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Abstract. We provide a new proof of the Riemannian Penrose inequality for time–symmetric
asymptotically flat initial data with a single black–hole horizon. The proof proceeds through
a newly established monotonicity formula holding along the level sets of the p–capacitary
potential of the horizon boundary, in any asymptotically flat 3–manifold with nonnegative
scalar curvature.

1. A monotonicity formula for p–capacitary potentials.

In the last decades, level set methods have proven to be a very powerful tools for the
comprehension of geometric phenomena. A nowadays classical field of application is for
example the existence theory for various fundamental geometric evolution equations, notably,
the mean curvature flow [15, 22, 23], or the inverse mean curvature flow [29]. On one hand,
these theories are tailored for providing very general and flexible notions of weak solutions,
on the other hand, understanding properly their qualitative behaviors and their geometric
features usually requires a considerable amount of work. This is due not only to the inborn
lack of regularity, but also to the fact that, in general, the evolution described by the weak
solutions can be geometrically different from the one dictated by the classical theory, even
for small times. Viceversa, classical solutions may count on a definitely less flexible existence
theory, which is compensated by a much more transparent geometric behavior, as most of the
formal computations that one can perform turn out to be rigorously justified.

A major challenge is then providing weak solutions with a sufficiently large tool–set for
their qualitative analysis, eventually leading to relevant geometric conclusions. A significant
and successful example in this sense is given by the masterful work of Huisken and Ilmanen
in the proof of the Riemannian Penrose inequality [29]. Briefly speaking, this inequality says
that the total ADM mass and the area of the horizon boundary of an asymptotically flat
3–manifold (M, g) are related as follows,

mADM ≥
√
|∂M |
16π

.

In their celebrated paper, Huisken and Ilmanen settle the theory of weak solutions to the
inverse mean curvature flow and – even more remarkably – provide them with an effective
monotonicity formula, which in turn paves the way to the proof of the above geometric
inequality. To put this fundamental work in perspective, it is worth recalling that the smooth
counterpart of the whole procedure, namely, the Geroch monotonicity formula for the Hawking
mass along the smooth inverse mean curvature flow [26], was already available since the early
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seventies (see also [30]). In other words, it took more than twenty years to pass from the
classical computation along the smooth flow to the full justification of the monotonicity
formula along the weak flow. This is reflected in the fact that the proof of Huisken and
Ilmanen is extremely sophisticated and requires a number of deep conceptual and technical
insights.

The aim of our work is to propose an alternative and simplified approach to the Riemannian
Penrose inequality, where the weak inverse mean curvature flow is replaced by the level set
flow of the p–capacitary potential of the black–hole horizon. This is a p–harmonic function
solving the Dirichlet boundary value problem (1.1), for which both the existence and the
regularity theory are nowadays well understood. On this regard, it is also worth mentioning
that, thanks to the result of Moser [34], and its recent extension [33], it is actually possible to
use p–harmonic functions to recover the existence theory for the weak inverse mean curvature
flow. However, at a first sight, in the absence of corresponding monotonicity formulas, the
p–harmonic approach seemed to be essentially ineffective for drawing geometric conclusions.
This perspective has changed completely after a series of recent works [2, 11, 25], where some
monotonicity formulas were established along the level sets flow of p–harmonic functions
and subsequently employed to deduce new general versions of the Minkowski inequality in
the classical Euclidean framework, as well as on complete manifolds with nonnegative Ricci
curvature. These works were inspired and preceded by their harmonic counterparts [1, 4, 18,
19], starting with Colding’s breakthrough [17].

In a very recent paper [5], a more sophisticated version of these monotonicity formulas
was finally made available for the level sets flow of the Green’s functions, in the context of
asymptotically flat 3–manifolds with nonnegative scalar curvature, leading to a simple proof
of the positive mass theorem (see also [3, 6, 13, 28, 35, 38] for related results and methods).
In the same paper [5, Section 3] a Geroch–type computation was also performed along the
smooth level sets flow of p–harmonic functions with nowhere vanishing gradient, to obtain a
new proof of the Riemannian Penrose inequality under such (and some other minor) favorable
assumption.

In the present paper, we are going to analyze in full details the general situation, where
the p–capacitary potential of the horizon boundary is allowed to have critical points, hence
the corresponding flow is possibly no longer smooth for all times, might experience jumps
and the level sets could be subject to topological changes. In this spirit, our work parallels
the effort made by Huisken and Ilmanen in their extension of the Geroch monotonicity result
to the weak solutions of the inverse mean curvature flow. On the other hand, we hope that
lowering the technical level of the proof would make the result more accessible, setting the
stage for further investigations.

1.1. Setting and preliminaries. Let (M, g) be a 3–dimensional, complete, noncompact
Riemannian manifold with nonnegative scalar curvature and smooth, compact and connected
boundary ∂M . For 1 < p < 3, let us assume that the following problem

∆pu = 0 in M

u = 0 on ∂M

u→ 1 at ∞
(1.1)

admits a weak solution up ∈ C 1,β(M)∩W 1,p(M), where ∆pu = div
(
|∇u|p−2∇u

)
denotes the

p–Laplacian operator of (M, g). Natural conditions ensuring the existence of the function up
will be introduced in Section 2 (see Definition 2.1). By the maximum principle for p–harmonic
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functions (see [27, Lemma 3.18 and Theorem 6.5]), such solution is unique and takes values
in [0, 1). In particular, we have that ∂M coincides with the level set {up = 0} and that
up : M → [0, 1) is proper, by virtue of the third condition in problem (1.1). We also observe
that, by the results in [20, 21], the function up is smooth outside its critical set

Crit(up) = {x ∈M : ∇up(x) = 0 } .
In particular, the boundary datum is attained smoothly, as the Hopf lemma (see [11, Section 2]
and references therein) implies that t = 0 is a regular value of up. To proceed, we recall that
for any 1 < p < 3, the p–capacity of ∂M is defined as

Capp(∂M) = inf

{ˆ
M

|∇v|p dµ : v ∈ C∞c (M), v = 1 on ∂M

}
(1.2)

and it is related to up through the following identities

Capp(∂M) =

ˆ

M

|∇up|p dµ =

ˆ

{up=t}

|∇up|p−1 dσ , (1.3)

for every regular value t of up, see [11, Section 2]. For the sake of notation, let us set

cp =

(
Capp(∂M)

4π

) 1
p−1

. (1.4)

Let us also point out that, whenever there is no possibility of misunderstanding, we will
systematically drop the subscript p and we will simply denote by u is the solution of prob-
lem (1.1). With these notations at hand, we now consider the vector field

X =
c
p−1
3−p
p[

3−p
p−1 (1− u)

] p−1
3−p

 |∇u|
p−2∇u
cp−1
p

+
∇|∇u| − ∆u

|∇u|∇u
3−p
p−1 (1− u)

+
|∇u|∇u[

3−p
p−1 (1− u)

]2

 . (1.5)

Notice that X is well defined and smooth away from the critical points of u. Denoting by 〈 , 〉
the scalar product given by the metric g, we introduce the function

Fp(t) =

ˆ

{u=αp(t)}

〈
X,
∇u
|∇u|

〉
dσ , (1.6)

where

αp(t) = 1−
( tp
t

)3−p
p−1

, with tp =
( p− 1

3− p
cp

)p−1
3−p

, (1.7)

and the variable t ranges in [ tp,+∞). The function Fp is then well defined whenever αp(t) is
a regular value of u. To make the definition of Fp more explicit, we observe that, expanding
the equation ∆pu = 0 away from the critical points, one gets

∆u = (2− p)
〈
∇|∇u|,∇u〉
|∇u|

. (1.8)

Consequently, the mean curvature H of a regular level set {u = τ} computed with respect to
the outward unit normal ∇u/|∇u| can be expressed as

H =
∆u

|∇u|
−
〈
∇|∇u|,∇u

〉
|∇u|2

= −(p− 1)

〈
∇|∇u|,∇u

〉
|∇u|2

. (1.9)
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Taking into account the above expression together with (1.3) and (1.4), it is easy to check
that Fp can be expressed as

Fp(t) = 4πt − t
2
p−1

cp

ˆ

{u=αp(t)}

|∇u|H dσ +
t
5−p
p−1

c2
p

ˆ

{u=αp(t)}

|∇u|2 dσ . (1.10)

We mention that setting p = 2 and cp = 1 in this formula, one gets the same monotone
quantity as the one employed in [5] to provide a Green’s function proof of the positive mass
theorem.

We are then ready to state the following monotonicity result.

Theorem 1.1 (Monotonicity along the regular values). Let (M, g) be a 3–dimensional, com-
plete, noncompact Riemannian manifold with nonnegative scalar curvature and smooth, com-
pact and connected boundary ∂M . Moreover, assume that H2(M,∂M ;Z) = {0} and suppose
that, for every 1 < p < 3, problem (1.1) admits a unique solution up ∈ C 1,β(M) ∩W 1,p(M).
Let s, t ∈ [ tp,+∞) be such that αp(s) and αp(t) are regular values for up. Then, the following
implication holds true

s ≤ t ⇒ Fp(s) ≤ Fp(t) ,

where Fp is the function defined in formula (1.6).

The proof of this theorem will occupy the rest of the section and, for the sake of exposition,
we proceed with a series of steps of increasing difficulty and generality. In the first step
(Subsection 1.2), we will treat the case where u has no critical points. As this is the smooth
flow case, the proof here reduces to a Geroch–type computation, similar to the one outlined
in [5, Section 3]. The second step (Subsection 1.3) deals with the case where u has a negligible
set of critical values. This step constitutes the core of our analysis, as it faces the major
conceptual and geometric difficulties caused by the presence of critical points. To understand
this, one should consider that – unlike for harmonic functions – no a priori bound is available
for the Hausdorff dimension of the critical set of a p–harmonic function, when n ≥ 3 (the only
known result is about p–harmonic functions in the plane and it is due to Alessandrini [7] and
Manfredi [32]). As a consequence, the critical points of u might be even arranged in subsets
of positive top–dimensional measure. From the point of view of the level sets flow, these
clusters of critical points would correspond to jumps, similar to the ones experienced by the
weak inverse mean curvature flow of Huisken and Ilmanen. As such, they represent the most
serious geometrical obstacle to the extension of the monotonicity formula of Subsection 1.2
to the weak flow. Also notice that integrating |∇u| on the critical set Crit(u) = {x ∈
M : ∇u(x) = 0} and using the coarea formula, it is immediate to deduce that the set
{τ ∈ [0, 1) : H n−1(Crit(u)∩{u = τ}) > 0 } must have zero measure. Hence, the assumption
of negligible critical values is by no means sufficient to exclude jumps along the flow. If
p = 2, one can get rid of this assumption by using Sard theorem, since harmonic functions
are smooth. On the other hand, when p 6= 2, the optimal regularity available for p–harmonic
functions is only C 1,β, which is clearly not enough to invoke Sard theorem. Albeit it is a
common belief that critical values of p–harmonic functions should not have positive measure,
this possibility is not excluded by any result in the literature, so far. We will overcome this
technical issue in the third step (Subsection 1.4), by using an approximation scheme originally
introduced by Di Benedetto [20].
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Apart from the case where the p–capacitary potential u has no critical points, so that the
level sets are all immediately diffeomorphic to the boundary ∂M = {u = 0}, in treating the
other two steps, we will employ the triviality of the second relative homology group. Thanks
to an argument similar to the one of [29, Lemma 4.2], this will ensure that any level set of u is
connected, even in the presence of critical points. It is important to notice that the condition
H2(M,∂M ;Z) = {0} is automatically satisfied under the natural assumption that (M, g) is
an asymptotically flat exterior region, as observed in [29, Lemma 4.1].

1.2. Monotonicity without critical points. With the help of the Bochner formula, the
twice contracted Gauss equation and formulas (1.8), (1.9), the divergence of the vector field
X in formula (1.5) can be expressed as

divX =
c
p−1
3−p
p |∇u|[

3−p
p−1 (1− u)

] p−1
3−p+1

 |∇u|p−1

cp−1
p

− RΣ

2
+
| ∇Σ|∇u| |2

|∇u|2
+

R

2
+
|
◦
h|2

2

+
5− p
p− 1

 |∇u|
3−p
p−1 (1− u)

− H

2

2  (1.11)

where RΣ(x), ∇Σ and
◦
h(x) represent the scalar curvature, the Levi–Civita connection and the

trace–free second fundamental form of the regular level set Σ = {u = u(x)} passing through
the point x ∈ M . Also notice that in order to establish the above formula, one can employ
the following Kato–type identity for p–harmonic functions,

|∇∇u|2 −
[
1 +

(p− 1)2

2

]
|∇|∇u||2 = |∇u|2

∣∣◦h ∣∣2 +

[
1− (p− 1)2

2

]
|∇Σ|∇u||2 .

Let us observe that if u has no critical points, then all the values in the range of u are regular,
and the monotonicity can be easily deduced by means of the following computation, using
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the divergence theorem, the coarea formula and identity (1.11).

Fp(t)− Fp(s) =

ˆ

{u=αp(t)}

〈
X,
∇u
|∇u|

〉
dσ −

ˆ

{u=αp(s)}

〈
X,
∇u
|∇u|

〉
dσ

=

ˆ

{αp(s)<u<αp(t)}

divX dµ =

ˆ

(αp(s),αp(t))

dτ

ˆ

{u=τ}

divX

|∇u|
dσ

=

ˆ

(αp(s),αp(t))

c
p−1
3−p
p dτ[

3−p
p−1 (1− τ)

] p−1
3−p+1

ˆ

{u=τ}

(
|∇u|p−1

cp−1
p

− RΣ

2

)
dσ

+

ˆ

(αp(s),αp(t))

c
p−1
3−p
p dτ[

3−p
p−1 (1− τ)

] p−1
3−p+1

ˆ

{u=τ}

(
| ∇Σ|∇u| |2

|∇u|2
+

R

2
+
|
◦
h|2

2

)
dσ

+

ˆ

(αp(s),αp(t))

c
p−1
3−p
p dτ[

3−p
p−1 (1− τ)

] p−1
3−p+1

ˆ

{u=τ}

5− p
p− 1

 |∇u|
3−p
p−1 (1− u)

− H

2

2

dσ

≥
ˆ

(αp(s),αp(t))

c
p−1
3−p
p

[
4π − 2πχ

(
{u = τ}

)]
[

3−p
p−1 (1− τ)

] p−1
3−p+1

dτ ≥ 0 ,

Observe that in the last passage, we used the identities (1.3) and (1.4) in combination with
the Gauss–Bonnet theorem, obtaining the Euler characteristic χ

(
{u = τ}

)
of the level set

{u = τ}. The conclusion follows since, in the absence of critical points, all the level sets are
diffeomorphic to the boundary ∂M = {u = 0}. As the latter is a smooth connected closed
surface, one has that 4π − 2πχ({u = τ}) ≥ 0, for every τ ∈ [0, 1).

1.3. Monotonicity with negligible critical values. Let us now consider the case where
the solution u of problem (1.1) is allowed to have a nonempty set of critical points Crit(u).
Before dealing with the general case, let us first prove the monotonicity of Fp under the
favorable assumption that the set of the critical values of u is a negligible set. As already
observed, this case contains all the major conceptual and geometric difficulties caused by the
presence of critical points. In particular, we are going to show how the monotonicity formula
of Subsection 1.2 still holds despite the possible presence of jumps along the flow. To make
the computations simpler, it is convenient to set

Y =
c
p−1
3−p
p[

3−p
p−1(1− u)

] p−1
3−p


∇|∇u| − ∆u

|∇u|∇u
3−p
p−1 (1− u)

+
|∇u|∇u[

3−p
p−1(1− u)

]2


=

c
p−1
3−p
p[

3−p
p−1(1− u)

] p−1
3−p

∇
>|∇u|+ (p− 1)∇⊥|∇u|

3−p
p−1 (1− u)

+
|∇u|2[

3−p
p−1(1− u)

]2

∇u
|∇u|

 ,
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where∇>|∇u| and∇⊥|∇u| denote the tangential and the normal component of∇|∇u|, respec-
tively. Observe that ∇> = ∇Σ, by the well known properties of the Levi–Civita connection.
Noticing that the vector fields X and Y are related through the formula

X = c
− (2−p)(p−1)

(3−p)
p

|∇u|p−2∇u[
3−p
p−1(1− u)

] p−1
3−p

+ Y ,

it is immediate to observe that, wherever ∇u 6= 0, there holds

div Y =
c
p−1
3−p
p |∇u|[

3−p
p−1(1− u)

] p−1
3−p+1

− RΣ

2
+
| ∇>|∇u| |2

|∇u|2
+

R

2
+
|
◦
h|2

2

+
5− p
p− 1

 |∇u|
3−p
p−1 (1− u)

− H

2

2  . (1.12)

We now consider a sequence of smooth, nondecreasing cut–off functions ηk : [0,+∞)→ [0, 1],
with the following structural properties

ηk(τ) ≡ 0 in
[
0 ,

1

2k

]
, 0 ≤ η′k(τ) ≤ 2k in

[ 1

2k
,

3

2k

]
, ηk(τ) ≡ 1 in

[ 3

2k
,+∞

)
,

for every k ∈ N. It is immediate to realize that the functions ηk monotonically converge to
the characteristic function of (0,+∞) in the pointwise sense. Using these cut–off functions,
we introduce the vector fields

Yk = ηk

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 Y ,

which are well defined and smooth on the whole manifold. It is readily checked that, for
every x ∈ M \ Crit(u), the sequence of vectors Yk(x) converges by construction to Y (x), as
k → +∞. An easy computation yields

div Yk = ηk

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 div Y

+ η′k

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 c
p−1
3−p
p

(p− 1)|∇>|∇u||2 +

∣∣∣∣∣(p− 1)∇⊥|∇u|+ |∇u|∇u[
3−p
p−1

(1−u)
]
∣∣∣∣∣
2

[
3−p
p−1(1− u)

] 3
3−p

≥ ηk

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 div Y .

Thus, setting

Xk = c
− (2−p)(p−1)

(3−p)
p

|∇u|p−2∇u[
3−p
p−1(1− u)

] p−1
3−p+1

+ Yk ,
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one immediately gets

divXk ≥
c
− (2−p)(p−1)

(3−p)
p |∇u|p[

3−p
p−1(1− u)

] p−1
3−p+1

+ ηk

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 div Y .

Now, we let s, t ∈ [tp,+∞) be as in the statement of Theorem 1.1. As for large enough k ∈ N
the vector field Xk coincides with X on the boundary of {αp(s) < u < αp(t)}, the divergence
theorem yields

Fp(t)− Fp(s) =

ˆ

{u=αp(t)}

〈
Xk,

∇u
|∇u|

〉
dσ −

ˆ

{u=αp(s)}

〈
Xk,

∇u
|∇u|

〉
dσ

=

ˆ

{αp(s)<u<αp(t)}

divXk dµ

≥
ˆ

{αp(s)<u<αp(t)}


c
− (2−p)(p−1)

(3−p)
p |∇u|p[

3−p
p−1(1− u)

] p−1
3−p+1

+ ηk

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 div Y

 dµ .

We now claim that the rightmost hand side converges to

ˆ

{αp(s)<u<αp(t)}


c
− (2−p)(p−1)

(3−p)
p |∇u|p[

3−p
p−1(1− u)

] p−1
3−p+1

+ IM\Crit(u) div Y

 dµ ,

as k → +∞, where IM\Crit(u) denotes the characteristic function of M \Crit(u). Indeed, using
the Gauss equation in combination with formulas (1.8) and (1.9), we can rework formula (1.12)
to obtain div Y = P +D, with

P =
c
p−1
3−p
p |∇u|[

3−p
p−1 (1− u)

] p−1
3−p+1

[
| ∇>|∇u||2

|∇u|2
+ |

◦
h|2 +

H2

2
+ (2− p)(p− 1)

〈
∇|∇u|,∇u

〉2

|∇u|4

]

=
c
p−1
3−p
p |∇u|[

3−p
p−1(1− u)

] p−1
3−p+1

[
| ∇>|∇u||2

|∇u|2
+ |

◦
h|2 +

(p− 1)(3− p)
2

〈
∇|∇u|,∇u

〉2

|∇u|4

]

D =
c
p−1
3−p
p |∇u|[

3−p
p−1 (1− u)

] p−1
3−p+1

[
Ric(∇u,∇u)

|∇u|2
+

(p− 1)(5− p)
(3− p)2

(
|∇u|2

(1− u)2
+ (3− p)

〈
∇|∇u|,∇u

〉
(1− u)|∇u|

)]
.

As usual, the above identities are valid outside Crit(u). We now notice that the term P is
nonnegative, while D is bounded on every compact subset of M . The claim follows by apply-
ing the dominate convergence theorem to the sequence ηkD and the monotone convergence
theorem to the sequence ηk P .
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To complete our argument, we are now going to use the assumption that N = u(Crit(u))
is negligible. Using the coarea formula, the identity (1.12) and the Gauss–Bonnet theorem,
we can further develop the above computation, getting

Fp(t)− Fp(s) ≥
ˆ

(αp(s),αp(t))

dτ

ˆ

{u=τ}


c
− (2−p)(p−1)

(3−p)
p |∇u|p−1[
3−p
p−1(1− u)

] p−1
3−p+1

+ IM\Crit(u)
div Y

|∇u|

 dσ

=

ˆ

(αp(s),αp(t))\N

dτ

ˆ

{u=τ}


c
− (2−p)(p−1)

(3−p)
p |∇u|p−1[
3−p
p−1(1− u)

] p−1
3−p+1

+
div Y

|∇u|

 dσ

=

ˆ

(αp(s),αp(t))\N

dτ

ˆ

{u=τ}

divX

|∇u|
dσ

≥
ˆ

(αp(s),αp(t))\N

c
p−1
3−p
p dτ[

3−p
p−1(1− τ)

] p−1
3−p+1

ˆ

{u=τ}

(
|∇u|p−1

cp−1
p

− RΣ

2

)
dσ

=

ˆ

(αp(s),αp(t))\N

c
p−1
3−p
p

[
4π − 2πχ

(
{u = τ}

)]
[

3−p
p−1(1− τ)

] p−1
3−p+1

dτ ≥ 0 .

The last inequality holds because all the regular level sets of u are closed and connected
surfaces, so that 4π − 2πχ({u = τ}) ≥ 0, for every τ ∈ [0, 1) \ N .

For the reader’s convenience, we now include an argument, inspired by the one presented
in [29, Lemma 4.2], showing that the assumption H2(M,∂M ;Z) = {0} is sufficient to infer
the connectedness of the regular level sets of u.

We let τ ∈ (0, 1) be a regular value of u, and we consider the regular level set {u = τ}. We
first observe that the sub–level set {u < τ} is necessarily connected. More precisely, we claim
that each connected component of {u < τ} has a nonempty intersection with ∂M = {u = 0}.
Indeed, by the properness of u, every connected component of {u < τ} must be bounded.
Now, if some of these connected components would not intersect ∂M , then u would achieve
an interior minimum on it, which is forbidden by the strong maximum principle (see [27,
Theorem 6.5]). As ∂M is connected, it follows that {u < τ} is also connected.

Let now S ⊆ {u = τ} be a connected component of {u = τ}. As H2(M,∂M ;Z) = {0}, we
have that the surface S is homologous to (an integer multiple of) ∂M . We claim that S is
disconnecting M into two connected components A and B, so that M = AtS tB. In fact, if
M \S would have a unique connected component, then there would exist a simple closed loop
γ intersecting S at a single point, with γ ∩ ∂M = Ø. This is forbidden by the intersection
theory (see [14, Chapter 6, Section 11]), as the parity of the intersection with a given loop
should be (generically) the same, within a given homology class. Hence, the claim is proven,
and we have the decomposition M = A t S tB.

Without loss of generality, we may assume that ∂M ⊆ A. By the previous reasoning, this
implies that the sub–level set {u < τ} is also contained in A, since both A and {u < τ} are
open and connected and they both contain ∂M . In particular, we have that {u = τ} = ∂{u <
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τ} ⊆ A t S, where the first equality holds because τ is a regular value of u. Now suppose by
contradiction that {u = τ} contains another connected component Σ, with Σ ∩ S = Ø. By
virtue of the latter condition, Σ lies necessarily in the interior of A. Hence, at any x ∈ Σ ⊆ A,
we have that

u(x) = τ = max
∂A

u .

In other words, the point x is an interior maximum for u in A. Once again, this forbidden
by the strong maximum principle (see [27, Theorem 6.5]). Then, the only possibility is that
S is the unique connected component of {u = τ}.

1.4. An approximate monotonicity formula. To achieve the general result, we are going
to locally approximate the p–capacitary potential up, solving problem (1.1), with a family
of smooth functions, solving a perturbed version of such problem. More concretely, we fix
T ∈ (0, 1) such that {up = T} is a regular level set of up, and for every ε > 0, we consider the
(unique) solution uεp to the following problem

div
(
|∇u|p−2

ε ∇u
)

= 0 in MT = {0 ≤ up ≤ T} ,
u = 0 on ∂M ,

u = T on {up = T} ,
(1.13)

where |∇u|ε =
√
|∇u|2 + ε2. The functions uεp were first introduced in [20, 21] to establish the

nowadays classical C 1,β–regularity result for p–harmonic functions, as they actually converge
in the C 1,β–topology on the compact subsets of MT to the (a priori only) W 1,p–solution up of
problem (1.1), when ε→ 0. In the same papers it is also proven that they converge smoothly
to up on the compact subsets of MT \ Crit(up). To list some of the basic properties of the
functions uεp, we observe that they satisfy a nondegenerate quasilinear elliptic equation, with
smooth coefficients, in divergence form. As such, the weak and the strong maximum principle
as well as the Hopf lemma are in force, as it is proven in [37]. Using these fundamental tools,
one can prove that the functions uεp are smooth up to the boundary (see, e.g. [31]), that they
take values in [0, T ] and that their gradient is never vanishing on the level sets {uεp = 0} = ∂M
and {uεp = T} = {up = T}.

From our perspective, the key advantage of working with the functions uεp instead of up
comes from the fact that they are smooth, hence, Sard theorem applies and the set of crit-
ical values is negligible. Adapting the procedure described in the previous subsection, we
eventually establish the validity of an approximate monotonicity formula in Lemma 1.2. The-
orem 1.1, will then be achieved in Subsection 1.5, letting ε→ 0.

To keep the notations simpler, we drop the subscripts p and ε, whenever there is no
possibility of confusion and we simply write u for uεp. In analogy with formula (1.5), we
define the following vector fields

Xε =
c
p−1
3−p
p,ε[

3−p
p−1 (1− u)

] p−1
3−p

 |∇u|
p−2
ε ∇u
cp−1
p,ε

+
∇|∇u| − ∆u

|∇u|∇u
3−p
p−1 (1− u)

+
|∇u|∇u[

3−p
p−1 (1− u)

]2

 , (1.14)

where the constant cp,ε is given by

cp−1
p,ε =

1

4π

ˆ

∂M

|∇u|p−2
ε |∇u| dσ =

1

4π

ˆ

{u=αεp(t)}

|∇u|p−2
ε |∇u| dσ .
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Notice that the second equality holds for every t such that αεp(t) is a regular value of u, by
divergence theorem. In analogy with formula (1.6), we introduce the functions

F εp (t) =

ˆ

{u=αεp(t)}

〈
Xε,

∇u
|∇u|

〉
dσ , (1.15)

where

αεp(t) = 1−
(
tεp
t

)3−p
p−1

, with tεp =
(
cp,ε

p− 1

3− p

)p−1
3−p

,

and the variable t ranges in
[
tεp, t

ε
p(1− T )

1−p
3−p
]
. The assignment F εp (t) is clearly well defined,

whenever αεp(t) is a regular value of u. In order to make the expression of F εp more explicit,

we observe that, away from the critical set, the equation div
(
|∇u|p−2

ε ∇u
)

= 0 is equivalent
to

∆u = (2− p) |∇u|
2

|∇u|2ε

〈
∇|∇u|,∇u

〉
|∇u|

. (1.16)

As a consequence, the mean curvature H of a regular level set of u, computed with respect to
the unit normal ∇u/|∇u|, is given by

H =
∆u

|∇u|
−
〈
∇|∇u|,∇u

〉
|∇u|2

= −(p− 1)|∇u|2 + ε2

|∇u|2 + ε2

〈
∇|∇u|,∇u

〉
|∇u|2

. (1.17)

Using these identities, F εp (t) can be written as

F εp (t) = 4πt − t
2
p−1

cp,ε

ˆ

{u=αεp(t)}

|∇u|H dσ +
t
5−p
p−1

c2
p,ε

ˆ

{u=αεp(t)}

|∇u|2 dσ .

The above expression should be compared with formula (1.10).
We can now state our approximate monotonicity Lemma.

Lemma 1.2. Let (M, g) be a 3–dimensional Riemannian manifold satisfying the assumptions
of Theorem 1.1 and let u be the solution to problem (1.13). Let s and t be real values such
that

tεp < s ≤ t < tεp(1− T )
1−p
3−p ,

and such that αεp(s) and αεp(t) are regular values for u. Then, the following inequality holds

F εp (t)− F εp (s) ≥ − ε
(p+ 1

p− 1

)2
ˆ

{αεp(s)<u<αεp(t)}

ε|∇u|
2(p+ 1)|∇u|2 + 3ε2

c
p−1
3−p
p,ε |∇u|2[

3−p
p−1 (1− u)

] p−1
3−p+3

dµ ,

where F εp is the function defined in formula (1.15).

Proof. A long but straightforward computation, performed in the same spirit as the one
leading to formula (1.11), provide us with the expression for the divergence of Xε away from
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the critical set,

divXε =
c
p−1
3−p
p,ε |∇u|[

3−p
p−1 (1− u)

] p−1
3−p+1

 |∇u|
p−2
ε |∇u|
cp−1
p,ε

− RΣ

2
+
| ∇Σ|∇u| |2

|∇u|2
+

R

2
+
|̊h|2

2

+
5− p
p− 1

 |∇u|
3−p
p−1 (1− u)

+
p− 1

2

|∇u|2

|∇u|2ε

〈
∇|∇u|,∇u

〉
|∇u|2

2

+ ε2

(
p+ 1

p− 1

)2
 aε |∇u|

3−p
p−1 (1− u)

+
bε (p− 1)

2

|∇u|2

|∇u|2ε

〈
∇|∇u|,∇u

〉
|∇u|2

2

−ε2

(
p+ 1

p− 1

)2 1

2(p+ 1)|∇u|2 + 3ε2

|∇u|2[
3−p
p−1 (1− u)

]2

 ,

where the coefficients aε and bε are defined as

aε =

√
1

2(p+ 1)|∇u|2 + 3ε2
and bε =

√
2(p+ 1)|∇u|2 + 3ε2

(p+ 1)|∇u|2
.

It is easy to realize that, if |∇u| 6= 0 everywhere, then the thesis follows from a simple
integration by parts, as in Subsection 1.2. To treat the general case, it is convenient to
proceed as in Subsection 1.3, defining the vector field Yε as

Yε =
c
p−1
3−p
p,ε[

3−p
p−1 (1− u)

] p−1
3−p


∇|∇u| − ∆u

|∇u|∇u
3−p
p−1 (1− u)

+
|∇u|∇u[

3−p
p−1 (1− u)

]2


=

c
p−1
3−p
p,ε[

3−p
p−1 (1− u)

] p−1
3−p

∇
>|∇u|+ (p− 1)∇⊥|∇u|

3−p
p−1 (1− u)

+
|∇u|2[

3−p
p−1 (1− u)

]2

∇u
|∇u|

+
(2− p) ε2

|∇u|2 + ε2

∇⊥|∇u|
3−p
p−1 (1− u)

 .

Then, the fields Yε and Xε are related through the formula

Xε = c
− (2−p)(p−1)

(3−p)
p,ε

|∇u|p−2
ε ∇u[

3−p
p−1 (1− u)

] p−1
3−p

+ Yε .

Of course, the above definition makes sense only outside the critical set of u, however, using
the cut–off functions ηk introduced in Subsection 1.3, we may consider, for every k ∈ N, the
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vector fields

Yε,k = ηk

 (p− 1)|∇u|[
3−p
p−1 (1− u)

] 1
3−p

 Yε and Xε,k = c
− (2−p)(p−1)

(3−p)
p,ε

|∇u|p−2
ε ∇u[

3−p
p−1 (1− u)

] p−1
3−p

+ Yε,k .

Notice that Xε,k and Yε,k are well defined and smooth on the whole MT , as they are vanishing
in a neighborhood of Crit(u). Computing as in Subsection 1.3, we get

div Yε,k = ηk

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 div Yε

+ η′k

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 c
p−1
3−p
p,ε

(p− 1)|∇>|∇u||2 +

∣∣∣∣(p− 1)∇⊥|∇u|+ |∇u|∇u
3−p
p−1

(1−u)

∣∣∣∣2[
3−p
p−1(1− u)

] 3
3−p

+ η′k

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 c
p−1
3−p
p,ε

(2−p)ε2
|∇u|2+ε2

(
(p− 1)|∇⊥|∇u||2 + |∇u| 〈∇|∇u| ,∇u〉

3−p
p−1

(1−u)

)
[

3−p
p−1(1− u)

] 3
3−p

= ηk

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 div Yε

+ η′k

 (p− 1)|∇u|[
3−p
p−1 (1− u)

] 1
3−p

 c
p−1
3−p
p,ε

(p− 1)|∇>|∇u||2 + |∇u|4[
3−p
p−1

(1−u)
]2 + (p−1)2|∇u|2+(p−1)ε2

|∇u|2+ε2
|∇⊥|∇u||2

[
3−p
p−1 (1− u)

] 3
3−p

+ η′k

 (p− 1)|∇u|[
3−p
p−1 (1− u)

] 1
3−p

 c
p−1
3−p
p,ε

2(p− 1)|∇u|2 + pε2

|∇u|2 + ε2

|∇u| 〈∇|∇u| ,∇u〉[
3−p
p−1 (1− u)

] 6−p
3−p

≥ ηk

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 div Yε

− η′k

 (p− 1)|∇u|[
3−p
p−1 (1− u)

] 1
3−p


 (p− 1)|∇u|[

3−p
p−1 (1− u)

] 1
3−p


2

c
p−1
3−p
p,ε

(p− 1)2
max
MT

2(p−1)|∇u|2+pε2

|∇u|2+ε2
|∇∇u|[

3−p
p−1 (1− u)

] 4−p
3−p

.

Noticing that

2(p− 1)|∇u|2 + pε2

|∇u|2 + ε2
≤ 3p− 2
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in MT and η′(τ) τ2 ≤ 9/2k ≤ 5/k for every τ ∈ [0,+∞), we finally arrive at

div Yε,k ≥ ηk

 (p− 1)|∇u|[
3−p
p−1(1− u)

] 1
3−p

 div Yε −
5

k
c
p−1
3−p
p,ε

3p− 2

(p− 1)2
max
MT

|∇∇u|[
3−p
p−1 (1− u)

] 4−p
3−p

.

In particular, the last summand in the right hand side converges to zero uniformly on MT , as
k → +∞. Now, for every s, t as in the statement and every k ∈ N, we have that the vector
fields Xε,k coincide with the vector field Xε on the boundary of {αεp(s) < u < αεp(t)}, for
every k large enough. Hence, the divergence theorem yields

F εp (t)− F εp (s) =

ˆ

{u=αp(t)}

〈
Xε,k ,

∇u
|∇u|

〉
dσ −

ˆ

{u=αp(s)}

〈
Xε,k,

∇u
|∇u|

〉
dσ

=

ˆ

{αp(s)<u<αp(t)}

divXε,k dµ

=

ˆ

{αp(s)<u<αp(t)}


c
− (2−p)(p−1)

(3−p)
p,ε |∇u|p−2

ε |∇u|2[
3−p
p−1 (1− u)

] p−1
3−p+1

+ div Yε,k

 dµ

≥
ˆ

{αp(s)<u<αp(t)}


c
− (2−p)(p−1)

(3−p)
p,ε |∇u|p−2

ε |∇u|2[
3−p
p−1 (1− u)

] p−1
3−p+1

+ ηk

 (p− 1)|∇u|[
3−p
p−1 (1− u)

] 1
3−p

div Yε

 dµ

− 5

k
|MT | c

p−1
3−p
p,ε

3p− 2

(p− 1)2
max
MT

|∇∇u|[
3−p
p−1 (1− u)

] 4−p
3−p

. (1.18)

To proceed, we need to let k → +∞ in the above inequality. Reasoning as in Subsection 1.3
and using formulas (1.16) and (1.17), we write div Yε = Pε +Dε, with

Pε =
c
p−1
3−p
p,ε |∇u|[

3−p
p−1 (1− u)

] p−1
3−p+1

[
| ∇>|∇u||2

|∇u|2
+ |

◦
h|2 +

(p− 1)(3− p)
2

〈
∇|∇u|,∇u

〉2

|∇u|4ε

+ ε2 2|∇u|2 + ε2

2|∇u|4

〈
∇|∇u|,∇u

〉2

|∇u|4ε

]

Dε =
c
p−1
3−p
p,ε |∇u|[

3−p
p−1 (1− u)

] p−1
3−p+1

[
Ric(∇u,∇u)

|∇u|2
+

(p− 1)(5− p)
(3− p)2

|∇u|2

(1− u)2

+
(5− p)(p− 1)|∇u|2 + (p+ 1) ε2

(3− p)|∇u|2ε

〈
∇|∇u|,∇u

〉
(1− u) |∇u|

]
.

Noticing that Pε is nonnegative and Dε is bounded and applying the monotone convergence
theorem and the dominated convergence theorem respectively to the sequences ηkPε and
ηkDε, one has that the integral of ηk div Yε in formula (1.18) converges to the integral of
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IMT \Crit(u) div Yε, as k → +∞, where IMT \Crit(u) denotes the characteristic function of MT \
Crit(u). Hence, passing to the limit and using the coarea formula, one gets

F εp (t)− F εp (s) ≥
ˆ

{αεp(s)<u<αεp(t)}


c
− (2−p)(p−1)

(3−p)
p,ε |∇u|p−2

ε |∇u|2[
3−p
p−1 (1− u)

] p−1
3−p+1

+ IMT\Crit(u) div Yε

 dµ

=

ˆ

(αεp(s),αεp(t))\Nε

dτ

ˆ

{u=τ}


c
− (2−p)(p−1)

(3−p)
p,ε |∇u|p−2

ε |∇u|[
3−p
p−1 (1− u)

] p−1
3−p+1

+
div Yε
|∇u|

 dσ

=

ˆ

(αεp(s),αεp(t))\Nε

dτ

ˆ

{u=τ}

divXε

|∇u|
dσ ,

where Nε = u(Crit(u)) is the set of the critical values of u. It is important to notice that
in the second passage we benefit from the possibility of using the Sard theorem. Recalling
the expression for divXε given at the beginning of the proof and using the Gauss–Bonnet
theorem, we arrive at

F εp (t)− F εp (s) ≥
ˆ

(αεp(s),αεp(t))\Nε

c
p−1
3−p
p,ε

(
4π − 2πχ({u = τ})

)
[

3−p
p−1 (1− τ)

] p−1
3−p+1

dτ

− ε

(
p+ 1

p− 1

)2 ˆ

(αεp(s),αεp(t))\Nε

dτ
c
p−1
3−p
p,ε[

3−p
p−1 (1− τ)

] p−1
3−p+3

ˆ

{u=τ}

ε|∇u|2

2(p+ 1)|∇u|2 + 3ε2
dσ .

The conclusion then follows by observing that every regular level set of u is connected. The
argument follows the very same lines presented at the end of the previous subsection, so we
let the details to the reader. �

1.5. Proof of Theorem 1.1. We want to show that, under the assumptions of the statement,
the following implication holds true

s ≤ t ⇒ Fp(s) ≤ Fp(t) ,
for every s, t ∈ [tp,+∞) such that αp(s) and αp(t) are regular values of up. First we notice
that if s = tp, then {up = αp(s)} = {up = 0} = ∂M , which is a regular level set of up. As
∂M is compact, we have that the tubular neighborhood {αp(s) ≤ up ≤ αp(t)} is foliated by
regular level sets of up, provided t − tp is small enough. In this case, the conclusion follows
by the direct argument presented in Subsection 1.2.

To prove the remaining cases, we assume then by contradiction that there exist real numbers
tp < s < t < +∞, such that αp(s) and αp(t) are regular values for the p–capacitary potential
up, but Fp(t) < Fp(s). In particular, we can choose a sufficiently small real number δ > 0
such that

0 > −2δ ≥ Fp(t)− Fp(s) . (1.19)

Choosing T > αp(t), regular value of up, we have that both the level sets {u = αp(s)} and
{u = αp(t)} are contained in MT = {0 < up < T}. Now, we recall that on any compact sets
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sitting inside MT \ Crit(u), the solutions uεp to the approximate problems (1.13) converge to

up in the C k–topology, for every k ∈ N, as ε → 0. By means of this property, we are going
to prove the following approximation lemma for the function Fp, holding at regular values of
the corresponding p–capacitary potential up.

Lemma 1.3. Let tp < t < T < +∞ be such that αp(t) is a regular value for the solution up
of the problem (1.1) and let Fp and F εp be the functions defined in formulas (1.6) and (1.15),
respectively. Then, we have

lim
ε→0

F εp (t) = Fp(t) .

Proof. Let η > 0 be such that the tubular neighborhood Uη = {αp(t− η) < up < αp(t+ η)}
is entirely foliated by regular level sets of up. Choosing a small enough η > 0, we can assume
that also the level sets {up = αp(t − η)} and {up = αp(t + η)} are regular. Since Fp is
continuous at the regular values of up, one has that for every δ > 0 there exists η = η(δ) > 0
such that |Fp(t) − Fp(t − η)| < δ/2, for every 0 < η < η. As the functions uεp converge

uniformly (actually, in the C k–topology) to the function up on Uη, it is easy to check that
there exists ε = ε(η) > 0 such that {uεp = αεp(t)} ⊆ Uη, provided 0 < ε < ε. In particular, up
to choosing ε small enough, we have that {uεp = αεp(t)} ∩ {up = αp(t − η)} = Ø. Moreover,
possibly considering a smaller ε > 0, it turns out that for every 0 < ε < ε, the set {uεp = αεp(t)}
is a regular level set of uεp, as ∇up 6= 0 on Uη and |∇uεp| converge uniformly to |∇up| on such
a tubular neighborhood. We may then proceed with the following estimate,∣∣Fp(t)− F εp (t)

∣∣ ≤ |Fp(t)− Fp(t− η)| +
∣∣Fp(t− η) + F εp (t)

∣∣
≤ δ/2 +

∣∣∣∣∣
ˆ

{up=αp(t−η)}

〈
X ,
∇up
|∇up|

〉
dσ −

ˆ

{uεp=αεp(t)}

〈
Xε,

∇uεp
|∇uεp|

〉
dσ

∣∣∣∣∣
≤ δ/2 +

∣∣∣∣∣
ˆ

{up=αp(t−η)}

〈
X −Xε ,

∇up
|∇up|

〉
dσ

∣∣∣∣∣
+

∣∣∣∣∣
ˆ

{up=αp(t−η)}

〈
Xε ,

∇up
|∇up|

〉
dσ −

ˆ

{uεp=αεp(t)}

〈
Xε,

∇uεp
|∇uεp|

〉
dσ

∣∣∣∣∣
≤ δ/2 +

(
max
Uη
|X −Xε|

) ∣∣{up = αp(t− η)}
∣∣ +

∣∣∣∣∣
ˆ

Uη∩{uεp<αεp(t)}

divXε dµ

∣∣∣∣∣
≤ δ/2 +

(
max
Uη
|X −Xε|

) ∣∣{up = αp(t− η)}
∣∣ +

(
max
Uη
|divXε|

)
|Uη| ,

where the vector fields X and Xε are defined by formulas (1.5) and (1.14), respectively
referring to up and uεp. Again, by the smooth convergence of the functions uεp to up on Uη, we
get that Xε converge smoothly to X on the same set. In particular, up to choosing η = η(δ)
and ε = ε(η(δ)) small enough, the last two summands can be made smaller than δ/2 and we
are done. �
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We can now conclude the proof of Theorem 1.1. By the choice of T and Lemma 1.3, there
exists εδ > 0 such that∣∣Fp(s)− F εp (s)

∣∣ ≤ δ/2 and
∣∣Fp(t)− F εp (t)

∣∣ ≤ δ/2 ,

for every 0 < ε < εδ. Combining this information together with the assumption (1.19), it
follows that

−2δ ≥ Fp(t)− Fp(s) = Fp(t)− F εp (t) + F εp (t)− F εp (s) + F εp (s)− Fp(s)
≥ F εp (t)− F εp (s)−

∣∣Fp(t)− F εp (t)
∣∣− ∣∣Fp(s)− F εp (s)

∣∣ = F εp (t)− F εp (s)− δ .

Using Lemma 1.2, one then has that for every 0 < ε < εδ, there holds

−δ ≥ − ε
(p+ 1

p− 1

)2
ˆ

{αεp(s)<uεp<α
ε
p(t)}

ε|∇uεp|
2(p+ 1)|∇uεp|2 + 3ε2

c
p−1
3−p
p,ε |∇uεp|2[

3−p
p−1 (1− uεp)

] p−1
3−p+3

dµ

≥ − ε

6

(p+ 1

p− 1

)2
ˆ

{αεp(s)<uεp<α
ε
p(t)}

c
p−1
3−p
p,ε |∇uεp|2[

3−p
p−1 (1− uεp)

] p−1
3−p+3

dµ

where we used the elementary inequality

ε|∇uεp|
2(p+ 1)|∇uεp|2 + 3ε2

≤ 1

6
.

Letting ε → 0, we have that the integral in the rightmost hand side of the above inequality
converges to

ˆ

{αp(s)<up<αp(t)}

c
p−1
3−p
p |∇up|2[

3−p
p−1 (1− up)

] p−1
3−p+3

dµ ,

as uεp → up in the C 1,β–topology on the compact subsets of MT = {0 < up < T}. This implies
that the right hand side is in turn converging to zero, when ε → 0, leading to the desired
contradiction.

2. Proof of the Riemannian Penrose inequality for a single black hole

In light of the monotonicity result obtained in Theorem 1.1, we present in this section a
new proof of the Riemannian Penrose inequality, first proved by Huisken–Ilmanen [29] in the
case of a single black hole, and by Bray [12] in the general case of multiple black holes. In
order to present the precise statement in Theorem 2.2 below, let us first set up and recall
some basic notations and definitions.

Definition 2.1. A complete 3–dimensional Riemannian manifold (M, g), with or without
boundary, with one single end, is said to be C 1,α–asymptotically flat with decay rate τ , or
simply C 1,α

τ –asymptotically flat, with α ∈ (0, 1) and τ > 0, if the following conditions are
satisfied:

(i) There exists a compact set K ⊆ M such that the end E = M \ K is diffeomorphic
to the complement of a closed ball in R3 centered at the origin, through a so–called
asymptotically flat coordinate chart (E, (x1, x2, x3)).
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(ii) In such a chart, the metric tensor can be expressed as

g = gij dx
i ⊗ dxj = (δij + γij) dx

i ⊗ dxj

with ∑
i, j

|x|τ |γij |+
∑
i, j, k

|x|1+τ |∂kγij |+
∑
i, j, k

|x|1+τ+α [∂kγij ]α = O(1) , (2.1)

as |x| → +∞, where

[∂kγij ]α (p) = sup
q∈E\{p}

|∂kγij(q)− ∂kγij(p)|
|x(q)− x(p)|α

,

for every p ∈ E.

According to the physicists Arnowitt, Deser and Misner, who first introduced it in [8], the
ADM mass of an asymptotically flat Riemannian 3–manifold is defined as the limit

mADM = lim
r→+∞

1

16π

ˆ

{|x |=r}

(
∂jgij − ∂igjj

) xi
|x|

dσeucl ,

in an asymptotically flat coordinate chart.
It can be shown that if the scalar curvature of (M, g) is nonnegative and the decay rate
τ is strictly larger than 1/2, the ADM mass is a well defined geometric invariant, i.e., the
above limit exists (possibly equal to +∞) and its value does not depend on the particular
asymptotically flat coordinate chart that is used to compute it (see [9] and [16]).

We are now in the position to state and prove the main result of this section.

Theorem 2.2 (Riemannian Penrose inequality for a single black hole). Let (M, g) be a 3–
dimensional, complete, connected, noncompact Riemannian manifold with a smooth, compact,
connected boundary and one single end. Assume that:

(i) The metric g has nonnegative scalar curvature R ≥ 0.

(ii) (M, g) is C 1,α
1 –asymptotically flat, moreover the following Ricci curvature lower bound

holds,

Ric ≥ − C

|x|2
g , for some C > 0 . (2.2)

(iii) ∂M is the unique closed minimal surface in (M, g).

Then, the ADM mass satisfies

mADM ≥
√
|∂M |
16π

.

Remark 2.3. In [16] Chruściel was able to show that the ADM mass is well defined, under a
slightly weaker decay assumption than the one proposed in Definition 2.1. More precisely, it
is sufficient to require that∑

i, j

|x|τ |γij |+
∑
i, j

|x|1+τ |∂kγij | = O(1) , as |x| → +∞ , (2.3)

with τ > 1/2 and without any further condition on the decay of the Hölder quotients of the
functions ∂kγij . In accordance with the terminology employed in Definition 2.1, it is then
natural to refer to condition (2.3) as to C 1

τ –asymptotical flatness. On this regard, it is worth
pointing out that in [29] the Riemannian Penrose inequality was established for the larger
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class of C 1
1 –asymptotically flat manifolds satisfying the Ricci lower bound (2.2). Let us also

observe that in [12] the decay conditions∑
i, j, k, `

|x|2+τ |∂`∂kγij | = O(1) , as |x| → +∞

|x|ζ |R| = O(1) , as |x| → +∞

for some τ > 1/2 and ζ > 3, were added to assumption (2.3). In other words, in order to
achieve the general result, Bray has to ask for a C 2

τ –asymptotical flatness, together with an
extra decay assumption on the scalar curvature. Notice, en passant that C 2

1 –asymptotically
flat manifolds satisfy both sets of assumptions.

Proof of Theorem 2.2. Let us consider the solution u of problem (1.1), whose existence and
uniqueness are guaranteed by [24, Theorem 4.1] (taking also into account [24, Remark 4.2]
and [36, Theorem 3.2]). By virtue of assumption (iii) and the classical facts collected in [29,
Lemma 4.1], we have that M is diffeomorphic to R3 \ B3 and ∂M to S2. In particular, we
have that H2(M,∂M ;Z) is trivial and we can invoke Theorem 1.1 to deduce that, for every
1 < p < 3, the function Fp defined in formula (1.6), is monotone nondecreasing along the
regular values of u. This implies that

Fp(tp) ≤ lim
`→+∞

Fp(T`) , (2.4)

for any sequence T` → +∞ satisfying the condition that αp(T`) is a regular value of u, for
every ` ∈ N. Using formula (1.10) and recalling that {u = αp(tp)} = {u = 0} = ∂M is a
minimal surface, one immediately gets

Fp(tp) = 4πtp −
t

2
p−1
p

cp

ˆ

∂M

|∇u|H dσ +
t
5−p
p−1
p

c2
p

ˆ

∂M

|∇u|2 dσ ≥ 4πtp .

A simple algebraic computation based on formulas (1.7) and (1.4), gives

(4π)
2−p
3−p
(p− 1

3− p

)p−1
3−p

Capp(∂M)
1

3−p = 4πtp ≤ Fp(tp) . (2.5)

We now claim that

lim
`→+∞

Fp(T`) ≤ 8πmADM , (2.6)

and we defer the proof of such an estimate after the forthcoming Lemmas 2.5. Here, we
observe that the claim, in combination with inequalities (2.4) and (2.5) leads to( p− 1

3− p

)p−1
3−p
(

Capp(∂M)

4π

) 1
3−p
≤ 2mADM . (2.7)

Using [24, Theorem 1.2] (see also [2, Theorem 5.6]) and letting p→ 1+, there holds

lim
p→1+

Capp(∂M) = |∂M | .

Indeed, assumption (iii) easily implies (see [29, Lemma 4.1]) that ∂M is also outward minimiz-
ing, meaning that for any smooth domain E containing ∂M it holds |∂M | ≤ |∂E|. Using this
piece of information, the Riemannian Penrose inequality simply follows by letting p→ 1+ in
inequality (2.7). However, for the sake of completeness, we provide with the following lemma
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an explicit lower bound for the p–capacity of ∂M in terms of its area |∂M |, that is clearly
sufficient for our purposes, once it is combined with estimate (2.8).

Lemma 2.4. Under the assumptions of Theorem 2.2, we have that

√
|∂M |

(3−p
2p

) p
3−p

C
3(p−1)/2(3−p)
Sob

≤ Capp(∂M)
1

3−p , (2.8)

for some positive constant CSob > 0.

Proof. As (M, g) is asymptotically flat, it supports a Sobolev inequality (see [36, Theorem 3.2]
for details), that is, there exists a constant CSob > 0 such that(ˆ

M
v3/2 dµ

)2/3
≤ CSob

ˆ
M
|∇v| dµ

for any nonnegative v ∈ C 1
c (M). It is well known that, applying this inequality to the function

v
2p
3−p , one gets the Lp–Sobolev inequality, for any 1 < p < 3(ˆ

M
vp

∗
dµ
)(3−p)/3

≤
( 2p

3− p
CSob

)p ˆ
M
|∇v|p dµ , with p∗ =

3p

3− p
.

To proceed, we recall that the 1–capacity of ∂M can be defined in analogy to the p–capacities
(see formula (1.2)) as

Cap1(∂M) = inf

{ˆ
M

|∇w| dµ : w ∈ C∞c (M), w = 1 on ∂M

}
.

By truncation and density arguments, an equivalent definition is given by

Capp(∂M) = inf

{ ˆ
M

|∇w|p dµ : w ∈ C 1
c (M), w take values in [0, 1], w = 1 on ∂M

}
,

holding for every for 1 ≤ p < 3. Using the latter definition, if v ∈ C 1
c (M) is a function taking

values in [0, 1] with v = 1 on ∂M , then w = vq is a valid competitor for Cap1(∂M), provided
q > 1. By the Hölder inequality we get

Cap1(∂M) ≤
ˆ

M

|∇vq| dµ = q

ˆ

M

vq−1|∇v| dµ ≤ q
(ˆ

M
v

(q−1) p
p−1 dµ

)(p−1)/p(ˆ
M
|∇v|p dµ

)1/p
.

Choosing q = 1 + p∗ (p−1)
p = 2p

3−p > 1 in this expression, we can use the above Lp–Sobolev

inequality to obtain

Cap1(∂M) ≤ 2p

3− p

(ˆ
M
vp

∗
dµ
)(p−1)/p(ˆ

M
|∇v|p dµ

)1/p

≤
( 2p

3− p

)2p/(3−p)
C

3(p−1)/(3−p)
Sob

(ˆ
M

|∇v|p dµ
)2/(3−p)

.

Taking the infimum in the right hand side of this inequality over the family of functions
v ∈ C 1

c (M), v : M → [0, 1] and v = 1 on ∂M , we conclude that

Cap1(∂M) ≤
( 2p

3− p

)2p/(3−p)
C

3(p−1)/(3−p)
Sob Capp(∂M)2/(3−p). (2.9)
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We now observe that in our setting the 1–capacity of ∂M is always larger than its area,
namely

Cap1(∂M) ≥ |∂M | .
Indeed, the coarea formula implies that, for any function w ∈ C∞c (M) with w = 1 on ∂M ,ˆ

M

|∇w| dµ ≥
ˆ 1

0
|{w = t}| dt ≥ inf

{
|∂E| : ∂M ⊆ E, ∂E smooth

}
≥ |∂M | .

Notice that the last inequality in the above chain holds since ∂M is outward minimizing, as
already observed. An alternative argument is by contradiction. If the latter inequality were
false, then one could minimize the perimeter among the family of sets that are containing
∂M . This would provide a new minimal surface in M . Moreover, such a surface would be
different from ∂M , as is would have a strictly smaller area, against the assumption (iii) in
the statement of Theorem 2.2.

Combining the inequality Cap1(∂M) ≥ |∂M | with the estimate (2.9), we easily get the
desired conclusion. �

We now turn our attention to the proof of claim (2.6). As the metric g is C 1,α
1 –asymptotically

flat, with α ∈ (0, 1), it follows from [10, Theorem 3.1] that u obeys the asymptotic expansion

u = 1− p− 1

3− p
cp

|x|
3−p
p−1

+ o2

(
|x|−

3−p
p−1
)
. (2.10)

In terms of the function v = u− 1 + p−1
3−p

cp

|x |
3−p
p−1

this corresponds to

|v |+
∑
i

|x| |∂iv |+
∑
i, j

|x|2 |∂2
ijv | = o

(
|x|−

3−p
p−1
)
.

A first consequence of the expansion (2.10) is that there exists a real number t ∈ [tp,+∞) such
that αp(t) is a regular value of u, for every t ≥ t, so that lim`→+∞ Fp(T`) = limt→+∞ Fp(t).
The latter limit can be estimated as follows:

lim
t→+∞

Fp(t) = lim
t→+∞

4π − t
3−p
p−1

cp

´
{u=αp(t)}

|∇u|H dσ + t
2(3−p)
p−1

c2p

´
{u=αp(t)}

|∇u|2 dσ

1/t

≤ lim sup
t→+∞

d
dt

[
4π − t

3−p
p−1

cp

´
{u=αp(t)}

|∇u|H dσ + t
2(3−p)
p−1

c2p

´
{u=αp(t)}

|∇u|2 dσ
]

−1/t2
, (2.11)

where the last inequality follows from the generalized version of de l’Hôpital’s rule in [39,
Theorem II]. To apply this result one should actually check that

lim
t→+∞

4π − t
3−p
p−1

cp

ˆ

{u=αp(t)}

|∇u|H dσ +
t
2(3−p)
p−1

c2
p

ˆ

{u=αp(t)}

|∇u|2 dσ = 0

This condition can be rewritten as

lim
t→+∞

1

cp−1
p

ˆ

{u=αp(t)}

[
1 − cp−1

p |∇u|2−p H
3−p
p−1 (1− u)

+
cp−1
p |∇u|3−p[ 3−p
p−1 (1− u)

]2] |∇u|p−1 dσ = 0
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In view of (1.3) and (1.4), it is sufficient to prove that

1 − cp−1
p |∇u|2−p H
3−p
p−1 (1− u)

+
cp−1
p |∇u|3−p[ 3−p
p−1 (1− u)

]2 = o(1) .

The latter statement follows from the expansions

|∇u| = cp

|x|
2
p−1

(
1 + o(1)

)
and H =

2

|x|
(
1 + o(1)

)
,

which are straightforward consequences of (2.10). Hence, the estimate (2.11) is now justified.
Computing the derivative at the numerator of (2.11) (see also [5, Section 3]), one can continue
the estimate as follows

lim
t→+∞

Fp(t) ≤ lim sup
t→+∞

[
− (3− p)

2(p− 1)
t

ˆ

{u=αp(t)}

(
2|∇u|

3−p
p−1 (1− u)

− H

)2

dσ

− t

ˆ

{u=αp(t)}

(
| ∇Σ|∇u| |2

|∇u|2
+

R

2
+
|
◦
h|2

2

)
dσ

+ t

ˆ

{u=αp(t)}

RΣ

2
dσ − t

ˆ

{u=αp(t)}

H2

4
dσ

]

≤ lim sup
t→+∞

t

ˆ

{u=αp(t)}

RΣ

2
dσ − t

ˆ

{u=αp(t)}

H2

4
dσ

= lim sup
t→+∞

t

4

(
16π −

ˆ

{u=αp(t)}

H2 dσ

)
, (2.12)

where the last identity follows by the Gauss–Bonnet theorem, as, for large t, the level sets are
all diffeomorphic to a 2-dimensional sphere. Motivated by the above estimate, we now set

Mp(t) =
t

4

(
16π −

ˆ

{u=αp(t)}

H2 dσ

)
,

and we analyze its behavior at infinity with the next lemma.

Lemma 2.5. Under the assumption of Theorem 2.2, we have

lim sup
t→+∞

Mp(t) ≤ 8πmADM .

Proof. In the same spirit as in [29], we are going to compare the expression of Mp with
an analogous expression in which the geometric quantities are computed with respect to the
Euclidean background metric. For this reason, it is convenient to explicitly write the subscript
g, when a quantity is referred to the original metric. At the same time, we agree that if a
quantity is referred to the Euclidean metric, it will be let free of subscripts. The covariant
derivative with respect to g will be denoted by ∇, whereas the symbol D will indicate the
Euclidean covariant derivative. Finally, the level set {u = αp(t)} will be simply denoted by
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Σt. With these agreements,

Mp(t) =
t

4

(
16π −

ˆ

Σt

H2
g dσg

)
.

Our first task is to obtain an expansion for the g–mean curvature Hg of Σt in terms of its
Euclidean mean curvature H. In order to do that, we work in an asymptotically flat coordinate
chart, like the one of Definition 2.1. As the unit normal vectors to a regular level set Σt are
given by

νg =
∇u
|∇u|g

and ν =
Du

|Du|
,

the mean curvatures are readily computed,

Hg =
(
gij − νigνjg

) ∇i∇ju
|∇u|g

and H =
(
δij − νiνj

) DiDju

|Du|
,

respectively. The g–unit normal is related to the Euclidean one through the formula

νig =
(

1 +
γ(ν, ν)

2

)
νi − γik ν

k + O(|x|−2) ,

where γik = δijγjk. Moreover, according to formula (2.1), there holds

gij = δij − γij + O(|x|−2) ,

where γij = δi`δkjγk`, hence, it follows

gij − νigνjg = δij − νiνj −
(
δik − νiνk

)
γk`
(
δj` − νjν`

)
+ O(|x|−2) .

Noticing that |DDu|/|Du| = O(|x|−1), by expansion (2.10) and setting ηij = δij − νiνj , we
then arrive at

Hg =
(

1 +
γ(ν, ν)

2

)
H− ηij

(
∂jgik −

1

2
∂kgij

)
νk − ηikηj`γk`

DiDju

|Du|
+O(|x|−3) ,

which implies

H2
g =

(
1 + γ(ν, ν)

)
H2 − 2H ηij

(
∂jgik −

1

2
∂kgij

)
νk − 2H ηikηj`γk`

DiDju

|Du|
+O(|x|−4) .

As the metric induced on Σ by g can be written as g − du⊗du
|∇u|2g

, the area element can be

expressed as

dσg =
[
1 +

1

2
ηijγij +O(|x|−2)

]
dσ . (2.13)

Putting all together, the Willmore energy integrand then satisfies

H2
g dσg =

[(
1 + γ(ν, ν) +

ηijγij
2

)
H2

− 2H ηij
(
∂jgik −

1

2
∂kgij

)
νk − 2H ηikηj`γk`

DiDju

|Du|
+O(|x|−4)

]
dσ. (2.14)
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Now, we further refine the above expression in light of the asymptotic expansion of the p–
capacitary potential. Indeed, by means of formula (2.10) again, we readily compute

DiDju

|Du|
=

1

|x|

(
δij −

p+ 1

p− 1
δikν

k δj`ν
` + o(1)

)
H =

2

|x|
(
1 + o(1)

)
(2.15)

which implies

2H ηikηj`γk`
DiDju

|Du|
=

4

|x|2
ηk`γk` + o(|x|−3) . (2.16)

Plugging this information in formula (2.14), we obtain

H2
g dσg =

[
H2 +

4

|x|2
γ(ν, ν) − 2

|x|2
ηijγij −

4

|x|
ηij
(
∂jgik −

1

2
∂kgij

)
νk + o(|x|−3)

]
dσ .

To proceed, we now claim that

4

|x|2
γ(ν, ν) − 2

|x|2
ηijγij =

2

|x|
(
ηij∂igjkν

k − divΣtω
> ) + o(|x|−3) , (2.17)

where ω is the differential 1–form defined by ω = γjkν
kdxj and ω> denotes its tangential

component. To prove the claim, let us first observe that

ω = ω> + ω(ν)
du

|Du|
= ω> + γ(ν, ν)

du

|Du|
and ∂iν

k = ηk`
DiD`u

|Du|
.

By means of the expansions (2.15) and (2.16), we compute

ηij∂igjkν
k = ηij∂iγjkν

k = ηij∂iωj − ηikηj`γk`
DiDju

|Du|

= divω − ∂iωjν
iνj − 1

|x|
ηijγij + o(|x|−2)

= divΣtω
> + γ(ν, ν)H− 1

|x|
ηijγij + o(|x|−2)

= divΣtω
> +

2

|x|
γ(ν, ν)− 1

|x|
ηijγij + o(|x|−2) .

Claim (2.17) then follows with the help of some simple algebra. As a consequence, the
expression for the Willmore energy integrand becomes

H2
g dσg =

[
H2 − 2

|x|
divΣtω

> +
2

|x|
ηij∂igjkν

k − 4

|x|
ηij∂jgikν

k +
2

|x|
ηij∂kgijν

k + o(|x|−3)

]
dσ

=

[
H2 − 2

|x|
divΣtω

> − 2

|x|
δij
(
∂igjk − ∂kgij

)
νk + o(|x|−3)

]
dσ . (2.18)

Before integrating this formula, let us observe that, since u = 1 − (tp/t)
(3−p)/(p−1) on Σt, it

follows from expansion (2.10) that

1

|x|
=

1

t
+ o(|x|−1) and

A

t2
≤ |∇u|p−1

g ≤ B

t2
on Σt,
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for some positive constants A,B. Then, integrating |∇u|p−1
g on Σt with the help of equa-

tions (1.3) and (1.4), we get

4πcp−1
p

B
t2 ≤ |Σt|g ≤

4πcp−1
p

A
t2

and by virtue of equation (2.13), the same estimates hold for the Euclidean area |Σt| in place of
|Σt|g, up to a different choice of the constants. In view of these considerations, formula (2.18)
becomes

H2
g dσg =

[
H2 − 2

t
divΣtω

> − 2

t
δij
(
∂igjk − ∂kgij

)
νk + o(t−3)

]
dσ , on Σt .

Now we have

Mp(t) =
t

4

(
16π −

ˆ

Σt

H2
g dσg

)

=
t

4

(
16π −

ˆ

Σt

H2 dσ

)
+

1

2

ˆ

Σt

divΣtω
> dσ +

1

2

ˆ

Σt

δij
(
∂igjk − ∂kgij

)
νk dσ + o(1) .

The first summand in the right hand side is nonpositive by the Euclidean Willmore inequality
(see [40]), the second summand vanishes by the divergence theorem and it is well known
(see [9, Proposition 4.1]) that the third summand tends to 8πmADM, as t→ +∞. �

Combining Lemma 2.5 with the estimate (2.12), we get

lim
`→+∞

Fp(T`) = lim
t→+∞

Fp(t) ≤ lim sup
t→+∞

Mp(t) ≤ 8πmADM .

This proves the claim (2.6) and concludes the proof of the theorem. �
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