# A SMECTIC LIQUID CRYSTAL MODEL IN THE PERIODIC SETTING 

MICHAEL NOVACK* AND XIAODONG YAN ${ }^{\dagger}$


#### Abstract

We consider the asymptotic behavior as $\varepsilon$ goes to zero of the 2 D smectics model in the periodic setting given by $$
\mathcal{E}_{\varepsilon}(w)=\frac{1}{2} \int_{\mathbb{T}^{2}} \frac{1}{\varepsilon}\left(\left|\partial_{1}\right|^{-1}\left(\partial_{2} w-\partial_{1} \frac{1}{2} w^{2}\right)\right)^{2}+\varepsilon\left(\partial_{1} w\right)^{2} d x
$$

We show that the energy $\mathcal{E}_{\varepsilon}(w)$ controls suitable $L^{p}$ and Besov norms of $w$ and use this to demonstrate the existence of minimizers for $\mathcal{E}_{\varepsilon}(w)$, which has not been proved for this smectics model before, and compactness in $L^{p}$ for an energy-bounded sequence. We also prove an asymptotic lower bound for $\mathcal{E}_{\varepsilon}(w)$ as $\varepsilon \rightarrow 0$ by means of an entropy argument.


1. Introduction. We consider the variational model

$$
\begin{equation*}
\mathcal{E}_{\varepsilon}(w)=\frac{1}{2} \int_{\mathbb{T}^{2}} \frac{1}{\varepsilon}\left(\left|\partial_{1}\right|^{-1}\left(\partial_{2} w-\partial_{1} \frac{1}{2} w^{2}\right)\right)^{2}+\varepsilon\left(\partial_{1} w\right)^{2} d x \tag{1.1}
\end{equation*}
$$

where $w: \mathbb{T}^{2} \rightarrow \mathbb{R}$ is a periodic function with vanishing mean in $x_{1}$, that is

$$
\begin{equation*}
\int_{0}^{1} w\left(x_{1}, x_{2}\right) d x_{1}=0 \quad \text { for any } x_{2} \in[0,1) .{ }^{1} \tag{1.2}
\end{equation*}
$$

Here $\left|\partial_{1}\right|^{-1}$ is defined via its Fourier coefficients

$$
\left|\widehat{\left.\partial_{1}\right|^{-1}} f(k)=\left|k_{1}\right|^{-1} \widehat{f}(k) \text { for } k \in(2 \pi \mathbb{Z})^{2},\right.
$$

and is well defined when (1.2) holds.
This model is motivated by a nonlinear approximate model of smectic liquid crystals. The following functional has been proposed as an approximate model for smectic liquid crystals $[4,14,25,30,31]$ in two space dimensions:

$$
\begin{equation*}
E_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega} \frac{1}{\varepsilon}\left(\partial_{2} u-\frac{1}{2}\left(\partial_{1} u\right)^{2}\right)^{2}+\varepsilon\left(\partial_{11} u\right)^{2} d x, \tag{1.3}
\end{equation*}
$$

where $u$ is the Eulerian deviation from the ground state $\Phi(x)=x_{2}$ and $\varepsilon$ is the characteristic length scale. The first term represents the compression energy and the second term represents the bending energy. For further background on the model, we refer to [25, 26] and the references contained therein. The 3D version of (1.3), which we analyzed in [26] but do not consider further here, is also used for example in the mathematical description of nuclear pasta in neutron stars [6]. Assuming that $u$ is periodic on the torus $\mathbb{T}^{2}=\Omega$ and setting $w=\partial_{1} u$, (1.3) becomes

$$
E_{\varepsilon}(u)=\frac{1}{2} \int_{\mathbb{T}^{2}} \frac{1}{\varepsilon}\left(\left|\partial_{1}\right|^{-1}\left(\partial_{2} w-\partial_{1} \frac{1}{2} w^{2}\right)\right)^{2}+\varepsilon\left(\partial_{1} w\right)^{2} d x .
$$

[^0]Finally, a similar model to (1.1) with $\left|\partial_{1}\right|^{-1 / 2}$ replacing $\left|\partial_{1}\right|^{-1}$ has been derived in the context of micromagnetics [12]; see also [17].

The asymptotic behavior of (1.3) as $\varepsilon$ goes to zero was studied in [25]. Given $\varepsilon_{n} \rightarrow 0$ and a sequence $\left\{u_{n}\right\}$ with bounded energies $E_{\varepsilon_{n}}\left(u_{n}\right)$, the authors proved pre-compactness of $\left\{\partial_{1} u_{n}\right\}$ in $L^{q}$ for any $1 \leq q<p$ and pre-compactness of $\left\{\partial_{2} u_{n}\right\}$ in $L^{2}$ under the additional assumption $\left\|\partial_{1} u_{n}\right\|_{L^{p}} \leq C$ for some $p>6$. The compactness proof in [25] uses a compensated compactness argument based on entropies, following the work of Tartar [32, 33, 34] and Murat [22, 23, 24]. In addition, a lower bound on $E_{\varepsilon}$ and a matching upper bound corresponding to a 1D ansatz was obtained as $\varepsilon \rightarrow 0$ under the assumption that the limiting function $u$ satisfies $\nabla u \in\left(L^{\infty} \cap B V\right)(\Omega)$.

In this paper, we approach the compactness via a different argument in the periodic setting. Our proof is motivated by recent work on related variational models in the periodic setting $[5,10,13,27,28,36]$ where strong convergence of a weakly convergent $L^{2}$ sequence is proved via estimates on Fourier series. Given a sequence $u_{\varepsilon}$ weakly converging in $L^{2}\left(\mathbb{T}^{2}\right)$, to prove strong convergence of $u_{\varepsilon}$ in $L^{2}$, it is sufficient to show that there is no concentration in the high frequencies. The center piece of this approach relies on the estimates for solutions to Burgers equation

$$
-\partial_{1} \frac{1}{2} w^{2}+\partial_{2} w=\eta
$$

in suitable Besov spaces. This type of compactness argument also applies to a sequence $\left\{w_{n}\right\}$ with $\mathcal{E}_{\varepsilon}\left(w_{n}\right) \leq C$ for any fixed $\varepsilon$. As a direct corollary, we obtain the existence of minimizers of $E_{\varepsilon}$ in $W^{1,2}\left(\mathbb{T}^{2}\right)$ (see Corollary 2.12) for any fixed $\varepsilon$. We observe that to the best of our knowledge, the existence of minimizers of $E_{\varepsilon}$ in any setting was not known due to the lack of compactness for sequence $\left\{u_{n}\right\}$ satisfying $E_{\varepsilon}\left(u_{n}\right) \leq C$ with fixed $\varepsilon$.

To further understand the minimization of $\mathcal{E}_{\varepsilon}$, we are also interested in a sharp lower bound for the asymptotic limit of $\mathcal{E}_{\varepsilon}$ as $\varepsilon$ approaches zero. In the literature for such problems (see for example $[1,3,11,16]$ ), one useful technique in achieving such a bound is an "entropy" argument, in which the entropy production $\int \operatorname{div} \Sigma(w)$ of a vector field $\Sigma(w)$ is used to bound the energy $\mathcal{E}_{\varepsilon}$ from below. For the 2D Aviles-Giga functional

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega} \frac{1}{\varepsilon}\left(|\nabla u|^{2}-1\right)^{2}+\varepsilon\left|\nabla^{2} u\right|^{2} d x \tag{1.4}
\end{equation*}
$$

such vector fields were introduced in [16, 8]. In [25, 26], the analogue for the smectic energy, in 2D and 3D respectively, of the Jin-Kohn entropies from [16] were used to prove a sharp lower bound which can be matched by a construction similar to [7, 29]. In this paper, we use the vector field

$$
\begin{equation*}
\Sigma(w)=\left(-\frac{1}{3} w^{3}, \frac{1}{2} w^{2}\right) \tag{1.5}
\end{equation*}
$$

which is $\left(-\left(\partial_{1} u\right)^{3} / 3,\left(\partial_{1} u\right)^{2} / 2\right)$ in terms of $u$, to prove a sharp lower bound. As $\varepsilon \rightarrow 0$, entropy production concentrates along curves and approximates the total variation of the distributional divergence of a BV vector field. An interesting open direction which motivates studying (1.5) is utilizing the correct version of (1.5) (or the entropies from $[8,9])$ in 3 D , for example in a compactness argument.

The paper is organized as follows. The pre-compactness of a sequence of functions with bounded energy is proved in Section 2, for both fixed $\varepsilon$ and $\varepsilon \rightarrow 0$. The lower bound is established in Section 3.

## 2. Compactness of a sequence with bounded energy.

2.1. Preliminaries. Let $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ be unit vectors in $\mathbb{R}^{2}$. We recall some definitions from [13]. For $f: \mathbb{T}^{2} \rightarrow \mathbb{R}$, we write

$$
\partial_{j}^{h} f(x)=f\left(x+h \mathbf{e}_{j}\right)-f(x) \quad x \in \mathbb{T}^{2}, h \in \mathbb{R}
$$

Definition 2.1. Given $f: \mathbb{T}^{2} \rightarrow \mathbb{R}, j \in\{1,2\}, s \in(0,1]$, and $p \in[1, \infty)$, the directional Besov seminorm is defined as

$$
\|f\|_{\dot{\mathcal{B}}_{p ; j}^{s}}=\sup _{h \in(0,1]} \frac{1}{h^{s}}\left(\int_{\mathbb{T}^{2}}\left|\partial_{j}^{h} f\right|^{p} d x\right)^{\frac{1}{p}}
$$

Remark 2.2. This is the $\mathcal{B}^{s ; p, \infty}$ seminorm defined in each direction separately.
Remark 2.3. For $p=2$ and $s \in(0,1)$, given $s^{\prime} \in(s, 1)$, the following inequality holds ([13, Equation (2.2)]):

$$
\left.\left.\int_{\mathbb{T}^{2}}| | \partial_{j}\right|^{s} f\right|^{2}=\sum\left|k_{j}\right|^{2 s}|\widehat{f}(k)|^{2}=c_{s} \int_{\mathbb{R}} \frac{1}{|h|^{2 s}} \int_{\mathbb{T}^{2}}\left|\partial_{j}^{h} f\right|^{2} d x \frac{d h}{|h|} \leq C\left(s, s^{\prime}\right)\|f\|_{\dot{\mathcal{B}}_{2 ; j}^{s^{\prime}}}^{2} .
$$

We quote two results from [13].
Lemma 2.4. [13, Proposition B.9] For every $p \in(1, \infty]$ and $q \in[1, p]$ with $(p, q) \neq$ $(\infty, 1)$, there exists a constant $C(p, q)>0$ such that for every periodic function $f$ : $[0,1) \rightarrow \mathbb{R}$ with vanishing mean,

$$
\begin{equation*}
\left(\int_{0}^{1}|f(z)|^{p} d z\right)^{\frac{1}{p}} \leq C(p, q) \int_{0}^{1} \frac{1}{h^{\frac{1}{q}-\frac{1}{p}}}\left(\int_{0}^{1}\left|\partial_{1}^{h} f(z)\right|^{q} d z\right)^{\frac{1}{q}} \frac{d h}{h} \tag{2.1}
\end{equation*}
$$

with the usual interpretation for $p=\infty$ or $q=\infty$.
The following estimate was derived in the proof of Lemma B. 10 in [13].
Lemma 2.5. [13, In the proof of Lemma B.10] For every $p \in[1, \infty)$ and every periodic function $f:[0,1) \rightarrow \mathbb{R}, h \in(0,1]$, the following estimate holds.

$$
\begin{equation*}
\left(\int_{0}^{1}\left|\partial_{1}^{h} f(z)\right|^{p} d z\right)^{\frac{1}{p}} \leq 2\left(\frac{1}{h} \int_{0}^{h} \int_{0}^{1}\left|\partial_{1}^{h^{\prime}} f(z)\right|^{p} d z d h^{\prime}\right)^{\frac{1}{p}} \tag{2.2}
\end{equation*}
$$

We define $\eta_{w}=\partial_{2} w-\partial_{1} \frac{1}{2} w^{2}$, and thus (1.1) can be written as

$$
\begin{equation*}
\mathcal{E}_{\varepsilon}(w)=\frac{1}{2} \int_{\mathbb{T}^{2}} \frac{1}{\varepsilon}\left(\left|\partial_{1}\right|^{-1} \eta_{w}\right)^{2}+\varepsilon\left(\partial_{1} w\right)^{2} d x \tag{2.3}
\end{equation*}
$$

Finally, we introduce the $\varepsilon$-independent energy

$$
\begin{equation*}
\mathcal{E}(w)=\left(\int_{\mathbb{T}^{2}}\left(\left|\partial_{1}\right|^{-1} \eta_{w}\right)^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{T}^{2}}\left(\partial_{1} w\right)^{2} d x\right)^{\frac{1}{2}} \tag{2.4}
\end{equation*}
$$

and note that

$$
\begin{equation*}
\mathcal{E}(w) \leq \mathcal{E}_{\varepsilon}(w) \quad \text { for all } \varepsilon>0 \tag{2.5}
\end{equation*}
$$

2.2. Besov and $L^{p}$ estimates. We obtain the following estimates. The proofs follow closely those in [13, Propositions 2.3-2.4].

Lemma 2.6. There exists a universal constant $C_{1}>0$ such that if $w \in L^{2}\left(\mathbb{T}^{2}\right)$ and has vanishing mean in $x_{1}$ and $h \in(0,1]$, then

$$
\begin{equation*}
\int_{\mathbb{T}^{2}}\left|\partial_{1}^{h} w\right|^{3} d x \leq C_{1} h \mathcal{E}(w) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x_{2} \in[0,1)} \int_{0}^{h} \int_{0}^{1}\left|\partial_{1}^{h^{\prime}} w\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d h^{\prime} \leq C_{1}\left(h \mathcal{E}(w)+h^{\frac{5}{3}} \mathcal{E}^{\frac{2}{3}}(w)\right) \tag{2.7}
\end{equation*}
$$

Proof. Throughout the proof, we assume that $w$ is smooth; once the estimates hold for smooth $w$, they hold in generality by approximation. The constant $C_{1}$ may change from line to line. Following [13, Equations (2.5)-(2.6)], we apply the modified Howarth-Kármán-Monin identities for the Burgers operator. For every $h^{\prime} \in(0,1]$, we have

$$
\begin{gather*}
\partial_{2} \frac{1}{2} \int_{0}^{1}\left|\partial_{1}^{h^{\prime}} w\right| \partial_{1}^{h^{\prime}} w d x_{1}-\frac{1}{6} \partial_{h^{\prime}} \int_{0}^{1}\left|\partial_{1}^{h^{\prime}} w\right|^{3} d x_{1}=\int_{0}^{1} \partial_{1}^{h^{\prime}} \eta_{w}\left|\partial_{1}^{h^{\prime}} w\right| d x_{1}  \tag{2.8}\\
\partial_{2} \frac{1}{2} \int_{0}^{1}\left(\partial_{1}^{h^{\prime}} w\right)^{2} d x_{1}-\frac{1}{6} \partial_{h^{\prime}} \int_{0}^{1}\left(\partial_{1}^{h^{\prime}} w\right)^{3} d x_{1}=\int_{0}^{1} \partial_{1}^{h^{\prime}} \eta_{w} \partial_{1}^{h^{\prime}} w d x_{1} \tag{2.9}
\end{gather*}
$$

Integrating (2.8) over $x_{2}$ and using the periodicity of $w$ yields

$$
\begin{align*}
\partial_{h^{\prime}} \int_{\mathbb{T}^{2}}\left|\partial_{1}^{h^{\prime}} w\right|^{3} d x & =-6 \int_{\mathbb{T}^{2}} \partial_{1}^{h^{\prime}} \eta_{w}\left|\partial_{1}^{h^{\prime}} w\right| d x \\
& =-6 \int_{\mathbb{T}^{2}} \eta_{w} \partial_{1}^{-h^{\prime}}\left|\partial_{1}^{h^{\prime}} w\right| d x \tag{2.10}
\end{align*}
$$

Now

$$
\begin{aligned}
\left|\int_{\mathbb{T}^{2}} \eta_{w} \partial_{1}^{-h^{\prime}}\right| \partial_{1}^{h^{\prime}} w|d x| & \leq\left(\int_{\mathbb{T}^{2}}\left(\left|\partial_{1}\right|^{-1} \eta_{w}\right)^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{T}^{2}}\left(\partial_{1} \partial_{1}^{-h^{\prime}}\left|\partial_{1}^{h^{\prime}} w\right|\right)^{2} d x\right)^{\frac{1}{2}} \\
& \leq C_{1}\left(\int_{\mathbb{T}^{2}}\left(\left|\partial_{1}\right|^{-1} \eta_{w}\right)^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{T}^{2}}\left(\partial_{1} w\right)^{2} d x\right)^{\frac{1}{2}}
\end{aligned}
$$

so that integrating (2.10) from 0 to $h$ and using $\partial_{1}^{0} w=0$, we have

$$
\int_{\mathbb{T}^{2}}\left|\partial_{1}^{h} w\right|^{3} d x \leq C_{1}\left(\int_{\mathbb{T}^{2}}\left(\left|\partial_{1}\right|^{-1} \eta_{w}\right)^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{T}^{2}}\left(\partial_{1} w\right)^{2} d x\right)^{\frac{1}{2}} h \leq C_{1} h \mathcal{E}(w)
$$

To prove (2.7), we integrate (2.9) from 0 to $h$ and again utilize $\partial_{1}^{0} w=0$ to obtain

$$
\begin{equation*}
\partial_{2} \frac{1}{2} \int_{0}^{h} \int_{0}^{1}\left(\partial_{1}^{h^{\prime}} w\right)^{2} d x_{1} d h^{\prime}-\frac{1}{6} \int_{0}^{1}\left(\partial_{1}^{h} w\right)^{3} d x_{1}=\int_{0}^{h} \int_{0}^{1} \partial_{1}^{h^{\prime}} \eta_{w} \partial_{1}^{h^{\prime}} w d x_{1} d h^{\prime} \tag{2.11}
\end{equation*}
$$

We set

$$
f\left(x_{2}\right)=\int_{0}^{h} \int_{0}^{1}\left(\partial_{1}^{h^{\prime}} w\right)^{2} d x_{1} d h^{\prime}
$$

and recall the Sobolev embedding inequality for $W^{1,1}(\mathbb{T}) \subset L^{\infty}(\mathbb{T})$ :

$$
\sup _{z \in \mathbb{T}}|f(z)| \leq \int_{\mathbb{T}}|f(y)| d y+\int_{\mathbb{T}}\left|f^{\prime}(y)\right| d y
$$

Then applying this to $f\left(x_{2}\right)$ and referring to (2.11), we have

$$
\begin{align*}
& \sup _{x_{2} \in[0,1)} \int_{0}^{h} \int_{0}^{1}\left(\partial_{1}^{h^{\prime}} w\right)^{2} d x_{1} d h^{\prime}  \tag{2.12}\\
\leq & \int_{0}^{h} \int_{\mathbb{T}^{2}}\left(\partial_{1}^{h^{\prime}} w\right)^{2} d x d h^{\prime} \\
& +\frac{1}{3} \int_{\mathbb{T}^{2}}\left|\partial_{1}^{h} w\right|^{3} d x+2 \int_{0}^{h} \int_{0}^{1}\left|\int_{0}^{1} \eta_{w} \partial_{1}^{-h^{\prime}}\right| \partial_{1}^{h^{\prime}} w\left|d x_{1}\right| x_{2} d h^{\prime} .
\end{align*}
$$

Since

$$
\int_{\mathbb{T}^{2}}\left(\partial_{1}^{h^{\prime}} w\right)^{2} d x \leq\left(\int_{\mathbb{T}^{2}}\left|\partial_{1}^{h^{\prime}} w\right|^{3} d x\right)^{\frac{2}{3}} \leq C_{1}\left(h^{\prime} \mathcal{E}(w)\right)^{\frac{2}{3}}
$$

and

$$
\begin{aligned}
& \int_{0}^{1}\left|\int_{0}^{1} \eta_{w} \partial_{1}^{-h^{\prime}}\right| \partial_{1}^{h^{\prime}} w\left|d x_{1}\right| x_{2} \\
\leq & \left(\int_{\mathbb{T}^{2}}\left(\left|\partial_{1}\right|^{-1} \eta_{w}\right)^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{T}^{2}}\left(\partial_{1} \partial_{1}^{-h^{\prime}}\left|\partial_{1}^{h^{\prime}} w\right|\right)^{2} d x\right)^{\frac{1}{2}} \\
\leq & C_{1}\left(\int_{\mathbb{T}^{2}}\left(\left|\partial_{1}\right|^{-1} \eta_{w}\right)^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{T}^{2}}\left(\partial_{1} w\right)^{2} d x\right)^{\frac{1}{2}}
\end{aligned}
$$

(2.12) therefore implies

$$
\sup _{x_{2} \in[0,1)} \int_{0}^{h} \int_{0}^{1}\left(\partial_{1}^{h^{\prime}} w\right)^{2} d x_{1} d h^{\prime} \leq C_{1}\left(h^{\frac{5}{3}} \mathcal{E}^{\frac{2}{3}}(w)+h \mathcal{E}(w)\right)
$$

which is (2.7).
Lemma 2.7. If $w \in L^{2}\left(\mathbb{T}^{2}\right)$ and has vanishing mean in $x_{1}$, then the following estimates hold:

$$
\begin{equation*}
\|w\|_{\dot{\mathcal{B}}_{3 ; 1}^{s}} \leq C_{1} \mathcal{E}^{\frac{1}{3}}(w), \quad \text { for every } s \in\left(0, \frac{1}{3}\right] \tag{2.13}
\end{equation*}
$$

where $C_{1}$ is as in Lemma 2.6;

$$
\begin{equation*}
\|w\|_{L^{p}\left(\mathbb{T}^{2}\right)} \leq C_{2}(p) \mathcal{E}^{\frac{2}{3 \alpha}}(w)\left(\mathcal{E}(w)+\mathcal{E}^{\frac{2}{3}}(w)\right)^{\frac{\alpha-2}{2 \alpha}} \tag{2.14}
\end{equation*}
$$

for every $1 \leq p<\frac{10}{3}$, where $\alpha=\max \{2, p\}$; and

$$
\begin{equation*}
\|w\|_{L^{p}\left(\mathbb{T}^{2}\right)} \leq C_{2}(p) \varepsilon^{-\frac{1}{\alpha}} \mathcal{E}_{\varepsilon}^{\frac{1}{\alpha}}(w)\left(\mathcal{E}_{\varepsilon}(w)+\mathcal{E}_{\varepsilon}^{\frac{2}{3}}(w)\right)^{\frac{\alpha-2}{2 \alpha}} \tag{2.15}
\end{equation*}
$$

for every $\varepsilon>0$ and $1 \leq p<6$, where again $\alpha=\max \{2, p\}$.
Proof. The estimate (2.13) follows from (2.6) and the definition of $\|\cdot\|_{\dot{\mathcal{B}}_{3 ; 1}^{s}}$. Turning to (2.14)-(2.15), we first prove a preliminary estimate. We fix $x_{2} \in[0,1)$ and apply Lemma 2.4 to $f(z)=w\left(z, x_{2}\right)$ with $q=2, p>2$ to deduce

$$
\left(\int_{0}^{1}\left|w\left(x_{1}, x_{2}\right)\right|^{p} d x_{1}\right)^{\frac{1}{p}} \leq C_{2}(p) \int_{0}^{1} \frac{1}{h^{\frac{1}{2}-\frac{1}{p}}}\left(\int_{0}^{1}\left|\partial_{1}^{h} w\left(x_{1}, x_{2}\right)\right|^{2} d x_{1}\right)^{\frac{1}{2}} \frac{d h}{h}
$$

Integrating over $x_{2}$, we thus have by Minkowski's integral inequality

$$
\begin{aligned}
\|w\|_{L^{p}\left(\mathbb{T}^{2}\right)} & =\left(\int_{0}^{1} \int_{0}^{1}\left|w\left(x_{1}, x_{2}\right)\right|^{p} d x_{1} d x_{2}\right)^{\frac{1}{p}} \\
& \leq C_{2}(p)\left(\int_{0}^{1}\left[\int_{0}^{1} h^{\frac{1}{p}-\frac{3}{2}}\left(\int_{0}^{1}\left|\partial_{1}^{h} w\left(x_{1}, x_{2}\right)\right|^{2} d x_{1}\right)^{\frac{1}{2}} d h\right]^{p} d x_{2}\right)^{\frac{1}{p}} \\
& \leq C_{2}(p) \int_{0}^{1} h^{\frac{1}{p}-\frac{3}{2}}\left[\int_{0}^{1}\left(\int_{0}^{1}\left|\partial_{1}^{h} w\left(x_{1}, x_{2}\right)\right|^{2} d x_{1}\right)^{\frac{p}{2}} d x_{2}\right]^{\frac{1}{p}} d h \\
& \leq C_{2}(p) \int_{0}^{1} h^{\frac{1}{p}-\frac{3}{2}} \sup _{x_{2} \in[0,1)}\left(\int_{0}^{1}\left|\partial_{1}^{h} w\left(x_{1}, x_{2}\right)\right|^{2} d x_{1}\right)^{\frac{p-2}{2 p}} \cdot\left(\int_{\mathbb{T}^{2}}\left|\partial_{1}^{h} w(x)\right|^{2} d x\right)^{\frac{1}{p}} d h
\end{aligned}
$$

The first term in the integrand can be estimated using (2.2) and (2.7), which gives

$$
\begin{aligned}
\sup _{x_{2} \in[0,1)}\left(\int_{0}^{1}\left|\partial_{1}^{h} w\left(x_{1}, x_{2}\right)\right|^{2} d x_{1}\right)^{\frac{p-2}{2 p}} & \leq \sup _{x_{2} \in[0,1)}\left(\frac{4}{h} \int_{0}^{h} \int_{0}^{1}\left|\partial_{1}^{h^{\prime}} w\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d h^{\prime}\right)^{\frac{p-2}{2 p}} \\
& \leq C_{1}\left(\mathcal{E}(w)+h^{\frac{2}{3}} \mathcal{E}^{\frac{2}{3}}(w)\right)^{\frac{p-2}{2 p}}
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\|w\|_{L^{p}\left(\mathbb{T}^{2}\right)} \leq C_{2}(p)\left(\mathcal{E}(w)+\mathcal{E}^{\frac{2}{3}}(w)\right)^{\frac{p-2}{2 p}} \int_{0}^{1} h^{\frac{1}{p}-\frac{3}{2}}\left(\int_{\mathbb{T}^{2}}\left|\partial_{1}^{h} w(x)\right|^{2} d x\right)^{\frac{1}{p}} d h \tag{2.16}
\end{equation*}
$$

To prove (2.14) and (2.15) we estimate the $h$-integrand in two different fashions before integrating. For (2.14), using Hölder's inequality and (2.6), we have the upper bound

$$
\left(\int_{\mathbb{T}^{2}}\left|\partial_{1}^{h} w(x)\right|^{2} d x\right)^{\frac{1}{p}} \leq\left(\int_{\mathbb{T}^{2}}\left|\partial_{1}^{h} w(x)\right|^{3} d x\right)^{\frac{2}{3 p}} \leq C_{1} h^{\frac{2}{3 p}} \mathcal{E}^{\frac{2}{3 p}}(w)
$$

Inserting this into (2.16) and using $p \in(2,10 / 3)$ yields

$$
\begin{aligned}
\|w\|_{L^{p}\left(\mathbb{T}^{2}\right)} & \leq C_{2}(p) \mathcal{E}^{\frac{2}{3 p}}(w)\left(\mathcal{E}(w)+\mathcal{E}^{\frac{2}{3}}(w)\right)^{\frac{p-2}{2 p}} \int_{0}^{1} h^{\frac{5}{3 p}-\frac{3}{2}} d h \\
& =C_{2}(p) \mathcal{E}^{\frac{2}{3 p}}(w)\left(\mathcal{E}(w)+\mathcal{E}^{\frac{2}{3}}(w)\right)^{\frac{p-2}{2 p}}
\end{aligned}
$$

which is (2.14) when $p>2$. For $p \leq 2$, we apply (2.14) with $p^{\prime}>2$, use the fact that $\|w\|_{L^{p}} \leq\|w\|_{L^{p^{\prime}}}$, and let $p^{\prime} \searrow 2$. Now for (2.15), we instead use the fundamental theorem of calculus and Jensen's inequality to estimate

$$
\begin{aligned}
\left(\int_{\mathbb{T}^{2}}\left|\partial_{1}^{h} w(x)\right|^{2} d x\right)^{\frac{1}{p}} & \leq\left(h^{2} \int_{\mathbb{T}^{2}}\left(\partial_{1} w(x)\right)^{2} d x\right)^{\frac{1}{p}} \\
& \leq h^{\frac{2}{p}} \varepsilon^{-\frac{1}{p}} \mathcal{E}_{\varepsilon}^{\frac{1}{p}}(w)
\end{aligned}
$$

When plugged into (2.16) and combined with (2.5), this implies

$$
\begin{aligned}
\|w\|_{L^{p}\left(\mathbb{T}^{2}\right)} & \leq C_{2}(p) \varepsilon^{-\frac{1}{p}} \mathcal{E}_{\varepsilon}^{\frac{1}{p}}(w)\left(\mathcal{E}_{\varepsilon}(w)+\mathcal{E}_{\varepsilon}^{\frac{2}{3}}(w)\right)^{\frac{p-2}{2 p}} \int_{0}^{1} h^{\frac{3}{p}-\frac{3}{2}} d h \\
& =C_{2}(p) \varepsilon^{-\frac{1}{p}} \mathcal{E}_{\varepsilon}^{\frac{1}{p}}(w)\left(\mathcal{E}_{\varepsilon}(w)+\mathcal{E}_{\varepsilon}^{\frac{2}{3}}(w)\right)^{\frac{p-2}{2 p}}
\end{aligned}
$$

for $p \in(2,6)$. The case $p \in[1,2)$ is handled similarly as in (2.14).

Remark 2.8. Generalizing the previous argument to the 3 D smectics model from [26] is open. An intermediate step would be analyzing the Aviles-Giga model (which is a special case of the energy in [26]) on $\mathbb{T}^{2}$ using these type of ideas.
2.3. Compactness and existence. We prove compactness and existence theorems in this section. First we define the admissible sets

$$
\mathcal{A}_{\varepsilon}=\left\{w \in L^{2}\left(\mathbb{T}^{2}\right): \int_{0}^{1} w\left(x_{1}, x_{2}\right) d x_{1}=0 \text { for each } x_{2} \in[0,1) \text { and } \mathcal{E}_{\varepsilon}(w)<\infty\right\}
$$

and

$$
\mathcal{A}=\left\{w \in L^{2}\left(\mathbb{T}^{2}\right): \int_{0}^{1} w\left(x_{1}, x_{2}\right) d x_{1}=0 \text { for each } x_{2} \in[0,1) \text { and } \mathcal{E}(w)<\infty\right\}
$$

Note that for any positive $\varepsilon>0$, (2.5) implies that $\mathcal{A}_{\varepsilon} \subset \mathcal{A}$. We prove the following compactness result.

Proposition 2.9. If $\left\{w_{n}\right\} \subset \mathcal{A}$ satisfy $\mathcal{E}_{\varepsilon_{n}}\left(w_{n}\right) \leq C_{3}<\infty$ and $\sup _{n}\left|\varepsilon_{n}\right| \leq \varepsilon_{0}$, then $\left\{w_{n}\right\}$ is precompact in $L^{2}\left(\mathbb{T}^{2}\right)$.

Proof. By (2.14),

$$
\left\|w_{n}\right\|_{L^{2}\left(\mathbb{T}^{2}\right)} \leq C_{2}(p) \mathcal{E}^{\frac{2}{3 \alpha}}(w)\left(\mathcal{E}(w)+\mathcal{E}^{\frac{2}{3}}(w)\right)^{\frac{\alpha-2}{2 \alpha}}
$$

and thus, by $(2.5)$ (that is, $\left.\mathcal{E}(w) \leq \mathcal{E}_{\varepsilon}(w)\right),\left\|w_{n}\right\|_{L^{2}\left(\mathbb{T}^{2}\right)} \leq C_{4}$ depending on $p$ and $C_{3}$. As a consequence, we can find $w_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ such that up to a subsequence, $w_{n} \rightarrow w_{0}$ weakly in $L^{2}\left(\mathbb{T}^{2}\right)$. Therefore, for each $k \in(2 \pi \mathbb{Z})^{2}$,

$$
\begin{equation*}
\widehat{w_{n}}(k) \rightarrow \widehat{w_{0}}(k),\left|\widehat{w_{n}}(k)\right| \leq\left(\int_{\mathbb{T}^{2}} w_{n}^{2}\right)^{\frac{1}{2}} \leq C_{4}, \text { and }\left|\widehat{w_{n}^{2}}(k)\right| \leq \int_{\mathbb{T}^{2}} w_{n}^{2} \leq C_{4}^{2} \tag{2.17}
\end{equation*}
$$

We therefore know that for any fixed $N \in \mathbb{N}$,

$$
\sum_{\substack{\left|k_{1}\right| \leq 2 \pi N,\left|k_{2}\right| \leq 2 \pi N}}\left|\widehat{w_{n}}(k)-\widehat{w_{0}}(k)\right|^{2} \rightarrow 0 \text { as } n \rightarrow \infty
$$

and so the strong convergence of $w_{n} \rightarrow w_{0}$ would follow if

$$
\begin{equation*}
\sum_{\substack{\left|k_{1}\right|>2 \pi N \\ \text { or } \\\left|k_{2}\right|>2 \pi N}}\left|\widehat{w_{n}}(k)\right|^{2} \rightarrow 0 \text { uniformly in } n \text { as } N \rightarrow \infty . \tag{2.18}
\end{equation*}
$$

The rest of the proof is dedicated to showing (2.18).
We fix $0<s<1 / 3$ and appeal to Remark 2.3 and (2.13) to calculate

$$
\begin{align*}
\left.\left.\int_{\mathbb{T}^{2}}| | \partial_{1}\right|^{s} w_{n}\right|^{2} & =\sum\left|k_{1}\right|^{2 s}\left|\widehat{w_{n}}(k)\right|^{2} \leq C\left(s,{ }^{1 / 3}\right)\left\|w_{n}\right\|_{\dot{\mathcal{B}}_{2 ; 1}^{1 / 3}}^{2} \\
& \leq C(s, 1 / 3)\left\|w_{n}\right\|_{\dot{\mathcal{B}}_{3 ; 1}^{1 / 3}}^{2} \leq C(s, 1 / 3) C_{1} \mathcal{E}^{\frac{2}{3}}\left(w_{n}\right) \leq C_{5}, \tag{2.19}
\end{align*}
$$

for suitable $C_{5}$. We recall the formula

$$
\eta_{w}=\partial_{2} w-\partial_{1} \frac{1}{2} w^{2}
$$

which, in terms of Fourier coefficients, reads

$$
\widehat{\eta_{w}}(k)=-i k_{2} \widehat{w}(k)+\frac{1}{2} i k_{1} \widehat{w^{2}}(k) .
$$

For $M_{1}, M_{2} \in \mathbb{N}$ to be chosen momentarily, we combine this with (2.17) and then (2.19) to find

$$
\begin{aligned}
& \sum_{\substack{\left|k_{1}\right|>2 \pi M_{1} \\
\left|k_{2}\right|>2 \pi M_{2}}}\left|\widehat{w_{n}}(k)\right|^{2} \\
& \leq \sum_{\substack{\left|k_{1}\right|>2 \pi M_{1}}}\left|\widehat{w_{n}}(k)\right|^{2}+\sum_{\substack{\left|k_{1}\right| \leq 2 \pi M_{1} \\
\left|k_{2}\right|>2 \pi M_{2}}}\left|\widehat{w_{n}}(k)\right|^{2} \\
& \leq\left(2 \pi M_{1}\right)^{-2 s} \sum_{\left|k_{1}\right|>2 \pi M_{1}}\left|k_{1}\right|^{2 s}\left|\widehat{w_{n}}(k)\right|^{2}+2 \sum_{\substack{\left|k_{1}\right| \leq 2 \pi M_{1} \\
\left|k_{2}\right|>2 \pi M_{2}}} \frac{1}{\left|k_{2}\right|^{2}}\left|\widehat{\eta_{w_{n}}}(k)\right|^{2} \\
& \quad+\frac{1}{2} \sum_{\substack{\left|k_{1}\right| \leq 2 \pi M_{1} \\
\left|k_{2}\right|>2 \pi M_{2}}} \frac{\left|k_{1}\right|^{2}}{\left|k_{2}\right|^{2}}\left|\widehat{w_{n}^{2}}(k)\right| \\
& \leq\left.\left(2 \pi M_{1}\right)^{-2 s} \sum_{\left|k_{1}\right|>2 \pi M_{1}}^{\left|\sum_{1}\right|^{2 s} \mid \widehat{w_{n}}}(k)\right|^{2}+\frac{2 M_{1}^{2}}{M_{2}^{2}} \sum_{\substack{\left|k_{1}\right| \leq 2 \pi M_{1} \\
\left|k_{2}\right|>2 \pi M_{2}}} \frac{1}{\left|k_{1}\right|^{2}}\left|\widehat{\eta_{w_{n}}}(k)\right|^{2}+\frac{C_{4}^{2}}{2} \sum_{\substack{\left|k_{1}\right| \leq 2 \pi M_{1} \\
\left|k_{2}\right|>2 \pi M_{2}}} \frac{\left|k_{1}\right|^{2}}{\left|k_{2}\right|^{2}} \\
& \leq\left(2 \pi M_{1}\right)^{-2 s} C_{5}+\frac{2 M_{1}^{2}}{M_{2}^{2}} \times \varepsilon_{0} \mathcal{E}_{\varepsilon_{n}}\left(w_{n}\right)+\frac{C_{4}^{2}}{2} \times 2\left(2 \pi M_{1}\right)^{3} \times \frac{1}{\pi M_{2}} .
\end{aligned}
$$

Taking $M_{1}=M \in \mathbb{N}$ and $M_{2}=M^{4}$, we find that

$$
\sum_{\substack{\left|k_{1}\right|>2 \pi M \\ \text { or } \\\left|k_{2}\right|>2 \pi M^{4}}}\left|\widehat{w_{n}}(k)\right|^{2} \rightarrow 0 \text { uniformly in } n \text { as } M \rightarrow \infty,
$$

which concludes the proof of (2.18).
Corollary 2.10. If $\left\{w_{n}\right\} \subset \mathcal{A}$ satisfy $\mathcal{E}_{\varepsilon_{n}}\left(w_{n}\right) \leq C<\infty$ and $\sup _{n}\left|\varepsilon_{n}\right| \leq \varepsilon_{0}$, then $\left\{w_{n}\right\}$ is precompact in $L^{p}\left(\mathbb{T}^{2}\right)$ for any $p \in\left[1, \frac{10}{3}\right)$.

Proof. The conclusion follows from the precompactness of $\left\{w_{n}\right\}$ in $L^{2}\left(\mathbb{T}^{2}\right)$, the bound (2.14) from Lemma 2.7, and interpolation.

Corollary 2.11. If $\left\{w_{n}\right\} \subset \mathcal{A}$ satisfy $\mathcal{E}_{\varepsilon}\left(w_{n}\right) \leq C<\infty$ for a fixed $\varepsilon$, then $\left\{w_{n}\right\}$ is precompact in $L^{p}\left(\mathbb{T}^{2}\right)$ for any $p \in[1,6)$.

Proof. We again appeal to the precompactness of $w_{n}$ in $L^{2}\left(\mathbb{T}^{2}\right)$ (taking $\varepsilon_{n}=\varepsilon$ in Proposition 2.9), but instead use the bound (2.15) from Lemma 2.7 before interpolating.

As a direct application of Corollary 2.11, we can prove an existence theorem for the original smectic energy $E_{\varepsilon}$ defined in (1.3). For any periodic $g: \mathbb{T}^{1} \rightarrow \mathbb{R}$, we define

$$
\widetilde{\mathcal{A}}_{\varepsilon, g}=\left\{u \in W^{1,2}\left(\mathbb{T}^{2}\right): E_{\varepsilon}(u)<\infty, \int_{0}^{1} u\left(x_{1}, x_{2}\right) d x_{1}=g\left(x_{2}\right) \text { for a.e. } x_{2} \in[0,1)\right\} .
$$

We note that $\widetilde{\mathcal{A}}_{\varepsilon, g}$ is non-empty for example when $g$ is smooth.

Corollary 2.12. For fixed $\varepsilon>0$, if $\widetilde{\mathcal{A}}_{\varepsilon, g}$ is non-empty, then there exists $u_{\varepsilon} \in \widetilde{\mathcal{A}}_{\varepsilon, g}$ such that $E_{\varepsilon}\left(u_{\varepsilon}\right)=\inf _{u \in \widetilde{\mathcal{A}}_{\varepsilon, g}} E_{\varepsilon}(u)$.

Proof. Since admissible class is non-empty, we can let $u_{n}$ be a minimizing sequence for

$$
E_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega} \frac{1}{\varepsilon}\left(\partial_{2} u-\frac{1}{2}\left(\partial_{1} u\right)^{2}\right)^{2}+\varepsilon\left(\partial_{11} u\right)^{2} d x
$$

in particular, the energies are uniformly bounded. By Corollary 2.11, we have, up to a subsequence that we do not relabel,

$$
\begin{equation*}
\partial_{1} u_{n} \rightarrow \partial_{1} u_{0} \quad \text { in } L^{4}\left(\mathbb{T}^{2}\right) \tag{2.20}
\end{equation*}
$$

for some $u_{0}$. Since $u_{n}$ is a minimizing sequence, the first term in $E_{\varepsilon}$ combined with the $L^{4}$-convergence of $\partial_{1} u_{n}$ implies that $\left\{\partial_{2} u_{n}\right\}$ are uniformly bounded in $L^{2}\left(\mathbb{T}^{2}\right)$. Thus, up to a further subsequence which we do not notate, there exists $v_{0} \in L^{2}$ such that $\partial_{2} u_{n} \rightarrow v_{0}$ weakly in $L^{2}\left(\mathbb{T}^{2}\right)$. Furthermore, by the uniqueness of weak limits, it must be that $v_{0}=\partial_{2} u_{0}$, so $u_{0} \in W^{1,2}\left(\mathbb{T}^{2}\right)$. Expanding

$$
\int_{\Omega}\left(\partial_{2} u_{n}-\frac{\left(\partial_{1} u_{n}\right)^{2}}{2}\right)^{2} d x=\int_{\Omega}\left[\left(\partial_{2} u_{n}\right)^{2}-\left(\partial_{1} u_{n}\right)^{2} \partial_{2} u_{n}+\frac{1}{4}\left(\partial_{1} u_{n}\right)^{4}\right] d x
$$

we see that by (2.20), the lower semicontinuity of the $L^{2}$-norm under weak convergence, and the fact that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{T}^{2}}\left(\partial_{1} u_{n}\right)^{2} \partial_{2} u_{n} d x=\int_{\mathbb{T}^{2}}\left(\partial_{1} u_{0}\right)^{2} \partial_{2} u_{0} d x
$$

we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{\mathbb{T}^{2}}\left(\partial_{2} u_{n}-\frac{\left(\partial_{1} u_{n}\right)^{2}}{2}\right)^{2} d x \geq \int_{\mathbb{T}^{2}}\left(\partial_{2} u-\frac{\left(\partial_{1} u\right)^{2}}{2}\right)^{2} d x \tag{2.21}
\end{equation*}
$$

Also, the uniform $L^{2}$-bound on $\partial_{11} u$ and the uniqueness of limits implies that, up to a subsequence, $\partial_{11} u_{n} \rightarrow \partial_{11} u_{0}$ weakly in $L^{2}\left(\mathbb{T}^{2}\right)$, and thus

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{\Omega}\left(\partial_{11} u_{n}\right)^{2} d x \geq \int_{\mathbb{T}^{2}}\left(\partial_{11} u_{0}\right)^{2} d x \tag{2.22}
\end{equation*}
$$

Putting together (2.21)-(2.22), we conclude

$$
\inf _{\mathcal{A}_{\varepsilon, g}} E_{\varepsilon}=\liminf _{n \rightarrow \infty} E_{\varepsilon}\left(u_{n}\right) \geq E_{\varepsilon}\left(u_{0}\right)
$$

Finally, by Poincare's inequality and the weak convergence of $\nabla u_{n}$ to $\nabla u_{0}$ in $L^{2}\left(\mathbb{T}^{2}\right)$, we conclude that $u_{n}$ converges to $u_{0}$ strongly in $L^{2}\left(\mathbb{T}^{2}\right)$. Hence

$$
\int_{0}^{1} u\left(x_{1}, x_{2}\right) d x_{1}=\lim _{n \rightarrow \infty} \int_{0}^{1} u_{n}\left(x_{1}, x_{2}\right) d x_{1}=g\left(x_{2}\right) \text { for a.e. } x_{2} \in[0,1)
$$

therefore $u_{0}$ belongs to $\mathcal{A}_{\varepsilon, g}$ and is a minimizer.
3. Lower bound. We consider the question of finding a limiting functional as a lower bound for $E_{\varepsilon}$ as $\varepsilon$ goes to zero. Given a sequence $\left\{w_{\varepsilon}\right\}$ with $E_{\varepsilon}\left(w_{\varepsilon}\right) \leq C$ and $\varepsilon \rightarrow 0$, then

$$
\begin{equation*}
\int_{\mathbb{T}^{2}}\left(\left|\partial_{1}\right|^{-1} \eta_{w_{\varepsilon}}\right)^{2} d x \rightarrow 0 \tag{3.1}
\end{equation*}
$$

Therefore $\eta_{w_{\varepsilon}} \rightarrow 0$ distributionally and the natural function space for the limiting problem is

$$
\mathcal{A}_{0}=\left\{w \in L^{2}\left(\mathbb{T}^{2}\right): \eta_{w}=-\partial_{1} \frac{1}{2} w^{2}+\partial_{2} w=0 \text { in } \mathcal{D}^{\prime}\right\}
$$

3.1. Properties of $\mathbf{B V}$ functions. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded open set. We first recall the BV structure theorem. For $v \in[B V(\Omega)]^{2}$, the Radon measure $D v$ can be decomposed as

$$
D v=D^{a} v+D^{c} v+D^{j} v
$$

where $D^{a} v$ is the absolutely continuous part of $D v$ with respect to Lebesgue measure $\mathcal{L}^{2}$ and $D^{c} v, D^{j} v$ are the Cantor part and the jump part, respectively. All three measures are mutually singular. Furthermore, $D^{a} v=\nabla v \mathcal{L}^{2}\llcorner\Omega$ where $\nabla v$ is the approximate differential of $v ; D^{c} v=D_{s} v\left\llcorner\left(\Omega \backslash S_{v}\right)\right.$ and $D^{j} v=D_{s} v\left\llcorner J_{v}\right.$, where $D_{s} v$ is the singular part of $D v$ with respect to $\mathcal{L}^{2}, S_{v}$ is the set of approximate discontinuity points of $v$, and $J_{v}$ is the jump set of $v$. Since $J_{v}$ is countably $\mathcal{H}^{1}$-rectifiable, $D^{j} v$ can be expressed as

$$
\left(v^{+}-v^{-}\right) \otimes \nu \mathcal{H}^{1}\left\llcorner J_{v},\right.
$$

where $\nu$ is orthogonal to the approximate tangent space at each point of $J_{v}$ and $v^{+}$, $v^{-}$are the traces of $v$ from either side of $J_{v}$.

Next we quote the following general chain rule formula for BV functions.
Theorem 3.1. ([2, Theorem 3.96]) Let $w \in[B V(\Omega)]^{2}, \Omega \subset \mathbb{R}^{2}$, and $f \in\left[C^{1}\left(\mathbb{R}^{2}\right)\right]^{2}$ be a Lipschitz function satisfying $f(0)=0$ if $|\Omega|=\infty$. Then $v=f \circ w$ belongs to $[B V(\Omega)]^{2}$ and

$$
\begin{equation*}
D v=\nabla f(w) \nabla w \mathcal{L}^{2}\left\llcorner\Omega+\nabla f(\tilde{w}) D^{c} w+\left(f\left(w^{+}\right)-f\left(w^{-}\right)\right) \otimes \nu_{w} \mathcal{H}^{1}\left\llcorner J_{w} .\right.\right. \tag{3.2}
\end{equation*}
$$

Here $\tilde{w}(x)$ is the approximate limit of $w$ at $x$ and is defined on $\Omega \backslash J_{w}$.
In what follows, we will use Theorem 3.1 to compute the distributional divergence of such $f \circ w$ as the trace of the measure (3.2), that is

$$
\begin{equation*}
\operatorname{div}(f \circ w)=\operatorname{tr}(\nabla f(w) \nabla w) \mathcal{L}^{2}\left\llcorner\Omega+\operatorname{tr}\left(\nabla f(\tilde{w}) D^{c} w\right)+\left(f\left(w^{+}\right)-f\left(w^{-}\right)\right) \cdot \nu_{w} \mathcal{H}^{1}\left\llcorner J_{w}\right.\right. \tag{3.3}
\end{equation*}
$$

as measures.
Lemma 3.2. If $w \in \mathcal{A}_{0} \cap\left(B V \cap L^{\infty}\right)\left(\mathbb{T}^{2}\right)$, then denoting by $D_{i}^{a} w$ and $D_{i}^{c} w$ the $i$-th components of the measures $D^{a} w$ and $D^{c} w$, we have

$$
\left(-w D_{1}^{a} w+D_{2}^{a} w\right)=0 \quad \text { and } \quad\left(-\tilde{w} D_{1}^{c} w+D_{2}^{c} w\right)=0
$$

as measures, and, setting $\sigma(w)=\left(-w^{2} / 2, w\right)$,

$$
\begin{equation*}
\left[\sigma\left(w^{+}\right)-\sigma\left(w^{-}\right)\right] \cdot \nu_{w}=0 \quad \mathcal{H}^{1} \text {-a.e. on } J_{w} \tag{3.4}
\end{equation*}
$$

Proof. Let $\sigma(w)=\left(-w^{2} / 2, w\right)$. By virtue of $w \in \mathcal{A}_{0} \cap\left(B V \cap L^{\infty}\right)\left(\mathbb{T}^{2}\right)$ and (3.3), we know that, in the sense of distributions,

$$
\begin{align*}
0 & =-\partial_{1} \frac{1}{2} w^{2}+\partial_{2} w \\
& =\operatorname{div} \sigma(w) \\
& =\left(-w D_{1}^{a} w+D_{2}^{a} w\right)+\left(-\tilde{w} D_{1}^{c} w+D_{2}^{c} w\right)+\left(\sigma\left(w^{+}\right)-\sigma\left(w^{-}\right)\right) \cdot \nu_{w} \mathcal{H}^{1}\left\llcorner J_{w} .\right. \tag{3.5}
\end{align*}
$$

But the measures $D^{a} w, D^{c} w$, and $D^{j} w$ are mutually singular, which implies that each individual term in (3.5) is the zero measure. The lemma immediately follows.
3.2. Limiting functional and the proof of the lower bound. Let

$$
\Sigma(w)=\left(-\frac{1}{3} w^{3}, \frac{1}{2} w^{2}\right) .
$$

If $w \in \mathcal{A}_{0} \cap\left(B V \cap L^{\infty}\right)\left(\mathbb{T}^{2}\right)$, we can apply the chain rule (3.2) and Lemma 3.2 to $\Sigma(w)$, yielding

$$
\begin{align*}
\operatorname{div} \Sigma(w)= & w\left(-w D_{1}^{a} w+D_{2}^{a} w\right) \mathcal{L}^{2}+\tilde{w}\left(-\tilde{w} D_{1}^{c} w+D_{2}^{c} w\right) \\
& +\left(\Sigma\left(w^{+}\right)-\Sigma\left(w^{-}\right)\right) \cdot \nu_{w} \mathcal{H}^{1}\left\llcorner J_{w}\right. \\
= & \left(\Sigma\left(w^{+}\right)-\Sigma\left(w^{-}\right)\right) \cdot \nu_{w} \mathcal{H}^{1}\left\llcorner J_{w} .\right. \tag{3.6}
\end{align*}
$$

Remark 3.3. Observe if $w=u_{x}$ and $u_{z}=\frac{1}{2} u_{x}^{2}$, the entropy $\Sigma(w)$ here is exactly the entropy $\tilde{\Sigma}(\nabla u)=-\left(u_{x} u_{z}-\frac{1}{6} u_{x}^{3}, \frac{1}{2} u_{x}^{2}\right)$, which we used in the lower bound estimates in [25]. In fact, the argument below also gives a proof of the lower bound on any domain $\Omega \subset \mathbb{R}^{2}$; the only necessary modification of the proof presented above is that one does not use $\left|\partial_{1}\right|^{-1} \eta_{w}$ to represent the compression energy, but rather the original expression from (1.3).

Theorem 3.4. Let $\varepsilon_{n} \searrow 0,\left\{w_{n}\right\} \subset L^{2}\left(\mathbb{T}^{2}\right)$ with $\partial_{1} w_{n} \in L^{2}\left(\mathbb{T}^{2}\right)$ such that

$$
\begin{equation*}
w_{n} \rightarrow w \text { in } L^{3}\left(\mathbb{T}^{2}\right), \tag{3.7}
\end{equation*}
$$

for some $w \in\left(B V \cap L^{\infty}\right)\left(\mathbb{T}^{2}\right)$. Then

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \mathcal{E}_{\varepsilon_{n}}\left(w_{n}\right) \geq \int_{J_{w}} \frac{\left|w^{+}-w^{-}\right|^{3}}{12 \sqrt{1+\frac{1}{4}\left(w^{+}+w^{-}\right)^{2}}} d \mathcal{H}^{1} . \tag{3.8}
\end{equation*}
$$

Remark 3.5. Due to recent progress on the rectifiability for the defect set to certain solutions of Burgers equation [21], the lower bound should in fact be valid among a larger class of limiting functions. Specifically, if $w \in \mathcal{A}_{0} \cap L^{\infty}\left(\mathbb{T}^{2}\right)$ and for every smooth convex entropy $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ and corresponding entropy flux $\Psi: \mathbb{R} \rightarrow \mathbb{R}$ with $\Psi^{\prime}(v)=-\Phi^{\prime}(v) v$,

$$
\begin{equation*}
\partial_{1} \Psi(w)+\partial_{2} \Phi(w) \text { is a finite Radon measure, } \tag{3.9}
\end{equation*}
$$

then there exists an $H^{1}$-rectifiable set $J_{w}$ with strong traces on either side such that

$$
\begin{equation*}
|\operatorname{div} \Sigma(w)|=\frac{\left|w^{+}-w^{-}\right|^{3}}{12 \sqrt{1+\frac{1}{4}\left(w^{+}+w^{-}\right)^{2}}} \mathcal{H}^{1}\left\llcorner J_{w} .\right. \tag{3.10}
\end{equation*}
$$

In particular, by substituting any entropy/entropy flux pair for $\Sigma$ in the the argument below, one finds that for an energy bounded sequence, any limiting function $w$ satisfies (3.9) and thus (3.10). Technically, applying the results of [21] to deduce (3.10) would require extending the arguments there from $[0, T] \times \mathbb{R}$ to the bounded domain $\mathbb{T}^{2}$ as in $[18,19]$ and proving that (3.9) implies that $w \in C^{0}\left([0,1] ; L^{1}\left(\mathbb{T}^{1}\right)\right)$ (the continuous in time dependence being a technical assumption in [21, Definition 1.1]). Regarding the regularity assumption, it is known (see e.g. [20, Remark 5.2], [15, pg. 191]) that the argument of Vasseur [35] applies in this context and gives a representative of $w$ belonging to $C^{0}\left([0,1] ; L^{1}\left(\mathbb{T}^{1}\right)\right)$. The extension of $[21]$ to a bounded domain should not present serious difficulties, although we have not pursued the details further. The
concentration of the entropy measures on an $\mathcal{H}^{1}$-rectifiable jump set should be a key step in obtaining the full $\Gamma$-convergence of $E_{\varepsilon}$ in (1.3) to the limiting energy (3.10). The remaining obstacles to such a result are the construction of a recovery sequence for functions that with gradients that do not belong to $B V \cap L^{\infty}$ (as the existing technology from [7, 29] uses both those assumptions) and the strengthening of the results of [21] to include functions which do not belong to $L^{\infty}$.

Proof of Theorem 3.4. Without loss of generality, we assume $\liminf _{n \rightarrow \infty} \mathcal{E}_{\varepsilon_{n}}\left(w_{n}\right)<$ $\infty$, so that $w \in \mathcal{A}_{0}$ by (3.1). Now for any smooth $v$, direct calculation shows

$$
\begin{align*}
\operatorname{div} \Sigma(v) & =\partial_{1}\left(-\frac{1}{3} v^{3}\right)+\partial_{2}\left(\frac{1}{2} v^{2}\right)  \tag{3.11}\\
& =v\left(\partial_{2} v-v \partial_{1} v\right)=v \eta_{v} .
\end{align*}
$$

On the other hand, we can bound $\mathcal{E}_{\varepsilon}$ from below as follows:

$$
\begin{align*}
\mathcal{E}_{\varepsilon}(v) & =\frac{1}{2} \int_{\mathbb{T}^{2}} \frac{1}{\varepsilon}\left(\left|\partial_{1}\right|^{-1}\left(\partial_{2} v-\partial_{1} \frac{1}{2} v^{2}\right)\right)^{2}+\varepsilon\left(\partial_{1} v\right)^{2} d x  \tag{3.12}\\
& =\frac{1}{2 \varepsilon}\left\|\left|\partial_{1}\right|^{-1} \eta_{v}\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}^{2}+\frac{\varepsilon}{2}\left\|\partial_{1} v\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}^{2} \\
& \geq\left\|\left|\partial_{1}\right|^{-1} \eta_{v}\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}\left\|\partial_{1} v\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}
\end{align*}
$$

From (3.11) and (3.12), given any smooth periodic function $\phi$, for any smooth $v$, we have

$$
\begin{align*}
& \left|-\int_{\mathbb{T}^{2}} \Sigma(v) \cdot \nabla \phi d x\right|=\left|\int_{\mathbb{T}^{2}} \operatorname{div} \Sigma(v) \phi d x\right|  \tag{3.13}\\
\leq & \left(\int_{\mathbb{T}^{2}} \|\left.\left.\partial_{1}\right|^{-1} \eta_{v}\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{T}^{2}}\left|\partial_{1}(v \phi)\right|^{2} d x\right)^{\frac{1}{2}} \\
\leq & \left\|\left|\partial_{1}\right|^{-1} \eta_{v}\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}\left\|\partial_{1} v\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}\|\phi\|_{L^{\infty}\left(\mathbb{T}^{2}\right)} \\
& +\left\|\left|\partial_{1}\right|^{-1} \eta_{v}\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}\|v\|_{L^{2}\left(\mathbb{T}^{2}\right)}\left\|\partial_{1} \phi\right\|_{L^{\infty}\left(\mathbb{T}^{2}\right)} \\
\leq & \mathcal{E}_{\varepsilon}(v)\|\phi\|_{L^{\infty}\left(\mathbb{T}^{2}\right)}+C \sqrt{\varepsilon} \mathcal{E}_{\varepsilon}(v)^{\frac{1}{2}}\|v\|_{L^{2}\left(\mathbb{T}^{2}\right)}\left\|\partial_{1} \phi\right\|_{L^{\infty}\left(\mathbb{T}^{2}\right)} .
\end{align*}
$$

By the density of smooth functions in $L^{2}\left(\mathbb{T}^{2}\right)$, (3.13) holds for any $v \in L^{2}\left(\mathbb{T}^{2}\right)$ with $\left|\partial_{1}\right|^{-1} \eta_{v}, \partial_{1} v \in L^{2}\left(\mathbb{T}^{2}\right)$. Thus

$$
\begin{align*}
& \left|-\int_{\mathbb{T}^{2}} \Sigma\left(w_{n}\right) \cdot \nabla \phi d x\right|  \tag{3.14}\\
\leq & \mathcal{E}_{\varepsilon_{n}}\left(w_{n}\right)\|\phi\|_{L^{\infty}\left(\mathbb{T}^{2}\right)}+C \sqrt{\varepsilon_{n}} \mathcal{E}_{\varepsilon_{n}}\left(w_{n}\right)^{\frac{1}{2}}\left\|w_{n}\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}\left\|\partial_{1} \phi\right\|_{L^{\infty}\left(\mathbb{T}^{2}\right)}
\end{align*}
$$

Letting $n \rightarrow \infty$, by the strong convergence of $w_{n}$ in $L^{3}\left(\mathbb{T}^{2}\right)$, we have $\Sigma\left(w_{n}\right) \rightarrow \Sigma(w)$ in $L^{1}\left(\mathbb{T}^{2}\right)$, so that

$$
\begin{align*}
-\int_{\mathbb{T}^{2}} \Sigma(w) \cdot \nabla \phi d x & =-\lim _{n \rightarrow \infty} \int_{\mathbb{T}^{2}} \Sigma\left(w_{n}\right) \cdot \nabla \phi d x  \tag{3.15}\\
& \leq \liminf _{n \rightarrow \infty} \mathcal{E}_{\varepsilon_{n}}\left(w_{n}\right)\|\phi\|_{L^{\infty}\left(\mathbb{T}^{2}\right)}
\end{align*}
$$

By taking the supremum over all smooth test functions $\phi$ with $\|\phi\|_{L^{\infty}} \leq 1$ in (3.15), we see that $|\operatorname{div} \Sigma(w)|\left(\mathbb{T}^{2}\right)$ is a lower bound for the energies. To derive the explicit
expression for this measure, we note that since $w \in \mathcal{A}_{0} \cap\left(B V \cap L^{\infty}\right)\left(\mathbb{T}^{2}\right)$, (3.4) and (3.6) apply, so that

$$
|\operatorname{div} \Sigma(w)|\left(\mathbb{T}^{2}\right)=\left|\left[\Sigma\left(w^{+}\right)-\Sigma\left(w^{-}\right)\right] \cdot \frac{\left(\sigma\left(w^{+}\right)-\sigma\left(w^{-}\right)\right)^{\perp}}{\left|\sigma\left(w^{+}\right)-\sigma\left(w^{-}\right)\right|}\right| \mathcal{H}^{1}\left\llcorner J_{w} .\right.
$$

The right hand side of this equation can be calculated directly from the formulas for $\sigma(w)$ and $\Sigma(w)$ and simplifies to (3.8) (see [25, Proof of Lemma 4.1, Equation (6.3)].ם

Remark 3.6. When comparing with the lower bound proof from [25], this proof requires an extra integration by parts, as it does not rely on a pointwise lower bound on the energy density (see e.g. [25, Equation (4.11)]). The relationship between these two entropies and the structure of the corresponding arguments is exactly mirrored in the entropies devised in $[16,8]$ for the Aviles-Giga problem - they are equal on the zero set of the potential term, and both give lower bounds, with only one of them ([16]) bounding the energy density from below pointwise.

ACKNOWLEDGEMENTS We thank both referees for useful comments that improved the article. M.N. also thanks Elio Marconi for helpful discussions regarding [21]. M.N.'s research is supported by NSF grant RTG-DMS 1840314. X.Y.'s research is supported by Simons Collaboration Grant \#947054, together with a Research Excellence Grant and a CLAS Dean's summer research grant from University of Connecticut.

## REFERENCES

[1] L. Ambrosio, C. De Lellis, and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations, 9 (1999), pp. 327-255.
[2] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.
[3] P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), pp. 1-17.
[4] E. A. Brener and V. I. Marchenko, Nonlinear theory of dislocations in smectic crystals: An exact solution, Phys. Rev. E, 59 (1999), pp. R4752-R4753.
[5] R. Cantero-Álvarez, F. Otto, and J. Steiner, The concertina pattern: A bifurcation in ferromagnetic thin films, J Nonlinear Sci, 17 (2007), pp. 221-281.
[6] M. E. Caplan, A. S. Schneider, and C. J. Horowitz, Elasticity of nuclear pasta, Phys. Rev. Lett., 121 (2018), p. 132701.
[7] S. Conti and C. De Lellis, Sharp upper bounds for a variational problem with singular perturbation, Math. Ann., 338 (2007), pp. 119-146.
[8] A. DeSimone, S. Müller, R. V. Kohn, and F. Otto, A compactness result in the gradient theory of phase transitions, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 131 (2001), p. 833-844.
[9] F. Ghiraldin and X. Lamy, Optimal Besov differentiability for entropy solutions of the eikonal equation, Comm. Pure Appl. Math., 73 (2020), pp. 317-349.
[10] M. Goldman, M. Josien, and F. Otto, New bounds for the inhomogenous Burgers and the Kuramoto-Sivashinsky equations, Communications in Partial Differential Equations, 40 (2015), pp. 2237-2265.
[11] R. Ignat and B. Merlet, Entropy method for line-energies, Calc. Var. Partial Differential Equations, 44 (2012), pp. 375-418.
[12] R. Ignat and F. Оtto, The magnetization ripple: a nonlocal stochastic PDE perspective, J. Math. Pures Appl. (9), 130 (2019), pp. 157-199.
[13] R. Ignat, F. Otto, T. Reid, and P. Tsatsoulis, Variational methods for a singular SPDE yielding the universality of the magnetization ripple, arxiv.org/pdf/2010.13123.
[14] T. Ishikawa and O. D. Lavrentovich, Dislocation profile in cholesteric finger texture, Phys. Rev. E, 60 (1999), pp. R5037-R5039.
[15] P.-E. Jabin, F. Оtto, and B. Perthame, Line-energy Ginzburg-Landau models: zero-energy states, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1 (2002), pp. 187-202.
[16] W. Jin and R. V. Kohn, Singular perturbation and the energy of folds, J. Nonlinear Sci., 10 (2000), pp. 355-390.
[17] Jutta Steiner, The Formation of the Concertina Pattern : Experiments, Analysis, and Numerical Simulations, PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Sept. 2011.
[18] E. Marconi, Characterization of minimizers of Aviles-Giga functionals in special domains, Arch. Ration. Mech. Anal., 242 (2021), pp. 1289-1316.
[19] E. Marconi, Rectifiability of entropy defect measures in a micromagnetics model, Advances in Calculus of Variations, (2021), p. 000010151520210012.
[20] E. Marconi, On the structure of weak solutions to scalar conservation laws with finite entropy production, Cal. Var. PDE, 61 (2022), pp. aper No. 32, 30 pp.
[21] ——, The rectifiability of the entropy defect measure for Burgers equation, J. Funct. Anal., 283 (2022), pp. Paper No. 109568, 19.
[22] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), pp. 489-507.
[23] —, Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8 (1981), pp. 69-102.
[24] - , L'injection du cône positif de $H^{-1}$ dans $W^{-1, q}$ est compacte pour tout $q<2$, J. Math. Pures Appl. (9), 60 (1981), pp. 309-322.
[25] M. Novack and X. Yan, Compactness and sharp lower bound for a 2D smectics model, J. Nonlinear Sci., 31 (2021), pp. Paper No. 60, 26.
[26] -, Nonlinear approximation of 3D smectic liquid crystals: sharp lower bound and compactness, Calc. Var. Partial Differential Equations, 61 (2022), pp. Paper No. 157, 29.
[27] F. Отто, Optimal bounds on the Kuramoto-Sivashinsky equation, Journal of Functional Analysis, 257 (2009), pp. 2188-2245.
[28] F. Otto and J. Steiner, The concertina pattern, Calc. Var. Partial Differential Equations, 39 (2010), pp. 139-181.
[29] A. Poliakovsky, Upper bounds for singular perturbation problems involving gradient fields, J. Eur. Math. Soc. (JEMS), 9 (2007), pp. 1-43.
[30] C. D. Santangelo, Geometry and the nonlinear elasticity of defects in smectic liquid crystals, Liquid Crystals Today, 15 (2006), pp. 11-18.
[31] C. D. Santangelo and R. D. Kamien, Bogomol'nyi, Prasad, and Sommerfield configurations in smectics, Phys. Rev. Lett., 91 (2003), p. 045506.
[32] L. TARTAR, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, vol. 39 of Res. Notes in Math., Pitman, Boston, Mass.-London, 1979, pp. 136-212.
[33] L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of nonlinear partial differential equations (Oxford, 1982), vol. 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Reidel, Dordrecht, 1983, pp. 263-285.
$[34]-$, Compensation effects in partial differential equations, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 29 (2005), pp. 395-453.
[35] A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), pp. 181-193.
[36] R. Venkatraman, V. Dabade, and R. D. James, Bounds on the energy of a soft cubic ferromagnet with large magnetostriction, J. Nonlinear Sci., 30 (2020), pp. 3367-3388.


[^0]:    * Department of Mathematics, The University of Texas at Austin, Austin, TX, USA (michael.novack@austin.utexas.edu).
    ${ }^{\dagger}$ Department of Mathematics, The University of Connecticut, Storrs, CT, USA (xiaodong.yan@uconn.edu).
    ${ }^{1}$ More generally, a periodic distribution $f$ on $\mathbb{T}^{2}$ has "vanishing mean in $x_{1}$ " if for all $\left(k_{1}, k_{2}\right)=$ $k \in(2 \pi \mathbb{Z})^{2}$ with $k_{1}=0, \widehat{f}(k)=0$. If $f$ corresponds to an $L^{p}$ function, $p \in[1, \infty)$, this is equivalent to the existence of a sequence $\left\{\varphi_{k}\right\}$ of smooth, periodic functions satisfying (1.2) that converges in $L^{p}$ to $f$.

