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Abstract. In this paper we introduce a model of dynamic crack growth in viscoelastic
material, where the damping term depends on the history of the deformation. The model

is based on a dynamic energy dissipation balance and on a maximal dissipation condition.

Our main result is an existence theorem in dimension two under some a priori regularity
constraints on the cracks.
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1. Introduction

We consider the problem of crack growth in a viscoelastic material with memory governed
by the system

:u(t)− divp(C+ V)Eu(t)q + div
´

ˆ t

−∞
eτ−t VEu(τ) dτ

¯

= f(t), (1.1)

where u , Eu , and :u , are the displacement, the symmetric part of its gradient, and its
second derivative with respect to time, C and V are the elasticity and viscosity tensors,
while f is the external load. For this model the stress at time t is given by

σ(t) := CEu(t) + VEu(t)−
ˆ t

−∞
eτ−t VEu(τ) dτ. (1.2)

Moreover, as in [6, 17] we assume that we know the displacement u on (−∞, 0] and we
want to solve (1.1) on [0, T ] , for given T > 0. It is convenient to write (1.1) in the form

:u(t)− div(σ0(t)) = ℓ0(t) t ∈ [0, T ], (1.3)

where

σ0(t) := CEu(t) + VEu(t)−
ˆ t

0

eτ−t VEu(τ) dτ, (1.4)

ℓ0(t) := f(t)− divF0(t), (1.5)

F0(t) :=

ˆ 0

−∞
eτ−t VEu0(τ) dτ (1.6)

and u0 is a function that represents the displacement on (−∞, 0], namely u(s) = u0(s) for
every s ∈ (−∞, 0].

When no cracks are present, problems similar to (1.1) and (1.3) were studied by Boltz-
mann ([1], [2]) and Volterra ([26], [27]), while recent results can be found in [14], [17], [19],
and [24].

In this paper we study the problem on a bounded open set Ω ⊂ R2 . The crack at time
t ∈ [0, T ] is a 1-dimensional closed subset Γt of Ω and the irreversibility of crack growth
means that Γt ⊆ Γτ if t ≤ τ . For technical reasons we assume that the shape of the cracks
and their dependence on time is sufficiently regular, with precise a priori estimates.
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In the case of smooth functions, equation (1.3) is satisfied on Ω\Γt with suitable boundary
conditions (on the Dirichlet part ∂DΩ and on the Neumann ∂NΩ of ∂Ω) and with prescribed
initial conditions. Namely, u and {Γt}t∈[0,T ] satisfy

:u(t)− div(σ0(t)) = ℓ0(t) in Ω \ Γt, (1.7)

u(t) = uD(t) on ∂DΩ, (1.8)

σ0(t)ν = F0(t)ν on ∂NΩ, (1.9)

σ±
0 (t)ν = F±

0 (t)ν on Γt, (1.10)

u(0) = u0 and 9u(0) = u1 (1.11)

for every t ∈ [0, T ] , where uD is the Dirichlet condition, u0 is the initial condition for
the displacement, u1 is the initial condition for the velocity, ν is the unit normal, and the
symbol ± in (1.10) denotes suitable limits on each side of Γt . In the paper we consider
a weak formulation (see Definition 2.11) which coincide with the one in (1.7)-(1.11) under
suitable regularity assumptions.

When {Γt}t∈[0,T ] is prescribed, problem (1.7)-(1.11) has been studied in [23] and [5].
More precisely, in [23] an existence theorem is proved, while in [5] one can find results
regarding uniqueness and continuous dependence of u on the data (in particular on the
cracks).

In the model considered in our paper the unknown of the problem is the family of cracks
{Γt}t∈[0,T ] which, in the spirit of [8] and [9], must satisfies the following conditions:

a) an energy dissipation balance (consistent with dynamic Griffith’s theory) for the
solution u of (1.7)-(1.11) (see Definition 3.3): the sum of the kinetic and elastic
energies and of the energies dissipated by viscosity and crack growth balances the
work done by the forces acting on the system;

b) a maximal dissipation condition, depending on a parameter η > 0 (see Definition
4.1), which forces the crack to run as fast as possible.

Condition a) is a dynamic version of Griffith’s criterion (see [18] for the quasistatic case and
[21] for the dynamic problem).

The main result of this paper is that, given initial and boundary conditions satisfying
suitable hypotheses, there exists a {Γt}t∈[0,T ] satisfying a) and b) (see Theorem 4.3).

The proof follows the lines of [9], where a similar problem is studied for the case of pure
elastodynamics. To deal with the memory term appearing in (1.4), we use the results of [23]
and [5]. In particular the continuous dependence on the data obtained in [5] is a fundamental
tool for a compactness argument that plays a key role in the proof of Theorem 4.3.

The structure of the paper is the following:

• in Section 2 we give a precise formulation of the problem and we give all the pre-
liminary results;

• in Section 3 we define the class of cracks {Γt}t∈[0,T ] such that the energy balance
described in a) is satisfied and we prove a compactness result;

• in Section 4 we define the maximal dissipation condition and we prove the main
result of the paper (Theorem 4.3).

2. Formulation of the problem

The reference configuration of our problem is a bounded open set Ω ⊂ R2 , with Lipschitz
boundary ∂Ω and we assume that ∂Ω = ∂DΩ∪∂NΩ, where ∂DΩ and ∂NΩ are disjoint (pos-
sibly empty) Borel sets, on which we prescribe Dirichlet and Neumann boundary conditions
respectively. Moreover, we fix a time interval [0, T ] , with T > 0.

We give a precise definition of the admissible cracks of our model using a suitable class of
curves. The following definitions and results are based on [8] and [9]. The curves are always
parameterized using the arc-length parameter s and for a given curve γ : [aγ , bγ ] → R2 we
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define Γγ := γ([aγ , bγ ]) and Γγ
s := γ([aγ , s]) , for every s ∈ [aγ , bγ ] . When it is clear from

the context we omit the dependence on γ and we write Γ and Γs instead of Γγ and Γγ
s .

In order to describe the initial crack, we fix a curve γ0 : [a0, 0] → Ω such that γ0(a0) ∈ ∂Ω,
γ0(s) ∈ Ω for every s ∈ (a0, 0] and we define the initial crack as

Γ0 := γ0([a0, 0]).

We suppose that γ0 is of class C3,1 and that it is transversal to ∂Ω at γ0(a0) (there exists
an isosceles triangle contained in Ω with vertex in γ0(a0) and axis parallel to γ′0(a0)). We
fix two constants r > 0 and L > 0 and we now define the space of admissible crack paths.

Definition 2.1. Let Gr,L be the space of simple curves γ : [a0, bγ ] → Ω of class C3,1 , with
a0 < 0 ≤ bγ , such that

(a) γ(s) = γ0(s) for every s ∈ [a0, 0],
(b) |γ′(s)|= 1 for every s ∈ [a0, bγ ] ,
(c) the two open disks of radius r tangent to Γ at γ(s) do not intersect Γ,
(d) dist(γ([0, bγ ]), ∂Ω) ≥ 2r ,

(e) |γ(3)(s)|≤ L , |γ(3)(s2)− γ(3)(s1)|≤ L|s2 − s1| for any s, s1, s2 ∈ [a0, bγ ] ,

where γ(i) denotes the i−th derivative of γ .

We fix γ0 , r , and L such that Gr,L ̸= Ø.

Remark 2.2. By (a) and (d) we have |a0|≥ 2r . Condition (c) implies |γ(2)(s)|≤ 1/r for
every s ∈ [a0, bγ ] .

Definition 2.3. Let γk be a sequence of curves in Gr,L and let γ ∈ Gr,L . We say that γk
converges uniformly to γ if bγk

→ bγ and for every b ∈ (0, bγ) we have γk|[a0,b]→ γ|[a0,b]

uniformly in [a0, b] .

Lemma 2.4. There exist two constants r̂ and L̂ , with 0 < r̂ < r and L̂ > L , depending
only on r and L , such that for every γ: [a0, bγ ] → Ω with γ ∈ Gr,L there exists an extension

γ̂: [a0, bγ + r̂] → Ω of γ with γ̂ ∈ Gr̂,L̂ , whose image will be indicated by Γ̂ . Moreover,
the extension can be chosen in such a way that the uniform convergence of γk implies the
uniform convergence of the corresponding extensions γ̂k .

Lemma 2.5. Let γk be a sequence of curves in Gr,L . Then there exist a subsequence, not
relabelled, and a curve γ ∈ Gr,L such that γk converges to γ uniformly.

For a proof of the previous two lemmas see [9].
We have to describe the dependence of the crack length on the time. We fix two constants

µ > 0 and M > 0 which bound the speed of the crack tip and some higher order derivatives
of the crack length, respectively.

Definition 2.6. Let T0 < T1 . The class Sreg
µ,M (T0, T1) is composed of all nonnegative

functions satisfying the following conditions:

s ∈ C3,1([T0, T1]), (2.1)

0 ≤ 9s(t) ≤ µ (2.2)

|:s(t)|≤M, |;s(t)|≤M, |;s(t1)− ;s(t2)|≤M |t1 − t2|, (2.3)

for t, t1, t2 ∈ [T0, T1] , where dots denote derivatives with respect to time. We denote by

Spiec
µ,M (T0, T1) the set of all functions s ∈ C0([T0, T1]) such that there exists a finite subdi-

vision T0 = τ0 < τ1 < ... < τk = T1 for which s|[τj−1,τj ]∈ Sreg
µ,M (τj−1, τj). The minimal set

{τ0, τ1, ..., τk} for which this property holds is denoted by sing(s).
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Given 0 ≤ T0 < T1 ≤ T , γ ∈ Gr,L , s ∈ Spiec
µ,M (T0, T1), with s(T1) ≤ bγ , the time

dependent cracks corresponding to these functions are given by

Γγ
s(t) := γ([a0, s(t)]) for all t ∈ [T0, T1],

and the corresponding cracked domains are

Ωγ
s(t) := Ω \ Γγ

s(t) for all t ∈ [T0, T1].

For simplicity of notation we sometimes denote Γγ
s(t) by Γs(t) , when γ is clear from the

context.
In [3], [4], and [5] the cracks are described using a family of time-dependent diffeomor-

phism Φ,Ψ : [0, T ]×Ω → Ω. Thanks to the following result it is possible to obtain the same
maps also in our case. For a proof see [8, Lemma 2.8].

Lemma 2.7. Let ε > 0 and let ρ ∈ (0, r̂/2) , where r̂ is the constant that appears in
Lemma 2.4. Then there exists two constants δ ∈ (0, ρ/µ) and C > 0 depending only on r ,
L , µ , M , ε , and ρ , with the following property: for every γ ∈ Gr,L , for every t0 < t1 ,
and for every s ∈ Sreg

µ,M (t0, t1) , with t1 − t0 ≤ δ , s(t1) ≤ bγ , we can define two functions

Φ,Ψ: [t0, t1]× Ω → Ω of class C2,1 with the following properties:

(a) for every t ∈ [t0, t1] we have Φ(t,Ω) = Ω , Φ(t, Γ̂) = Γ̂ (where Γ̂ is the set that
appears in Lemma 2.4), Φ(t,Γs(t0)) = Γs(t), and Φ(t, y) = y on Ω\B(γ(s(t0)), 2ρ);

(b) Φ(t0, y) = y for every y ∈ Ω ;
(c) for every t ∈ [t0, t1] , Ψ(t, ·) is the inverse of Φ(t, ·) on Ω ;
(d) for every t ∈ [t0, t1] we have 1−ε ≤ detDΦ(t, y) ≤ 1+ε and 1−ε ≤ detDΨ(t, y) ≤

1 + ε for every x, y ∈ Ω , where D denotes the spatial jacobian matrix.
(e) for every t ∈ [t0, t1] we have |∂tΦ(t, y)|≤ µ(1 + ε) for every y ∈ Ω ;
(f) the absolute values of all partial derivatives of Φ and of Ψ of order less than or

equal to two, as well as the Lipschitz constants of all second derivatives, are bounded
by C ;

(g) if γk ∈ Gr,L converges to γ uniformly, if sk ∈ Sreg
µ,M (t0, t1) converges to s uni-

formly, with sk(t1) ≤ bγk
for every k , then the corresponding diffemorphisms satisfy

Φk(t, x) → Φ(t, x) for every t ∈ [t0, t1] and for every x ∈ Ω.

We now define the functional spaces that will be used in order to give the definition of
weak solution of the viscoelastic problem (1.7)-(1.11).

We define R2×2 as the space of real 2 × 2 matrix and R2×2
sym as the space of real 2 × 2

symmetric matrices. The euclidean scalar product between the matrices A and B is denoted
by A : B . For every A ∈ R2×2 the symmetric part Asym ∈ R2×2 is defined as Asym =
1
2 (A+AT ), where AT denotes the transpose matrix of A . For any pair of vector spaces we
define L(X;Y ) as the space of linear and continuous maps form X into Y . Let 0 < λ < Λ
be two fixed constants. We now define the space of tensors that will be used in the paper.

Definition 2.8. We define E(λ,Λ) as the set of all maps L : Ω → L(R2×2;R2×2) of class
C2 such that for every x ∈ Ω we have

L(x)A = L(x)Asym ∈ R2×2
sym for every A ∈ R2×2, (2.4)

L(x)A : B = L(x)B : A for every A, B ∈ R2×2, (2.5)

λ|Asym|2≤ L(x)A : A ≤ Λ|Asym|2 for every A ∈ R2×2. (2.6)

We now fix the following maps

C,V ∈ E(λ,Λ), A := C+ V (2.7)

where C(x) and V(x) respectively represent the elasticity and viscosity tensor at the point
x ∈ Ω.
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Given γ ∈ Gr,L , 0 ≤ T0 < T1 ≤ T , and s ∈ Spiec
µ,M (T0, T1), with s(T1) ≤ bγ , we now

introduce the function spaces that will be used in the precise formulation of problem (1.7)-
(1.11).

We recall that Γ := γ([a0, bγ ];R2). For every u ∈ H1(Ω \ Γ;R2) Du denotes jacobian
matrix in the sense of distributions on Ω \ Γ and Eu is its symmetric part, i.e.,

Eu :=
1

2
(Du+DuT ).

The following lemma is an extension of the second Korn’s inequality (see, e.g., [22]) to
the case of cracked domain. For a proof see, e.g., [5].

Lemma 2.9. Let γ ∈ Gr,L and let Γ := γ([a0, bγ ];R2) . Then there exists a constant K ,
depending only on Ω and Γ , such that

∥Du∥2≤ K(∥u∥2+∥Eu∥2) (2.8)

for every u ∈ H1(Ω \ Γ;R2) , where ∥·∥ denotes the L2 norm.

Remark 2.10. Let γ ∈ Gr,L and let Γ := γ([a0, bγ ];R2). Then, using a localization
argument (see, e.g., [5]), we can prove that the trace operator is well defined and continuous
from H1(Ω \ Γ;R2) into L2(∂Ω;R2).

We set

V γ := H1(Ω \ Γ;R2), H := L2(Ω;R2), and H := L2(Ω;R2×2) (2.9)

Since L2(Γ) = 0, we have the embedding V γ ↪→ H ×H given by v 7→ (v, Dv) and we can
see the distrubutional gradient Dv on Ω \Γ as a function defined a.e. on Ω, which belongs
to H .

For every finite dimensional Hilbert space Y the symbols (· , ·) and ∥·∥ denote the scalar
product and the norm in the L2(Ω;Y ), according to the context. The space V γ is endowed
with the norm

∥u∥V γ := p∥u∥2+∥Du∥2q
1/2
. (2.10)

For every s ∈ [a0, bγ ] we define

V γ
s := H1(Ω \ Γs;R2) and V γ,D

s := {u ∈ V γ
s | u|∂DΩ= 0}, (2.11)

where Γs = γ([a0, s]) and u|∂DΩ denotes the trace of u on ∂DΩ. We note that V γ
s and

V γ,D
s are closed linear subspaces of V γ . For every t ∈ [T0, T1] the spaces V γ

s(t) and V γ,D
s(t)

are defined as in (2.11) with s = s(t).
We define

Vγ,s(T0, T1) := {v ∈ L2(T0, T1;V
γ)∩H1(T0, T1;H) | v(t) ∈ V γ

s(t) for a.e. t∈(T0, T1)}, (2.12)

which is a Hilbert space with the norm

∥v∥Vγ,s
:= p∥v∥2L2(T0,T1;V γ)+∥ 9v∥2L2(T0,T1;H)q

1
2 , (2.13)

where the dot denotes the distibutional derivative with respect to t . Moreover we set

VD
γ,s(T0, T1) := {v ∈ Vγ,s(T0, T1) | v(t) ∈ V D

s(t) for a.e. t ∈ (T0, T1)}, (2.14)

which is a closed linear subspace of Vγ,s(T0, T1) and we define

V∞
γ,s(T0, T1) :={v∈L∞(T0, T1;V

γ) ∩W 1,∞(T0, T1;H) | v(t)∈V γ
s(t) for a.e. t∈(T0, T1)},

(2.15)
which is a Banach space with the norm

∥v∥V∞
γ,s

:= ∥v∥L∞(T0,T1;V γ)+∥ 9v∥L∞(T0,T1;H). (2.16)
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Moreover, it is convenient to introduce the space of weakly continuous functions with values
in a Banach space X with topological dual X∗ , defined by

C0
w([T0, T1];X) := {v : [T0, T1] → X | t 7→ ⟨h, v(t)⟩ is continuous for every h ∈ X∗}.

When it is clear from the context we will omit the dependence on γ or s in the functional
spaces, writing V , Vs(t) , V

D
s(t) , V(T0, T1), V

D(T0, T1), and V∞(T0, T1) instead of V γ , V γ
s(t) ,

V γ,D
s(t) , Vγ,s(T0, T1), VD

γ,s(T0, T1), and V∞
γ,s(T0, T1).

Since H1(T0, T1;H) ↪→ C0([T0, T1];H) we have V(T0, T1) ↪→ C0([T0, T1], H). In particu-
lar v(T0) and v(T1) are well defined elements of H , for every v ∈ V(T0, T1).

We set

H̃ := L2(Ω;R2×2
sym). (2.17)

On the forcing term ℓ(t) of (1.7) we assume that

ℓ(t) := f(t)− divF (t), (2.18)

where

f ∈ L2(0, T ;H) and F ∈ H1(0, T ; H̃) (2.19)

are prescribed function and the divergence of a matrix valued function is the vector valued
function whose components are obtained taking the divergence of the rows.

The Dirichlet boundary condition on ∂DΩ is obtained by prescribing a function

uD ∈ H2(0, T ; H) ∩H1(0, T ; V0). (2.20)

where V0 is Vs for s = 0. It is not restrictive to assume that for every t ∈ [0, T ]

uD(t) = 0 a.e. on {x ∈ Ω |dist(x, ∂Ω) ≥ r}. (2.21)

Moreover we will prescribe the natural Neumann boundary condition on ∂NΩ ∪ Γt .
We are now in a position to give the definition of weak solution for the viscoelastic

problem.

Definition 2.11 (Solution for visco-elastodynamics with cracks). Let γ ∈ Gr,L , 0 ≤ T0 <

T1 ≤ T , s ∈ Spiec
µ,M (T0, T1), with s(T1) ≤ bγ , and assume (2.7), (2.19)-(2.21). Let u0 ∈

Vs(T0) , such that u0 − uD(T0) ∈ V D
s(T0)

and let u1 ∈ H . We say that u is a weak solution

of the problem of visco-elastodynamics on the cracked domains Ω \ Γs(t) , t ∈ [T0, T1] , with

initial conditions u0 and u1 , if

u ∈ V(T0, T1) and u− uD ∈ VD(T0, T1), (2.22)

−
ˆ T1

T0

( 9u(t), 9φ(t)) dt+

ˆ T1

T0

(AEu(t), Eφ(t)) dt

−
ˆ T1

T0

ˆ t

T0

eτ−t(VEu(τ), Eφ(t)) dτdt =
ˆ T1

T0

(f(t), φ(t)) dt

+

ˆ T1

T0

(F (t), Eφ(t)) dt for all φ ∈ VD(T0, T1) with φ(T0) = φ(T1) = 0, (2.23)

u(T0) = u0 in H and 9u(T1) = u1 in (V D
s(T0)

)∗, (2.24)

where (V D
s(T0)

)∗ denotes the topological dual of V D
s(T0)

.

Remark 2.12. If u satisfy (2.22) and (2.23), it is possible to prove that 9u ∈ H1(0, T ; (V D
s(T0)

)∗)

(see [23, Remark 4.6]), which implies 9u ∈ C0([T0, T1]; (V
D
s(T0)

)∗). In particular 9u(T0) is well

defined as an element of (V D
s(T0)

)∗ .
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Remark 2.13. In the case of smooth functions problem (2.22)-(2.24) is satisfied in a stronger
sense. Namely, u and {Γs(t)}t∈[T0,T1] satisfy

:u(t)− divp(C+ V)Eu(t)q + div
´

ˆ t

T0

eτ−t VEu(τ) dτ
¯

= ℓ(t) in Ω \ Γs(t), (2.25)

u(t) = uD(t) on ∂DΩ, (2.26)
´

(C+ V)Eu(t)−
ˆ t

T0

eτ−t VEu(τ) dτ
¯

ν = F (t)ν on ∂NΩ, (2.27)

´

(C+ V)Eu(t)−
ˆ t

T0

eτ−t VEu(τ) dτ
¯±
ν = F (t)±ν on Γs(t), (2.28)

u(T0) = u0 and 9u(T0) = u1 (2.29)

for every t ∈ [T0, T1] , where ℓ(t) := f(t) − divF (t), ν is the unit normal, and the symbol
± in (2.28) denotes suitable limits on each side of Γs(t) .

Existence of the solution for the viscoelastic problem (2.22)-(2.24) is given by [23] for
Ω ⊂ Rd with d ≥ 1 and under more general assumptions on the regularity of the cracks.
Uniqueness and continuous dependence on the data are proved in [5] under the assumption
that the constant µ , which controls the speed of the crack tip in Definition 2.6, satisfies

0 < µ < µ0, (2.30)

where the constant µ0 is not explicitly defined in terms of the data of the problem. Using
the fact that d = 2 in our work, we will prove that uniqueness and continuous dependence
can be obtained under the explicit assumption

0 < µ <
?
λ/2, (2.31)

where λ are the constants that appears in Defintion 2.8 respectively.
In order to prove this results, we have to define an auxiliary problem, which can be

interpreted as the elastodynamics problem with elasticity tensor replaced by A .

Definition 2.14 (Solution for elastodynamics with cracks). Let γ ∈ Gr,L , 0 ≤ T0 < T1 ≤ T ,

s ∈ Spiec
µ,M (T0, T1), with s(T1) ≤ bγ , and assume (2.7), (2.19)-(2.21). Let u0 ∈ Vs(T0) , such

that u0−uD(T0) ∈ V D
s(T0)

and let u1 ∈ H . We say that v is a weak solution of the problem

of elastodynamics on the cracked domains Ω \ Γs(t) , t ∈ [T0, T1] , with initial conditions u0

and u1 , if

v ∈ V(T0, T1) and v − uD ∈ VD(T0, T1), (2.32)

−
ˆ T1

T0

( 9v(t), 9φ(t)) dt+

ˆ T1

T0

(AEv(t), Eφ(t)) dt =
ˆ T1

T0

(f(t), φ(t)) dt

+

ˆ T1

T0

(F (t), Eφ(t)) dt for all φ ∈ VD(T0, T1) with φ(T0) = φ(T1) = 0, (2.33)

v(T0) = u0 in H and 9v(T1) = u1 in (V D
s(T0)

)∗, (2.34)

Remark 2.15. In the case of smooth functions problem (2.32)-(2.34) is satisfied in a stronger
sense. Namely, v and {Γs(t)}t∈[T0,T1] satisfy

:v(t)− divpAEv(t)q = ℓ(t) in Ω \ Γs(t), (2.35)

v(t) = uD(t) on ∂DΩ, (2.36)

(AEv(t))ν = F (t)ν on ∂NΩ, (2.37)

(AEv(t))±ν = F (t)±ν on Γs(t), (2.38)

v(T0) = u0 and 9v(T0) = u1 (2.39)
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for every t ∈ [T0, T1] , where ℓ(t) := f(t) − divF (t), ν is the unit normal, and the symbol
± in (2.38) denotes suitable limits on each side of Γs(t) .

Existence and uniqueness for the system of elastodynamics with cracks (2.32)-(2.34) under
the assumption (2.31) is given by [9], where the authors consider a slight different formulation
of the problem which is stronger in time. The proof, which is based on a localization
argument, works also for the formulation given in Definition 2.14. Then we can state the
following result.

Theorem 2.16. Let γ ∈ Gr,L , 0 ≤ T0 < T1 ≤ T , s ∈ Spiec
µ,M (T0, T1) , with s(T1) ≤ bγ , and

assume (2.7), (2.19)-(2.21) and (2.31). Let u0 ∈ Vs(T0) , such that u0 − uD(T0) ∈ V D
s(T0)

and let u1 ∈ H . Then there exists a unique solution v of problem (2.32)-(2.34). Moreover
v ∈ V∞(T0, T1) , v ∈ C0

w([T0, T1];V ) , and 9v ∈ C0
w([T0, T1];H) .

With the following result we obtain a better regularity with respect to time.

Proposition 2.17. Under the same assumption of Theorem 2.16, let v be the unique solu-
tion of problem (2.32)-(2.34). Then v ∈ C0([T0, T1], V ) ∩ C1([T0, T1], H) .

Proof. In the case F = 0, a solution for the elastodynamics with cracks in the sense of [9]
is also a solution in the sense of Definition 2.14. By uniqueness, the two solutions coincide.
In particular, we get that, if F = 0, the solution is in C0([T0, T1], V ) ∩ C1([T0, T1], H).

If the forcing term F is not zero, we can use same approximation argument used in
[5, Lemma 5.7]. Then for every ε > 0 there exists Fε ∈ H1(0, T, H̃) such that Fε(t) ∈
C∞

c (Ω \ Γ; Rd×d
sym) for every t ∈ [0, T ] and

∥Fε − F∥L∞(0,T ;H̃)+∥ 9Fε − 9F∥L2(0,T ;H̃)< ε. (2.40)

We define vε as the solution of the elastodynamic problem in Definition 2.14 with F replaced
by Fε . Since Fε is regular in space we have that

(Fε(t), Eψ) = −(divFε(t), ψ) (2.41)

for all t ∈ [0, T ] and for all ψ ∈ V . It follows that vε is a solution in the sense of Definition
2.14 with f and F respectively replaced by f − divFε and 0. By the results of [9] we have
that vε ∈ C0([T0, T1], V )∩C1([T0, T1], H). Using the continuous dependence on the forcing
terms given by [5, Proposition 4.5] and (2.40), we obtain that

sup
t∈[0,T ]

∥vε(t)− v(t)∥V + sup
t∈[0,T ]

∥ 9vε(t)− 9v(t)∥→ 0 as ε→ 0.

In particular, we get that v ∈ C0([T0, T1], V ) ∩ C1([T0, T1], H). □

We now fix the notation that will be useful in order to give the main results concerning
continuous dependence on the data.

Let 0 ≤ T0 < T1 ≤ T , let γk ∈ Gr,L be a sequence of cracks paths, and let sk ∈
Spiec
µ,M (T0, T1), with sk(T1) ≤ bγk

, be a sequence of crack lengths, we define V γk , ∥·∥V γk ,

V γk

sk(t)
, V γk,D

sk(t)
, Vγk,sk(T0, T1), ∥·∥Vγk.sk

, VD
γk,sk

(T0, T1) as in (2.9)-(2.14) with Γ and Γs(t)

replaced by Γγk := γk([a0, bγk
]) and Γγk

sk(t)
:= γk([a0, sk(t)]).

Let u0k ∈ V γk

sk(T0)
, with u0k − uD(T0) ∈ V γk,D

sk(T0)
, u1k,∈ H ,

fk ∈ L2(0, T ;H) and Fk ∈ H1(0, T ; H̃). (2.42)
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We define uk as the weak solution of k -th viscoelastic problem on the cracked domains
Ω \ Γγk

sk(t)
, t ∈ [T0, T1] , that is

uk ∈ Vγk,sk(T0, T1) and uk − uD ∈ VD
γk,sk

(T0, T1), (2.43)

−
ˆ T1

T0

( 9uk(t), 9φ(t)) dt+

ˆ T1

T0

(AEuk(t), Eφ(t)) dt

−
ˆ T1

T0

ˆ t

T0

eτ−t(VEuk(τ), Eφ(t)) dτdt =
ˆ T1

T0

(fk(t), φ(t)) dt

+

ˆ T1

T0

(Fk(t), Eφ(t)) dt for all φ ∈ VD
γk,sk

(T0, T1) with φ(T0) = φ(T1) = 0, (2.44)

uk(T0) = u0k in H and 9uk(T1) = u1k in (V γk,D
sk(T0)

)∗. (2.45)

Moreover, we define vk as the weak solution of k -th problem of elastodynamics on the
cracked domains Ω \ Γγk

sk(t)
, t ∈ [T0, T1] , that is

vk ∈ Vγk,sk(T0, T1) and vk − uD ∈ VD
γk,sk

(T0, T1), (2.46)

−
ˆ T1

T0

( 9vk(t), 9φ(t)) dt+

ˆ T1

T0

(AEvk(t), Eφ(t)) dt =
ˆ T1

T0

(fk(t), φ(t)) dt

+

ˆ T1

T0

(Fk(t), Eφ(t)) dt for all φ ∈ Vγk,sk(T0, T1) with φ(T0) = φ(T1) = 0, (2.47)

vk(T0) = u0k in H and 9vk(T1) = u1k in (V γk,D
sk(T0)

)∗. (2.48)

We now state the result concernig continuous dependence on the data for the problem of
elastodynamics. It will be used to prove the same result for the viscoelastic problem.

Theorem 2.18. Let γ ∈ Gr,L , 0 ≤ T0 < T1 ≤ T , s ∈ Spiec
µ,M (T0, T1) , with s(T1) ≤ bγ , and

assume (2.7), (2.19)-(2.21) and (2.31). Let u0 ∈ V γ
s(T0)

, with u0 − uD(T0) ∈ V γ,D
s(T0)

and let

u1 ∈ H . Let γk ∈ Gr,L , let sk ∈ Spiec
µ,M (T0, T1) , with sk(T1) ≤ bγk

. Let u0k ∈ V γk

sk(T0)
, with

u0k − uD(T0) ∈ V γk,D
sk(T0)

, u1k,∈ H , and assume (2.42). Let v be the weak solution of problem

(2.32)-(2.34) on the cracked domains Ω\Γγ
s(t) , t ∈ [T0, T1] . Let vk the weak solution problem

(2.46)-(2.48) on the cracked domains Ω \ Γγk

sk(t)
, t ∈ [T0, T1] . Assume that

∥fk − f∥L2(0,T ;H)→ 0, ∥Fk − F∥H1(0,T ;H̃)→ 0, (2.49)

sk → s uniformly, γk → γ uniformly, (2.50)

u0k → u0 in H, Du0k → Du0 in H, u1k → u1 in H. (2.51)

Then

vk(t) → v(t) in H, (2.52)

Dvk(t) → Dv(t) in H, (2.53)

9vk(t) → 9v(t) in H, (2.54)

for every t ∈ [T0, T1] .

Proof. In the case fk = f , Fk = F = 0 for any k ∈ N , it is a consequence of [9, Theorem
3.5]. In the general case, the result follows from the same approximation argument used in
[5, Lemma 5.7, Proposition 5.9]. □

Now we are in a position to obtain the same results for the viscoelastic system.
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Theorem 2.19. Let γ ∈ Gr,L , 0 ≤ T0 < T1 ≤ T , s ∈ Spiec
µ,M (T0, T1) , with s(T1) ≤ bγ , and

assume (2.7), (2.19)-(2.21) and (2.31). Let u0 ∈ Vs(T0) , such that u0 − uD(T0) ∈ V D
s(T0)

and let u1 ∈ H . Then there exists a unique solution u of problem (2.22)-(2.24). Moreover
u ∈ V∞(T0, T1) , u ∈ C0

w([T0, T1];V ) , and 9u ∈ C0
w([T0, T1];H) .

Proof. We can not apply directly [5, Theorem 4.10] because in general (2.30) is not satisfied.
However, assuming (2.31) instead of (2.30) we can repeat all arguments of the proof of that
theorem, which is based on existence and uniqueness for elastodynamics with cracks (in our
case given by Theorem 2.16 and Theorem 2.18) and on a fixed point argument. □

Proposition 2.20. Under the same assumption of Theorem 2.19, let u be the unique solu-
tion of problem (2.22)-(2.24). Then u ∈ C0([T0, T1], V ) ∩ C1([T0, T1], H) .

Proof. It is enough to apply Proposition 2.17 with F (t) replaced by

F (t) +

ˆ t

T0

eτ−tVEu(τ)dτ,

for all t ∈ [T0, T1] . □

The following theorem provides the continuous dependence on the data for the solution
of the viscoelastic problem.

Theorem 2.21. Let γ ∈ Gr,L , 0 ≤ T0 < T1 ≤ T , s ∈ Spiec
µ,M (T0, T1) , with s(T1) ≤ bγ , and

assume (2.7), (2.19)-(2.21) and (2.31). Let u0 ∈ V γ
s(T0)

, such that u0−uD(T0) ∈ V γ,D
s(T0)

and

let u1 ∈ H . Let γk ∈ Gr,L , let sk ∈ Spiec
µ,M (T0, T1) , with sk(T1) ≤ bγk

. Let u0k ∈ V γk

sk(T0)
,

such that u0k − uD(T0) ∈ V γk,D
sk(T0)

, u1k,∈ H , and assume (2.42). Let u be the weak solution

of problem (2.22)-(2.24) on the cracked domains Ω \ Γγ
s(t) , t ∈ [T0, T1] . Let uk the weak

solution problem (2.43)-(2.45) on the cracked domains Ω \ Γγk

sk(t)
, t ∈ [T0, T1] . Assume that

∥fk − f∥L2(0,T ;H)→ 0, ∥Fk − F∥H1(0,T ;H̃)→ 0, (2.55)

sk → s uniformly, γk → γ uniformly, (2.56)

u0k → u0 in H, Du0k → Du0 in H, u1k → u1 in H. (2.57)

Then

uk(t) → u(t) in H, (2.58)

Duk(t) → Du(t) in H, (2.59)

9uk(t) → 9u(t) in H, (2.60)

for every t ∈ [T0, T1] . Moreover there exists a constant C > 0 such that

∥uk(t)∥+∥Duk(t)∥+∥ 9uk(t)∥≤ C

for every k ∈ N and t ∈ [T0, T1] .

Proof. As in the proof of Theorem 2.19, we cannot apply directly [5, Theorem 6.1], because
in general (2.30) is not satisfied. However, assuming (2.31) instead of (2.30) we can repeat
all arguments of the proof of that theorem, which is based on the continuous dependence
on the data for elastodynamics with cracks (in our case given by Theorem 2.18) and on a
results concerning the convergence of fixed points of a sequence of functions (see [5, Lemma
4.2]). □
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3. Energy balance

In this section we study the problem of the dynamic energy-dissipation balance on a given
cracked domain Ω \ Γγ

s(t) for a solution of a viscoelastic problem.

Let γ ∈ Gr,L , 0 ≤ T0 < T1 ≤ T , s ∈ Spiec
µ,M (T0, T1), with s(T1) ≤ bγ . It is convenient to

define the operator LT0 :V(T0, T1) → H1(T0, T1;H) as

(LT0
u)(t) :=

ˆ t

T0

eτ−tVEu(τ)dτ, (3.1)

for all u ∈ V(T0, T1), for all t ∈ [T0, T1] . Since

( 9
ŐLT0

u)(t) = VEu(t)−
ˆ t

T0

eτ−tVEu(τ) dτ,

it is easy to check that LT0
is bounded. Indeed, using the Hölder inequality it is possible

to prove that

∥LT0
u∥L∞(T0,T1;H̃)≤ (T1 − T0)

1/2∥V∥∞∥u∥V(T0,T1), (3.2)

∥ 9
ŐLT0

u∥L2(T0,T1;H̃)≤ (1 + T1 − T0)∥V∥∞∥u∥V(T0,T1). (3.3)

Assume (2.7), (2.19)-(2.21) and let v ∈ C0([T0, T1], V ) ∩ C1([T0, T1], H). For every t ∈
[T0, T1] the sum of kinetic and elastic energy is given by

Ev(t) =
1

2
∥ 9v(t)∥2+1

2
(CEv(t), Ev(t)). (3.4)

For an interval [t1, t2] ⊂ [T0, T1] the dissipation due to viscosity between time t1 and t2 is
given by

Dv(t1, t1) =
1

2
(VEv(t2), Ev(t2))−

1

2
(VEv(t1), Ev(t1))

− ((LT0v)(t2), Ev(t2)) + ((LT0v)(t1), Ev(t1))

+

ˆ t2

t1

(VEv(t), Ev(t))dt−
ˆ t2

t1

((LT0
v)(t), Ev(t))dt. (3.5)

Moreover, we assume that the energy dissipated in the process of crack production on the
interval [t1, t2] is proportional to s(t2) − s(t1), which represent the length of the crack
increment. For simplicity we take the proportionality constant equal to one. Finally, the
work done between time t1 and t2 by the boundary and volume forces is

Wv(t1, t2)=

ˆ t2

t1

´

(f(t), 9v(t)− 9uD(t)) + ((C+ V)Ev(t), E 9uD(t))− ((LT0
v)(t), E 9uD(t))

¯

dt

−
ˆ t2

t1

( 9F (t), Ev(t)− EuD(t))dt−
ˆ t2

t1

( 9v(t), :vD(t))dt+ ( 9v(t2), 9uD(t2))

−( 9v(t1), 9uD(t1))+(F (t2), Ev(t2)− EuD(t2))−(F (t1), Ev(t1)− EuD(t1)). (3.6)

Remark 3.1. When F = F0 as in (1.6) and all terms are regular enough, formulas (3.5)
and (3.6) can be obtained from (1.1) in (−∞, T ] , using the explicit expression of the stress
tensor (1.2) and integrating by parts. For more details when viscosity is not present see also
to [8, Section 3] and [9, Section 4].

Remark 3.2. We stress that (3.5) and (3.6) make sense for every weak solution of problem
(2.22)-(2.23), thanks to Proposition 2.20.

We now define the class of cracks whose solutions of the viscoelastic problem satisfy the
dynamic energy-dissipation balance.
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Definition 3.3. Let 0 ≤ T0 < T1 ≤ T , s0 ≥ 0, and γ ∈ Gr,L , with bγ = s0 , and assume
(2.7), (2.19)-(2.21) and (2.31). Let u0 ∈ V γ

s0 , such that u0−uD(T0) ∈ V γ,D
s0 and let u1 ∈ H .

The class

Breg(T0, T1) = Breg(T0, T1, s0, γ,C,V, f, F, uD, u0, u1)

is composed of all pairs (γ, s), with γ ∈ Gr,L , γ|[a0,s0]= γ|[a0,s0] , s ∈ Sreg
µ,M ([T0, T1]) , s(T0) =

s0 , and s(T1) ≤ bγ , such that the unique weak solution u of the viscoelastic problem (2.22)-
(2.24) satisfies the energy-dissipation balance

Eu(t2)− Eu(t1) +Du(t1, t2) + s(t2)− s(t1) = Wu(t1, t2) (3.7)

for every interval [t1, t2] ⊂ [T0, T1] . Similarly, the class

Bpiec(T0, T1) = Bpiec(T0, T1, s0, γ,C,V, f, F, uD, u0, u1)

is defined in the same way replacing s ∈ Sreg
µ,M ([T0, T1]) by s ∈ Spiec

µ,M ([T0, T1]) .

The class Breg(T0, T1) is nonempty, as clarified by the following result, whose proof follows
the lines of [12, Lemma 1] and [11, Proposition 2.7].

Proposition 3.4. Under the assumption of Definition 3.3, the pair (γ, s) , with s(t) = s0
for every t ∈ [T0, T1] , belongs to Breg(T0, T1) .

Proof. We prove the result in the case of homogeneous boundary condition, i.e. uD = 0.
Indeed, the case of non-homogeneous data can be obtained considering the equation for
u−uD . It is convenient to extend our data on [0, 2T ] by setting f(t) = 0 and F (t) = F (T )

for t ∈ (T, 2T ] . It is clear that f ∈ L2(0, 2T,H), F ∈ H1(0, 2T, H̃), and that, by uniqueness,
the solution u of the viscoelastic problem on [T0, 2T ] is an extension of the solution on
[T0, T1] . Since the domain is constant with respect to time we deduce from (2.22)-(2.23)
that u ∈ H2([T0, 2T ]; (V

D
s0 )

∗) and

⟨:u(t), φ⟩+ ((C+ V)Eu(t), Eφ)− (LT0
u(t), Eφ) = (f(t), φ) + (F (t), Eφ). (3.8)

for all φ ∈ V D
s0 and for a.e. t ∈ [T0, 2T ] .

Given a Banach space X and a function r : [T0, 2T ] → X , for every h > 0 we define
σhr, δhr : [T0, 2T − h] → X by σhr(t) := r(t + h) + r(t), δhr(t) := r(t + h) − r(t). For
a.e. t ∈ [T0, 2T − h] we have σhu(t), δhu(t) ∈ V D

s0 . We consider (3.8) at time t and a time

t + h , in both cases with φ = δhu(t). We sum the two expressions and we integrate on
[t1, t2] ⊆ [T0, T1] . We get

ˆ t2

t1

pKh(t) + Eh(t) +Dh(t)qdt =

ˆ t2

t1

Lh(t) dt, (3.9)

where the terms that appear in (3.9) are defined as

Kh(t) := ⟨σh:u(t), δhu(t)⟩,

Eh(t) := ((C+ V)σhEu(t), δhEu(t)),

Dh(t) := −(σh[LT0u(t)], δ
hEu(t)),

Lh(t) := (σhf(t), δhu(t)) + (σhF (t), δhEu(t)).
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We have that
ˆ t2

t1

Kh(t) dt = −
ˆ t2

t1

(σh 9u(t), δh 9u(t)) dt+ (σh 9u(t2), δ
hu(t2))− (σh 9u(t1), δ

hu(t1))

= −
ˆ t2

t1

p∥ 9u(t+ h)∥2dt− ∥ 9u(t)∥2qdt+ (σh 9u(t2), δ
hu(t2))− (σh 9u(t1), δ

hu(t1))

= −
ˆ t2+h

t1+h

∥ 9u(t)∥2dt+
ˆ t2

t1

∥ 9u(t)∥2dt+ (σh 9u(t2), δ
hu(t2))− (σh 9u(t1), δ

hu(t1))

= −
ˆ t2+h

t2

∥ 9u(t)∥2dt+
ˆ t1+h

t1

∥ 9u(t)∥2dt+ (σh 9u(t2), δ
hu(t2))− (σh 9u(t1), δ

hu(t1))

and dividing by h we get

ˆ t2

t1

Kh(t)

h
dt = −

 t2+h

t2

∥ 9u(t)∥2dt+
 t1+h

t1

∥ 9u(t)∥2dt+ (σh 9u(t2),
δhu(t2)

h
)− (σh 9u(t1),

δhu(t1)

h
).

Then
ˆ t2

t1

Kh(t)

h
dt→ −∥ 9u(t2)∥2+∥ 9u(t1)∥2+2∥ 9u(t2)∥2−2∥ 9u(t1)∥2= ∥ 9u(t2)∥2−∥ 9u(t1)∥2, (3.10)

as h→ 0+ , where we have used the fact that u ∈ C1([T0, 2T ], H). Moreover

ˆ t2

t1

Eh(t) dt =

ˆ t2

t1

((C+ V)Eu(t+ h), Eu(t+ h))dt−
ˆ t2

t1

((C+ V)Eu(t), Eu(t))dt

=

ˆ t2+h

t1+h

((C+ V)Eu(t), Eu(t))dt−
ˆ t2

t1

((C+ V)Eu(t), Eu(t))dt

=

ˆ t2+h

t2

((C+ V)Eu(t), Eu(t))dt−
ˆ t1+h

t1

((C+ V)Eu(t), Eu(t))dt (3.11)

which give us

ˆ t2

t1

Eh(t)

h
dt→ ((C+ V)Eu(t2), Eu(t2))− ((C+ V)Eu(t1), Eu(t1)) (3.12)

as h→ 0+ , where we have used the fact that u ∈ C0([T0, 2T ], V ). Regarding the term Dh

we have

−
ˆ t2

t1

Dh(t) dt =

ˆ t2

t1

(σh[LT0
u(t)], Eu(t+ h))dt−

ˆ t2

t1

(σh[LT0
u(t)], Eu(t))dt

=

ˆ t2+h

t1+h

(σ−h[LT0
u(t)], Eu(t))dt−

ˆ t2

t1

(σh[LT0
u(t)], Eu(t))dt

=

ˆ t2+h

t1+h

(LT0
u(t− h)− LT0

u(t+ h), Eu(t))dt

−
ˆ t1+h

t1

(σh[LT0
u(t)], Eu(t))dt+

ˆ t2+h

t2

(σh[LT0
u(t)], Eu(t))dt

=

ˆ t2

t1

(LT0
u(t)− LT0

u(t+ 2h), Eu(t+ h))dt

−
ˆ t1+h

t1

(σh[LT0
u(t)], Eu(t))dt+

ˆ t2+h

t2

(σh[LT0
u(t)], Eu(t))dt, (3.13)
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which give us
ˆ t2

t1

Dh(t)

h
dt = −

ˆ t2

t1

´LT0u(t)− LT0u(t+ 2h)

h
,Eu(t+ h)

¯

dt

+

 t1+h

t1

(σh[LT0
u(t)], Eu(t))dt−

 t2+h

t2

(σh[LT0
u(t)], Eu(t))dt

→ 2

ˆ t2

t1

(( 9
ŐLT0u)(t), Eu(t))dt

+ 2(LT0
u(t1), Eu(t1))− 2(LT0

u(t2), Eu(t2))

= 2

ˆ t2

t1

(VEu(t)− LT0u(t), Eu(t))dt

+ 2(LT0
u(t1), Eu(t1))− 2(LT0

u(t2), Eu(t2)), as h→ 0+, (3.14)

where we have used again that u ∈ C0([T0, 2T ], V ).
With similar arguments, we have that

ˆ t2

t1

Lh(t)

h
dt→ 2

ˆ t2

t1

(f(t), 9u(t))dt− 2

ˆ t2

t1

( 9F (t), Eu(t))dt

+ 2( 9F (t2), Eu(t1))− 2( 9F (t1), Eu(t1)), as h→ 0+. (3.15)

Dividing by h Equation (3.9) and using Equations (3.10), (3.12), (3.14), and (3.15), we
get the following identity

∥ 9u(t2)∥2+((C+ V)Eu(t2), Eu(t2)) + 2

ˆ t2

t1

(VEu(t)− LT0
u(t), Eu(t))dt

− 2(LT0u(t2), Eu(t2)) = ∥ 9u(t1)∥2+((C+ V)Eu(t1), Eu(t1))− 2(LT0u(t1), Eu(t1))

+ 2

ˆ t2

t1

(f(t), 9u(t))dt− 2

ˆ t2

t1

( 9F (t), Eu(t))dt+ 2( 9F (t2), Eu(t1))− 2( 9F (t1), Eu(t1)), (3.16)

that is the energy-dissipation balance (3.7) when uD = 0 and s(t) = s0 for all t ∈ [T0, T1] .
□

The following remark deals with the concatenation of solutions on adjacent time intervals.

Remark 3.5. Under the assumption of Definition 3.3, let 0 ≤ T0 < T1 < T2 ≤ T ,

(γ1, s1) ∈ Bpiec(T0, T1, s0, γ,C,V, f, F, uD, u0, u1),

(γ2, s2) ∈ Bpiec(T1, T2, s1(T1), γ1,C,V, f, F, uD, u(T1), 9u(T1)).

Let s: [T0, T2] → R be defined as

s(t) :=

{
s1(t) if t ∈ [T0, T1],

s2(t) if t ∈ [T1, T2].
(3.17)

Then (γ2, s) ∈ Bpiec(T0, T2, s0, γ,C,V, f, F, uD, u0, u1).

Using the continuous dependence Theorem 2.21 we are in a position to prove a compact-
ness result for Breg , which will be useful for the proof of the main result of the paper (see
Theorem 4.3).

Theorem 3.6. Under the assumption of Definition 3.3, let (γk, sk) ∈ Breg(T0, T1) . Then
there exists a not relabelled subsequence and there exists (γ, s) ∈ Breg(T0, T1) such that
γk → γ uniformly (in the sense of Definition 2.3) and sk → s in C3([T0, T1]) .
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Proof. By Lemma 2.5 there exists a subsequence (not relabelled) γk and γ ∈ Gr,L such that
γk → γ uniformly (in the sense of Definition 2.3). By Ascoli-Arzelà Theorem there exists
s ∈ C3([T0, T1]) and a further subsequence sk converging to s in C3([T0, T1]) . Moreover,
if we pass to the limit ad k → +∞ in the conditions in Definition 2.6 for sk , we get that
s ∈ Sreg

µ,M ([T0, T1]) . We defined u as the solution of the viscoelastic problem (2.22)-(2.24) on

the time-dependent cracked domain t 7→ Ω \ Γγ
s(t) with t ∈ [T0, T1] and we define uk as the

solution of the viscoelastic problem on the time-dependent cracked domain t 7→ Ω \ Γγk

sk(t)

with t ∈ [T0, T1] . Since (γk, sk) ∈ Breg(T0, T1) we have

1

2
∥ 9uk(t2)∥2+

1

2
((C+ V)Euk(t2), Euk(t2))− (LT0uk(t2), Euk(t2))

−1

2
∥ 9uk(t1)∥2−

1

2
((C+ V)Euk(t1), Euk(t1)) + (LT0

uk(t1), Euk(t1))

−
ˆ t2

t1

(VEuk(t), Euk(t))dt−
ˆ t2

t1

(LT0uk(t), Euk(t))dt+ sk(t2)− sk(t1)

=

ˆ t2

t1

´

(f(t), 9uk(t)− 9uD(t)) + ((C+ V)Euk(t), E 9uD(t))− (LT0
uk(t), E 9uD(t))

¯

dt

−
ˆ t2

t1

( 9F (t), Euk(t)− EuD(t))dt+ (F (t2), Euk(t2)− EuD(t2))− (F (t1), Euk(t1)− EuD(t1))

−
ˆ t2

t1

( 9uk(t), :uD(t))dt+ ( 9uk(t2), 9uD(t2))− ( 9uk(t1), 9uD(t1)), (3.18)

for every interval [t1, t2] ⊂ [T0, T1] . Using Theorem 2.21 and the bounds (3.2)-(3.3), we can
pass to the limit as k → +∞ in (3.18) and we get the energy-dissipation balance (3.7) for
u . This proves that (γ, s) ∈ Breg(T0, T1) and concludes the proof. □

4. Existence for the coupled problem

In this section we prove an existence result for the crack evolution (described by the
functions γ and s). In order to do this we define a maximal dissipation condition (see also
[8] and [9]), which forces the crack tip to choose a path which allows for a maximal speed.

Definition 4.1. Assume (2.7), (2.19)-(2.21) and (2.31). Let u0 ∈ V0 , such that u0−uD(0) ∈
V D
0 , and let u1 ∈ H . Given η > 0 we say that (γ, s) ∈ Bpiec(0, T ) satisfies the η−maximal

dissipation condition on [0, T ] if there exists no (γ̂, ŝ) ∈ Bpiec(0, τ1), for some τ1 ∈ (0, T ] ,
such that

(M1) sing(ŝ) ⊂ sing(s),
(M2) ŝ(t) = s(t) and γ̂(ŝ(t)) = γ(s(t)) for every t ∈ [0, τ0] , for some τ ∈ [0, τ1),
(M3) ŝ(t) > s(t) for every t ∈ (τ0, τ1] and ŝ(τ1) > s(τ1) + η .

Remark 4.2. We refer to the discussion in [9, Section 1] for some comments on the presence
of the parameter η > 0.

We are now in position to prove the main result of the paper. The proof follows the lines
of [8] and [9], devoted to the case of elastodynamics without viscosity terms.

Theorem 4.3. Under the assumption of Definition 4.1, for every η > 0 there exists a pair
(γ, s) ∈ Bpiec(0, T ) satisfying the η -maximal dissipation condition on [0, T ] .

Proof. Let us fix η > 0 and a finite subdivision 0 = T0 < T1 < ... < Tk = T of the time
interval [0, T ] such that Ti−Ti−1 <

η
µ for every i ∈ {0, 1, 2, ..., k} . We will define the solution

usong a recursive procedure on each subinterval [Ti−1, Ti] , for every i ∈ {0, 1, 2, ..., k} . In
order to define this procedure, we set

X1 :=
{
(γ, s) ∈ Bpiec(0, T1, 0, γ0,C,V, f, F, uD, u0, u1) | s ∈ Sreg

µ,M (0, T1), s(0) = 0
}
, (4.1)
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where γ0 is the function that appears in Definition 2.1. By Proposition 3.4 we have that
(γ0, 0) ∈ X1 and in particular we have X1 ̸= Ø. Moreover, we choose (γ1, s1) ∈ X1 such
that ˆ T1

T0

s1(t) dt = max
(γ,s)∈X1

ˆ T1

T0

s(t) dt,

where the existence of (γ1, s1) is guaranteed by Lemma 4.4 below. If k = 1, we define
(γ, s) := (γ1, s1) and we have to prove that this couple satisfies the η -maximal dissipation
condition. Otherwise, we fix i ∈ {2, ..., k} and we set

Xi :=
{
(γ, s) ∈ Bpiec(0, Ti, 0, γ0,C,V, f, F, uD, u0, u1) | s|[Ti−1,Ti]∈ Sreg

µ,M (Ti−1, Ti),

s(t) = si−1(t), γ(s(t)) = γi−1(si−1(t))∀ t ∈ [0, Ti−1]
}
. (4.2)

We note that Xi ̸= Ø. Indeed, if we define s̃i−1 as

s̃i−1(t) :=

{
si−1(t) for t ∈ [0, Ti−1],

si−1(Ti−1) for t ∈ [Ti−1, Ti],

we can apply Proposition 3.4 and Remark 3.5 to obtain (γi−1, s̃i−1) ∈ Xi . Assume that the
pair (γi−1, si−1) ∈ Xi−1 has already been defined, then we choose (γi, si) ∈ Xi such that

ˆ Ti

Ti−1

si(t) dt = max
(γ,s)∈Xi

ˆ Ti

Ti−1

s(t) dt, (4.3)

where the existence of (γi, si) is guaranteed by Lemma 4.4 below.
We now define (γ, s) := (γk, sk), where (γk, sk) is the the pair defined in the final step

of the procedure defined above. It remains to prove that (γ, s) satisfies the η -maximal
dissipation condition on the interval [0, T ] . Assume, by contradiction that there exist 0 ≤
τ0 < τ1 ≤ T and (γ̂, ŝ) ∈ Bpiec(0, τ1) such that:

(i) sing(ŝ) ⊂ sing(s) ⊂ {T1, ..., Tk−1}
(ii) s(t) = ŝ(t) and γ(s(t)) = γ̂(ŝ(t)) for every t ∈ [0, τ0] ,
(iii) s(t) < ŝ(t) for every t ∈ (τ0, τ1] and ŝ(τ1) > s(τ1) + η .

Since τ0 < T , there exists an index j ∈ {1, ..., k} such that τ0 ∈ [Tj−1, Tj). We claim that
τ1 > Tj . Indeed, the using the monotonicity of s and the points (ii) and (iii), we have that
ŝ(τ1) > s(τ1) + η ≥ s(τ0) + η = ŝ(τ0) + η and in particular ŝ(τ1)− ŝ(τ0) > η . On the other

hand, since ŝ ∈ Spiec
µ,M (0, τ1) we have ŝ(τ1) − ŝ(τ0) ≤ µ(τ1 − τ0), which together with the

previous inequality give us τ1 − τ0 > η/µ . Since the subdivision of the interval was choosen
such that Ti−1 − Ti < η/µ for every i ∈ {1, ..., k} , we get that τ1 > Tj .

Using (i) we have that ŝ|[Tj−1,Tj ]∈ Sreg
µ,M (Tj−1, Tj) and taking (ii) into account we get

that (γ̂, ŝ) ∈ Xj . By construction s = sj on [Tj−1, Tj ] , where sj is the function defined in
(4.3) for i = j . As a consequence of (iii) we get ŝ(t) > s(t) = sj(t) for every t ∈ (τ0, Tj ] ,
which contradicts (4.3).

□

We close this section with the following Lemma used to prove Theorem 4.3. The proof
can be found in [9, Lemma 5.3] with obvious modifications.

Lemma 4.4. For every i = 1, ..., k there exists (γi, si) ∈ Xi such that

ˆ Ti

Ti−1

si(t) dt = max
(γ,s)∈Xi

ˆ Ti

Ti−1

s(t) dt, (4.4)

where Xi is the space defined in (4.1) and (4.2).
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[27] V. Volterra: Leçons sur les fonctions de lignes, Gauthier-Villars, Paris, 1913.

(Federico Cianci) SISSA, Via Bonomea 265, 34136 Trieste, Italy

Email address, Federico Cianci: fcianci@sissa.it


