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Abstract. We study the spatial critical points of the solutions u = u(x, t) of the fractional heat
equation. For the Cauchy problem, we show that the origin 0 satisfies ∇xu(0, t) = 0 for t > 0 if

and only if the initial data satisfy a balance law of the form
∫
SN−1 ωu0(rω) dω = 0 for a. e. r ≥ 0.

Moreover, for the Dirichlet initial-boundary value problem, we prove two symmetry results: Ω is a
ball centered at the origin if and only if ∇xu(0, t) = 0 for t > 0 provided that the initial data satisfies

the above mentioned balance law; Ω is centrosymmetric if and only if ∇xu(0, t) = 0 for t > 0 provided

that the initial data is centrosymmetric. These results extend some theorems obtained by Magnanini
and Sakaguchi in 1997-1999 for the (local) heat equation to the fractional context. These extensions

are nontrivial, because of the nonlocal nature of the fractional Laplacian. Among others, the proof of

the characterization of a ball in the Dirichlet initial-boundary value problem for the fractional heat
flow not only works for the classical heat flow but also gives a new insight into the problem.

1. Introduction

We study the spatial critical points of solutions of the fractional heat equation{
∂tu(x, t) + (−∆)su(x, t) = 0, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,
(1.1)

where u0 ∈ L∞(RN ), 0 < s < 1, and the operator (−∆)s is the fractional Laplacian (see [8, 1] for
further information), that is,

(1.2) (−∆)su(x) := cN,s lim
ε→0+

∫
|y−x|>ε

u(x)− u(y)

|x− y|N+2s
dy,

where cN,s is a constant chosen so that the Fourier representation

(−∆)su = F−1(|ξ|2sFu)

holds in RN , namely,

cN,s :=
22ssΓ(N+2s

2 )

πN/2Γ(1− s)
.(1.3)

For the classical heat equation, corresponding to the case s = 1 of (1.1), the study of spatial critical
points goes back to [10], where hot spots (i.e. critical points where the solutions attains its spatial
maximum) have been considered: the author studied the location of the hot spots of the non-negative
solution of the Cauchy problem and their asymptotic behavior as time goes to infinity. We refer to
[16] for the initial-boundary value problem on unbounded domains in RN .

On this topic, a conjecture formulated by Klamkin (and modified by Kawohl) states that the hot
spots of the initial-boundary value problem on bounded convex domains in RN do not move in time for
positive constant initial data under the homogeneous Dirichlet boundary condition, then the convex
domain must have some sort of symmetry. Some progress on this conjecture has been made in [15].
This problem was then studied further in [23], where the authors proved that a solution u has a
spatial critical point not moving along the heat flow if and only if u satisfies some balance law (which
amounts to a symmetry condition with respect to the critical point). Moreover, they provided a
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characterization of balls by making use of the spatial critical points not moving along the heat flow.
A similar characterization was given in [25, 24] for centrosymmetric domains. In a similar spirit, in
[26], planar domains which are invariant by some rotation have been studied. In [29], the stationary
critical points of the heat flow have also been studied in the sphere and hyperbolic spaces. We also
refer to [30] for a survey of this research area.

In the present paper, we extend some results of [23, 25] to the fractional context. These extensions
are nontrivial, because of the nonlocal nature of the fractional Laplacian. First, we consider the Cauchy
problem (1.1) and prove that the origin is a critical point of u which does not move along the fractional
heat flow if and only if the initial datum satisfies a balance law of the form∫

SN−1

ωu0(rω) dω = 0 for any r ≥ 0,(1.4)

where SN−1 denotes the unit sphere centered at the origin in RN with the volume element dω, is
satisfied (see [23, Theorem 1] for s = 1). For the special case s = 1/2, where the fractional heat kernel
can be computed explicitly (see Section 2), such result was recently obtained in [31, Theorem 3.7].

Next, we consider the initial-boundary value problem with homogeneous Dirichlet data
∂tu(x, t) + (−∆)su(x, t) = 0, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ RN \ Ω, t > 0

(1.5)

for a bounded C1,1 domain Ω ⊂ RN with 0 ∈ Ω. We prove the following symmetry results:

• if u0 satisfies the balance law of the type (1.4), then ∇xu(0, t) = 0 for t > 0 and every u0 is
equivalent to Ω being a ball centered at the origin (cf. [23, Theorem 4]);
• if u0 satisfies u0(x) = u0(−x), then ∇xu(0, t) = 0 for t > 0 and every u0 is equivalent to Ω

being centrosymmetric with respect to the origin (cf. [25, Theorems 1 & 2]),

where the proof of the above characterization of a ball for the fractional heat flow not only works for
the classical heat flow but also gives a new insight into the problem (see Step 3: A construction to
represent ∇xG(0, y) of the proof of Theorem 3.2 ((1) =⇒ (2)) in Section 4.2).

For the regularity (up to the boundary) of solutions to the fractional heat equation, we refer to [13],
where problem (1.5) is solved by the method of separation of variables with the aid of the eigenfunctions
of the fractional Laplacian.

Finally, as in [25, Sections 4 & 5], we note that these results can be extended to spatial zero points
(that is, if, instead of ∇xu(·, t) = 0, we consider u(·, t) = 0 for each time t ≥ 0) and that all the results
on the fractional heat equation can be restated for (smooth solutions of) the fractional wave equation{

∂2
tw(x, t) + (−∆)sw(x, t) = 0, x ∈ RN , t > 0,

w(x, 0) = 0 and ∂tw(x, 0) = u0(x), x ∈ RN ,
(1.6)

where u0 ∈ C∞0 (RN ), and
∂2
tw(x, t) + (−∆)sw(x, t) = 0, x ∈ Ω, t > 0,

w(x, 0) = 0, x ∈ Ω,

∂tw(x, 0) = u0(x), x ∈ Ω,

w(x, t) = 0, x ∈ RN \ Ω, t > 0,

(1.7)

where u0 ∈ C∞0 (Ω) (for which see [22, 32, 4, 2, 28, 18]) thanks to the properties of the Laplace
transform. We note that problem (1.7) can also be solved by the method of separation of variables as
problem (1.5) is solved in [13].

1.1. Outline. The paper is organized as follows. In Section 2, we present some preliminary notions
on fractional Sobolev spaces, the fractional Laplace operator, the Green’s function and the fractional
heat kernel that are needed throughout the paper. In Section 3, we state our main results outlined
above. In Section 4, we present the proofs. First, we deal with the critical points not evolving along
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the heat flow: in Section 4.1, we consider the Cauchy problem; in Section 4.2, we consider the radial
symmetry result; and, in Section 4.3, the central symmetry result. Then, in Sections 4.4 and 4.5, we
outline how the previously developed arguments can be adapted to deal with spatial zero points of
solutions of the heat equation and also with critical and zero points of the fractional wave equation.

2. Preliminaries and notation

2.1. Fractional Sobolev spaces. Following mostly the notations in [14], we define

Es[u, v] =

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

and abbreviate Es[u] = Es[u, u]. We denote by

Hs(RN ) := {u ∈ L2(RN ) : Es[u] <∞}
the (non-homogeneous) Sobolev space of order s. For a bounded smooth open set Ω ⊂ RN , we define
the function space

H̃s(Ω) := {u ∈ Hs(RN ) : u ≡ 0 on RN \ Ω}.
The quadratic form Es is closed on H̃s(Ω) and it is therefore the quadratic form of a self-adjoint
operator on L2(Ω), which is indeed the fractional Laplacian as

Es[u] = 2C−1
N,s(u, (−∆)su)L2(RN ) = 2C−1

N,s‖(−∆)s/2u‖22.

Denoting by Hs
0(Ω) the closure of C∞0 (Ω) with respect to Es, we have H̃s(Ω) ⊂ Hs

0(Ω) with equality
if and only if s − 1

2 /∈ Z, see [27, Proposition 1] for a more detailed statement. We remark that the
quantity

‖u‖L2(RN ) +

(∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

<∞(2.1)

defines a norm on both Hs(RN ) and H̃s(Ω) and that they are Hilbert spaces with the inner product
given by

〈u, v〉L2(RN ) + Es[u, v].(2.2)

2.2. Fractional heat equation. For 0 < s ≤ 1, we define the fractional heat kernel P (x, t; s) as the
solution of the problem {

∂tP (x, t; s) + (−∆)sP (x, t; s) = 0, x ∈ RN , t > 0,

P (x, 0; s) = δ0, x ∈ RN .
(2.3)

Using the Fourier transform, we obtain that

P (x, t; s) = F−1(e−t(2π|ξ|)
2s

),(2.4)

from which we also deduce P (·, t; s) ∈ C∞(RN ) (see [6, Section 8.3] for finer Gervey regularity prop-
erties, depending on the value of 0 < s ≤ 1).

The fractional heat kernel P (x, t; s) can be computed explicitly for s = 1 (the classical heat kernel)
and for s = 1/2:

P (x, t; 1) = (4πt)−N/2e−|x|
2/4t,(2.5)

P (x, t; 1/2) =
cN t

(t2 + |x|2)(N+1)/2
,(2.6)

where

cN :=
Γ(N + 1/2)

πN+1/2
.(2.7)

We remark that (2.6) is the Poisson kernel for the Laplace equation posed in the upper half-space

H+
N = {(x, t) : x ∈ RN , t > 0} ⊂ RN+1,
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which is consistent with the Caffarelli-Silvestre extension theorem (see [9]).
For general values s ∈ (0, 1), the heat kernel has the self-similar form

P (x, t; s) = t−N/2sΦs(|x|t−1/2s)(2.8)

but its profile is not simple (see [14, Eqs. (16.11) and (16.14), p. 97]). However, the following estimate
holds (see [14, Theorem 16.6]):

P (x, t; s) � t

(t1/s + |x|2)(N+2s)/2
.(2.9)

We refer to [14, Section 16] and [8] for further details and references on the fractional heat semigroup.
By using the fractional heat kernel P (x, t; s), the fractional heat equation can be solved for all

0 < s ≤ 1:

u(x, t) =

∫
RN

P (x− y, t; s)u0(y) dy.(2.10)

The optimal class of initial data for which this representation holds is given in [6]: it is the class of
locally finite Radon measures satisfying the growth condition∫

RN
(1 + |x|2)−(N+2s)/2 d|µ|(x) <∞.(2.11)

2.3. Fractional Poisson equation. For the fractional Laplacian, we observe that the fundamental
solution (see [7, Theorem 2.3]), i.e. the solution of

(−∆)sΨ = δ0, x ∈ RN ,(2.12)

is given by

Ψ(x) =

{
Γ(N/2−s)

22sπN/2Γ(s)
|x|−N+2s if N 6= 2s,

− 1
π log |x| if N = 2s.

(2.13)

Moreover, the Green’s function of the fractional Laplacian on a ball (see [7, Theorem 3.1]) is explicitly
given by

G(x, y) := κ(N, s)|x− y|2s−N
∫ r0(x,y)

0

ts−1

(t+ 1)N/2
dt(2.14)

with

r0(x, y) =
(r2 − |x|2)(r2 − |y|2)

r2|x− y|2

in case N 6= 2s or by

G(x, y) = κ(1, 1/2) log

(
r2 − xy +

√
(r2 − x2)(r2 − y2)

r|y − x|

)
(2.15)

in case N = 2s, where

κ(N, s) =
Γ(N/2)

22sπN/2Γ2(s)
if N 6= 2s,

κ(1, 1/2) =
1

π
if N = 2s.

For a general domain Ω, the properties of the Green’s function have also been studied; we particularly
recall the following result (see [19, Proposition 2.5] and [5, Eq. (1.65)]).



STATIONARY CRITICAL POINTS OF THE FRACTIONAL HEAT FLOW 5

Proposition 2.1 (Green’s function of the fractional Laplacian). Let Ω be an open set in RN , Br(x1) ⊂
Ω, x ∈ Br(x1), and y ∈ RN . Then

G(x, y) ≥
∫
RN\Ω

G(u, y)Pr(x− x1, u− x1) du

and, if y /∈ Br(x1),

G(x, y) =

∫
RN\Br(x1)

G(u, y)Pr(x− x1, u− x1) du,(2.16)

where

Pr(x, y) :=

Γ
(
N
2

)
π−

N
2 −1 sin(πs)

(
r2−|x|2
|y|2−r2

)s
|x− y|−N for |y| > r,

0 for |y| ≤ r.
(2.17)

In particular, formula (2.16), together with the symmetry of G(x, y), guarantees that G(x, y) is real
analytic in {x 6= y}.

We remark that [7, Theorem 3.2] gives that, for r > 0, h ∈ C2s+ε(Br(0)) ∩ C(B̄r), the function

u(x) :=

{∫
Br(0)

h(y)G(x, y) dy if x ∈ Br(0),

0 if x ∈ RN \Br(0)

is the unique pointwise continuous solution of the problem{
(−∆)su(x) = h(x), x ∈ Br(0),

u(x) = 0, x ∈ RN \Br(0).

Furthermore, we recall that a function u is s-harmonic in x ∈ RN if and only if it satisfies the
following s-mean value property (see [7, Definition 2.1] or [14, Section 15]):

u(x) =

∫
RN\Br(0)

Ar(y)u(x− y) dy,(2.18)

where

Ar(y) :=

{
c(N, s) r2s

(|y|2−r2)|y|N , y ∈ RN \ B̄r(0),

0, y ∈ B̄r(0).

For a general bounded domain Ω, we consider{
(−∆)su(x) = h(x), x ∈ Ω,

u(x) = 0, x ∈ RN \ Ω.
(2.19)

We can then prove that ‖u‖H̃s(Ω) ≤ C0‖h‖H̃s(Ω) using Poincaré’s inequality.

Proposition 2.2. There exists a constant C0 > 0 such that the solution u of (2.19) satisfies

‖u‖H̃s(Ω) ≤ C0‖h‖H̃s(Ω).

Proof. By the Poincaré-type inequality in [12, Section 2.3], we have that there exists CP > 0 such that

‖u‖2L2(RN ) ≤ CPEs[u]

By the weak formulation of (2.19)

Es[u, v] = 〈h, v〉L2(RN )(2.20)

for all v ∈ H̃s(Ω); setting u = v, we have

Es[u] = 〈h, u〉L2(RN )

≤ ‖h‖L2(RN )‖u‖L2(RN ) ≤ CP ‖h‖2L2(RN ),
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where we used Schwarz and Poincaré’s inequalities. This yields that there exists C0 > 0 such that

‖u‖H̃s(Ω) ≤ C0‖h‖H̃s(Ω).

�

Remark 2.1. Proposition 2.2 means that the Green’s function G produces the Green’s operator G :

H̃s(Ω)→ H̃S(Ω) which is a bounded operator with norm ‖G‖ ≤ C0.

Similarly, for the problem{
(−∆)su(x) + λu(x) = h(x), x ∈ Ω,

u(x) = 0, x ∈ RN \ Ω,
(2.21)

where h ∈ H̃s(Ω), we can find a solution u ∈ H̃s(Ω) and prove the following result.

Proposition 2.3. For λ > 0, the solution u ∈ H̃s(Ω) of (2.21) satisfies

‖u‖H̃s(Ω) ≤ C0‖h‖H̃s(Ω),

where C0 is the same constant as in Proposition 2.2.

Proof. The proof is similar to the one of Proposition 2.2. The only differences are as follows: we
replace (2.20) by

Es[u, v] + λ〈u, v〉L2(RN ) = 〈h, v〉L2(RN )(2.22)

and observe that, setting v = u, yields

Es[u] + λ‖u‖2L2(RN )︸ ︷︷ ︸
≥0 as λ > 0

= 〈h, u〉L2(RN ) ≤ ‖h‖L2(RN )‖u‖L2(RN )

≤ CP ‖h‖2Hs(RN ).

�

3. Main results

3.1. Critical points and the fractional heat flow. Our first main result is the fractional version
of [23, Theorem 1], dealing with the Cauchy problem (1.1).

Theorem 3.1 (Stationary critical points and a balance law for the Cauchy problem). Let s ∈ (0, 1),
u0 ∈ C∞0 (RN ) with supp(u0) ⊂ BL(0) for some L > 0, and u be the solution of the Cauchy problem
for the fractional heat equation (1.1). Then the following conditions are equivalent:

(1) ∇xu(0, t) = 0 for any t > 0;

(2)

∫
SN−1

ωu0(rω) dω = 0 for any r ≥ 0.

Motivated by this result, we consider the Dirichlet IBVP (1.5) and prove the following symmetry
result (see [23, Theorem 4] for s = 1 and more general Robin-type boundary conditions).

Theorem 3.2 (Radial symmetry result). Let s ∈ (0, 1) and u be the solution of (1.5). Let Bδ(0) be
a ball centered at the origin with radius δ > 0 such that Bδ(0) ⊂ Ω. Assume that Ω is a C1,1 bounded
domain and that u0 ∈ C∞0 (Ω), suppu0 ⊂ Bδ(0), and that the balance law∫

SN−1

ωu0(rω) dω = 0

holds for any r ∈ (0, δ). Then the following conditions are equivalent:

(1) ∇xu(0, t) = 0 for any t > 0 and any u0 as above;
(2) Ω = BR(0) for some R > 0.

Finally, we study a centrosymmetry result for the IBVP (1.5) and prove the fractional version of
[25, 24, Theorems 1 & 2].
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Theorem 3.3 (Centrosymmetry result). Let s ∈ (0, 1) and u be the solution of (1.5). Let Bδ(0)
be a ball centered at the origin with radius δ > 0 such that Bδ(0) ⊂ Ω. Assume that Ω is a C1,1

bounded star-shaped domain with respect to the origin and that u0 ∈ C∞0 (Ω), suppu0 ⊂ Bδ(0), and
u0(x) = u0(−x) for x ∈ Bδ(0). Then, the following conditions are equivalent:

(1) ∇xu(0, t) = 0 for any t > 0 and any u0 as above;
(2) Ω is centrosymmetric with respect to the origin (i.e. x ∈ Ω =⇒ −x ∈ Ω).

3.2. Spatial zero points and the fractional heat flow. Let us consider the problems for spatial
zero points. Namely, instead of ∇xu(·, t) = 0, we consider u(·, t) = 0 for each time t ≥ 0. Then, along
the similar arguments we can get all theorems by replacing the balance law

∫
SN−1 ωu0(rω) dω = 0 by∫

SN−1 u0(rω) dω = 0.

Theorem 3.4 (Stationary zero points and a balance law for the Cauchy problem). Let s ∈ (0, 1),
u0 ∈ C∞0 (RN ) with supp(u0) ⊂ BL(0) for some L > 0, and u be the solution of the Cauchy problem
for the fractional heat equation (1.1). Then the following conditions are equivalent:

(1) u(0, t) = 0 for any t > 0;

(2)

∫
SN−1

u0(rω) dω = 0 for any r ≥ 0.

Theorem 3.5 (Radial symmetry result). Let s ∈ (0, 1) and u be the solution of (1.5). Let Bδ(0) be
a ball centered at the origin with radius δ > 0 such that Bδ(0) ⊂ Ω. Assume that Ω is a C1,1 bounded
domain and that u0 ∈ C∞0 (Ω), suppu0 ⊂ Bδ(0), and that the balance law∫

SN−1

u0(rω) dω = 0

holds for any r ∈ (0, δ). Then the following conditions are equivalent:

(1) u(0, t) = 0 for any t > 0 and any u0 as above;
(2) Ω = BR(0) for some R > 0.

Theorem 3.6 (Centrosymmetry result). Let s ∈ (0, 1) and u be the solution of (1.5). Let Bδ(0)
be a ball centered at the origin with radius δ > 0 such that Bδ(0) ⊂ Ω. Assume that Ω is a C1,1

bounded star-shaped domain with respect to the origin and that u0 ∈ C∞0 (Ω), suppu0 ⊂ Bδ(0), and
u0(x) = −u0(−x) for x ∈ Bδ(0). Then, the following conditions are equivalent:

(1) u(0, t) = 0 for any t > 0 and any u0 as above;
(2) Ω is centrosymmetric with respect to the origin (i.e. x ∈ Ω =⇒ −x ∈ Ω).

3.3. Fractional wave equation and symmetry. Finally, we remark that all the results above hold
true if, instead of the fractional heat equation, we consider the fractional wave equation.

Theorem 3.7 (Stationary critical points and a balance law for the Cauchy problem for the fractional
wave equation). Let s ∈ (0, 1), u0 ∈ C∞0 (RN ) with supp(u0) ⊂ BL(0) for some L > 0, and w be the
solution of the Cauchy problem for the fractional wave equation (1.6). Then the following conditions
are equivalent:

(1) ∇xw(0, t) = 0 for any t > 0;

(2)

∫
SN−1

ωu0(rω) dω = 0 for any r ≥ 0.

Theorem 3.8 (Radial symmetry for the wave equation). Let s ∈ (0, 1) and w be the solution of (1.7).
Let Bδ(0) be a ball centered at the origin with radius δ > 0 such that Bδ(0) ⊂ Ω. Let us consider the
Laplace transform Wλ(x) =

∫∞
0
e−λtw(x, t) dt (for λ > 0). Assume that Ω is a C1,1 bounded star-

shaped domain with respect to the origin and that u0 ∈ C∞0 (Ω), suppu0 ⊂ Bδ(0) and that the balance
law ∫

SN−1

ωu0(rω) dω = 0

holds for any r ∈ (0, δ). Then the following conditions are equivalent:
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(1) ∇xWλ(0) = 0 for any λ > 0 and any u0 as above;
(2) Ω = BR(0) for some R > 0.

Theorem 3.9 (Centrosymmetry result). Let s ∈ (0, 1) and w be the solution of (1.7). Let Bδ(0) be a
ball centered at the origin with radius δ > 0 such that Bδ(0) ⊂ Ω. Let us consider the Laplace transform
Wλ(x) =

∫∞
0
e−λtw(x, t) dt (for λ > 0). Assume that Ω is a C1,1 bounded star-shaped domain with

respect to the origin and that u0 ∈ C∞0 (Ω), suppu0 ⊂ Bδ(0), and u0(x) = u0(−x) for x ∈ Bδ(0).
Then, the following conditions are equivalent:

(1) ∇xWλ(0) = 0 for any λ > 0 and any u0 as above;
(2) Ω is centrosymmetric with respect to the origin (i.e. x ∈ Ω =⇒ −x ∈ Ω).

Theorem 3.10 (Stationary zero points and a balance law for the Cauchy problem). Let s ∈ (0, 1),
u0 ∈ C∞0 (RN ) with supp(u0) ⊂ BL(0) for some L > 0, and w be the solution of the Cauchy problem
for the fractional wave equation (1.6). Then the following conditions are equivalent:

(1) w(0, t) = 0 for any t > 0;

(2)

∫
SN−1

u0(rω) dω = 0 for any r ≥ 0.

Theorem 3.11 (Radial symmetry result). Let s ∈ (0, 1) and w be the solution of (1.7). Let Bδ(0)
be a ball centered at the origin with radius δ > 0 such that Bδ(0) ⊂ Ω. Let us consider the Laplace
transform Wλ(x) =

∫∞
0
e−λtw(x, t) dt (for λ > 0). Assume that Ω is a C1,1 bounded domain and that

u0 ∈ C∞0 (Ω), suppu0 ⊂ Bδ(0), and that the balance law∫
SN−1

u0(rω) dω = 0

holds for any r ∈ (0, δ). Then the following conditions are equivalent:

(1) Wλ(0) = 0 for any λ > 0 and any u0 as above;
(2) Ω = BR(0) for some R > 0.

Theorem 3.12 (Centrosymmetry result). Let s ∈ (0, 1) and w be the solution of (1.7). Let Bδ(0) be a
ball centered at the origin with radius δ > 0 such that Bδ(0) ⊂ Ω. Let us consider the Laplace transform
Wλ(x) =

∫∞
0
e−λtw(x, t) dt (for λ > 0). Assume that Ω is a C1,1 bounded star-shaped domain with

respect to the origin and that u0 ∈ C∞0 (Ω), suppu0 ⊂ Bδ(0), and u0(x) = −u0(−x) for x ∈ Bδ(0).
Then, the following conditions are equivalent:

(1) Wλ(0) = 0 for any λ > 0 and any u0 as above;
(2) Ω is centrosymmetric with respect to the origin (i.e. x ∈ Ω =⇒ −x ∈ Ω).

4. Proofs of the main results

4.1. Critical points of the solution of the Cauchy problem.

Proof of Theorem 3.1. As a consequence of [20, Theorem 1.5], we have

∂xjP
N (x, t; s) = −2πxj P

N+2(x̃, t; s),

where x = (x1, . . . , xn) ∈ RN , x̃ = (x1, . . . , xn, 0, 0) ∈ RN+2, and PN (x, t; s) is the heat kernel for
(−∆)s in N space dimensions. Moreover, PN+2(x̃, 1; s) = Φs(x̃) and, by [14, Eq. (16.14)]. We have

PN+2(x̃, 1; s) =
2π

|x|
N
2

∫ ∞
0

e−(2πρ)2sρ
N
2 +1JN

2
(2π|x|ρ) dρ,(4.1)

where, by [14, Eq. (4.23), p. 22],

JN
2

(z) =

∞∑
k=0

(−1)k
(z/2)N/2+2k

Γ(k + 1)Γ(k +N/2 + 1)
,(4.2)
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for |z| <∞ and | arg z| < π. For u0 ∈ L∞(RN ) with suppu0 ⊂ BL(0), we let

A(r) =

∫
SN−1

ωu0(rω) dω for r ∈ [0, L].

Hence, we compute

∇xu(0, t) = 2π

∫
RN

xPN+2(x̃, t; s)u0(x̃) dx̃

= 2πt−
N+2
2s

∫
RN

xPN+2

(
x̃

t
1
2s

, 1; s

)
u0(x̃) dx̃

= 2πt−
N+2
2s

∫ L

0

rNPN+2(hr, 1; s)A(r) dr

= (2π)2t−
N+2
2s + N

4s

∫ L

0

r
N
2

(∫ ∞
0

e−(2πρ)2sρ
N
2 +1JN

2
(2πhrρ) dρ

)
A(r) dr,

where we set h := t−1/2s and note that 0 < hr < hL. Thus, by (4.2)∫ ∞
0

e−(2πρ)2sρ
N
2 +1JN

2
(2πhrρ) dρ

= (πh)N/2rN/2
∞∑
k=0

(−1)k
1

Γ(k + 1)Γ(k +N/2 + 1)
(πh)2kr2kCk,

where we set Ck =
∫∞

0
e−(2πρ)2sρN+1+2k dρ > 0. Therefore, ∇xu(0, t) = 0 for all t > 0 if and only if

∞∑
k=0

(πh)2k(−1)k
Ck

Γ(k + 1)Γ(k +N/2 + 1)

∫ L

0

r2kA(r)rN dr = 0 for all h > 0,

that is, ∫ L

0

r2k(A(r)rN ) dr = 0 for all k ≥ 0,

which is equivalent to

A(r) = 0 for any r ∈ [0, L].

�

4.2. Radial symmetry result for the IBVP. We now prove Theorem 3.2. For the first implication,
we use an approach based on the Laplace transform and the properties of the operator I + λG, with
λ > 0. For the second implication, we argue by contradiction by relying on the properties of the
fundamental solution of the fractional heat equation.

Proof of Theorem 3.2. ((2) =⇒ (1)) Step 1: The Green’s operator preserves the balance law. Let us
assume that Ω = BR(0) and that the initial data u0 satisfies the balance law. As a first step towards
the proof of the result, we show that

∫
SN−1 ωu0 dω = 0 implies

∫
SN−1 ωGu0 dω = 0, where G is the

Green operator which sends u0 into Gu0 as in Remark 2.1. To this end, we compute as follows (using

the notation G(x, y) = Ĝ(|x− y|, |x|, |y|) ): for x = ρω, and 0 < ρ ≤ R,∫
SN−1

ω(Gu0)(ρω) dω =

∫
SN−1

ω

∫
BR(0)

u0(y)Ĝ(
√
ρ2 + |y|2 − 2ρω · y, ρ, |y|) dy dω

=

∫
BR(0)

u0(y)

∫
SN−1

ωĜ(
√
ρ2 + |y|2 − 2ρω · y, ρ, |y|) dω dy

=

∫ R

0

sN−1 ds

∫
SN−1

dη u0(sη)

∫
SN−1

ωĜ(
√
ρ2 + s2 − 2ρsω · η, ρ, s) dω,

where we wrote y = sη, for η ∈ SN−1, 0 < s ≤ R in the last line.
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Using the decomposition ω = (ω · η)η + γ with an integral identity of [17, Eq. (1.2), p. 8], we have∫
SN−1

ωĜ(
√
ρ2 + s2 − 2ρsω · η, ρ, s) dω

= η

∫
SN−1

(ω · η)Ĝ(
√
ρ2 + s2 − 2ρsω · η, ρ, s) dω

+

∫
SN−1

γĜ(
√
ρ2 + s2 − 2ρsω · η, ρ, s) dω︸ ︷︷ ︸
=0 by symmetry

= η|SN−2|
∫ 1

−1

(1− λ2)
N−3

2 λĜ(
√
ρ2 + s2 − 2ρsλ, ρ, s) dλ.

As a result, ∫
SN−1

u0(sη)η|SN−2|
∫ 1

−1

(1− λ2)
N−3

2 λĜ(
√
ρ2 + s2 − 2ρsλ, ρ, s) dλ dη

= |SN−2|
∫ 1

−1

(1− λ2)
N−3

2 λĜ(
√
ρ2 + s2 − 2ρsλ, ρ, s) dλ

∫
SN−1

u0(sη)η dη︸ ︷︷ ︸
=0

= 0,

which yields that
∫
SN−1 ω(Gu0)(ρω) dω = 0.

Step 2: Reduction to an elliptic problem. For λ > 0, we apply the Laplace transform to the solution
of the fractional heat equation and obtain that vλ(x) =

∫∞
0
e−λtu(x, t) dt solves{

(−∆)svλ(x) + λvλ(x) = u0(x), x ∈ Ω,

vλ(x) = 0, x ∈ RN \ Ω.
(4.3)

Using the Green’s operator of the fractional Laplacian on a ball, we deduce

vλ = G(u0)− λGvλ,

that is,

(I + λG)vλ = Gu0.

Step 3: Balance law via Neumann series. We claim that (I + λG) is invertible for λ > 0 and
vλ = (I + λG)−1Gu0. To prove this, we argue as follows. It follows from Proposition 2.2 that there
exists λ0 > 0 such that

vλ = (I + λG)−1Gu0 =

∞∑
k=0

(−λ)kGk+1u0

for every 0 < λ ≤ λ0. Then, by Step 1, since u0 satisfies the balance law, we have that∫
SN−1 ωvλ(ρω) dω = 0 for every 0 < ρ ≤ R and for every 0 < λ ≤ λ0.

For λ > 0, we write (4.3) as{
(−∆)svλ(x) + λ0vλ(x) = u0 − (λ− λ0)vλ(x), x ∈ Ω,

vλ(x) = 0, x ∈ RN \ Ω.
(4.4)

Let Gλ0 : u0 7→ vλ0 =: Gλ0u0 where vλ0 is the solution of (4.3) with λ = λ0. Then we can write

vλ = Gλ0
(u0 − (λ− λ0)vλ)

= Gλ0
u0 − (λ− λ0)Gλ0

vλ;

hence

(I + (λ− λ0)Gλ0
)vλ = Gλ0

u0.
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By Proposition 2.3, we have

vλ = (I + (λ− λ0)Gλ0
)−1Gλ0

u0 =

∞∑
k=0

(λ0 − λ)kGk+1
λ0

u0

for every λ0 < λ ≤ 2λ0. Then, since we have seen that Gλ0
u0 satisfies the balance law, we have that∫

SN−1 ωvλ(ρω) dω = 0 for every 0 < ρ ≤ R and for every λ0 < λ ≤ 2λ0. Iterating the argument,
eventually we obtain that the solution v of (4.3) with λ > 0 preserves the balance law: i.e.,∫

SN−1

ωvλ(ρω) dω = 0.

Step 4: Conclusion of the proof. Assuming
∫
SN−1 ωu0 dω = 0, Steps 1-3 give that, for every

0 < ρ ≤ R and every λ > 0, ∫
SN−1

ωvλ(ρω) dω = 0,

which shows, by the injectivity of the Laplace transform, that∫
SN−1

ωu(ρω, t) dω = 0,

for every 0 < ρ ≤ R and t ≥ 0.
((1) =⇒ (2)) Step 1: Choice of initial data and symmetry properties of ∇xG(0, y). Let

v(x) =

∫ ∞
0

u(x, t) dt.(4.5)

Then v solves {
(−∆)sv(x) = u0(x), x ∈ Ω,

v(x) = 0, x ∈ RN \ Ω.
(4.6)

Let G = G(x, y) be the Green’s function of the fractional Laplacian on Ω. Then

v(x) =

∫
Bδ(0)

G(x, y)u0(y)dy.(4.7)

Let us consider as initial data u0(x) = η(|x|)ψ(x/|x|), where η : R → R is a smooth function with
support in (0, δ) and ψ on SN−1 satisfies the balance law

∫
SN−1 ωψ(ω) dω = 0. Then, since∇xu(0, t) = 0

for any t > 0,

0 =

∫
Bδ(0)

∇xG(0, y)η(|y|)ψ(y/|y|) dy

=

∫ δ

0

η(r)

(
rN−1

∫
SN−1

∇xG(0, rω)ψ(ω) dω

)
dr,

which implies ∫
SN−1

∇xG(0, rω)ψ(ω) dω = 0 for any r ∈ (0, δ),

and hence

∇xG(0, y) = M(r)ω for any y = rω ∈ Bδ(0) \ {0},(4.8)

where M(r) is a N × N matrix-valued function in r = |y| and ω ∈ SN−1.Note that ∇xG(0, y) is
real-analytic in y ∈ Ω \ {0} (by Proposition 2.1) and ∇xG(0, y) ≡ 0 for every y ∈ RN \ Ω.

Step 2: Setting up the argument by contradiction. For every direction ω ∈ SN−1, there exists
R(ω) > δ such that the line segment `ω := {rω ∈ RN : 0 ≤ r < R(ω)} is contained in Ω and
R(ω)ω ∈ ∂Ω. Moreover, ∇xG(0, rω) is real analytic in r ∈ (0, R(ω)) and ∇xG(0, R(ω)ω) = 0 for every
ω ∈ SN−1. Let BR∗(0) ⊂ Ω and P ∈ B̄R∗(0) ∩ ∂Ω for some P = R∗ω∗ = R(ω∗)ω∗ ∈ ∂Ω. We claim
that BR∗(0) = Ω. Let us suppose, for the sake of finding a contradiction, that BR∗ $ Ω.
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Step 3: A construction to represent ∇xG(0, y). Since BR∗ $ Ω, there exists a ball Bε(Q) such that
B̄ε(Q) ⊂ Ω for some Q ∈ ∂BR∗(0) ∩ Ω and ε > 0 (to be chosen small enough). Let us choose a set of
linearly independent vectors f1, . . . , fN ∈ SN−1 satisfying

(R∗ + ε
2 )fi ∈ ∂BR∗+ε/2(0) ∩ ∂Bε(Q), i = 1, . . . , N.(4.9)

Then every ω ∈ SN−1 is represented by ω =
∑N
i=1 ηifi for a unique (η1, · · · , ηN ) ∈ RN . If 0 < r < δ,

then

∇xG(0, rω) = M(r)ω =

N∑
i=1

ηiM(r)fi =

N∑
i=1

ηi∇xG(0, rfi),

namely

∇xG(0, rω) =

N∑
i=1

ηi∇xG(0, rfi)(4.10)

for every 0 < r < δ and ω ∈ SN−1. By the real analyticity of ∇xG(0, y) in y, we have

∇xG(0, rω) =

N∑
i=1

ηi∇xG(0, rfi)(4.11)

for every 0 < r < min{R(ω), R∗ + ε/2} and ω =
∑N
i=1 ηifi ∈ SN−1.

Set hi = hi(r) = ∇xG(0, rfi) for i = 1, . . . , N . Then every hi is real analytic in r ∈ (0, R∗ + ε/2).
Hence, by (4.10), we have

∇xG(0, rω) =

N∑
i=1

ηihi(r)(4.12)

for every rω ∈ C, where C denotes the connected component of Ω ∩BR∗+ ε
2
(0) containing BR∗(0).

Consider the set F := ∂Ω∩C. Since ∇xG(0, R(ω)ω) = 0 for every ω ∈ SN−1, from (4.12) we deduce

N∑
i=1

ηihi(R(ω)) = 0, R(ω)ω ∈ F.(4.13)

Since (η1, · · · , ηN ) 6= 0, we get

det[h1(R(ω)) · · ·hN (R(ω))] = 0, R(ω)ω ∈ F,(4.14)

We remark that the range of R(ω) contains (R∗, R∗ + ε∗) for some ε∗ > 0. Indeed, since BR∗(0) $ Ω
and ∂Ω ∩ ∂BR∗(0) 6= ∅, there must be a connected component Γ $ ∂Ω intersecting ∂BR∗(0) and
containing some point Q∗ ∈ Γ \ ∂BR∗(0); then we set ε∗ = dist(Q∗, 0)−R∗ > 0.

Step 4: Conclusion of the argument. This fact and the analyticity of hi imply

det[h1(r) . . . hN (r)] = 0 0 < r < R∗ + ε/2.(4.15)

In particular, for 0 < r < δ, since by (4.8) ∇xG(0, rfi) = M(r)fi, with i = 1, . . . , N , we have

0 ≡ det[h1(r) · · ·hN (r)] = det[M(r)f1 · · ·M(r)fN ]

= detM(r) det[f1 · · · fN ], 0 < r < δ.

Since det[f1 · · · fN ] 6= 0, we conclude that detM(r) ≡ 0 for 0 < r < δ. However, for y ∈ Bδ(0) \ {0},
we have

∇xG(0, y) ∼ Cr−N+2s−1ω,(4.16)

with C 6= 0, y = rω, ω ∈ SN−1, as r → 0+. This contradicts (4.8).
�
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BR∗ (0)
FBR∗+ε/2(0)

Bδ(0)•P

R(ω)ω

δ

R∗

0

Bε(Q)
Q

ε

Ω

∂Ω

Figure 1. Illustration of the construction in the proof of Theorem 3.2.

4.3. Centro-symmetry result for the IBVP. In this section, we prove Theorem 3.3. The first
implication follows from the uniqueness of solutions to (1.5). In the second one, which uses the
assumption on Ω being star-shaped, we rely on the unique continuation properties for the fractional
Laplacian.

Proof of Theorem 3.3. ((2) =⇒ (1)) Let w(x, t) = u(−x, t). Then w is also a solution of (1.5).
Uniqueness of the solution gives w = u; hence, in particular, ∇u(0, t) = 0 for t > 0.

((1) =⇒ (2)) Step 1: Reduction to an elliptic problem. By employing the function v given by
(4.5) as in ((1) =⇒ (2)) Step 1 of the proof of Theorem 3.2, we have (4.6) and (4.7).

Step 2: Choice of initial data and properties of the Green’s function. For any ψ ∈ C∞0 (Bδ(0)), we
write

u0(x) = ψ(x) + ψ(−x).

Then u0(x) = u0(−x) and, by assumption,

0 = ∇v(0) =

∫
Bδ(0)

∇xG(0, y)(ψ(y) + ψ(−y)) dy

=

∫
Bδ(0)

(∇xG(0, y) +∇xG(0,−y))ψ(y) dy.

Therefore, since ψ ∈ C∞0 (Bδ(0)) is arbitrarily chosen, we have

∇xG(0, y) +∇xG(0,−y) ≡ 0, y ∈ Bδ(0).

Step 3: Reflection and unique continuation arguments. Let us consider the reflected domain
Ω∗ = {x ∈ RN : −x ∈ Ω} and let C be the connected component of Ω ∩ Ω∗ containing the origin.
Since Ω is star-shaped with respect to the origin, we actually have C = Ω ∩ Ω∗.

By the real-analyticity of G(x, y) in y, we have that

h(y) := ∇xG(0, y) +∇xG(0,−y) ≡ 0, y ∈ C.

Suppose, for the sake of finding a contradiction, that Ω 6= Ω∗. Then D = Ω \ C̄ 6= ∅. Using the
mean-value formula (2.18) and the observation in [5, p. 21] (on s-harmonic equations on the union of
two domains), we get that h also satisfies{

(−∆)sh = 0, y ∈ (Ω ∪ Ω∗) \ (Ω ∩ Ω∗),

h = 0, y ∈ RN \ ((Ω ∪ Ω∗) \ (Ω ∩ Ω∗)).
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Ω

Ω∗

0

Bδ(0)

Ω ∩ Ω∗

Ω ∪ Ω∗ \ Ω ∩ Ω∗

Figure 2. Illustration of the intersection Ω ∩ Ω∗ used in the proof of Theorem 3.3.

Then h ≡ 0 and in particular ∇xG(0, y) = h(y) = 0 for y ∈ D, which implies that ∇xG(0, y) ≡ 0 for
y ∈ Ω\{0} by the real-analyticity. This contradicts the fact that G(0, y) has a singularity at the origin
as is mentioned in (4.16). �

4.4. Spatial zero points. Let us consider the problems for spatial zero points. Namely, instead of
∇u(·, t) = 0, we consider u(·, t) = 0 for each time t ≥ 0. Then, along the similar arguments we can get
all theorems by replacing the balance law

∫
SN−1 ωu0(ωr) dω = 0 by

∫
SN−1 u0(ωr) dω = 0. For the sake

of completeness, here we outline the proof of Theorems 3.10, 3.5 and 3.6.

Proof of Theorem 3.10. As in the proof of Theorem 3.1, we have PN (x, 1; s) = Φs(x) and, by [14, Eq.
(16.14)]. We have

PN (x, 1; s) =
2π

|x|
N
2 −1

∫ ∞
0

e−(2πρ)2sρ
N
2 JN

2 −1
(2π|x|ρ) dρ.(4.17)

Let u0 ∈ L∞(RN ) with suppu0 ⊂ BL(0). Set

a(r) =

∫
SN−1

u0(rω) dω for r ∈ [0, L].

Hence, we compute

u(0, t) = 2π

∫
RN

PN (x, t; s)u0(x) dx

= 2πt−
N
2s

∫
RN

PN
(
x

t
1
2s

, 1; s

)
u0(x) dx

= 2πt−
N
2s

∫ L

0

rN−1PN (hr, 1; s)a(r) dr

= (2π)2t−
N+1
2s + N

4s

∫ L

0

r
N
2

(∫ ∞
0

e−(2πρ)2sρ
N
2 JN

2 −1
(2πhrρ) dρ

)
a(r) dr,

where we set h := t−1/2s and note that 0 < hr < hL. By [14, Eq. (4.23), p. 22], we have

JN
2 −1(z) =

∞∑
k=0

(−1)k
(z/2)N/2−1+2k

Γ(k + 1)Γ(k +N/2)
,

with |z| <∞ and | arg z| < π. Hence,∫ ∞
0

e−(2πρ)2sρ
N
2 JN

2 −1
(2πhrρ) dρ
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= (πhr)N/2−1
∞∑
k=0

(−1)k
1

Γ(k + 1)Γ(k +N/2)
(πh)2kr2kck,

where we set ck =
∫∞

0
e−(2πρ)2sρN−1+2k dρ. Therefore u(0, t) = 0 for all t > 0 if and only if

∞∑
k=0

(πh)2k(−1)k
ck

Γ(k + 1)Γ(k +N/2)

∫ L

0

r2ka(r)rN−2 dr = 0 for all h > 0,

that is, ∫ L

0

r2k(a(r)rN−1) dr = 0 for all k ≥ 0,

which is equivalent to

a(r) = 0 for any r ∈ [0, L].

�

Proof of Theorem 3.5. ((2) =⇒ (1)) Step 1: The Green’s function preserves the balance law. Let us
assume that Ω = BR(0) and that the initial data u0 satisfies the balance law. As a first step towards
the proof of the result, we show that

∫
SN−1 u0 dω = 0 implies

∫
SN−1 Gu0 dω = 0, where G is the Green’s

operator which sends u0 into Gu0 as in Remark 2.1. To this end, we compute as follows (using the

notation G(x, y) = Ĝ(|x− y|, |x|, |y|) ): for x = ρω, and 0 < ρ ≤ R,∫
SN−1

(Gu0)(ρω) dω =

∫
SN−1

∫
SN−1

u0(y)Ĝ(
√
ρ2 + |y|2 − 2ρω · y, ρ, |y|) dy dω

=

∫
SN−1

u0(y)

∫
SN−1

Ĝ(
√
ρ2 + |y|2 − 2ρω · y, ρ, |y|) dω dy

=

∫ R

0

sN−1 ds

∫
SN−1

dη u0(sη)

∫
SN−1

Ĝ(
√
ρ2 + s2 − 2ρsω · η, ρ, s) dω,

where we wrote y = sη, for η ∈ SN−1, 0 < s ≤ r in the last line.
Using an integral identity of [17, Eq. (1.2), p. 8], we have

∫
SN−1

Ĝ(
√
ρ2 + s2 − 2ρsω · η, ρ, s) dω

= |SN−2|
∫ 1

−1

(1− λ2)
N−3

2 Ĝ(
√
ρ2 + s2 − 2ρsλ, ρ, s) dλ.

As a result, ∫
SN−1

u0(sη)|SN−2|
∫ 1

−1

(1− λ2)
N−3

2 Ĝ(
√
ρ2 + s2 − 2ρsλ, ρ, s) dλ dη

= |SN−2|
∫ 1

−1

(1− λ2)
N−3

2 Ĝ(
√
ρ2 + s2 − 2ρsλ, ρ, s) dλ

∫
SN−1

u0(sη) dη︸ ︷︷ ︸
=0

= 0,

which yields that
∫
SN−1(Gu0)(ρω) dω = 0.

Steps 2 – 4: Once we know that the Green’s operator preserves the balance law in Step 1, the rest
follows as in the corresponding steps in the proof of Theorem 3.2.

((1) =⇒ (2)) Step 1: Choice of initial data and symmetry properties of G(0, y). Let us consider
as initial data u0(x) = η(|x|)ψ(x/|x|), where η : R → R is a smooth function with support in (0, δ)
and ψ on SN−1 satisfies the balance law

∫
SN−1 ψ(ω) dω = 0. Then, by employing the function v given
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by (4.5) as in ((1) =⇒ (2)) Step 1 of the proof of Theorem 3.2, since u(0, t) = 0 for any t > 0, we
obtain

0 =

∫
Bδ(0)

G(0, y)η(|y|)ψ(y/|y|) dy

=

∫ δ

0

η(r)

(
rN−1

∫
SN−1

G(0, rω)ψ(ω) dω

)
dr,

which implies ∫
SN−1

G(0, rω)ψ(ω) dω = 0 for any r ∈ (0, δ),

and hence

G(0, y) = m(r) for any y = rω ∈ Bδ(0) \ {0},(4.18)

where m(r) is a function in r = |y| and ω ∈ SN−1.
Step 2: Conclusion of the proof. Let BR∗(0) ⊂ Ω and P ∈ B̄R∗(0) ∩ ∂Ω for some P ∈ ∂Ω and

R∗ > 0. Since G(0, y) is real-analytic in y ∈ Ω \ {0} by Proposition 2.1, (4.18) yields that G(0, y) is
radially symmetric in y ∈ B̄R∗(0). By observing that G(0, ·) > 0 in Ω and G(0, ·) = 0 in RN \ Ω, we
conclude that Ω = BR∗(0).

�

Proof of Theorem 3.6. ((2) ⇐= (1)) Let w(x, t) = −u(−x, t). Then w is also a solution of (1.5).
Uniqueness of the solution gives w = u; hence, in particular, u(0, t) = 0 for t > 0.

((1) =⇒ (2)) Step 1: Reduction to an elliptic problem. Let us consider v(x) =
∫∞

0
u(x, t) dt as in

the proof of Theorem 3.6.
Step 2: Choice of initial data and properties of the Green’s function. For any ψ ∈ C∞0 (Bδ(0)), we

write

u0(x) = ψ(x)− ψ(−x).

Then u0(x) = −u0(−x) and, by assumption,

0 = v(0) =

∫
Bδ(0)

G(0, y)(ψ(y)− ψ(−y)) dy

=

∫
Bδ(0)

(G(0, y)−G(0,−y))ψ(y) dy.

Therefore, since ψ ∈ C∞0 (Bδ(0)) is arbitrarily chosen, we have

G(0, y)−G(0,−y) ≡ 0, y ∈ Bδ(0).

Step 3: Reflection and unique continuation arguments. Let us consider the reflected domain
Ω∗ = {x ∈ RN : −x ∈ Ω} and let C be the connected component of Ω ∩ Ω∗ containing the origin.
Since Ω is star-shaped, we actually have C = Ω ∩ Ω∗.

By the real-analyticity of G(x, y) in y, we have that

h(y) := G(0, y)−G(0,−y) ≡ 0, y ∈ C.

Suppose, for the sake of finding a contradiction, that Ω 6= Ω∗. Then D = Ω \ C̄ 6= ∅. We note that
h also satisfies {

(−∆)sh(x) = 0, y ∈ (Ω ∪ Ω∗) \ (Ω ∩ Ω∗),

h(x) = 0, y ∈ RN \ ((Ω ∪ Ω∗) \ (Ω ∩ Ω∗)).

Then h ≡ 0 and in particular G(0, y) = h(y) = 0 for y ∈ D, which implies that G(0, y) ≡ 0 for
y ∈ Ω\{0} by the real-analyticity. This contradicts the fact that G(0, y) has a singularity at the origin
as is mentioned in (4.16). �
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4.5. Fractional wave equation. For the Cauchy problem (1.6), using the Fourier transform, we can
prove a well-posedness result as in [11]. From the representation formula in [11], it is also possible to
deduce information on the regularity of the solution.

On the other hand, the IBVP (1.7) is solved by the method of separation of variables as problem
(1.5) is solved in [13] with the aid of the eigenfunctions of the fractional Laplacian. See also [18,
Theorem 2.1] for more general settings by Galerkin’s method.

To gain further regularity for the solution of (1.7), we would need to take the initial data in the
space

Hs,σ(Ω) :=

{
u ∈ L2(Ω) :

∑
k∈N
|λσk〈u, φk〉L2(Ω)|2 < +∞

}
,

(for some suitable σ > 1) where {λk}k∈N is the (non-decreasing) sequence of eigenvalues of (−∆)s and
{φk}k∈N is the corresponding sequence of eigenfunctions, where the fact that each φk ∈ C∞(Ω) follows
from the L∞ estimates [13, Proposition 3.2] and the bootstrap argument of [3]. Note that Hs,σ(Ω) is
the domain of the σ-power of (−∆)s.

On the other hand, for the sake of proving the symmetry results, we shall only rely on the properties
of the corresponding elliptic problem obtained through the Laplace transform. This, together with the
fact that it is unclear whether or not a sufficient number of initial data in Hs,σ(Ω) satisfy the balance
law (1.4) in Ω, motives the assumptions in the Theorems for the fractional wave equation.

With these considerations, all the symmetry results on the fractional wave equation follow from the
ones for the heat equation thanks to the following two lemmas (which was proved in [21, pp. 251-252]
in case s = 1).

Lemma 4.1 (Relationship between fractional heat and wave equation for the IBVP). Let u be the
solution of (1.5) and w be the solution of (1.7) for u0 ∈ C∞0 (Ω). Then the following holds:

(1) Wλ(0) = 0 for any λ > 0 if and only if u(0, t) = 0 for any t > 0;
(2) ∇xWλ(0) = 0 for any λ > 0 if and only if ∇xu(0, t) = 0 for any t > 0.

Proof. Let us consider the Laplace transform of u and w: Uλ(x) =
∫∞

0
e−λtu(x, t) dt and Wλ(x) =∫∞

0
e−λtw(x, t) dt, which solve{

(−∆)sWλ(x) + λ2Wλ(x) = u0(x), x ∈ Ω,

Wλ(x) = 0, x ∈ RN \ Ω.
(4.19)

and {
(−∆)sUλ(x) + λUλ(x) = u0(x), x ∈ Ω,

Uλ(x) = 0, x ∈ RN \ Ω.
(4.20)

respectively. From the uniqueness of the elliptic boundary value problem, we deduce that Uλ2 ≡ Wλ.
Therefore, we have

Wλ(0) =

∫ ∞
0

e−λ
2tu(0, t) dt,

∇xWλ(0) =

∫ ∞
0

e−λ
2t∇xu(0, t) dt,

for any λ > 0. Since the Laplace transform is injective, this completes the proof. �

By the same argument, we have the following result for the Cauchy problem.

Lemma 4.2 (Relationship between fractional heat and wave equation for the Cauchy problem). Let
u be the solution of (1.1) and w be the solution of (1.6) for u0 ∈ C∞0 (RN ) with supp(u0) ⊂ BL(0) for
some L > 0. Then the following holds:

(1) w(0, t) = 0 for any t > 0 if and only if u(0, t) = 0 for any t > 0;
(2) ∇xw(0, t) = 0 for any t > 0 if and only if ∇xu(0, t) = 0 for any t > 0.
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We remark that, to make the argument of the above Lemma rigorous, we need to prove the regularity
of solutions of the elliptic problems (4.19)–(4.20) (C0 or C1 regularity, respectively); to this end, we
apply the bootstrap argument of [3], which requires us only to prove the boundedness of solutions.

Lemma 4.3 (L∞-bound). Let Ω be a bounded C1,1 domain in RN and u0 ∈ C∞0 (RN ) with suppu0 ⊂
BL(0) b Ω. For each λ > 0, let us consider{

(−∆)sWλ(x) + λ2Wλ(x) = u0(x), x ∈ Ω,

Wλ(x) = 0, x ∈ RN \ Ω.
(4.21)

Then Wλ ∈ L∞(RN ) and there exists a constant C > 0, independent of λ > 0, such that |Wλ| ≤ C in
RN .

Proof. Let us consider a ball such that Ω̄ ⊂ BR(0) and the problem{
(−∆)sv(x) = 1, x ∈ BR(0),

v(x) = 0, x ∈ RN \BR(0).

Then

|Wλ|(x) ≤ ‖u0‖L∞(RN )v(x), x ∈ Ω.

Indeed, let us consider the function V = v‖u0‖L∞(RN ) ∈ L∞(RN ) and set f± = Wλ ± V to obtain{
(−∆)sf+ + λ2f+ ≥ 0 and (−∆)sf− + λ2f− ≤ 0, x ∈ Ω,

f+ ≥ 0 and f− ≤ 0, x ∈ RN \ Ω.

Hence, by the maximum principle,

−V (x) ≤Wλ(x) ≤ V (x), x ∈ Ω.

�
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processes and its extensions, volume 1980 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2009. Edited

by Piotr Graczyk and Andrzej Stos.

[6] M. Bonforte, Y. Sire, and J. L. Vázquez. Optimal existence and uniqueness theory for the fractional heat equation.
Nonlinear Anal., 153:142–168, 2017.

[7] C. Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Commun. Pure

Appl. Anal., 15(2):657–699, 2016.



STATIONARY CRITICAL POINTS OF THE FRACTIONAL HEAT FLOW 19

[8] C. Bucur and E. Valdinoci. Nonlocal diffusion and applications, volume 20 of Lecture Notes of the Unione Matem-

atica Italiana. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016.
[9] L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian. Comm. Partial Differential

Equations, 32(7-9):1245–1260, 2007.

[10] I. Chavel and L. Karp. Movement of hot spots in Riemannian manifolds. J. Analyse Math., 55:271–286, 1990.
[11] J.-D. Djida, A. Fernandez, and I. Area. Well-posedness results for fractional semi-linear wave equations. Discrete

Contin. Dyn. Syst. Ser. B, 25(2):569–597, 2020.

[12] M. Felsinger, M. Kassmann, and P. Voigt. The Dirichlet problem for nonlocal operators. Math. Z., 279(3-4):779–809,
2015.

[13] X. Fernández-Real and X. Ros-Oton. Boundary regularity for the fractional heat equation. Rev. R. Acad. Cienc.
Exactas F́ıs. Nat. Ser. A Mat. RACSAM, 110(1):49–64, 2016.

[14] N. Garofalo. Fractional thoughts. In New developments in the analysis of nonlocal operators, volume 723 of Contemp.

Math., pages 1–135. Amer. Math. Soc., Providence, RI, 2019.
[15] R. Gulliver, N. B. Willms, and B. Kawohl. A conjectured heat flow problem (M. S. Klamkin). SIAM Review,

37(1):100–105, 1995.

[16] S. Jimbo and S. Sakaguchi. Movement of hot spots over unbounded domains in RN . J. Math. Anal. Appl.,

182(3):810–835, 1994.
[17] F. John. Plane waves and spherical means applied to partial differential equations. Dover Publications, Inc., Mineola,

NY, 2004. Reprint of the 1955 original.

[18] P.-Z. Kow, Y.-H. Lin, and J.-N. Wang. The Calderón problem for the fractional wave equation: Uniqueness and
optimal stability. ArXiv:2105.11324, 2021.

[19] T. Kulczycki. Properties of Green function of symmetric stable processes. Probab. Math. Statist., 17(2, Acta Univ.
Wratislav. No. 2029):339–364, 1997.

[20] T. Kulczycki and M. Ryznar. Gradient estimates of harmonic functions and transition densities for Lévy processes.
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