By the compactness result obtained in Step 2, we can
find a subsequence {® (")}, y converging in deo to i® = {i%}er € YFO(n),
satisfying (13). O

Proof. (of Proposition 2.3) Given L,T > 0, ji € Z5(R%), and M > m)?(j1), we set
I=1[0,T1,

Coi=LipF - (T+M+1),  Cy:=max{|o|:v € F(0,8,0)} + Cs,

and define .77 1, ar(ji) to be the set of @ = {0, }1cr € Lip (I; P5(RY)) satisfying 0y = i,
Lip0@ < L, W5(dg,0;) < M and for all r > 0, t € [

1/2
(16) (/ \x|2dut<:c>) <
R4\ B(0,r)

1/2
< (/ |mr2dn<x>) - TC(R B(0,5(r))| €%,
R\ B(0,5(r))

where 5(r) = max{re=*T — TC},0}.

We have that %7 p(ft) is uniformly bounded in deo, thus we get the point-
wise relative compactness of .77 1 y/(f1) w.r.t. the narrow topology. We prove that
Z1.0,m(ft) is also pointwise relative compact in Ws. Indeed it is enough to show the
uniform integrability of the second-order moments which comes from the fact from
(16) we have

1/2 1/2
( / |x|2dut<x>) < ( / \x|2dut<x>) <
R\ B(0,2r) RAB(0,r)

1/2
([ lafduo) +Tclu<Rd\B<o,s<r>>>] o,
R4\ B(0,3(r))

<

and that §(r) — +oo as r — +o0.

The set .7 1 (1) is nonempty, since it contains the constant curves 6, = . It
is convex from the convexity of the Ws-ball. It is also closed in the dco topology,
and hence compact by Ascoli-Arzela theorem. Indeed, it is sufficient to recall that
if W5(&,,€) — 0 then we have

liminf/ [ e, (2) z/ 2| de ().
n=+o0 Jrd\B(0,r) RAB(0,r)

Suppose now that
M >my? () + 1,
L >max{|v] : v € F(0,80,0)} + Lip F - (M +2) + Lip F - (M +2) - (m3/*(71) + 1)

Then we claim that for all 0 < T" < 1 small enough it holds Tf’e(ﬁ) C Srom(ft)
for all 0 € y[@J\/[(ﬂ).

We prove this claim. As in the proof of Proposition 2.5, given 0 € .7 1 y(fi) we
get for every p € T[FO:HT] (i),

Lip(p) < C% + C8 (my* (1) + TC?)e 4T,
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where (recalling that 0 < T < 1)
CO =LipF-(T+Mg+1)<C3:=LipF - (M +2),
C? =max{|v| : v € F(0,8,0)} + C?¢
<Cy :=max{|v| : v € F(0,80,0)} + Lip F - (M + 2).
Therefore Lip(p) < f(T') where

F(T) = Cy + Cs(my* () + TCy)eT.
We easily get f(0) < L, and therefore, since f(-) is continuous, there exists Ty €]0, 1]
such that f(T) < L for 0 < T < Ty, where Ty depends only on F, M and . In
particular, we have Lip u < L. Moreover, we have
Wa(do, je) < my' () + TLip(p) < my () + LT,
therefore, by possibly further shrinking T, we have Wy(dg, i1;) < M. Equation (16)
follows from the estimate on C§ and from (15), our claim is proved.

Given an interval J C [0, T}, we define

Qs(u,0) = {5 (€ iy € COT; P5(RY) : for all ¢ € J it holds

Wa (i, &) < otLip F-(1+Lip 6) <W2 Lo, fi / /d dp(s,0..2)(Vs(2)) dps(x) ds ) }7
R

and we notice that Q;(p, 0) is a convex and deo-closed set.

Notice that the set-valued map 0 — Q;(u, ), defined on C°([0, T]; 22(R%)), has
closed graph since for all 8% = {9151)},561, i = 1,2, and every v € R? we have

dF(tveil)@) (U> S dF(t,Qiz),x) (U> + Llp cho (017 02)7
and Ws(u, ) is continuous.

We consider the map .77 1 1 (fi) = %70 (i) defined as @ — Y8 () N Q;(, 6).
As this map is not suitable to apply Kakutani fixed point theorem we will use an
embedding given by the following LLemma, whose proof is postponed to the Appendix

Lemma 2.6. Let . C C°(I; P5(R%)) be compact and conver, endowed with the
topology induced by dco. Then there exists a locally convex topological vector space
L and an homeomorphism h : (%, dco) — L such that

RO + (1= )p®) = Mo(u®) + (1 = V()

for all X € [0,1] and p® € .7, i = 1,2, mapping (.-, dco) to a compact convex
subset of L.

The map 0 — TFO( )N Q1(p, ) has closed graph, and nonempty convex images.
Its graph is contained in a compact set, so it is upper semicontinuous. According
to Lemma 2.6, there is an affine homeomorphism h : .7 1 (i) — £, where L is a
topological vector space. In particular, we can consider

W1L.r() D h(0) = h(YT% (1) N Q1 (1, 0)) € M(S11.(1)).

Recalling that h is an affine homeomorphism, we have that h(.%7 1 ¢(j1)) is again
compact and convex, and the above set-valued map is upper semicontinuous with
compact convex images. By Kakutani-Fan-Glicksberg fixed point theorem (see e.g.
Theorem 13.1 in [36]), this set-valued map admits a fixed point, i.e., there exists
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0 € h(S1,1,;(r)) such that ¢ € h(TFh_l(f (@) N Q](u, ~1(¢))). In particular, there
exists fi ;= h='(£) € Tr* (@) N Qr(w,n) thus fi € TH(a) and 1 € Q;(m, fi), thus

(A7) Walue, fie) < eLP PO+ (W2 1o, //ddm o (0s()) iy )d),
R

for some constant L depending only on F, I, and . Recalling the Lipschitz conti-
nuity of F', this implies

Wa (g, fir) <

v P D (W (1o, ) / [ e 0) + i P W )] >d).

Set
g(t) == LD F-(14+L) ( (10, fi / /Rd AF(s o) (Vs(x)) dps(x) ds ) ,

we have (recalling 0 <t <T < 1)
(18)

W2(,ut7 ﬁt)

<ot RO (WM, / | et tona)) din(o) ds + Lip P / Wi usawd)

Sg(t)+LipF~eLipF'(”L’/ Wi (pis, fis) ds
0
(19)

Gronwall’s inequality yields the desired estimate (18) with
L' =LipF-e"PF0+D L Lip . (14 L),

yielding Proposition 2.3 for T small enough.
We prove now the case of possibly large 7" > 0. To this aim, we apply Zorn’s
lemma to the set

Z = A{(r,ip = {jutrepn) : 7€ [0, T, fio = i, o € T N Q. 1)}

with the following partial order: (7, M) < (7@ 4a®) if and only if 7V < 7@
and i\ = 1\ forall ¢ € [0, 7(M]. Given a totally ordered chain A, set Ty = sup{7 €
[0,T]: (7, 1) € A} and define (4 = {ﬂEA)}te[07TA[ by setting ji; = fi; for all t € 7,
(1, ) € A.

Notice that given (7, i) there exists 71 € @(]R x I'o,71), supported on the pairs
(x,7) satistying 4(t) € F(t,fu,(t)) for a.e. t € [0,7] and v(0) = z, such that
[y = edn for all t € [0, 7]. In particular, we have for n-a.e. (z,7) € R x Ty

F(t, jit, (t)) < F(0,60,0) + B(0, 1) - Lip F - (¢ + my"(ji,) + [7(¢)])-
Therefore, since C) = max{|v|: v € F(0,0,0)}

|v<t)!§|v(0)l+/0 [Cl+<s+m§/2(gs)+w(s)\) ds.
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By taking the L%—norm and using Jensen’s inequality

t
w} () < (@) + [ G+ Lip P s+ 2m) (7)) ds
0
By Groénwall’s inequality, and recalling that 7 < T
T2 :
(i) <my*(7) + 7Cy + Lip P - 2T

Arguing as above, @i is Lipschitz continuous, with Lipschitz constant depending
only on i, T, and F. Since (7,f1) € A are arbitrary, i is Lipschitz on [0,T]

and therefore it can be uniquely extended to a Lipschitz function on [0,7] still
denoted Y. One gets easily that (4 e T[I;”;‘%A) (i), and g e Q[Oju](u,ﬂ).
Therefore (T, M) € 2 majorizes every element of A. By Zorn’s lemma there
exist (17, 1) € A) a maximal element. If 7" < T, by applying the first part of the
proof to extend f1 on [1",T" + €] for some € > 0, we contradict the maximality of f.

In particular, we obtain 1 € Tf’ﬁ(ﬁ) N Qr(p, ), and we can conclude by Gron-
wall’s inequality as in the case of small 7. 0

Remark 2.7. In a series of recent papers ([8], [9], [10], [11], [12], [13], [14], [15]),
optimization problems in the Wasserstein space driven by a controlled continuity
equation were studied in the Cauchy-Lipschitz framework, i.e., assuming a local
Lipschitz regularity in space of the (possibly nonlocal) driving vector field. It is
well known that in this case the continuity equation is well-posed, and moreover its
unique solution is given by the push-forward of the initial measure along the flow: in
particular mass splitting along the trajectories is not possible. The concept of tra-
jectory used in the Cauchy-Lipschitz framework yields a powerful tool to extend the
classical finite-dimensional theory to the Wasserstein space, at the price of restrict-
ing the set of available trajectories for the agents (by adding a hidden interaction
between the velocities of close agents, which must be selected to be closed). A short
comparison of the concept of trajectory used in this paper and the Cauchy-Lipschitz
framework was outlined also in Remark 6 of [12].

Remark 2.8. Another Filippov-like theorem was obtained in [12] with a different
notion of solution to (1)-(2), under more smoothness assumption on the vector field.
Also when p is itself a solution to (1)-(2), a Gronwall-Filippov result was obtained
in [33].

Thanks to Theorem 2.1, we can write the value function V(+) associated to (4) on
admissible trajectories in two different ways: we can write

V1) =it [ L)+ 9r) e G}

and, setting L(Y) := L(Y{P) and G(Y) = 4(V{P) for all Y € L3(Q,R?), we can

write also
T
V(p, T) = inf {/ L(X,)dt + G(Xr) : X. € WH([0,T],RY), XofP = p,

Xi(w) € F(XAP, X,(w)) for ae. t € [0,7] and P-ace. w € Q}
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It has been shown in [33] that V is a solution of a HJB equation in £5(R?) of the
type:

(20) % + H(p, Dyu(t, i) = 0.

In the next section, we explore some properties of this equation and its meaning in
LA(Q,RY). (We reduce our study to the sationary equation in order to simplify).
Moreover, we expect that, setting V (X) := V(XHP) for all X € L2(Q,R?), V should
be a solution of a HJB equation in L2(£2, RY). Tn subsection 3.4, we give some insights
on the difficult question of studying (20) as a classic HJB equation in L(2,RY).

3. HAMILTON JACOBI BELLMAN EQUATIONS

The Lipschitz value functions of multiagent control problem should satisfy a HIB
equation in the Wasserstein space in suitable senses [4], [17], [30], [33]. The rele-
vance of the notions of viscosity solutions proposed in the previous references lies
in the fact that the value can be characterized by a HJB equation. This needs
comparison principles discussed in [17], [23], [30], [35], [33]. Here we investigates
several super/subdifferential needed to obtain viscosity solutions on 2y (R%).

We consider the Hamilton-Jacobi equation satisfied by a function u : 2, (RY) — R

(H7) H(p, Dyu(p)) = 0, pe PR,
with the following hamiltonian
H: (o, p) € Po(R) x Ly (RY) = H(po,p) € R.

Since D, u has not yet been defined and because © may not be regular, the meaning of
this equation has to be considered in the viscosity sense, by replacing the derivatives
by suitable super/subdifferentials.

3.1. Super/sub differential in Z,(R?). Now we introduce the following notion
of superdifferential

Definition 3.1 (Superdifferentials in &%, cf [33]). Consider u : 2 (R?) — R, po €
P5(R?) and £ > 0. The e-superdifferential of u at g is the set DI u(ug) of elements
p € L2 (R R?) such that p € dis™(u) and

(21)  u(v) —ulpo) < /p(x) (Y — @) dy(z,y) + e(Walpo, v)) + 0 (Wa(po, v))

for all v € P5(R?), v € Io(po, v). The set dis™(uo) € L2 (R, R?) is the convex
cone generated by optimal "anti"-displacements namely:

dis™ (po) == {\(Id—T) : X >0, T an optimal transport map between o and THug}.

Remark 3.2. The definition above is not exactly equivalent to those of |35], |33].
The difference is that in [35], [33], the elements of DXu(ug) are optimal anti-
displacements. The set of optimal anti-displacement is not stable under multi-
plication by a non-negative real number. Indeed, let uy be the Lebesgue measure
restricted to a ball centered at Oga of measure 1. Then Idgre = Idge — Oga is an
optimal anti-displacement as x — Oga is an optimal transport map from pg to 5% .
But 2Idga is not an optimal displacement as —Idga is not an optimal transport map
(it is not cyclically monotone- see [40]).
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Various concepts of super/subdifferentials have been proposed [3], [10], [17], [30],
[33], [35]. In our control framework, a "good" super/subdifferentials should enable
us to prove that the value function is the unique viscosity solution of some HJB
equation. Namely it should allow to obtain a comparison principle. The above def-
inition provides such a comparison principle (proved in less restrictive assumptions

in [35] and [33]).
Symmetrically we can define the e-subdifferential:

Definition 3.3. [Subdifferentials in &7;| The e-subdifferential or u at py is the set
D u(po) of elements p € L2 (R?,R?) such that p € dis™(u) and

ulv) =~ ulpo) = [ pla) - (y -~ 2) dr(ay) = £(Waluo, ) + 0 (Walpio, )

for all v € P5(RY), v € 11, (o, v), where
dis™ (po) := {N(T—Idga) : A >0, T an optimal transport map between o and T}

We will discuss several alternative definitions of the superdifferential. Before doing
this, we recall the definition of tangent bundle to % (R?) at u € P (R?) (cf [3])

L2 (R4 R?)

(22) T.RY) :={Vp: p e C2RH} " 7,
which is related to optimal displacement thanks to the following relation proved in
3]

d ————LL.(R4R?) —
(23) To(RY) = dis* (1) — dis” ()

We recall an equivalent definition of superdifferential (later on we will use both
definitions without citing this equivalence result).

2 (Rd Rd
L7, (R®,R%)

Proposition 3.4 (Equivalent definition of superdifferential [33]). Let u : 2(RY) —
R be a map, let py € P5(RY), ¢ > 0 and p € dis* (o). Then p is in DIu(uo) iff

(24) w(v) —u(po) < /p(x) (y — ) dy(z,y) +e [/ ly — a:|2dy(x,y)] . +

1/2
+o0 ({/ ly — x|2dv(m,y)} ) , Vv € 25(RY) and v € (p, v).
Indeed, the proof in [33] shows a more general result: p € 7, (R?) satisfies

u(v) = u(po) = /p(x) (Y — ) dy(z,y) + e(Walpo, v)) + 0 (Walpo, v))

for all v € P5(RY) and all v € Il,(u,v), if and only if it satisfies (24) for all
v € P5(R?) and all v € T(u,v).

Now we provide a simpler definition of DXu(u) for atomless p. Indeed take
v € P5(R?) with p having no atom, then we know [3§]

1/2
Wa(u,v) = inf { </ |Tx — x]2du(x)> . Tiu = I/} :
TEL2 (RY,RY)

This implies that there exists {T},}, € L7(R? R?) such that

1/2
(25) ta=v, Jim ([T =) = W)
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Possibly extracting a subsequence, by compactness of I1(u, ) , we have also that
(26) Yo 1= (Idga x T,)dp = 7 € To(p, v).
Note that 7 is optimal because 7 € P, (R? x R?) / ly — x> dn(z,y) is Ls.c.

This suggests that, for atomless u, we could restrict the definition of DX u(u) to
transport plans supported on the graph of transport maps.

Proposition 3.5. Let u: Z5(R?) — R, p € P5(R?Y) and e > 0.
Assume i has no_atom and p belongs to L%(R?,R?). Then:
(a) if for all € Li(Rd,Rd) the function p satisfies

(27) u(®ip) —ulp) <
< [ p)- (@) = ) du(o) +=- (12~ W) +o (10~ 1d]13)
R
then it satisfies (21).
(b) if p satisfies (27) then the projection on T,(RY) of p satisfies (24).
(c)if p € dis™(n), then p € DFu(p) if and only if it satisfies (27).
To prove this result, we need the following lemma:

Lemma 3.6. Let p, {vgtren in Po(RY) such that limy_, oo Wa(p, vg) = 0. Assume
for some e >0, p e L2(RY,R?Y) and fized ), € Io(p, vi) we have:

(28) lim sup " //Rded — ) dy(z,y)

k00 Wa (e, vi,)

<e.

Then, taking another sequence {7}t in I,(u, vg), we also have:

(29) lim sup " / /]Rded — ) d(z,y)

k—+o00 WQ(M? Vk)

<e.

Proof. (of the Lemma) Denote by ¢ the projection of p on T,(R?). We first remark
that, since 9, is an optimal transport plan for any k, by Lemma A.2, x — [ ydvy*(y)—
z is in dis™ (u) C 7,(R?), and this yields

//Rdedp(x) (y — x) dy(z,y) :/de(g;). [/Rd ydTe (y) — x} ()
(30) :/Rd q(x) - {/Rdyd’_y,f(y) _x] dpu(z)

://RdXqu(x) (y — ) dy(z,y).

By definition of 7,(R?), for all § > 0, there exists ¢; € C>°(R?) such that |[|[Vs —
qHLﬁ < 4. Then, by using Lemma 3.3. p.10 of [30] and Cauchy-Schwartz inequality,
we have

/ 4(@) - (y — ) dinl,y) < / Vs(a) - (y — ) diu(,y) + 5Waljs, )
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: /V%(:v) (y — ) dy(z,y) + (1D @5l W3 (11, i) + OWa(pt, i)
<

< / 0(@) - (y — ) dylz, ) + | D205 W2, ) + 26Wa (11,1,

Applying the same argument as in (30), we get:

[ 4@ -2) dinte.) < [ pla)-lu—2) dula, g HIDpallWWE 10 +26Wa(r ).
Finally, for all § > 0, by (28):
u(vp) —u(p) — [ plx) - (y — x) dy(z,y)

lim su
k:—>+oop WQ(M? Vk)
_ _ Ay — 1) d
< limsup U(Vk) u(,u) fp(x) (y l’) ’7k<x7y) + HDQSO(SHOOWQ(/%VI@) + 926
k—+00 Wa(p, vi)
< e+ 20,
and letting 6 — 0 yields (29). O

Proof. (of Proposition 3.5) Assume for simplicity that ¢ = 0.
Proof of a): Let (1), a sequence of P (R?) and ~;, € I1,(u, ) such that:

lim Wa(v, ) =0, i —y|* dyp(z,y) = 0.
k—1>r-i{loo 2(Vk M> k—l>gloo RdxRd "I y’ Vk(x y)

We aim to prove that:

u(vy) — ulp) — fRded p(x) - (y — ) dy(z,y)

31 lim su <0.
(31) k—H—oop Wo (g, vk)

Set 1, = Wo (i, ). Take @ € C°(R? R?) such that:

(32 Ip = Dellz < lly — zllz =7

By (25) and (26), for all k& € N, there exists a sequence (Tj ), in L2(R? R?) such
that:

Tk,n]j:u = Vg, Yen = (Ide, Tk,n)ﬂ:u = ’Vk: S Ho(luv Vk)) HETOO/ |Id]Rd - Tk,TLlQ dﬂ“ = T}%'

It’s worth pointing out that 7, may be different from ~,. Fix k in N. Note that,
uniformly in n, (Jx,), has uniformly integrable moments of order 2. Then, since
for all x and y we have [Dy(x) - (v — 2)| < ||Pk|l(|y| + |z]), it holds (cf e.g. Lemma
5.1.7. of [3]):

lim | &(z) - (v — ) dypa(z,y) = /@k(x) (y —x) dy(z,y).

n—oo

As a consequence, for all k& € N, we can choose T}, € L2(R? R?) such that:

33  Tu-w 1= il = =l | <

(34)

/Rd &y () - (Ty(x) — z) dp(z) _/

[ 0u(a) - D) o) < 1
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Then, using (32), (33), (34) and Cauchy-Schwarz inequality, for &k large enough we
have

[ v =) diten) < [ @) (=) dinteg) 13

/R (o) (Tu(o) — ) dule) + 20} < / P (Tu(e) = o) dua) + 4
This yields

w(y) — u(ys) — / p(z) - (y — 7) ATz, )

R4 xRd <
Tk B

w(vg) — uls) - / ple) - (T() — ) dp(z)

d d
< RIxR
Tk

—|—4Tk.

Since when £ tends to 400, we have r; — 0 and / 11d — Ty |? dpu(z) — 0, we get the
d

desired relation (31) with 7, instead of 4. The conclusion follows by use of Lemma
3.6.

The proof of b) follows from a), using the same argument as in (30) and a similar
proof to the Proposition 3.4. The proof of ¢) follows from (23). O

The following example shows that the result is no longer true when p has atoms.

1/2
Ezample 3.7. Again we set ¢ = 0. Set d = 1 and u(u) = {1 - / () dy(m)}
R
with ¢ € CJ(R) such that p(z) = 11if |z| < 1 and p(z) = 0 if |z| > 2. So
we have u(dy) = 0 and Dru(dy) = 0, but p = 0 satisfies (27). Indeed, §y can

only be transported to some ¢, by transport maps, moreover Ws(d,,d9) = |z| and

Oz
lim sup u|( ’) = 0. We show that DTu(dy) = (). Let us remark that
z—0 X

u(v) — / ax dv(z)
DYu(dp) =¢a€R: limsup -

<0
12 =
Jg 12| dv(z)—0 </ |ZL’|2 dl/(l’))
R

Fix a € R. Then, taking v, = (1 — 55)dy + 50, leads to

u(vp) — /Rax dvy, () ]

lim sup =—.

n—+o0o 1/2
[ e o)

R

So that we deduce DV u(dg) = 0.

Remark 3.8. Proposition 3.5 makes the link with viscosity solutions in the Wasser-
stein space introduced in [17] for HJB related to differential games. More precisely,
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the super-differential D¢, .u(u) defined in [17] is the set of p € L2 (R? R?) such that
for all T € L?(R?,R?)

u(Tep) = ulp) < [ p(o) - (T = 2)dp(a) + <1 = Tz +o([1d = T]1z).
By Proposition 3.5, we have for any p without atom:
D (i) Ndis* (1) = DEu(p)
The previous example shows that this equality is no longer true when p has atoms.

Now we provide a result showing that somehow the atomic part and nonatomic
part of u can be considered separately.

Proposition 3.9. Let u : [0,T] x Z5(RY) — R, p € P22(RY), ¢ > 0 and p €
LZ(Rd, R%). Denote by po the non atomic part of . and g the atomic part of p. We
consider the following property :

(35)

(@80 + v) — u(p) < / p(e) - (@(x) — 7) dptolx) + / p(#) - (y — 7) dy(w,y)+
ve (10 - 1ai + Iy - aliy) ™) +

9 9 1/2
o (llo—Talgy +ly—alls) " ),

for all ® € L2 (RY,R?), v positive measure with ju;(RY) = v(R?) and ~ € (ug, v).
Then
a) if p satisfies (35) then it satisfies (21),
b) if p satisfies (35) then the projection on T,(RY) of p satisfies (24),
c) if p € dist (i), then p € DX u(p) if and only if it satisfies (35).

Proof. We show (35) = (21). Let m € Z2,(R%) and 7 € II(u, m). By disintegration:
m(z,y) =7 (y) @ p(z) = 7% (y) @ po(x) +7°(y) © py().

Denote by v the second marginal of v := 7 ® py and by v the second marginal of
Yo = T ® po € (pg,vp). The first marginal of 7y has no atom. Arguing as in the
proof of Proposition 3.5, we get the conclusion. O

In the definition of the super-differential, we can restrict the variations v:
Lemma 3.10. Let yu € P5(R%), ¢ > 0 and u : [0,T] x P(R?) — R continuous.
Let A € Py(R?) be dense. Assume p € Po(R?) satisfies for all v € A
@3)  u)—u(e) < [ pla) (v =) dr(o.p) +elly = ol + oy -l

for all v € T(p,v). Then (36) is satisfied for all v € Po(RY) and v € U(u,v). If
moreover p € dis™ (i), then p € DX u(t, p1).

Proof. Take again € = 0. Let (vg)gen, i in Po(R?) and ~y, € I1(u, v,) such that

(37) lim ly — z|*dy(z,y) = 0.
k—+o00 R2d
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As A is dense and w is continuous, we can choose 7, € A such that:
(38) Wa(vi, vi) < lly = 2llz o Ju(@e) = w(i)] < lly = 2llzs,

Let A, € Il,(vg, 7). We disintegrate 7, and 4 and glue them to get a transport
plan 7, € II(p, 7y):

ez, y) = 70(@) @uly), Wy, 2) =7 (2) @ wly),

mo2) = [ k) © E) dunly).

Then we have

</]Rd 7 ~al dna, Z>> " </de 2 =y +y —a’dyi(2) dﬁi(z)duk(y)) -

1/2 1/2
s(/ v—yﬁﬁA%@> +(/ W—xﬁw%wwﬂ .
R2d R2d

From (38) and the definition of 7

1/2
o) ([l ePimie ) <l (1412l ).
R2d
Now, we have by (38):

1
< m(u(ﬂk) —u(p) — /de (@) (y— 2+ 2z — ) dyi(2)dy)(2)dvi(y))
+ [ly - $||L3k
u(?y) — ulp) — /dep(@ E @) dm(@2) il 2 - ylle
- HZJ—JEHLgIv Hy—l’“Lgk + Hy—ﬂfHLgk
w(vg) — u(p) — /de(:c) Az — 2) dmy(a, 2)
= PEEE (U Il — ollis,
(by (38) and the definition OIE' )
w(v) — u(p) — / de(:c) (2 — z) dmp(z, 2)
< (1t lly = ollzg,) : +Clly — all,.

l=—allzz,

(by (39), setting C':= 1+ ||p||zz). Then using (37), (39) and the assumption of the
lemma:

(wln) = ()~ [ p(o)- (s = 2) dulo.y)

R2d

, 1
lim sup
k—too ||Y — xHLgk

u@@—uwy—/ p(x) - (= — o) dmi(a, 2)
<limsup (1 + ||y — fL‘“L?Y ) de_ =0.
k—+o00 F ||Z :EHL%’@

0
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Remark 3.11. The previous result may be used with A C 2% (R?) the set of proba-
bility measures whose support is a finite set, another example is the set of absolutely
continuous probability measures. Recall that, when v is absolutely continuous then
(i, v) = {(T x Id)4v)} for some T € L2(R? R?) such that Ty = p. With this
remark, it is easily seen that p € dis™ (1) belongs to DX u(u) if and only if, for all v
absolutely continuous and all T' € L2(R? R?) such that yu = THv:

ww—uw>s/“MTw-w—Twdww+fMd—TmywAMd—Tm9.

R4
3.2. Differentiability in L(Q2,RY) and Z2,(R?). In what follows the scalar prod-
uct (-, +)r2(q.re) is shortly denoted by (-, )2 and || - || 2o re) is abbreviated in || - [|.
We start, by defining, for every given X € L2, the following subspace of L2

(40) Hx :={®oX € L;(Q,R?) : ® € L3 (R, RY)}.
The space Hy is isometric to some L2 space :

Lemma 3.12. (Lemma 5.10 in |33]) Hx is a closed linear subspace of L. Moreover,
the map X, : Lgﬁp(Rd) — Hy defined as X,(¢) = ¢ o X is a linear isometry.

We denote by pry, : L2(Q,R?) — Hx the projection on Hy.

Consider u : Z5(R?) — Rand its lift U : X € L2(Q, RY) — u(X{P). Following [19]
and [34], we say that u is differentiable at py € P25(R?) if its lift U is differentiable
in L3 at one X, € L3(Q, RY) of law pig. As already known in [19], [22] for continuous
differentiable function and in [30] for specific probability spaces (€2, B(2),P), the
gradient of U has a specific structure:

Proposition 3.13. Assume that U : L3(,RY) — R is rearrangement invariant
and differentiable at Xy of law XoiP = po. Then there exists p € T,,(R?) such that
DU (Xy) = po Xo. Moreover if Xy is also of law po then DU(X;) = po X;.

This allows to introduce the following definition:
Definition 3.14. We say that u : 25(R?) — R is differentiable at 1y € P25(R?) if

its lift U is differentiable at one X of law po. That is, there exists some p € T, (R?)
such that for any v € 925(R?) and any ~y € I1, (1o, v):

ulv) = ulpo) = [ p(o)- (v o) dyl) + o Walp, )
Rex R4
We denote by D, u(uo) := p.

We refer to [19] and [2] for examples. In this section, we aim to provide a new

proof of Proposition 3.13. As in [30], the proof is based on the following proposition
that will be proved, together with Proposition 3.13, at the end of this section:

Proposition 3.15. Let X € L3(Q,R?Y). Assume that U : L3(,RY) — R is re-
arrangement invariant and that Z € L3(2,R?) satisfies for all Y € L3(Q, RY):

(41) UY)-U(X) <{(ZY = X))z +o(|]Y — X])
Then we also have for all Y € L3(Q,RY):
UY) = U(X) < (prp,(2).Y = X)pz +o (Y — X])),
moreover if pry (Z) = po X and q is the projection on Txip(RY) of p, we have

again:
UY)=U(X) <{goX,Y = X))z +o(|]Y — X])).
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Remark 3.16. Proposition 3.13 has been proved in [30] with some extra assumptions
on the probability space (€2, B(2),[P). The proof relies on the Proposition 3.15 and
uses a very technical result in |21]. We provide a different and simpler proof only
requiring that €2 is Polish, without using [21].

3.2.1. Preliminary results. The following result gives a characterization of the pro-
jection on Hx:

Lemma 3.17. Let Z, X € L2, we have
pry (Z) =po X, with v = (X, Z)iP and p(z) := /zdvz(z).

Proof. Indeed, for all ¢ € L3,p(R?, RY)

[@ox) wexyap= [ ola)-pla) dx3) (o)

_ /R o) { / zdv”ﬁ(z)} d(XtP)()
_ /R ) = Ay (X))

:/RW 8(x) - = dy(z, 2) = /(¢ox> . Z dP.

Q
U

Remark 3.18. Another expression of p can be given by disintegrating P with respect
to X (see Theorem A.1). Indeed, PP can be written P(w) = (X{P) ® P, and then it
can be proved that

p(z) = / Z(w) dP,(w).
X—1(z)

Lemma 3.19. Let U : L3(2,RY) — R be rearrangement invariant and let X, Z €
LA(Q,RY) such that for all Y € L3(Q,R?):
(42) UY)-UX) <(Z,Y = X)z to([]Y = X])).
Then for any couple (X', Z') € LA(2,RY? such that (X', Z")P = (X, Z){P:

U(Y)~ UX) < (ZY — X)pz2 o (Y - X'|)
for all Y € LE(Q,RY).

Proof. Let (Y,), be a sequence in L2(Q2, R?) such that lim,,_, . [|Y, — X’|| = 0. By
Lemma 1.1, it exists 7,, : © — Q one to one such that 74P = 7, P = P and:

(43) (2, X) = (2, X") o 7al| < [IYe — X"
Then, as U is rearrangement invariant and using Cauchy-Schwarz:

U(Yn)=UX') =(Z"Y, = XYz =U(Ynom) —UX) = (Z' o, V01, — X' o7 2

<U(Ypom) —UX) —(Z,Y,or =X o)z + |Yaor, — X om - | Z = Z'||7.
<U(Yno07) =U(X) = (Z, Yoo — X) 2 + | Z|[|1X = X" 07| + [|Vs — X|P
<U(Ynom,) = UX) = (Z,Yyor — X) 2 + ||V = X'P(I1 2] + [IYn = X))
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Moreover, using again (43), leads to
(44) Yoo =X < [Yoorm — X om |+ [|X = X om,[| < [[¥o — X[/ (1+[Yo — X[]).
This gives
U(Ya) = U(X') = (2, Yo — X')12
1Y, = X7
- UY,or,)—-UX)— <Z,Yno7'n—X>LH2)
- Yy 07 — X||
where ¢ : RT — R satisfies lim;_,0e(t) = 0.
Then, since lim ||Y, o7, — X|| = 0 by (44), by letting n — +o0 in the previous

n——+o00

inequality we get the result. 0

(T4 (1Y = X') + e(lYan — XD,

Remark 3.20. Note that, applying the previous Lemma with Z = p o X, (24) holds
true for all v € Po(RY) and all v € W(u,v) iff

U(Y) — U(X) < / (o X) - (Y = X)dP +el]Y — X||zgazn + (1Y — Xl 2auze)

for all X € L3(,RY) of law pg and all Y € L3(Q,R?). Indeed,
e given v € (o, v), there exist X', Y’ € L2(Q,R?) s.t. (X', Y')iP = 7,
o given X € L3(Q,R?) of law po, and Y € L3(Q,RY), then v = (X, Y)iP €

I (po, Y §P).
Next we will use the following specific notations:
T (z,y,2) € R® iz, T, (7,y,2) ER® s 2,
Tey (2,9, 2) € R® — (2,9), Toz: (2,9,2) € R = (1, 2).

Corollary 3.21. Assume that X, Z satisfy (42). Set v = (X, Z)iP and p = X{P
and u : P5(R?Y) — R associated to U. Then, for any v € Po(RY) and any tri-plan
w € PR x R x RY) such that m, fw = v and T, fw = v, it holds:

(1) ur) ) < [ st-a) dmtep)+o ([ y-alamin)?).
(RH)3 (R)2

Conversely, let u : P5(R?) — R and p € Py(RY). Assume v € P5(RY) satisfying
Tty = p is such that (45) holds for any for any v € P5(RY) and any tri-plan
w € Po(RY x R x RY) such that 7, 4w = v and w o = v. Then, denoting by U

the lift of u, the assumptions of Lemma 3.19 holds for any X, 7 € Li(2,R?) such
that (X, Z){P = .

Proof. The first assertion is easily proved by noticing that there exist X' Y, 7" €
L3(Q,R?) such that (X',Y, Z')iP = w and, consequently:

v=mpw=Y, p=miw=X, (X,2)P=v=mn,.tw= (X 2P,
and by Lemma 3.19:
u(v) —u(p) =UY) -UX") < (Z")Y = X"}z + o (Y — X"|])

< [ 5= dste) vo (( [ o (o) ).

The converse is similar. O
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Remark 3.22. Taking v and U as in Corollary 3.21, the previous result makes a direct
link between the notion of super-differential in L3(2, R?) (namely Z € DTU(X) iff
the assumption of the Lemma 3.19 holds) and the notion of strong Fréchet super-
differential introduced in [3] (namely v € O%u(u) iff (45) holds for any v and w as
in the corollary). Precisely, if (X, Z)fP = v and X{P = pu = 7,4y we have

vedtulu) & Z e DTU(X).

3.2.2. Proof of Proposition 3.15 and Proposition 3.13.
Proof. (of Proposition 3.15) Let Y € L2(Q,R?) arbitrary. We set:

v = (X, 2)4P, wi= X4P, v =Y{P, p=(X,Y)iP.
By disintegration, v and p write as

V(x, 2) =7(2) @ p(x),  plz,y) = p*(y) @ p(z).
Then, setting w(z,y,2) = 7*(2) ® p*(y) @ p(x) we get a tri-plan satisfying:
Teyfiw = p, mliw=milp=v, . .tw=7.

We apply the first assertion of Corollary 3.21:

U(Y) = U(X) =u(v) — u(p)

= [ =t vo((f e ) )
< /Rd —x) dy*(2)dp*(y) dp(z) + o ((/(Rd)2 ly — z|2dp(z, y))l/Q)
-/... / G =) dote) o (o= oot ).
Recalling Lemma 3.17, we have p(z) = [ [pa 2dv"(2)] with po X = pry, (Z), and as
(X, V)P = p
U =00 [ b)) dofey) + o ( [, lv=ataste ')

=(po XY = X)) +o([Y = X]).

The first assertion of the Proposition is proved.
To prove the second assertion, notice that by the computation above, for any
v € P5(RY), an any optimal p € II,(u, v):

u(v) —u(p) < / p(z) - (y — ) dp(z,y) +o ((/(R

v — aldpa, y>>1/2) |
(R9)2

d)2
Now, z — [y dp®(y) — = being an optimal displacement, it is in 7,(R?) and:

)= < [ o) { o - ] dp() + o(Walp, 1))

R4

< [ prn o)) | [ o)~ | dnto) + o)
= [ pn ) =) dote) +o (] et

The conclusion follows by Proposition 3.4 and Remark 3.20 . U
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Proof. (of Proposition 3.13). We have that, for all Y € L3(Q, R%):
U(Y) —U(Xo) = (DU(Xo), Y — Xo)r2 + o (Y — Xol]),
so that by Proposition 3.15, we also have:
UY) = U(Xo) < (poXo, Y — Xo)rz +o([[Y = Xol)),
where p is the projection on Tx,sp(RY) of po X =: Pl (DU(Xp)). In a symmetric
way, we could get:
UY) = U(Xo) 2 (poXo, Y — Xo)z +o([[Y — Xoll),

so that DU(X) = poX and p is in Tx,yp(R?). The last assertion follows from Lemma
3.19. 0

3.3. Viscosity solutions. We recall the definition of viscosity sub and supersolu-
tion associated to the previous definitions of sub and superdifferential (see [33]).
Definition 3.23 (Viscosity Solutions). A function w : Z(R?) — R is
e a subsolution of (HJ) if w is upper semicontinuous and there exists C' > 0
such that for all u € 22,(RY), p € DFw(u), and € > 0

e a supersolution of (HJ) if w is lower semicontinuous and a constant C' > 0
exists such that p € Z5(R?), p € D-w(t, 1), and € > 0

H(p,p) < Ce.

e a solution of (HJ) if w is both a supersolution and a subsolution.

We refer to [35], [33] for comparison principle using these notions with some quite
weak assumptions.
We will assume some regularity for the Hamiltonian associated with (HJ):
(A) For all g € P5(R?), the map p € T,,(R?) — H(uo,p) is continuous in
L;Qm (R, RY).
We also introduce a Hamiltonian on the set

[(X.poX): X € LA(QRY, pe Tap(RY)
by H(X,po X) := H(X{P,p), and the corresponding Hamilton Jacobi equation:
(HJ) H(X,DU(X))=0.
3.3.1. Properties of the superdifferential. We provide some properties of DFu(pup)

and relations with the following superdifferential introduced in [4]: p € T,,(R%)
belongs to D} u(po) if it satisfies for all v € II,(uo, v):

ulv) ~ulpo) < [ p(o) - (v = o) ) + 0 (Waluo, ).
Remark 3.24. By Proposition 3.5 and Remark 3.8, when p has no atom, taking
e=0
Prn(Rd)(DgQ,oU(N)) = Djgu(p).
We prove that superdifferentials are nonempty when gy belongs to some dense

set. Moreover we give a link between superdifferentials of [35],[33],[30].

Proposition 3.25. Let u : P3(R?Y) — R be continuous. Then there exists A a
dense subset of Py(RY) such that we have:
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(i) Digu(uo) is non empty for any po € A,
(ii) for all e > 0, DXu(uo) is non empty for any uo € A,
(iii) 4t holds D u(po) = {p = lim.sop. : pe € DFu(po)}-
The last assertion is true even when u 18 not continuous.
Proof. We prove (i) and (iii), assertion (ii) follows.

(i) Let U the lift of u and X € L3(©2,R?) a random variable of law 9. Note that
U is also continuous. Take also R > 0, € > 0 and consider the following function:

Y — X||?
o) - 22 ey - <

—00, otherwise.

Ve(Y) o=

This function being upper semi-continuous, by Stegall’s variational principle (The-
orem 8.8 p 55 of [19]), there exists £ € L2 with ||¢]] < ¢ and such that V. — (£, )
attains its maximum at some X*. By definition of V., we have | X* — X[ < R.
Since V.(Xo) — (£, Xo) < Vo(X*) — (£, X*) we get

|X7 = Xo||* < e(U(X") = U(Xo)) +&*[| X" — Xol.

Then, for £ small, || X* — Xo|| < R, and for Y in a neighborhood of Xy, V.(Y) —

U(Y) = U(X) < é(x* Xy ey — x4 I =X

This means 2(X* — X;) 4 £ satisfies the condition of Proposition 3.15. Then, by
applying the proposition, we get some p € Tx-p(R?) such that:

UY)-U(X") < (po X" Y = X") +o(||lY — X7|).
The conclusion follows using Lemma 3.19 and Remark 3.20.

(iii) First we show D} u(pe) C {p = lim.op: : p- € DFu(ug)}. Let p €
D} su(po), by definition of 7,(R?), there exists {p.}. in dis™(uo) such that ||p. —
pllzz, <. Then for all v in P5(R?) and all v € 11, (o, v):

ulv) =~ ulpo) < [ pla) - (= 2) dr(a.9) + 0 (Walpa, )
< [ pela) - (o= 2) datirg) + I = plig, W) +0 (Wi, )

< / pe(z) - (y — 7) dy(z, ) + Walpto, v) + 0 (Wa(juo, v))

So we have the desired inclusion. We prove the converse. Let p = lim._,qp. with
p- € DX u(u). As, for any e, p. € dis™(ug) we have p € T,,(R?). Now take {14} a
sequence of Z,(RY) and ~y; € I1,(u, vy) such that:

lim W3 (i, v) = / ly — xf? dyi(z,y) = 0.
k—+o00 RdxRd

We have by Cauchy-Schwarz:
) = u(po) = [ ple) - (v = ) (o)

< (i) — u(yu0) /pa (y — w)d(z,y) + - — pl,
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So for every € > 0:

w(ve) — ulpo) — / p(@) - (y — 2)d(z, y)

lim sup < e+ |[pe — Pl -
k—+o0 WQ(Vk, ,uo) || € | )
Letting ¢ — 0" yields the result. O

Proposition 3.26. Let u: P5(R?) — R be k-Lipschitz, p in Po(RY). Then:

(i) For alle >0, and all ¢ € D u(u) we have ||ql|lrz <k +e.
(ii) Take p. € DFu(u) for all e > 0. Up to a subsequence {p.}. admils an
L2 (RY, RY)-weak limit p as < tend to 0. Moreover p € D, (1).

Proof. Denote by U the lift of u and let X € L3(Q,R?) of law p. By Corollary A.5
3), the map U is k-Lipschitz. We have for all Y € L3(, RY),

UY)-UX)<{qgo X, Y = X) +¢||Y — X|| +o(||]Y — X|]).
Then, applying this inequality with Y = —t(q o X) with ¢ € R leads:
U(=t(go X)) = U(X) < ~tllgo X|* +etllg o X|| + ot)
and using the Lipschitz property of U:
tlgo X|* < (k +e)tllgo X[ + oft).

The property (i) follows by dividing by ¢ and letting t — 0.

Then, take the sequence {p.}. defined in (ii). Up to a subsequence (similarly
denoted) {p.}. admits an L3-weak limit p as ¢ — 07. Now let {1, }nen be a sequence
in Z,(R?) and v, € I,(u,v,). Possibly extracting a subsequence, we may assume
that

u(vn) — (i) = Jpayga P() - (Y — 2)dym(z, )

lim su

nﬁ+oop W2 (/Lv Vn)
oy M) ) — Jaarga P(2) - (y — 2)dya(2, y)
oo Wa(p, vn) '

Setting r,, := Wa(p, v,), by Jensen’s inequality, it holds:
1

(/R %(Adydvﬁ(y)—x) 2 du(x)>l/2</w E/Rdy—xdﬁ(y)
(/Rd ly — al” dv(x,y))l/2 .

WQ(M? Vn) N

9 1/2
du(%))

<

1
Then, set ¢, : v +— — (/ y dye(y) — :1:), the sequence {g,}nen is bounded, so
R4

Tn
we can extract a subsequence {g¢,, }reny weakly convergent to some g € Li. For all
e > 0 we have

lim sup L [u(vn) —u(p) —/

n—+oo T'n R? xR4

p() - (y — x)d(a. y>] _

= tim e Jutv) < a) = [ b - o)

k——+o0 Tny
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1

= tim )~ ) = [ ) (= ) | +

b =) - ) o)
<eiin [0 -n)) = ([urn ) -) dut)
—<-tlim (0~ p)a) 40, 0) du(o) = + [ (0. = p)(e) - a(o) du)

By letting € — 07, we obtain (ii). O
Proposition 3.25 provides some links between notions of subsolutions:

Corollary 3.27. Assume assumption (A) holds. Let u : P5(R%) — R be a subso-
lution of (HJ) and let C > 0 the constant appearing in definition 3.23. Then

(i) H(p,p) > 0 for all p € Djqu(po),
(ii) For alle > 0 and all p € T,(R?) such that for allv € P5(R?), all vy € 11,(p0, )

u(v) — uluo) < / p(a) - (y — ) dy(z, ) + e(Waljio, 1)) + 0o(Walpio, v)),
we have H(p,p) > —Ce.

Proof. We only prove (ii). Arguing as in the previous proof, for any § > 0 there
exists ps € D, ;u(po) such that [|ps — p|lrz < ¢ and

The result follows by letting 6 — 0F. O

3.3.2. Test Functions. We want to express the notion of Hamilton-Jacobi solution
in 2,(RY) in terms of test functions, defined as follows.

Definition 3.28. Let u : Z5(R?) — R, g € P5(R?) and ¢ > 0.
v: Po(RY) — R is an e-supertest function for u at pyg if it is continuous, differen-
tiable at pp and there exists r > 0 such that: u(p) = v(ug) and

u(v) < vv) + eWalpo,v) Vv € Py(R?) such that Wy(u,v) < r.
v is an e-subtest function for u at pg if —v is a e-supertest function for —u at g
We also have similar e-test functions in L3(Q, R?):

Definition 3.29. Let U : L2(Q,RY) — R, X, € L3(,R?) and & > 0.
V : L3(R?) — R is an e-supertest function for U at Xj if it is continuous, differ-
entiable at X, and there exists r > 0 such that:

U(Xo) = V(Xo)
UY)<VY)+el|Y — Xo|| VY € LA(,R?) such that ||V — X < 7.
V' is an e-subtest function for U at X if —V is e-supertest function for U at Xj.

We wish to give a result comparing both above notions

Theorem 3.30. Let u: P5(R?Y) — R be continuous and U : L3 — R be its lift.
Assume (A) holds. Then the following assertions are equivalent:

(1) w is a viscosity subsolution of (HJ),
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(ii) there exists C > 0 such that for alle > 0, all puy € P5(RY) and all e-supertest
function v of u at pg it holds
Mo, Do) = —C.

(iii) there exists C' > 0 such that for all € > 0, all pg € P2(R?) and all re-
arrangement tnvariant e-supertest function V of U at some Xy of law g it
holds

H(Xo,DV(X())) Z —CEe.

To prove this theorem we need some preliminary results.

Lemma 3.31. Let U : L3 — R be rearrangement invariant, Xo € L3 and e > 0. Let
V' be a rearrangement invariant c-supertest function of U at Xy. Let r > 0 be the
constant appearing in the definition of supertest function. Then V is an e-supertest
function of U at any X € L2 with the same law of Xy and the constant r.

Proof. By Lemma 1.1, for any n € N* there exists 7, : @ — 2, (measurable,
invertible with 7,fP = 7,/ "fP = P) such that: [|[X — Xjo7,| < . Let Y € L§
satisfies || X — Y|| < r, then for n big enough we have:

IXo =Y or | =[IXoom Y[ <X -Y| + [ Xoor — X[ <.
Then as V' is an e-supertest function at X, we have:
UYor,)SV(Yor ') +el|Xo—Yor '
As U and V are rearrangement invariant, this leads to
UY) SVY)+el|Xo=Yor || SVY)+elXoom =Y S V() +e| X =Y+~
Letting n tend to the infinity gives the result. 0
The representation of Wasserstein distance (6) gives immediately

Corollary 3.32. Let u: P5(R?) — R and U : L3(Q,R?Y) — R its lift.
a) Let e > 0 and po € P2(RY) and v an e-supertest function of u at jy. Then
the lift V' of v is an e-supertest function of U at any Xy of law pg.
b) Lete >0, Xo € L2(Q,RY) and V' an e-supertest function of U at X,. Assume
V' is rearrangement invariant. Given any v € Py(R4,RY), set
v(v) :=V(Y) for any Y of law v.
Then the map v is an c-supertest function of the lift u at py the law of Xj.

Proposition 3.33. Take u continuous on Py(R?), ¢ > 0 and g € Po(RY). Then:
a) if v an e-supertest function of u at po, its gradient D,v(uy) can be approzi-

mate in LZO (R, RY) by a sequence {p,}n such that p, € D;l/nu(uo).

b) if p € L2 (RY,R?) belongs to D u(uo), there exists a sequence {vy}n of
(e 4+ 1/n)-supertest functions of u at pg such that:

nEIJPoo ||D;tvn(:u0) - p” = 0.

We need a technical Lemma whose proof is very similar to Lemma 3.1.8 in [16]

Lemma 3.34. Let R > 0 and w :]0, R] — R be a lower semicontinuous such that
limy_,o+ w(t) = 0. Then there ezists wp : [0, &] — R such that:

2
a) w(t) < wo(r) for all T €0, g],
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b) wo is continuous on [0, %[,
) wo(r) = 0.

Proof. (of Proposition 3.33)
a) As D,v(po) € Too(RY), there exists {p, fnen+ in disg (1) such that:

1
[pn — D;tU(MO)||L30(Rd,Rd) < o

Then, for all v € P,(R?) and all «y € Tly(po, v):
u(v) = upo) < v(v) = vlpo) + eWs(po,v) <

[ [ Pirt)@) - = 2)int) + 0 Walpo, )| + Wl
< [ palo)- (o= 2)1(2.9) + (4 1/m)Walpo, ) + 0 (Walpu ).

b) As p € T,,(R?), there exists a sequence (¢, )nen in C°(R?) such that:
1
(46) IV = pllez, <
Then setting w,(v) = [ ¢n(z)dv for all v € P5(R?), it is continuous and
1
Dywn(po) = Veon, [ Dpwn(po) = pllzz, < n

Moreover as p € DX u(pp) we have in view of (46)

)~ i) = [ Vo) (v —3) 1oy
limsup <
W (p10,0)—0 W (o, v )
y€Ho(po,v)
ulv) = ulpo) = [ p(a)- (- 2) 1) 1
< limsup +_§(5+_).
Wa (o )0 Wa(po, v) n n
'YEHO(:U'(%V)

Since D, wy(p0) = Vi,

o= lim sup u(y) B U(M?/I)/— wn(”) + wn(MO)
Wa(po,v)—0 2(#07 V)

—(e+1/n)<0

If a < 0 then setting v(v) := u(po) + wy (V) — wy(1o) the proof is concluded.
Assume a = 0. Then set for all 7 > 0

u(v) = ulpo) — wn(v) + wn(po)

w(r) = sup —(e+1/n)
Wa(po,v)<r Wy (,u07 V)
This function is non-decreasing, bounded on some |0, R[, and it satisfies lim w(r) =
r—0t

0. Assume that this function is measurable (we will prove it later). Then we use
the previous lemma and set for all v with Wa(po,v) < &

Un (V) = ulpo) + wn(v) — wn(po) + Walto, v)wo(Wa(po, v)).
Moreover we have
lim Wo(po, v)wo(Wa(po, ) — Walpo, po)wo(Wa(po, Ho))

=0.
Wa(po,v)—0 Wa(po, v)
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Thus v, is continuous and differentiable at py and

Dyvy(pto) = Vg, and v, (o) = u(po)

R
Vv such that Wa(po, v) < 5 w(v) < v,(v) + (e + 1/n)Wa(po, v).
The result is proved.

It remains to prove that w is L.s.c., hence measurable. Indeed let py €]0, R and
take pr, — po such that liminf, ,, w(p) = limg_ 1o w(px). We want to show that
limg 4 oo w(pr) > w(po). If (pr)r admits a non-increasing sub-sequence we are done
because w is non-decreasing.

Let us assume (pg)x is non-decreasing. Let 6 > 0 and v be J-optimal for w(py). Take
t € [0,1] — v, a geodesic curve joining v and py. For k big enough we can find 1y,
such that Wa(uo, v, ) = pr. Then:
u(vg,) —u — Wy (g, ) + Wy,
(6 + 1/TL) ‘l‘w(pk) > ( tk) (MO) ; ( tk) (,u())
k
As Wy(vy,,, v) = Walpo, v) — Wa(us,, o) = (po — pr), by continuity of u and w,,

u(v) = u(po) = wn (V) + wa(po)

lim w(pg) > —(e+1/n) > w(pg) — 9.
k——+o0 po
By the arbitrariness of § > 0, we get the desired regularity. U

Proof. (of Theorem 3.30) First we show (i) = (i7). Let C be the constant appearing
in definition 3.23. We take ¢ > 0, pg € P(R?) and v any e-supertest function of u

at uo. By Proposition 3.33, a), there exists (p,), in D;l/nu(uo) such that

im ||p, — Dyv(po)llzz, = 0.

n—-+o0o
Then, by (i),
H(po, pn) =2 —Cle+1/n)
and using (A) and letting n — +o0

H (o, Dpv(po)) > —Ce.

Using Corollary 3.32 and Theorem 3.13, we have (ii) < (7).
The proof of (ii) = (i) follows from Proposition 3.33, b). O

3.4. To study Hamilton Jacobi equations in L2(;R?) or in Z2,(RY)? It’s a
natural question to ask weather HJB can be studied as an equation in L3(2,RY)
with the usual notion of viscosity solution in L2. This leads to several questions:

1) In order to give a definition of H(X, DV (X)) for any test function V : L3 — R,
we need to extend H to the whole L3(£, RY)2.

2) The extension H should be chosen in order to get some equivalences between
L%-solutions of the extended equation and Z-solutions of (H.J). More precisely,
provided H is rearrangement invariant (see definition 3.35), it is easily seen that
any rearrangement invariant L2-solution of the extended equation is the lift of a
Py-solution of (H.J). The opposite property is more involved.

3) As we would like to apply usual results in L2 to the extended equation, we
want H to preserve the regularity of .

We try here to give some reflexions on the subject.

In this section, we will use consider the following sets

Fo(RY) :={(1,p) : p € LL(RLRY), e Zy(R)},
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Fy:={(X,p): XiP € P(R"), p€ L%{;ﬂp(Rd;Rd)}
We also give the definition:

Definition 3.35 (Rearrangement invariance of Hamiltonians). Given D C L2(£2; RY) x
LA(Q;RY), a function H : D — R is called rearrangement invariant on D if
H(X,§) = H(Y, () for all (X,§), (Y,() € D satisfying (X, )P = (Y, )iP.

Note that the lift H is rearrangement invariant on Fj.

3.4.1. Comparing convergences in L3 and P(R?). For any sequence {(X,, poX,)}n

in Fy, we consider here two natural types of convergences in L2(Q2, R?)?: the strong/weak
convergence and the strong/strong convergence. In this section we study the corre-
sponding notions in Fp(R%). First, we introduce the following distance in Fp(R9):

dr, (111, 1), (2, p2)) = Wa((Idge, p1)dpa, (Idga, pa)ipe).

In addition to the topology induced by dz,, following [3], we introduce the follow-
ing notion of convergence.

Definition 3.36 (Strong/weak onvergence in F5(R%)). Let {(tin, pn) }nen and (i, p)
be in F»(RY). We say that {(tin, pn) }nen converges strong/weak (s/w-converges in
short) to (u, p) if

o lim Wy(pn,p) = 0;

n—-+4o0o

® Duiln — ppt as a sequence of vector-valued measures, i.e., for all ® € CP(R? R9)

lim [ ®(z) - pu(a) dpn(z) = /R ©(2) - pla) dp(z);

n—-+o0o R4

o sup [ |pn|*du, < +oo.
neN JRd

By [3] Theorem 5.4.4. p127, {(in, pn) }nen converges to (ju, p) for dz, iff {(ttn, pn) fnen
. . 2 2
converges s/w to (u,p) and satisfies limsup,, , o [ [pal* dun < [ |p]? dp.
The following Lemma gives the correspondence with converges in L2:

Lemma 3.37 (Alternative characterization for convergence).

i) Given {(fin, Pn) tnen and (p, p) in Fo(R?), the following are equivalent
(1) Wy ((Ide7p7L)ﬂﬂn7 (Ide,p)ﬁ,u) —0;
(2) there exists { X, tneny C L3(Q), X € LE(Q) such that X, P = p,, for all
neN, XyP=pand X,, > X, p,o X, = poX strongly in L3.

i) Let { X, bnen, {&ntnen C L3 and X, € € L. Suppose that X,, — X strongly
and &, — & weakly in L§. Then, set p, = X, 4P, p = XtP, pry, (&) =
D0 X, Py (€) = po X, the sequence {(jim, pn) et 3/ converges 20 (1, p).

iii) Let {(tn, pn) tnen C F2(R?) s/w converging to (u,p).

Then there exist {(fin,, P, ) tren, and {X,, tren C L3, X, € € L2 satisfying
Xop P = pin,, XiP = p, pry, (&) = po X, with X,,, — X strongly and
Pn, © X, — & weakly in L3.

Proof. i) follows from Lemma A.3.

ii) The convergence of the Wasserstein distance in Definition 3.36 (1) follows easily
from (6). Moreover, by weak convergence of &,:

sup HanLﬁn = sup [|p, o XnHLH% < sup anHLﬂ% < +00.
neN neN neN
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To get the second assertion, note that, setting =, = (X, X,,){P:
W, (1, Tdga)in) < (X, Xa) — (X, X)l12 = 0,
thus for all ® € CP(R?,R?), it holds

/Q B(X (@) — (X, (@) dP(w) = / 1B(x) — B(y)* dma(zr, ) = 0.

dyRd
Finally:
lim [ (@) B(@) dun(z) = lim [ (poo Xu(w) - ( 0 Xo(w)) dP(w)
n—4o0o R4 n—-4o00 Q
:nEIEm<fn’ PoXy)pz=({PoX)2= / p(zx) - ®(z) du(z).
R4

iii) By Lemma A.3, there exists X,,, X in L such that X,, — X in L2, u, = X, 4P,
p = X{P. Moreover, since sup |[p, © X,|[r2 = sup||pallrz, < +oo, there exists
neN neN "

{pn, © X, bren weakly converging in L2 to some . Then for any regular ®, we have:

<£a o X>L]12;, :kgrfoo@”k 0 Xp,, ®o X>L]%, = kginoo e pnk('r) ) q)(m') d,unk<x)

= [ p(o)- 2(@)du(x) = (po X, B X}y
R
hence pry, (§) =po X. O
Lemma 3.37 provides some consequences on the regularity of the Hamiltonian.

Corollary 3.38. a ) Hamiltonian H is Lipschitz (respectively continuous) w.r.t. to
dr, on F»o(RY) iff its lift H is Lipschitz (respectively continuous) w.r.t. the strong
topology on Fs.

b) If H is s/w continuous in Fo(R?) then H is s/w continuous on Fy.

3.4.2. Some insights on the reqularity of the extension proposed in [30]. The authors
of [30] propose to consider the following Hamiltonian on L3($, R?):

H(X,€) = H(XEP, pryy,, (p)) with pry, (§) = po X,
together the following extended HIB in L2(9, RY)

~

(HJ) H(X,DU(X))=0.

The Hamiltonian H is rearrangement invariant and satisfies:

~

H(X,po X) =H(X{P,p)
for all (X,po X) € TFy :={(X,po X): p € Txwp(RY), XiP € 25(R%)}.

The interest of this extension, as emphasized in |30], is that the lift of any solution
of (HJ) in the #5-sense is a solution of (?]T]) in the L2-sense (using e-subdifferential
an using the definition of Py-viscosity solutions of the present paper.) This result
is a consequence of Proposition 3.15.

Here we want to determine whether H is regular if H is so. As pointed out
previously, the regularity of H is crucial in order to apply the L3-theory of viscosity
solution.

Lemma 3.39.
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(i) The map Py : (L3, | - [22) x (L3,0) — (F2(RY), s/w), defined by (X,€) —
(XHP, p) where pry (§) = poX, is continuous (o denotes the weak topology).
(i) The map Py : (Lg, ||-[l22) < (L, |||l z2) = (F2(R7), dx,), defined by (X, €) —
(XHP,p) where pry. (§) = po X, is not continuous.
(iii) The map F: (L3, [| - [|12) x (L3, || - l2) — (F2(R7), dx,), defined by (£, X) —
(Pr7y ey (P), XEP), where pry (§) = po X is not continuous.

Proof. (i) is an immediate consequence of Lemma 3.37.
(ii)-(iii) Let 7 € R? and {pp fneny C Po(RY) with p, < Z¢ satisfying p, — 0. Let
v € P5(RY) be without atoms , and choose 7, = (Idga, T),)#jtn € o(pin, ). Up to
a subsequence, we can assume that m, — m9 = d; ® v which is the unique element
of TI(6z,v). Then, by A.3, there exist {X, },en C L3, Y € L2, such that

Xntﬂp = Hn, (Xna T, 0 Xn)tﬂp = Tn, (j’ Y)ﬂ]P) = T,

lim |(X,, T 0 Xa) — (2, Y) 2z = 0.

Then the sequence {(X,, T, o X,, — X,,) }nen strongly converges to (z,Y — Z) but
Py (X, T,o0 X, —X,) = F(X,, T, o X, — X,,) = (i, T, — IdRa)
does not converge s/s to
Py(z,Y —2) = F(z,Y — %) =: (0, p).
Indeed, set v the transport plan defined by:

/gp(x,y)d”y(w, y) = /90(92, y—I)dv(y) = /cp(i“, Y —z) dP for any regular ¢ : R* — R.
Then, recalling that v has no atom, clearly v # (Id X p)fdz and
nl_l)ffoo Wo((Ty, — Idga)3pn, ) = 0 # nl_{lfoo Wa((T5, — Idga) g, (Id X p)2ds).

0

Remark 3.40.

e According to the previous result, even if H is Lipschitz for the distance dg,,
in general the extension H may fail to be continuous for the L2 x L2 norm.

e If H is s/w regular, and supposing that the composition with the projection
on T,(R?) preserves this regularity, then H is also s/w regular.

e It is still an open problem to establish if {(u,p) : p € T,(RY) : u € P(RY)}
is s/w or d, closed, and the regularity of (y1,p) € Fo(R?) = (1, pry, may(D))-
w.r.t. these types of convergence.

Even assuming H is quite regular, it seems a very difficult question to find, in the
general case, a regular extension giving equivalence of solutions in L2 and 2y(R%).
Nevertheless, in some cases, this can be done in a quite natural way as shown in the
next example.

3.4.3. Ezample. As in [17], we consider the following Hamiltonian:
Hi,p) = inf sup [ Flw,u,0) - plz) du(a)
uclU veV JR4

with f: R x U x V — R? where f is bounded, continuous and Lipschitz in its first
variable. The sets U and V' are compact subsets of some finite dimensional spaces.
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We also consider the following time dependent HJB (cf [17]) :

Ou+ H(u, Dyu) =0 on [0,T] x P,(RY)
) {u(T, W=C o PED).

where G is Lipschitz and bounded. We slightly modify the notion of solution:
(e, pu) € R x L2(RYR?) € Diu(t, p) iff p, € dis™ () and for all y € II(y, v):
(s, ) =t < [ pu(o) - (0= ) dr(a) + pils — 1)

— eyt = 9)? + W0 ) + 0 <\/(t Rt W;(MO,m) .

A natural L2-extension of H is (X Y) = inf sup/ f(X,u,v) - Y dP. We set:

uel veV Jo
T {atU + H(X,DU) =0, on[0,T] x L3(Q,R)}
u(T, X4P) = G(XHP)  on L3(Q,RY)}.
Note that:
(47) H(X,Y) = H(X,pri, (V).
Then,
e H is rearrangement invariant and continuous (so in L2, we can consider

approximate superdifferentials or subdifferentials);

e [ and H both satisty the assumptions needed to obtain a comparison prin-
ciple (c¢f Theorem 2 of [24], Theorem 5.6. of [20] also Lemma 6 in [17]);

e using Proposition 4.5. of [30], if (HAj]t) has a unique solution, it is rearrange-
ment invariant.

From all these considerations, we can deduce that, assuming (ﬁvjt) has a bounded
uniformly continuous solution, it is unique, rearrangement invariant, and it is also
the unique solution of (HJ;). Then, it can easily be seen (using for instance (47),
Proposition 3.15, and Proposition 3 of [17]|) that the lift of the value function V of
[17] is the unique solution of (HJ;) and V is the unique solution of (H.J,). In this
case solving (ﬁjt) or (HJ;) is equivalent.

APPENDIX A

A.1. Measure Theory. Let X,Y be a complete metric space. Given p € Z(X)
and a Borel family {v*},ex € Z(X xY') of probability measures (i.e., z — v*(B) is
a Borel map for every Borel set B C X). The product measure p®@v* € Z(X xY)
is defined (see e.g. Section 5.3 in [3]) by setting for all f € CP(X x Y)

(48) /nyfxy (n®@v")(2,y) //f:rydv ) du(z)

Theorem A.1 (Disintegration Theorem, Th 5.3.1 in [3]). Given a measure p €
P (X) and a Borel map r : X — X, there exists a family of probability measures
{ite yoex C P(X), uniquely defined for rip-a.e. x € X, such that p*(X\r=(z)) =0
for rtp-a.e. x € X, and for any Borel map ¢ : X XY — [0, +00| we have

Lo = [ [ i) duso)
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We will write p = (rip) @ u*. If X=X xY and r(z) C{x} XY forallz € X,
we can identify each measure p* € P (X xY) with a measure on'Y'.

We recall a characterization of optimal displacement of dis™ (p) ( definition 3.3).

Lemma A.2 ([33] lemma 5.2). Let p € Z(R?), p € L2(RY). The map p is an
optimal displacement in dis™ () iff there exists v € P(RY) and v € 1,(u,v) such
that p(x) = [pay dy*(y) — x, where v = p @ 4" is a disintegration of .

A.2. Wasserstein space and L2. In section 1.2, we have already defined the rela-
tion ~ allowing to identify (25(R%), Wy) with the quotient (L3(Q, R?)/ ~) equipped
with the quotient topology. Let us denote by [X] the equivalence class of X € L3,
it is clear that the following map is one to one:

[X] € (L3(Q2, RY)/ ~) — X{P € Po(R?).

Consider also pr : X — [X] the canonical projection on the quotient space.

It is well-known that if sequence {X,, },en converge to X in L3 then it converges
also in law i.e Wy (X, (P, X{P) — 0 (while the converse is false). On the other hand,
we have

Lemma A.3. If a sequence p, € P2(RY) converge to u for the distance W then for
any €, — 0 there exist {X, }nen, X in L2 such that X{P = u and

Wa(pn, ) < (1 X = X122 < Waptn, 1) + €n-
Proof. Take X such that Xt#P = u. There exists Y,,, X such that:
W2<,ua ,un) = ||Yn - Zn”Ll%a Ynjj]P) = Znﬁp = Hn.

Then, arguing as in Lemma 1.1, there exists 7,, one to one such that 7,, and 7, are
measure preserving such that | X — Y, o 7|/ < &,. Then we have:

W, i) SN Zn o0 = Xllpz = 120 = X o7 2 < 120 = Yallpz + IYn — X o712
=Walp, pin) + [|Yn 070 — X2 < Walpt, ptn) + €n.
So with X,, := Z, o7, the proof is complete. O
We recall a useful known result:

Proposition A.4. A subset F of the quotient space is closed if and only if for all
([X0])n in F and X € L3(Q,RY),

lim Wo(X, 4P, XtP) = 0 = [X] € F\
n—-+0oo

The previous results then easily imply the useful

Corollary A.5. a) Take U : L3(Q,RY) — R a rearrangement invariant and
set u(XfP) = U(X). Then

U is continuous for the Li- norm < u is continuous for the distance W.
b) Let u: Py(RY) — R and U : L3(,RY) — R its lift. Then
U is continuous for the L%- norm < u is continuous for the distance Ws.
¢) Let u:Pa(RY) — R and U : L3(Q,R?Y) — R its lift. Let k > 0, then:

U is k-Lipschitz < u is k-Lipschitz.
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Now we show a very close relationship between geodesics in the Wasserstein space
and goedesics in the space L2(Q,R?). Recall that ¢t € [0,1] — u; € Po(R?) is a
constant speed geodesic if

Wolpe, pis) = (t — 8)Walpe, o) V0 <s<t <1

Proposition A.6. Let {1 }icjo) be a constant speed geodesic and (Ty,Ts) two ran-
dom wvariables of L3(Q,R?) such that v := (Ty, Ty)HP is an optimal transport plan
from po to py. Then:

e = [(1 — t)T() + tTl]ﬁP, Vt S [0, 1]

Wa(pis, 1) = [T 0 S — T 0 S|z, ¥ 5,¢ € [0,1]

where S is any map in L3 such that SiP = po. In particular, (T, o S)ep] @5 a
geodesic in L3(2,RY).

Proof. By Lemma 7.2.1. p158 of [3], denoting by mp, 71 : R? x RY — R? the projec-
tions on the first and second variable, it holds: p; = [(1 — t)7o + tm1|fy. Then as
v = (To, T1) 4P, we get the first equality. To prove the second equality just notice:

Wa(ps, pe) = [t = s|Wa(po, 1) = [t — s|[|Th — To|| 2
O

We also recall a result concerning the existence and representation of solution of
the multiagent control system

Theorem A.7 (Theorem 3.6 in [33]). Consider a Lipschitz continuous set valued
map F : RT x 25(RY) x R = R? with compact and conver images. Then for
all p € Po(RY) there exists p = {ptepr) € P2(RY) € tﬁzf[({ﬂ(u) an admissible
trajectory driven by F. Moreover, there exists n € P(R? x I'r) such that

(1) py = eifin for all t € [0,T1];

(2) for m-a.e. (x,v) € R x I'r, we have

7(0) =z and ¥(t) € F(edn, y(t)), for a.e. t € [0,T].

Conversely, if n € P(R? x T'y) satisfies (2) above, then p = {p; == efin}iejor) €
,Qf[é‘jT] (1) is an admissible trajectory driven by F, with v = {vyit }re0,1) and for a.e.
t €[0,T] and ps-a.e. y € R?

wi) = [ 50di)

and n{ is given by the disintegration n = pu; @1y .
A.3. Technical proofs.

Proof. (of Lemma 2.4) Given {Y,,(-) }nen C L3(Q) and Y () € L2(Q) such that Y, —
Y in L% and Y, () € GO(t, X(-)), we can extract a subsequence {Y,,, (-) }xen satisfying
Y, (w) = Y(w) for a.e. w € Q, and therefore we conclude that Y (w) € F(t,0;, X(w))
for a.e. w € Q by the closedness of F(t,0;, X (w)). Thus Y () € G(t, X (+)).

Given ¢; € I and X;(-) € L§(Q), consider the set-valued map G}, x, : Q@ = R?
defined as G? y, (w) = F(t1,0:,, X1(w)).
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Since the map = — F(ty,0;,7) is continuous with compact convex nonempty
images, there exists a countable family of continuous map { f,, },en such that f,(x) €

F(t1,0,,, ) and F(t1,0,,2) = U, cy fo(2) for all z € R In particular, we have that

G x, (W) = F(tr,6,, X1(w)) = | fulX1(w)).

neN

Since f, o Xi(-) are measurable, G¢ y is a measurable. Given ty € I, X5(-) € L3

and Y5(-) € G9(ty, X»(+)). By Corollary 8.2.13 in 5], since Y5(+) is measurable there
exists a measurable selection Y1(-) of GY y, such that

Ya(w) = Vi(@)] = dao  w)(Y2(w)) = dr 0, x1(0) (Ya(@))-
So by the Lipschitz continuity of F' we get easily

Y1 = Yal|p2 < Lip F'- (1 + Lip0) - (|t1 — tao| + | X1 — Xal|2)-
Interchanging X; and X, we have Lip G® < Lip F' - (1 + Lip 9). O

Proof. (of Lemma 2.6) According to [28] and [39] it is enough to show that every
point of .¥ has a fundamental system of open convex neighborhoods and that the
convex structure on . is compatible in a suitable sense with the topology induced
on .7 by dco, more precisely that the function ¢ : CO(I; Z25(R?)) x C(I; 2,5 (R?)) x
[0,1] = C°(I; 25(R%)) defined by (0™, 0@ )\) = A0 +(1—-))0P is continuous.
Intersecting each element of the dco-open balls of positive rational radius around
0 € . provides a fundamental system of open convex neighborhoods of @ w.r.t. the
topology induced by dco on ..

For i = 0,1, let "™ = {6, },c; be a sequence dgo-converging to 8" = {0 },c;, and
{An}nen C [0, 1] converging to A. Let

0 :={0M s, where 0} = M0 + (1 — )6,
0)"’“” ::{et)\n’n}tel, VVheI'e @g\"’n = )\negn + (1 - )\n)etl’n’

and, chosen 7%" € T1,(6",0™), i = 0,1, for all n € N, t, 5 € I, set

t Vs
T = A" 4 (1= N\, )wb™ € TI(g,"", 00 m).
We show that {#*"},cx are equibounded. Since {6°"},cy are dco-converging for
¢t = 0,1, in particular they are bounded therefore, considering for instance the

constant curve & = {& hes with & = &y, there exists R > 0 such that deo(8"", &) <
R, i=1,2. From the convexity of the dco-ball we have that dco (0™ &) < R.

We show that {#*"},cy are equicontinuous. Tt holds

wpern o < ([ e yPa (o)
R xR?
V007 + (1= AIEHOL" 617) < W2 007) + W2, 617)

Since for i = 0,1 the set {#""},cn U {0'} in dco-compact, in particular it is
equicontinuous, therefore there exists a continuous increasing w; : [0, +00[— [0, +00[
satisfying w;(0) = 0 and W2(6,™,05") < wi(|t — s|) for all t,s € I, n € N, i = 0, 1.
Therefore {*"},,cx are equicontinuous with modulus w(-) := /w2(-) + w2(-).
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We show that {@*"},cy pointwise converges to . Indeed, given any ¢ €
CYRY), t € I, we have

[ e@asr@ =n, [ elwyast™@+ =) [ eyt o)

R4
and by passing to the limit on n and recalling that [\,| < 1 and that the convergence
in dy implies that 6;" converges in W5 and narrowly to ¢ for i = 0,1, we have that

in_ [ o)) = [ o asia)

n—-4o00 Rd

and so we have narrow pointwise convergence. We prove the uniform integrability
of the second order moments, indeed

[ Par@ = [ Pt a-n) [ P,
RI\B(0,R) R4\ B(0,R) R\ B(0,R)

< / 22 60" () + / 2] d6M" (),
R4\ B(0,R) R4\ B(0,R)

and uniform integrability of the second order moments follows from the uniform in-
tegrability of the second moments for {6;" },cn, which are Ws-converging sequences.

By Ascoli-Arzela theorem we conclude that dCo(OA"’”, 0’\) — 0, thus ¥ is contin-
uous and so the assumptions of [28] and [39] are satisfied. O
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