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Abstract. A variational model for the interaction between homoge-
nization and phase separation is considered. The focus is on the regime
where the latter happens at a smaller scale than the former, and when
the wells of the double well potential are allowed to move and to have
discontinuities. The zeroth and first order Γ-limits are identified. The
topology considered for the latter is that of two-scale, since it encodes
more information on the asymptotic local microstructure. In particular,
when the wells are non constant, the first order Γ-limit describes the
contribution of microscopic phase separation, also in situations where
there is no macroscopic phase separation. As a corollary, the minimum
of the mass constrained minimization problem is characterized, and it is
shown to depend on whether or not the wells are discontinuous. In the
process of proving these results, the theory of inhomogeneous Modica
Mortola functionals is strengthened.
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The Modica-Mortola functional is the prototypical mathematical model
for phase separation in an homogeneous material. After the initial works
[23][24] by Modica and Mortola that proved the conjecture by Gurtin (see
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[19]) in the scalar case, several variants of the functional were studied in the
literature (see, for instance, [29, 17, 20]) to prove the sharp interface limit
in full generality. We refer to [10] for a more comprehensive overview of the
gradient theory of phase separation. From the mathematical point of view,
the main feature of such models is that both the potential and the wells do
not depend on the spatial point, modeling homogeneity of the medium.

Modern technologies, such as temperature-responsive polymers, take ad-
vantage of engineered inclusions, or natural heterogeneities of the medium
are exploited to obtain novel composite materials with specific physical prop-
erties. To model such situations by using a variational approach based on the
gradient theory, the potential and the wells have to depend on the spatial
point, even in a discontinuous way.

The study of phase transition in heterogeneous media with inhomogeneous
conditions is a challenging mathematical problem that has recently drawn
the attention of researchers. A mathematical model for phase separation of
homogeneous materials in an inhomogeneous setting was considered in the
scalar case by Bouchitté in [4], by using techniques heavily relying on the
scalar nature of the functions. A similar problem was also considered by
Sternberg in [29] in the two dimensional setting and with a double well re-
quired to satisfy strong regularity assumptions. The first author and Gravina
in [10] have recently extended the above mentioned results to the vector-
valued case under some strict conditions on the behavior of the double well
potential around the wells. A first result in understanding phase separation
in heterogeneous media was obtained by Braides and Zeppieri in [5], where
the interaction between periodic microstructure and interfacial energies is
studied in the scalar case in dimension one for inhomogeneous conditions.
While on the one hand, the authors consider several regimes and higher order
Γ expansion, on the other hand their approach relies heavily on the explicit
choices of the potential and on the wells, and on the many advantages of
working in the one dimensional scalar case. In particular, the several limiting
functionals identified in their work are with respect to weak-L2 convergence,
and the techniques used are not easily extended to the multidimensional
vectorial case. In [8] (see also [9]) the authors analyzed the case when the
scale of the periodic microstructure and interface are of the same order, in the
case of fixed wells, but without any restriction on the dimensions. Finally, we
should mention that in [3], the homogenization is in the singular perturbation
term which leads to fundamentally different phenomenon.

In this paper, we consider a variational model for phase separation within
a periodically heterogeneous composite material with inhomogeneous condi-
tions, when wells may depend on the spatial variable and have discontinuities.
Fixed ε, δ > 0, the energy can be written as

Gε,δ(u) :=

ˆ
Ω

[
W
(x
δ
, u(x)

)
+ ε2|∇u(x)|2

]
dx. (0.1)

Here Ω ⊂ RN is an open bounded Lipschitz set, and u ∈W 1,2(Ω;RM ). The
double well potentialW is Q-periodic in the first variable, where Q := (0, 1)N ,
modeling a periodic structure of the material. In the functional Gε,δ, the
parameter ε relates to the scale of the diffuse transition layer, while the scale of
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the periodic microstructure is δ. The main novelty of the paper is the general
framework in which the asymptotic behaviour of the functional Gε,δ is studied:
first of all there is no restriction on the dimensions N,M ≥ 1; moreover,
for each x ∈ Ω, the potential W vanishes on two wells a(x), b(x) ∈ RM ,
where the Q-periodic functions x 7→ a(x) and x 7→ b(x) are allowed to have
discontinuities. These assumptions extend significantly those in previous
works. Indeed, in [8] (see also [9]) the vectorial wells were required to be
fixed, and in [5] only the case N = M = 1 is considered and an explicit
potential W and wells a, b are used.

The core of this work is to identify the first order Γ-limit with respect to
the two-scale convergence in the regime where ε is negligible with respect to
δ, namely when the heterogeneities of the material are of a larger scale than
that of the diffuse interface between different phases. The choice of working
with the two-scale convergence is to maintain in the limit fine information
about the asymptotic local microstructure. The second order Γ-limit, as well
as other regimes, will be the content of forthcoming investigations.

Finally, we note that this regime is in particular of relevance to the
biological phenomenon of lipid rafts. This is the theory that within the
cell membrane there are many coexisting fluid phases consisting of various
varieties of bonded lipids and disordered lipid phases. It was shown through
the work of many collaborators (see [28] for a summary) that at physiological
parameters, the phase separation occurs at the scale of nanometers which
is inaccessible to microscopes. Furthermore, in [26] it is noted that there is
no macroscopic phase separation and that thermal fluctuations play a role
in the formation of these nanodomains. This provides an apt setting to use
the tools of homogenization to derive an effective theory for the material
consisting of these nanodomains.

0.1. Main results. In this paper, we consider the regime ε � δ, namely
when the phase separation process happens at a lower scale than that of the
heterogeneities of the material. Our main result is the integral representation
of the Γ-expansion of order one of Gε,δ, that rigorously justifies the writing

Gε,δ = G0 +
ε

δ
G1 + o

(ε
δ

)
.

We explicitly identify the functionals G0 and G1. The main novelty of this
manuscript is in the characterization of the scale ε

δ and the functional G1.
This functional exhibits an interaction between the periodic microstructure
and phase separation. In order to maintain the information on the local
microstructure, we use the notion of two-scale Γ-convergence (see [6]), so
that G1 is defined on the space L1(Ω;L1(Q;RM )), where Q := (−1/2, 1/2)N .
The first order limiting energy has the character of a bulk energy in the first
variable, and of an interfacial energy in the second variable, namely it is of
the form

G1(u) :=

ˆ
Ω
G̃1(ũ(x, ·)) dx, (0.2)

where, for each x ∈ Ω, ũ(x, ·) is the Q-periodic extension of the function
y 7→ u(x, y), and G̃1 is the local energy of the microstructure defined, for a
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Figure 1. A prototypical case showing that the energy of
a recovery sequence needed to transition from a local mi-
crostructure to another is negligible in the limit. The grid
is meant to represent cubes of side δ, in which a different
microstructure has to be approximated.

function v ∈ BVloc(RN ;RM ), as

G̃1(v) :=

ˆ
Q̃∩Jv

dW(y, v−(y), v+(y)) dHM−1(y).

Here Q̃ := [−1/2, 1/2)N , dW is a degenerate geodesic distance related to the
double well potential

√
W (y, ·) (see Definition 4.3), and Jv is the jump set

of the function v. Due to the technical nature of all of the assumptions and
the definitions required to properly introduce all of the functionals above, in
this section we prefer to sacrifice the rigor and to focus on commenting the
peculiarities and the difficulties of the proofs. The precise assumptions are
introduced and discussed in Section 2, while the zeroth and the first order
limiting functionals are introduced in Section 3 and 4, respectively.

First of all, we note that the asymptotic expansion (0.2) does not depend
on the rate at which ε/δ goes to zero. Another interesting observation we gain
from the form of G1 is that, at first order, there is no energy penalty to pass
from one local microstructure to another. To be precise, consider the situation
in Figure 1. Given a function u : Ω×Q→ RM we refer to u(x, ·) : Q→ RM
as the local microstructure at the point x ∈ Ω. As expected, this function
will takes values in the wells a, b. Assume that u is piecewise constant in the
first variable, namely that it equals some u1 : Q→ RM in the blue region,
and some other function u2 : Q→ RM in the green region. Then a recovery
sequence for u will have to approximate a δQ-periodic structure in the blue
region, to transition between the two microstructures in the purple region,
and to approximate another δQ-periodic structure in the green region. It is
possible to construct the recovery sequence in such a way that the energy in
each cube does not depend on the parameters ε and δ. Therefore, since the
number of such cubes is asymptotically negligible with respect to the total
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number of cubes, also the energetic contribution of the recovery sequence
in this region will be asymptotically negligible. In particular, the energy of
the recovery sequence will essentially be the sum of the energies needed to
recover the two Q-periodic microstructures. This is the reason why in the
functional G̃1 the jump set on Q̃ is considered.

The choice of working with a potential vanishing on only two wells is based
on convenience of notation: indeed, our proofs directly extends to that case
of multiple wells satisfying similar assumptions as we use here.

We also note that at first order we see a local phase separation (namely
in the second variable), but not a macroscopic phase separation, since this
is averaged over the entire domain. At the next order of the Γ-expansion,
we expect to see a macroscopic phase separation of a similar form as the
one arising from homogenization of interfaces. However, this problem will
be more challenging as minG1 can be nonzero (see Corollary 4.11), and the
structure of minimizers of the mass constrained minimization problem (which
is what is most interesting for applications) might be hard to identify.

0.2. Outline of the paper and comments on the proofs. The paper is
divided in two parts: the first is devoted to the zeroth order Γ-limit, and the
second to the first order expansion.

In the realm of solid-solid phase separation, the zeroth order Γ-limit is a
well-studied problem. Francfort and Müller in [18] have studied this problem
in a similar framework, which was later extended by Shu in [27] to many
regimes including dimension reduction. The strategy for the proof of the
zeroth order Γ-limit G0 we use here is, in most aspects, similar to previous
work, though in the limsup inequality we employ an argument based on two-
scale convergence and measurable selections. The study of the minimization
problem carried out in Corollary 3.4 allows to identify the general structure
of minimizers of G0, which are of the form

u(x) =

ˆ
Q
µ(x, y)a(y)dy +

ˆ
Q

[1− µ(x, y)]b(y)dy,

for some µ ∈ L2
(
Ω;L2(Q; [0, 1])

)
. In particular, the minimum of the zeroth

order asymptotic energy is zero.
Next step is to identify a class of minimizers we are interested in, and

hopefully to characterize such a class by the rate of convergence to zero of
the energy of a recovery sequence. Our focus will be on the class of functions
that describe a geometric microstructure. Namely, those for which, for almost
every x ∈ Ω, the function y 7→ µ(x, y) is a function of bounded variation
taking values in {0, 1}. By some heuristic computations addressed at the
beginning of Section 4, we get that for a function u of this form, the energy
of a optimal recovery sequence is of the order ε/δ. Therefore, to study the
behaviour of the energy Gε,δ, we multiply it by δ/ε, and unfold it using the
two-scale unfolding operator. We study the Γ-limit of such rescaled functional
which, up to a negligible error, can be written as

G1
ε,δ(u) :=

ˆ
Ω

[ˆ
Q

[
δ

ε
W (y, u(x, y)) +

ε

δ
|∇yu(x, y)|2

]
dy

]
dx. (0.3)
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Note that the nature of the limiting functional G1 is clear from (0.3). Com-
pactness for sequences of uniformly bounded energy (see Lemma 4.12) follows
from an application of the Chacon biting lemma (see [16, Lemma 2.63])
together with Vitali Convergence Theorem. The proofs of the first order
Γ-limit (see Theorem 4.8) use the results of [10] to get the inner functional
G̃1, namely that relate to the phase separation in Q. Since in this paper we
work with more general assumptions, those cannot be directly applied, and
a uniform bound on the Euclidean length of a family of geodesic problems
has to be proved. Section 4.4.1 is entirely devoted to the proof of such
bound. With this latter at our disposal, which gives the liminf inequality
for the internal energy, the liminf inequality for the whole functional follows
by using Fatou’s lemma (see Proposition 4.13). The proof of the limsup
inequality (see Proposition 4.22) is based on an approximation argument.
First, we consider the case where the limiting function u ∈ L1(Ω;L1(Q;RM ))
is piecewise constant in the first variable, namely, when

u(x, y) =

m∑
i=1

ui(y)1Ωi(x), (0.4)

where Ω1, . . . ,Ωm is a polyhedral partition of Ω, and the functions of bounded
variation ui’s take values on the wells. In particular, it is possible to identify
each of such ui’s with a set of finite perimeter Ai ⊂ Q, by setting Ai := {ui =
a}. In this case, the recovery sequences for each of the microstructures ui
provided by [10] are glued together in such a way that the transition between
them has an asymptotically negligible energy (see Figure 1). In order to
obtain a recovery sequence for a general function u ∈ L1(Ω;L1(Q;RM )), we
use a density argument. This requires to being able to construct, for each
ε > 0, a function v of the form (0.4) such that

‖u− v‖L1×L1 ≤ ε, |G1(u)−G1(v)| ≤ ε.

In order to get the second inequality, as it is well known in the Calculus of
Variations, the partition Ω1, . . . ,Ωm cannot be imposed a priori, but it has
to be determined by the function u itself. In particular, for measurability
reasons, we need to have at our disposal a countable family C = {Ci}i∈N of
sets of finite perimeter in Q such that

|G̃1(Ai)− G̃1(Ck)| ≤ ε

for some j ∈ N, where we naturally see the functional G̃1 as a geometric
functional. The family C is constructed in Lemma 4.24.

The first order Γ expansion can also be considered with respect to the
weak-L2 topology (see Corollary 4.9). Moreover, the proofs we present are
stable for the addition of a mass constraint to the functional (see Corollary
4.10). Finally, the minimization problem for the functional G1 is investigated
in Corollary 4.11.

1. Preliminaries

1.1. Two-scale convergence and unfolding. Two-scale convergence is a
powerful tool, first introduced by Nguetseng [25] and developed further in
[1]. Later, it was separately established by Visintin [30, 31] and Cioransecu,
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Damlamian, and Griso [7] to be equivalent to a topology on the product
space via the use of an ’unfolding’ operator. We present here some definitions
and basic results obtained in the above references, which we will use in the
sequel.

We begin with the classical definitions of weak and strong two-scale con-
vergence.

Definition 1.1. We say that {uδ}δ>0 ⊂ L2(Ω;RM ) weakly two-scale converge
to v in L2(Ω;L2(Q;RM )), and we write uδ

2−s
⇀ v, if

lim
n→∞

ˆ
Ω
uδ(x) · ϕ

(
x,
x

δ

)
dx =

ˆ
Ω

ˆ
Q
v(x, y) · ϕ(x, y) dy dx

for every ϕ ∈ L2(Ω;Cper(Q;RM )). Here Cper(Q;RM ) is the space of periodic
continuous functions on RN with period Q.

Two-scale convergence encodes more information than classical weak-L2

convergence. This property is highlighted in the following compactness result.

Proposition 1.2. Let {uδ}δ>0 ⊂ L2(Ω;RM ) be bounded. Then, there exists
v ∈ L2(Ω;L2(Q;RM )) such that, up to the extraction of a (not relabeled)
subsequence, uδ

2−s
⇀ v. Additionally,

uδ ⇀ u :=

ˆ
Q
v(x, y) dy

weakly in L2(Ω;RM ).

Now we recall the unfolding operator, with a definition that is tailored to
the use that we will make of this tool.

Definition 1.3. For δ > 0, let

Ω̂δ :=
⋃
zi∈Iδ

(
zi + δQ

)
∩ Ω, Λδ := Ω \ Ω̂δ,

where Iδ is the set of points zi ∈ δZN such that zi + δQ ⊂ Ω. The unfolding
operator Tδ : L2(Ω;RM )→ L2(Ω;L2(Q;RM )) is defined as

Tδ(u)(x, y) :=


u
(
δ
⌊
x
δ

⌋
+ δy

)
for x ∈ Ω̂δ, y ∈ Q,

a(y) if x ∈ Λδ, y ∈ Q.
(1.1)

where, given an enumeration {zi}i∈N of ZN ,

bxc := zi i := min
{
j ∈ N : zj ∈ argmin{|z − x| : z ∈ ZN}

}
(1.2)

is the integer part of x ∈ RN , and a : Ω→ RM is the function given in (W3)
in Section 3.

Remark 1.4. This definition of the unfolding operator is nonstandard as we
make the unfolding operator nonzero in the small boundary set Λδ×Q. While
this prevents our definition of the unfolding operator from being linear, it
still preserves the main compactness property (see Theorem 1.5), and allows
to simplify some algebraic arguments.
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Theorem 1.5. Given {uδ}δ>0 ⊂ L2(Ω;RM ) and v ∈ L2(Ω;L2(Q;RM )), the
following conditions are equivalent:

(i) uδ
2−s
⇀ v weakly two scale in L2(Ω;L2(Q;RM )),

(ii) Tδuδ ⇀ v weakly in L2(Ω;L2(Q;RM )).

Finally, we use the unfolding operator to define a variant of two-scale
convergence that will prove useful to proving our results.

Definition 1.6. A sequence {uδ}δ>0 ⊂ L1(Ω;RM ) is said to converge strongly
two-scale in L1(Ω;L1(Q;RM )) to u ∈ L1(Ω;L1(Q;RM )) if Tδuδ → u strongly
in L1(Ω;L1(Q;RM )).

1.2. Measurable Selection. Here, we recall the measurable selection the-
orem tailored to our usage that will be needed for the construction of the
recovery sequences. For further reference, see [16, Section 6.1].

Definition 1.7. A multifunction F : Ω→ 2Y \ {∅}, where Y is a topological
space, is said to be Lebesgue measurable if for every closed set S ⊂ Y the set

F−(S) := {x ∈ Ω : F(x) ∩ S 6= ∅}

belongs to the Lebesgue σ−algebra on Ω.

The next result ensures the existence of a measurable selection (see [16,
Theorem 6.10]).

Theorem 1.8. Let Y be a complete separable metric space, and consider
a Lebesgue measurable multifunction F : Ω→ 2Y \ {∅} be with values on a
closed subsets of Y . Then there exists a sequence of Lebesgue measurable
selections for un : Ω → Y , n ∈ N, such that {un(x)}n is dense in F(x) for
every x ∈ Ω

1.3. Sets of finite perimeter. We recall the definition and some well known
facts about sets of finite perimeter. For more details, we refer the reader to
[2, 15, 22].

Definition 1.9. Let E ⊂ RM with |E| < ∞, and let A ⊂ RM be an open
set. We say that E has finite perimeter in A if

P (E;A) := sup

{ˆ
E

divϕdx : ϕ ∈ C1
c (A;RM ) , ‖ϕ‖L∞ ≤ 1

}
<∞.

Remark 1.10. A set E ⊂ RM is a set of finite perimeter in A if and only if
χE ∈ BV (A), i.e., the distributional derivative DχE is a finite vector valued
Radon measure in A, withˆ

RM
ϕdDχE =

ˆ
E

divϕdx

for all ϕ ∈ C1
c (A;RM ), and |DχE |(A) = P (E;A). In particular, the outer

regularity property of Radon measures, allows to define the perimeter of a
set E ⊂ RM in a Borel set D ⊂ RM as

P (E;D) := inf {P (E;A) : D ⊂ A,A open } .
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Definition 1.11. Let E ⊂ RM be a set of finite perimeter in the open set
A ⊂ RM . We define ∂ ∗ E, the reduced boundary of E, as the set of points
x ∈ RM for which the limit

νE(x) := − lim
r→0

DχE(x+ rQ)

|DχE |(x+ rQ)

exists and is such that |νE(x)| = 1. The vector νE(x) is called the measure
theoretic exterior normal to E at x.

We now recall the De Giorgi’s structure theorem for sets of finite perimeter.

Theorem 1.12. Let E ⊂ RM be a set of finite perimeter in the open set
A ⊂ RM . Then

(i) for all x ∈ ∂ ∗ E the set Er := E−x
r converges locally in L1(RM ) as

r → 0 to the halfspace orthogonal to νE(x) and not containing νE(x);
(ii) DχE = −νEHM−1 ¬ ∂ ∗ E;
(iii) the reduced boundary ∂ ∗ E is HM−1-rectifiable, i.e., there exist Lips-

chitz functions fi : RM−1 → RM , i ∈ N, such that

∂ ∗ E =
∞⋃
i=1

fi(Ki),

where each Ki ⊂ RM−1 is a compact set.

We now recall a strong approximation result by Gromard (see [13], and
also [12]).

Theorem 1.13. Let A ⊂ RM be an open set, and let E ⊂ A be a set of
finite perimeter in A. Then, for each ε > 0 there exist a set F ⊂ A of finite
perimeter in A, and a compact set C ⊂ A such that

(i) ∂F ∩A is contained in a finite union of C1 hypersurfaces;
(ii) ‖1E − 1F ‖BV (A) < ε;
(iii) HM−1(∂F ∩A \ ∂ ∗ E) < ε;
(iv) F ⊂ E +B(0, ε), and D \ F ⊂ (A \ E) +B(0, ε);
(v) C ⊂ A ∩ ∂ ∗ E ∩ ∂F ;
(vi) νE(x) = νF (x) for all x ∈ C;
(vii) |D1E |(D \ C) < ε.

2. Assumptions

Let Ω ⊂ RN be a bounded open set, and N,M ≥ 1. Denote by Q :=
(−1/2, 1/2)N the unit cube in RN , and write LN -a.e. point x ∈ Ω as

x = bxc+ y, (2.1)

where y ∈ Q, and bxc is the integer part of x ∈ RN , defined in (1.2).
Consider measurable functions W : Ω× RM → [0,+∞) and a, b : Ω→ RM ,
and pairwise disjoint open sets E1, . . . , Ek ⊂ Q with piecewise affine boundary
and with

Q =
k⋃
i=1

(
Ei ∩Q

)
,

such that the following assumptions are satisfied:
(W1) For all p ∈ RM , the function x 7→W (x, p) is Q-periodic;
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(W2) For LN -a.e. x ∈ Ω, by using the writing in (2.1), it holds

W (x, p) =
k∑
i=1

χEi(y)Wi(y, p),

where, for each i ∈ {1, . . . , k}, the function Wi : Ei × RM → [0,∞)
is locally Lipschitz continuous;

(W3) For LN -a.e. x ∈ Ω, it holds

a(x) =

k∑
i=1

χEi(y)ai(y), b(x) =

k∑
i=1

χEi(y)bi(y),

where, for each i ∈ {1, . . . , k}, the functions ai, bi : Ei×RM → [0,∞)
are Lipschitz continuous. Moreover, for LM -a.e. y ∈ Ω, it holds

W (x, p) = 0 if and only if p ∈ {a(x), b(x)};

(W4) For every i ∈ {1, . . . ,m}, and for LM -a.e. y0 ∈ Q \ {ai = bi}, there
exist µ > 0, R > 0, c1 > 0, such that, for all y ∈ B(y0, µ),

1

c1
|p− ai(y)|2 ≤Wi(y, p) ≤ c1|p− ai(y)|2,

if |p− ai(y)| ≤ R, and
1

c1
|p− bi(y)|2 ≤Wi(y, p) ≤ c1|p− bi(y)|2,

if |p− bi(y)| ≤ R;
(W5) There exists c2 > 0 such that, for LN -a.e. x ∈ Ω,

W (x, p) ≥ 1

c2
|p|2,

if |p| ≥ c2, and

W (x, p) ≤ c2(1 + |p|2),

for every p ∈ RM .
We would like to make several comments on the assumptions made.

Remark 2.1 (Axes of periodicity). The periodicity of the potential W and
of the wells a and b are meant to model a situation of a periodic medium,
while the dependence on x of all of the above functions allow to consider more
general physical settings, like a inhomogeneous one. The choice of asking for
periodicity with respect to the principal axes is not restrictive: our results
hold also in the case of periodicity with respect to any basis of RN .

Remark 2.2 (Discontinuities of the wells). The possible discontinuities of
the potentialW and on the wells a and b make the model suitable for studying
material inclusion. Our framework includes the assumptions used in the work
by Braides and Zeppieri [5], where W : R× R→ [0,∞) is given by

W (y, s) :=

{
W̃ (s− k) y ∈

(
0, 1

2

)
,

W̃ (s+ k) y ∈
(

1
2 , 1
)
,
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with W̃ (t) := min{(t− 1)2, (t+ 1)2}, and thus the wells are

a(y) =

{
1− k for y ∈

(
0, 1

2

)
,

1 + k else,
, b(y) =

{
−1− k for y ∈

(
0, 1

2

)
.

−1 + k else

Finally, note that there is no loss of generality in assuming that the partition
E1, . . . , Ek is the same for all of the functions, and that we are also including
the case where the previous functions are continuous along ∂Ei ∩ ∂Ej .

Remark 2.3 (Assumptions on the wells). We note that in the work [10] of
the first author and Gravina, a stronger condition than (W2) was assumed,
i.e, that the potential W is exactly quadratic near the well. This restriction is
relaxed in here, by asking only for quadratic bounds. Moreover, here we also
allow wells to merge, namely we do not impose them to be well separated.

Remark 2.4 (On the sets Ei’s). Assuming that the sets Ei’s to have piecewise
affine boundaries is just for reader’s convenience. Indeed, the only technical
point where we use this assumption is in the construction of the recovery
sequence for the first order Γ-limit (see Proposition 4.26). In particular, the
piecewise affine regularity of the ∂Ei’s allows us to apply directly the limsup
inequality proved in [10]. For a partition with piecewise C1 boundaries, a
careful adaptation of the argument used to prove [10, Proposition 4.3], should
give the result also in that case. Finally, if the boundaries are only Lipschitz
continuous, then a Lusin type approximation with piecewise C1 sets will
allow to conclude.

Remark 2.5 (Growth at infinity of the potential). Finally, the quadratic
growth of W can be generalized to any q-growth for q > 1. If only the results
for mass-constrained functional is of interest, then the growth can also be
linear, as proved in [21]. In all of this cases, the results will hold with the
space L2 substituted by the space Lq.

Remark 2.6. [Lower bound on the potential] Using assumptions (W2),
(W3), (W4), and (W5), it is possible to show that, for every r > 0, there
exists Cr > 0 such that

inf {W (x, p) : x ∈ Ω, min{|p− a(x)|, |p− b(x)|} ≥ r} ≥ Cr.

Remark 2.7 (Extension to multiple wells). Finally, we note that the choice
of having two wells a and b is only for notational convenience. A similar result
holds if any number of wells satisfying the above assumptions is considered.

We are now in position to define the sequence of functionals that will be
studied in this paper.

Definition 2.8. Let {εn}n, {δn}n be infinitesimal sequences such that

lim
n→∞

εn
δn

= 0.

For n ∈ N, define the functional Gn : L2(Ω;RM )→ [0,+∞] as

Gn(u) :=


ˆ

Ω

[
W

(
x

δn
, u(x)

)
+ ε2

n|∇u(x)|2
]
dx if u ∈W 1,2(Ω;RM ),

+∞ else.
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Remark 2.9. The choice of writing the functionals by using sequences instead
of using the notation Gε,δ is purely based on convenience, because when prov-
ing a Γ-convergence result, we would have had to fix some {εn}n, {δn}n. In
particular, note that, as long as they satisfy the required rate of convergence,
the choice of sequences do not affect the results we present. Furthermore, the
two scale results hold even when considering the subsequences indexed in n.

3. Zeroth-order Γ-expansion

This section is devoted to proving the zeroth order Γ-expansion of the
functionals Gn (see Definition 2.8). We start by introducing the limiting
functional.

Definition 3.1. Define the functional G0 : L2(Ω;RM )→ [0,+∞] as

G0(u) :=

ˆ
Ω
W hom(u(x))dx,

where, for p ∈ RM ,

W hom(p) := min

{ˆ
Q
W ∗∗(y, p+ ϕ(y)) dy : ϕ ∈ L2(Ω;RM ),

ˆ
Q
ϕdy = 0

}
.

Here, for each y ∈ Q, the function p 7→W ∗∗(y, p) is the convex envelope of
the function p 7→W (y, p).

Remark 3.2. By using the upper and lower bounds on W (see (W5)), it is
easy to see that, for p ∈ RM , the minimization problem defining W hom(p)
has a minimizer φ. To be precise, this occurs because W does not take the
value +∞ and grows at least quadratically at infinity, which means we can
find an affine function in the p-variable below W (y, p). In this scenario, it is
classical that the bipolarW ∗∗(y, ·), can be identified with the convex envelope
of W (y, ·) and it is known that functionals with convex integrands are weakly
lower semicontinuous (see [16, Propositions 6.31, 6.43, and Theorem 6.54]).

The main result of this section is the characterization of the zeroth order
effective energy through Γ−convergence. A similar theorem has been proven
before by Francfort and Müller [18] in the case of solid to solid phase separation
where they consider the same energy, with u,∇u replaced by ∇u,∇2u. While
they use delicate approximation techniques to prove their result, we use
two-scale convergence techniques to embody the spirit of this paper.

Theorem 3.3 (0th-order Γ-convergence). Let {εn}n, {δn}n ⊂ (0, 1) be infin-
itesimal sequences such that

lim
n→∞

εn
δn

= 0.

Let {un}n ⊂W 1,2(Ω;RM ) with

sup
n
Gn(un) < +∞.

Then, up to a subsequence (not relabeled), un ⇀ u in L2(Ω;RM ) for some
u ∈ L2(Ω;RM ) with G0(u) < ∞. Moreover, Gn

Γ→ G0 with respect to the
weak-L2 convergence.
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Proof. Step 1: Compactness. Consider a sequence {un}n ⊂W 1,2(Ω;RM )
with

sup
n
Gn(un) < +∞.

The lower bound (W5) ensures pre-compactness in the weak-L2(Ω;RM )
topology. The fact that any cluster point has finite G0 energy will follow
from next step.

Step 2: Liminf inequality. Let {un}n ∈ W 1,2(Ω;RM ) be such that
un ⇀ u in L2(Ω;RM ). Since {un}n is bounded in L2, Proposition 1.2, we
may find a function u ∈ L2(Ω;L2(Q;RM )) such that

un
2−s
⇀ u(x, y) and un ⇀ u(x) :=

ˆ
Q
u(x, y)dy.

Assume that lim inf
n→∞

Gn(un) < +∞, as otherwise the inequality is satisfied
trivially. Firstly, we drop the gradient term, and rewrite the energy using
the unfolding operator to obtain

Gn(un) ≥
ˆ

Ω
W

(
x

δn
, un(x)

)
dx ≥

ˆ
Ω̂δn

W ∗∗
(
x

δn
, un(x)

)
dx,

=

ˆ
Ω̂δn

ˆ
Q
Tδn

[
W ∗∗

(
x

δn
, un

)]
dydx

=

ˆ
Ω̂δn

ˆ
Q
W ∗∗ (y, Tδnun) dydx,

=

ˆ
Ω

ˆ
Q
W ∗∗ (y, Tδnun) dydx.

Note in the last equality we have used the fact that W ∗∗(y, a(y)) = 0. By
Theorem 1.5 and the definition of two-scale convergence, we know that
Tδnun ⇀ u(x, y) = u(x) + v(x, y) for some v ∈ L2(Ω;L2(Q;RM )) with´
Q v(x, y)dy = 0. Now the desired inequality comes directly from Remark
3.2, using the fact that the bipolar is convex and thus is weakly lower
semicontinuous. We conclude that

lim inf
n→∞

Gn(un) ≥ lim inf
n→∞

ˆ
Ω

ˆ
Q
W ∗∗ (y, Tδnun) dydx,

≥
ˆ

Ω

ˆ
Q
W ∗∗ (y, u(x) + v(x, y)) dydx ≥ G0(u).

Step 3: Limsup inequality. Firstly, we note that it suffices to show the
limsup inequality for u ∈ C∞c (Ω;RM ).

Indeed, for u ∈ L2(Ω;RM ) we can find by density a sequence {uj} ⊂
C∞c (Ω;RM ) such that uj → u strongly in L2. Furthermore, using the fact
that the Γ-limsup is lower semicontinuous [11, Proposition 6.8] with respect
to weak-L2, and that G0(u) is upper-semicontinuous with respect to strong
L2 convergence, we have

Γ− lim sup
n→∞

Gn(u) ≤ lim inf
j

[
Γ− lim sup

n→∞
Gn(uj)

]
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≤ lim sup
j

G0(uj) ≤ G0(u).

Fix u ∈ C∞c (Ω;RM ) and ϕ ∈ C∞c (Ω;C∞per(Q;RM )) with
´
Q ϕ(x, y)dy = 0,

define uϕn(x) := u(x) + ϕ(x, xδn ).

Γ− lim sup
n→∞

Gn(u) ≤ lim
n→∞

Gn(uϕn) = lim
n→∞

ˆ
Ω

[
W

(
x

δn
, uϕn(x)

)
+ ε2

n|∇uϕn|2
]

Note that supn |∇u
ϕ
n|2 ≤ C

δ2n
. Thus, the gradient term disappears due to the

assumption that εn
δn
→ 0 as n→∞. Due to the periodicity, we can apply the

Riemann-Lebesgue lemma on the potential term to conclude that

Γ− lim sup
n→∞

Gn(u) ≤
ˆ

Ω

ˆ
Q
W (y, u(x) + ϕ(x, y)) dydx

Let F̂ϕ(u) be the functional defined in the right hand side of the inequality.
Taking the lower semicontinuous envelope preserves inequalities, and we get
that

Γ− lim sup
n→∞

Gn(u) ≤ lsc(F̂ϕ(u)).

εn
δn
→ 0 as n→∞. Let F̂ϕ(u) be the functional defined in the right hand

side of the inequality. Taking the lower semicontinuous envelope preserves
inequalities, and we get that

Γ− lim sup
n→∞

Gn(u) ≤ lsc(F̂ϕ(u)).

Applying a standard relaxation result (see [16, Theorem 6.68]) and taking the
infimum over all ϕ ∈ C∞c (Ω;C∞per(Q;RM )) with

´
Q ϕ(x, y)dy = 0, we obtain

the inequality:

Γ− lim sup
n→∞

Gn(u) ≤ inf
ϕ

{ˆ
Ω

ˆ
Q
W ∗∗(y, u(x) + ϕ(x, y)) dydx

}
=: Ĝ0(u).

In order to finish the proof, we will show that Ĝ0(u) = G0(u). Firstly, we
note that by density it holds

Ĝ0(u) = inf

{
ϕ ∈ L2(Ω;L2(Q;RM )),

ˆ
Q
ϕ(x, y) dy = 0

}
.

It is easy to see that Ĝ0(u) ≥ G0(u). Next, we will show the other inequality.
Note that by Remark 3.2, for every x ∈ Ω, we can find minimizers ϕx such
that:

W hom(u(x)) =

ˆ
Q
W ∗∗(y, u(x) + ϕx(y)) dy.

We use Theorem 1.8 in order to extract a measurable selection. By coercivity
of W ∗∗ and since ‖u‖∞ < +∞, there exists R0 > 0 such that the image
of any minimizer ϕx must be contained in the closed ball B := B(0, R0) ⊂
L2(Q;RM ). We consider Y := B equipped with the weak topology, which
is metrizable since L2(Q;RM ) is reflexive. In particular, it is separable and
complete as well, and so satisfies the conditions in Theorem 1.8. Define the
multifunction

F(x) :=

{
ϕ ∈ Y :

ˆ
Q
ϕ dy = 0 and ϕ attains the minimum W hom(u(x))

}
.
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As noted before, this is nonempty for every x ∈ Ω.
Furthermore, we claim that for every x ∈ Ω, F(x) is a closed subset of Y

under the weak topology. Indeed, we just need to show it is sequentially closed,
so take {ϕn}n ⊂ F(x) and suppose ϕn ⇀ ϕ. Note that the zero average
condition passes to the limit, and by sequential weak lower semicontinuity of
the integrand, we have

W hom(u(x)) ≤
ˆ
Q
W ∗∗(y, u(x) + ϕ(y)) dy

≤ lim inf
n→∞

ˆ
Q
W ∗∗(y, u(x) + ϕn(y)) = W hom(u(x)).

and we conclude that ϕ ∈ F(x). The last condition needed to be checked in
order to apply Theorem 1.8 is that the multifunction is Lebesgue measurable.
Take S which is closed in Y under the weak topology. We will show that
F−(S), as given in Definition 1.7, is also closed. Again it suffices to check
sequential closure, so we take {xn}n ⊂ F−(S) such that xn → x in Ω. By
definition of F−(S), we can find for each xn a corresponding ϕn ∈ F(xn)∩S.
The sequence {ϕn}n is uniformly bounded in L2(Q;RM ) by definition of
Y , and so we can find a weakly converging subsequence to some limit ϕ.
Furthermore, as S is closed with respect to weak convergence, we must
have ϕ ∈ S and the zero average condition is preserved. We pass to that
subsequence in both {xn}n and {ϕn}n, without relabeling. As xn → x in
the sense of RN , by continuity of u we have u(xn)→ u(x). Once again, we
can apply the sequential weak lower semicontinuity of the integrand and the
upper semicontinuity of W hom, to get

W hom(u(x)) ≤
ˆ
Q
W ∗∗(y, u(x) + ϕ(y)) dy

≤ lim inf
n→∞

ˆ
Q
W ∗∗(y, u(xn) + ϕn(y))

≤ lim sup
n→∞

W hom(u(xn)) ≤W hom(u(x)).

Thus, all inequalities are actually equalities and we have by definition,
ϕ ∈ F(x) ∩ S. This means that x ∈ F (S), and the set is closed. Since the
set is closed, it is a Borel set, which is contained in the Lebesgue σ−algebra.
This proves that the multifunction is Lebesgue measurable, and so we have
checked all the hypotheses of Theorem 1.8. It allows us to find a measurable
function v : Ω→ Y such that v(x) ∈ F(x). Furthermore, since v(x) ∈ Y =

B(0, R0) ⊂ L2(Q;RM ), we have that ‖v(x)‖L2(Q;RM ) ≤ R0. In particular, as
Ω is a bounded set in RN , we have thatˆ

Ω
‖v(x)‖2L2(Q;RM ) dx < +∞.

Therefore, we have that v ∈ L2(Ω;L2(Q;RM )) and by definition of F(x),
we have

´
Q v(x, y)dy = 0. Thus, v is an admissible competitor for the infimum

in Ĝ0(u). We deduce that

Ĝ0(u) ≤
ˆ

Ω

ˆ
Q
W ∗∗(y, u(x) + v(x, y)) dydx = G0(u),
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and this concludes the proof. �

It is also possible to get the explicit value of the minimum of the limiting
functional G0, as well as a characterization of the set of its minimizers.

Corollary 3.4 (Minimizers of G0). It holds that

min{G0(u) : u ∈ L2(Ω;RM )} = 0.

Furthermore, u ∈ L2(Ω;RM ) is such that G0(u) = 0 if and only if

u(x) =

ˆ
Q
µ(x, y)a(y)dy +

ˆ
Q

[1− µ(x, y)]b(y)dy, (3.1)

where µ ∈ L2(Ω;L∞(Q; [0, 1])).

Proof. Step 1: Minima of Convex Envelope. Note that W ∗∗(y, p +
φ(y)) = 0 if and only if

p+ ϕ(y) = f(y)a(y) + [1− f(y)]b(y) (3.2)

for some f(y) ∈ [0, 1]. This is due to the fact that W is only zero at a, b
which is the minimum (see (W3)).

Step 2: Sufficiency. First, suppose

u(x) :=

ˆ
Q
µ(x, y)a(y)dy +

ˆ
Q

[1− µ(x, y)]b(y)dy

for some µ ∈ L2(Ω;L∞(Q; [0, 1])). Consider

φx(y) := µ(x, y)a(y) + [1− µ(x, y)]b(y)− u(x).

Note that φx ∈ L2(Q;RM ) with
´
Q φ

x(y) dy = 0. Thus, it is admissible
competitor in the minimization problem defining W hom. Furthermore, using
convexity, we can deduce that

W hom(u(x)) ≤
ˆ
Q
W ∗∗

(
µ(x, y)a(y) + [1− µ(x, y)]b(y)

)
dy

≤
ˆ
Q
µ(x, y)W ∗∗(y, a(y)) + [1− µ(x, y)]W ∗∗(y, b(y)) dy = 0,

where in the last inequality we used the fact that, for every y ∈ Q,

W ∗∗(y, a(y)) = W ∗∗(y, b(y)) = 0.

Since W ≥ 0 and, in turn, W hom ≥ 0, we conclude that W hom(u(x)) = 0 for
LN -a.e. x ∈ Ω. Thus, we obtain G0(u) = 0.

Step 3: Necessity. Let u ∈ L2(Ω;RM ) be such that G0(u) = 0. In
the proof of the limsup inequality above, we showed that by a measurable
selection, we can find ϕ ∈ L2(Ω;L2(Q;RM )) such that

´
Q ϕ(x, y)dy = 0 and

0 = G0(u) = Ĝ0(u) =

ˆ
Ω

ˆ
Q
W ∗∗(y, u(x) + ϕ(x, y)) dydx.
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In particular, for LN -a.e. y ∈ Q and LN -a.e. x ∈ Ω, we must have that
W ∗∗(y, u(x) + ϕ(x, y)) = 0. Since a, b, and ϕ are measurable, we can find
µ ∈ L2(Ω;L∞(Q; [0, 1])) such that

u(x) + ϕ(x, y) = µ(x, y)a(y) + [1− µ(x, y)]b(y).

Integrating (3.2) in Q and using the fact that ϕ has zero average, we get
(3.1). �

Finally, as it is well-known in the general context of this work, adding a
mass constraint to the problem does not require to change significantly the
proof of Theorem 3.3.

Definition 3.5. Let m ∈ RM . For n ∈ N, define Gn : L2(Ω;RM )→ [0,+∞]
as

Gn(u;m) :=

Gn(u) if u ∈W 1,2(Ω;RM ) with
ˆ

Ω
u dx = m,

+∞ else,

and G0 : L2(Ω;RM )→ [0,+∞] as

G0(u;m) :=

G0(u) if
ˆ

Ω
u dx = m,

+∞ else.

The analogous of Theorem 3.3 and of Corollary 3.4 hold also for the mass
constrained functional. The small changes needed in the proof are classical,
and therefore we will not report them here (see, e.g., [17][10])

Theorem 3.6. Fix m ∈ RM . Let {un}n ⊂W 1,2(Ω;RM ) be such that

sup
n
Gn(un;m) < +∞.

Then, up to a subsequence (not relabeled), un ⇀ u in weak-L2(Ω;RM ) for
some u ∈ L2(Ω;RM ) with G0(u;m) < ∞. Moreover, Gn(·;m)

Γ→ G0(·;m)
with respect to the weak-L2 convergence. Finally,

min{G0(u;m) : u ∈ L2(Ω;RM )} = 0,

and u ∈ L2(Ω;RM ) is such that G0(u;m) = 0 if and only if

u(x) =

ˆ
Q
µ(x, y)a(y)dy +

ˆ
Q

[1− µ(x, y)]b(y)dy,

where µ ∈ L2(Ω×Q; [0, 1)]) with
´

Ω u dx = m.

4. First-order Γ-expansion

In view of Corollary 3.4, we know that minimizers of G0 are of the form

u(x) =

ˆ
Q
µ(x, y)a(y)dy +

ˆ
Q

[1− µ(x, y)]b(y)dy, (4.1)

for some µ ∈ L2
(
Ω;L2(Q; [0, 1])

)
. We would like to study the behaviour of

the sequence of functionals Gn close to the subclass R of functions u as in
(4.1) such that

µ(x, y) = 1A(x)(y)a(y) +
(
1− 1A(x)(y)

)
b(y), (4.2)
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where, for a.e. x ∈ Ω, the set A(x) ⊂ Q has finite perimeter. The class R
corresponds to geometric microstructures, and we will see that this is the
only class for which equipartition of surface energy holds. We proceed as
follows: in next section we identify the proper scaling ω(ε) of the energy by
using heuristic arguments, while rigorous arguments will be employed in the
following sections to prove the Γ-expansion result.

4.1. Heuristics for the scaling analysis. Let u0 ∈ L1(Ω;L1(Q;RM )),
and let {un}n ⊂W 1,2(Ω;RM ) be such that un

2−s
⇀ u0. By using a change of

variable, and neglecting the contribution of cells that intersect ∂Ω, we have
that

Gn(un) =
∑

z∈δnZN

ˆ
(z+δnQ)∩Ω

[
W

(
x

δn
, un(x)

)
+ ε2

n|∇un(x)|2
]
dx

∼
∑

z∈δnZN

ˆ
Q

[
W (y, Tδnun(x, y)) +

(
εn
δn

)2

|∇yTδnun(x, y)|2
]
dy.

(4.3)

We will focus on the behaviour of the energy in each cube. Fix x ∈ Ω, n ∈ N,
and consider the function ũn : Q→ RM defined as ũn(x, y) := Tδnun(x, y).
It holds ũn ⇀ u0(x, ·).

We first assume that u0(x, y) ∈ {a(y), b(y)} almost everywhere, and iden-
tify the scaling ωn of (4.3) in each cube. Then we show that, if for a generic
u0 ∈ L1(Ω;L1(Q;RM )) and {un}n ⊂ W 1,2(Ω;RM ) with un

2−s
⇀ u0 the se-

quence {Gn(un)}n behaves like the scaling ωn, then the limiting function u0

must be such that u0(x, y) ∈ {a(y), b(y)} almost everywhere.
Let µn > 0, to be chosen later, and subdivide the cube Q into smaller

cubes µnQ. In each of these little cubes we perform the construction detailed
in Figure 2. Namely, for γn, ηn > 0 with

ηn � µn, γn � µn, (4.4)

the function ũn(y) is either a(y) or b(y) in most of the cube, with ηn being
the thickness of the interface between a and b, and γn being the thickness of
the cut-off region. Both are needed to ensure that un(y) ∈W 1,2(Q;RM ).

We now evaluate the order of the energy of such a configuration. We have

1

µNn

ˆ
µnQ

[
W (y, ũn(y)) +

(
εn
δn

)2

|∇nũn(y)|2
]
dy

=
1

µNn

{[
(0 +

(
εn
δn

)2

)(µNn − ηnµN−1
n − γnµN−1

n )

]

+

[
(1 +

(
εn
δn

)2 1

η2
n

)(ηnµ
N−1
n )

]
+

[
(1 +

(
εn
δn

)2 1

γ2
n

)(γnµ
N−1
n )

]}

∼

[(
εn
δn

)2
]

+

[
ηn
µn

+

(
εn
δn

)2 1

ηnµn

]
+

[
γn
µn

+

(
εn
δn

)2 1

γnµn

]
, (4.5)

where the terms in the square parenthesis correspond to the energy of the
pink and purple region, the green region, and the blue region respectively.
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Figure 2. The construction in each cube zi + µQ: in the
pink region we set ũn(y) to be a(y), and in the purple one
to be b(y). We then have the interface (colored in green) of
thickness η, and the cut-off region (colored in blue) of thickness
η.

In the case u0(x, y) ∈ {a(y), b(y)} almost everywhere, we have that µn
must be of order 1. Moreover, it is possible to see that for each choice of
vanishing sequences {ηn}n, {γn}n, the first term is always of higher order
than the last two. In particular, there is no rescaling that allows to see that
energy contribution (the bulk energy). On the other hand, it is possible
to make the last two terms of the same order if and only if ηn = γn = εn

δn
.

Therefore, we guess that ωn = εn
δn
.

We now show that this scaling identifies functions u0 ∈ R. Dividing (4.5)
by εn

δn
we get

εn
δn

+
1

µn

(
ηn
δn
εn

+
1

ηn

εn
δn

)
+

1

µn

(
γn
δn
εn

+
1

γn

εn
δn

)
,

which is finite as εn → 0 if and only if µn is of order 1 and γn = ηn = εn
δn
.

This is the heuristic reason to choose the scaling ωn = εn
δn
: it is expected

to give equipartition of the surface energies and to select minimizers of u0

of the form (4.2). We will rigorously prove in the next sections that indeed,
this is the correct scaling.

4.2. The limiting functional. Motivated by the heuristics of the previous
section, we introduce the new family of functionals.

Definition 4.1. For n ∈ N, we define the functional Gn : L1(Ω;RM ) →
[0,+∞] as

G1
n(u) :=

δn
εn
Gn(u) =

ˆ
Ω

[
δn
εn
W

(
x

δn
, u(x)

)
+ εnδn|∇u(x)|2

]
dx.

Remark 4.2. In the following, it is convenient to write the functional
Gn by using the undoflding operator. For n ∈ N, define the functional
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G̃n : L1(Q;RM )→ [0,∞) as

G̃1
n(v) :=

ˆ
Q

[
δn
εn
W (y, v(y)) +

εn
δn
|∇v(y)|2

]
dy,

and note that it is possible to write

G1
n(u) =

ˆ
Ω
G̃1
n(Tδnu(x, ·)) dx+Rn(u),

where, recalling (1.1), we set

Rn(u) :=

ˆ
Λδn

[
δn
εn
W

(
x

δn
, u(x)

)
+ εnδn|∇u(x)|2

]
dx

− |Λδn |εnδn
ˆ
Q
|∇a(y)|2 dy.

In particular, we can see G1
n as a functional defined on L1(Ω;L1(Q;RM )) as

follows
G1
n(v) =

ˆ
Ω
G̃1
n(v(x, ·)) dx+ R̃n(v),

where

R̃n(v) :=

ˆ
Λδn

ˆ
Q

[
δn
εn
W (y, v(x, y)) +

εn
δn
|∇yv(x, y)|2

]
dy dx

−
ˆ

Λδn

ˆ
Q

εn
δn
|∇a(y)|2 dy dx.

These representations will be useful in the rest of the paper.

We now introduce the interfacial energy density of the limiting functional.
It is convenient to introduce the function χ : RM → {1, . . . , k} defined
as χ(y) := i if y ∈ Ei. Note that χ ∈ SBV (RM ) and its jump set Jχ
corresponds to points y ∈ RM such that there exist only two indexes i 6= j
with y ∈ ∂Ei ∩ ∂Ej . It can be identified as Sχ \ Jχ, where Sχ is the set of
singular points of χ.

Definition 4.3. For p, q, z0 ∈ RM , consider the class

A(p, q, z0) :=
{
γ ∈W 1,1((−1, 1);RM ) : γ(−1) = p, γ(0) = z0, γ(1) = q

}
.

Define dW :
[
Jχ ∪

(
Q \ Sχ

) ]
× RM × RM → [0,∞) as

dW(y, p, q) := inf

{ˆ 0

−1
2
√
Wi(y, γ(t))|γ′(t)|dt+

ˆ 1

0
2
√
Wj(y, γ(t))|γ′(t)|dt

}
if χ−(y) = i and χ+(y) = j, where the infimum is taken over points z0 ∈ RM ,
and over curves γ ∈ A(p, q, z0).

Remark 4.4. Note that in the case χ−(y) = χ+(y), we have that

dW(y, p, q) = inf

{ˆ 1

−1
2
√
Wi(y, γ(t))|γ′(t)| dt

}
,

where the infimum is taken over curves γ ∈ W 1,1((−1, 1);RM ) such that
γ(−1) = p, and γ(1) = q.
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In the case χ−(y) 6= χ+(y) we cannot impose a priori the point v0 ∈ RM
where the profile will pass through at time t = 0, and therefore we need to
infimize also over that parameter.

Definition 4.5. Let

R̃ :=
{
v ∈ L1(RN ;RM ) : v is Q-periodic, v(y) ∈ {a(y), b(y)} a.e.,

v|Q ∈ BVloc(Q0;RM )
}
,

where Q0 := Q \ {x ∈ Q : a(x) = b(x)}, and define the class

R :=
{
v ∈ L1(Ω;L1(Q;RM )) : ṽ(x, ·) ∈ R̃ for a.e. x ∈ Ω

}
,

where ṽ : RN → RM denotes the Q-periodic extension of v ∈ L1(Q;RM ).

We are now in position to define the limiting functional.

Definition 4.6. Let G1 : L1(Ω;L1(Q;RM ))→ [0,+∞] be defined as

G1(u) :=


ˆ

Ω
G̃1(ũ(x, ·)) dx if u ∈ R,

+∞ else,

where, for a function v ∈ L1(RN ;RM ), we set

G̃1(v) :=

ˆ
Q̃∩Jv

dW(y, v−(y), v+(y)) dHM−1(y),

and Q̃ := [0, 1)N .

Remark 4.7. Note that the energy G1 is well defined. Indeed, for u ∈ R,
by using the measurability of x 7→ ũ(x, ·), it is easy to see that the function
x 7→ G̃1(ũ(x, ·)) is measurable. Moreover, the jump set Jv of a measurable
function v : RM → R is HM−1-rectifiable (see [14]). Finally, as noted in [10,
Remark 1.8], there are functions v ∈ L1(RN ;RM ) for which G̃1(v) <∞, but
v 6∈ BV(RN ;RM ).

The main result of this section is the following.

Theorem 4.8. Let {εn}n, {δn}n ⊂ (0, 1) be infinitesimal sequences such that

lim
n→∞

εn
δn

= 0.

If {un}n ⊂W 1,2(Ω;RM ) is such that

sup
n
G1
n(un) < +∞,

then there exists u ∈ R with G1(u) <∞ such that, up to a subsequence (not
relabeled), un

2−s→ u strongly in L1(Ω;L1(Q;RM )). Moreover,

G1
n

Γ→ G1

with respect to strong two-scale convergence in L1(Ω;L1(Q;RM )).

The result of Theorem 4.8 is written in the language of two-scale conver-
gence. It gives a natural way to write the Γ-convergence result with respect
to the strong L2 covnergence.
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Corollary 4.9. Let {εn}n, {δn}n ⊂ (0, 1) be infinitesimal sequences such that

lim
n→∞

εn
δn

= 0.

Then
G1
n

Γ→ H1

with respect to the weak L2(Ω;RM ) convergence. Here

H1(v) :=

ˆ
Ω
H̃1(v(x)) dx,

where
H̃1(p) := min

{
G̃1(w) : w ∈ R,

ˆ
Q
w(y)dy = p

}
.

Moreover, if {un}n ⊂W 1,2(Ω;RM ) is such that

sup
n
G1
n(un) < +∞,

then there exists u ∈ R with H1(u) <∞ such that, up to a subsequence (not
relabeled), un ⇀ u weakly in L2(Ω;RM ).

Moreover, as for the case of the zeroth order Γ-limit, the mass constrain
passes to the limit. Namely, the following holds.

Corollary 4.10. Let {εn}n, {δn}n ⊂ (0, 1) be infinitesimal sequences such
that

lim
n→∞

εn
δn

= 0.

Fix m ∈ RM , and define

G1
n(u) :=


G1
n(u;m) if

ˆ
Ω
u dx = m,

+∞ else.

Then it holds that G1
n

Γ→ G1 with respect to the strong two-scale convergence
in L1(Ω;L1(Q;RM )), where

G1(u;m) :=


G1(u;m) if

ˆ
Ω

ˆ
Q
u dy dx = m,

+∞ else.

A similar result holds, with the obvious modifications, for the functionals
considered in Corollary 4.9.

Finally, we study the minimization problem for the limiting functional,
with and without mass constrain. The proofs follow easily from the definition
of the functionals, and by using a measurable selection result like that used
in step 1 of the proof of Theorem 3.3.

Corollary 4.11. It holds that

min
{
G1(u) : u ∈ R

}
= 0

if and only if the Q-periodic extension of the whole RN of the functions a
and b are continuous. Fix m ∈ RM . Then

min
{
G1(u;m) : u ∈ R

}
= 0
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if and only if the Q-periodic extension of the whole RN of the functions a
and b are continuous, and there exists u ∈ R with

´
Ω

´
Q u dy dx = m.

4.3. Compactness. This section is devoted to the proof of compactness,
that we state separately.

Lemma 4.12. Let {un}n ⊂W 1,2(Ω;RM ) be such that

sup
n
G1
n(un) < +∞. (4.6)

Then, up to a subsequence (not relabeled), un → u strongly two scale in
L1(Ω;L1(Q;RM )) for some u ∈ R with G1(u) <∞.

Proof. For the sake of notation, we will write ûn in place of Tδnun.

Step 1. Recalling Remark 4.2, we can write

G1
n(un) =

ˆ
Ω
G̃n(ûn(x, ·)) dx+Rn(un),

where

Rn(un) :=

ˆ
Λδn

[
δ2
n

εn
W

(
x

δn
, un(x)

)
+ εnδn|∇un(x)|2

]
dx

− |Λδn |εnδn
ˆ
Q
|∇a(y)|2 dy.

Since

Rn(un) ≥ −|Λδn |εnδn
ˆ
Q
|∇a(y)|2 dy,

and the right-hand side tends to zero as n→∞, from (4.6) we get that

sup
n

ˆ
Ω
G̃n(ûn(x, ·)) dx ≤ C,

for some C <∞.

Step 2. We claim that if is possible to find a subsequence {unj}j∈N such
that, for LN -a.e. x ∈ Ω, it holds

lim sup
j→∞

ˆ
Q

[
δn
εn
W (y, ûnj (x, y)) +

εn
δn
|∇yûnj (x, y)|2

]
dy < +∞. (4.7)

For each n ∈ N define the function fn : L1(Ω)→ [0,+∞] by

fn(x) :=

ˆ
Q

[
δn
εn
W (y, ûn(x, y)) +

εn
δn
|∇yûn(x, y)|2

]
dy.

Then, by assumption, since W ≥ 0, we have supn ‖fn‖L1(Ω) < +∞. By the
Chacon biting lemma (see [16, Lemma 2.63]), we have the following. There
exists a subsequence {fnk}k∈N, and a sequence {rnk}k∈N ⊂ (0,+∞) with
limk→∞ rnk = +∞ such that, setting

Fj :=

∞⋃
k=j

{x ∈ Ω : fnk(x) ≥ rnk } ,
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we have |Fj | → 0 as j →∞. Set

F :=

{
x ∈ Ω : lim sup

k→∞
fnk(x) = +∞

}
.

Since it is possible to write
F =

⋂
j∈N

Fj ,

and {Fj}j∈N is a decreasing sequence of sets contained in Ω, we obtain that
|F | = 0.

Step 3. Let x ∈ Ω \ F . Considering a sequence of compact sets {Ki}i
invading Q \Q0, using (4.7), and [10, Proposition 4.1] (see also the proof of
Theorem 1.9 in [10]) we can extract a subsequence {unk(x, ·)}k∈N (possibly
depending on x ∈ Ω \ F ), and find a function vx ∈ L1(Q;RM ) such that

(i) vx(y) ∈ {a(y), b(y)} for a.e. y ∈ Q;
(ii) ûnk(x, ·)→ vx strongly in L1(Q;RM ) as k →∞;
(iii) vx ∈ BVloc(Q \Q0;RM );
(iv) G̃1(vx) <∞.

We want to prove that the subsequence does not depend on the point x ∈ Ω\F .
Note that (4.6) implies that

sup
n
Gn(un) <∞,

and thus Theorem 3.3 gives the existence of a subsequence {unj}j and of
a function ũ ∈ L2(Ω;RM ) such that unj ⇀ ũ in L2(Ω;RM ). In particular,
since

sup
j∈N
‖unj‖L2(Ω;RM ) <∞, (4.8)

by applying Proposition 1.2, we get that there exists a (not relabeled)
subsequence such that unj ⇀ u weakly two-scale in L2(Ω;L2(Ω;RM )), for
some u ∈ L2(Ω;L2(Ω;RM )). Therefore

ũ(x) =

ˆ
Q
u(x, y) dy,

for a.e. x ∈ Ω, and, by using (iii), it easy to see that unj (x, ·) → u(x, ·)
strongly in L1(Q;RM ) for all x ∈ Ω \ F .

Finally, we claim that unj → u strongly two scale in L1(Ω;L2(Q;RM )).
Define, for each j ∈ N, gj : Ω→ [0,∞) as

gj(x) := ‖ûnj (x, ·)− u(x, ·)‖L1(Q;RM ).

Then from (4.8) we get

sup
j∈N

ˆ
Ω
g2
j dx < +∞.

Using De la Valée Poussin criteria, we have that {gj}j is equiintegrabile.
Furthermore, by (iii), we get that gj → 0 pointwise almost everywhere. We
can now apply Vitali Convergence Theorem to conclude that gj → 0 in
Lp(Ω) strong for any p ∈ [1, 2). This concludes the proof of the compactness
result. �
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4.4. Liminf inequality. The main result of this section is the following.

Proposition 4.13. Let u ∈ L1(Ω;L1(Q;RM )) and let {un}n ⊂W 1,2(Ω;RM )
with un → u strongly two scale in L1(Ω;L1(Q;RM )). Then

G1(u) ≤ lim inf
n→∞

G1
n(un).

The proof of Proposition 4.13 is based on the liminf inequality for a single
periodicity cell Q. This result is essentially contained in [10, Proposition 4.2]
and in the remarks made in the proof of [10, Theorem 1.9]. In the language
of this paper, it writes as follows.

Proposition 4.14. Let v ∈ L1(Q;RM ) such that v(y) ∈ {a(y), b(y)} for a.e.
y ∈ Q. Let {vn}n ⊂W 1,2(Q;RM ) with vn → v in L1(Q;RM ). Then

G̃1(v) ≤ lim inf
n→∞

G̃n(vn).

The proof of Proposition 4.14 we present here uses a slightly different
strategy from that of [10, Proposition 4.2], and requires some technical
results. We decided to show how to get Proposition 4.13 once Proposition
4.14 is established, and then to move to the technical results needed to obtain
this latter.

Proof of Proposition 4.13. Let u ∈ L1(Ω;L1(Q;RM )), and take {un}n ⊂
W 1,2(Ω;RM ) such that un → u strongly two-scale in L1(Ω;L1(Q;RM )).
Without loss of generality, we can assume that

lim inf
n→∞

Gn(un) < +∞,

otherwise there is nothing to prove. By the compactness result (see Lemma
4.12), we get that u ∈ R. Therefore, recalling the arguments in the proof of
Lemma 4.12 we get that

lim inf
n→∞

Gn(un) ≥ lim inf
n→∞

ˆ
Ω
G̃n(Tδnun(x, ·)) dx+Rn(un)

= lim inf
n→∞

ˆ
Ω
G̃n(Tδnun(x, ·)) dx

≥
ˆ

Ω
lim inf
n→∞

G̃n(Tδnun(x, ·)) dx

≥
ˆ

Ω
G1(u(x, ·)) dx,

where the previous to last step follows by the Fatou’s lemma, while last step
is justified by the fact that Tδnun(x, ·)→ u(x, ·) for a.e. x ∈ Ω, together with
Proposition 4.14. This concludes the proof of the liminf inequality. �

4.4.1. Bound on the Euclidean length of geodesics. First, we prove a technical
lemma on bounds of Euclidean length of geodesics necessary for the liminf
inequality in Q. While the overall proof strategy is similar to that in [10]
and [29], our construction by estimating the energy within each level set (see
Step 2 of Lemma 4.21) is novel.

In this section, in order to make the notation lighter, we will make the
following abuse of notation. Fix a vector ν ∈ SN−1, a point x0 ∈ Q, and a
unit square C centered at the origin and with two faces orthogonal to ν. For
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t > 0, we denote by Q′t := (x0 + tC) ∩ ν⊥. For y′ ∈ Q′t and z ∈ R, we denote
point y′ + zν by (y′, z). Note that the fact that some of the above points
could be outside Ω is of no concern for us, since all of the functions that we
consider are Q periodic, and thus can be naturally extended from Ω to the
whole RN .

We are now in position to introduce the minimization problem that will
be investigated in this section.

Definition 4.15. For p, q ∈ RM , let

A(p, q) :=
{
γ ∈W 1,1([−1, 1];RM ) : γ(−1) = p and γ(1) = q

}
.

For ε > 0, y′ ∈ Q′ε, and p, q ∈ RM , define

Hε(y
′, p, q) := inf

{ˆ 1

−1
Fε(y

′, γ(t))|γ′(t)|dt : γ ∈ A(p, q)

}
,

where
Fε(y

′, p) := min
|z|≤ε

√
W (y′, z, p).

The main result of this section is the following.

Theorem 4.16. Fix x0 ∈ Q, ν ∈ SN−1, and R̃ > 0. If x0 ∈ ∪ki=1∂Ei,
assume that it belongs to only one of those sets. Then there exist ε1 > 0

and L > 0 such that, given any ε ∈ (0, ε1), y′ ∈ Q′ε, and p, q ∈ B(0, R̃), the
minimization problem defining Hε(y

′, p, q) admits a solution γ ∈ A(p, q) such
that ˆ 1

−1
|γ′(t)|dt ≤ L.

The strategy to prove Theorem 4.16 is the following. First we consider
the case where the point x0 ∈ Q \ ∪ki=1∂Ei. This means that W = Wi for
some i ∈ {1, . . . , k}, and, in particular, it is Lipschitz in the second variable.
Consider a minimizing sequence {γj}j∈N ⊂ A(p, q) for the minimization
problem defining Hε(y

′, p, q). The first step is to investigate the behaviour of
the sequence of curves, for ε sufficiently small, close by and far away from
the wells. In particular, in Lemma 4.21 we prove that the portion of the
curves γj that is sufficiently close to a(y′, 0) (or to b(y′, 0)) has uniformly
bounded Euclidean length. Then, by using a lower bound on Fε far from the
wells, we conclude that also the Euclidean length of the sequence {γj}j∈N is
uniformly bounded in that region. The proof of Theorem 4.16 then follows
by using a standard argument based on the Ascoli-Arzelà Theorem ensuring
the existence of minimizing geodesics for the minimization problem defining
Hε(y

′, p, q). We refer to (see [10, Lemma 3.1] for details. Finally, the case
x0 ∈ ∪ki=1∂Ei may be deduced from the previous case.

We start by collecting some basic properties of Fε, which can verified
easily from the definition. In particular, for a proof of (3), we refer to [10,
Proposition 3.2].

Proposition 4.17 (Properties of Fε). The followings hold:
(1) The function (y′, p) 7→ Fε is Lipschitz;
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(2) We have Fε(y′, p) = 0 if and only if p ∈ {a(y′, t), b(y′, t)} for some
t ∈ [−ε, ε];

(3) If there is a function g : S → RM such that

W (y′, yn, p) = |p− g(y′, yn)|2,

then Fε(y′, p) = dist(p,Grgε(y
′)), where

Grgε(y
′) := {g(y′, t) : y′ ∈ Q′, |t| ≤ ε}.

Next, we state a property, based on the parametrization invariant charac-
teristic of the minimization problem defining Hε, that will be used several
times.

Proposition 4.18. Let p, q ∈ RM , y′ ∈ Q′ε, and γ ∈ A(p, q) such thatˆ 1

−1
Fε(y

′, γ(t))|γ′(t)|dt ≤ Hε(y
′, p, q) +

1

j
,

for some j ∈ N. Thenˆ t2

t1

Fε(y
′, γ(t))|γ′(t)|dt ≤ Hε(y

′, γ(t1), γ(t2)) +
1

j
,

for all [t1, t2] ⊂ [−1, 1].

The main idea in the proof of the bound of the Euclidean length close
by the wells is to consider level sets of F (y′, γ(·)) in the construction of a
competitor for the minimization problem defining Hε(y

′, p, q).

Definition 4.19. For ε > 0, y′ ∈ Q′ε, p, q ∈ RM , and γ ∈ A(p, q), and
k ∈ N \ {0}, we define

T kε (y′, γ) :=

{
t ∈ [−1, 1] :

1

(k + 1)2
< Fε(y

′, γ(t)) ≤ 1

k2

}
.

Remark 4.20. Note that by continuity of Fε, we have that

T kε (y′, γ) =

{
t ∈ [−1, 1] :

1

(k + 1)2
≤ Fε(y′, γ(t)) ≤ 1

k2

}
.

Now we are ready to prove the key technical lemma of this section.

Lemma 4.21. Let x0 ∈ Q \ ∪ki=1∂Ei and ν ∈ SN−1. Then there exist
r0 > 0, ε0 > 0, and L1 > 0, such that for any 0 < ε < ε0, y′ ∈ Q′ε, p, q ∈
Br0(y′) := Br0(a(y′, 0)), the following property holds. Let {γj}j ⊂ A(p, q)
be a minimizing sequence for the minimization problem defining Hε(y

′, p, q).
Then ˆ

Tj

|γ′j(t)|dt ≤ L1,

where Tj := {t ∈ [−1, 1] : γj(t) ∈ Br0(y′)}. The same result holds with
Br0(y′) := Br0(b(y′, 0)).

Proof. Let R > 0 be as in (W4). We define

ε0 := min

{
R

2Lip(a)
, dist(x0,∪ki=1∂Ei)

}
,
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where Lip(a) denotes the maximum over the index i of the Lipschitz constant
of ai in Ei. Moreover, by using the uniform lower bound on W (x, ·) close to
the wells, it is possible to choose r0 > 0 so small such that

Br0(y′) ⊂
∞⋃
k=1

{
p ∈ RM :

1

(k + 1)2
< Fε(y

′, p) ≤ 1

k2

}
,

for all ε ∈ (0, ε0) and all y′ ∈ Q′ε. Up to further decreasing the value of r0,
we can also suppose that r0 ≤ R/2.

Case 1. Assume that Hε(y
′, p, q) = 0. Note that this happens if and only

if p, q ∈ Zε := {a(y′, t) : t ∈ [−1, 1]}. In this case, the solution to the
minimization problem defining H(y′, p, q) is given by the curve lying in Zε
joining the two points. By using the Lipschitz regularity of a, we get that its
Euclidean length is less than 2Lip(a)ε0.

Case 2. Assume that Hε(y
′, p, q) > 0. Without loss of generality, we can

assume that ˆ 1

−1
Fε(y

′, γj(t))|γ′j(t)|dt ≤ 2Hε(y
′, p, q), (4.9)

for all j ∈ N.
Step 1: Bounds on Fε. We claim that if ε ∈ (0, ε0) and r ∈ (0, r0), for

all y′ ∈ Q′ε and z ∈ Br(y′) it holds

1
√
c1

dist(z,Graε(y
′)) ≤ Fε(y′, z) ≤

√
c1dist(z,Graε(y

′)). (4.10)

Indeed, by the triangle inequality and Lipschitz regularity of a, we get for
p ∈ Br0(y′):

|p− a(y′, εt)| ≤ |p− a(y′, 0)|+ Lip(a)ε|t| < r0 + Lip(a)ε0 ≤ R.

This inequality gives that Br0(y′) ⊂ TR(Graε(y
′)), and the desired inequality

follows by applying Property 2 in Proposition 4.17.
From (4.10), we easily have the bound Fε(y′, z) ≤

√
c1R for z ∈ Br0(y′).

Step 2: Bounding the energy in a level set. Fix j, k ∈ N \ {0}.
Without loss of generality, we will suppose that

γj

(
T kε (y′, γj)

)
∩Br0(y′) 6= ∅.

Furthermore, to ease notation, we will set

T kε :=
{
t ∈ T kε (y′, γj) : γj(t) ∈ Br0(y′)

}
.

We want to get a uniform bound on the Euclidean length of the curves γj ’s
in the set Tε(y′). Let

t1 := inf
{
t : t ∈ T kε

}
, t2 := sup

{
t : t ∈ T kε

}
,

and
p1 := γj(t1), p2 := γj(t2).
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Figure 3. The construction of the competitor γ̃ carried out
in step 2, in order to estimate the length of a curve γj in the
green region, namely in the region between two level sets of
Fε(y

′, ·).

Using the definition of Lε(y′) and the choice of t1, t2, we get the following
simple lower bound on the energy:

1

(k + 1)2

ˆ
T kε
|γ′j(t)|dt ≤

ˆ
T kε
Fε(y

′, γj(t))|γ′j(t)|dt

≤
ˆ t2

t1

Fε(y
′, γj(t))|γ′j(t)|dt. (4.11)

We employ the geometric property of Hε given in Proposition 4.18 and (4.10)
to deduce that for any γ ∈ A(p1, p2), we have the boundˆ t2

t1

Fε(y
′, γj(t))|γ′j(t)|dt ≤ 2Hε(y

′, p1, p2)

≤ 2

ˆ 1

−1
Fε(y

′, γ(t))|γ′(t)|dt

≤ 2

ˆ 1

−1

√
c1dist(γ(t),Graε(y

′))|γ′(t)|dt. (4.12)

In order to further bound from above the right-hand side of the above
expression, we will construct a suitable competitor γ̃ ∈ A(p+ 1, p2). First,
note that there exist z1, z2 ∈ Graε(y

′) such that

dist(p1,Graε(y
′)) = |p1 − z1|, dist(p2,Graε(y

′)) = |p2 − z2|.

We define γ̃ ∈ A(p1, p2) as the union of the following three curves (see Figure
3):

(1) The segment between p1 and z1;
(2) The portion of Graε(y

′) that connects the points z1 and z2;
(3) The segment between z2, and p2.

Note that, since the energy is parameterization invariant, we do not have
to specify the precise parametrization of γ̃. We now estimate the energy of
γ̃. Again, by the parametrization invariant property of the functional, we
can use ±1 as initial and final time respectively for each of the three curves.
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Note only the two segments contributes to the energy of the curve, and by a
direct evaluation, we get thatˆ 1

−1
dist(γ̃(t),Graε(y

′))|γ̃′|dt =
dist2(p1,Graε(y

′)) + dist2(p2,Graε(y
′)

2

≤ max
{

dist2(p1,Graε(y
′)), dist2(p2,Graε(y

′)
}

≤ c1 max
{(
Fε(y

′, p1)
)2
,
(
Fε(y

′, p2)
)2}

≤ c2
1

k4
, (4.13)

where the previous to last inequality follows from (4.10), while last step is
justified by the fact that, since p1, p2 ∈ γj(Tε(y′)), it holds

max{Fε(y′, p1), Fε(y
′, p2)} ≤ 1

k2
.

Thus, combining (4.11), (4.12), and (4.13), we get

1

(k + 1)2

ˆ
T kε
|γ′j(t)|dt ≤

2c
3
2
1

k4
,

that yields the upper bound
ˆ
T kε
|γ′j(t)|dt ≤

2c
3
2
1 (k + 1)2

k4
, (4.14)

for all j ∈ N.

Step 3: Bounding the Euclidean length. We have thatˆ
Tj

|γ′j(t)|dt ≤

[ ˆ
Zε

|γ′j(t)|dt+

∞∑
k=1

ˆ
T kε
|γ′j(t)|dt

]

≤ 2Lip(a)ε0 +

∞∑
k=1

2c
3
2
1 (k + 1)2

k4
=: L1, (4.15)

where last step follows from (4.14) and the estimate obtained in case 1. Note
that the right-hand side is independent of ε, y′, and thus we achieve the
desired result. �

Now we are ready to prove the main result of this section.

Proof of Theorem 4.16. Fix x0 ∈ Q, ν ∈ SN−1, R̃ > 0. Take p, q ∈ B(0, R̃).
Case 1 Assume x0 ∈ Q \ ∪ki=1∂Ei.
Step 1: Choice of ε1. Let r0, ε0 be given by Lemma 4.21. Define

ε1 := min

{
ε0,

r0

2Lip(a)
,

r0

2Lip(b)

}
.

Note that for every z /∈ Br1(b(y′, 0))∪Br1(a(y′, 0)) and for every |t| ≤ ε < ε1

we have

|z − a(y′, t)| ≥ |z − a(y′, 0)| − Lip(a)|t| > r0 − Lip(a)ε2 ≥
r0

2
, (4.16)

|z − b(y′, t)| ≥ |z − b(y′, 0)| − Lip(b)|t| > r0 − Lip(b)ε2 ≥
r0

2
. (4.17)
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Fix 0 < ε < ε1 and y′ ∈ Q′ε.

Step 2: Estimate of the Euclidean length. Let {γj}j ⊂ A(p, q) be a
sequence satisfying (4.9). We will bound the Euclidean length of each γj in
each of the following regions separately:

R1
j := {t ∈ [−1, 1] : γj(t) ∈ Br0(a(y′, 0))},

R2
j := {t ∈ [−1, 1] : γj(t) ∈ Br0(b(y′, 0))},

and
R3
j := {t ∈ [−1, 1] : γj(t) ∈ Br0(a(y′, 0))

c ∩Br0(b(y′, 0))
c}.

We start from the latter region. By (4.16) and (4.17), together with Remark
2.6, we get that there is C r0

2
> 0 such that

Fε ≥
√
C r0

2
.

Therefore ˆ
R3
j

|γ′j(t)| ≤
1√
C r0

2

ˆ
R3

Fε(y
′, γj(t))|γ′j(t)|

≤ 1√
C r0

2

(
Hε(y

′, p, q) +
1

j

)

≤ 1√
C r0

2

(
m|p− q|+ 1

j

)

≤ 1√
C r0

2

(2mR̃+ 1), (4.18)

where

m := sup
{
W (y′, z, p) : y′ ∈ Q′ε2 , z ∈ [−ε2, ε2], p ∈ B(0, R̃)

}
<∞,

and the previous to last step follows by considering as a competitor the
segment joining p and q.

We now bound the Euclidean length in the regions R1
j and R2

j . By using
Proposition 4.18, together with Lemma 4.21, we obtain thatˆ

R1
j

|γ′j(t)|dt+

ˆ
R2
j

|γ′j(t)|dt ≤ 2L1, (4.19)

where the constant L1 <∞ depends only on x0 and ν.

Step 3: Existence of a geodesic. Using (4.18) and (4.19), there exists
L > 0 depending only on R̃, x0, and ν, such thatˆ 1

−1
|γ′j(t)| dt ≤ L

for all j ∈ N. A standard argument based on the Ascoli-Arzelà Theorem (see
[10, Lemma 3.1] for more details) yields the desired result.
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Case 2. Assume that x0 ∈ ∂Ei \ ∪j 6=i∂Ej , and that χ−(y) = i, χ+(y) = j.
It is easy to see that there exist S > 0, depending only on R̃, x0, and ν such
that, for every 0 < ε < ε1 and y′ ∈ Q′ε it is possible to find z0 ∈ B(0, S) and
curves γi, γj ∈W 1,1([−1, 1];RM ), with

γi(−1) = p, γi(1) = z0, γj(−1) = z0, γj(1) = q,

such that (recall that the functional is invariant by reparametrization)

Hε(y
′, p, q) =

ˆ 1

−1
F ie(y

′, γi(t))|γ′i(t)| dt+

ˆ 1

−1
F je (y′, γj(t))|γ′i(t)| dt,

where

F iε(y
′, s) = min

z∈[−ε,0]

√
Wi(y′, z, s), F jε (y′, s) = min

z∈[0,ε]

√
Wj(y′, z, s).

Thus, by applying case 1 to γi and γj , and S > 0, we conclude also in this
case. �

We are now in position to prove the liminf inequality in Q. Since the
strategy follows a similar argument to that of [10, Proposition 4.2], we will
sketch the main ingredients of the proof, focusing on the points where the
two arguments differ.

Proof of Proposition 4.14. Let {vn}n ⊂W 1,2(Q;RM ) with vn → v in L1(Q).
Without loss of generality, we can assume that

lim sup
n→∞

G̃n(vn) <∞.

Note that, thanks to assumption (W4), we can use the compactness argument
in [10, Proposition 4.1, and Theorem 1.9] to get that v ∈ R̃ with G̃1(v) <∞.
Fix x0 ∈ Jv ∩ K, where K ⊂ Q0 is a compact set. The idea is to use a
blow-up argument, as in the proof of [10, Proposition 4.2]. Note that, thanks
to the continuity of the wells ai’s and bi’s, together with the fact that the
blow up is a local argument, and thanks to assumption (W4), we can use
of the estimate on the Euclidean length of solutions to the minimization
problem defining dW provided by Theorem 4.16. The only difference with
the argument used in the proof of [10, Proposition 4.2] is in step 2, where
the functional Fm (see equation (100) in [10]) is defined here as

Fm(x′, p) := inf
{√

W ((x′, gm(t)), p) : t ∈ (−1, 1)
}
,

where gm(t) := (y′, z + tν), for some ν ∈ SN−1. Using Theorem 4.16, we
obtain that the Euclidean length of the solutions to the geodesic problem

min

{ˆ 1

−1
Fm(x′, γ(t))|γ′(t)| dt

}
,

where the infimum is taken over γ ∈W 1,1((−1, 1);RM ) with γ(−1) = p and
γ(1) = q, are uniformly bounded with respect to ε and x′. We now have all
the elements that allows us to conclude by following the same strategy. �



HOMOGENIZATION AND PHASE SEPARATION 33

4.5. Limsup inequality. This section is devoted to the construction of the
recovery sequence.

Proposition 4.22. Let u ∈ L1(Ω;L1(Q;RM )). Then there exists a sequence
{un}n ⊂W 1,2(Ω;RM ) with un → u strongly two scale in L1(Ω;L1(Q;RM ))
such that Gn(un)→ G1(u) as n→∞.

The construction of the recovery sequence will be done in three steps: first
for the class of simple functions in B (see Definition 4.25), then, in the second
step, using a density argument based on the approximation result Lemma 4.24
to conclude in the general case of a jump set defining a Caccioppoli partition
of Q, while in the last step follows from the density result of Caccioppoli
partitions obtained in [10, Lemma 5.3]. As it usually happens, given a
general u ∈ L2(Ω;BV (Q; {0, 1})), we cannot choose the sequence of piecewise
constant functions that approximate it both in configuration and in energy.
Instead, we need to construct it based on the function u itself to dictate such
piecewise approximation. This requires to have at our disposal a countable
family C of sets of finite perimeter in Q that are dense both in L1 and also
in energy.

The goal of Lemma 4.24 is to construct such a countable family C. Note that
we have to pay extra care in the construction of the recovery sequence, since
the zeros a, b : Q→ RM might be discontinuous on ∪ki=1∂Ei. Indeed, given
A ⊂ Q of finite perimeter, in order to approximate A both in configuration
and in energy we also need the approximating sequence {An}n ⊂ C to be
such that

lim
n→∞

HM−1

(
[∂ ∗A4∂ ∗An] ∩

(
k⋃
i=1

∂Ei

))
= 0.

The countable family we choose to obtain the approximation is the following.

Definition 4.23. Let C be the family of open sets G ⊂ Q such that there
exist ν1, . . . , νm ∈ SN−1 ∩QM , and q1, . . . , qm ∈ QM , for which

∂G ⊂
m⋃
i=1

(qi + ν⊥i ) ∪
k⋃
i=1

∂Ei,

for some m ∈ N.

In the rest of the paper it will be convenient to adopt the following abuse
of notation. Given a set A ⊂ Q with finite perimeter in Q, we will write
G̃1(A) in place of G̃1(ṽA), where ṽ : Q→ RM is defined as

ṽA(y) := χA(y)a(y) + [1− χA(y)]b(y).

Note that, using the fact that A has finite perimeter, we have that ṽA ∈ R̃
(see Definition 4.5).

We are now in position to prove the first technical result.

Lemma 4.24. For every λ > 0 and every set of finite perimeter A ⊂ Q,
there exists E ∈ C such that

|A4E|+
∣∣∣G̃1(A)− G̃1(E)

∣∣∣ < λ.
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Proof. Step 1. Without loss of generality, we can assume that

HM−1 (∂ ∗A ∩ ∂Q) = HM−1

(
k⋃
i=1

∂Ei ∩ ∂Q

)
= 0. (4.20)

Indeed, we can find v ∈ RM such that the above condition is satisfied by the
sets A+ v and Ei + v in place of A and Ei respectively. We then consider
the sets Ei + v, A+ v, and use the energy G̃v1 defined as

G̃v1(B) :=

ˆ
∂∗B

d
W̃

(y, ṽ+(y), ṽ−(y)) dHM−1(y), (4.21)

where W̃ (y) := W (y − v).

Step 2. Fix λ̃ > 0, that will be chosen later. Let F ⊂ Q be the set of
finite perimeter given by Theorem 1.13 relative to A and λ̃. In particular,

‖1A − 1F ‖L1(Q) < λ̃,

and, using (iii), (v), and (vii) of Theorem 1.13, we obtain

|G̃1(A)− G̃1(F )| ≤
ˆ
Q∩∂∗A\∂F

dW(y, v+
A(y), v−A(y)) dHM−1(y)

+

ˆ
Q∩∂F\∂∗A

dW(y, v+
F (y), v−F (y)) dHM−1(y)

≤ C1

[
HM−1 (Q ∩ ∂ ∗A \ ∂F ) +HM−1 (Q ∩ ∂F \ ∂ ∗A)

]
≤ C1

[
|D1A|(D \ C) +HM−1 (Q ∩ ∂F \ ∂ ∗A)

]
≤ 2C1λ̃,

for some constant C1 > 0 depending only on the wells a and b.

Step 3. We now approximate the set F with a set G ∈ C. Note that if
the wells a and b were continuous, then the proof would be easier, since every
piecewise-C1 set in Q can be approximated in the Hausdorff metric with a
polyhedral set and, every polyhedral set in Q can be approximated by a set
in C. Due to the fact that the boundary of the approximated has to coincide
as much as possible with the boundary of F on ∪ki=1∂Ei, the construction
requires a more delicate argument.

First, we isolate the singularities of ∪ki=1∂Ei as follows. It is possible to
find S1, . . . , Sm ∈ C with ∂F orthogonal to ∂Si for each i = 1, . . . ,m, such
that

k⋃
i 6=j=1

( ∂Ei ∩ ∂Ej ) ⊂
m⋃
i=1

Si,

and
m∑
i=1

[
HM−1(∂Si) +HM−1(∂F ∩ Si)

]
< λ̃. (4.22)
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Now we isolate the part of ∂F on ∪ki=1∂Ei. Set

K := ∂F ∩

(
k⋃
i=1

∂Ei

)
\

m⋃
i=1

Si.

Recalling that Si ∈ C for each i = 1, . . . ,m, and thus that each Si is open,
we get that K is compact. By the outer regularity of the HM−1 measure on
∪mi=1∂Ei, it is then possible to find R1, . . . , Rn ∈ C with ∂F orthogonal to
∂Ri for each i = 1, . . . , n such that

K ⊂
n⋃
i=1

Ri ∩
k⋃
i=1

∂Ei,

n∑
i=1

HM−1(∂Ri) < (1 + λ̃)HM−1

(
k⋃
i=1

∂Ei

)
, (4.23)

and
n∑
i=1

HM−1(∂F ∩Ri) < λ̃, (4.24)

and

HM−1

(
n⋃
i=1

Ri ∩
k⋃
i=1

∂Ei \ K

)
< λ̃.

Since K is compact, there exist smooth open set B ⊂ ∪ni=1Ri with K ⊂ B.
Without loss of generality, we can assume that Ri ∩ K 6= ∅ for all i ∈
{1, . . . , n}. Up to rearranging the order of the sets, we can assume that

Ri ∩ ∂̃B 6= ∅
if and only if i ∈ {1, . . . , n1}, for some n1 ≤ n, where ∂̃B is the relative
boundary of B in ∪ki=1∂Ei. In particular, this means that

∂̃K ⊂
n1⋃
i=1

Ri. (4.25)

Thanks to (4.23), we have that
n1∑
i=1

HM−1(∂Ri) < Cλ̃, (4.26)

for some C > 0.
To conclude, Let T1, . . . , Tp be the connected components of

∂F \

[
n1⋃
i=1

Ri ∪
m⋃
i=1

Si

]
.

For each i = 1, . . . , p, it is possible to find µi > 0 such that the sets Ti+B(0, µi)
are pairwise disjoint. Consider the sets F1, . . . , Fp, defined as

Fi := F ∩ [Ti +B(0, µi) ] .

Find Ei, . . . , Ep ∈ C such that Ei ⊂ Ti +B(0, µi), and define

E :=

(
F \

p⋃
i=1

[Ti +B(0, µi) ]

)
∪

p⋃
i=1

Ei ∪
m⋃
i=1

Si ∪
n1⋃
i=1

Ri.
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Up to choosing µ1, . . . , µp > 0 and λ̃ > 0 sufficiently small, thanks to (4.22),
(4.24), and (4.26), we get

|F4E|+
∣∣∣G̃1(F )− G̃1(E)

∣∣∣ < Cλ̃,

for some C > 0. Thus, by using step 1 and by selecting λ̃ > sufficiently small,
we conclude. �

We now introduce the class of piecewice constant functions for which we
will construct the recovery sequence directly.

Definition 4.25. Denote by B the space of functions u ∈ L2(Ω;L1(Q;RM ))
such that

u(x, y) =
m∑
i=1

ui(y)1Ωi(x),

where, for each i = 1, . . . ,m, ∂Ωi ∩ Ω is a polyhedral set, and

ui(y) := 1A(x)a(y) +
[

1− 1A(x)(y)
]
b(y)

for a set A(x) ⊂ Q with finite perimeter in Q.

We recall the main result that ensures the existence of a recovery sequence
for a microstructure in the cube Q. The construction is based on [10, Theorem
1.9], with the additional complication of having to approximate the possible
discontinuity of the wells on ∂Ei ∩ ∂Ej for i 6= j.

Proposition 4.26. Let v ∈ L1(Q;RM ) be such that v(y) ∈ {a(y), b(y)} for
a.e. y ∈ Q, and such that A := {u = a} has finite perimeter in Q. Then
there exists a sequence of Q-periodic functions {vn}n ⊂ W 1,2(Q;RM ) with
vn → u in L1(Q;RM ) such that

lim
n→∞

G̃n(vn) = G̃1(v),

and supn ‖vn‖L∞ <∞.

Remark 4.27. Note that we can apply the mentioned result thanks to
Theorem 4.16. Moreover, the proof presented in [10, Theorem 1.9] has to be
adapted in order to take care of the fact that here we consider the perimeter
in Q seen as the periodic flat torus: this can be done as in step 1 of the proof
of Lemma 4.24. Finally, considering zeros a, b with possible discontinuities is
not an issue, since it is simply possible to consider the functions az, . . . , ak
and b1, . . . , bk as separate zeros (multiple wells).

We are now ready to prove that main result of this section.

Proof of Proposition 4.22. Without loss of generality, we can assume that
G1(u) <∞, otherwise there is nothing to prove.

Step 1. First assume u ∈ B. Write it as

u(x, y) =

m∑
i=1

ui(y)1Ωi(x),

where, for each i = 1, . . . ,m, the set ∂Ωi ∩ Ω is polyhedral, and

ui(y) := 1Aia(y) + [ 1− 1Ai(y) ] b(y)
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for a set Ai ∈ C. For each n ∈ N, consider a grid {Qnj }
kn
j=1 of disjoint cubes

of the form
Qnj = δn[0, 1)n + zj ,

for some zj ∈ δnZN , such that Qnj ∩Ω 6= ∅. For each n ∈ N and i = 1, . . . ,m,
let

Iin :=
{
j ∈ {1, . . . , kn} : Qnj ∩ ∂Ωr = ∅, for all r 6= i

}
,

and set

In :=
m⋃
i=1

Iin.

Since ∂Ω is regular, we have that

lim
n→∞

(#In)(δNn ) = |Ω|. (4.27)

Moreover, define
Ω̃n
i :=

⋃
j∈Iin

Qnj ,

for each i ∈ {1, . . . , kn}. Let

S̃n := Sn \ {x ∈ Ω : dist(x, ∂Sn) ≥ 3εn}
and, for each n ∈ N, let ϕn : Ω→ [0, 1] be such that

ϕn ≡ 1 on
m⋃
i=1

Ω̃i, ϕni ≡ 0 on S̃n,

and satisfying

|∇ϕn| ≤
C

εn
, (4.28)

for some C > 0. We remark that it is possible to construct such a family of
cut-off functions satisfying this last estimate because

dist
(

Ω̃n
i , Ω̃

n
j

)
≥ 2δn

whenever i 6= j. For each i ∈ {1, . . . ,m}, let {vin}n ⊂ W 1,2(Q;RM ) be the
recovery sequence for the microstructure ui provided by Proposition 4.26.
Note that each vin is Q-periodic, and that

sup
n
‖uin‖L∞ <∞. (4.29)

Define, for n ∈ N, the function un ∈W 1,2(Ω;RM ) as

un(x) :=

m∑
i=1

[
ϕn(x)1Ωi(x)vin

(
x

δn

)
+ (1− ϕn(x))a

(
x

δn

)]
.

Then it is easy to see that un → u in L1(Ω) × L1(Q). We now prove the
convergence in energy. Set

Sn := Ω \
kn⋃
i=1

Ω̃n
i ,

and observe that
|S̃n| ≤ Cεn, (4.30)
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and that, thanks to (4.28)

|∇un| ≤
C

εn
in Sn. (4.31)

Using (4.29) and (4.31), as n→∞ we getˆ
Sn

[
δn
εn
W

(
x

δn
, un(x)

)
+ εnδn|∇un(x)|2

]
dx

=

ˆ
S̃n

[
δn
εn
W

(
x

δn
, un(x)

)
+ εnδn|∇un(x)|2

]
dx+

ˆ
Sn\S̃n

εnδn
|∇a|2

δ2
n

dx

→ 0, (4.32)

where, in the last step, the convergence of the first integral follows from
(4.30), while for the last integral from the fact that a is Lipschitz, and εn

δn
→ 0.

Thus, by using a change of variable and the fact that {vin}n, from (4.32) and
(4.27), we get

lim
n→∞

Gn(un) = G1(u).

This proves that {un}n is a recovery sequence.

Step 2. We now consider u ∈ L1(Ω;BV (Q; {a, b})). We will construct a
recovery sequence by using a diagonal argument. To be precise, fixed λ > 0
we will construct a function vλ ∈ B with

‖vλ − u‖L1×L1 ≤ Cλ,
∣∣∣G1(vλ)−G1(u)

∣∣∣ ≤ Cλ,
for some constant C > 0 independent of λ. Thanks to step 1, we can find a
sequence {vλn}n ⊂W 1,2(Ω;RM ) with vλn → vλ as n→∞ such that

lim
n→∞

Gn(vλn) = G1(vλ).

The conclusion will follow by using the estimates above together with the
arbitrariness of λ and a diagonal argument.

We are now left with constructing the function vλ ∈ B. Since G1(u) <∞,
it is possible to find µ > 0 such thatˆ

E
G̃1(u(x, ·)) dx ≤ λ, (4.33)

whenever E ⊂ Ω is a measurable set with |E| ≤ µ. Without loss of generality,
we can assume µ < λ. Let C = {Fi}i∈N be the countable family given by
Lemma 4.24. The idea is to set the function vn ∈ B as

vn(x, y) :=

n0+1∑
i=1

vFi(y)1Ωi(x),

for some n0 ∈ N, where
vFi(y) := 1Fia(y) + [ 1− 1Fi(y) ] b(y).

The sets Ω1, . . .Ωin will be defined in several steps. For i ∈ N, let

Ω̃i :=

{
x ∈ Ω : |A(x)4Fi|+ |G̃1(A(x))− G̃1(Fi)| ≤

λ

2i

}
\
i−1⋃
j=1

Ω̃j , (4.34)
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where A(x) := {y ∈ Q : u(x, y) = a(y)}, and we set Ω̃−1 := ∅. Note that the
sets Ω̃i are measurable, pairwise disjoint, and, thanks to Lemma 4.24, we
also get that

Ω =

∞⋃
i=1

Ω̃i.

Let n0 ∈ N be such that ∣∣∣∣∣Ω \
n0⋃
i=1

Ω̃i

∣∣∣∣∣ ≤ µ

2
.

Let
M := 1 ∨ max

i=1,...,n0+1
G̃1(Fi). (4.35)

We claim that it is possible to construct a partition Ω1, . . . ,Ωn0+1 of polyhe-
dral sets with

|Ω̃i4Ωi| ≤
µ

M
(4.36)

for all i = 1, . . . , n0, and such that

|Ωn0+1| ≤
µ

M
. (4.37)

Indeed, since the sets Ω̃i are measurable, by the inner and the outer regularity
of the Lebesgue measure, for each i = 1, . . . , n0, there exist a compact set Ki

and an open set Ai with Ki ⊂ Ω̃i ⊂ Ai and

|Ai \Ki| ≤
µ

2Mn0
.

By using smooth approximation of the characteristic function of Ki, we can
find a polyhedral set Ωi ⊂ Ai satisfying (4.36). Starting from constructing Ω1

and for each i = 2, . . . , n0, substracting the union of the previous polyhedral
sets from Ωi, we can assume that they are pairwise disjoint. Finally, we define

Ωn0+1 := Ω \
n0⋃
i=1

Ωi.

This partition of Ω satisfies all of the required properties.
We now show that the desired estimates hold. First of all, we note that

‖vλ − u‖2L1×L1 ≤
n0∑
i=1

ˆ
Ωi

[ ˆ
A(x)4Fi

a(y) dy +

ˆ
(Q\A(x))4(Q\Fi)

b(y) dy

]

+

ˆ
Ωn0+1

‖vλ(x, ·)− u(x, ·)‖ dx

≤ C
n0∑
i=1

ˆ
Ωi

|A(x)4Fi| dx+ C|Ωn0+1|

≤ C
n0∑
i=1

[ˆ
Ω̃i

|A(x)4Fi| dx+ C|Ωi4Ω̃i|
]

+ C|Ωn0+1|

≤ Cλ+ Cµ ≤ Cλ
where the previous to last inequality follows from (4.34) and (4.37), C > 0
is a constant depending only the wells a, b and on |Ω|, and we recall that in
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the last inequality we used the fact that we are assuming, without loss of
generality, that µ ≤ λ. In a similar way, we have that

|G1(vλ)−G1(u)| ≤
n0∑
i=1

ˆ
Ωi

|G̃1(vλ(x, ·))− G̃1(u(x, ·))| dx

+

ˆ
Ωn0+1

|G̃1(vλ(x, ·))− G̃1(u(x, ·))| dx

≤
n0∑
i=1

ˆ
Ω̃i

|G̃1(vλ(x, ·))− G̃1(u(x, ·))| dx

+

ˆ
Ωi4Ω̃i

|G̃1(vλ(x, ·))− G̃1(u(x, ·))| dx

+

ˆ
Ωn0+1

|G̃1(vλ(x, ·))− G̃1(u(x, ·))| dx

≤ Cλ,

where the last inequality follows from (4.35), (4.36), and (4.37), together
with the fact that µ ≤ λ. This provides the required function vλ.

Step 3. We conclude for the case of a general case of u ∈ R by using
step 2 together with [10, Lemma 5.3]. This concludes the proof of the
proposition. �
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