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Abstract

Existence results available for the semilinear Brezis-Nirenberg eigenvalue problem suggest
that the compactness problems for the corresponding action functionals are more serious in small
dimensions. In space dimension n = 3, one can even prove nonexistence of positive solutions
in a certain range of the eigenvalue parameter. In the present paper we study a nonexistence
phenomenon manifesting such compactness problems also in dimension n = 4.

We consider the equation −∆u = λu + u3 in the unit ball of R4 under Dirichlet boundary
conditions. We study the bifurcation branch arising from the second radial eigenvalue of −∆.
It is known that it tends asymptotically to the first eigenvalue as the L∞-norm of the solution
tends to blow up. Contrary to what happens in space dimension n = 5, we show that it does
not cross the first eigenvalue. In particular, the mentioned Dirichlet problem in n = 4 does not
admit a nontrivial radial solution when λ coincides with the first eigenvalue.

1 Introduction and main result

In their celebrated paper, Brezis-Nirenberg [9] studied the following semilinear eigenvalue problem
{
−∆u = λu + |u|2∗−2u in Ω

u = 0 on ∂Ω
(1)

where Ω ⊂ Rn (n ≥ 3) is a bounded domain and 2∗ = 2n
n−2 is the critical Sobolev exponent. Since

they were interested in positive solutions of (1), they assumed that 0 < λ < µ1, where µ1 denotes
the first eigenvalue of −∆ in H1

0 (Ω). Subsequently, many other papers studying (1) appeared and
it seems almost impossible to give a complete list of references. So, let us restrict our attention
to radial sign-changing solutions in the case where Ω = B (the unit ball). In this situation, (1)
becomes an ordinary differential equation and the space dimension n > 2 may be considered as a
real parameter. More precisely, putting r := |x| (so that 0 < r < 1) and assuming that u = u(r),
(1) reads

u′′(r) +
n− 1

r
u′(r) + λu(r) + |u(r)|4/(n−2)u(r) = 0 , u′(0) = u(1) = 0 , u(0) = ω , (2)
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where, for our convenience, we overdetermined the problem by adding the “shooting condition”
u(0) = ω. In general, (2) admits no solution since it involves 3 boundary conditions. However, for
any ω > 0 and for a suitable λ = λ(ω), problem (2) admits a solution uω with precisely one zero in
[0, 1), the second zero being at r = 1. We are here interested in studying the behaviour of the map
ω 7→ λ(ω).

Let µ1 = µ1(n) and µ2 = µ2(n) denote the first two (positive) eigenvalues µ of the problem

ψ′′(r) +
n− 1

r
ψ′(r) + µψ(r) = 0 (0 < r < 1) , ψ′(0) = ψ(1) = 0 ,

so that the eigenfunction corresponding to µ1 is positive whereas the eigenfunction corresponding
to µ2 has exactly one zero in [0, 1). If n is an integer, µ1 and µ2 represent the first two radial
eigenvalues of −∆ in H1

0 (B). It is well-known (cf. e.g. Remark 3 in Section 3) that for any n > 2
we have

lim
ω→0

λ(ω) = µ2 .

Much richer appears the picture of the behaviour of λ(ω) as ω → +∞. As we shall see, it strongly
depends on the parameter n. Firstly, in “large dimensions” the bifurcation branch collapses to
λ = 0. More precisely, we have

if n > 6 then lim
ω→∞λ(ω) = 0 . (3)

Statement (3) was established by Atkinson-Peletier [8, Theorem 4 (b)], see also previous results by
Cerami-Solimini-Struwe [11] for integer values of n ≥ 7. Subsequently, Atkinson-Brezis-Peletier [5]
proved that the behaviour changes for n = 6:

if n = 6 then there exists µ ∈ (0, µ1) such that lim
ω→∞λ(ω) = µ . (4)

Although the second bifurcation branch has not been explicitly studied for “small dimensions”,
the results by Atkinson-Peletier [6, 7] (about the first branch, relative to positive solutions of (2))
strongly suggest the conjecture that it does not reach µ1:

if 2 < n < 4 then there exists µ ∈ (µ1, µ2) such that lim
ω→∞λ(ω) = µ . (5)

But the most interesting cases seem to be when the bifurcation branch skips precisely one eigenvalue.
As shown in [5], this occurs in the “intermediate dimensions”. More precisely, we have

if 4 ≤ n < 6 then lim
ω→∞λ(ω) = µ1 . (6)

Unfortunately, (6) nothing says about the “asymptotic monotonicity” of the map ω 7→ λ(ω). This
was studied in [13] where it was shown that if 4 ≤ n ≤ 2 + 2

√
2 then λ(ω) > µ1 for sufficiently

large ω, whereas if 2 + 2
√

2 < n < 6 then λ(ω) < µ1 for sufficiently large ω. Therefore, for any
n > 2 + 2

√
2 the second bifurcation branch eventually goes below the first eigenvalue µ1. Since the

number n = 2 + 2
√

2 plays a crucial role in the description of (1), it was conjectured in [13] that
the second bifurcation branch does not cross µ1 if n ≤ 2 + 2

√
2. The aim of this paper is to partly

prove this conjecture. We show that the bifurcation branch in dimension n = 4 does not reach the
first eigenvalue, namely that λ(ω) > µ1 for all ω > 0. We study dimension n = 4 for two crucial
reasons. Firstly, because it is an integer dimension so that a corresponding result for the elliptic
problem (1) is also obtained, see Corollary 1 below. Secondly, because in this case the nonlinearity
|u|2∗−2u simply becomes u3 which is analytic, and analytic nonlinearities are easier to tackle with
computer assisted proofs.

Our main result reads:
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Theorem 1 Assume that n = 4 and let λ(ω) be defined as above. Then, for all ω > 0 we have
λ(ω) > µ1.

We prove Theorem 1 in three steps. In Section 2, by refining previous estimates in [5, 6, 7], we
prove Theorem 1 for ω sufficiently large (exactly for ω ≥ 349). In Section 3, we use a comparison
method and the variational characterization of eigenvalues in order to show that λ(ω) > µ1 when-
ever ω ≤ √

µ2 − µ1. Finally, in Section 4, we prove Theorem 1 for “intermediate” values of ω (i.e.
for

√
µ2 − µ1 ≤ ω ≤ 349) with the assistance of a computer. We recall here a possible definition of

computer assisted proof:

Definition 1 A proof is called computer assisted, if it consists in finitely many elementary
operations, but their number is so large that, although each step may be written down explicitly, it
is only practical to perform such operations with a computer.

As a straightforward consequence of Theorem 1 (see also Remark 1 below), we obtain

Corollary 1 Let B be the unit ball of R4 and let µ1 be the first (radial) eigenvalue of −∆ in
H1

0 (B). Then the problem {
−∆u = µ1u + u3 in B

u = 0 on ∂B .
(7)

admits no nontrivial radial solutions.

Let us recall that (7) does admit a nontrivial (nonradial nonpositive!) solution, see [12]. This
result, together with Corollary 1, complements [10, Theorem 0.1] where the proof was not complete
in the particular case of dimension n = 4, when λ belongs to the spectrum of −∆. Moreover,
Corollary 1 shows that the very same proof cannot work in the class of radial functions and gives
an explanation why the eigenvalues had to be skipped in [2, 14, 16].

The above mentioned results (including Theorem 1) are illustrated in the Figure below, which is
obtained numerically by means of the algorithm explained in Section 4.
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Second radial bifurcation branch λ 7→ ω(λ) = u(0) for n = 4

With the same numerical procedure we obtained the following pictures concerning other values
of n. For the reader’s convenience, we also recall the values of µ1 and µ2, according to [1].
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n 3 4 5 6 7

µ1 π2 14.68. . . 20.19. . . 26.37. . . 33.22. . .

µ2 4π2 49.22. . . 59.68. . . 70.85. . . 87.72. . .
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Second radial bifurcation branch for n = 3 and n = 5
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Second radial bifurcation branch for n = 6 and n = 7

Open Problem 1 It would be very interesting to give a proof of (5). Moreover, it would be nice
to specify whether the branch approaches the number µ from the left or from the right. The latter
correspondingly modified question is also interesting in dimension n = 6.

2 Proof of Theorem 1, part 1

In this section we prove:

Proposition 1 For all ω ≥ 349, we have λ(ω) > µ1.

Our proof of Proposition 1 consists in making more explicit several constants obtained in the
estimates in [5, 6, 7]. As we are basing our analysis on these papers, we adopt their notation and
we will often refer to formulas therein.

By means of scaling and of Emden-Fowler inversion y(t) := λ−1/2u
(
2 λ−1/2 t−1/2

)
, equation (2)

(for n = 4) becomes

y′′ + t−3(1 + y2)y = 0 (t > 0) , y(t) → γ as t →∞ (8)

where γ = ωλ−1/2 > 0. In [5] it is shown that y has infinitely many zeros T1(γ) > T2(γ) > ..., and
that

lim
γ→∞T1(γ) = ∞ and lim

γ→∞Tj(γ) = τj−1 ∀j ≥ 2 . (9)
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Here τ1 > τ2 > ... are the zeros of the function

α(t) =
√

tJ1

(
2√
t

)
=

∞∑

k=0

(−1)k

k!(k + 1)!
t−k , (10)

where J1 is the first kind (regular) Bessel function of order 1. The first (smallest) zero of J1 is
3.83170 . . . (see e.g. [1]) and therefore,

τ1 = 0.27244 . . . . (11)

Remark 1 The Emden-Fowler inversion generates a one-to-one correspondence between solutions
of problems (2) and (8). In particular, by continuous dependence this shows that branches of
solutions of (2) arising from an eigenvalue are connected. Moreover, by the unique continuation
principle (uniqueness of solutions for the Cauchy problem), two different branches cannot intersect.

Note that the function α defined in (10) satisfies the differential equation

α′′ + t−3α = 0. (12)

As for the relative location of the respective zeros τk and Tk of α and y, we observe:

Lemma 1 For any γ > 0 and every k ∈ N one has that Tk > τk.

Proof. For k = 1, the statement follows from the fact that (2) has positive solutions for some suitable
ω > 0 precisely when λ ∈ (0, µ1). For k ≥ 2, the statement follows from Sturm’s comparison result
applied to equations (8) and (12). ¤

We now give a refinement of [5, (3.2)]:

Lemma 2 For all t ∈ (0, T1) we have |y(t)| < 2γ

1 + γ2
(T1 + 1− t).

Proof. Take f(y) = y + y3 so that f is as in [7, (2.6)] with k = 3, q = 1 and p = 3. Let y be the
solution of (8), which is none other than [7, (2.8)-(2.9)]. Hence, [7, Lemma 2.1] entails

∀t ≥ T1 : y(t) < z(t) :=
2γt

1 + γ2 + 2t
. (13)

By [7, (2.12)], we know that z satisfies the differential equation

z′′(t) = −1 + γ2

γ2
· 1
t3
· z3(t). (14)

Therefore, by making use of (8), we obtain

∀t ≥ T1 : y′(t) =
∫ ∞

t

y(s) + y3(s)
s3

ds <
γ2

1 + γ2
z′(t) +

∫ ∞

t

2γ

s2(1 + γ2 + 2s)
ds.

By replacing the exact value of z′(t) and taking into account that
∫ ∞

T1

ds

s2(1 + γ2 + 2s)
<

1
1 + γ2

∫ ∞

T1

ds

s2
=

1
1 + γ2

1
T1

,
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the previous inequality (when t = T1) yields

y′(T1) <
2γ3

(1 + γ2)2
+

2γ

1 + γ2

1
T1

<
2γ

1 + γ2
+

2γ

1 + γ2

1
T1

.

This estimate makes more precise the statement of [5, Lemma 4] (recall the limit in (9)). From the
last inequality and from [5, Lemma 2] we get

∀t ∈ (0, T1) : |y(t)| < |y′(T1)|(T1− t) <

(
2γ

1 + γ2
+

2γ

1 + γ2

1
T1

)
(T1− t) <

2γ

1 + γ2
(T1− t)+

2γ

1 + γ2
,

which proves the statement. ¤

Our next goal is to provide a suitable upper bound for T1. For this purpose we need an estimate
of y from below beyond T1. By means of the differential equation (14) and integration by parts,
we have:

∀t :
∫ ∞

t

s− t

s3
z3(s) ds = − γ2

1 + γ2

∫ ∞

t
(s− t)z′′(s) ds =

γ2

1 + γ2
(γ − z(t)) =

γ3

1 + γ2 + 2t
. (15)

Furthermore, with a tedious calculation one can find

∀t :
∫ ∞

t

s− t

s3
z(s) ds = − 2γ

1 + γ2
+

2γ

(1 + γ2)2
(1 + γ2 + 2t) log

(
1 + γ2 + 2t

2t

)
. (16)

Next, note that by y(t) → γ (t →∞) and y′′(t) = −t−3(y+y3), one deduces that |y′(t)| ≤ C(γ)t−2.
Hence, we obtain for t ≥ T1:

y(t) = γ −
∫ ∞

t
y′(s) ds = γ − [

(s− t)y′(s)
]∞
t

+
∫ ∞

t
(s− t)y′′(s) ds

= γ −
∫ ∞

t

s− t

s3

(
y(s) + y3(s)

)
ds > γ −

∫ ∞

t

s− t

s3
z(s) ds−

∫ ∞

t

s− t

s3
z3(s) ds

= γ +
2γ

1 + γ2
− γ3

1 + γ2 + 2t
− 2γ

(1 + γ2)2
(1 + γ2 + 2t) log

(
1 + γ2 + 2t

2t

)
(17)

where we used (15) and (16).
We now refine [6, Theorem 3 II] with the following:

Lemma 3 For all γ ≥ e4 we have T1 < 2 log γ.

Proof. It suffices to show that

∀γ ≥ e4 ∀t ∈ [2 log γ,∞) : y(t) > 0. (18)

Let us rewrite (17) as

∀t ≥ T1 :
y(t)
γ

≥ ψ(t) :=
3 + γ2

1 + γ2
− γ2

1 + γ2 + 2t
− 2(1 + γ2 + 2t)

(1 + γ2)2
log

(
1 + γ2 + 2t

2t

)
. (19)

Since y is positive at ∞ and γψ is a lower bound for y as long as y is positive we have that y is
positive on any interval [t,∞) where ψ > 0. With some calculations one finds that

lim
t→∞ψ(t) = 1 (20)
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and

ψ′′(t) = − 8γ2

(1 + γ2 + 2t)3
− 2

t2(1 + γ2 + 2t)
< 0. (21)

This, together with (20), proves (18) provided that

∀γ ≥ e4 : ψ (2 log γ) > 0. (22)

We have

ψ (2 log γ) =
3 + 3γ2 + 12 log γ + 4γ2 log γ

(1 + γ2)(1 + γ2 + 4 log γ)
− 2(1 + γ2 + 4 log γ)

(1 + γ2)2
log

(
1 + γ2 + 4 log γ

4 log γ

)

so that (22) holds if and only if

Ψ1(γ) :=
(

3
γ2

+ 3 + 12
log γ

γ2
+ 4 log γ

)(
1 +

1
γ2

)
− 2 log

(
1 +

1 + γ2

4 log γ

)(
1
γ2

+ 1 + 4
log γ

γ2

)2

> 0

for all γ ≥ e4. Since we assume γ ≥ e4 one has

log
(

1 +
1 + γ2

4 log γ

)
≤ log

(
17 + γ2

16

)
≤ 2 log

(
51
200

γ

)
≤ 2 log γ − 5

2

and may conclude:

Ψ1(γ) ≥ 8 +
16
γ2

+
8
γ4

+ 48
log γ

γ2
+ 48

log γ

γ4
+ 48

log2 γ

γ4
− 32

log2 γ

γ2
− 64

log3 γ

γ4

≥ 8− 32
(

4
e4

)2

+
16
γ2

(
1− 4

log3 γ

γ2

)

≥ 7 +
16
γ2

(
1− 44

e8

)
> 0.

We see that (22) indeed holds, so that (18) also follows and the lemma is proved. ¤

Next, we prove a lower bound for y′(T1):

Lemma 4 For all γ ≥ 110 we have y′(T1) >
1.69
γ

.

Proof. Since γ ≥ 110, in view of Lemma 3 we also have γ > 2 log γ > T1. Beyond T1, the solution
y is concave and we obtain y′(T1) > 1

γ [y(γ)− z(T1)]. We make use of [7, Lemma 2.2], according to
which

y(t) >
γ2

1 + γ2

(
z(t)− 2

γ
log

(
1 +

1 + γ2

2t

))

and arguing as on p.156 in [7] (case q = k − 2) we get

γy′(T1) >
γ2

1 + γ2

[
2γ2

(1 + γ)2
− 2

γ
log

(1 + γ)2

2γ

]
− 2γT1

1 + γ2 + 2T1
. (23)

In turn, by Lemma 3, this implies

γy′(T1) >
2γ4

(1 + γ2)(1 + γ)2
− 2γ

1 + γ2
log

(1 + γ)2

2γ
− 4γ log γ

1 + γ2
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so that we have to prove that

∀γ ≥ 110 :
2γ4

(1 + γ2)(1 + γ)2
− 2γ

1 + γ2
log

(1 + γ)2

2γ
− 4γ log γ

1 + γ2
> 1.69.

This is equivalent to show that for all γ ≥ 110:

H1(γ) := 2γ4−4γ(1+γ)2 log(1+γ)−2γ(1+γ)2 log γ +(2 log 2) γ(1+γ)2−1.69(1+γ)2(1+γ2) > 0.

Since we assume γ ≥ 110, we have

log(1 + γ)
γ

≤ log 111
110

≤ 1
23.3

,
log γ

γ
≤ log 110

110
≤ 1

23.4
,

1 + γ

γ
≤ 111

110
,

1 + γ2

γ2
≤ 12101

12100
.

We may conclude

H1(γ) ≥ 2
(

110
111

)2

γ2(1 + γ)2 − 4
23.3

γ2(1 + γ)2 − 2
23.4

γ2(1 + γ)2 − 1.69
12101
12100

(1 + γ)2γ2

≥ 1
100

(1 + γ)2γ2 > 0,

and the statement follows. ¤

For α as in (10), define the function b as in [5, (4.6)].

b(t) := y′(t)α(t)− y(t)α′(t). (24)

Then

b(T1) = y′(T1)α(T1) = y′(T1)
√

T1 J1

(
2√
T1

)
. (25)

Lemma 4 combined with (25) enables us to refine [5, (4.10)] with the following

∀γ ≥ 110 : b(T1) >
1.69
γ

α(T1). (26)

Observe that α(T1) > 0 by Lemma 1.
As in [5, (4.12)] we now conclude from the differential equations (8) for y and (12) for α that

b(τ1) = b(T1) +
∫ T1

τ1

y3(s)
s3

α(s) ds . (27)

Since τ1 < T1 by Lemma 1 and hence 0 < α(t) < α(T1) for all t ∈ (τ1, T1), an estimate of the
integral in the right hand side of (27) by using Lemmas 2-3 and (11), yields

∀γ ≥ 110 :
∣∣∣∣
∫ T1

τ1

y3(s)
s3

α(s)
α(T1)

ds

∣∣∣∣ ≤
∫ T1

τ1

|y(s)|3
s3

ds ≤
(

2γ

(1 + γ2)
(T1 + 1− τ1)

)3 ∫ ∞

τ1

ds

s3
<

<
54γ3

(1 + γ2)3
(T1 + 1− τ1)3 <

54γ3

(1 + γ2)3
(0.72756 + 2 log γ)3 . (28)

Inserting (28) and (26) into (27) yields

b(τ1) > α(T1)
[
1.69
γ

− 54γ3

(1 + γ2)3
(0.72756 + 2 log γ)3

]
> α(T1)

[
1.69
γ

− 54
γ3

(0.72756 + 2 log γ)3
]

> 0
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the last inequality being true for all γ ≥ 222. By (24) we get b(τ1) = −y(τ1)α′(τ1). Since α′(τ1) > 0,
we have so proved the following implications:

γ ≥ 222 =⇒ b(τ1) > 0 =⇒ y(τ1) < 0 . (29)

Since we wish to prove (29) for smaller values of γ, we need to improve some of the previous
estimates. Firstly, we complement Lemma 3 with

Lemma 5 For all γ ∈ [e9/2, 222] we have T1 < 3
2 log γ.

Proof. Let ψ be as in (19). By (20) and (21) it suffices to show that for all γ ∈ [e9/2, 222]:

ψ

(
3
2

log γ

)
=

3 + 3γ2 + 9 log γ + 3γ2 log γ

(1 + γ2) (1 + γ2 + 3 log γ)
− 2

(
1 + γ2 + 3 log γ

)

(1 + γ2)2
log

(
1 +

1 + γ2

3 log γ

)
> 0. (30)

And (30) holds true if and only if

Ψ2(γ) :=
(

3
γ2

+ 3 + 9
log γ

γ2
+ 3 log γ

) (
1 +

1
γ2

)
− 2 log

(
1 +

1 + γ2

3 log γ

) (
1
γ2

+ 1 + 3
log γ

γ2

)2

> 0

for all γ ∈ [e9/2, 222]. Since we assume γ ≥ e9/2 one has

log
(

1 +
1 + γ2

3 log γ

)
≤ log

(
14.5 + γ2

13.5

)
≤ 2 log (0.28γ) ≤ 2 log γ − 2.5.

and may conclude by using also γ ≤ 222

Ψ2(γ) ≥ − log γ + 8− 24
log2 γ

γ2
+ 34

log γ

γ2
+

16
γ2
− 36

log3 γ

γ4
+ 21

log2 γ

γ4
+ 35

log γ

γ4
+

8
γ4

≥ 2.5− 24
4.52

e9
+

1
γ2

(
169− 36

log3 γ

γ2

)
≥ 2.4 +

1
γ2

(
169− 36

4.53

e9

)
≥ 2.4 +

168
γ2

> 0.

Hence, we see that (30) indeed holds on γ ∈ [e9/2, 222], so that the lemma is proved. ¤

We now extend the statement of Lemma 4 to smaller values of γ:

Lemma 6 For all γ ∈ [91, 222] we have y′(T1) > 1.69
γ .

Proof. Since γ ∈ [91, 222] and 91 > e9/2, in view of Lemma 5 we have γ > 3
2 log γ > T1. Therefore,

the same arguments used in Lemma 4 lead to (23). Combining Lemma 5 with (23) yields

y′(T1) >
2γ3

(1 + γ2)(1 + γ)2
− 2

1 + γ2
log

(1 + γ)2

2γ
− 3 log γ

1 + γ2
.

That means that we have to show that

H2(γ) := 2γ4−4γ(1+γ)2 log(1+γ)−γ(1+γ)2 log γ +(2 log 2) γ(1+γ)2−1.69(1+γ)2(1+γ2) > 0.
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Since we assume γ ≥ 91, we have

log(1 + γ)
γ

≤ log 92
91

≤ 1
20.1

,
log γ

γ
≤ log 91

91
≤ 1

20.1
,

1 + γ

γ
≤ 92

91
,

1 + γ2

γ2
≤ 8282

8281
.

We may conclude

H2(γ) ≥ 2
(

91
92

)2

γ2(1 + γ)2 − 4
20.1

γ2(1 + γ)2 − 1
20.1

γ2(1 + γ)2 − 1.69
8282
8281

(1 + γ)2γ2

≥ 1
100

(1 + γ)2γ2 > 0,

The lemma is proved. ¤

Lemma 6 combined with (25) enables us to complement (26) with the following

∀γ ∈ [91, 222] : b(T1) >
1.69
γ

α(T1). (31)

Recalling again the fact that 0 < α(t) < α(T1) for all t ∈ (τ1, T1), if we estimate the integral in
the right hand side of (27) by using (11) and Lemmas 2 and 5, we get:

∀γ ∈ [91, 222] :
∣∣∣∣
∫ T1

τ1

y3(s)
s3

α(s)
α(T1)

ds

∣∣∣∣ <
54γ3

(1 + γ2)3

(
0.72756 +

3
2

log γ

)3

. (32)

Inserting (32) and (31) into (27) yields

b(τ1) >
α(T1)

γ

[
1.69− 54

γ2

(
0.72756 +

3
2

log γ

)3
]

> 0

the last inequality being true for all γ ∈ [129, 222] (it suffices to show that the term inside square
brackets is positive when γ = 129). By (24) we get b(τ1) = −y(τ1)α′(τ1). Since α′(τ1) > 0, we have
now proved the following implications:

γ ∈ [129, 222] =⇒ b(τ1) > 0 =⇒ y(τ1) < 0 . (33)

A third iteration of this procedure is in order:

Lemma 7 For all γ ∈ [e9/2, 129] we have T1 < 5
4 log γ.

Proof. Let ψ be as in (19). By (20) and (21) it suffices to show that for all γ ∈ [e9/2, 129]:

ψ

(
5
4

log γ

)
=

3 + 3γ2 + 15
2 log γ + 5

2γ2 log γ

(1 + γ2)
(
1 + γ2 + 5

2 log γ
) − 2

(
1 + γ2 + 5

2 log γ
)

(1 + γ2)2
log

(
1 +

1 + γ2

5
2 log γ

)
> 0. (34)

And (34) holds if and only if

Ψ3(γ) :=
(

3
γ2

+ 3 +
15 log γ

2γ2
+

5
2

log γ

)(
1 +

1
γ2

)
− 2 log

(
1 +

1 + γ2

5
2 log γ

)(
1
γ2

+ 1 +
5 log γ

2γ2

)2

> 0
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for all γ ∈ [e9/2, 129]. Since we assume γ ≥ e9/2 one has

log

(
1 +

1 + γ2

5
2 log γ

)
≤ log

(
12.25 + γ2

11.25

)
≤ 2 log (0.3γ) ≤ 2 log γ − 2.4.

and may conclude by using also γ ≤ 129

Ψ3(γ) ≥ −3
2

log γ + 7.8− 20
log2 γ

γ2
+ 26

log γ

γ2
+

15.6
γ2

− 25
log3 γ

γ4
+ 10

log2 γ

γ4
+ 27.5

log γ

γ4
+

7.8
γ4

≥ 0.51− 20
4.52

e9
+

1
γ2

(
132.6− 25

log3 γ

γ2

)
≥ 0.45 +

1
γ2

(
132.6− 25

4.53

e9

)
≥ 0.45 +

132
γ2

> 0.

Hence, we see that (34) indeed holds on γ ∈ [e9/2, 129], so that the lemma is proved. ¤

Using now Lemma 7, complementing (32) we obtain

∀γ ∈ [91, 129] :
∣∣∣∣
∫ T1

τ1

y3(s)
s3

α(s)
α(T1)

ds

∣∣∣∣ <
54γ3

(1 + γ2)3

(
0.72756 +

5
4

log γ

)3

. (35)

Inserting (35) and (31) into (27) yields

b(τ1) >
α(T1)

γ

[
1.69− 54

γ2

(
0.72756 +

5
4

log γ

)3
]

> 0

the last inequality being true for all γ ∈ [91, 129]. Similarly as above we have the following
implications:

γ ∈ [91, 129] =⇒ b(τ1) > 0 =⇒ y(τ1) < 0 . (36)

Summarizing, if we combine (29)-(33)-(36) we have

γ ≥ 91 =⇒ y(τ1) < 0 .

On the other hand, by (9) and continuity of the maps γ 7→ Tj(γ) (j ≥ 1), this shows that

γ ≥ 91 =⇒ τ1 > T2 =⇒ λ > µ1 . (37)

We may now prove Proposition 1, namely that λ > µ1 whenever ω ≥ 349. Assume for contradic-
tion that λ ≤ µ1. Then, using (37), we have

√
λ γ = ω ≥ 349 > 91

√
µ1 ≥ 91

√
λ =⇒ γ ≥ 91 =⇒ λ > µ1 ,

a contradiction! ¤

Remark 2 One could gain the impression that with (finitely or possibly infinitely many) further
iterations, one could finally show that λ(ω) > µ1 for arbitrary ω > 0. However, some numerical
experiments show that this does not seem to be the case, therefore it seemed convenient to let the
computer complete the proof for ω < 349, except for the case ω ∈ (0, 5.87 . . . ), see the next section.
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3 Proof of Theorem 1, part 2

In this section we prove:

Proposition 2 For all ω ≤ √
µ2 − µ1, we have λ(ω) > µ1.

As above, µ1 and µ2 denote the first two radial eigenvalues of −∆ in H1
0 (B).

We begin with a simple observation on solutions of the equation

u′′(r) +
3
r
u′(r) + λu(r) + u3(r) = 0 for r > 0. (38)

Lemma 8 Let λ ≥ 0 and u be a nontrivial solution of (38), with u′(0) = 0, then

∀r > 0 : |u(r)| < |u(0)|.

Proof. We may assume that u(0) > 0. Consider the energy function

E(r) :=
1
2
u′(r)2 +

λ

2
u2(r) +

1
4
u4(r),

so that, using (38),

E′(r) = u′(r)
(
u′′(r) + λu(r) + u3(r)

)
= −3

r
u′(r)2.

This tells us that r 7→ E(r) is decreasing. Since we also have E(r) ≥ 0 for all r, the solution u is
globally bounded. Moreover, in any further critical point R > 0 of the solution of (38), we have

λ

2
u2(R) +

1
4
u4(R) = E(R) < E(0) =

λ

2
u2(0) +

1
4
u4(0).

This immediately gives |u(R)| < u(0) and the statement follows. ¤

As a straightforward consequence of Lemma 8, for all solutions of (38) one has

ω = max
[0,1]

|u| > |u(r)| ∀r ∈ (0, 1]. (39)

Proof of Proposition 2. Let ω ≤ √
µ2 − µ1 and let uω be a solution of (38) with precisely one zero

in the interval [0, 1). This means that uω = ϕ is the second radial eigenfunction of



−∆ϕ = λϕ + u2

ωϕ in B

ϕ = 0 on ∂B

with eigenvalue λ = λ(ω). In what follows Hr denotes the space of radially symmetric functions in
H1

0 (B). By means of the variational characterization of eigenvalues and (39) we have

λ(ω) = min
V⊂Hr

dim V =2

max
ϕ∈V

‖ϕ‖
L2(B)

=1

(∫

B
|∇ϕ|2 dx−

∫

B
u2

ωϕ2 dx

)

> min
V⊂Hr

dim V =2

max
ϕ∈V

‖ϕ‖
L2(B)

=1

(∫

B
|∇ϕ|2 dx− ω2

)

= µ2 − ω2

≥ µ1

since we assumed initially that ω ≤ √
µ2 − µ1. This completes the proof of Proposition 2. ¤

12



Remark 3 The above proof may be extended to any space dimension n ≥ 3. In particular, it
states that λ(ω) ≥ µ2 − ω2 for all ω sufficiently small. In turn, Lemma 1 states that λ(ω) < µ2 for
all ω. Therefore, limω→0 λ(ω) = µ2.

4 Proof of Theorem 1, part 3

In this section we prove:

Proposition 3 For all
√

µ2 − µ1 ≤ ω ≤ 349, we have λ(ω) > µ1.

Since
√

µ2 − µ1 = 5.8767 . . ., we prove Proposition 3 for all ω ∈ [5, 349].

4.1 Transformation

In this subsection we transform the equation (2) (with ω = u(0)) in order to make it suitable for the
computer assisted proof when n = 4 and for the numerical study of the dimensions n = 3, 5, 6, 7.

Let t = ω
2

n−2 r and w(t) = ω−1u(r) so that u′(r) = ω
n

n−2 w′(t), u′′(r) = ω
n+2
n−2 w′′(t). Then, (2)

becomes 



w′′(t) + n−1
t w′(t) + γ

4
2−n w(t) + |w(t)| 4

n−2 w(t) = 0 t ∈ (0,∞)

w(0) = 1

w′(0) = 0

(40)

where γ = ωλ
2−n

4 and we want to determine the second zero z of the solution of (40) as a function
of γ. Note that z = ω

2
n−2 = γ

2
n−2

√
λ so that λ = z2γ

4
2−n and ω = z

n−2
2 = γλ

n−2
4 .

Summarizing, in the case n = 4 we need to show that

5 ≤ γ
√

λ ≤ 349 =⇒ z > γ
√

µ1 . (41)

Since we already know that γ
√

λ ≤ 5 . . . and γ
√

λ ≥ 349 imply λ > µ1, by continuity (41) follows
if we prove the following

Proposition 4 For all γ satisfying 5 ≤ γ
√

µ1 ≤ 349, the second positive zero z of the solution of
(40) satisfies z > γ

√
µ1.

In order to prove Proposition 4, we solve the initial value problem (40) with a rigorous computer
assisted method, introduced in [3]. We describe here the peculiarities of this equation and we refer
to the above mentioned paper for the details. We remark that equation (40) has also been used to
make the numerical experiments leading to the pictures concerning the cases n = 3, 5, 6, 7 displayed
in the introduction.

4.2 Technical lemmas

In this subsection we recall the functional analytic background introduced in [3], to which we
refer for the proofs. Let R > 0, let HR be the space of analytic functions in the open disk
DR = {z ∈ C : |z| < R} and let XR and YR be the subspaces of HR with finite norm

‖u‖XR
=

∞∑

k=0

|uk|Rk and ‖u‖YR
= sup

t∈DR

|u(t)|

13



respectively, where

u(t) =
∞∑

k=0

ukt
k (42)

and uk ∈ R. In the sequel, we denote by ZR either XR or YR, and by || · ||ZR
the respective norm.

The following lemma is straightforward:

Lemma 9 The spaces ZR are Banach algebras, i.e. for all u, v ∈ ZR we have uv ∈ ZR and
||uv||ZR

≤ ||u||ZR
||v||ZR

.

Remark 4 In particular, this implies that ||um||ZR
≤ ||u||mZR

for all m ∈ N and ||eu||ZR
≤ e||u||ZR .

The derivative operator DR : ZR → HR is unbounded, but if we choose R′ < R we may define
DR,R′ : ZR → ZR′ and we have the following

Lemma 10 ||DR,R′ || ≤ CR,R′, where CR,R′ =
(
eR′ log R

R′
)−1 when ZR = XR and CR,R′ = (R −

R′)−1 when ZR = YR.

Since we want the computer to handle functions in ZR, we need to represent such functions by
using only a finite set of representable numbers [15]. Our choice is to write functions in ZR as

u(t) =
N−1∑

k=0

ukt
k + tNEu(t) (43)

where Eu ∈ ZR. We store 2N + 1 representable numbers: N pairs represent lower and upper
bounds for the value of the (real) coefficients {uk}, while the last number is an upper estimate of
the norm of Eu.

Lemma 11 Let 0 < R′ < R. If u ∈ ZR is represented as in (43), then u′ ∈ ZR is represented as

u′(t) =
N−1∑

k=0

vkt
k + tNEv(t) ,

where vk = (k + 1)uk+1 for k = 0, . . . , N − 2, vN−1 = [−N ||Eu||ZR
, N ||Eu||ZR

], ||Ev||XR
≤

||Eu||XR
(N/R + CR,R′) and ||Ev||YR

≤ ||Eu||YR
(2N/R + CR,R′).

4.3 The first step

An easy computation shows that, when γ ≥ 1, the solution of (40) can be extended analytically at
least to the disk centered at 0 of radius R = 1. For this reason, for the first step we set R = 11/10
and

X̃R = {w ∈ XR : w(0) = 1, w(t) = w(−t)} .

Let L : X̃R → HR and fγ : X̃R → XR be defined by

Lw = w′′ +
3
t
w′ and fγ(w) = −γ−2w − w3 ,

and consider the operator
Fγ := (L−1fγ) : X̃R → X̃R .

The following lemma is straightforward:

14



Lemma 12 The operator L is invertible and solutions of equation (40) in the interval (0, R) (more
precisely, their analytic extension in DR) correspond to fixed points of the operator Fγ.

If

w(t) =
∞∑

k=0

wkt
k ,

with w2k+1 = 0 for all integers k, then

Lw =
∞∑

k=0

(k + 2)(k + 4)wk+2t
k ;

inverting this relation we get

L−1w = 1 +
∞∑

k=0

wkt
k+2

(k + 2)(k + 4)
.

Let B(0,K) = {w ∈ X̃R : ||w||XR
≤ K}, then

Lemma 13 The Lipschitz constant of Fγ restricted to B(0, K) is at most R2

8

(
γ−2 + 3K2

)
.

Proof. We have

∥∥L−1w
∥∥
XR

=
∞∑

k=0

|wk|Rk+2

(k + 2)(k + 4)
≤ R2

8

∞∑

k=0

|wk|Rk =
R2

8
‖w‖XR

.

The statement follows considering that f ′γ(w) = −γ−2−3w2 and that XR is a Banach algebra. ¤

Assume that we have an approximate solution w̄(t) =
∑N−1

k=0 w̄kt
k, where {w̄k} are interval values

satisfying w̄0 = [1, 1] and w̄2k+1 = [0, 0] for all k = 0, . . . , N/2− 1 (since 0 and 1 are representable
numbers, cf. [15], we may choose intervals of width 0 for w̄0 and w̄1). The following lemma yields
a true solution close to w̄:

Lemma 14 Let w̄(t) =
∑N−1

k=0 w̄kt
k. If there exist ε, ρ > 0 such that ||Fγ(w̄) − w̄||XR

< ε and the
restriction of Fγ to the ball B(w̄, ρ) has Lipschitz constant L(Fγ) ≤ 1 − ε/ρ, then there exists a
fixed point of Fγ in B(w̄, ρ).

Remark 5 Typical values of the constants mentioned above are as follows: K ' 1.2, L ' 0.8,
ε, ρ ' 10−7. The actual values of the constant occurring in Lemma 14 can be obtained from the
function Basics.Integrate of the Ada program.

4.4 Second step

By applying Lemmas 10 and 11 we rigorously compute W0 := w(1) and W1 := w′(1). To proceed,
it is convenient to make another change of variable. Let V (s) := tw(t) where s = log t. The
differential equation (40) together with the initial conditions in t = 1 transforms into





V ′′ = (1− γ−2e2s)V − V 3

V (0) = W0

V ′(0) = W0 + W1

(44)
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Fix R > 0 and consider the space YR; let

ŶR = {V ∈ YR : V (0) = W0, V ′(0) = W0 + W1}
and let Cγ : ŶR → ŶR be defined by

Cγ(V ) = D−2[(1− γ−2e2s)V − V 3] ,

where D−2 : YR → ŶR is the inverse of the second derivative. It is clear that the analytic extension
in DR of the solution of the initial value problem (44) is a fixed point of the operator Cγ . The
analogue of Lemma 14 reads:

Lemma 15 Let v̄(t) =
∑N−1

k=0 v̄kt
k. If there exists ε, ρ > 0 such that ||Cγ(v̄) − v̄||YR

< ε and the
restriction of Cγ to the ball B(v̄, ρ) has Lipschitz constant L(Cγ) ≤ 1 − ε/ρ, then there exists a
fixed point of Cγ in B(v̄, ρ).

To proceed, we need an upper bound for the Lipschitz constant of Cγ :

Lemma 16 Let BK = {v ∈ ŶR , ||v||YR
≤ K}. The Lipschitz constant L(Cγ) of the operator Cγ

restricted to BK satisfies

L(Cγ) ≤
[
max
|s|≤R

(
1− γ−2e2s

)
+ 3K2

]
R2

2
.

Proof. The statement follows when considering ||D−2|| = R2

2 ,

∂

∂V

(
(1− γ−2e2s)V − V 3

)
= (1− γ−2e2s)− 3V 2

and the definition of the norm in YR. ¤

In order to solve equation (44), we proceed as follows. We compute an approximate solution v̄

as a truncated power series, we compute its norm and by Lemma 16 we estimate R in such a way
that Cγ has Lipschitz constant not larger than 0.95 in a ball of radius equal to the norm of the
approximate solution. Then we compute an upper bound for ||Cγ(v̄)− v̄||YR

and we choose ρ > 0
such that the assumptions of Lemma 15 are satisfied. Finally, by using again Lemmas 10 and 11
we compute V (T ) and V ′(T ) for some T close to, but less than R.

4.5 Successive steps and proof of Proposition 4

We can now proceed by setting V0 = V (T ) and V1 = V ′(T ) and by solving




V ′′ = (1− γ−2e2(T+s))V − V 3

V (0) = V0

V ′(0) = V1

with the method described above (up to small adjustments). It is straightforward to iterate the
procedure as many times as necessary, in order to obtain a lower bound for the second zero of the
solution.

Finally, we partition the interval [5, 349] into the union of small intervals. For each such interval
we solve the equation (40) as described above, until we reach the second zero z and we check the
inequality z > γ

√
µ1, which proves Proposition 4. See the Ada files [4] for the details of the proof.
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