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Abstract. We consider the asymptotic behavior as ε goes to zero of the 2D smectics model in
the periodic setting given by

Eε(w) =
1

2
∫
T2

1

ε
(∣∂1∣

−1
(∂2w − ∂1

1

2
w2

))
2

+ ε (∂1w)
2 dx.

We show that the energy Eε(w) controls suitable Lp and Besov norms of w and use this to demonstrate
the existence of minimizers for Eε(w), which has not been proved for this smectics model before, and
compactness in Lp for an energy-bounded sequence. We also prove an asymptotic lower bound for
Eε(w) as ε→ 0 by means of an entropy argument.

1. Introduction. We consider the variational model

(1.1) Eε(w) =
1

2
∫
T2

1

ε
(∣∂1∣

−1
(∂2w − ∂1

1

2
w2

))

2

+ ε (∂1w)
2
dx ,

where w ∶ T2 → R is a periodic function with vanishing mean in x1, that is

(1.2) ∫

1

0
w(x1, x2)dx1 = 0 for any x2 ∈ [0,1) .1

Here ∣∂1∣
−1

is defined via its Fourier coefficients

̂
∣∂1∣

−1
f (k) = ∣k1∣

−1
f̂ (k) for k ∈ (2πZ)

2
,

and is well defined when (1.2) holds.
This model is motivated by a nonlinear approximate model of smectic liquid

crystals. The following functional has been proposed as an approximate model for
smectic liquid crystals [4, 13, 18, 23, 24] in two space dimensions:

(1.3) Eε(u) =
1

2
∫

Ω

1

ε
(∂2u −

1

2
(∂1u)

2
)

2

+ ε(∂11u)
2 dx,

where u is the Eulerian deviation from the ground state Φ(x) = x2 and ε is the
characteristic length scale. The first term represents the compression energy and the
second term represents the bending energy. For further background on the model, we
refer to [18, 19] and the references contained therein. The 3D version of (1.3) is also
used for example in the mathematical description of nuclear pasta in neutron stars [6].
Assuming that u is periodic on the torus T2 = Ω and setting w = ∂1u, (1.3) becomes

Eε(u) =
1

2
∫
T2

1

ε
(∣∂1∣

−1
(∂2w − ∂1

1

2
w2

))

2

+ ε (∂1w)
2
dx.
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The asymptotic behavior of (1.3) as ε goes to zero was studied in [18]. Given
εn → 0 and a sequence {un} with bounded energies Eεn(un), the authors proved
pre-compactness of {∂1un} in Lq for any 1 ≤ q < p and pre-compactness of {∂2un} in
L2 under the additional assumption ∥∂1un∥Lp ≤ C for some p > 6. The compactness
proof in [18] uses a compensated compactness argument based on entropies, following
the work of Tartar [25, 26, 27] and Murat [15, 16, 17]. In addition, a lower bound on
Eε and a matching upper bound corresponding to a 1D ansatz was obtained as ε→ 0
under the assumption that the limiting function u satisfies ∇u ∈ (L∞ ∩BV )(Ω).

In this paper, we approach the compactness via a different argument in the pe-
riodic setting. Our proof is motivated by recent work on related variational models
in the periodic setting [5, 10, 12, 20, 21] where strong convergence of a weakly con-
vergent L2 sequence is proved via estimates on Fourier series. Given a sequence uε
weakly converging in L2(T2), to prove strong convergence of uε in L2, it is sufficient
to show that there is no concentration in the high frequencies. The center piece of
this approach relies on the estimates for solutions to Burgers equation

−∂1
1

2
w2

+ ∂2w = η

in suitable Besov spaces. This type of compactness argument also applies to a sequence
{wn} with Eε(wn) ≤ C for any fixed ε. As a direct corollary, we obtain the existence
of minimizers of Eε in W 1,2(T2) (see Corollary 2.11) for any fixed ε. We observe that
to the best of our knowledge, the existence of minimizers of Eε in any setting was not
known due to the lack of compactness for sequence {un} satisfying Eε(un) ≤ C with
fixed ε.

To further understand the minimization of Eε, we are also interested in a sharp
lower bound for the asymptotic limit of Eε as ε approaches zero. In the literature for
such problems (see for example [1, 3, 11, 14]), one useful technique in achieving such
a bound is an “entropy” argument, in which the entropy production ∫ div Σ(w) of a
vector field Σ(w) is used to bound the energy Eε from below. For the 2D Aviles-Giga
functional

(1.4)
1

2
∫

Ω

1

ε
(∣∇u∣2 − 1)2

+ ε∣∇2u∣2 dx ,

such vector fields were introduced in [14, 8]. In [18, 19], the analogue for the smectic
energy, in 2D and 3D respectively, of the Jin-Kohn entropies from [14] were used to
prove a sharp lower bound which can be matched by a construction similar to [7, 22].
In this paper, we use the vector field

(1.5) Σ(w) = (−
1

3
w3,

1

2
w2

)

which is (−(∂1u)
3/3, (∂1u)

2/2) in terms of u, to prove a sharp lower bound. As ε→ 0,
entropy production concentrates along curves and approximates the total variation of
the distributional divergence of a BV vector field. An interesting open direction which
motivates studying (1.5) is utilizing the correct version of (1.5) (or the entropies from
[8, 9]) in 3D, for example in a compactness argument.

The paper is organized as follows. The pre-compactness of a sequence of functions
with bounded energy is proved in Section 2, for both fixed ε and ε → 0. The lower
bound is established in Section 3.

2. Compactness of a sequence with bounded energy.
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2.1. Preliminaries. Let e1 = (1,0) and e2 = (0,1) be unit vectors in R2. We
recall some definitions from [12]. For f ∶ T2 → R, we write

∂hj f (x) = f (x + hej) − f (x) x ∈ T2, h ∈ R.

Definition 2.1. Given f ∶ T2 → R, j ∈ {1,2}, s ∈ (0,1] , and p ∈ [1,∞), the
directional Besov seminorm is defined as

∥f∥ ⋅
B
s

p;j

= sup
h∈(0,1]

1

hs
(∫

T2
∣∂hj f ∣

p
dx)

1
p

Remark 2.2. This is the Bs;p,∞ seminorm defined in each direction separately.

Remark 2.3. For p = 2 and s ∈ (0,1) , given s′ ∈ (s,1) , the following inequality
holds ([12,Equation (2.2)]):

∫
T2

∣∣∂j ∣
s
f ∣

2
= ∑∣kj ∣

2s
∣f̂ (k)∣

2
= cs ∫

R

1

∣h∣
2s ∫T2

∣∂hj f ∣
2
dx
dh

∣h∣
≤ C (s, s′) ∥f∥

2
⋅
B
s′
2;j

.

We quote two results from [12].

Lemma 2.4. [12, Proposition B.9] For every p ∈ (1,∞] and q ∈ [1, p] with (p, q) ≠
(∞,1) , there exists a constant C (p, q) > 0 such that for every periodic function f ∶

[0,1) → R with vanishing mean,

(2.1) (∫

1

0
∣f (z)∣

p
dz)

1
p

≤ C (p, q)∫
1

0

1

h
1
q −

1
p

(∫

1

0
∣∂h1 f (z)∣

q
dz)

1
q dh

h
,

with the usual interpretation for p = ∞ or q = ∞.

The following estimate was derived in the proof of Lemma B.10 in [12].

Lemma 2.5. [12, In the proof of Lemma B.10] For every p ∈ [1,∞) and every
periodic function f ∶ [0,1) → R, h ∈ (0,1], the following estimate holds.

(2.2) (∫

1

0
∣∂h1 f (z)∣

p
dz)

1
p

≤ 2(
1

h
∫

h

0
∫

1

0
∣∂h

′
1 f (z)∣

p
dz dh′)

1
p

.

We define ηw = ∂2w − ∂1
1
2
w2, and thus (1.1) can be written as

(2.3) Eε(w) =
1

2
∫
T2

1

ε
(∣∂1∣

−1ηw)
2
+ ε(∂1w)

2dx.

Finally, we introduce the ε-independent energy

(2.4) E(w) = (∫
T2

(∣∂1∣
−1
ηw)

2
dx)

1
2

(∫
T2

(∂1w)
2
dx)

1
2

,

and note that

(2.5) E(w) ≤ Eε(w) for all ε > 0 .
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2.2. Besov and Lp estimates. We prove the following estimates.

Lemma 2.6. There exists a universal constant C1 > 0 such that if w ∈ L2 (T2) and
has vanishing mean in x1 and h ∈ (0,1], then

(2.6) ∫
T2

∣∂h1w∣
3
dx ≤ C1hE(w)

and

(2.7) sup
x2∈[0,1)

∫

h

0
∫

1

0
∣∂h

′
1 w (x1, x2)∣

2
dx1dh

′
≤ C1 (hE(w) + h

5
3 E

2
3 (w)).

Proof. Throughout the proof, we assume that w is smooth; once the estimates
hold for smooth w, they hold in generality by approximation. The constant C1 may
change from line to line. Following [12, Equations (2.5)-(2.6)], we apply the modified
Howarth-Kármán-Monin identities for the Burgers operator. For every h′ ∈ (0,1], we
have

(2.8) ∂2
1

2
∫

1

0
∣∂h

′
1 w∣∂h

′
1 wdx1 −

1

6
∂h′ ∫

1

0
∣∂h

′
1 w∣

3
dx1 = ∫

1

0
∂h

′
1 ηw ∣∂h

′
1 w∣dx1,

(2.9) ∂2
1

2
∫

1

0
(∂h

′
1 w)

2
dx1 −

1

6
∂h′ ∫

1

0
(∂h

′
1 w)

3
dx1 = ∫

1

0
∂h

′
1 ηw∂

h′
1 wdx1.

Integrating (2.8) over x2 and using the periodicity of w yields

∂h′ ∫
T2

∣∂h
′

1 w∣
3
dx = −6∫

T2
∂h

′
1 ηw ∣∂h

′
1 w∣dx

= −6∫
T2
ηw∂

−h′
1 ∣∂h

′
1 w∣dx.(2.10)

Now

∣∫
T2
ηw∂

−h′
1 ∣∂h

′
1 w∣dx∣ ≤ (∫

T2
(∣∂1∣

−1
ηw)

2
dx)

1
2

(∫
T2

(∂1∂
−h′
1 ∣∂h

′
1 w∣)

2
dx)

1
2

≤ C1 (∫
T2

(∣∂1∣
−1
ηw)

2
dx)

1
2

(∫
T2

(∂1w)
2
dx)

1
2

,

so that integrating (2.10) from 0 to h and using ∂0
1w = 0, we have

∫
T2

∣∂h1w∣
3
dx ≤ C1 (∫

T2
(∣∂1∣

−1
ηw)

2
dx)

1
2

(∫
T2

(∂1w)
2
dx)

1
2

h ≤ C1hE(w).

To prove (2.7), we integrate (2.9) from 0 to h and again utilize ∂0
1w = 0 to obtain

(2.11) ∂2
1

2
∫

h

0
∫

1

0
(∂h

′
1 w)

2
dx1dh

′
−

1

6
∫

1

0
(∂h1w)

3
dx1 = ∫

h

0
∫

1

0
∂h

′
1 ηw∂

h′
1 wdx1dh

′.

We set

f (x2) = ∫

h

0
∫

1

0
(∂h

′
1 w)

2
dx1dh

′ ,

and recall the Sobolev embedding inequality for W 1,1 (T) ⊂ L∞ (T):

sup
z∈T

∣f (z)∣ ≤ ∫
T
∣f (y)∣dy + ∫

T
∣f ′ (y)∣dy .
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Then applying this to f(x2) and referring to (2.11), we have

sup
x2∈[0,1)

∫

h

0
∫

1

0
(∂h

′
1 w)

2
dx1dh

′(2.12)

≤ ∫

h

0
∫
T2

(∂h
′

1 w)
2
dxdh′

+
1

3
∫
T2

∣∂h1w∣
3
dx + 2∫

h

0
∫

1

0
∣∫

1

0
ηw∂

−h′
1 ∣∂h

′
1 w∣dx1∣x2 dh

′.

Since

∫
T2

(∂h
′

1 w)
2
dx ≤ (∫

T2
∣∂h

′
1 w∣

3
dx)

2
3

≤ C (h′E(w))
2
3 ,

and

∫

1

0
∣∫

1

0
ηw∂

−h′
1 ∣∂h

′
1 w∣dx1∣x2

≤ (∫
T2

(∣∂1∣
−1
ηw)

2
dx)

1
2

(∫
T2

(∂1∂
−h′
1 ∣∂h

′
1 w∣)

2
dx)

1
2

≤ C1 (∫
T2

(∣∂1∣
−1
ηw)

2
dx)

1
2

(∫
T2

(∂1w)
2
dx)

1
2

,

(2.12) therefore implies

sup
x2∈[0,1)

∫

h

0
∫

1

0
(∂h

′
1 w)

2
dx1dh

′
≤ C1 (h

5
3 E

2
3 (w) + hE(w)) ,

which is (2.7).

Lemma 2.7. If w ∈ L2 (T2) and has vanishing mean in x1, then the following
estimates hold:

(2.13) ∥w∥ ⋅
B
s

3;1

≤ C1E
1
3 (w) , for every s ∈ (0,

1

3
] ,

where C1 is as in Lemma 2.6;

(2.14) ∥w∥Lp(T2) ≤ C2(p)E
2
3α (w)(E(w) + E

2
3 (w))

α−2
2α ,

for every 1 ≤ p < 10
3

, where α = max{2, p}; and

(2.15) ∥w∥Lp(T2) ≤ C2(p)ε
− 1
α E

1
α
ε (w)(Eε(w) + E

2
3
ε (w))

α−2
2α

for every ε > 0 and 1 ≤ p < 6, where again α = max{2, p}.

Proof. The estimate (2.13) follows from (2.6) and the definition of ∥⋅∥ ⋅
B
s

3;1

. Turn-

ing to (2.14)-(2.15), we first prove a preliminary estimate. We fix x2 ∈ [0,1) and
apply Lemma 2.4 to f (z) = w (z, x2) with q = 2, p > 2 to deduce

(∫

1

0
∣w (x1, x2)∣

p
dx1)

1
p

≤ C2(p)∫
1

0

1

h
1
2−

1
p

(∫

1

0
∣∂h1w (x1, x2)∣

2
dx1)

1
2 dh

h
.

Integrating over x2, we thus have by Minkowski’s integral inequality



6 NOVACK, YAN

∥w∥Lp(T2) = (∫

1

0
∫

1

0
∣w (x1, x2)∣

p
dx1dx2)

1
p

≤ C2(p)
⎛

⎝
∫

1

0

⎡
⎢
⎢
⎢
⎢
⎣

∫

1

0
h

1
p−

3
2 (∫

1

0
∣∂h1w(x1, x2)∣

2
dx1)

1
2

dh

⎤
⎥
⎥
⎥
⎥
⎦

p

dx2

⎞

⎠

1
p

≤ C2(p)∫
1

0
h

1
p−

3
2

⎡
⎢
⎢
⎢
⎣
∫

1

0
(∫

1

0
∣∂h1w (x1, x2)∣

2
dx1)

p
2

dx2

⎤
⎥
⎥
⎥
⎦

1
p

dh

≤ C2(p)∫
1

0
h

1
p−

3
2 sup
x2∈[0,1)

(∫

1

0
∣∂h1w (x1, x2)∣

2
dx1)

p−2
2p

⋅ (∫
T2

∣∂h1w (x)∣
2
dx)

1
p

dh .

The first term in the integrand can be estimated using (2.2) and (2.7), which gives

sup
x2∈[0,1)

(∫

1

0
∣∂h1w (x1, x2)∣

2
dx1)

p−2
2p

≤ sup
x2∈[0,1)

(
4

h
∫

h

0
∫

1

0
∣∂h

′
1 w(x1, x2)∣

2
dx1dh

′
)

p−2
2p

≤ C1 (E(w) + h
2
3 E

2
3 (w))

p−2
2p

,

and therefore

(2.16) ∥w∥Lp(T2) ≤ C2(p)(E(w) + E
2
3 (w))

p−2
2p
∫

1

0
h

1
p−

3
2 (∫

T2
∣∂h1w (x)∣

2
dx)

1
p

dh .

To prove (2.14) and (2.15) we estimate the h-integrand in two different fashions before
integrating. For (2.14), using Hölder’s inequality and (2.6), we have the upper bound

(∫
T2

∣∂h1w (x)∣
2
dx)

1
p

≤ (∫
T2

∣∂h1w (x)∣
3
dx)

2
3p

≤ C1h
2
3p E

2
3p (w) .

Inserting this into (2.16) and using p ∈ (2,10/3) yields

∥w∥Lp(T2) ≤ C2(p)E
2
3p (w)(E(w) + E

2
3 (w))

p−2
2p

∫

1

0
h

5
3p−

3
2 dh

= C2(p)E
2
3p (w)(E(w) + E

2
3 (w))

p−2
2p ,

which is (2.14) when p > 2. For p ≤ 2, we apply (2.14) with p′ > 2, use the fact that
∥w∥Lp ≤ ∥w∥Lp′ , and let p′ ↘ 2. Now for (2.15), we instead use the fundamental
theorem of calculus and Jensen’s inequality to estimate

(∫
T2

∣∂h1w(x)∣
2
dx)

1
p

≤ (h2
∫
T2

(∂1w(x))
2
dx)

1
p

≤ h
2
p ε−

1
p E

1
p
ε (w) .

When plugged into (2.16) and combined with (2.5), this implies

∥w∥Lp(T2) ≤ C2(p)ε
− 1
p E

1
p
ε (w)(Eε(w) + E

2
3
ε (w))

p−2
2p

∫

1

0
h

3
p−

3
2 dh

= C2(p)ε
− 1
p E

1
p
ε (w)(Eε(w) + E

2
3
ε (w))

p−2
2p

for p ∈ (2,6). The case p ∈ [1,2) is handled similarly as in (2.14).
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2.3. Compactness and existence. We prove compactness and existence the-
orems in this section. First we define the admissible sets

Aε={w ∈ L2 (T2) ∶ ∫

1

0
w (x1, x2)dx1 = 0 for each x2 ∈ [0,1) and Eε(w) < ∞}

and

A={w ∈ L2 (T2) ∶ ∫

1

0
w (x1, x2)dx1 = 0 for each x2 ∈ [0,1) and E(w) < ∞} .

Note that for any positive ε > 0, (2.5) implies that Aε ⊂ A. We prove the following
compactness result.

Proposition 2.8. If {wn} ⊂ A satisfy Eεn(wn) ≤ C < ∞ and supn ∣εn∣ ≤ ε0, then
{wn} is precompact in L2 (T2) .

Proof. By (2.14), ∥wn∥L2(T2) ≤ CE
1
3 (wn), and thus ∥wn∥L2(T2) ≤ C by (2.5). As

a consequence, we can find w0 ∈ L2 (T2) such that up to a subsequence, wn ⇀ w0

weakly in L2 (T2) . Therefore, for each k ∈ (2πZ)2,

(2.17) ŵn (k) → ŵ0 (k) , ∣ŵn (k)∣ ≤ (∫
T2
w2
n)

1
2

≤ C, and ∣ŵ2
n (k)∣ ≤ ∫

T2
w2
n ≤ C.

We therefore know that for any fixed N ∈ N,

∑
∣k1∣≤2πN,
∣k2∣≤2πN

∣ŵn (k) − ŵ0 (k)∣
2
→ 0 as n→∞ ,

and so the strong convergence of wn → w0 would follow if

(2.18) ∑
∣k1∣>2πN

or
∣k2∣>2πN

∣ŵn (k)∣
2
→ 0 uniformly in n as N →∞.

The rest of the proof is dedicated to showing (2.18).
We fix 0 < s < 1/3 and appeal to Remark 2.3 and (2.13) to calculate

∫
T2

∣∣∂1∣
s
wn∣

2
= ∑∣k1∣

2s
∣ŵn (k)∣

2
≤ C(s, 1/3) ∥wn∥

2
⋅
B

1/3
2;1

≤ C(s, 1/3) ∥wn∥
2
⋅
B

1/3
3;1

≤ CE
2
3 (wn) ≤ C.(2.19)

We recall the formula

ηw = ∂2w − ∂1
1

2
w2,

which, in terms of Fourier coefficients, reads

η̂w (k) = −ik2ŵ (k) +
1

2
ik1ŵ2 (k) .

For M1, M2 ∈ N to be chosen momentarily, we combine this with (2.17) and then
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(2.19) to find

∑
∣k1∣>2πM1

or
∣k2∣>2πM2

∣ŵn (k)∣
2

≤ ∑
∣k1∣>2πM1

∣ŵn (k)∣
2
+ ∑

∣k1∣≤2πM1

∣k2∣>2πM2

∣ŵn (k)∣
2

≤ CM−2s
1 ∑

∣k1∣>2πM1

∣k1∣
2s

∣ŵn (k)∣
2
+ 2 ∑

∣k1∣≤2πM1

∣k2∣>2πM2

1

∣k2∣
2
∣η̂wn (k)∣

2
+ 2 ∑

∣k1∣≤2πM1

∣k2∣>2πM2

∣k1∣
2

∣k2∣
2
∣ŵ2
n (k)∣

≤ CM−2s
1 ∑

∣k1∣>2πM1

∣k1∣
2s

∣ŵn (k)∣
2
+C

M2
1

M2
2

∑
∣k1∣≤2πM1

∣k2∣>2πM2

1

∣k1∣
2
∣η̂wn (k)∣

2
+C ∑

∣k1∣≤2πM1

∣k2∣>2πM2

∣k1∣
2

∣k2∣
2

≤ C (M−2s
1 + ε0Eεn(wn)

M2
1

M2
2

+
M3

1

M2
) .

Taking M1 =M ∈ N and M2 =M
4, we have shown that

∑
∣k1∣>2πM

or
∣k2∣>2πM

4

∣ŵn (k)∣
2
→ 0 uniformly in n as M →∞ ,

which concludes the proof of (2.18).

Corollary 2.9. If {wn} ⊂ A satisfy Eεn(wn) ≤ C < ∞ and supn ∣εn∣ ≤ ε0, then
{wn} is precompact in Lp (T2) for any p ∈ [1, 10

3
).

Proof. The conclusion follows from the precompactness of {wn} in L2(T2), the
bound (2.14) from Lemma 2.7, and interpolation.

Corollary 2.10. If {wn} ⊂ A satisfy Eε(wn) ≤ C < ∞ for a fixed ε, then {wn}
is precompact in Lp (T2) for any p ∈ [1,6).

Proof. We again appeal to the precompactness of wn in L2(T2) (taking εn = ε in
Proposition 2.8), but instead use the bound (2.15) from Lemma 2.7 before interpo-
lating.

As a direct application of Corollary 2.10, we can prove an existence theorem for
the original smectic energy (1.3). We define

Ãε = {u ∈W 1,2 (T2) ∶ Eε (u) < ∞} .

Corollary 2.11. Given ε > 0 fixed, there exists uε ∈ Ãε such that Eε (uε) =

infu∈Ãε Eε (u) .

Proof. Let un be a minimizing sequence for

Eε (u) =
1

2
∫

Ω

1

ε
(∂2u −

1

2
(∂1u)

2
)

2

+ ε(∂11u)
2 dx .

By Corollary 2.9, we have, up to a subsequence that we do not relabel,

(2.20) ∂1un → ∂1u0 in L4 (T2)
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for some u0. Since un is a minimizing sequence, the first term in Eε combined with
the L4-convergence of ∂1un implies that {∂2un} are uniformly bounded in L2(T2).
Thus, up to a further subsequence which we do not notate, there exists v0 ∈ L

2 such
that ∂2un ⇀ v0 weakly in L2(T2). Furthermore, by the uniqueness of weak limits, it
must be that v0 = ∂2u0, so u0 ∈W

1,2(T2). Since

Eε (un) =
1

2
∫

Ω

1

ε
[(∂2un)

2
− (∂1un)

2∂2un +
1

4
(∂1un)

4
] + ε(∂11un)

2 dx ,

by (2.20), the lower semicontinuity of the L2-norm under weak convergence, and the
fact that

lim
n→∞

∫
T2

(∂1un)
2∂2undx = ∫

T2
(∂1u0)

2∂2u0dx,

we conclude
lim inf
n→∞

Eε(un) ≥ Eε(u0).

3. Lower bound. We consider the question of finding a limiting functional as
a lower bound for Eε as ε goes to zero. Given a sequence {wε} with Eε(wε) ≤ C and
ε→ 0, then

(3.1) ∫
T2

(∣∂1∣
−1ηwε)

2dx→ 0.

Therefore ηwε → 0 distributionally and the natural function space for the limiting
problem is

A0 = {w ∈ L2
(T2

) ∶ ηw = −∂1
1

2
w2

+ ∂2w = 0 in D′}.

3.1. Properties of BV functions. Let Ω ⊂ R2 be a bounded open set. We
first recall the BV structure theorem. For v ∈ [BV (Ω)]k, the Radon measure Dv can
be decomposed as

Dv =Dav +Dcv +Djv

where Dav is the absolutely continuous part of Dv with respect to Lebesgue measure
L2 and Dcv, Djv are the Cantor part and the jump part, respectively. All three
measures are mutually singular. Furthermore, Dav = ∇vL2 ⌞Ω where ∇v is the ap-
proximate differential of v; Dcv =Dsv⌞(Ω/Sv) and Djv =Dsv⌞Jv, where Dsv is the
singular part of Dv with respect to L2, Sv is the set of approximate discontinuity
points of v, and Jv is the jump set of v. Since Jv is countably H1-rectifiable, Djv can
be expressed as

(v+ − v−) ⊗ νH1
⌞Jv,

where ν is orthogonal to the approximate tangent space at each point of Jv and v+,
v− are the traces of v from either side of Jv.

Next we quote the following general chain rule formula for BV functions.

Theorem 3.1. ([2, Theorem 3.96]) Let w ∈ BV (Ω), Ω ⊂ R2, and f ∈ [C1(R2)]2

be a Lipschitz function satisfying f(0) = 0 if ∣Ω∣ = ∞. Then v = f ○ w belongs to
[BV (Ω)]2 and

(3.2) Dv = ∇f(w)∇wL2
⌞Ω +∇f(w̃)Dcw + (f(w+

) − f(w−
)) ⊗ νwH

1
⌞Jw.

Here w̃(x) is the approximate limit of w at x and is defined on Ω/Jw.
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Lemma 3.2. If w ∈ A0∩(BV ∩L∞)(T2), then denoting by Da
i w and Dc

iw the i-th
components of the measures Daw and Dcw, we have

(−wDa
1w +Da

2w) = 0 and (−w̃Dc
1w +Dc

2w) = 0

as measures, and, setting σ(w) = (−w2/2,w),

(3.3) [σ(w+
) − σ(w−

)] ⋅ νw = 0 H
1-a.e. on Jw .

Proof. Let σ(w) = (−w2/2,w). By virtue of w ∈ A0∩(BV ∩L
∞)(T2) and Theorem

3.1, we know that, in the sense of distributions,

0 = −∂1
1

2
w2

+ ∂2w

= divσ(w)

= (−wDa
1w +Da

2w) + (−w̃Dc
1w +Dc

2w) + (σ(w+
) − σ(w−

)) ⋅ νwH
1
⌞Jw .(3.4)

But the measures Daw, Dcw, and Djw are mutually singular, which implies that each
individual term in (3.4) is the zero measure. The lemma immediately follows.

3.2. Limiting functional and the proof of the lower bound. Let

Σ(w) = (−
1

3
w3,

1

2
w2

) .

If w ∈ A0∩(BV ∩L
∞)(T2), we can apply the chain rule (3.2) and Lemma 3.2 to Σ(w),

yielding

div Σ(w) = w(−w∂1w + ∂2w)L
2
+ w̃(−w̃∂c1w + ∂c2w)

+ (Σ(w+
) −Σ(w−

)) ⋅ νwH
1
⌞Jw

= (Σ(w+
) −Σ(w−

)) ⋅ νwH
1
⌞Jw .(3.5)

Theorem 3.3. Let εn ↘ 0, {wn} ⊂ L
2(T2) with ∂1wn ∈ L

2(T2) such that

(3.6) wn → w in L3
(T2

),

for some w ∈ (BV ∩L∞)(T2). Then

(3.7) lim inf
n→∞

Eεn(wn) ≥ ∫
Jw

∣w+ −w−∣3

12
√

1 + 1
4
(w+ +w−)2

dH1.

Remark 3.4. The same argument holds when w ∉ (BV ∩ L∞)(T2) and implies
that if the limit inferior of the energies is finite, then ∣div Σ(w)∣ is a finite Radon
measure; however there is no explicit expression for the limiting functional ∣div Σ(w)∣

in this case. In addition, the lower bound is sharp when w ∈ A0 ∩ (BV ∩L∞)(T2) by
[18].

Proof. Without loss of generality, we assume lim infn→∞ Eεn(wn) < ∞, so that
w ∈ A0 by (3.1). Now for any smooth v, direct calculation shows

div Σ(v) = ∂1(−
1

3
v3

) + ∂2(
1

2
v2

)(3.8)

= v(∂2v − v∂1v) = vηv.
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On the other hand, we can bound Eε from below as follows:

Eε(v) =
1

2
∫
T2

1

ε
(∣∂1∣

−1
(∂2v − ∂1

1

2
v2

))

2

+ ε(∂1v)
2dx(3.9)

=
1

2ε
XXXXX
∣∂1∣

−1ηv
XXXXX

2

L2(T2)
+
ε

2
XXXX∂1v

XXXX
2
L2(T2)

≥
XXXXX
∣∂1∣

−1ηv
XXXXXL2(T2)

XXXX∂1v
XXXXL2(T2) .

From (3.8) and (3.9), given any smooth periodic function φ, for any smooth v, we
have

∣−∫
T2

Σ(v) ⋅ ∇φdx∣ = ∣∫
T2

div Σ(v)φdx∣(3.10)

≤ (∫
T2

∣∣∂1∣
−1ηv ∣

2dx)

1
2

(∫
T2

∣∂1(vφ)∣
2dx)

1
2

≤
XXXXX
∣∂1∣

−1ηv
XXXXXL2(T2)

XXXX∂1v
XXXXL2(T2)

XXXXφ
XXXXL∞(T2)

+
XXXXX
∣∂1∣

−1ηv
XXXXXL2(T2)

∥v∥L2(T2)
XXXX∂1φ

XXXXL∞(T2)

≤ Eε(v)
XXXXφ

XXXXL∞(T2) +C
√
εEε(v)

1
2 ∥v∥L2(T2)

XXXX∂1φ
XXXXL∞(T2) .

By the density of smooth functions in L2(T2), (3.10) holds for any v ∈ L2(T2) with
∣∂1∣

−1ηv, ∂1v ∈ L
2(T2). Thus

∣−∫
T2

Σ(wn) ⋅ ∇φdx∣(3.11)

≤ Eεn(wn)
XXXXφ

XXXXL∞(T2) +C
√
εnEεn(wn)

1
2 ∥wn∥L2(T2)

XXXX∂1φ
XXXXL∞(T2) .

Letting n → ∞, by the strong convergence of wn in L3(T2), we have Σ(wn) → Σ(w)

in L1(T2), so that

−∫
T2

Σ(w) ⋅ ∇φdx = − lim
n→∞

∫
T2

Σ(wn) ⋅ ∇φdx(3.12)

≤ lim inf
n→∞

Eεn(wn)
XXXXφ

XXXXL∞(T2) .

By taking the total variation of div Σ(w) in (3.12), we see that ∣div Σ(w)∣(T2) is a
lower bound for the energies. To derive the explicit expression for this measure, we
note that since w ∈ A0 ∩ (BV ∩L∞)(T2), (3.3) and (3.5) apply, so that

∣div Σ(w)∣(T2
) = ∣[Σ(w+

) −Σ(w−
)] ⋅

(σ(w+) − σ(w−))
⊥

∣σ(w+) − σ(w−)∣
∣H

1
⌞Jw .

The right hand side of this equation can be calculated directly from the formulas for
σ(w) and Σ(w) and simplifies to (3.7) (see [18, Proof of Lemma 4.1, Equation (6.3)]).

Remark 3.5. Observe if w = ux and uz =
1
2
u2
x, the entropy Σ(w) we constructed

here is exactly the entropy Σ̃(∇u) = −(uxuz −
1
6
u3
x,

1
2
u2
x), which we used in the lower

bound estimates in [18]. In fact, the argument here also gives a proof of the lower
bound on any domain Ω ⊂ R2; the only necessary modification of the proof presented
above is that one does not use ∣∂1∣

−1ηw to represent the compression energy, but
rather the original expression from (1.3). In addition, when comparing with the
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lower bound proof from [18], this proof requires an extra integration by parts, as
it does not rely on a pointwise lower bound on the energy density (see e.g. [18,
Equation (4.11)]). The relationship between these two entropies and the structure of
the corresponding arguments is exactly mirrored in the entropies devised in [14, 8] for
the Aviles-Giga problem - they are equal on the zero set of the potential term, and
both give lower bounds, with only one of them ([14]) bounding the energy density
from below pointwise.
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[15] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978),
pp. 489–507.
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