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Abstract. We demonstrate that a first order isotropic-to-nematic phase transition in liquid
crystals can be succesfully modeled within the generalized Landau-de Gennes theory by selecting an
appropriate combination of elastic constants. The numerical simulations of the model established in
this paper qualitatively reproduce the experimentally observed configurations that include interfaces
and topological defects in the nematic phase.
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1. Introduction. Phase transitions between ordered and isotropic states in ne-
matic liquid crystals are of interest both for technological reasons as well as because
nematics offer one of the simplest experimental systems where interfaces and topo-
logical defects may coexist. In particular, a uniaxial nematic liquid crystal typically
consists of asymmetrically-shaped molecules that under appropriate conditions tend
to align roughly in the same direction. The preferred molecular orientation in a given
region occupied by a uniaxial nematic is often described in terms of the unit vec-
tor field n, called the director. This approach, however, precludes the possibility of
capturing the coexistence of nematic and isotropic states. A more robust description
comes through the tensor-based Landau-de Gennes model. This model also takes into
account the non-polar character of ordering, e.g., because the probabilities of finding
the head or the tail of a molecule in a given direction are equal. This description
replaces the director n with a projection matrix n⊗n which can be identified with an
element of the projective space and is invariant with respect to reversal of orientation
n → −n. We refer to [1] for the identification of certain contexts in which the two
descriptions end up being equivalent (see also [2]). As we shall see in the numerical ex-
periments to be described later in this article, however, we are particularly interested
in settings where this distinction is crucial.

Various types of topological defects can be present in a nematic in three dimen-
sions including 0-dimensional point defects also known as vortices or nematic hedge-
hogs, 1-dimensional disclinations or 2-dimensional Bloch walls and phase boundaries
separating isotropic and nematic states. Point defects may also be present on the
surface of a nematic; such defects are known as boojums. There is a large body of
literature devoted to the study of nematic defects and we refer the reader to [3] for a
comprehensive exposition on the topic. Our principal interest in this work is to ex-
amine the interaction between the nematic defects and isotropic-to-nematic interfaces
in the (2-dimensional) thin film context. Hence, they will take the form of curves.

The interfaces form in the process of the first order isotropic-to-nematic phase
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transition that can be induced either by lowering temperature (thermotropic nemat-
ics) or increasing the concentration of asymmetric molecules in a solvent (lyotropic
nematics). Typically, nematic phase domains nucleate within the isotropic phase upon
lowering the temperature. These nematic regions are separated from the isotropic re-
gions by phase boundaries or interfaces. The interfaces subsequently propagate con-
verting the isotropic phase to the nematic phase in the process. In addition to motion
of interfaces, the resulting dynamics of the system involves formation, annihilation
and propagation of various types of defects.

In a recent work [4], the authors examine the interplay between the interfaces and
defects that are present during phase transitions in lyotropic chromonic liquid crystals
(LCLC). The principal feature of the isotropic-to-nematic phase transition in LCLC is
that the interface provides an “easy direction” for nematic anchoring on the interface
which in this case forces the director field to be tangent to this phase boundary. When
combined with the anchoring (boundary) conditions on the walls of the container, the
topology of the nematic configuration leads to formation of structural defects.

Our goal in the present paper is to demonstrate that the zoo of singularities
observed in [4] can be described within the framework of the Landau-de Gennes
model for Q-tensors related to the projection matrix descriptor of the nematic phase
alluded to above. Although there are various studies of the standard Landau-de
Gennes model utilizing different elastic constants appearing in the energy (see, e.g.,
[5]), critical to our modeling will be an assumption that the disparity between these
constants is very large. In Section 2 we briefly describe the experimental observations
that expand on some of the results presented in [4] by incorporating scenarios of the
phase transition in which the isotropic phase regions, often called “negative tactoids”
[6], [4], or simply “tactoids”, shrink into a uniform nematic state or a state with a
topological defect, depending on the winding number of the tactoid. Note here that
positive tactoids, i.e., regions of a nematic surrounded by an isotropic melt, have been
previously theoretically treated in [7]-[12].

In Section 3 we review the basics of the Landau-de Gennes theory, and then in 4
we develop our model, which results from a thin film limit of a 3-dimensional energy
lying within the context of the generalized Landau-de Gennes theory [13], following
the approach of [14]. In Section 5 we describe our numerical results and compare
them with experimental observations.

2. Experimental Results. The sample configuration consisted of the ITO glass
that was spin-coated with a polyimide layer, SE7511, in which the directors of dis-
odium chromoglycate (DSCG) are aligned parallel to substrates. Subsequently, two
substrates were assembled into a cell with the thickness of 2 µm. 16 wt% of DSCG
solution was injected into the assembled cell.

The cell was cooled at the rate of −0.4◦C/min. As the temperature decreased
from the isotropic phase, nematic domains appeared, grew, and coalesced. When
many large nematic domains coalesced, they occasionally trapped isotropic islands, or
tactoids, around which the director may have either zero or nonzero winding number.
The snapshots of configurations with islands having different winding number of the
director on their boundary are shown in Figs. 1-2. These are Polscope textures with
color representing optical retardance, bars giving the orientation of the director, and
circles indicating the point where orientation was measured.

3. Landau-de Gennes Model.
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Fig. 1. Experimentally observed evolution of an isotropic tactoid. The director field has the
winding number −1 on the boundary of the tactoid. Once the tactoid disappears, it generates a
vortex of degree −1 that subsequently splits into two degree −1/2 vortices.

Fig. 2. Experimentally observed evolution of isotropic tactoids. On each inset, the director
field on the boundary of the right tactoid has the winding number 0 while it is equal to 1 on the
boundary of the right tactoid. Once the right tactoid disappears, it generates a vortex of degree 1
that subsequently splits into two degree 1/2 vortices. The disappearance of the left tactoid does not
lead to the formation of topological singularities.
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3.1. The Q-tensor. Given a point x ∈ R3, the second moment of the orien-
tational distribution of the rod-like nematic liquid crystal molecules near x can be
described by a 2-tensor Q(x) that takes the form of a 3 × 3 symmetric, traceless
matrix. To this end, let

A :=
{
Q ∈M3×3 : QT = Q, trQ = 0

}
.

By virtue of being symmetric and traceless, Q has three real eigenvalues λ1, λ2, and
λ3 that satisfy

λ1 + λ2 + λ3 = 0

and a mutually orthonormal eigenframe {l,m,n}. While a more detailed overview of
the theory can be found in [15], below we outline the key elements that will be needed
in the developments below.

Suppose that λ1 = λ2 = −λ3/2. Then the liquid crystal is in a uniaxial nematic
state and

(3.1) Q = −λ3

2
l⊗ l− λ3

2
m⊗m + λ3n⊗ n = S

(
n⊗ n− 1

3
I

)
,

where S := 3λ3

2 is the uniaxial nematic order parameter and n ∈ S2 is the nematic
director. If there are no repeated eigenvalues, the liquid crystal is said to be in a
biaxial nematic state, while it is in the isotropic state when all three eigenvalues and
hence Q itself vanish. The isotropic state of a liquid crystal is associated, for instance,
with a high temperature regime.

From the modeling perspective it turns out that the eigenvalues of Q must satisfy
the constraints [16, 17]:

(3.2) λi ∈ [−1/3, 2/3], for i = 1, 2, 3.

3.2. Landau-de Gennes Energy and the Landau-de Gennes Potential.
The associated variational model for the Q-tensor typically involves minimzation of a
sum of an elastic energy density and a bulk potential. We provide a general overview
of the bulk potential in this section before proceeding in the next section with a
detailed derivation of a model well-suited to handle disparate elastic constants.

The elastic energy density of a nematic liquid crystal is usually given by a frame-
indifferent expression fe(Q,∇Q). Common expressions from the literature involve
terms up to the second or third order in Q. In Section 4.1 below we will offer an alter-
native form of elastic energy involving quartic dependence on Q and its derivatives.

For the bulk term we use the standard Landau-de Gennes energy density given
by

(3.3) W (Q) := a tr
(
Q2
)

+
2b

3
tr
(
Q3
)

+
c

2

(
tr
(
Q2
))2

,

cf. [15]. Here the coefficient a is temperature-dependent and in particular is negative
for sufficiently low temperatures. One readily checks that the form (3.3) of this
potential implies that in fact W depends only on the eigenvalues of Q, and due
to the trace-free condition, therefore depends only on two eigenvalues. The form
of W guarantees that the isotropic state Q ≡ 0 yields a global minimum at high
temperatures while a uniaxial state of the form (3.1) with uniaxial order parameter
S = Sm gives the minimum when temperature (i.e. the parameter a) is reduced below
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a certain critical value, cf. [18, 15]. The number Sm is given explicitly in terms of a,
b, and c; cf. (3.6). We remark for future use that W is bounded from below and can
be made non-negative by adding an appropriate constant.

Let us consider the Landau-de Gennes potential W (Q) defined in (3.3) in more
detail. As long as Q ∈ A, one finds that this potential depends only on the eigenvalues
of Q, say λ1 and λ2 with λ3 = −(λ1 + λ2), and with a slight abuse of notation we
arrive at

W (λ1, λ2) = 2a
(
λ2

1 + λ2
2 + λ1λ2

)
− 2bλ1λ2 (λ1 + λ2) + 2c

(
λ2

1 + λ2
2 + λ1λ2

)2
.

We are interested in describing the extrema of W (λ1, λ2). Taking the derivatives
of W gives

∂W

∂λ1
= 2 (2λ1 + λ2)

(
a− bλ2 + 2c

(
λ2

1 + λ2
2 + λ1λ2

))
,

∂W

∂λ2
= 2 (λ1 + 2λ2)

(
a− bλ1 + 2c

(
λ2

1 + λ2
2 + λ1λ2

))
,

∂2W

∂λ2
1

= 4a− 4bλ2 + 4c (2λ1 + λ2)
2

+ 8c
(
λ2

1 + λ2
2 + λ1λ2

)
,

∂2W

∂λ2
2

= 4a− 4bλ1 + 4c (λ1 + 2λ2)
2

+ 8c
(
λ2

1 + λ2
2 + λ1λ2

)
,

∂2W

∂λ1∂λ2
= 2a− 4b (λ1 + λ2) + 12c (λ1 + λ2)

2
.

It is easy to check that the critical points of W are (λ1, λ2) = (0, 0) as well as
(λ1, λ2) = (λ,−2λ), (λ1, λ2) = (−2λ, λ), and (λ1, λ2) = (λ, λ), where λ solves

(3.4) a− bλ+ 6cλ2 = 0.

The point (λ1, λ2) = (0, 0) corresponds to a local minimum of W if a > 0 and to a
local maximum of W if a < 0. The solutions of (3.4) are given by

λ =
b±
√
b2 − 24ac

12c
,

hence there are no nematic critical points whenever a > b2/(24c) and W has a single
extremum corresponding to the global minimum at (λ1, λ2) = (0, 0). By considering
second derivatives of W , we also find that

(3.5) λm :=
b−
√
b2 − 24ac

12c

is a point of a local minimum and

λs :=
b+
√
b2 − 24ac

12c

is a saddle point of W if a < b2/(24c). The corresponding uniaxial order parameter
Sm for λm is given by

(3.6) Sm = −3λm =
−b+

√
b2 − 24ac

4c
.
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We conclude that the nematic minima at (λm,−2λm), (−2λm, λm), and (λm, λm)
coexist with the isotropic minimum at (0, 0) as long as 0 < a < b2/(24c). An easy
computation shows that all of these minima have the same depth of 0 when

(3.7) a = a0 := b2/(27c).

Because here we will be interested in the regime 0 ≤ a ≤ a0 when the energy value in
the isotropic state is greater than or equal to the minimum energy in a nematic state,
we subtract

(3.8) Wm := W (λm, λm)

from W to ensure that the global minimum value of the Landau-de Gennes energy is
0. Hence, from now on

W (Q)→W (Q)−Wm.

Note that decreasing a from a0 to 0 corresponds to increased undercooling and a
larger thermodynamic force driving the isotropic-to-nematic phase transition.

We now turn to the behavior of the nematic on the boundary of the sample.
Here two alternatives are possible. First, the Dirichlet boundary conditions on Q
are referred to as strong anchoring conditions in the physics literature: they impose
specific preferred orientations on nematic molecules on surfaces bounding the liquid
crystal. An alternative is to specify the anchoring energy on the boundary of the
sample; then orientations of the molecules on the boundary are determined as a part
of the minimization procedure. This approach is known as weak anchoring.

4. Model Development. In this section we derive and analyze a version of the
Landau-de Gennes model that is appropriate for the modeling of nematic systems
in which splay deformations are energetically more expensive than bend and twist.
Note that this situation can be found in experimental systems, such as chromonic
lyotropic liquid crystals [19] shown in Figures 1-2 and in thermotropic nematics of
certain molecular shape, such as dimers [20].

4.1. A Quartic Elastic Energy. Let Ω ⊂ R3 denote the region occupied by
the liquid crystal sample. To derive a version of Landau-de Gennes appropriate to
this setting, we will look within the generalized Landau-de Gennes theory [13] to
identify an elastic energy density that penalizes splay. Our guiding principle in this
identification is that in the nematic region, the Q-tensor-based elastic energy density
should formally reduce to a version of the simpler Oseen-Frank energy density that
similarly penalizes splay. To this end, we recall that the Oseen-Frank energy, based
on a director field n ∈ H1

(
Ω,S2

)
, is given by the expression

EOF [n] =
1

2

∫
Ω

{
K1(divn)

2
+K2(n · curln)

2
+K3|n× curln|2

}
dx.

For simplicity we assume that the admissible competitors are subject to the strong
anchoring Dirichlet boundary data on ∂Ω, allowing us to ignore the saddle-splay term
which is a null Lagrangian. If we assume that K2 = K3 < K1, this energy can be
written as

(4.1) EOF [n] =
1

2

∫
Ω

{
K̃1(divn)

2
+ K̃2|∇n|2

}
dx,

where K̃1 = K1 −K2 and K̃2 = K2 are nonnegative elastic constants.
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We want to derive an elastic energy for Q-valued fields which yields a well-posed
variational problem and formally reduces to (4.1) whenever Q is in a nematic state
that minimizes the potential energy W .

Recalling the discussion in Section 3.2, the minimum of W is achieved whenever
Q has eigenvalues λm, λm, and −2λm so that Q can be written as

(4.2) Q = λm (I− 3n⊗ n) = Sm

(
n⊗ n− 1

3
I

)
,

where n is a unit eigenvector corresponding to the eigenvalue −2λm and Sm is defined
in (3.6). For Q given by (4.2),

Smn⊗ n =
Sm
3

I +Q

and it can be easily checked that

|∇n|2 =
1

2S2
m

|∇Q|2

while
1

Sm
divQ = div (n⊗ n) = (divn)n +∇nn.

Making use of the fact that

(n⊗ n)∇nn = (n · ∇nn)n =
(
∇nTn · n

)
n =

1

2

(
∇
(
|n|2

)
· n
)
n = 0,

it follows that

(divn)n = (n⊗ n) ((divn)n +∇nn) = (I/3 +Q/Sm) div (Q/Sm)

and

(4.3) K̃1(divn)
2

+ K̃2|∇n|2 ∼
L1

2
|∇Q|2 +

L2

2

∣∣∣∣(Sm3 I +Q

)
divQ

∣∣∣∣2
where L1 := K̃2

S2
m

and L2 := 2K̃1

S4
m

. We emphasize that (4.3) holds whenever Q is

uniaxial and minimizes W , that is, when (4.2) holds. The elastic energy of a nematic
configuration as described within the Landau-de Gennes Q-tensor theory in this work
will therefore be given by

(4.4)
L1

2
|∇Q|2 +

L2

2

∣∣∣∣(Sm3 I +Q

)
divQ

∣∣∣∣2.
Remark 4.1. Expanding the second elastic term in (4.4) we obtain∣∣∣∣(Sm3 I +Q

)
divQ

∣∣∣∣2 =
S2
m

9
|divQ|2 +

2Sm
3

QdivQ · divQ+ |QdivQ|2.

Comparing the terms appearing in this expression with the elastic invariants of the
generalized Landau-de Gennes theory in [21], we see that these terms correspond to

L
(2)
2 -, L

(3)
3 -, and L

(4)
6 -invariants.



8 GOLOVATY, KIM, LAVRENTOVICH, NOVACK, STERNBERG

4.2. Nondimensionalization. For the remainder of the article, we will consider
a version of the Landau-de Gennes energy which incorporates the elastic terms from
the previous discussion. The energy is defined among Q ∈ H1(Ω;A) and is given by

(4.5) F [Q] :=

∫
Ω

(
L1

2
|∇Q|2 +

L2

2
|(SmI/3 +Q) divQ|2 +W (Q)

)
dx.

In a future paper [22], we show that the minimization problem for a generalization
of the above energy is well-posed. This feature of our model is not shared by other
Landau-de Gennes models involving cubic elastic terms, and highlights an advantage
of the quartic term.

Before proceeding with the numerical simulations for the model, let us first nondi-
mensionalize the problem. We begin with rescaling the spatial coordinates by setting

x̄ := x/D,

where D := diam(Ω). Although the order parameter Q is dimensionless, we rescale it
as well by

Q̄(x̄) = 3Q(x)/Sm

to simplify the eventual non-dimensionalized energy. Define

ζ :=
L2S

4
m

81D2
, ε :=

9L1

S2
mL2

,

and a dimensionless elastic energy density

1

ζ

(
L1

2
|∇Q|2 +

L2

2

∣∣∣∣(Sm3 I +Q

)
divQ

∣∣∣∣2
)
.

The parameter ε quantifies the elastic disparity, i.e. the heavy penalization for splay
deformations, in terms of the ratio L1 to L2. Converting to the x̄ coordinates, we
have

1

ζ

(
L1

2
|∇xQ|2 +

L2

2

∣∣∣∣(Sm3 I +Q

)
divxQ

∣∣∣∣2
)

=
ε

2
|∇x̄Q̄|2 +

1

2
|(I + Q̄)divx̄(Q̄)|2.

Next, we rescale the Landau-de Gennes potential W by introducing

(4.6) W̄ (Q̄) := 3ātr (Q̄2)− 2b̄tr (Q̄3) +
1

4
(tr (Q̄2))2),

where

ā :=
3a

2S2
mc

, and b̄ :=
−b

2Smc
.

Choosing ā and b̄ as such will simplify somewhat the appearance of the system of
Euler-Lagrange PDEs for the nondimensionalized energy. Then, letting

γ :=
L2

8D2c
,
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we can calculate

1

4γ
W̄ (Q̄) =

1

ζ
W (Q).

By combining these rescalings, we see that the total energy F [Q] is therefore equal to

ζD3

∫
Ω̄

(
ε

2
|∇̄Q̄|2 +

1

2
|(I + Q̄)div (Q̄)|2 +

1

4γ
W̄ (Q̄)

)
dx̄

Finally, noting ζD3 has the dimensions of energy, we divide by ζD3 and drop the bar
notation, yielding the non-dimensionalized energy

(4.7)

∫
Ω

(
ε

2
|∇Q|2 +

1

2
|(I +Q)divQ|2 +

1

4γ
W (Q)

)
dx.

In this scaling, the potential W given by (4.6) (ignoring the bars) is now minimized
by any symmetric, traceless matrix with eigenvalues -1, -1, and 2, and the global
minimum value of W is equal to zero. Also, with the rescaled coefficients of W , the
energy of the isotropic state is greater than or equal to the minimum energy in a
nematic state when 0 ≤ a ≤ a0 := 2b2/9.

4.3. A Generalized Landau-de Gennes Energy for Thin Films. In our
simulations, we consider a simplified form of the model, appropriate to the setting
of a thin film occupying a domain of cross-section ω ∈ R2. Then the form of the
Q-tensor can be obtained via a dimension reduction procedure for thin nematic films
[14]. In the corresponding ansatz, one eigenvector of admissible Q-tensors must be
perpendicular to the plane of the film. Then in the system of coordinates in which
the normal to the film is parallel to the z-axis, the Q-tensor is independent of z and
can be written [23] as

(4.8) Q(x, y) =

 β(x, y) + u1(x, y) u2(x, y) 0
u2(x, y) β(x, y)− u1(x, y) 0

0 0 −2β(x, y)

 ,

for a scalar-valued function β and vector-valued function u = (u1, u2). Let

U =

(
u1 u2

u2 −u1

)
,

so that (
β + u1 u2

u2 β − u1

)
= βI2 + U,

where I2 is the 2 × 2 identity matrix. In terms of β and u the contributions to the
energy density are as follows

ε

2
|∇Q|2 = ε

(
|∇u|2 + 3|∇β|2

)
,

1

2
|(I +Q) divQ|2 =

1

2
|((β + 1)I2 + U) (∇β + divU)|2

and

1

4γ
W (u, β) =

1

4γ

((
|u|2 + 3β2

)2

− 12bβ
(
|u|2 − β2

)
+ 6a

(
|u|2 + 3β2

))
.
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The system of Euler-Lagrange PDEs corresponding to the energy functional (4.7) then
takes the form

(4.9) − div
{

2ε∇u1 + σ3((β + 1)I2 + U)
2

(∇β + divU)
}

+ σ3 ((β + 1)I2 + U) (∇β + divU) · (∇β + divU)

+
1

γ

(
|u|2 + 3β2 − 6bβ + 3a

)
u1 = 0,

(4.10) − div
{

2ε∇u2 + σ1((β + 1)I2 + U)
2

(∇β + divU)
}

+ σ1 ((β + 1)I2 + U) (∇β + divU) · (∇β + divU)

+
1

γ

(
|u|2 + 3β2 − 6bβ + 3a

)
u2 = 0,

(4.11) − div
{

6ε∇β + ((β + 1)I2 + U)
2

(∇β + divU)
}

+ ((β + 1)I2 + U) (∇β + divU) · (∇β + divU)

+
3

γ

(
|u|2(β − b) + 3β

(
β2 + bβ + a

))
= 0,

where

σ1 =

(
0 1
1 0

)
and σ3 =

(
1 0
0 −1

)
are the Pauli matrices.

When the liquid crystal is in the energy minimizing nematic state while the di-
rector n = (cos θ, sin θ, 0) lies in the plane of the film, we have cos2 θ cos θ sin θ 0

cos θ sin θ sin2 θ 0
0 0 0

 = n⊗ n =
1

3
(I +Q)

=
1

3

 1 + β + u1 u2 0
u2 1 + β − u1 0
0 0 1− 2β

 .

It follows from this computation that

(4.12) u = 3

(
cos2 θ − 1

2
, cos θ sin θ

)
=

3

2
(cos 2θ, sin 2θ) , β = 1/2,

hence the vector u winds twice as fast along a given curve in ω̄, compared to the
director n when n is planar.

More generally, the ansatz (4.8) splits the nematic component of the minimal set
of the bulk energy W into two disconnected components

CN1 :=
{

(u, β) ∈ R2 × R : u = 0, β = −1
}

and
CN2 :=

{
(u, β) ∈ R2 × R : |u| = 3/2, β = 1/2

}
.
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Here the first component corresponds to a constant nematic state with the director
perpendicular to the surface of the film. The second component includes all config-
urations with the director lying in the plane of the film—these configurations can
be nontrivial and, in particular, they include the director fields that carry a nonzero
winding number.

Since we are interested in regimes when both nematic and isotropic phases coexist,
we recall that whenever

0 ≤ a ≤ 2b2

9
,

the set {
(u, β) ∈ R2 × R : u = 0, β = 0

}
yields a local minimum of W corresponding to the isotropic phase. The corresponding
local minimum energy value is greater than or equal to the global minimum value of

W . When a = 2b2

9 , the set

CI :=
{

(u, β) ∈ R2 × R : u = 0, β = 0
}

gives the third connected component of the minimal set of the bulk energy.
Given that W has a multi-component minimal set, the energy (4.7) is of Allen-

Cahn-type as long as the factor in front of W is large. To this end, in what follows
we assume that γ = ε and ε > 0 is small. We will consider gradient flow dynamics
associated with this model, but before we proceed further it is worth comparing our
present situation to the more familiar one of gradient flow dynamics for a multi-
well Allen-Cahn type potential with diffusion given simply by the Laplacian. In this
scaling, when the diffusion is given by the Laplacian, formal asymptotics suggest that
for Allen-Cahn dynamics one should expect an interface propagating by curvature
flow that separates the different phases defined by components of the zero set of the
potential. In the scalar setting of Allen-Cahn where a double well potential vanishes at
two points, there are by now numerous rigorous proofs of this fact based on maximum
principles, barriers and/or comparison principles, see e.g. [24, 25, 26, 27] as well as
the energetic argument in the radial setting in [28]. For the vector setting of time-
dependent Allen-Cahn, formal asymptotics based on multiple time-scale expansions
again suggest that mean curvature flow emerges as the governing equation for the
interface, [29, 30].

What distinguishes the dynamics in the present study, however, is the anisotropy
of the diffusive terms indicated by the presence of the divergence terms in (4.9)–(4.11).
While we again anticipate that in the regime ε� 1 an interface separating the different
phases of the Q tensor will evolve by a law involving curvature, the process will be
significantly affected by the interaction between the director associated with Q and
the normal to the interface.

Our present model is closely related to the investigation in [31] of the ε → 0
asymptotics for a director-like model based on an R2-valued order parameter u. There
the elastic energy is similarly anisotropic and is coupled to a Chern-Simons-Higgs-type
potential |u|2(|u|2−1)2. Thus, the structure of the energy functional in [31] is similar
to the setup proposed here in that it involves a potential with minima at the isotropic
and a nematic state as well as the elastic terms that are quadratic in the gradient of
the order parameter field. The term penalizing splay deformations in [31] dominates
other elastic terms so that the divergence of the director is very expensive. The
principal difference between the model considered in [31], which from now on we will
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refer to as the CSH-director model, and the present work is that here we consider
non-orientable tensor fields, while the admissible fields in [31] are orientable.

Our numerical results indicate that similarity between the models leads to similar
properties of critical points. In particular, one of the principal observations in [31] is
that the director field is parallel to the interface in its immediate vicinity when the
parameter ε is small. The same behavior is exhibited by the numerically obtained
critical points of the Landau-de Gennes energy (4.7), as will be demonstrated in the
next section.

We introduce dynamics into the problem by assuming that evolution of the
isotropic-to-nematic transition proceeds via gradient flow

µuut = −δF
δu
, µββt = −δF

δβ
,

where µu > 0 and µβ > 0 are inverses of the scalar mobilities of u and β, respectively.
This gives the following systems of PDEs

(4.13) µuu1t = div
{

2ε∇u1 + σ3((β + 1)I2 + U)
2

(∇β + divU)
}

− σ3 ((β + 1)I2 + U) (∇β + divU) · (∇β + divU)

− 1

γ

(
|u|2 + 3β2 − 6bβ + 3a

)
u1,

(4.14) µuu2t = div
{

2ε∇u2 + σ1((β + 1)I2 + U)
2

(∇β + divU)
}

− σ1 ((β + 1)I2 + U) (∇β + divU) · (∇β + divU)

− 1

γ

(
|u|2 + 3β2 − 6bβ + 3a

)
u2,

(4.15) µββt = div
{

6ε∇β + ((β + 1)I2 + U)
2

(∇β + divU)
}

− ((β + 1)I2 + U) (∇β + divU) · (∇β + divU)

− 3

γ

(
|u|2(β − b) + 3β

(
β2 + bβ + a

))
= 0.

We note that our choice of the gradient flow is intended to qualitatively capture
morphologies experimentally observed in isotropic-to-nematic phase transitions. This
simplified approach is not intended to fully recover the dynamics of the transition. A
comprehensive treatment based, for example, on a Rayleigh principle is beyond the
scope of the present work.

In order to simulate experimentally available configurations, we will set the initial
configuration of (u, β) to consist of an isotropic region ωI embedded in a nematic phase
corresponding to the component CN2 of the minimal set of W . That is, we will assume
that the initial condition is an appropriate mollification of (u, β) such that

(4.16) (|u|, β) = (3/2, 1/2)χω\ωI
.

Here χω\ωI
is the characteristic function of the region ω\ωI occupied by the nematic

phase. We also impose boundary conditions on ∂ω with values in CN2 ; we will assume
that the boundary data for u may have a nonzero winding number.
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In the next section we present the result of simulations for the system (4.13)-(4.15)
and compare the numerical outcomes to experimental observations. We remind the
reader that our goal in the present paper is to demonstrate numerically that behavior
of interfaces and singularities observed in experiments with chromonic liquid crystals
can be qualitatively recovered within the framework of the Landau-de Gennes model.
We leave for future work both formal and rigorous analysis of our results, as well as
any quantitative considerations and associated modifications of the model.

5. Simulations vs Experiment. The simulations in this section are performed
using COMSOL Multiphysics R© [32] with the domain ω taken to be a disk of nondi-
mensional radius 1/4, centered at the origin. In what follows, we set dimensional
b = 1 and let γ = ε = 0.06. The initial data in all simulations is specified by choosing
ωI =

{
(x, y) ∈ ω : r(x, y) ≤ 1

6

}
in (4.16). Both here and below (r(x, y), θ(x, y)) are

polar coordinates of the point (x, y) ∈ R2.
Recall that when a and b are related via (3.7) (either in dimensional or nondimen-

sional setting), the energies of the nematic and isotropic states are the same. Then,
if in dimensional variables we set

a =
2b2

9
− α,

the parameter α ∈
(
0, 2b2/9

)
measures the degree of undercooling in the system.

That is, when α increases, the bulk energy density of the isotropic state grows with
respect to that of the nematic state and thermodynamic forces driving the isotropic-
to-nematic transition become stronger. Setting ᾱ = α/λ2 and dropping the bar, the
nondimensional a and b are given by

(5.1) a =
4(2− 9α)(

3 +
√

1 + 36α
)2 , b =

6

3 +
√

1 + 36α
.

First, we verify the conjecture that the behavior of interfaces in our Landau-de Gennes
system of PDEs with highly anisotropic elastic constants resembles that of interfaces
in the related CSH-director system of [31]. To this end, we assume that a is given
by (3.7) so that α = 0 and both the nematic and the isotropic states are the global
minimum of the Landau-de Gennes potential W . We simulate the system (4.13)-(4.15)
subject to the boundary conditions

β|∂ω =
1

2
, u|∂ω =

3

2
(− cos 2θ, sin 2θ).

Taking into account (4.12), the director field on the boundary can be chosen as

n|∂ω = (− cos θ, sin θ),

where the topological degree of n is equal to −1 on ∂ω.
The results of the gradient flow simulation for the degree −1 boundary data are

shown in Fig. 3. An initially circular interface is seen to evolve into the shape
given in the figure by a thick red curve that is also a contour line of β = 1/4.
The system in Fig. 3 has reached a steady state that is very similar to what is
observed for the CSH-director model in [31]. Indeed, for small ε, the energy of the
isotropic/nematic configuration in both cases should include a penalty for divergence
of the director in the nematic phase, as well as the cost for the perimeter of the
interface. The anisotropy of the elastic constants also forces the director to align with
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Fig. 3. Simulated degree −1 tactoid. Here the director field n is set to be equal to (− cos θ, sin θ)
on the boundary of the disk and θ is a polar angle. The thick red line indicates the position of the
interface.

the interface. The resulting director configuration and the shape of the interface are
coupled; in particular, unlike the standard curvature flow, shrinking the perimeter
and, thus, size of the isotropic region leads to unbounded growth of the elastic energy.
The competition between the perimeter and elastic energy contributions enforces the
equilibrium between the two phases observed in Fig. 3.

One is then tempted to ask whether there is any difference between the Landau-de
Gennes and the CSH-director model [31] in terms of how the director field extracted
from solutions of these two models should behave as ε → 0. We expect that the
difference would manifest itself when the size of an isotropic region is small enough
so that this region can be thought of as a core of a topological vortex.

Suppose, for example, that the interface is a single smooth closed curve. Due to
the director tangency condition on the interface and because the director field is ori-
entable, the director has the winding number 1 around the interface. When the island
shrinks to a small size and because the director is S1-valued in the nematic phase,
topological constraints would keep the isotropic island from disappearing completely
in order to prevent the nematic configuration from having an infinite energy. The
resulting degree 1 vortex is stable in the CSH-director setting and would persist for
a finite time, perhaps until it annihilates with another vortex of the opposite sign or
collides with the boundary of ω.

Now recall that within the Landau-de Gennes theory, a nematic state is described
by a Q-tensor that is a translation and dilation of a projection matrix n⊗n. The field
n ⊗ n is not orientable and can be associated with an element of a projective plane
RP2. In other words, by working with n ⊗ n instead of n, we identify the opposite
directions −n and n as being the same. As the result, the smallest “quantum” of
the winding number for a nematic tensor is 1/2. Hence the degree 1 vortex in the
director description contains two “quanta” of degree if we switch to the Landau-de
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Gennes framework. It is a well-established fact that a higher degree vortex is unstable
with respect to splitting into several vortices of smaller degrees since the energetic
cost of a degree d vortex is proportional to d2, [33]. We expect that the degree 1
CSH vortex would split into two degree 1/2 vortices when considered in the sense
of Landau-de Gennes. Our experimental observations conform to the latter picture;
hence the description that disposes with orientability is necessary when considering
an isotropic-to-nematic phase transition problem.

We now conduct numerical experiments to test whether evolution of tactoids ob-
served in physical experiments can be captured within the Landau-de Gennes model.

5.1. Degree 1 tactoid. Here we suppose that the director is parallel to the
boundary of the disk ω, e.g.,

n|∂ω = (− sin θ, cos θ),

so that the topological degree of the orientable director field n is equal 1 on ∂ω. In
the non-orientable, Q-tensor setting the corresponding condition can be expressed as

β|∂ω =
1

2
, u|∂ω = −3

2
(cos 2θ, sin 2θ).

If the simulations are conducted at zero undercooling, when a is given by (3.7), we
observed both here and for the Ginzburg-Landau-type model [31] that, similar to Fig.
3, the isotropic domain evolving via gradient flow shrinks down to a certain size and
then stabilizes. In order to drive this size down, we enforce larger undercooling by
choosing α = 0.2.

The evolution of the nematic/isotropic interface is shown in Fig. 4. While the
isotropic tactoid is not too small, it maintains its circular shape and the director in
the nematic region remains parallel to the boundary. Indeed, in this configuration
the divergence contribution vanishes, the director is parallel to the interface, and the
perimeter of the isotropic tactoid is minimal given its shape.

When the tactoid eventually shrinks to a vortex size seen in the right inset in the
second row in Fig. 4, it loses stability and splits into two degree 1/2 vortices that
drift away from each other with time. The overall behavior is qualitatively similar to
that of the right tactoid in Fig. 2.

This dynamics is in line with the orientability results established in [1]. From
Fig. 2 it is evident that the Q-tensor field is orientable in the nematic region as long
as the isotropic island has not collapsed to a point. The same conclusion follows from
Proposition 7 in [1], because the Q-tensor field is orientable on the two boundary
components of the domain while it is clearly in the Sobolev space W 1,2 in the nematic
region. However, once the isotropic island collapses to form a vortex, the resulting
nematic field is no longer in W 1,2 and does not have to be orientable. Indeed, beyond
this time in the evolution, the Q-tensor field is not orientable once the vortex splits
into two vortices of degree 1/2.

5.2. Degree −1 tactoid. We now return to the boundary conditions

β|∂ω =
1

2
, u|∂ω =

3

2
(− cos 2θ, sin 2θ),

considered in the beginning of this section for zero undercooling. Here we assume
instead that α = −0.1 and look for the effects on evolution of the bias between
the values of local minima of the potential energy corresponding to the nematic and
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Fig. 4. Simulated evolution of a degree 1 tactoid. Here the director field is set to be equal to
(− sin θ, cos θ) on the boundary of the disk and θ is a polar angle. (cf. Fig.2, right tactoid). The
thick red line indicates the position of the interface.

isotropic state. This bias is associated with lowering the temperature below that of the
nematic-to-isotropic transition. The corresponding numerical results are shown in Fig.
5. The first three figures essentially demonstrate the development of a configuration
shown in Fig. 4. The larger thermodynamic forces driving the phase transition in the
present case, however, push the size of the tactoid further down essentially to that
of a vortex core. At this point, the isotropic region loses stability and splits into two
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Fig. 5. Simulated evolution of a degree −1 tactoid. Here the director field is set to be equal to
(− cos θ, sin θ) on the boundary of the disk and θ is a polar angle. (cf. Fig.1). The thick red line
indicates the position of the interface.

vortices of degree −1/2, similar to what can be seen in Fig. 1.

5.3. Degree 0 tactoid. Next, we impose the constant boundary conditions

β|∂ω =
1

2
, u|∂ω =

3

2
(1, 0),
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and suppose that α = 0. The numerically computed evolution of a degree zero tactoid
that results is shown in Fig. 6 and qualitatively resembles the behavior of a similar
tactoid in the experiment as depicted in Fig. 2. A similar shape is also seen in

Fig. 6. Simulated evolution of a degree 0 tactoid. Here the director field is set to be equal to
(1, 0) on the boundary of the disk. (cf. Fig.2, left tactoid). The thick red line indicates the position
of the interface.

evolution of degree zero interfaces in the CSH-director model in [31] and is explained
by the fact that the director has to be parallel to the interface. In particular, the
interface cannot be smooth, for if it were, then it would carry a nonzero topological
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degree different from the degree on the boundary of the domain.

5.4. Coalescence of Nematic Tactoids. Finally, we use the generalized ver-
sion of the Landau-de Gennes model to simulate the reverse situation when positive
nematic tactoids nucleate in the isotropic phase, then grow and coalesce to form the
nematic phase with embedded topological defects (cf. [4]). In Fig. 7 the simulations
were conducted subject to Neumann boundary data on ∂ω and assuming that ω has
radius 1/2, while α = 0.01. Three circular tactoids of different orientations were as-
sumed to be present at the time t = 0; in the course of the simulation, tactoids merged
generating a single degree −1/2 defect. This situation closely resembles the original
Kibble’s model of strings formed in early universe through coalescence of domains
with different “phase” [34].
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Fig. 7. Simulated coalescence of three degree 0 nematic tactoids. The thick red lines indicate
the position of the interface.
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