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Abstract. We obtain a full resolution result for minimizers in the exterior isoperimetric
problem with respect to a compact obstacle in the large volume regime v → ∞. This
is achieved by the study of a Plateau-type problem with free boundary (both on the
compact obstacle and at infinity) which is used to identify the first obstacle-dependent
term (called isoperimetric residue) in the energy expansion, as v → ∞, of the exterior
isoperimetric problem. A crucial tool in the analysis of isoperimetric residues is a new
“mesoscale flatness criterion” for hypersurfaces with bounded mean curvature, which
we obtain as a development of ideas originating in the theory of minimal surfaces with
isolated singularities.

Contents

1. Introduction 1
2. A mesoscale flatness criterion for varifolds 11
3. Application of quantitative isoperimetry 27
4. Properties of isoperimetric residues 33
5. Resolution theorem for exterior isoperimetric sets 38
Appendix A. Proof of Lemma 2.6 50
Appendix B. Proof of Theorem 2.9 54
Appendix C. Proof of the monotonicity formula 60
Appendix D. Auxiliary facts on spherical and cylindrical graphs 61
Appendix E. Obstacles with zero isoperimetric residue 65
References 66

1. Introduction

1.1. Overview. Given a compact set W ⊂ Rn+1 (n ≥ 1), we consider the classical exte-
rior isoperimetric problem associated to W , namely

ψW (v) = inf
{
P (E; Ω) : E ⊂ Ω , |E| = v

}
, v > 0 , Ω = Rn+1 \W , (1.1)

in the large volume regime v → ∞. Here |E| denotes the volume (Lebesgue measure) of E,
and P (E; Ω) the (distributional) perimeter of E relative to Ω, so that P (E; Ω) = Hn(Ω ∩
∂E) whenever ∂E is locally Lipschitz. Relative isoperimetric problems are well-known
for their analytical [Maz11, Sections 6.4-6.6] and geometric [Cha01, Chapter V] relevance.
They also provide important models in physical applications, which obviously include
capillarity theory [Fin86], but are not limited to it. To make an example related to the
large volume regime considered here, in general relativity, (unique) “foliations at infinity”
by hypersurfaces with constant mean curvature can be constructed by solving exterior
isoperimetric problems at large volumes; for this beautiful approach to the Huisken-Yau
theorem, see [EM13].
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Figure 1.1. Quantitative isoperimetry gives no information on how W affects
ψW (v) for v large. This is true both at the level of energy asymptotics and of
resolution formulas, see (1.2) and (1.4), since minimizers of ψW (v) are close to
balls of volume v only in the exterior of a ball with radius R0(v) v

1/(n+1) → ∞
(with R0(v) → 0+) as v → ∞.

When v → ∞, we expect minimizers Ev in (1.1) to closely resemble balls of volume v.
Indeed, by a direct comparison and by the Euclidean isoperimetric inequality, denoting by
B(v)(x) the ball of center x and volume v, and with B(v) = B(v)(0), we find that

lim
v→∞

ψW (v)

P (B(v))
= 1 . (1.2)

Additional information can be obtained by combining (1.2) with the quantitative Euclidean
isoperimetric inequality [FMP08]: if 0 < |E| <∞, then

P (E)

P (B(|E|))
− 1 ≥ c(n) inf

x∈Rn+1

( |E∆B(|E|)(x)|
|E|

)2
. (1.3)

The combination of (1.2) and (1.3) shows that minimizers Ev in ψW (v) are close in L1-
distance to balls. In turn, this information can be considerably strengthened by a somehow
classical argument (see, e.g. [FM11]) based on the local regularity theory of perimeter
minimizers: in this way one shows the existence of a positive constant v0 and of a function
R0(v), both depending on n and W , with R0(v) → 0+ and R0(v) v

1/(n+1) → ∞ as v → ∞,
and such that, if Ev is a minimizer of (1.1) with v > v0, then (see Figure 1.1)

(∂Ev) \BR0 v1/(n+1) is contained in a C1-small normal graph over ∂B(v)(x),

for some x ∈ Rn+1 with |x| = (v/ωn+1)
1/(n+1) + o(v1/(n+1)) as v → ∞ ;

(1.4)

here ωm stands for the volume of the unit ball in Rm, Br(x) is the ball of center x and
radius r in Rn+1, and Br = Br(0). The picture of the situation offered by (1.2) and (1.4) is
thus incomplete under one important aspect: it offers no information related to the specific
“obstacle” W under consideration – in other words, two different obstacles are completely
unrecognizable from (1.2) and (1.4) alone. The first goal of this paper is characterizing
the leading order obstacle-dependent terms in the exterior isoperimetric problem, thus
improving on both the energy expansion (1.2) and the “resolution formula” (1.4).
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The first step in order to obtain obstacle-dependent information on ψW is studying
L1
loc-subsequential limits F of exterior isoperimetric sets Ev as v → ∞. Since the mean

curvature of Ev has order v−1/(n+1) as v → ∞, such limit sets F are easily seen to have
minimal (zero mean curvature) boundaries. A finer analysis is required to give a more
detailed characterization of such limits F as minimizers in a “Plateau’s problem with free
boundary on the obstacle and at infinity”, whose negative is precisely defined in (1.10)
below and denoted by R(W ). We call R(W ) the isoperimetric residue of W because
it captures the “residual effect” of W in (1.2), as expressed by the limit

lim
v→∞

ψW (v)− P (B(v)) = −R(W ) . (1.5)

The study of the geometric information aboutW stored inR(W ) is particularly interesting.
We shall prove here its close relation to the maximal hyperplane sectional area and the
maximal hyperplane projection area of W (see (1.11) below – which shows, in particular,
that R(W ) > 0 as soon as |W | > 0), and we shall discuss its maximization under a
diameter constraint (see (1.17) below). The proof of (1.5) requires proving a blow-down
result for exterior minimal hypersurfaces, and then extracting sharp decay information
towards hyperplane blowdown limits. In particular, in the process of proving (1.5), we
shall prove the existence of a positive R2 (depending on n andW only) such that for every
maximizer F ofR(W ), (∂F )\BR2 is the graph of a smooth solution to the minimal surfaces
equation. An application of Allard’s regularity theorem [All72] leads then to complement
(1.4) with the following “local” resolution formula: for every S > R2, if v is large enough
in terms of n, W and S, then

(∂Ev) ∩
(
BS \BR2

)
is contained in a C1-small normal graph over ∂F ,

where F is optimal for the isoperimetric residue R(W ) of W .
(1.6)

Unfortunately, (1.4) and (1.6) contain no information on ∂Ev in the “mesoscale” transition

region between the resolution models ∂F and ∂B(v)(x), i.e., inside BR0(v) v1/(n+1) \BS .

To address this last issue, we are compelled to develop what is another main result of our
paper, and namely, amesoscale flatness criterion for hypersurfaces with bounded mean
curvature. This kind of statement is qualitatively novel with respect to the flatness criteria
typically used in the study of blowups and blowdowns of minimal surfaces – although it is
clearly related to those tools at the mere technical level – and holds promise for applications
to other geometric variational problems. In the study of the exterior isoperimetric problem,
it allows us to prove the existence of positive constants v0 and R1, depending on n and W
only, such that if v > v0 and Ev is a minimizer of ψW (v), then

(∂Ev) ∩
(
BR1 v1/(n+1) \BR2

)
is contained in a C1-small normal graph over ∂F ,

where F is optimal for the isoperimetric residue R(W ) of W .
(1.7)

The key difference between (1.6) and (1.7) is that the domain of resolution given in (1.7)

overlaps with that of (1.4): indeed, R0(v) → 0+ as v → ∞ implies that R0 v
1/(n+1) <

R1 v
1/(n+1) for v > v0. As a by-product of this overlapping and of the graphicality of

∂F outside of BR2 , we deduce that boundaries of exterior isoperimetric sets, outside of
BR2, are diffeomorphic to n-dimensional disks. Finally, when n ≤ 6, and maximizers F of
R(W ) have locally smooth boundaries in Ω, (1.7) can be propagated up to the obstacle
itself by a standard application of Allard’s regularity theorem; see Remark 1.8 below.

The rest of this introduction is organized as follows. In section 1.2 we rigorously define
and collect in one statement all the properties of isoperimetric residues proved in this paper,
see Theorem 1.1. In section 1.3 we gather all our results concerning exterior isoperimetric
sets with large volumes, see Theorem 1.7. Finally, in section 1.4 we introduce the mesoscale
flatness criterion, and in section 1.5 we present the organization of the paper.
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Figure 1.2. If (F, ν) ∈ F then F is contained in a slab around ν⊥ and is such
that ∂F has full projection over ν⊥. The behavior of ∂F inside of W is irrelevant,
since only the perimeter of F in Ω matters in the computation of resW (F, ν). The
perimeter of F in the open set Cν

R \W (depicted as a bold line) is compared to
ωnR

n (that is, the perimeter of a half-space orthogonal to ν in Cν
R); the corre-

sponding “residual” perimeter as R → ∞, that is resW (F, ν) , is optimized to
define R(W ).

1.2. Isoperimetric residues. We now define the isoperimetric residue R(W ) of a com-
pact obstacle W ⊂ Rn+1. We introduce the class

F
of those pairs (F, ν) with ν ∈ Sn (= the unit sphere of Rn+1) and F ⊂ Rn+1 a set of locally
finite perimeter in Ω (i.e., P (F ; Ω′) < ∞ for every Ω′ ⊂⊂ Ω), contained in slab around
ν⊥ = {x : x · ν = 0}, and whose boundary (see Remark 1.6 below) has full projection over
ν⊥ itself, that is to say, for some α, β ∈ R,

∂F ⊂
{
x : α < x · ν < β

}
, (1.8)

pν⊥(∂F ) = ν⊥ :=
{
x : x · ν = 0

}
, (1.9)

where pν⊥(x) = x−(x ·ν) ν, x ∈ Rn+1. In correspondence to the obstacleW , we introduce
the residual perimeter functional, resW : F → R ∪ {±∞}, by setting

resW (F, ν) = lim sup
R→∞

ωnR
n − P (F ;Cν

R \W ) , (F, ν) ∈ F ,

whereCν
R = {x ∈ Rn+1 : |pν⊥(x)| < R} denotes the (unbounded) cylinder of radius R with

axis along ν – and where the limsup is actually a monotone decreasing limit thanks to (1.8)
and (1.9) (see (4.11) below for a proof). For a reasonably “well-behaved” F , e.g. if ∂F
is the graph of a Lipschitz function over ν⊥, ωnR

n is the (obstacle-independent) leading
order term of the expansion of P (F ;Cν

R \W ) as R → ∞, while resW (F, ν) is expected to
capture the first obstacle-dependent “residual perimeter” contribution of P (F ;Cν

R \W )
as R → ∞. The isoperimetric residue of W is then defined by maximizing resW over
F , so that

R(W ) = sup
(F,ν)∈F

resW (F, ν) ; (1.10)

see Figure 1.2. To get an impression of the geometric meaning of this quantity, we notice
that R(λW ) = λnR(W ) for every λ > 0, and R(W ) can be trapped in between the
largest areas of the hyperplane sections and of the directional projections of the obstacle
(see (1.11) below); moreover, by exploiting (1.19) and (1.20) below, we can also show that
R(W ) = diam (W ) if n = 1 and W is connected. In general, however, R(W ) does not
seem to admit a simple characterization, as it is finely tuned to the near-to-the-obstacle
behavior of “plane-like” minimal surfaces with free boundary on W . Our first main result
collects these (and other) properties of isoperimetric residues and of their maximizers.
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Theorem 1.1 (Isoperimetric residues). Let W ⊂ Rn+1 be compact, and set Ω = Rn+1\W .

(i): We always have,
S(W ) ≤ R(W ) ≤ P(W ) , (1.11)

where

S(W ) = sup
{
Hn(W ∩Π) : Π is a hyperplane in Rn+1

}
(1.12)

P(W ) = sup
{
Hn(pν⊥(W )) : ν ∈ Sn

}
. (1.13)

In particular, R(W ) > 0 as soon as |W | > 0.

(ii): There exist maximizers (F, ν) of R(W ), and if (F, ν) is a maximizer of R(W ), then
F is a perimeter minimizer with free boundary in Ω, i.e.

P (F ; Ω ∩B) ≤ P (G; Ω ∩B) , ∀F∆G ⊂⊂ B, B a ball . (1.14)

Moreover, if R(W ) > 0, then there exist R2 = R2(W ), C0 = C0(W ), and a smooth
function f : ν⊥ → R such that

(∂F ) \Cν
R2

=
{
x+ f(x) ν : x ∈ ν⊥ , |x| > R2

}
, (1.15)

and, for some a, b ∈ R, and c ∈ ν⊥, and every x ∈ ν⊥, |x| > R2,

f(x) = a , (n = 1)∣∣∣f(x)− (
a+

b

|x|n−2
+
c · x
|x|n

)∣∣∣ ≤ C0

|x|n
, (n ≥ 2) (1.16)

max
{
|x|n−1 |∇f(x)|, |x|n |∇2f(x)|

}
≤ C0 ,

with max{|a|, |b|, |c|} ≤ C0; finally, ∂F is contained in the smallest slab {x : α ≤ x ·ν ≤ β}
containing W .

(iii): At fixed diameter, isoperimetric residues are maximized by balls, i.e.

R(W ) ≤ ωn

(diamW

2

)n
= R

(
cl
(
BdiamW/2

))
, (1.17)

where cl (X) denotes topological closure of X ⊂ Rn+1. Moreover, if equality holds in (1.17)
and (F, ν) is a maximizer of R(W ), then (1.16) holds with b = 0 and c = 0, and setting
Π =

{
y : y · ν = a

}
, we have

(∂F ) \W = Π \ cl
(
BdiamW/2(x)

)
, (1.18)

for some x ∈ Π. Finally, equality holds in (1.17) if and only if there exist a hyperplane Π
and a point x ∈ Π such that

∂BdiamW/2(x) ∩Π ⊂W , (1.19)

i.e., W contains an (n− 1)-dimensional sphere of diameter diam (W ), and such that

Ω \
(
Π \ cl

(
BdiamW/2(x)

))
has exactly two unbounded connected components. (1.20)

Remark 1.2. See Figure 1.3 for the role of the topological condition (1.20).

Remark 1.3. The assumption R(W ) > 0 in statement (ii) is really weak. In appendix E
we prove that if R(W ) = 0, then W is purely Hn-unrectifiable; see Proposition E.1.

Remark 1.4 (Regularity of isoperimetric residues). In the physical dimension n = 2,

and provided Ω has boundary of class C1,1, maximizers of R(W ) are C1,1/2-regular up
to the obstacle, and smooth away from it. More generally, condition (1.14) implies that
M = cl (Ω ∩ ∂F ) is a smooth hypersurface with boundary in Ω \ Σ, where Σ is a closed
set such that Σ ∩ Ω is empty if 1 ≤ n ≤ 6, is locally discrete in Ω if n = 7, and is
locally Hn−7-rectifiable in Ω if n ≥ 8; see, e.g. [Mag12, Part III], [NV20]. Of course, by
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Ω \ (Π \Bd/2)

Figure 1.3. The obstacleW (depicted in grey) is obtained by removing a cylin-
der Cen+1

r from a ball Bd/2 with d/2 > r. In this way d = diam (W ) and Bd/2

is the only ball such that (1.19) can hold. Hyperplanes Π satisfying (1.19) are
exactly those passing through the center of Bd/2, and intersecting W on a (n−1)-
dimensional sphere of radius d/2. For every such Π, Ω\ (Π\Bd/2) has exactly one
unbounded connected component, and (1.20) does not hold.

(1.15), Σ \ BR2 = ∅ in every dimension. Moreover, justifying the initial claim concerning
the case n = 2, if we assume that Ω is an open set with C1,1-boundary, then M is a
C1,1/2-hypersurface with boundary in Rn+1 \ Σ, with boundary contained in ∂Ω, Σ ∩ ∂Ω
is Hn−3+ε-negligible for every ε > 0, and Young’s law νF · νΩ = 0 holds on (M ∩ ∂Ω) \ Σ;
see, e.g. [Grü87, GJ86, DPM15, DPM17].

Remark 1.5. It would be interesting to find geometric information on R(W ) in addition
to the one provided by (1.11) and (1.17), for example in the class of convex obstacles.

Remark 1.6 (Normalization of competitors). We work under the standard convention
according to which sets of locally finite perimeter F in an open set Ω are automatically
modified on and by a set of zero Lebesgue measure so to entail Ω ∩ ∂F = Ω ∩ cl (∂∗F ),
where cl denotes topological closure and where ∂∗F is the reduced boundary of F in
Ω; see [Mag12, Proposition 12.19]. Under this normalization, local perimeter minimality
conditions like (1.14) (or (3.1) below, satisfied by minimizers Ev of ψW (v)) additionally
imply that F ∩ Ω is open in Rn+1; see, e.g. [DPM15, Lemma 2.16].

1.3. Resolution of exterior isoperimetric sets. Our second main result concerns the
resolution of minimizers with large volumes in the exterior isoperimetric problem.

Theorem 1.7 (Resolution of exterior isoperimetric sets). If W ⊂ Rn+1 is compact, then
for every v > 0 there exist minimizers of ψW (v). Moreover, if R(W ) > 0, then

lim
v→∞

ψW (v)− P (B(v)) = −R(W ) , (1.21)

and there exist positive constants v0, C0, R1, and R2, depending on n and W only, and
R0, depending on n, W , and v only and with R0(v) → 0+ and R0(v) v

1/(n+1) → ∞ as
v → ∞, such that, if Ev is a minimizer of ψW (v) with v > v0, then:

(i): Ev determines x ∈ Rn+1 and u ∈ C∞(∂B(1)) such that

|Ev∆B(v)(x)|
v

≤ C0

v1/[2(n+1)]
, (1.22)

(∂Ev) \BR0(v) v1/(n+1) (1.23)

=
{
y + v1/(n+1) u

( y − x

v1/(n+1)

)
νB(v)(x)(y) : y ∈ ∂B(v)(x)

}
\BR0(v) v1/(n+1) ,

where, for any G ⊂ Rn+1 with locally finite perimeter, νG is the outer unit normal to G;

(ii): Ev determines a maximizer (F, ν) of R(W ) and f ∈ C∞((∂F ) \BR2) such that

(∂Ev) ∩AR1 v1/(n+1)

R2
=

{
y + f(y) νF (y) : y ∈ ∂F

}
∩AR1 v1/(n+1)

R2
, (1.24)

where Asr = Bs \ cl (Br);
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(iii): (∂Ev) \BR2 is diffeomorphic to an n-dimensional disk;

(iv): Finally,

lim
v→∞

sup
Ev

max

{∣∣∣ |x|
v1/(n+1)

− 1

ω
1/(n+1)
n+1

∣∣∣ , ∣∣∣ν − x

|x|

∣∣∣ , ∥u∥C1(∂B(1))

}
= 0 , (1.25)

lim
v→∞

sup
Ev

∥f∥C1(BM∩∂F ) = 0 , ∀M > R2 , (1.26)

where supEv
ranges over the set of all the minimizers of ψW (v) with (x, u) as in (1.23)

and (F, ν, f) as in (1.24).

Remark 1.8 (Resolution up to the obstacle). By combining Remark 1.4 with a standard
covering argument, we see that, in dimension n ≤ 6, for every δ > 0, if v > v0(n,W, δ), then

the resolution formula (1.24) holds with BR1 v1/(n+1) \ Iδ(W ) in place of AR1 v1/(n+1)

R2
, where

Iδ(W ) denotes the open δ-neighborhood of W . Similarly, when Ω has smooth boundary
and n = 2 (and thus Ω ∩ ∂F is regular up to the obstacle), we can find v0 (depending on

n and W only) such that (1.24) holds with BR1 v1/(n+1) ∩Ω in place of AR1 v1/(n+1)

R2
, that is,

graphicality over ∂F holds up to the obstacle itself.

Remark 1.9 (Comparison inequalities). In [CGR07, FM21] it is proved that, if W is
convex and J is an half-space in Rn+1, then

ψW (v) ≥ ψJ(v) ∀v > 0 , (1.27)

with equality for some v > 0 if and only if ∂W contains a flat facet, large enough to
support an half-ball of volume v. Since ψJ(v) = P (B(2 v))/2 = P (B(v))/21/(n+1) and

ψW (v)−P (B(v)) → −R(W ) as v → ∞, (1.27) is far from being optimal if W is a compact
convex set and v is large. It would thus be interesting to understand if sharper global
bounds than (1.27) are valid on convex obstacles.

Remark 1.10 (Sharp rates of convergence). An interesting problem, which we do not
attempt to discuss here, is that of obtaining sharp rates of convergence for minimizers
Ev towards the limit model provided by large balls B(v)(x) and by isoperimetric residue
maximizers F . In this direction, we do not expect the explicit rate provided in (1.22) to be
sharp. Similarly, it would be interesting to further explore the energy expansion in (1.21),
and, in particular, to give explicit rates of convergence towards R(W ).

1.4. The mesoscale flatness criterion. In our final main result we work with with
hypersurfaces M whose mean curvature is bounded by Λ ≥ 0 in an annular region B1/Λ \
BR, R ∈ (0, 1/Λ). Even without any information on the behavior of M inside BR (where
M could have a non-trivial boundary, or topology, etc.) the classical argument leading to
the monotonicity formula still shows that the density-type quantity

ΘM,R,Λ(r) =
Hn

(
M ∩ (Br \BR)

)
rn

(1.28)

+
R

nrn

ˆ
M∩∂BR

|xTM |
|x|

dHn−1 + Λ

ˆ r

R

Hn
(
M ∩ (Bρ \BR)

)
ρn

dρ ,

is increasing for r ∈ (R, 1/Λ) (where xTM denotes the projection of x over TxM), and that,
if ΘM,R,Λ is constant over a sub-interval (a, b) ⊂ (R, 1/Λ), then M ∩ (Bb \ Ba) is a cone.
Since the constant density value corresponding toM = H \BR for H a hyperplane through
the origin is ωn (as a result of a double cancellation which also involves the “boundary
term” in ΘH\BR,R,0), we consider the area deficit

δM,R,Λ(r) = ωn −ΘM,R,Λ(r) , r ∈ (R, 1/Λ) , (1.29)
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which defines a decreasing quantity on (R, 1/Λ). Here we use the term “deficit”, rather
than the more usual term “excess”, since δM,R,Λ does not necessarily have non-negative sign
(which is one of the crucial property of “excess quantities” typically used in ε-regularity
theorems, see, e.g., [Mag12, Lemma 22.11]). Recalling that Asr = Bs \ cl (Br) if s > r > 0,
we are now ready to state the following “smooth version” of our mesoscale flatness criterion.
For the sake of clarity, we postpone the statement of the more general version for rectifiable
varifolds (which is the one actually needed in our analysis of ψW , and whose statement is
necessarily more technical) to Theorem 2.3 below.

Theorem 1.11 (Mesoscale flatness criterion (smooth version)). If n ≥ 2, Γ ≥ 0, and
σ > 0, then there are positive constants M0 and ε0, depending on n, Γ and σ only, with
the following property.

Let Λ ≥ 0, R ∈ (0, 1/Λ), and let M be a smooth hypersurface with mean curvature
bounded by Λ in B1/Λ \BR, and with

Hn−1
(
M ∩ ∂BR

)
≤ ΓRn−1 , sup

ρ∈(R,1/Λ)

Hn
(
M ∩ (Bρ \BR)

)
ρn

≤ Γ . (1.30)

If there exists s > 0 such that

max{M0, 64}R < s <
ε0
4Λ

, Hn
(
M ∩As/6s/4

)
> 0 , (1.31)

if, for a hyperplane H with 0 ∈ H and unit normal νH , the flatness conditions

|δM,R,Λ(s/8)| ≤ ε0 ,
1

sn

ˆ
M∩As/8

s/2

( |y · νH |
|pHy|

)2
dHn

y ≤ ε0 , (1.32)

hold (with pHy = y − (y · νH) νH), and if, setting,

R∗ = sup
{
ρ ≥ s

8
: δM,R,Λ(ρ) ≥ −ε0

}
, S∗ = min

{
R∗,

ε0
Λ

}
, (1.33)

we have

R∗ > 4 s ,

(and thus S∗ > 4 s), then

M ∩AS∗/32
s/16 =

{
x+ f(x) νK : x ∈ K

}
∩AS∗/32

s/16 ,

sup
{ |f(x)|

|x|
+ |∇f(x)| : x ∈ K

}
≤ C(n)σ ,

(1.34)

for a hyperplane K with 0 ∈ K and unit normal νK , and for a function f ∈ C1(K).

Remark 1.12 (Structure of the statement). The first condition in (1.31) implicitly re-
quires R to be sufficiently small in terms of 1/Λ, as it introduces a mesoscale s which is
both small with respect to 1/Λ and large with respect to R. The two conditions in (1.32)
express the flatness of M at the mesoscale s, both in terms of its area deficit, and in terms
of its “angular variance” with respect to a specific hyperplane through the origin H (notice
that this is different from the L2-excess often used in similar contexts, and which would
correspond to take (|y · νH |/s)2 in place of (|y · νH |/|pHy|)2; see, e.g., [Sim83b, Definition
1.12(i)]). The final key assumption, R∗ > 4 s, express the requirement that the area deficit
does not decrease too abruptly, and stays above −ε0 at least up to the scale 4 s. Under
these assumptions, graphicality with respect to (a possibly different) hyperplane K is in-
ferred on an annulus whose lower radius s/16 has the order of the mesoscale s, and whose
upper radius S∗/32 can be as large as the decay of the area deficit allows (potentially up
to ε0/32Λ if R∗ = ∞), but in any case not too large with respect to 1/Λ.
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Mε

ε

Rε

ε(n−1)/n

Rn

Figure 1.4. A half-period of an unduloid with mean curvature n and waist size
ε in Rn+1. By exploiting the graphicality with respect to the horizontal hyperplane
Rn, see (1.35), we see that the flatness of Mε is no smaller than O(ε2(n−1)/n), and
is exactly O(ε2(n−1)/n) on an annulus sitting in the mesoscale O(ε(n−1)/n). This
mesoscale is both very large with respect to waist size ε, and very small with
respect to the size of the inverse mean curvature, which is order one.

Remark 1.13 (Sharpness of the statement). The statement is sharp in the sense that for
a surface “with bounded mean curvature and non-trivial topology inside a hole”, flatness
can only be established on a mesoscale which is both large with respect to the size of
the hole and small with respect to the size of the inverse mean curvature. An example is
provided by unduloids Mε with waist size ε and mean curvature n in Rn+1; see Figure 1.4.
A “half-period” of Mε is the graph {x+ fε(x) en+1 : x ∈ Rn , ε < |x| < Rε} of

fε(x) =

ˆ |x|

ε

{( rn−1

rn − εn + εn−1

)2
− 1

}−1/2
dr , ε < |x| < Rε , (1.35)

where ε and Rε are the only solutions of rn−1 = rn−εn+εn−1. One can directly check that
fε solves −div (∇fε/

√
1 + |∇fε|2) = n with fε = 0 and |∇fε| = +∞ on {|x| = ε}, and

that |∇fε| = +∞ on {|x| = Rε} with Rε = 1−O(εn−1). The minimum of |∇fε| is achieved
on a radius O(ε(n−1)/n), and indeed if r ∈ (a ε(n−1)/n, b ε(n−1)/n) for some b > a > 0, then

we have |∇fε| = Oa,b(ε
2(n−1)/n). Thus, the flatness of Mε with respect of Rn can be no

smaller than O(ε2(n−1)/n), and has that exact order on a scale which is both very large

with respect to the size of the hole (ε(n−1)/n >> ε) and very small with respect to the size

of the inverse mean curvature (ε(n−1)/n << 1).

Remark 1.14 (On the application to exterior isoperimetry). Exterior isoperimetric sets

Ev with large volume v have small constant mean curvature of order Λ = Λ0(n,W )/v1/(n+1).
We will work with “holes” of size R = R3(n,W ), for some R3 sufficiently large with respect
to the radius R2 appearing in Theorem 1.1-(ii), and determined through the sharp decay
rates (1.16). The hyperplane H such that the second condition in (1.32) holds is H = ν⊥

for (F, ν) a maximizer of R(W ) such that Ev is close to F . The decay properties of F

towards {x : x · ν = a}, the C1-proximity of ∂E to ∂B(v)(x) for |x| ≈ (ωn+1/v)
1/(n+1),

and the C1-proximity of ∂E to ∂F on bounded annuli of the form A2R3
R2

are all crucial in

checking that (1.30) holds with Γ = Γ(n,W ), that Ev is flat in the sense of (1.32), and,
most importantly, that the area deficit δM,R,Λ of M = (∂Ev) \ BR3 lies above −ε0 up to

scale r = O(v1/(n+1)) – which is the key information to deduce that R∗ is comparable to

1/Λ, and thus obtain overlapping domains of resolutions in terms of ∂B(v)(x) and ∂F .

Remark 1.15 (Further applications and criteria). While Theorem 1.11 seems clearly
applicable to other geometric problems, there are situations where one may need to develop
considerably finer “mesoscale flatness criteria”. For example, consider the problem of
“resolving” boundaries with almost constant mean curvature undergoing bubbling [CM17,
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DMMN18, DM19]. When the oscillation of the mean curvature around a constant Λ is
small, such boundaries are close to finite unions of mutually tangent spheres of radius
n/Λ, and can be covered by C1-small normal graphs over such spheres away from their
tangency points. The application of Allard’s regularity theorem gives that graphicality
property only up to distance ε/Λ from the tangency points, with ε = ε(n), and provided
the mean curvature oscillation is small in terms of ε. In order to propagate this flatness
information up to a distance directly related to the oscillation of the mean curvature
(which, in turn, seems a key step in addressing the conjecture, based on [Sch83, BM21],
according to which, near limit tangency points, boundaries with almost constant mean
curvature converge to catenoids), one would need a version of Theorem 1.11 for “double”
spherical graphs; in the setting of blow-up/blow-down theorems, this would be equivalent
to extending known results to limit hyperplanes with multiplicity larger than one.

Remark 1.16 (Comparison with blow-up/blow-down results). From the technical view-
point, Theorem 1.11 fits into the framework set up by Allard and Almgren in [AA81] for
the study of blow-ups and blow-downs of minimal surfaces with tangent integrable cones.
At the same time, as clearly exemplified by Remark 1.13, Theorem 1.11 really points in
a different direction with respect to [AA81], since it pertains to situations where neither
blow-up or blow-down limits make sense. A less immediate but actually crucial point is
that in [AA81], the area deficit δM,R,Λ is considered with a sign, non-positive for blow-ups,
and non-negative for blow-downs, see [AA81, Theorem 5.9(4), Theorem 9.6(4)]. These
signs restrictions are used there to deduce continuous decay towards limit tangent cones,
and, thus, their uniqueness. A key insight here is that sign restrictions are not needed in
propagating graphicality; and, the more, that dismissing them is actually crucial for ob-
taining overlapping domains of resolutions in statements like (1.4) and (1.7); see Remark
2.5 for additional comments on this point.

Remark 1.17 (Extension to general minimal cones). Proving Theorem 1.11 in higher
codimension and with arbitrary integrable minimal cones in place of hyperplanes should
be possible with essentially the same proof presented here. We do not pursue this extension
for two reasons: first, the case of hypersurfaces and hyperplanes is all that is needed in our
study of exterior isoperimetry; and, second, in going for generality, one should definitely
work in the more powerful framework set up by Simon in [Sim83b, Sim85, Sim96], since,
at variance with the more elementary Allard–Almgren’s framework used here, it allows
one to dispense with the integrability assumption on the reference minimal cones. In
this direction, we notice that Theorem 1.11 with Λ = 0 and R∗ = +∞ is a blow-down
result for exterior minimal surfaces (see also Theorem 2.3-(ii, iii)). A blow-down result
for exterior minimal surfaces is outside the scope of [AA81, Theorem 9.6] which pertains
to entire minimal surfaces, but it is claimed, with a sketch of proof, on [Sim85, Page
269] as a modification of [Sim85, Theorem 5.5, m < 0]. It should be mentioned that,
in order to cover the case of exterior minimal surfaces, an additional term of the form
C
´
Σ(u̇(t))

2 should be added on the right side of one of the assumptions of that theorem,
namely, of [Sim85, 5.3, m < 0]. The addition of this term seems not to cause any serious
difficulty with the remainder of the arguments leading to [Sim85, Theorem 5.5, m < 0].
For these reasons, we expect that Simon’s approach, besides giving a viable approach to
the blow-down analysis of exterior minimal surfaces, should also be suitable for proving
our mesoscale flatness criterion in the generality described in Remark 1.17.

1.5. Organization of the paper. In section 2 we reformulate and prove Theorem 1.11
in a suitable class of varifolds, see Theorem 2.3 below. In section 3 we prove those parts
of Theorem 1.7 which are directly descending from quantitative isoperimetry, and do not
require the introduction of isoperimetric residues and of a mesoscale flatness analysis; see
Theorem 3.1. Section 4 is devoted to the study of isoperimetric residues and of their

10



maximizers, and contains the proof Theorem 1.1. We also present there a statement,
repeatedly used in our analysis, which summarizes the fruits of some ideas contained in
[Sch83] concerning the decay rates of exterior minimal surfaces towards hyperplanes; see
Proposition 4.1. Finally, in section 5, we prove the main energy expansion (1.21) as well as
those parts of Theorem 1.7 left out in section 3 (i.i, statements (ii, iii, iv)). This final section
is, from a certain viewpoint, the most interesting part of the paper: indeed, it is only the
detailed examination of those arguments that clearly illustrates the degree of fine tuning of
the preliminary analysis of exterior isoperimetric sets and of maximizers of isoperimetric
residues which is needed in order to allow for the application of the mesoscale flatness
criterion, and for the consequent full resolution of the exterior isoperimetric problem at
large volumes presented in this paper.

Acknowledgements: This work was supported by NSF-DMS RTG 1840314, NSF-DMS
FRG 1854344, and NSF-DMS 2000034. We thank William Allard and Leon Simon for
clarifications on [AA81] and [Sim85] respectively, and Luca Spolaor for his comments on
some preliminary drafts of this work.

2. A mesoscale flatness criterion for varifolds

In section 2.1 we introduce a class Vn(Λ, R, S) of “varifolds with bounded mean curvature
and with boundary” and reformulate Theorem 1.11 in that class, see Theorem 2.3. In
sections 2.2-2.3 we present two reparametrization lemmas (Lemma 2.6 and Lemma 2.8)
and some “energy estimates” (Theorem 2.9) for spherical graphs, while in section 2.4 we
state the monotonicity formula for varifolds in Vn(Λ, R, S) and some more energy estimates
involving the monotonicity gap. Finally, in section 2.5, we prove Theorem 2.3.

2.1. Statement of the criterion. Following the general notation and terminology of
[Sim83a], given an n-dimensional integer rectifiable varifold V = var (M, θ) in Rn+1,
defined by a locallyHn-rectifiable setM , and by a (Borel) multiplicity function θ :M → N,
we denote by ∥V ∥ = θHnxM the weight of V , and by δV the first variation of V , so that

δV (X) =

ˆ
div T X(x) dV (x, T ) =

ˆ
M

divM X(x) θ dHn
x , ∀X ∈ C1

c (Rn+1;Rn+1) .

Given S > R > 0 and Λ ≥ 0 we consider the family

Vn(Λ, R, S) , (2.1)

of those n-dimensional integral varifolds V in Rn+1 such that sptV ⊂ Rn+1 \BR and

δV (X) =

ˆ
X · H⃗ d∥V ∥+

ˆ
X · νcoV d bdV , ∀X ∈ C1

c (BS ;Rn+1) ,

holds for a Radon measure bdV in Rn+1 supported in ∂BR, and Borel vector fields H⃗ :

Rn+1 → Rn+1 with |H⃗| ≤ Λ and νcoV : ∂BR → Rn+1 with |νcoV | = 1.

Remark 2.1 (Smooth case). When θ ≡ 1 andM is a smooth hypersurface with boundary
such that M ⊂ Rn+1 \ BR, bdry (M) ⊂ ∂BR, and |HM | ≤ Λ, then V = var (M, 1) ∈
Vn(Λ, R, S), with H⃗ given by the mean curvature vector of M , bdV = Hn−1xbdry (M),
and νcoV equal to the outer unit conormal to M along ∂BR.

Area deficit: Given V ∈ Vn(Λ, R, S), the quantity

ΘV,R,Λ(r) =
∥V ∥(Br \BR)

rn
− 1

n rn

ˆ
x · νcoV d bdV + Λ

ˆ r

R

∥V ∥(Bρ \BR)
ρn

dρ , (2.2)

is increasing for r ∈ (R,S) (see Theorem 2.10-(i) below), and agrees with (1.28) when V
is smooth as in Remark 2.1. We define the area deficit of V ∈ Vn(Λ, R, S) as

δV,R,Λ(r) = ωn −ΘV,R,Λ(r) , r ∈ (R,S) .
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Remark 2.2. Since, by assumption, every V ∈ Vn(Λ, S,R) is such that sptV ⊂ Rn+1\BR,
we actually have ∥V ∥(Br) = ∥V ∥(Br\BR) for every r > 0, and we could have used ∥V ∥(Br)
in place of ∥V ∥(Br \BR) in the definition of ΘV,R,Λ and in subsequent formulas.

Angular flatness: Given a hyperplane H in Rn+1 with 0 ∈ H, we call the quantityˆ
As

r

ωH(y)
2 d∥V ∥y ,

the angular flatness of V on the annulus Asr = Bs \ cl (Br) with respect to H, where

ωH(y) = distSn
( y

|y|
,H ∩ Sn

)
= arctan

( |y · νH |
|pHy|

)
, (2.3)

for y ∈ Rn+1 \ {0}, pH(y) = y − (y · νH) νH , and νH a unit normal to H. (See Remark
1.12 for comparison with the notion of L2-flatness typically used in similar contexts.)

Theorem 2.3 (Mesoscale flatness criterion). If n ≥ 2, Γ ≥ 0, and σ > 0 then there are
positive constants M0 and ε0, depending on n, Γ and σ only, with the following property.
If Λ ≥ 0, R ∈ (0, 1/Λ), V ∈ Vn(Λ, R, 1/Λ),

∥bdV ∥(∂BR) ≤ ΓRn−1 , sup
ρ∈(R,1/Λ)

∥V ∥(Bρ \BR)
ρn

≤ Γ . (2.4)

and for some hyperplane H ⊂ Rn+1 with 0 ∈ H and for some s > 0 we have

ε0
4Λ

> s > max{M0, 64}R , (2.5)

|δV,R,Λ(s/8)| ≤ ε0 , (2.6)

R∗ := sup
{
ρ ≥ s

8
: δV,R,Λ(ρ) ≥ −ε0

}
≥ 4 s , (2.7)

1

sn

ˆ
A

s/2
s/8

ω2
H d∥V ∥ ≤ ε0 , (2.8)

∥V ∥
(
A
s/4
s/6

)
> 0 , (2.9)

then (i): if

S∗ = min
{
R∗,

ε0
Λ

}
<∞ , (2.10)

then there exists a hyperplane K ⊂ Rn+1 with 0 ∈ K and a function u ∈ C1((K ∩ Sn) ×
(s/32, S∗/16)) with

(sptV ) ∩AS∗/16
s/32 =

{
r
ω + u(r, ω) νK√

1 + u(r, ω)2
: ω ∈ K ∩ Sn , r ∈

(
s/32, S∗/16

)}
sup

{
|u|+ |∇K∩Snu|+ |r ∂ru| : (ω, r) ∈ (K ∩ Sn)×

(
s/32, S∗/16

)}
≤ C(n)σ ;

(2.11)

(ii): if Λ = 0 and δV,R,0 ≥ −ε0 on (s/8,∞), then (2.11) holds with S∗ = ∞;

(iii): if Λ = 0 and δV,R,0 ≥ 0 on (s/8,∞), then (2.11) holds with S∗ = ∞, and one has
decay estimates, continuous in the radius, of the form

δV,R,0(r) ≤ C(n)
(s
r

)α
δV,R,0

(s
8

)
, ∀r > s

4
, (2.12)

1

rn

ˆ
A2 r

r

ω2
K d∥V ∥ ≤ C(n) (1 + Γ)

(s
r

)α
δV,R,0

(s
8

)
, ∀r > s

4
, (2.13)

for some α(n) ∈ (0, 1).
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Remark 2.4. In Theorem 2.3, graphicality is formulated in terms of the notion of spherical
graph (further discussed in the subsequent sections) which is more natural than the usual
notion of “cylindrical graph” in setting up the iteration procedure behind Theorem 2.3.
Spherical graphicality in terms a function u with C1-small norm as in (2.11) translates
into cylindrical graphicality in terms of a function f as in (1.34) with

f(x)

|x|
≈ u(|x|, x̂) , ∇x̂f(x)−

f(x)

|x|
≈ |x| ∂r u(|x|, x̂) ,

for x ̸= 0 and x̂ = x/|x|; see, in particular, Lemma D.1 in appendix D.

Remark 2.5 (Decay rates and negativity of the area deficit). Even in the case Λ > 0 one
can obtain estimates analogous to (2.12) and (2.13), with the same proofs but with the
limitation that they will hold only on the bounded range of radii r such that

s

4
< r <

1

16
min

{
R∗∗,

ε0
Λ

}
, R∗∗ = sup

{
ρ ≥ s

8
: δV,R,Λ(ρ) ≥ 0

}
.

In particular, without the possibility of sending r → ∞, the resulting estimates will hold
for several possible choices of K. In the framework provided by [AA81] the non-negativity
of δV,R,Λ is necessary to set up continuous-in-r decay estimates like (2.12) and (2.13) (see,
e.g. (2.98) below), but it is actually dispensable if one is just interested in the iteration
scheme needed for propagating “flat graphicality” (see (2.65)–(2.70) below). The gain is
not just theoretical (because of the obvious fact that R∗ > R∗∗). In our application to
exterior isoperimetry one can see that R∗∗ of V = var ((∂Ev)\∂BR, 1) with v large can be

at most of order O(vα) for some α < 1/(n+1): indeed, on a scale O(v1/(n+1)), the smooth

proximity of ∂Ev to a sphere ∂B(v)(x) will force δV,R,Λ to be negative. As a consequence,
the overlapping of the domain of resolution of (1.4) and (1.7) would be lost if working
with R∗∗ (and with it, the complete resolution of exterior isoperimetric sets).

2.2. Spherical graphs. We start setting up some notation. We denote by

H
the family of the oriented hyperplanes H ⊂ Rn+1 such that 0 ∈ H; in particular, the choice
of H ∈ H implies the choice of a unit normal vector νH to H. Given H ∈ H, we set

ΣH = H ∩ Sn ,
for the (n− 1)-dimensional equatorial sphere defined by H on Sn, and we denote by

pH : Rn+1 → H , qH : Rn+1 → H⊥ ,

the orthogonal projections of Rn+1 onto H and onto the orthogonal complement H⊥ =
{t νH : t ∈ R} to H in Rn+1. Given σ > 0, we set

Xσ(ΣH) =
{
u ∈ C1(ΣH) : ∥u∥C1(ΣH) < σ

}
.

Clearly there exists σ0 = σ0(n) > 0 such that if H ∈ H and u ∈ Xσ0(ΣH), then the map

fu(ω) =
ω + u(ω) νH√

1 + u(ω)2
, ω ∈ ΣH ,

defines a diffeomorphism of ΣH into an hypersurface ΣH(u) ⊂ Sn, namely

ΣH(u) = fu(ΣH) =
{ω + u(ω) νH√

1 + u(ω)2
: ω ∈ ΣH

}
. (2.14)

We call ΣH(u) a spherical graph over ΣH . Exploiting the fact that ΣH is a minimal
hypersurface in Sn and that if {τi}i is a local orthonormal frame on ΣH then νH ·∇τiτj = 0,
a second variation computation (see, e.g., [ESV19, Lemma 2.1]) gives, for u ∈ Xσ(ΣH),∣∣∣Hn−1(ΣH(u))−nωn−

1

2

ˆ
ΣH

|∇ΣHu|2− (n− 1)u2
∣∣∣ ≤ C(n)σ

ˆ
ΣH

u2+ |∇ΣHu|2 , (2.15)
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(where, of course, nωn = Hn−1(ΣH) = Hn−1(ΣH(0))). We also recall that u ∈ L2(ΣH)
is a unit norm Jacobi field of ΣH (i.e., a zero eigenvector of ∆ΣH + (n − 1) Id with unit
L2(ΣH)-norm) if and only if there is τ ∈ Sn with τ · νH = 0 such that

u(ω) = c0(n) (ω · τ) , ∀ω ∈ ΣH , where c0(n) =

√
n

Hn−1(ΣH)
. (2.16)

We denote by E0
ΣH

the orthogonal projection operator of L2(Ω) onto the span of the Jacobi
fields of ΣH . The following lemma provides a way to reparameterize spherical graphs over
equatorial spheres so that the projection over Jacobi fields is annihilated.

Lemma 2.6. There exist constants C0, ε0 and σ0, depending on the dimension n only,
with the following properties:

(i): if H,K ∈ H, |νH − νK | ≤ ε < ε0, and u ∈ Xσ(ΣH) for σ < σ0, then the map
TKu : ΣH → ΣK defined by

TKu (ω) =
pK(fu(ω))

|pK(fu(ω))|
=

pKω + u(ω)pKνH
|pKω + u(ω)pKνH |

, ω ∈ ΣH ,

is a diffeomorphism between ΣH and ΣK , and the function vKu : ΣK → R defined by

vKu (TKu (ω)) =
qK(fu(ω))

|pK(fu(ω))|
=

νK · (ω + u(ω) νH)

|pKω + u(ω)pKνH |
, ω ∈ ΣH , (2.17)

is such that

vKu ∈ XC(n) (σ+ε)(ΣK) , ΣH(u) = ΣK(v
K
u ) , (2.18)

and ∣∣∣ ˆ
ΣK

(vKu )2 −
ˆ
ΣH

u2
∣∣∣ ≤ C(n)

{
|νH − νK |2 +

ˆ
ΣH

u2
}
. (2.19)

(ii): if H ∈ H and u ∈ Xσ0(ΣH), then there exist K ∈ H with |νH − νK | < ε0 and
v ∈ XC0 σ0(ΣK) such that

ΣH(u) = ΣK(v) , E0
ΣK

[v] = 0 ,

|νK − νH |2 ≤ C0(n)

ˆ
ΣH

(
E0

ΣH
[u]

)2
,∣∣∣ ˆ

ΣK

v2 −
ˆ
ΣH

u2
∣∣∣ ≤ C0(n)

ˆ
ΣH

u2 .

Proof. See appendix A. �
Remark 2.7. It may seem unnecessary to present a detailed proof of Lemma 2.6, as
we do in appendix A, given that, when ΣH is replaced by a generic integrable minimal
surface Σ in Sn, similar statements are found in the first four sections of [AA81, Chapter
5]. However, two of those statements, namely [AA81, 5.3(4), 5.3(5)], seem to be not
correctly formulated; and the issue requires clarification, since those statements are used
in the iteration arguments behind the blow-up theorem [AA81, Theorem 5.9] and its blow-
down counterpart [AA81, Theorem 9.6]; see, for example, the second displayed chain of
inequalities on [AA81, Page 254]. To explain this issue we momentarily adopt the
notation of [AA81]. In [AA81, Chapter 5] they consider a family of minimal surfaces
in Sn, denoted by {Mt}t∈U , and obtained as diffeomorphic images of a minimal surface
M =M0. The parameter t ranges in an open ball U ⊂ Rj , where j is the dimension of the
space of Jacobi fields of M . Given a vector field Z in Sn, defined on and normal to Mt,
they denote by Ft(Z) the diffeomorphism of Mt into Sn obtained by combining Z with the
exponential map of Sn (up to lower than second order corrections in Z, this is equivalent
to taking the graph of Z over Mt, and then projecting it back on Sn, which is what we
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do, following [Sim83b], in (2.14)). Then, in [AA81, 5.2(2)], they define Λt as the family
of those Z such that Image(Ft(Z)) = Image(F0(W )) for some vector field W normal to
M , and, given t, u ∈ U and Z ∈ Λt, they define F ut : Λt → Λu as the map between such
classes of normal vector fields with the property that Image(Ft(Z)) = Image(Fu(F

u
t (Z))):

in particular, F ut (Z) is the vector field that takesMu to the same surface to which Z takes
Mt. With this premise, in [AA81, 5.3(5)] they say that if t, u ∈ U , and Z ∈ Λt, then∣∣∣ ˆ

Mu

|F ut (Z)|2 −
ˆ
Mt

|Z|2
∣∣∣ ≤ C |t− u|

ˆ
Mt

|Z|2 , (2.20)

for a constant C depending on M only. Testing this with Z = 0 (notice that 0 ∈ Λt by
[AA81, 5.3(1)]) one finds F ut (0) = 0, and thus Mt = Image(Ft(0)) = Image(Fu(F

u
t (0))) =

Image(Fu(0)) =Mu. In particular, Mu =Mt for every t, u ∈ U , that is, {Mt}t∈U consists
of a single surface, M itself. But this is never the case since {Mt}t∈U always contains, to
the least, every sufficiently small rotation of M in Sn. An analogous problem is contained
in [AA81, 5.3(4)]. Coming back to our notation, with reference to Lemma 2.6-(i), the
analogous estimate to (2.20) in our setting would be equivalent to claiming that, for every
H,K ∈ H with |νK − νH | < ε0 and u ∈ Xσ0(ΣH), vKu defined in (2.17) satisfies∣∣∣ ˆ

ΣK

(vKu )2 −
ˆ
ΣH

u2
∣∣∣ ≤ C(n) |νH − νK |

ˆ
ΣH

u2 , (2.21)

which again leads to a contradiction if tested with u = 0. A correct estimate, analogous
in spirit to (2.21) and still sufficiently precise to be used in iterations, is (2.19) in Lemma
2.6. There should be no difficulty in adapting the arguments from appendix A to the more
general context of integrable cones, and then in using the resulting generalization of (2.19)
to implement the iterations needed in [AA81, Theorem 5.9, Theorem 9.6].

2.3. Energy estimates for spherical graphs over annuli. We now introduce the
notion of spherical graph over an annulus, together with some basic energy estimates for
spherical graphs with bounded mean curvature.

Given H ∈ H and 0 < r1 < r2 we let Xσ(ΣH , r1, r2) be the class of those u ∈ C1(ΣH ×
(r1, r2)) such that, setting ur = u(·, r), one has

ur ∈ Xσ(ΣH) , ∀r ∈ (r1, r2) ,

|r ∂ru| ≤ σ , on ΣH × (r1, r2) .

If u ∈ Xσ(ΣH , r1, r2), then the spherical graph of u over ΣH × (r1, r2), given by

ΣH(u, r1, r2) =
{
r
ω + ur(ω) νH√

1 + ur(ω)2
: ω ∈ ΣH , r ∈ (r1, r2)

}
,

is an hypersurface in Ar2r1 . It is useful to keep in mind that

ΣH(0, r1, r2) =
{
r ω : ω ∈ Σ , r ∈ (r1, r2)

}
= H ∩Ar2r1 ,

is a flat annular region with Hn(ΣH(0, r1, r2)) = ωn (r
n
2 − rn1 ), and that

1

C(n)

ˆ
ΣH(u,r1,r2)

ω2
H dHn ≤

ˆ
ΣH×(r1,r2)

rn−1 u2 ≤ C(n)

ˆ
ΣH(u,r1,r2)

ω2
H dHn (2.22)

whenever u ∈ Xσ1(ΣH , r1, r2) for a sufficiently small σ1 = σ1(n). The following reparametriza-
tion lemma is analogous to (and easily obtained from) Lemma 2.6.

Lemma 2.8. There exist positive constants ε0, σ0 and C0, depending on the dimension n
only, with the following properties:

(i): if H,K ∈ H, νH · νK > 0, u ∈ Xσ(ΣH , r1, r2), for σ < σ0, v ∈ Xσ0(ΣK , r1, r2), and
|νH − νK | = ε < ε0, then there exists w ∈ XC0(σ+ε)(ΣH , r1, r2) such that

ΣK(v, r1, r2) = ΣH(w, r1, r2) . (2.23)
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(ii): if H ∈ H, u ∈ Xσ0(ΣH , r1, r2), and (a, b) ⊂⊂ (r1, r2), then there exist K ∈ H,
v ∈ XC0 σ0(ΣK , r1, r2), and r∗ ∈ [a, b] such that

ΣH(u, r1, r2) = ΣK(v, r1, r2) , (2.24)

E0
ΣK

(
vr∗

)
= 0 , (2.25)

|νH − νK |2 ≤ C0(n) min
ρ∈[a,b]

ˆ
ΣH

(
E0

ΣH
[uρ]

)2
. (2.26)

Moreover, for every r ∈ (r1, r2),∣∣∣ˆ
ΣK

(vr)
2 −
ˆ
ΣH

(ur)
2
∣∣∣ ≤ C0(n)

{
min
ρ∈[a,b]

ˆ
ΣH

(uρ)
2 +

ˆ
ΣH

(ur)
2
}
. (2.27)

Proof. We first prove statement (i). If |νH − νK | = ε < ε0, since for every r ∈ (r1, r2) we
have ur ∈ Xσ(ΣH), we can apply Lemma 2.6-(i) to deduce that the map Tr : ΣH → ΣK ,

Tr(ω) =
pK [ω + ur(ω) νH ]

|pK [ω + ur(ω) νH ]|
ω ∈ ΣH , (2.28)

is a diffeomorphism between ΣH and ΣK , and the function vr : ΣK → R,

vr(Tr(ω)) =
νK · (ω + ur(ω) νH)

|pK [ω + ur(ω) νH ]|
, ω ∈ ΣH , (2.29)

satisfies vr ∈ XC0 (σ+ε)(ΣK) as well as

ΣH(ur) = ΣK(vr) ,
∣∣∣ ˆ

ΣK

(vr)
2 −
ˆ
ΣH

(ur)
2
∣∣∣ ≤ C(n)

{
|νH − νK |2 +

ˆ
ΣH

(ur)
2
}
. (2.30)

Since u ∈ Xσ(ΣH , r1, r2), and since the definitions of Tr and vr depend smoothly on ur,
setting v(ω, r) := vr(ω) we define v : ΣK × (r1, r2) → R such that

ΣH(u, r1, r2) = ΣK(v, r1, r2) ,

by (2.30), and v ∈ XC0 (σ+ε)(ΣH , r1, r2) (where |r ∂rvr| ≤ C0(σ + ε) is deduced by differ-
entiation in (2.28) and (2.29), and thanks to |ur|, |r ∂rur| < σ). This proves (2.23).

Step two: We prove statement (ii). Let us set

γ = min
ρ∈[a,b]

ˆ
ΣH

(
E0

ΣH
[uρ]

)2
,

and let r∗ ∈ [a, b] be such that the minimum γ is achieved at r = r∗. If γ = 0, then
we prove the lemma with K = H and v = u. If γ > 0, then we apply Lemma 2.6-
(ii) to ur∗ ∈ Xσ0(ΣH), and correspondingly we find K ∈ H with |νK − νH | < ε0 and
vr∗ ∈ XC0 s0(ΣK) such that ΣH(ur∗) = ΣK(vr∗) and

E0
ΣK

[vr∗ ] = 0 , (2.31)

|νK − νH |2 ≤ C0(n)

ˆ
ΣH

(
E0

ΣH
[ur∗ ]

)2
= C0(n) γ , (2.32)∣∣∣ ˆ

ΣK

(vr∗)
2 −
ˆ
ΣH

(ur∗)
2
∣∣∣ ≤ C0(n)

ˆ
ΣH

(ur∗)
2 . (2.33)

Since vr∗ = v(·, r∗) for the function v constructed as in step one starting from u, H and
K, we see that combining (2.30) and (2.32) we find (2.27), while (2.31) is (2.25). �

We will use two basic “energy estimates” for spherical graphs over annuli. In order to
streamline the later application of these estimates to diadic families of annuli we introduce
the following terminology: the intervals (r1, r2) and (r3, r4) are (η, η0)-related if

r2 = r0(1 + η0) , r1 = r0(1− η0) , r4 = r0(1 + η) , r3 = r0(1− η) , (2.34)
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for some η0 > η > 0, and with r0 = (r1 + r2)/2 = (r3 + r4)/2; in particular, (r3, r4) is
contained in, and concentric to, (r1, r2). The case Λ = 0 of the following statement is the
codimension one, equatorial spheres case of [AA81, Lemma 7.14, Theorem 7.15].

Theorem 2.9 (Energy estimates for spherical graphs). If n ≥ 2 and η0 > η > 0, then
there are σ0 = σ0(n, η0, η) and C0 = C0(n, η0, η) positive, with the following property.

If H ∈ H, Λ ≥ 0, and u ∈ Xσ(ΣH , r1, r2) is such that max{1,Λ r2}σ ≤ σ0 and

ΣH(u, r1, r2) has mean curvature bounded by Λ in Ar2r1 , (2.35)

then∣∣∣Hn(ΣH(u, r3, r4))−Hn(ΣH(0, r3, r4))
∣∣∣ ≤ C0

ˆ
ΣH×(r1,r2)

rn−1
(
u2 + Λ r |u|

)
, (2.36)

whenever (r1, r2) and (r3, r4) are (η, η0)-related as in (2.34). Moreover, if

∃ r ∈ (r1, r2) s.t. E
0
ΣH
ur = 0 on ΣH , (2.37)

then we also haveˆ
ΣH×(r3,r4)

rn−1 u2 ≤ C(n) Λ r2 (r
n
2 − rn1 ) + C0

ˆ
ΣH×(r1,r2)

rn−1 (r ∂ru)
2 . (2.38)

Proof. See appendix B. �

2.4. Monotonicity for exterior varifolds with bounded mean curvature. The fol-
lowing theorem states the monotonicity of ΘV,R,Λ for V ∈ Vn(Λ, R, S), and provides, when
V corresponds to a spherical graph, a quantitative lower bound for the gap in the associ-
ated monotonicity formula; in the case Λ = 0, R = 0, it reduces to the codimension one,
equatorial spheres case of [AA81, Lemma 7.16] and [AA81, Theorem 7.17].

Theorem 2.10. (i): If V ∈ Vn(Λ, R, S), then

ΘV,R,Λ is increasing on (R,S) , (2.39)

where ΘV,R,Λ is defined as in (2.2).

(ii): There exists σ0(n) such that, if the assumptions of part (i) hold and, for some H ∈ H,
u ∈ Xσ(Σ, r1, r2) with σ ≤ σ0(n), and (r1, r2) ⊂ (R,S), we have

V corresponds to ΣH(u, r1, r2) in A
r2
r1 , (2.40)

then ˆ
ΣH×(r1,r2)

rn−1(r ∂ur)
2 ≤ C(n) rn2

{
ΘV,R,Λ(r2)−ΘV,R,Λ(r1)

}
. (2.41)

(iii): Finally, given η0 > η > 0, there exist σ0 and C0 depending on n, η0, and η only,
such that if the assumptions of part (i) and part (ii) hold and, in addition to that, we also
have max{1,Λ r2}σ ≤ σ0 and

∃ r ∈ (r1, r2) s.t. E
0
ΣH
ur = 0 on ΣH , (2.42)

then, whenever (r1, r2) and (r3, r4) are (η, η0)-related as in (2.34), we have∣∣∣Hn(ΣH(u, r3, r4))−Hn(ΣH(0, r3, r4))
∣∣∣ (2.43)

≤ C0 r
n
2

{
ΘV,R,Λ(r2)−ΘV,R,Λ(r1) + (Λ r2)

2
}
.
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Proof. Step one: We prove part (i) and part (ii). For the sake of both brevity and clarity,
we give the proof in the case when V is the multiplicity one varifold associated to a smooth
hypersurface M with boundary, whose boundary contained in ∂BR, see Remark 2.1: the
general case is then addressed by the classical argument with rescaled radial test vector
fields, and is presented in appendix C. By the coarea formula, by the tangential divergence

theorem and by the fact that |H⃗| ≤ Λ, we find that, for a.e. ρ > R,

d

dρ

∥V ∥(Bρ \BR)
ρn

=
1

ρn

ˆ
M∩∂Bρ

|x|
|xTM |

dHn−1 − nHn(M ∩ (Bρ \BR))
ρn+1

=
1

ρn

ˆ
M∩∂Bρ

|x|
|xTM |

dHn−1 − 1

ρn

ˆ
M∩(Bρ\BR)

x

ρ
· H⃗ dHn

− 1

ρn+1

{ˆ
M∩∂Bρ

νcoM · x dHn−1 +

ˆ
M∩∂BR

νcoM · x dHn−1
}

≥ 1

ρn

ˆ
M∩∂Bρ

( |x|
|xTM |

− |xTM |
|x|

)
dHn−1

− 1

ρn+1

ˆ
M∩∂BR

νcoM · x dHn−1 − Λ
Hn(M ∩ (Bρ \BR))

ρn

= Mon(V, ρ) +
d

dρ

1

nρn

ˆ
x · νcoV dbdV − Λ

∥V ∥(Bρ \BR)
ρn

(2.44)

where we have set

Mon(V, ρ) =
d

dρ

ˆ
Bρ\BR

|x⊥|2

|x|n+2
d∥V ∥ . (2.45)

Since Mon(V, ρ) ≥ 0, this proves (2.39). Assuming now that (2.40) holds, by using [AA81,
Lemma 3.5(6)] as done in the proof of [AA81, Lemma 7.16], we see that, under (2.40), we
have

C(n) rn2

ˆ r2

r1

Mon(V, ρ) dρ ≥
ˆ
ΣH×(r1,r2)

rn−1 (r ∂ru)
2 ,

thus completing the proof of (2.41).

Step two: We prove part (iii). Let us set

a = r0

(
1− η + η0

2

)
, b = r0

(
1 +

η + η0
2

)
,

so that (a, b) and (r3, r4) are (η, (η + η0)/2)-related, and (r1, r2) and (a, b) are ((η +
η0)/2, η0)-related (in particular, (r3, r4) ⊂ (a, b) ⊂ (r1, r2)). By suitably choosing σ0 in
terms of n, η and η0, we can apply (2.36) in Theorem 2.9 with (r3, r4) and (a, b), so to find∣∣∣Hn(Σ(u, r3, r4))−Hn(Σ(0, r3, r4))

∣∣∣ ≤ C(n, η0, η)

ˆ
ΣH×(a,b)

rn−1
(
u2 + Λ r |u|

)
≤ C(n, η0, η)

{
(Λ b)2 (bn − an) +

ˆ
ΣH×(a,b)

rn−1 u2
}
.

Thanks to (2.42) we can apply (2.38) in Theorem 2.9 with (a, b) and (r1, r2) to find
ˆ
ΣH×(a,b)

rn−1 u2 ≤ C(n, η0, η)
{
(Λ r2)

2 (rn2 − rn1 ) +

ˆ
ΣH×(r1,r2)

rn−1 (r ∂ru)
2
}
.

We find (2.43) thanks to (2.41) and (Λ b)2 (bn − an) ≤ (Λ r2)
2 rn2 . �
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2.5. Proof of the mesoscale flatness criterion. As a final preliminary result to the
proof of Theorem 2.3, we prove the following lemma, where Allard’s regularity theorem
is combined with a compactness argument to provide the basic graphicality criterion used
throughout the iteration. The statement should be compared to [AA81, Lemma 5.7].

Lemma 2.11 (Graphicality lemma). Let n ≥ 2. For every σ > 0, Γ ≥ 0, and (λ3, λ4) ⊂⊂
(λ1, λ2) ⊂⊂ (0, 1) with λ1 ≥ 1/32, there are positive constants ε1 and M1, depending only
on n, σ, Γ, λ1, λ2, λ3, and λ4 with the following property.

If Λ ≥ 0, R ∈ (0, 1/Λ), V ∈ Vn(Λ, R, 1/Λ),

∥bdV ∥(∂BR) ≤ ΓRn−1 , sup
ρ∈(R,1/Λ)

∥V ∥(Bρ \BR)
ρn

≤ Γ ,

and there exists r > 0 such that,

max{M1, 64}R ≤ r ≤ ε1
Λ
, (2.46)

|δV,R,Λ(r)| ≤ ε1 , (2.47)

∥V ∥(Aλ4 rλ3 r
) > 0 , (2.48)

and if, for some K ∈ H, we have

1

rn

ˆ
A

λ2 r
λ1 r

ω2
K d∥V ∥ ≤ ε1 , (2.49)

then there exists u ∈ Xσ(ΣK , r/32, r/2) such that

V corresponds to ΣK(u, r/32, r/2) on A
r/2
r/32 .

Proof. We argue by contradiction. Should the lemma be false, then we could find σ > 0,
Γ ≥ 0, (λ3, λ4) ⊂⊂ (λ1, λ2) ⊂⊂ (0, 1) with λ1 ≥ 1/32, Kj ∈ H, positive numbers Rj ,
Λj < 1/Rj , rj , and Wj ∈ Vn(Λj , Rj , 1/Λj) such that

∥Wj∥
(
A
λ4 rj
λ3 rj

)
> 0 ,

∥bdWj∥(∂BRj )

Rn−1
j

≤ Γ , sup
ρ∈(Rj ,1/Λj)

∥Wj∥(Bρ \BRj )

ρn
≤ Γ ,

lim
j→∞

max
{
ρj =

Rj
rj
, rj Λj , δWj ,Rj ,Λj (rj) ,

1

rnj

ˆ
A

λ2 rj
λ1 rj

ω2
Kj
d∥Wj∥

}
= 0 ,

such that there exists no u ∈ Xσ(ΣKj , rj/32, rj/2) with the property that

Wj corresponds to ΣKj (u, rj/32, rj/2) on A
rj/2

rj/32
.

Setting Vj =Wj/rj , we would then find that no u ∈ Xσ(ΣKj , 1/32, 1/2) exists such that

Vj corresponds to ΣKj (u, 1/32, 1/2) on A
1/2
1/32 ,

despite the fact that each Vj ∈ Vn(rj Λj , ρj , 1/(rj Λj)) satisfies

∥Vj∥(Aλ4λ3) > 0 ,
∥bdVj∥(∂Bρj )

ρn−1
j

≤ Γ , sup
ρ∈(ρj ,1/(Λj rj))

∥Vj∥(Bρ \Bρj )
ρn

≤ Γ ,

lim
j→∞

max
{
δVj ,ρj ,rj Λj (1) ,

ˆ
A

λ2
λ1

ω2
Kj
d∥Vj∥

}
= 0 . (2.50)

Clearly we can find K ∈ H such that, up to extracting subsequences and as j → ∞,
Kj ∩B1 → K ∩B1 in L1(Rn+1). Similarly, by (2.50), we can find an n-dimensional integer
rectifiable varifold V such that Vj ⇀ V as varifolds in B1 \ {0}. Since the bound on the

distributional mean curvature of Vj on B1/(Λj rj) \ Bρj is rj Λj , and since ρj → 0+ and

rj Λj → 0+, it also follows that V is stationary in B1 \ {0}, and thus, by a standard
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argument and since n ≥ 2, on B1. By ∥Vj∥(Aλ4λ3) > 0, for every j there is xj ∈ Aλ4λ3 ∩sptVj ,
so that, up to extracting subsequences, xj → x0 as j → ∞ for some

x0 ∈ A
λ4
λ3 ∩ sptV .

By (λ3, λ4) ⊂⊂ (λ1, λ2) we can find ρ > 0 such that Bρ(x0) ⊂ Aλ2λ1 , and conclude

∥V ∥(Aλ2λ1) ≥ ∥V ∥(Bρ(x0)) ≥ ωn ρ
n > 0 ,

thus proving that V xAλ2λ1 ̸= ∅. This last fact, combined with ωK = 0 on (sptV ) ∩ Aλ2λ1 ,
allows to use the constancy theorem [Sim83a, Theorem 41.1] to deduce that

Aλ2λ1 ∩ sptV = Aλ2λ1 ∩K .

Since V is stationary in B1, we conclude that B1 ∩K ⊂ B1 ∩ sptV , so that, in particular,

∥V ∥(B1) ≥ ωn .

At the same time, since ∥bdVj∥(∂Bρj ) ≤ Γ ρn−1
j and ∥Vj∥(Bρ \ Bρj ) ≤ Γ ρn for every

ρ ∈ (ρj , 1/(Λj rj)) ⊃ (ρj 1), by (2.50) we have

ωn = lim
j→∞

∥Vj∥(B1 \Bρj )−
ρj
n

∥δVj∥(∂Bρj ) + Λj rj

ˆ 1

ρj

∥Vj∥(Bρ \Bρj )
ρn

dρ

≥ ∥V ∥(B1)− Γ lim sup
j→∞

(
ρnj + Λj rj

)
= ∥V ∥(B1) ,

so that ∥V ∥(B1) = ωn and thus B1 ∩ K = B1 ∩ (sptV ). By Allard’s regularity the-
orem and by Vj ⇀ V as j → ∞ we deduce the existence of a sequence {uj}j , with
uj ∈ Xσj (ΣK , 1/32, 1/2) for some σj → 0 as j → ∞, such that Vj corresponds to

ΣK(uj , 1/32, 1/2) in A
1/2
1/32 for j large enough. As soon as j is large enough to give σj < σ,

we have reached a contradiction. �

Proof of Theorem 2.3. We start by imposing some constraints on the constants ε0 andM0

appearing in the statement. For the finite set

J =
{(1

3
,
1

6

)
,
(2
3
,
1

3

)}
⊂

{
(η0, η) : η0 > η > 0

}
, (2.51)

we let σ0 = σ0(n) such that Lemma 2.8-(ii), Theorem 2.9, and Theorem 2.10-(ii,iii) hold
for every (η0, η) ∈ J , and such that

σ0 ≤
σ1
C0

for σ1(n) as in (2.22), and C0(n) as in Lemma 2.8-(ii) ; (2.52)

we shall henceforth assume, without loss of generality, that

σ < σ0 .

Moreover, for ε1 and M1 as in Lemma 2.11, we let

M0 ≥ max
{
M1

(
n, σ,Γ,

(1
8
,
1

2

)
,
(1
6
,
1

4

))
,M1

(
n, σ,Γ,

( 1

16
,
1

8

)
,
( 3

32
,
7

64

))}
, (2.53)

ε0 ≤ min
{
ε1

(
n, σ,Γ,

(1
8
,
1

2

)
,
(1
6
,
1

4

))
, ε1

(
n, σ,Γ,

( 1

16
,
1

8

)
,
( 3

32
,
7

64

))}
. (2.54)

We also assume that ε0 is smaller than the n-dependent ε0’s appearing in Lemma 2.6 and
Lemma 2.8.

Let us now recall that, by assumption, V ∈ Vn(Λ, R, 1/Λ) is such that

∥bdV ∥(∂BR) ≤ ΓRn−1 , sup
ρ∈(R,1/Λ)

∥V ∥(Bρ \BR)
ρn

≤ Γ ; (2.55)
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in particular, by Theorem 2.10-(i),

δV,R,Λ is decreasing on (R, 1/Λ) . (2.56)

Moreover, we are assuming the existence of s with max{64,M0}R < s < ε0/4Λ such that

|δV,R,Λ(s/8)| ≤ ε0 , (2.57)

R∗ = sup
{
ρ ≥ s

8
: δV,R,Λ(ρ) ≥ −ε0

}
≥ 4 s , (2.58)

1

sn

ˆ
A

s/2
s/8

ωH(y)
2 d∥V ∥y ≤ ε0 , (2.59)

∥V ∥(As/4s/6) > 0 . (2.60)

By (2.56), (2.57) and (2.58) we have

|δV,R,Λ(r)| ≤ ε0 , ∀r ∈ (s/8, R∗) . (2.61)

By (2.53), (2.54), (2.55), (2.59), (2.60) and (2.61) we can apply Lemma 2.11 with (λ1, λ2) =
(1/8, 1/2), (λ3, λ4) = (1/6, 1/4), and r = s. Setting H0 = H, we thus find u0 ∈
Xσ(ΣH0 , s/32, s/2) such that

V corresponds to ΣH0(u0, s/32, s/2) on A
s/2
s/32 , (2.62)

and letting

T0 =
1

(s/4)n

ˆ s/4

s/8
rn−1 dr

ˆ
ΣH0

[u0]
2
r ,

we have, thanks to (2.22), (2.52), (2.62), and (2.59),

T0 =
1

(s/4)n

ˆ s/4

s/8
rn−1 dr

ˆ
ΣH0

[u0]
2
r ≤

C(n)

sn

ˆ
A

s/4
s/8

ω2
H d∥V ∥ ≤ C(n) ε0 . (2.63)

Let
sj = 2j−3 s , j ∈ N .

By (2.58) and by s < ε0/4Λ there exists N ∈ {j ∈ N : j ≥ 2} ∪ {+∞} such that

{0, 1, .., N} =
{
j ∈ N : 8 sj ≤ S∗ = min

{
R∗,

ε0
Λ

}}
. (2.64)

Notice that if Λ > 0 then it must be N < ∞. We are now in the position to make the
following:

Claim: There exist τ = τ(n) ∈ (0, 1) and {(Hj , uj)}N−2
j=0 with Hj ∈ H and uj ∈

Xσ(ΣHj , s/32, 4 sj), such that, setting,

Tj =
1

snj+1

ˆ sj+1

sj

rn−1 dr

ˆ
ΣHj

[uj ]
2
r ,

we have, for every j = 0, ..., N − 2,

V corresponds to ΣHj (uj , s/32, 4 sj) on A
4 sj
s/32 , (2.65)

|δV,R,Λ(sj)| ≤ ε0 , (2.66)

Tj ≤ C(n) ε0 , (2.67)

and, for every j = 1, ..., N − 2,

|νHj − νHj−1 |2 ≤ C(n)Tj−1 , (2.68)

δV,R,Λ(sj) ≤ τ
{
δV,R,Λ(sj−1) + (1 + Γ)Λ sj−1

}
, (2.69)

Tj ≤ C(n)
{
δV,R,Λ(sj−1)− δV,R,Λ(sj+2) + Λ sj−1

}
. (2.70)
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Proof of the claim: We argue by induction. Clearly (2.65)j=0, (2.66)j=0 and (2.67)j=0

are, respectively, (2.62), (2.57) and (2.63). This concludes the proof of the claim if N = 2,
therefore we shall assume N ≥ 3 for the rest of the argument.

To set up the inductive argument, we consider ℓ ∈ N such that: either ℓ = 0; or
1 ≤ ℓ ≤ N − 3 and (2.65), (2.66), and (2.67) hold for j = 0, ..., ℓ, and (2.68), (2.69) and
(2.70) hold for j = 1, ..., ℓ; and prove that all the conclusions of the claim holds with
j = ℓ+ 1.

The validity of (2.66)j=ℓ+1 is of course immediate from (2.61) and (2.64). Also, after
proving (2.70)j=ℓ+1, we will be able to combine with (2.66)j=ℓ+1 and (2.64) to deduce
(2.67)j=ℓ+1. We now prove, in the order, (2.68), (2.65), (2.69), and (2.70) with j = ℓ+ 1.

To prove (2.68)j=ℓ+1: Let [a, b] ⊂⊂ (sℓ, sℓ+1) with (b− a) = (sℓ+1 − sℓ)/2, so that

1

C(n)
min
r∈[a,b]

ˆ
ΣHℓ

[uℓ]
2
r ≤

1

snℓ+1

ˆ sℓ+1

sℓ

rn−1 dr

ˆ
ΣHℓ

[uℓ]
2
r = Tℓ . (2.71)

Keeping in mind (2.65)j=ℓ, we can apply Lemma 2.8-(ii) with (r1, r2) = (s/32, 4 sℓ) and
[a, b] to find Hℓ+1 ∈ H, uℓ+1 ∈ XC0 σ0(ΣHℓ+1

, s/32, 4 sℓ) (with C0 as in Lemma 2.8-(ii)) and

s∗ℓ ∈ [a, b] ⊂ (sℓ, sℓ+1) , (2.72)

such that, thanks also to (2.71),

ΣHℓ
(uℓ, s/32, 4 sℓ) = ΣHℓ+1

(uℓ+1, s/32, 4 sℓ) , (2.73)

E0
ΣHℓ+1

(
[uℓ+1]s∗ℓ

)
= 0 , (2.74)

|νHℓ
− νHℓ+1

|2 ≤ C(n)Tℓ , (2.75)ˆ
ΣHℓ+1

[uℓ+1]
2
r ≤ C(n)

(
Tℓ +

ˆ
ΣHℓ

[uℓ]
2
r

)
, ∀r ∈ (s/32, 4 sℓ) . (2.76)

In particular, (2.75) is (2.68)j=ℓ+1.

To prove (2.65)j=ℓ+1: Notice that (2.73) and (2.65)j=ℓ do not imply (2.65)j=ℓ+1, since, in

(2.65)j=ℓ+1, we are claiming the graphicality of V inside A
4 sℓ+1

s/32 (which is strictly larger

than A4 sℓ
s/32), and we are claiming that uℓ+1 has C1-norm bounded by σ, and not just by

C0 σ0 (with C0 as in Lemma 2.8-(ii)).

We want to apply Lemma 2.11 with

r = 8 sℓ+1 , (λ1, λ2) =
( 1

16
,
1

8

)
, (λ3, λ4) =

( 3

32
,
7

64

)
, K = Hℓ+1 . (2.77)

We check the validity of (2.46), (2.47), (2.49) and (2.48) for these choices of r, λ1, λ2, λ3,
λ4 and K.

Since r = 8 sℓ+1 ≥ s ≥ max{M0, 64R}, and since (2.64) and ℓ + 1 ≤ N give r =
8 sℓ+1 ≤ ε0/Λ, we deduce the validity of (2.46) with r = 8 sℓ+1. The validity of (2.47)
with r = 8 sℓ+1 is immediate from (2.61) by our choice (2.54) of ε0. Next we notice that

∥V ∥(Aλ4 rλ3 r
) = ∥V ∥(A7 [8 sℓ+1]/64

3 [8 sℓ+1]/32
) = ∥V ∥(A7 sℓ/4

3 sℓ/2
) > 0

thanks to (2.65)j=ℓ, so that (2.48) holds for r, λ3 and λ4 as in (2.77). Finally, by (2.22)
(which can be applied to uℓ+1 thanks to (2.52)), (2.73) and (2.65)j=ℓ, and, then by (2.76),
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we have

1

rn

ˆ
A

λ2 r
λ1 r

ω2
Hℓ+1

d∥V ∥ ≤ C(n)

snℓ+1

ˆ sℓ+1

sℓ

rn−1 dr

ˆ
ΣHℓ+1

[uℓ+1]
2
r

≤ C(n)Tℓ +
C(n)

snℓ+1

ˆ sℓ+1

sℓ

rn−1 dr

ˆ
ΣHℓ

[uℓ]
2
r

≤ C(n)Tℓ ≤ C(n) ε0 ,

where in the last inequality we have used (2.67)j=ℓ. Again by our choice (2.54) of ε0, we
deduce that (2.49) holds with r, λ1 and λ2 as in (2.77).

We can thus apply Lemma 2.11, and find v ∈ Xσ(ΣHℓ+1
, sℓ+1/4, 4 sℓ+1) such that

V corresponds to ΣHℓ+1
(v, sℓ+1/4, 4 sℓ+1) on A

4 sℓ+1

sℓ+1/4
. (2.78)

By (2.73), (2.65)j=ℓ, and (2.78), v = uℓ+1 on ΣHℓ+1
× (sℓ+1/4, 4 sℓ). We can thus use v

to extend uℓ+1 from ΣHℓ+1
× (s/32, 4 sℓ) to ΣHℓ+1

× (s/32, 4 sℓ+1), and, thanks to (2.73),
(2.65)j=ℓ and (2.78), the resulting extension is such that (2.65)j=ℓ+1 holds.

To prove (2.69)j=ℓ+1: We set

r0 =
sℓ + sℓ+1

2
,

and notice that for η0 = 1/3 we have

r1 = r0 (1− η0) = sℓ , r2 = r0 (1 + η0) = sℓ+1 . (2.79)

For η = 1/6 we correspondingly set

r3 = r0 (1− η) =: s−ℓ , r4 = r0 (1 + η) =: s+ℓ , (2.80)

and notice that (η0, η) ∈ J , see (2.51). With the aim of applying Theorem 2.10-(iii) to
these radii, we notice that (2.65)j=ℓ+1 implies that assumption (2.40) holds with H = Hℓ+1

and u = uℓ+1, while, by (2.74), r = s∗ℓ ∈ (sℓ, sℓ+1) is such that (2.42) holds. Taking into
account that Λ sℓ+1 ≤ ε0 ≤ 1 by (2.64), we thus find by (2.43) that

1

snℓ+1

∣∣∣∥V ∥
(
Bs+ℓ

\Bs−ℓ
)
− ωn

(
(s+ℓ )

n − (s−ℓ )
n
)∣∣∣

=
1

snℓ+1

∣∣∣Hn(ΣHℓ+1
(uℓ+1, s

−
ℓ , s

+
ℓ ))−Hn(ΣHℓ+1

(0, s−ℓ , s
+
ℓ ))

∣∣∣
≤ C(n)

{
(Λ sℓ+1)

2 +ΘV,R,Λ(sℓ+1)−ΘV,R,Λ(sℓ)
}

(2.81)

where C(n) = C0(n, 1/6, 1/3) for C0 as in Theorem 2.10-(iii). Setting for brevity δ = δV,R,Λ
and Θ = ΘV,R,Λ, and recalling that

rn δ(r) = ωn r
n −Θ(r) rn

= ωn r
n − ∥V ∥(Br \BR)− Λ rn

ˆ r

R

∥V ∥(Bρ \BR)
ρn

dρ+
R ∥δV ∥(∂BR)

n

we have

1

snℓ

∣∣∣(s−ℓ )n δ(s−ℓ )− (s+ℓ )
n δ(s+ℓ )

∣∣∣ ≤ C(n)
{
(Λ sℓ)

2 +Θ(sℓ+1)−Θ(sℓ)
}

+C(n)
Λ

snℓ

{
(s+ℓ )

n

ˆ s+ℓ

R

∥V ∥(Bρ \BR)
ρn

dρ− (s−ℓ )
n

ˆ s−ℓ

R

∥V ∥(Bρ \BR)
ρn

dρ
}

≤ C(n)
{
(Λ sℓ)

2 +Θ(sℓ+1)−Θ(sℓ)
}
+ C(n) Λ

ˆ s+ℓ

R

∥V ∥(Bρ \BR)
ρn

dρ .

23



By Λ sℓ ≤ 1 and since s+ℓ ≤ sℓ ≤ ε0/8Λ thanks to ℓ < N , we can use the upper bound

∥V ∥(Bρ \BR) ≤ Γ ρn with ρ ∈ (R, s+ℓ ) ⊂ (R, 1/Λ), to find that∣∣∣(s−ℓ )n
snℓ

δ(s−ℓ )−
(s+ℓ )

n

snℓ
δ(s+ℓ )

∣∣∣ ≤ C∗(n)
{
δ(sℓ)− δ(sℓ+1)

}
+ C∗(n) (Γ + 1)Λ sℓ ,

for a constant C∗(n) depending on the dimension n only. By rearranging terms we thus
find

C∗(n) δ(sℓ+1) +
(s+ℓ )

n

snℓ
δ(s+ℓ ) ≤ C∗(n) δ(sℓ) +

(s−ℓ )
n

snℓ
δ(s−ℓ ) + C∗(n) (1 + Γ)Λ sℓ .

Using the monotonicity of δ on (R,∞) and (s−ℓ , s
+
ℓ ) ⊂ (sℓ, sℓ+1), we conclude that(

C∗(n) +
(s+ℓ )

n

snℓ

)
δ(sℓ+1) ≤

(
C∗(n) +

(s−ℓ )
n

snℓ

)
δ(sℓ) + C∗(n) (1 + Γ)Λ sℓ, . (2.82)

We finally notice that by (2.79), (2.80), η0 = 1/3, and η = 1/6, we have

s−ℓ
sℓ

=
r0 (1− η)

r0 (1− η0)
=

5

4
,

s+ℓ
sℓ

= 2
s+ℓ
sℓ+1

= 2
1 + η

1 + η0
=

7

4
,

so that, setting

τ = τ(n) =
C∗(n) + (5/4)n

C∗(n) + (7/4)n
, τ∗ = τ∗(n) =

C∗(n)

C∗(n) + (7/4)n
< τ ,

we find
δ(sℓ+1) ≤ τ

{
δ(sℓ) + (1 + Γ)Λ sℓ} , (2.83)

which is (2.69)j=ℓ+1.

To prove (2.70)j=ℓ+1: We want to prove

1

snℓ+1

ˆ 2 sℓ+1

sℓ+1

rn−1 dr

ˆ
ΣHℓ+1

[uℓ+1]
2
r ≤ C(n)

{
δV,R,Λ(sℓ)− δV,R,Λ(sℓ+3) + Λ sℓ

}
. (2.84)

By (2.65)j=ℓ+1 we know that

V corresponds to ΣHℓ+1
(uℓ+1, s/32, 4 sℓ+1) on A

4 sℓ+1

s/32 . (2.85)

Let us set

r1 = sℓ = 3 sℓ − 2 sℓ , r2 = 5 sℓ = 3 sℓ + 2 sℓ ,

r3 = sℓ+1 = 3 sℓ − sℓ , r4 = 2 sℓ+1 = 3 sℓ + sℓ ,

so that (2.34) holds with r0 = 3 sℓ and (η0, η) = (2/3, 1/3) ∈ J , see (2.51). Since

s∗ℓ ∈ (sℓ, sℓ+1) ⊂ (r1, r2)

by (2.85), (2.74) and (r1, r2) ⊂ (s/32, 4 sℓ+1) we can apply (2.38) in Theorem 2.9 to deduce
thatˆ 2 sℓ+1

sℓ+1

rn−1

ˆ
ΣHℓ+1

[uℓ+1]
2
r ≤ C(n)

ˆ 5 sℓ

sℓ

rn+1

ˆ
ΣHℓ+1

(∂ruℓ+1)
2
r + C(n) Λ (sℓ)

n+1 .

Again by (2.85) we can apply Theorem 2.10-(ii) with (r1, r2) = (sℓ, 8 sℓ), and find thatˆ 5 sℓ

sℓ

rn+1

ˆ
ΣHℓ+1

(∂r[uℓ+1])
2
r ≤

ˆ 8 sℓ

sℓ

rn+1

ˆ
ΣHℓ+1

(∂r[uℓ+1])
2
r

≤ C(n) snℓ

{
ΘV,R,Λ(8 sℓ)−ΘV,R,Λ(sℓ)

}
≤ C(n) snℓ

{
δV,R,Λ(sℓ)− δV,R,Λ(sℓ+3)

}
.

The last two estimates combined give (2.84). This completes the proof of the claim.
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Proof of statement (i): We assume S∗ <∞ (that is either Λ > 0 or R∗ <∞). In this case
N (as defined in (2.64)) is finite, with

2N ≤ S∗
s
< 2N+1 .

By (2.65)j=N−2, V corresponds to ΣHN−2
(uN−2, s/32, 4 sN−2) on A

4 sN−2

s/32 , and since

4 sN−2 = 42N−2−3 s =
2N+1 s

16
>
S∗
16

we deduce (2.11) with K = HN−2 and u = uN−2.

Proof of statement (ii): We assume Λ = 0 and R∗ = +∞ (that is, δV,R,0 ≥ −ε0 on
(s/8,∞)). In this case, we have N = +∞, and the iteration procedure set up in the claim
actually defines a sequence {(Hj , uj)}∞j=0 with uj ∈ Xσ(ΣHj , s/32, 4 sj) and

V corresponds to ΣHj (uj , s/32, 4 sj) on A
4 sj
s/32 (2.86)

for every j ≥ 0. By compactness of Sn, we can find K ∈ H such that, along a sub-
sequence {Hj(k)}k, we have εk = |νK − νHj(k)

| → 0 as k → ∞. In particular, for k

large enough, we have εk < ε0, and thus, by Lemma 2.8-(i) and by (2.86) we can find
vk ∈ XC(n) (σ+εk)(ΣK ; s/32, 4 sj(k)) such that

V corresponds to ΣK(vj(k), s/32, 4 sj(k)) on A
4 sj(k)
s/32 . (2.87)

By (2.87), vj(k)+1 = vj(k) on ΣK × (s/32, 4 sj(k)). Since sj(k) → ∞ we have thus found
u ∈ XC(n)σ(ΣK ; s/32,∞) such that V corresponds to ΣK(u, s/32,∞) on A∞

s/32. This

proves statement (ii).

Proof of statement (iii): We finally assume that Λ = 0 and that

δ(r) ≥ 0 , ∀r ≥ s

8
, (2.88)

where we have set for brevity δ = δV,R,0. As in the case of statement (ii) we have N = +∞,
and there is a sequence {(Hj , uj)}∞j=0 satisfying

V corresponds to ΣHj (uj , s/32, 4 sj) on A
4 sj
s/32 , (2.89)

for every j ≥ 0, as well as

|νHj − νHj−1 |2 ≤ C(n)Tj−1 , if j ≥ 1 , (2.90)

δ(sj) ≤
{
ε0 , if j = 0 ,

τ δ(sj−1) , if j ≥ 1 ,
(2.91)

Tj ≤

{
C(n) ε0 , if j = 0 ,

C(n) δ(sj−1) , if j ≥ 1 .
(2.92)

Notice that, in asserting the validity of (2.92) with j ≥ 1, we have used (2.88) to estimate
−δ(sj+2) ≤ 0 in (2.70)j . By iterating (2.91) we find

δ(sj) ≤ τ j δ(s/8) ≤ τ j ε0 , ∀j ≥ 1 , (2.93)

which, combined with (2.92) and (2.90), gives, for every j ≥ 1,

Tj ≤ C(n) min{1, τ j−1} δ(s/8) ≤ C(n) τ j δ(s/8) , (2.94)

|νHj − νHj−1 |2 ≤ C(n) min{1, τ j−2} δ(s/8) ≤ C(n) τ j δ(s/8) , (2.95)
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thanks also to τ = τ(n) and, again, to (2.88). By (2.95), for every j ≥ 0, k ≥ 1, we have

|νHj+k
− νHj | ≤ C(n)

√
δ(s/8)

k+1∑
h=1

|νHj−1+h
− νHj−2+h

| ≤ C(n)
√
δ(s/8)

k+1∑
h=1

(√
τ
)j−1+h

,

so that there exists K ∈ H such that

|νK − νHj |2 ≤ C(n) τ j δ(s/8) , ∀j ≥ 1 , (2.96)

and, in particular, |νHj − νK | → 0 as j → ∞. By arguing as in the proof of statement (ii)
we see find u ∈ Xσ′(ΣK , s/32,∞) for every σ′ > σ such that, for every j large enough,

ΣK(u, s/32, 4 sj) = ΣHj (uj , s/32, 4 sj) ,

and hence, by (2.65),

V corresponds to ΣK(u, s/32,∞) on Rn+1 \Bs/32 , (2.97)

which is (2.11) with S∗ = +∞.

To prove (2.12), we notice that if r ∈ (sj , sj+1) for some j ≥ 1, then, setting τ = (1/2)α

(i.e., α = log1/2(τ) ∈ (0, 1)) and noticing that r/s ≤ 2j+1−3, by (2.56) and (2.93) we have

δ(r) ≤ δ(sj) ≤ τ j δ
(s
8

)
=

( 1

2j

)α
δ
(s
8

)
= 4−α

( 1

2j−2

)α
δ
(s
8

)
≤ C(n)

(s
r

)α
δ
(s
8

)
, (2.98)

where in the last inequality (2.88) was used again; this proves (2.12). To prove (2.13), we
recall that ωK(y) = arctan(|νK · ŷ|/|pK ŷ|), provided arctan is defined on R ∪ {±∞}, and
where ŷ = y/|y|, y ̸= 0. Now, by (2.97),

y = |y| pK ŷ + u(pK ŷ, |y|) νK√
1 + u(pK ŷ, |y|)2

, ∀y ∈ (sptV ) \Bs/32 ,

so that |pK ŷ| ≥ 1/2 for y ∈ (sptV ) \ Bs/32; therefore, by (2.96), up to further decrease
the value of ε0, and recalling δ(s/8) ≤ ε0, we conclude that

|pHj ŷ| ≥
1

3
, ∀y ∈ (sptV ) \Bs/32 , (2.99)

for every j ∈ N ∪ {+∞} (if we set H∞ = K). By (2.99) we easily find

|ωK(y)− ωHj (y)| ≤ C |νHj − νK | , ∀y ∈ (sptV ) \Bs/32 , ∀j ≥ 1 ,

from which we deduce that, if j ≥ 1 and r ∈ (sj , sj+1), then

1

rn

ˆ
A2 r

r

ω2
K d∥V ∥ ≤ C(n)

{ 1

snj

ˆ
A

sj+1
sj

ω2
K d∥V ∥+ 1

snj+1

ˆ
A

sj+2
sj+1

ω2
K d∥V ∥

}
≤ C(n)

{ 1

snj

ˆ
A

sj+1
sj

ω2
Hj
d∥V ∥+ 1

snj+1

ˆ
A

sj+2
sj+1

ω2
Hj+1

d∥V ∥
}

+C(n) Γ
{
|νK − νHj |2 + |νK − νHj+1 |2

}
,

where we have also used (2.55) to bound ∥V ∥(A2 ρ
ρ ) ≤ Γ (2 ρ)n with ρ = sj , sj+1 ∈ (R, 1/Λ).

By (2.89) we can exploit (2.22) on the first two integrals, so that taking (2.96) into account
we find that, if j ≥ 1 and r ∈ (sj , sj+1), then

1

rn

ˆ
A2 r

r

ω2
K d∥V ∥ ≤ C(n){Tj + Tj+1

}
+ C(n) Γ τ j δ(s/8) ≤ C(n) (1 + Γ) τ j δ(s/8) ,

where in the last inequality we have used (2.94). Since τ j ≤ C(n) (s/r)α, we conclude the
proof of (2.13), and thus, of the theorem. �
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3. Application of quantitative isoperimetry

In this section we prove the existence of minimizers in ψW (v) and then apply quantitative
isoperimetry to prove Theorem 1.7-(i) and some of the estimates in Theorem 1.7-(iv).

Theorem 3.1. If W ⊂ Rn+1 is compact, and v > 0, then ψW (v) admits minimizers.
Moreover, there exist positive constants v0, C0, Λ0, s0 ∈ (0, 1), depending on n andW only,

and a function R0(v) depending on n and W only, with R0(v) → 0+ and R0(v) v
1/(n+1) →

∞ as v → ∞, such that, if v > v0 and Ev is a minimizer of ψW (v), then:

(i): Ev is a (Λ0/v
1/(n+1), s0 v

1/(n+1))-perimeter minimizer with free boundary in
Ω, that is

P (Ev; Ω ∩Br(x)) ≤ P (F ; Ω ∩Br(x)) +
Λ0

v1/(n+1)

∣∣Ev∆F ∣∣ , (3.1)

holds whenever F ⊂ Ω = Rn+1 \W with Ev∆F ⊂⊂ Br(x) and r < s0 v
1/(n+1);

(ii): Ev determines x ∈ Rn+1 such that

|Ev∆B(v)(x)|
v

≤ C0

v1/[2(n+1)]
, (3.2)

and, assuming in addition that R(W ) > 0, Ev also determines u ∈ C∞(∂B(1)) such that

(∂Ev) \BR0 v1/(n+1) (3.3)

=
{
y + v1/(n+1)u

( y − x

v1/(n+1)

)
νB(v)(x)(y) : y ∈ ∂B(v)(x)

}
\BR0 v1/(n+1) ;

(iii): finally, if R(W ) > 0, then

lim
v→∞

sup
Ev

max

{∣∣∣ |x|
v1/(n+1)

− 1

ω
1/(n+1)
n+1

∣∣∣ , ∥u∥C1(∂B(1))

}
= 0 , (3.4)

where x and u depend on Ev as in (3.2) and (3.3), and where Ev ranges among all
minimizers of ψW (v).

Remark 3.2 (Improved convergence). In the proof of Theorem 3.1 we will make repeated
use of the following well–known (see, e.g. [FM11, CL12, FFM+15]) fact: If Ω is an open
set, Λ ≥ 0, s > 0, if {Fj}j are (Λ, s)-perimeter minimizers in Ω, i.e. if it holds that

P (Fj ;Br(x)) ≤ P (Gj ;Br(x)) + Λ |Fj∆Gj | , (3.5)

whenever Gj∆Fj ⊂⊂ Br(x) ⊂⊂ Ω and r < s, and if F is an open set with smooth boundary
in Ω such that Fj → F in L1

loc(Ω) as j → ∞, then for every Ω′ ⊂⊂ Ω we can find j(Ω′)
such that, if j ≥ j(Ω′), then

(∂Fj) ∩ Ω′ =
{
y + uj(y) νF (y) : y ∈ Ω ∩ ∂F

}
∩ Ω′

for a sequence {uj}j ⊂ C1(Ω∩ ∂F ) with ∥uj∥C1(Ω∩∂F ) → 0 as j → ∞. (A proof is quickly
obtained by combining [CLM16, Lemma 4.4] with a covering argument.) Notice also the
terminology used in (3.1) and (3.5): when we add “with free boundary”, the “localizing
balls” Br(x) are not required to be compactly contained in Ω, and the perimeters are
computed in Br(x)∩Ω. This allows competitors in (3.1) to differ from the minimizer near
∂Ω, while being constrained to be subsets of Ω. In particular, (Λ, s)-perimeter minimality
as defined in (3.5) is weaker than its “with free boundary” variant defined in (3.1).

Proof of Theorem 3.1. Step one: We prove the existence of minimizers. Since W is com-
pact, suitable translations of B(v) are competitors in ψW (v), and therefore we can find a
sequence {Ej}j with Ej ⊂ Ω, |Ej | = v, and

P (Ej ; Ω) ≤ min
{
P (B(v)), P (F ; Ω)

}
+

1

j
, (3.6)
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for every F ⊂ Ω with |F | = v. By standard compactness theorems for sets of finite
perimeter we find that, up to extracting subsequences, Ej → E in L1

loc(Rn+1) with
P (E; Ω) ≤ lim infj→∞ P (Ej ; Ω), where E ⊂ Ω and |E| ≤ v. We now make three remarks
concerning E:

(a): We notice that, if {Ωi}i∈I are the connected components of Ω, then

either Ω ∩ ∂∗E ̸= ∅ , or ∃ I0 ⊂ I s.t. E =
∪
i∈I0 Ωi . (3.7)

Indeed, if Ω ∩ ∂∗E = ∅, then, by cl (∂∗E) ∩ Ω = ∂E ∩ Ω, we find ∂E ⊂ ∂Ω, and thus the
second possibility in (3.7) occurs; viceversa, if the second possibility in (3.7) occurs, then,
trivially, Ω ∩ ∂∗E = ∅ holds.

(b): We notice that, if Ω ∩ ∂∗E ̸= ∅, then we can construct a system of “volume–fixing
variations” for {Ej}j . Indeed, if Ω ∩ ∂∗E ̸= ∅, then there exist BS0(x0) ⊂⊂ Ω with
P (E; ∂BS0(x0)) = 0 and a vector field X ∈ C∞

c (BS0(x0);Rn+1) such that
´
E div X = 1.

By the volume-fixing variation construction (see [Mag12, Theorem 29.14]), there exist
constants C0, c0 > 0, depending on E itself, with the following property: whenever
|(F∆E) ∩ BS0(x0)| < c0, then there exists a smooth function ΦF : Rn × (−c0, c0) → Rn
such that, for each |t| < c0, the map ΦFt = ΦF (·, t) is a smooth diffeomorphism with
{ΦFt ̸= id } ⊂⊂ BS0(x0) and

|ΦFt (F )| = |F |+ t , P (ΦFt (F );BS0(x0)) ≤
(
1 + C0 |t|

)
P (F ;BS0(x0)) .

For j large enough, we evidently have |(Ej∆E)∩BS0(x0)| < c0, and thus we can construct

smooth functions Φj : Rn × (−c0, c0) → Rn such that, for each |t| < c0, the map Φjt =

Φj(·, t) is a smooth diffeomorphism with {Φjt ̸= id } ⊂⊂ BS0(x0) and

|Φjt (Ej)| = |Ej |+ t , P (Φjt (Ej);BS0(x0)) ≤
(
1 + C0 |t|

)
P (Ej ;BS0(x0)) .

(c): We notice that, if Ω ∩ ∂∗E ̸= ∅, then E is bounded. Since |E| ≤ v <∞, it is enough
to prove that Ω∩ ∂∗E is bounded. In turn, taking x0 ∈ Ω∩ ∂∗E, and since W is bounded
and |E| < ∞, the boundedness of Ω ∩ ∂∗E descends immediately by the following lower
volume-density estimate: there exists r1 > 0 such that

|E ∩Br(x)| ≥ c(n) rn+1

∀ x ∈ Ω ∩ ∂∗E , r < r1 , Br(x) ⊂⊂ Rn+1 \
(
Ir1(W ) ∪BS0(x0)

)
.

(3.8)

To prove (3.8), let r1 > 0 be such that |Br1 | < c0, let x and r be as in (3.8), and set

Fj =
(
Φjt (Ej) ∩BS0(x0)

)
∪
(
Ej \

(
Br(x) ∪BS0(x0)

))
,

for t = |Ej ∩ Br(x)| (which is an admissible value of t by |Br1 | < c0). In this way,
|Fj | = |Ej | = v, and thus we can exploit (3.6) to find that, for a.e. r < r1,

P (Ej ; Ω) ≤ P (Fj ; Ω) +
1

j
≤ P

(
Ej ; Ω \

(
Br(x) ∪BS0(x0)

))
+ P (Ej ;BS0(x0))

+C0

(
ψW (v) +

1

j

)
|Ej ∩Br(x)|+Hn(Ej ∩ ∂Br(x)) +

1

j
,

or, setting for the sake of brevity uj(r) = |Ej ∩Br(x)|,

P (Ej ;Br(x)) ≤ u′j(r) + C0 (ψW (v) + 1)uj(r) +
1

j
, for a.e. r < r1 ,

where we have used that u′j(r) = Hn(Ej ∩ ∂Br(x)) for a.e. r > 0. Adding u′j(r) on both

sides and applying the Euclidean isoperimetric inequality to Ej ∩Br(x), we find

c(n)uj(r)
n/(n+1) ≤ 2u′j(r) + C0 (ψW (v) + 1)uj(r) +

1

j
, for a.e. r < r1 .
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Since C0 (ψW (v) + 1)uj(r) ≤ [c(n)/2]uj(r)
n/(n+1) is equivalent to

uj(r) ≤
( c(n)

2C0 (ψW (v) + 1)

)n+1
,

and since uj(r) ≤ ωn+1 r
n+1
1 , up to further decreasing the value of r1 we can assume that

C0 (ψW (v) + 1)uj ≤ [c(n)/2]u
n/(n+1)
j on (0, r1), and thus deduce

c(n)

2
uj(r)

n/(n+1) ≤ u′j(r) +
1

j
, for a.e. r ∈ (0, r1) .

Letting j → ∞ and setting u(r) = |E ∩Br(x)|, we find un/(n+1) ≤ C(n)u′ a.e. on (0, r1),
and thus (by x ∈ ∂∗E ∩ Ω) that u(r) ≥ c0 r

n+1 for every r ∈ (0, r1), which is (3.8).

We are ready to prove the existence of a minimizer of ψW (v). Since ∂Ω ⊂W is bounded,
every connected component of Ω with finite volume is bounded. Thus, by combining (a),
(b) and (c) above, we conclude that there exists R > 0 such that

W ∪ E ⊂⊂ BR . (3.9)

Since |E ∩ [BR+1 \BR]| = 0, we can pick T ∈ (R,R+ 1) such that

lim
j→∞

Hn(Ej ∩ ∂BT ) = 0 , P (Ej \BT ) = Hn(Ej ∩ ∂BT ) + P (Ej ; Ω \BT ) , (3.10)

and consider the sets

Fj =
(
Ej ∩BT

)
∪Bρj (y) , ρj =

( |Ej \BT |
ωn+1

)1/(n+1)
,

corresponding to a y ∈ Rn+1 which is independent from j and such that |y| > ρj + T

(notice that supj ρj ≤ C(n) v1/(n+1)). Since |Fj | = |Ej | = v, (3.6) gives

P (Ej ; Ω) ≤ P (Fj ; Ω) +
1

j
≤ P (Ej ; Ω ∩BT ) +Hn(Ej ∩ ∂BT ) + P (Bρj ) +

1

j

≤ P (Ej ; Ω) + 2Hn(Ej ∩ ∂BT ) +
1

j
= P (Ej ; Ω) + o(1) , as j → ∞ ,

thanks to (3.10) and P (Bρj ) ≤ P (Ej\BT ). Thus {Fj}j is a minimizing sequence for ψW (v),
with Fj ⊂ BT ∗ , with T ∗ independent of j. In particular, up to extracting subsequences,
Fj converges in L

1(Rn+1) to a set E∗ with |E∗| = v, so that E∗ is a minimizer of ψW (v).

Step two: We prove (3.2). If Ev a minimizer of ψW (v) and R > 0 is such that W ⊂⊂ BR,

then by P (Ev; Ω) ≤ P (B(v)) we have, for v > v0, and v0 and C0 depending on n and W ,

P (Ev \BR) ≤ P (Ev; Ω)+nωnR
n ≤ P (B(v))+C0 ≤

(
1+

C0

v

)
P (B(|Ev\BR|))+C0 , (3.11)

where we have used that, if v > 2 b > 0 and α = n/(n+ 1), then

P (B(v))

P (B(v−b))
− 1 =

( v

v − b

)α
− 1 ≤ α b

v − b
≤ 2α b

v
.

By combining (1.3) and (3.11) we conclude that

c(n) inf
x∈Rn+1

( |(Ev \BR)∆B(|Ev\BR|)(x)|
|Ev \BR|

)2
≤ P (Ev \BR)
P (B(|Ev\BR|))

− 1 ≤ C0

vn/(n+1)
, (3.12)

provided v > v0. If x ∈ Rn+1 achieves the above infimum, then we find that

|Ev∆B(v)(x)| = 2 |Ev \B(v)(x)| ≤ C0 + 2
∣∣(Ev \BR) \B(v)(x)

∣∣
≤ C0 + 2

∣∣(Ev \BR) \B(|Ev\BR|)(x)
∣∣ ≤ C0 + |Ev \BR|

C0

vn/2 (n+1)
,

which immediately implies (3.2).
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Step three: We prove the existence of v0, Λ0, and s0 such that every minimizer Ev of
ψW (v) with v > v0 satisfies (3.1). To this end, we argue by contradiction, and assume the
existence of vj → ∞, minimizers Ej in ψW (vj), sets Fj ⊂ Ω with Fj∆Ej ⊂⊂ Brj (xj) for

some xj ∈ Rn+1 and rj = v
1/(n+1)
j /j, |Fj∆Ej | > 0, and

P (Ej ; Ω ∩Brj (xj)) ≥ P (Fj ; Ω ∩Brj (xj)) +
j

v
1/(n+1)
j

∣∣Ej∆Fj∣∣ .
Denoting by E∗

j , F
∗
j and Ωj the sets obtained by scaling Ej , Fj and Ω by a factor v

−1/(n+1)
j ,

we find that F ∗
j ∆E

∗
j ⊂⊂ B1/j(yj) for some yj ∈ Rn+1, and

P (E∗
j ; Ωj ∩B1/j(yj)) ≥ P (F ∗

j ; Ωj ∩B1/j(yj)) + j
∣∣E∗

j∆F
∗
j

∣∣ . (3.13)

By (3.2) there exist zj ∈ Rn+1 such that |E∗
j∆B

(1)(zj)| → 0 as j → ∞. We can therefore

use the volume-fixing variations of B(1) to find constants c(n) and C(n) and diffeomor-

phisms Φjt : Rn → Rn such that, for every |t| < c(n), one has {Φjt ̸= id } ⊂⊂ Uj for some
open ball Uj with Uj ⊂⊂ Ωj \B1/j(yj), and

|Φjt (E∗
j ) ∩ Uj | = |E∗

j ∩ Uj |+ t , P (Φjt (E
∗
j );Uj) ≤ (1 + C(n) |t|)P (E∗

j ;Uj) .

Since F ∗
j ∆E

∗
j ⊂⊂ B1/j(yj) implies that for j large enough ||F ∗

j | − |E∗
j || < c(n), if we take

t = |E∗
j |− |F ∗

j |, then the resulting set G∗
j = Φjt (F

∗
j ) is such that |G∗

j | = |E∗
j |, and therefore

the minimality property of Ej in ψW (vj) can be used to infer

P (E∗
j ; Ωj) ≤ P (G∗

j ; Ωj)

≤ P
(
E∗
j ; Ωj \ (Uj ∪B1/j(yj))

)
+ P (F ∗

j ; Ωj ∩B1/j(yj))

+P (E∗
j ;Uj) + C(n)P (E∗

j ;Uj)
∣∣E∗

j∆F
∗
j

∣∣ .
Taking into account P (E∗

j ;Uj) ≤ ψW (vj)/v
n/(n+1)
j ≤ C(n), we thus find

P (E∗
j ; Ωj ∩B1/j(yj)) ≤ P (F ∗

j ; Ωj ∩B1/j(yj)) + C(n)
∣∣E∗

j∆F
∗
j

∣∣ ,
which, combined with (3.13), gives j

∣∣E∗
j∆F

∗
j

∣∣ ≤ C(n)
∣∣E∗

j∆F
∗
j

∣∣. Since |E∗
j∆F

∗
j | > 0, this

is a contradiction for j large enough.

Step four: We now prove that, if R(W ) > 0, then

lim
v→∞

sup
Ev

∣∣∣ |x|
v1/(n+1)

− 1

ω
1/(n+1)
n+1

∣∣∣ = 0 , (3.14)

where x is related to the minimizer Ev of ψW (v) under consideration by (3.2).

In proving (3.14) we will use the assumption R(W ) > 0 and the energy upper bound

lim sup
v→∞

ψW (v)− P (B(v)) ≤ −R(W ) . (3.15)

A proof of (3.15) is given in step one of the proof of Theorem 1.7, see section 5; in turn,
that proof is solely based on the results from section 4, where no part of Theorem 3.1 (not
even the existence of minimizers in ψW (v)) is ever used. This said, we notice that when
|W | > 0, and thus S(W ) > 0, one can replace the use of (3.15) in the proof of (3.14) by
the use of the simpler upper bound

lim sup
v→∞

ψW (v)− P (B(v)) ≤ −S(W ) , (3.16)
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where, we recall, S(W ) = sup{Hn(W ∩Π) : Π is a hyperplane in Rn+1}. To prove (3.16),
we notice that, for every given Π, we can construct competitors for ψW (v) by intersecting

Ω with balls B(v′)(xv) with v
′ > v and xv such that

|B(v′)(xv) \W | = v , lim
v→∞

Hn(W ∩ ∂B(v′)(xv)) = Hn(W ∩Π) ,

and
lim sup
v→∞

ψW (v)− P (B(v)) ≤ −Hn(W ∩Π) ,

thus giving (3.16). The proof of (3.15) is identical in spirit to that of (3.16), with the
difference that to glue a large ball to a maximizer (F, ν) in R(W ) we will need to establish
the decay of ∂F towards a hyperplane parallel to ν⊥ to the high degree of precision
expressed in (1.16).

Coming to the proof of (3.14), we argue by contradiction and consider vj → ∞, mini-
mizers Ej of ψW (vj), and xj ∈ Rn+1 with

inf
x∈Rn+1

|Ej∆B(vj)(x)|
vj

=
|Ej∆B(vj)(xj)|

vj
, (3.17)

such that

lim inf
j→∞

∣∣∣ |xj |
v
1/(n+1)
j

− 1

ω
1/(n+1)
n+1

∣∣∣ > 0 , (3.18)

and then set

E∗
j =

Ej − xj

v
1/(n+1)
j

, W ∗
j =

W − xj

v
1/(n+1)
j

, Ω∗
j =

Ω− xj

v
1/(n+1)
j

.

By (3.1), each E∗
j is a (Λ0, s0)-perimeter minimizer with free boundary in the open set Ω∗

j .

By (3.2) and (3.17), E∗
j → B(1) in L1(Rn+1) as j → ∞. Moreover, diam (W ∗

j ) → 0 and,

by (3.18),

lim inf
j→∞

dist
(
W ∗
j , ∂B

(1)
)
> 0 . (3.19)

Correspondingly, we can find z0 ̸∈ ∂B(1) such that, for every ρ < dist(z0, ∂B
(1)), there is

j(ρ) such that {E∗
j }j≥j(ρ) is a sequence of (Λ0, s0)-perimeter minimizers in Rn+1\Bρ/2(z0).

By Remark 3.2, up to increasing the value of j(ρ), we ensure that (∂E∗
j ) \ Bρ(z0) is

contained in the normal graph over ∂B(1) of a function uj with ∥uj∥C1(∂B(1)) → 0; in

particular, by (3.19), (∂E∗
j ) \Bρ(z0) is disjoint from W ∗

j . By the constant mean curvature

condition satisfied by Ω ∩ ∂E∗
j , and by Alexandrov’s theorem [Ale62], we conclude that

(∂E∗
j ) \ Bρ(z0) is a sphere M∗

j for j ≥ j(ρ). Let B∗
j be the ball bounded by M∗

j . Since

M∗
j ∩W ∗

j = ∅, we have either one of the following two cases:

Case one: W ∗
j ⊂ B∗

j . In this case we have

∂[B∗
j ∪ E∗

j ] ⊂M∗
j ∪ [(∂E∗

j ) \ cl (B∗
j )] ⊂ (∂E∗

j ) \W ∗
j ,

so that, thanks to |B∗
j ∪ E∗

j | ≥ |E∗
j |+ |W ∗

j | ≥ 1, we conclude that

P (E∗
j ;Rn+1 \W ∗

j ) ≥ P (B∗
j ∪ E∗

j ) ≥ P (B(1)) ,

that gives ψW (vj) ≥ P (B(1)), in contradiction with (3.15).

Case two: W ∗
j ∩B∗

j = ∅. In this case we first see that

E∗
j = B∗

j ∪G∗
j ,

where G∗
j is the union of the connected components of E∗

j whose boundaries have non-
empty intersection withW ∗

j : in other words, we are claiming that B∗
j is the only connected

component of E∗
j whose closure is disjoint from W ∗

j . Indeed, if this were not the case, we
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could recombine all the connected components of E∗
j with closure disjoint from W ∗

j into
a single ball of same total volume, centered far away from W ∗

j , in such a way to strictly

decrease P (E∗
j ; Ω

∗
j ) – thus violating the minimality of Ej in ψW (vj). Let us now set

Gj = xj + v
1/(n+1)
j G∗

j , Uj = xj + v
1/(n+1)
j B∗

j ,

so that Ej = Gj ∪ Uj and Gj and Uj are at positive distance.

If we start sliding Uj from infinity towards Gj∪W along arbitrary directions in Sn, then
we must find at least one direction such that the resulting “contact point” zj belongs to
Ω ∩ ∂Gj : if this were not the case, then we would find that Gj is contained in the convex
envelope of W , so that |Bj | = |Ej | − |Gj | ≥ vj − C(W ), and thus

ψW (vj) = P (Ej ; Ω) ≥ P (Bj ;W ) = P (Bj) ≥ P (B(vj−C(W ))) ≥ P (B(vj))− C(W )

v
1/(n+1)
j

,

which contradicts (3.15) for j large enough.

By construction, there is a half-space Hj such that Gj ⊂ Hj , zj ∈ (∂Gj) ∩ (∂Hj), and
Gj is a perimeter minimizer in Br(zj) for some r > 0 sufficiently small. By the strong
maximum principle, see, e.g. [DPM15, Lemma 2.13], Gj has a unique blow-up at zj , which
is given by Hj − zj . By De Giorgi’s regularity theorem, see e.g. [Mag12, Part III], Gj
is an open set with smooth boundary in a neighborhood of zj . Therefore, if we denote
by U ′

j the translation of Uj constructed in the sliding argument, then, E′
j = Gj ∪ U ′

j is a

minimizer of ψW (v), which, in a neighborhood of zj , is given by the union of two disjoint
sets with smooth boundary which touch tangentially at zj . In particular,

lim
r→0+

|E′
j ∩Br(zj)|
|Br|

= 1 ,

thus contradicting the upper volume density estimate which descends from (3.1), see, e.g.
[Mag12, Theorem 21.11, Equation (21.9)].

Step five: We complete the proof of the theorem by showing the existence of v0 > 0 and
R0(v) with R0(v) → 0+ and R0(v) v

1/(n+1) → ∞, such that every minimizer Ev of ψW (v)

with v > v0 determines x and u ∈ C∞(∂B(1)) with

(∂Ev) =
{
y + v1/(n+1)u

( y − x

v1/(n+1)

)
νB(v)(x)(y) : y ∈ ∂B(v)(x)

}
\BR0 v1/(n+1) , (3.20)

and

lim
v→∞

sup
Ev

∥u∥C1(∂B(1)) = 0 . (3.21)

To this end, let us consider vj → ∞, minimizers Ej in ψW (vj), and define xj , E
∗
j and W ∗

j

as in step four. Thanks to (3.14), we have that

∃ z0 ∈ ∂B(1) s.t. dist(z0,W
∗
j ) → 0 ,

as j → ∞. In particular, for every ρ > 0 (no matter how small), we can find j(ρ) ∈ N
such that if j ≥ j(ρ), then E∗

j is a (Λ0, s0)-perimeter minimizer in Rn+1 \ Bρ(z0), with
E∗
j → B(1) as j → ∞. By Remark 3.2, we can then find functions uj ∈ C1(∂B(1)) such

that

(∂E∗
j ) =

{
y + uj(y) νB(1)(y) : y ∈ ∂B(1)

}
\B2 ρ(z0) , ∀j ≥ j(ρ) ,

and with ∥uj∥C1(∂B(1)) → 0 as j → ∞. By the arbitrariness of ρ and by a contradiction

argument, we conclude that (3.20) and (3.21) hold (with some R0(v) such that R0(v) → 0+

and R0(v) v
1/(n+1) → ∞ as v → ∞). �
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4. Properties of isoperimetric residues

This section is devoted to the proof of Theorem 1.1. It will be convenient to introduce
some notation for cylinders and slabs in Rn+1: precisely, given r > 0, ν ∈ Sn and I ⊂ R,
and setting pν⊥(x) = x− (x · ν) ν (x ∈ Rn+1), we let

Dν
r =

{
x ∈ Rn+1 : |pν⊥x| < r , x · ν = 0

}
,

Cν
r =

{
x ∈ Rn+1 : |pν⊥x| < r

}
,

Cν
r,I =

{
x ∈ Rn+1 : |pν⊥x| < r , x · ν ∈ I

}
, (4.1)

∂ℓC
ν
r,I =

{
x ∈ Rn+1 : |pν⊥x| = r , x · ν ∈ I

}
,

SνI =
{
x ∈ Rn+1 : x · ν ∈ I

}
.

In each case, given x ∈ Rn+1, we also set Dν
r (x) = x + Dν

r , C
ν
r (x) = x + Cν

r , etc. It
is also convenient to premise the following proposition, which will be used in the proof
of both Theorem 1.1 and Theorem 1.7, and which is based on [Sch83, Proposition 1 and
Proposition 3].

Proposition 4.1. Let n ≥ 2, ν ∈ Sn, and let f be a Lipschitz solution to the minimal
surface equation on ν⊥ \ cl (Dν

R). If n = 2, assume in addition that M = {x + f(x) ν :
|x| > R} is stable and has quadratic area growth in R3 \BR, i.e.ˆ

M
|∇Mφ|2 − |A|2 φ2 ≥ 0 , ∀φ ∈ C1

c (R3 \BR) , (4.2)

H2(M ∩Br) ≤ C r2 , ∀r > R . (4.3)

Then there exist a, b ∈ R and c ∈ ν⊥ such that, for every |x| > R,∣∣∣f(x)− (
a+

b

|x|n−2
+
c · x
|x|n

)∣∣∣ ≤ C

|x|n
, (n ≥ 3) (4.4)∣∣∣f(x)− (

a+ b log |x|+ c · x
|x|2

)∣∣∣ ≤ C

|x|2
, (n = 2) (4.5)

max
{
|x|n−1 |∇f(x)|, |x|n |∇2f(x)| : |x| > R

}
≤ C , (every n) . (4.6)

Proof. If n ≥ 3, the fact that ∇f is bounded allows one to represent f as the convolution
with a singular kernel which, by a classical result of Littman, Stampacchia, and Weinberger
[LSW63], is comparable to the Green’s function of Rn; (4.4) is then deduced starting from
that representation formula. For more details, see [Sch83, Proposition 3].

In the case n = 2, by (4.2) and (4.3), we can exploit a classical “logarithmic cut-off
argument” to see that M has finite total curvature, i.e.ˆ

M
|K| dH2 <∞ , (4.7)

where K is the Gaussian curvature of M . Thanks to (4.7) (see, e.g. [PR02, Section 1.2])
the compactification M of M is a Riemann surface with boundary, and M is conformally
equivalent to M \ {p1, ..., pm}, where pi are interior points of M . One can thus repeat the
argument in [Sch83, Proposition 1] to see that, for each i = 1, ...,m, there exist a plane
Πi and a solution of the minimal surfaces equation fi over an exterior domain in Πi such
that M contains the graph of fi, and such that fi satisfies∣∣∣fi(x)− (

ai + bi log |x|+
ci · x
|x|2

)∣∣∣ ≤ C

|x|2
, ∀x ∈ Πi , |x| ≥ Ri , (4.8)

for suitable ai, bi ∈ R and ci ∈ Π. Evidently, the fact that M = {x + f(x) ν : |x| > R}
implies m = 1, and (4.8) implies (4.5). �
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Proof of Theorem 1.1. Step one: Given a hyperplane Π in Rn+1, if F is a half-space with
∂F = Π and ν is a unit normal to Π, then resW (F, ν) = Hn(W ∩Π). Therefore,

R(W ) ≥ S(W ) = sup
{
Hn(Π ∩W ) : Π an hyperplane in Rn+1

}
, (4.9)

and thus obtain the lower bound in (1.11).

Step two: We notice that, if (F, ν) ∈ F , then by (1.8), (1.9), and the divergence theorem
(see, e.g., [Mag12, Lemma 22.11]), we can define a Radon measure on the open set ν⊥ \
pν⊥(W ) by setting

µ(U) = P
(
F ; (pν⊥)

−1(U)
)
−Hn(U) , U ⊂ ν⊥ \ pν⊥(W ) . (4.10)

In particular, setting R′ = inf{ρ :W ⊂ Cν
ρ}, µ(Dν

R \ pν⊥(W )) ≥ 0 gives

P (F ;Cν
R \W ) ≥ ωnR

n −Hn(pν⊥(W )) , ∀R > R′ ,

while the identity

ωnR
n − P (F ;Cν

R \W ) = −µ(Dν
R \Dν

R′) + ωn (R
′)n − P (F ;Cν

R′ \W )

(which possibly holds as −∞ = −∞ if P (F ;Cν
R′ \W ) = +∞) gives that

R ∈ (R′,∞) 7→ ωnR
n − P (F ;Cν

R \W ) is a decreasing function on (R′,∞) . (4.11)

In particular, the limsup defining the residual perimeter functional always exists as a limit.

Step three: We prove the existence of a maximizer (F, ν) inR(W ) and (1.14). We first claim
that if {(Fj , νj)}j is a maximizing sequence for R(W ), then, in addition to pν⊥j

(∂Fj) = ν⊥j ,

one can modify (Fj , νj), preserving the optimality in the limit j → ∞, so that1

∂Fj ⊂ S
νj
[Aj ,Bj ]

, S
νj
(−∞,Aj)

⊂Ln+1 Fj , S
νj
(Bj ,∞) ⊂Ln+1 Rn+1 \ Fj , (4.12)

where [Aj , Bj ] is such that

[Aj , Bj ] =
∩{

(α, β) :W ⊂ S
νj
(α,β)

}
. (4.13)

Indeed, since (Fj , νj) ∈ F , for some αj < βj ∈ R we have

∂Fj ⊂ S
νj
[αj ,βj ]

, pν⊥j
(∂Fj) = ν⊥j . (4.14)

Would it be that

either S
νj
(−∞,αj)∪(βj ,∞) ⊂Ln+1 Fj , or S

νj
(−∞,αj)∪(βj ,∞) ⊂Ln+1 Rn+1 \ Fj ,

then, by the divergence theorem and by pν⊥j
(∂Fj) = ν⊥j , we would find

P (Fj ;C
νj
R ∩ Ω) ≥ 2

(
ωnR

n −Hn(pν⊥j
(W ))

)
, ∀R > 0 ,

and thus resW (Fj , νj) = −∞; in particular, (Fj , νj) ∈ F being a maximizing sequence, we
would have R(W ) = −∞, against (4.9). This proves the validity (up to switching Fj with
Rn+1 \ Fj), of the inclusions

S
νj
(−∞,αj)

⊂Ln+1 Fj , S
νj
(βj ,∞) ⊂Ln+1 Rn+1 \ Fj . (4.15)

Thanks to (4.15) (and by exploiting basic set operations on sets of finite perimeter, see,
e.g., [Mag12, Theorem 16.3]), we see that the sets

F ∗
j =

(
Fj ∪ S

νj
(−∞,Aj−1/j)

)
∩ S

νj
(−∞,Bj+1/j)

satisfy

(F ∗
j , νj) ∈ F , P

(
F ∗
j ;C

νj
R \W

)
≤ P

(
Fj ;C

νj
R \W

)
, ∀R > 0 ; (4.16)

in particular, {(F ∗
j , νj)}j is also a maximizing sequence for R(W ).

1Here X ⊂Ln+1 Y means |X \ Y | = 0.
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By standard compactness theorems for sets of finite perimeter we can find a set of locally
finite perimeter F ⊂ Rn+1 and ν ∈ Sn such that Fj → F in L1

loc(Rn+1) and νj → ν as
j → ∞. If A is an open set compactly contained in Cν

R \W , then, for j large enough,
A ⊂⊂ C

νj
R \W , and thus

P (F ;Cν
R \W ) = sup

A⊂⊂Cν
R\W

P (F ;A) ≤ lim inf
j→∞

P (Fj ;C
νj
R \W ) . (4.17)

By (4.11), R 7→ ωnR
n − P (Fj ;C

νj
R \W ) is decreasing on R > Rj = inf{ρ : W ⊂ C

νj
ρ }.

Since, evidently, supj Rj ≤ C(W ) <∞, we deduce from (4.17) that

ωnR
n − P (F ;Cν

R \W ) ≥ lim sup
j→∞

ωnR
n − P (Fj ;C

νj
R \W ) ≥ lim sup

j→∞
resW (Fj , νj) ,

for every R > C(W ); in particular, letting R→ ∞,

resW (F, ν) ≥ lim sup
j→∞

resW (Fj , νj) = R(W ) . (4.18)

By Fj → F in L1
loc(Rn+1), ∂F = cl (∂∗F ) is contained in the set of accumulation points of

sequences {xj}j with xj ∈ ∂Fj , so that (4.12) gives

∂F ⊂ Sν[A,B] , Sν(−∞,A) ⊂Ln+1 F , Sν(B,∞) ⊂Ln+1 Rn+1 \ F , (4.19)

provided [A,B] =
∩
{(α, β) : W ⊂ Sν(α,β)}. Therefore (F, ν) ∈ F , and thus, by (4.18),

(F, ν) is a maximizer of R(W ).

We now show that (4.18) implies (1.14), that is

P (F ; Ω ∩B) ≤ P (G; Ω ∩B) , ∀F∆G ⊂⊂ B, B a ball . (4.20)

Indeed, should (4.20) fail, we could find δ > 0 and G ⊂ Rn+1 with F∆G ⊂⊂ B for some
ball B, such that P (G;B \W )+ δ ≤ P (F ;B \W ). For R large enough to entail B ⊂⊂ Cν

R

we would then find

resW (F, ν) + δ ≤ ωnR
n − P (F ;Cν

R \W ) + δ ≤ ωnR
n − P (G;Cν

R \W ) ,

which, letting R→ ∞, would violate the maximality of (F, ν) in R(W ).

Step four: We now assume R(W ) > 0, and begin the proof of the rest of statement (ii)
by showing that if (F, ν) is a maximizer in R(W ), then ∂F ⊂ Sν[A,B] for A,B as in (4.19).

Indeed, if this were not the case, then we could repeate the same truncation procedure
leading to (4.16), and deduce this time by the maximality of F that

ωnR
n − P

(
F ∗;C

νj
R \W

)
≥ ωnR

n − P
(
F ;C

νj
R \W

)
≥ R(W ) ∀R > 0 ,

so that (F ∗, ν) is also a maximizer. Now P
(
F ;C

νj
R \W

)
−P

(
F ∗;C

νj
R \W

)
is increasing in

R, and since resW (F, ν) = resW (F ∗, ν), it follows that P
(
F ;C

νj
R \W

)
= P

(
F ∗;C

νj
R \W

)
for all large R. But this equality can hold only if ∂F ∩Ω is a plane that does not intersect
W , in which case R(W ) = resW (F, ν) = 0, a contradiction.

Step five: Still assuming R(W ) > 0, we complete the proof of statement (ii) by proving
(1.16). By (4.19), if (F, ν) is a maximizer of R(W ), then F/R → H− = {x ∈ Rn+1 :
x · ν < 0} in L1

loc(Rn+1) as R→ ∞. By (4.20) and by improved convergence (i.e., Remark
3.2 – notice carefully that ∂F is bounded in the direction ν thanks to step four), we find
RF > 0 and functions {fR}R>RF

⊂ C1(Dν
2 \Dν

1) such that(
Cν

2 \Cν
1

)
∩ ∂(F/R) =

{
x+ fR(x) ν : x ∈ Dν

2 \Dν
1

}
, ∀R > RF .

with ∥fR∥C1(Dν
2\Dν

1)
→ 0 as R→ ∞. Scaling back to F we deduce that

(∂F ) \Cν
RF

=
{
x+ f(x) ν : x ∈ ν⊥ \Dν

RF

}
, (4.21)

35



for a (necessarily smooth) solution f to the minimal surfaces equation with

∥f∥C0(ν⊥\Dν
RF

) ≤ B −A , lim
R→∞

∥∇f∥C0(Dν
2R\Dν

R) = 0 , (4.22)

thanks to the fact that f(x) = RfR(x/R) if x ∈ Dν
2R \Dν

R.

If n ≥ 3, then we deduce (1.16) thanks to (4.21) and Proposition 4.1.

If n = 2, we notice that (4.2) holds by (4.20), while (4.3) holds thanks to resW (F, ν) ≥ 0.
Indeed the latter condition implies that we can find R′ > RF such that ωnR

n ≥ P (F ;Cν
R\

W )− 1 if R > R′. In particular, setting M = (∂F ) \BRF
for R > R′ we have

H2(M ∩BR) ≤ H2(M ∩W ) + P (F ;Cν
R \W ) ≤ ωnR

n + 1 +H2(M ∩W ) ≤ C Rn ,

provided C = ωn + [(1 +H2(M ∩W ))/(R′)n]; while if R ∈ (RF , R
′), then H2(M ∩BR) ≤

C Rn with C = H2(M ∩BR′)/RnF . This said, we can apply Proposition 4.1 to deduce the
validity of (4.5). Since ∂F is bounded in a slab, the logarithmic term in (4.5) must vanish
(i.e. (4.5) holds with b = 0), and thus (1.16) is proved.

If n = 1, then (4.21) and (4.22) imply the existence of a1, a2 ∈ R, and x1 < x2,
x1, x2 ∈ ν⊥ ≡ R, such that f(x) = a1 for x ∈ ν⊥, x < x1, and f(x) = a2 for x ∈ ν⊥,
x > x2. We want to prove that a1 = a2. Indeed, setting M1 = {x+ a1 ν : x ∈ ν⊥, x < x1}
and M2 = {x+ a2 ν : x ∈ ν⊥, x > x2}, we have that

P (F ;Cν
R \W ) = Hn

(
Cν
R ∩ (∂F ) \ (W ∪M1 ∪M2)

)
+ 2R− |x2 − x1| ;

while, if L denotes the line through x1 + a1 ν and x2 + a2 ν, then we can find νL ∈ S1 and
a set FL such that (FL, νL) ∈ F with

∂FL =
((

(∂F ) \ (M1 ∪M2)
)
∪ (L1 ∪ L2)

)
where L1 and L2 are the two half-lines obtained by removing from L the segment joining
x1 + a1 ν and x2 + a2 ν. In this way

P (FL;C
νL
R \W ) = Hn

(
Cν
R ∩ (∂F ) \ (W ∪M1 ∪M2)

)
+ 2R−

∣∣(x1 + a1 ν)− (x2 + a2 ν)
∣∣ .

We thus conclude that resW (FL, νL)−resW (F, ν) =
∣∣(x1+a1 ν)−(x2+a2 ν)

∣∣−|x2−x1| > 0,
against the maximality of (F, ν) in R(W ).

We are left to prove that (4.21) holds with R2 = R2(W ) in place of RF , and the constants
a, b, c and C0 appearing in (1.16) can be bounded in terms of W only. To this end, we
notice that the argument presented in step one shows that the set of maximizers (F, ν) of
R(W ) is pre-compact in L1

loc(Rn+1). Using this fact and a contradiction argument based
on improved convergence (Remark 3.2), we conclude the proof of statement (ii).

Step six: We complete the proof of statement (i) and begin the proof of statement (iii) by
showing that, setting for brevity d = diam (W ), it holds

Hn(W ∩Π) ≤ R(W ) ≤ sup
ν∈Sn

Hn(pν⊥(W )) ≤ ωn

(d
2

)n
, (4.23)

whenever Π is a hyperplane in Rn+1. We have already proved the first inequality in
step one. To prove the others, we notice that, if (F, ν) ∈ F , then pν⊥(∂F ) = ν⊥ and
(4.11) (that is, the monotone increasing character of R 7→ P (F ;Cν

R \W ) − ωnR
n over

R > R′ = inf{ρ :W ⊂ Cν
ρ}), give, for every R > R′,

−resW (F, ν) ≥ P (F ;Cν
R \W )− ωnR

n

≥ Hn
(
pν⊥(∂F \W ) ∩Dν

R

)
− ωnR

n (4.24)

= −Hn
(
Dν
R \ pν⊥(∂F \W )

)
≥ −Hn(pν⊥(W )) ≥ −ωn

(d
2

)n
,
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where in the last step we have used the isodiametric inequality. Maximizing over (F, ν)
in (4.24) we complete the proof of (4.23). Moreover, if W = cl (Bd/2), then, since
S(cl (Bd/2)) = Hn(cl (Bd/2)∩Π) = ωn (d/2)

n for any hyperplane Π through the origin, we
find that R(cl (Bd/2)) = ωn (d/2)

n; in particular, (4.23) implies (1.17).

Step seven: We continue the proof of statement (iii) by showing (1.18). Let R(W ) =
ωn (d/2)

n and let (F, ν) be a maximizer in R(W ). Since every inequality in (4.24) holds
as an equality, we find in particular that

sup
R>R′

P (F ;Cν
R \W )−Hn

(
pν⊥(∂F \W ) ∩Dν

R

)
= 0 , (4.25)

Hn(pν⊥(W )) = ωn

(d
2

)n
. (4.26)

By (4.26) and the discussion of the equality cases for the isodiametric inequality (see, e.g.
[MPP14]), we see that, for some x0 ∈ ν⊥,

pν⊥(W ) = cl (Dν
d/2(x0)) , so that W ⊂ Cν

d/2(x0) . (4.27)

Condition (4.25) implies that (1.16) holds with u ≡ a for some a ∈ [A,B] =
∩
{(α, β) :

W ⊂ Sν(α,β)}; in particular, since (∂F ) \W is a minimal surface and W ⊂ Cν
d/2(x0), by

analytic continuation we find that

(∂F ) \Cν
d/2(x0) = Π \Cν

d/2(x0) , Π =
{
x : x · ν = a

}
. (4.28)

By (4.28), we have that for R > R′,

P (F ;Cν
R \W )− ωnR

n = P (F ;Cν
d/2(x0) \W )− ωn

(d
2

)n
.

Going back to (4.24), this implies P (F ;Cν
d/2(x0) \W ) = 0. However, since (∂F ) \W is

(distributionally) a minimal surface, P (F ;Bρ(x) \W ) ≥ ωn ρ
n whenever x ∈ (∂F ) \W

and ρ < dist(x,W ), so that P (F ;Cν
d/2(x0) \W ) = 0 gives

((∂F ) \W ) ∩Cν
d/2(x0) = ∅ . (4.29)

By (4.28) and (4.29) we find (∂F ) \W = Π \ cl
(
Bd/2(x)

)
for some x ∈ Π, that is (1.18).

Step eight: We finally prove that R(W ) = ωn (d/2)
n if and only if there exist a hyperplane

Π and a point x ∈ Π such that

Π ∩ ∂Bd/2(x) ⊂W , (4.30)

Ω \ (Π \Bd/2(x)) has exactly two unbounded connected components . (4.31)

We first prove that the two conditions are sufficient. Let ν be a unit normal to Π and let
Π+ and Π− be the two open half-spaces bounded by Π. The condition Π∪ ∂Bd/2(x) ⊂W
implies W ⊂ Cν

d/2(x), and thus

Ω \ cl
[
Cν
d/2,(−d,d)(x)

]
= (Π+ ∪Π−) \ cl

[
Cν
d/2,(−d,d)(x)

]
.

In particular, Ω \ (Π \Bd/2(x)) has a connected component F which contains

Π+ \ cl
[
Cν
d/2,(−d,d)(x)

]
;

and since Ω \ (Π \ Bd/2(x)) contains exactly two unbounded connected components, it

cannot be that F contains also Π− \ cl [Cν
d/2,(−d,d)(x)], therefore

Π+ \ cl
[
Cν
d/2,(−d,d)(x)

]
⊂ F , Π− \ cl

[
Cν
d/2,(−d,d)(x)

]
⊂ Rn+1 \ cl (F ) . (4.32)

As a consequence ∂F is contained in the slab {y : |(y − x) · ν| < d}, and is such that
pν⊥(∂F ) = ν⊥, that is, (F, ν) ∈ F . Moreover, (4.32) implies

Π \ cl (Bd/2(x)) ⊂ Ω ∩ ∂F ,
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while, at the same time, the fact that F is a connected component of Ω \ (Π \ Bd/2(x))
implies Ω ∩ ∂F ⊂ Π \ cl (Bd/2(x)). In conclusion, Ω ∩ ∂F = Π \ cl (Bd/2(x)), which gives

ωn

(d
2

)n
= lim

r→∞
ωnr

n − P (F ;Cν
r \W ) ≤ R(W ) ≤ ωn

(d
2

)n
, (4.33)

and R(W ) = ωn (d/2)
n, as claimed.

We prove that the two conditions are necessary. Let (F, ν) be a maximizer in R(W ).
As proved in step seven, there is a hyperplane Π and x ∈ Π such that Ω ∩ ∂F = Π \
cl (Bd/2(x)). If z ∈ Π ∩ ∂Bd/2(x) but z ∈ Ω, then there is ρ > 0 such that Bρ(z) ⊂ Ω, and
since ∂F is a minimal surface in Ω, we would obtain that Π ∩ Bρ(z) ⊂ Ω ∩ ∂F , against
Ω∩ ∂F = Π \ cl (Bd/2(x)). So it must be Π∩ ∂Bd/2(x) ⊂W , and the necessity of (4.30) is

proved. To prove the necessity of (4.31), we notice that since Π+ \ cl [Cν
d/2,(−d,d)(x)] and

Π−\cl [Cν
d/2,(−d,d)(x)] are both open, connected, and unbounded subsets of Ω\(Π\Bd/2(x)),

and since the complement in Ω \ (Π \Bd/2(x)) of their union is bounded, it must be that
Ω\(Π\Bd/2(x)) has at most two unbounded connected components: therefore we just need
to exclude that it has only one. Assuming by contradiction that this is the case, we could
then connect any point x+ ∈ Π+\cl [Cν

d/2,(−d,d)(x)] to any point x− ∈ Π−\cl [Cν
d/2,(−d,d)(x)]

with a continuous path γ entirely contained in Ω \ (Π \ Bd/2(x)). Now, recalling that
Ω ∩ ∂F = Π \ cl (Bd/2(x)), we can pick x0 ∈ Π \ cl (Bd/2(x)) and r > 0 so that

Br(x0) ∩Π+ ⊂ F , Br(x0) ∩Π− ⊂ Rn+1 \ cl (F ) , (4.34)

and Br(x0)∩cl [Cν
d/2,(−d,d)(x)] = ∅. We can then pick x+ ∈ Br(x0)∩Π+, x− ∈ Br(x0)∩Π−,

and then connect them by a path γ entirely contained in Ω \ (Π \ Bd/2(x)). By (4.34), γ
must intersect ∂F , and since γ is contained in Ω, we see that γ must intersect Ω∩∂F = Π\
cl (Bd/2(x)), which of course contradicts the containment of γ in Ω\(Π\Bd/2(x)). We have
thus proved that Ω \ (Π \Bd/2(x)) has exactly two unbounded connected components. �

5. Resolution theorem for exterior isoperimetric sets

In this section we complete the proof of Theorem 1.7. We recall that the parts of
Theorem 1.7 related to quantitative isoperimetry, namely Theorem 1.7-(i) and the estimate

for |v−1/(n+1) |x| − ω
−1/(n+1)
n+1 | in (1.25), have already been proved in Theorem 3.1-(ii, iii).

The notation set in (4.1) is also used in this section.

Proof of Theorem 1.7. We recall that, throughout the proof, R(W ) > 0.

Step one: We prove that

lim sup
v→∞

ψW (v)− P (B(v)) ≤ −R(W ) . (5.1)

To this end, let (F, ν) be a maximizer of R(W ), so that by (1.15) and (1.16), we have

F \Cν
R2

=
{
x+ t ν : x ∈ ν⊥ , |x| > R2 , t < f(x)

}
, (5.2)

for a function f ∈ C1(ν⊥) satisfying∣∣∣f(x)− (
a+

b

|x|n−2
+
c · x
|x|n

)∣∣∣ ≤ C0

|x|n
, (5.3)

max
{
|x|n−1 |∇f(x)|, |x|n |∇2f(x)|

}
≤ C0 , ∀x ∈ ν⊥ , |x| > R2 ,

and for some a, b ∈ R and c ∈ ν⊥ such that max{|a|, |b|, |c|} ≤ C(W ) < ∞ (moreover,
we can take b = 0, c = 0 and C0 = 0 if n = 1). We are going to construct competitors
for ψW (v) with v large by gluing a large sphere S to ∂F along ∂Cν

r for r > R2. This
operation comes at the price of an area error located on the cylinder ∂Cν

r . We can make
this error negligible thanks to the fact that (5.3) determines the distance (inside of ∂Cν

r )
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of ∂F from a hyperplane (namely, ∂Gr for the half-space Gr defined below) up to o(r1−n)
as r → ∞. Thus, the asymptotic expansion (1.16) is just as precise as needed in order to
perform this construction, i.e. our construction would not be possible with a less precise
information.

We now discuss the construction in detail. Given r > R2, we consider the half-space
Gr ⊂ Rn+1 defined by the condition that

Gr ∩ ∂Cν
r =

{
x+ t ν : x ∈ ν⊥ , |x| = r , t < a+

b

rn−2
+
c · x
rn

}
, (5.4)

so thatGr is the “best half-space approximation” of F on ∂Cν
r according to (5.3). Denoting

by hd (X,Y ) the Hausdorff distance between X,Y ⊂ Rn+1, for every r > R2 and v > 0
we can define xr,v ∈ Rn+1 in such a way that v 7→ xr,v is continuous and

lim
v→∞

hd (B(v)(xr,v) ∩K,Gr ∩K) = 0 ∀K ⊂⊂ Rn+1 . (5.5)

Thus, the balls B(v)(xr,v) have volume v and are locally converging in Hausdorff distance,
as v → ∞, to the optimal half-space Gr. Finally, we notice that by (5.3) we can find α < β
such that (

(∂F ) ∪ (∂Gr) ∪ (Gr∆F )
)
∩Cν

r ⊂ Cν
r,(α+1,β−1) , (5.6)

and then define Fr,v by setting

Fr,v =
(
F ∩Cν

r,(α,β)

)
∪
(
B(v)(xr,v) \ cl

[
Cν
r,(α,β)

])
, (5.7)

see Figure 5.1. We claim that, by using Fr,v as comparisons for ψW (|Fr,v|), and then
sending first v → ∞ and then r → ∞, one obtains (5.1).

We begin by noticing that, thanks to (5.5) and (5.6) (see, e.g. [Mag12, Theorem 16.16]),
we have

P (Fr,v; Ω) = P (F ;Cν
r,(α,β) \W ) + P

(
B(v)(xr,v);Rn+1 \ cl

[
Cν
r,(α,β)

])
+Hn

(
(F∆B(v)(xr,v)) ∩ ∂ℓCν

r,(α,β)

)
, (5.8)

where the last term is the “gluing error” generated by the mismatch between the bound-
aries of ∂F and ∂B(v)(xr,v) along ∂ℓC

ν
r,(α,β). Now, thanks to (5.3) we have

hd (Gr ∩ ∂Cν
r , F ∩ ∂Cν

r ) ≤
C0

rn
,

so that

Hn
(
(F∆Gr) ∩ ∂Cν

r

)
≤ nωn r

n−1 hd (Gr ∩ ∂Cν
r , F ∩ ∂Cν

r ) ≤
C(n,W )

r
. (5.9)

At the same time, by (5.5),

lim
v→∞

Hn
(
(Gr∆B

(v)(xr,v)) ∩ ∂ℓCν
r,(α,β)

)
= 0 , (5.10)

and thus we have the following estimate for the gluing error,

lim sup
v→∞

Hn
(
(F∆B(v)(xr,v)) ∩ ∂ℓCν

r,(α,β)

)
≤ C(n,W )

r
, ∀r > R2 . (5.11)

Again by (5.5), we find

lim
v→∞

P
(
B(v)(xr,v);C

ν
r,(α,β)

)
= P

(
Gr;C

ν
r,(α,β)

)
(5.12)

where

ωn r
n ≤ P

(
Gr;C

ν
r,(α,β)

)
=

ˆ
Dν

r

√
1 +

∣∣∣ c
rn

∣∣∣2 ≤ ωn r
n
(
1 +

C0

r2n

)
(5.13)
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Fr,ν

W

Cν
r,(α,β)

W

Cν
r

{x : x · ν = a}

∂B(v)(xr,v)

∂Gr

∂F

Figure 5.1. The competitors Fr,v constructed in (5.7). A maximizer F in the
isoperimetric residue R(W ) is joined to a ball of volume v, whose center xr,v
is determined by looking at best hyperplane approximating ∂F on the “lateral”
cylinder ∂Cν

r . In order for the area error made in joining this large sphere to
∂F to be negligible, the distance between ∂F and the sphere inside ∂Cν

r must be
o(r1−n) as r → ∞. The asymptotic expansion (5.3) gives a hyperplane ∂Gr which
is close to ∂F up to O(r−n), and is thus just as precise as needed to perform the
construction.

so that, by (5.12) and by the lower bound in (5.13),

lim sup
v→∞

P
(
B(v)(xr,v);Rn+1 \ cl

[
Cν
r,(α,β)

])
− P (B(v)) ≤ −ωn rn , ∀r > R2 . (5.14)

Combining (5.11) and (5.14) with (5.8) and the fact that Cν
r,(α,β) ∩ ∂F = Cν

r ∩ ∂F (see

(5.6)), we find that for every r > R2,

lim sup
v→∞

P (Fr,v; Ω)− P (B(v)) ≤ P (F ;Cν
r \W )− ωn r

n +
C(n,W )

r
(5.15)

≤ −resW (F, ν) +
C(n,W )

r
= −R(W ) +

C(n,W )

r
.

where in the last inequality we have used (4.11). Now, combining the elementary estimates∣∣|Fr,v| − v
∣∣ ≤ C(n) rn+1 ,

∣∣P (B(v))− P (B(|Fr,v |))
∣∣ ≤ C(n)

rn+1

v1/(n+1)
, (5.16)

with (5.15), we see that

lim sup
v→∞

ψW (|Fr,v|)− P (B(|Fr,v |)) ≤ −R(W ) +
C(n,W )

r
, ∀r > R2 . (5.17)

Again by (5.16) and since v 7→ |Fr,v| is a continuous function, we see that

lim sup
v→∞

ψW (|Fr,v|)− P (B(|Fr,v|)) = lim sup
v→∞

ψW (v)− P (B(v)) .

This last identity combined with (5.17) implies (5.1) in the limit r → ∞.
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Step two: Let us now consider minimizers Ej of ψW (vj) corresponding to a sequence
vj → ∞ as j → ∞. By (3.1) and a standard argument (see, e.g. [Mag12, Theorem
21.14]), there exists a local perimeter minimizer with free boundary F in Ω such that, up
to extracting subseqences,

Ej → F in L1
loc(Rn+1) ,

Hnx∂Ej ⇀ Hnx∂F as Radon measures in Ω ,

hd (K ∩ ∂Ej ;K ∩ ∂F ) → 0 for every K ⊂⊂ Ω , (5.18)

as j → ∞. Notice that it is not immediate to conclude from the minimality of Ej in ψW (vj)
that, for some ν ∈ Sn, (F, ν) is a maximizer of R(W ) (or even that (ν, F ) ∈ F), nor that

P (Ej ; Ω) − P (B(vj)) is asymptotically bounded from below by −resW (F, ν). In this step
we prove some preliminary properties of F (see statements (a), (b), and (c) below), and we
exploit the blow-down result for exterior minimal surfaces contained in Theorem 2.3-(ii)
to prove that F satisfies (5.2) and (5.3) (see statement (c) below). Then, in step three, we
shall use the asymptotic expansion (5.3) to show that Ej can be “glued” to F in a similar
construction to the one used in step one, and then derive from the corresponding energy
estimates the lower bound matching (5.1) and the optimality of F in R(W ).

(a) Ω ∩ ∂F ∩ ∂Bρ ̸= ∅ for every ρ such that W ⊂⊂ Bρ: If not there would be ε > 0 such

that W ⊂⊂ Bρ−ε and Ω ∩ ∂F ∩ Aρ+ερ−ε = ∅ (recall that Asr = {x : s > |x| > r}). By (5.18)
and the constant mean curvature condition satisfied by Ω ∩ ∂Ej , we would then find that

each Ej (with j large enough) has a connected component of the form B(wj)(xj), with

B(wj)(xj) ⊂⊂ Rn+1 \Bρ+ε and wj ≥ vj − C(n) (ρ+ ε)n+1. In particular,

ψW (vj) = P (Ej ; Ω) ≥ P (B(vj−C(n) (ρ+ε)n+1)) ≥ P (B(vj))− C(n)
(ρ+ ε)n+1

v
1/(n+1)
j

,

against R(W ) > 0.

(b) Sharp area bound: We combine the upper energy bound (5.1) with the perimeter
inequality for spherical symmetrization, to prove the area growth estimate

P (F ; Ω ∩Br) ≤ ωnr
n −R(W ) , for every r s.t. W ⊂⊂ Br . (5.19)

Notice carefully that (5.19) does not immediately imply an analogous estimate for P (F ; Ω∩
Cν
r ) (for some ν ∈ Sn), which would be helpful to connectR(W ) and the residual perimeter

resW (F, ν) of (F, ν).

To prove (5.19) we argue by contradiction, and consider the existence of δ > 0 and r
with W ⊂⊂ Br such that P (F ; Ω ∩ Br) ≥ ωn r

n − R(W ) + δ. In particular, for j large
enough, we would then have

P (Ej ; Ω ∩Br) ≥ ωnr
n −R(W ) + δ . (5.20)

Again for j large enough, it must be Hn(∂Ej ∩ ∂Br) = 0: indeed, by (3.1), Ω ∩ ∂Ej has

mean curvature of order O(v
−1/(n+1)
j ) as j → ∞, while of course ∂Br has constant mean

curvature equal to n/r. Thanks to Hn(∂Ej ∩ ∂Br) = 0, we find

P (Ej ; Ω) = P (Ej ; Ω ∩Br) + P
(
Ej ;Rn+1 \ cl (Br)

)
. (5.21)

Let now Esj denote the spherical symmetral of Ej (with respect to the origin, i.e. the

center of Br, and with respect to some fixed direction, say en+1); in particular, Esj ∩ ∂Bρ
is a spherical cap in ∂Bρ, centered at ρ en+1, with area equal to Hn(Ej ∩ ∂Bρ), and we
have the perimeter inequality

P
(
Ej ;Rn+1 \ cl (Br)

)
≥ P

(
Esj ;Rn+1 \ cl (Br)

)
; (5.22)
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see [CPS20]. Now, we can find a half-space J orthogonal to en+1 and such that Hn(J ∩
∂Br) = Hn(Ej∩∂Br). In this way, using that |Es

j \Br| = |Ej \Br| (by Fubini’s theorem in

spherical coordinates), and thatHn(Br∩∂J) ≤ ωn r
n (by the fact that ∂J is a hyperplane),

we find

P
(
Esj ;Rn+1 \ cl (Br)

)
= P

(
(Esj \ cl (Br)) ∪ (J ∩Br)

)
−Hn(Br ∩ ∂J)

≥ P
(
B(|Ej |−|Ej∩Br|+|J∩Br|))− ωn r

n

≥ P (B(vj))− C(n)
rn+1

v
1/(n+1)
j

− ωn r
n

which, combined with (5.20), (5.21) and (5.22) finally gives

P (Ej ; Ω)− P (B(vj)) > −R(W ) + δ − C(n)
rn+1

v
1/(n+1)
j

,

for j large enough. Letting j → ∞ we obtain a contradiction with (5.1).

(c) Asymptotic behavior of ∂F : We prove that there are ν ∈ Sn, a smooth function
f : ν⊥ → R, and positive constants R′ > sup{ρ :W ⊂ Cν

ρ} and C such that

∂F \Cν
R′ =

{
x+ f(x) ν : x ∈ ν⊥ , |x| > R′} , (5.23)

and, for some a, b ∈ R, and c ∈ ν⊥, and every x ∈ ν⊥, |x| > R′,

f(x) = a , (n = 1)∣∣∣f(x)− (
a+

b

|x|n−2
+
c · x
|x|n

)∣∣∣ ≤ C

|x|n
, (n ≥ 2) , (5.24)

max
{
|x|n−1 |∇f(x)|, |x|n |∇2f(x)|

}
≤ C0 .

To this end, we start noticing that, by a standard argument exploiting the local perimeter
minimality of F in Ω, given rj → ∞ there exists J ⊂ Rn+1 such that, up to extracting
subsequences,

F/rj
loc→ J in L1

loc(Rn+1) as j → ∞ , (5.25)

where J is a perimeter minimizer in Rn+1 \ {0}, 0 ∈ ∂J (thanks to property (a)), J is
a cone with vertex at 0, i.e., λJ = J for every λ > 0 (thanks to Theorem 2.10 and, in
particular to (2.44)), and P (J ;B1) ≤ ωn (by (5.19)). If n ≥ 2, then ∂J has vanishing
distributional mean curvature in Rn+1 (as points are removable singularities for the mean
curvature operator in dimension n ≥ 2), thus P (J ;B1) ≥ ωn by upper semicontinuity of
area densities of stationary varifolds, and finally P (J ;B1) = ωn can be used with Allard’s
regularity theorem to conclude that J is indeed a half-space. If n = 1, then the properties
listed above imply that ∂J is the union of two half-lines ℓ1 and ℓ2 meeting at the origin. If
ℓ1 and ℓ2 are not opposite (i.e., if J is not a half-space), then we can find a half-space J∗

such that (J ∩ J∗)∆J ⊂⊂ B ⊂⊂ R2 \ {0} for some ball B, and P (J ∩ J∗;B) < P (J ;B),
thus violating the fact that J is a perimeter minimizer in Rn+1 \ {0}.

In the case n = 1 it is immediate to conclude from the above information that, for some
R′ > 0, F \BR′ = J \BR′ ; this proves (5.23) and (5.24) in the case n = 1.

To prove (5.23) and (5.24) when n ≥ 2, we let M0 and ε0 be as in Theorem 2.3-(ii)
corresponding to n, Γ = 2nωn and σ = 1. Since J is a half-space we can apply improved
convergence (i.e., Remark 3.2) to (5.25) on the annulus A2L

1/2, for some L > max{M0, 64}
to be chosen later on depending also on ε0, and find that

(∂F ) ∩A4Lrj
rj/2

=
{
x+ rj fj

( x
rj

)
ν : x ∈ ν⊥

}
∩A4Lrj

rj/2
, ν⊥ = ∂J , (5.26)
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for functions fj ∈ C1(ν⊥) with ∥fj∥C1(ν⊥) → 0 as j → ∞. By (5.26), denoting by

Vj = var
(
(∂F ) \Brj , 1)

the multiplicity one varifold associated to (∂F ) \Brj , we see that Vj ∈ Vn(0, rj ,∞) with

1

rnj

ˆ
x · νcoVj dbdVj = −nωn + o(1) (5.27)

∥bdVj∥(∂Brj )
rn−1
j

= nωn + o(1) , (5.28)

sup
r∈(rj ,3Lrj)

∣∣∣∥Vj∥(Br \Brj )
rn − rnj

− ωn

∣∣∣ = o(1) , (5.29)

where o(1) → 0 as j → ∞. By our choice of Γ, by (5.19) and (5.27) we see that, for j
large enough, we have

∥bdVj∥(∂Brj ) ≤ Γ rn−1
j , sup

ρ>rj

∥Vj∥(Bρ \Brj )
ρn

≤ Γ . (5.30)

Moreover, we claim that setting

sj = 2Lrj

(so that, in particular, sj > max{M0, 64} rj), then

|δVj ,rj ,0(sj/8)| ≤ ε0 , inf
r>sj/8

δVj ,rj ,0(r) ≥ −ε0 , (5.31)

provided j and L are taken large enough depending on ε0. To check the first inequality in
(5.31) we notice that, by (5.27) and (5.29),

δVj ,rj ,0(sj/8) = ωn −
∥Vj∥(Bsj/8 \Brj )

(sj/8)n
+

1

n (sj/8)n

ˆ
x · νcoVj dbdry Vj

= ωn −
(
ωn + o(1)

) (sj/8)n − rnj
(sj/8)n

−
ωn r

n
j

(sj/8)n
(
1 + o(1)

)
= o(1)

(
1 +

(rj
sj

)n)
= o(1) ,

so that |δVj ,rj ,0(sj/8)| ≤ ε0 as soon as j is large enough with respect to ε0. Similarly, if
r > sj/8 = (Lrj)/4, then by (5.27), (5.29), (5.19), and rj/r ≤ 4/L,

δVj ,rj ,0(r) = ωn −
∥Vj∥(Br \B2 rj )

rn
−

∥Vj∥(B2 rj \Brj )
rn

−
ωn r

n
j

rn
(
1 + o(1)

)
≥ ωn −

ωn r
n −R(W )

rn
−

(
ωn + o(1)

) (2 rj)n − rnj
rn

−
ωn r

n
j

rn
(
1 + o(1)

)
≥ R(W )

rn
− 2

( 4

L

)n (
ωn + o(1)

)
−

( 4

L

)n
o(1) ≥ −3

( 4

L

)n
ωn ,

provided j is large enough; hence the second inequality in (5.31) holds if L is large enough
in terms of ε0. Having proved (5.31), we now claim that

1

snj

ˆ
A

sj/2

sj/8

ω2
H d∥Vj∥ ≤ ε0 , ∥Vj∥

(
A
sj/4

sj/6

)
≥ c(n) , (5.32)

with H = ∂J = ν⊥. The second condition in (5.32) is immediate from (5.26), which also
implies that if

y ∈ (sptVj) ∩A
sj/2

sj/8
= (∂F ) ∩ALrjLrj/4

,
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then, taking (2.3) and y = x+rj fj(x/rj) ν for some x ∈ ν⊥∩ALrjLrj/4
into account, we find

ωH(y) = arctan
( |y · ν|
|pν⊥(y)|

)
≤ arctan

(rj ∥fj∥C0(ν⊥)

|x|

)
≤ arctan

(
4
∥fj∥C0(ν⊥)

L

)
so that, by the second inequality in (5.30),

1

snj

ˆ
A

sj/2

sj/8

ω2
H d∥Vj∥ ≤ arctan

(∥fj∥C0(ν⊥)

4L

)2
8n Γ ;

in particular, the first inequality in (5.32) holds provided j is large enough. Combining
(5.30), (5.31) and (5.32) with see that Theorem 2.3-(ii) can be applied to (V,R,Λ, s) =
(Vj , rj , 0, sj) (provided j is large enough). As a consequence, passing from spherical graphs
to cylindrical graphs with the aid of Lemma D.1, we find that, for some sufficiently large
value of j,

(∂F ) \Bsj/16 =
{
x+ f(x) ν : x ∈ ν⊥

}
\Bsj/16 , (5.33)

where f : ν⊥ → R is a smooth function which solves the minimal surfaces equation on
ν⊥ \Bsj/16. Since ∂F admits at least one sequential blow-down limit hyperplane (namely,

ν⊥ = ∂J), by a theorem of Simon [Sim87, Theorem 2] we find that ∇f has a limit as
|x| → ∞; in particular, |∇f | is bounded. Moreover, by (5.33) (or by the fact that F is a
local perimeter minimizer in Ω), ∂F is a stable minimal surface in Rn+1 \ Bsj/16, which,
thanks to (5.19), satisfies an area growth bound like (4.3). We can thus apply Proposition
4.1 to deduce the validity of (5.24) when n ≥ 3, and of∣∣∣f(x)− (

a+ b log |x|+ c · x
|x|2

)∣∣∣ ≤ C

|x|2
, ∀|x| > R′ , (5.34)

when n = 2 (and for some R′ > sj). Recalling that F is a local perimeter minimizer with
free boundary in Ω (that is, P (F ; Ω ∩B) ≤ P (F ′; Ω ∩B) whenever F∆F ′ ⊂⊂ B ⊂⊂ R3)
it must be that b = 0, as it can be seen by comparing F with the set F ′ obtained by
changing F inside Cν

r (r >> R′) with the half-space Gr bounded by the plane {x + t ν :
x ∈ ν⊥, t = a+ b log(r)+ c ·x/r2} and such that H2((F∆Gr)∩∂Cν

r ) ≤ C/r2 (we omit the
details of this standard comparison argument). Since (5.34) holds with b = 0, the proof is
complete.

(d) F ∪W defines an element of F : With R > R′ as in (5.23) and (5.24), we see that
VR = var ((∂F ) ∩ (BR \W )) is a stationary varifold in Rn+1 \KR for

KR =W ∪
{
x+ f(x) ν : x ∈ ν⊥ , |x| = R} ,

and has bounded support. By the convex hull property [Sim83a, Theorem 19.2], we deduce
that, for every R > R′, sptVR is contained in the convex hull of KR, for every R > R′.
Taking into account that f(x) → a as |x| → ∞ we conclude that Ω ∩ ∂F is contained in
the smallest slab Sν[α,β] containing both W and {x : x · ν = a}. Now set

F ′ = F ∪W .

Clearly F ′ is a set of locally finite perimeter in Ω (since P (F ′; Ω′) = P (F ; Ω′) for every
Ω′ ⊂⊂ Ω). Second, ∂F ′ is contained in Sν[α,β] (since ∂F

′ ⊂ [(∂F ) ∩ Ω] ∪W ). Third, by

(5.23) and (5.24), {
x+ t ν : x ∈ ν⊥ , |x| > R′ , t < α

}
⊂ F ′ , (5.35){

x+ t ν : x ∈ ν⊥ , |x| > R′ , t > β
}
⊂ Rn+1 \ F ′ , (5.36){

x+ t ν : x ∈ ν⊥ , |x| < R′ , t ∈ R \ [α, β]
}
∩ (∂F ′) = ∅ . (5.37)
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By combining (5.35) and (5.37) we see that {x + t ν : x ∈ ν⊥ , t < α} ⊂ F ′, and by
combining (5.36) and (5.37) we see that {x + t ν : x ∈ ν⊥ , t > β} ⊂ Rn+1 \ F ′: in
particular, pν⊥(∂F

′) = ν⊥, and thus (F ′, ν) ∈ F .

Step three: We prove that

lim inf
v→∞

ψW (v)− P (B(v)) ≥ −R(W ) . (5.38)

For a sequence {vj}j with vj → ∞ as j → ∞ and achieving the liminf in (5.38), let Ej
be a minimizer of ψW (vj), and let F be a (sub-sequential) limit of Ej , so that properties
(a), (b), (c) and (d) proved in step two hold for F . In particular, properties (5.23) and
(5.24) from (c) are entirely analogous to properties (5.2) and (5.3) exploited in step one:
therefore, the family of half-spaces {Gr}r>R′ defined by (5.4) is such that(

(∂F ) ∪ (∂Gr) ∪ (Gr∆F )
)
∩Cν

r ⊂ Cν
r,(α+1,β−1) , (5.39)

Hn
(
(F∆Gr) ∩ ∂Cν

r

)
≤ C(n,W )

r
, (5.40)∣∣P (Gr;Cν

r,(α,β)

)
− ωn r

n
∣∣ ≤ C(n,W )

rn
, (5.41)

(compare with (5.6), (5.9), and (5.13) in step one). In particular, by (5.41) we find

−resW (F ′, ν) = lim
r→∞

P (F ;Cν
r \W )−ωn rn = lim

r→∞
P (F ;Cν

r \W )−P (Gr;Cν
r,(α,β)) . (5.42)

In order to relate the residue of (F ′, ν) to ψW (vj)− P (B(vj)) we consider the sets

Zj =
(
Gr ∩Cν

r,(α,b)

)
∪
(
Ej \Cν

r,(α,β)

)
,

which, by the Euclidean isoperimetric inequality, satisfy

P (Zj) ≥ P (B
(|Ej\Cν

r,(α,β)|)) ≥ P (B(vj))− C(n)
rn (β − α)

v
1/(n+1)
j

. (5.43)

Since for a.e. r > R′ we have

P (Zj) = P (Ej ;Rn+1 \Cν
r,(α,β)) + P (Gr;C

ν
r,(α,b)) +Hn

(
(Ej∆Gr) ∩ ∂Cν

r,(α,b)

)
,

we conclude that

ψW (vj)− P (B(vj)) = P (Ej ;C
ν
r,(α,β) \W ) + P (Ej ;Rn+1 \Cν

r,(α,β))− P (B(vj))

= P (Ej ;C
ν
r,(α,β) \W ) + P (Zj)− P (B(vj))

−P (Gr;Cν
r,(α,b))−Hn

(
(Ej∆Gr) ∩ ∂Cν

r,(α,b)

)
so that Ej → F in L1

loc(Rn+1) and (5.43) give, for a.e. r > R′,

lim inf
j→∞

ψW (vj)− P (B(vj))

≥ P (F ;Cν
r,(α,β) \W )− P (Gr;C

ν
r,(α,b))−Hn

(
(F∆Gr) ∩ ∂Cν

r,(α,β)

)
,

≥ P (F ;Cν
r \W )− P (Gr;C

ν
r )−

C(n,W )

r
,

where in the last inequality we have used (5.40) and the fact that (F∆Gr) ∩ ∂Cν
r =

(F∆Gr) ∩ ∂Cν
r,(α,β). Letting r → ∞ and recalling (5.42) we find that

lim inf
j→∞

ψW (vj)− P (B(vj)) ≥ −resW (F ′, ν) ≥ −R(W ) ,

where in the last inequality we have used (F ′, ν) ∈ F . This completes the proof of (5.38),
which in turn, combined with (5.1), gives (1.21), and also shows that L1

loc-subsequential
limits F of minimizers Ej of ψW (vj) for vj → ∞ as j → ∞ are such that, for some ν ∈ Sn,
(F ∪W, ν) ∈ F and F ∪W is a maximizer of R(W ).
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Step four: Moving towards the proof of (1.24), we prove the validity, uniformly among
varifolds associated to maximizers of R(W ), of estimates analogous to (5.30), (5.31) and
(5.32). For a constant Γ > 2nωn to be determined later on (see (5.61), (5.62), and
(5.63) below) in dependence of n and W , and for σ > 0, we let M0 = M0(n, 2Γ, σ) and
ε0 = ε0(n, 2Γ, σ) be determined by Theorem 2.3. If (F, ν) is a maximizer of R(W ), then
by Theorem 1.1-(ii) we can find R2 > 0 and a smooth f : ν⊥ → R such that

(∂F ) \Cν
R2

=
{
x+ f(x) ν : x ∈ ν⊥ , |x| > R2

}
, (5.44)

and such that (1.16) holds with coefficients a, b, and c satisfying max{|a|, |b|, |c|} ≤ C(W ),
and with the bound |∇f(x)| ≤ C0/|x|n−1 for |x| > R2 in force. This gives,

lim
r→∞

sup
(F,ν)

∥∇f∥C0(ν⊥\Dν
r )

= 0 ,

and thus we can find R3 > max{2R2, 1} depending on W only such that, setting

VF = var ((∂F ) \BR3 , 1)

we have VF ∈ Vn(0, R3,∞), and

∥bdVF ∥(∂BR3) ≤ ΓRn−1
3 , sup

ρ>R3

∥VF ∥(Bρ \BR3)

ρn
≤ Γ , (5.45)

(compare with (5.30)). Then, arguing as in step three-(c), or more simply by exploiting
(5.44) and the decay estimates (1.16), we can show the existence of a suitably large constant
L > max{M0, 64}, depending on n, W and σ only, such that, setting

sW (σ) = 2LR3 (5.46)

we have

|δVF ,R3,0(sW (σ)/8)| ≤ ε0
2
, inf

r>sW (σ)/8
δVF ,R3,0(r) ≥ −ε0

2
, (5.47)

(compare with (5.31)), as well as

1

sW (σ)n

ˆ
A

sW (σ)/2

sW (σ)/8

ω2
ν⊥ d∥VF ∥ ≤ ε0

2
, ∥VF ∥

(
A
sW (σ)/4
sW (σ)/6

)
≥ c(n) , (5.48)

(compare with (5.32)) for some c(n) > 0.

Step five: We now consider a sequence {(vj , Ej)}j with vj → ∞ and Ej a minimizer of
ψW (vj), and prove the existence of a maximizer (F, ν) of R(W ) and of functions hj ∈
C∞((∂F ) \BR2) such that

(∂Ej) ∩A
R1 v

1/(n+1)
j

4R2
=

{
y + hj(y) νF (y) : y ∈ ∂F

}
∩A

R1 v
1/(n+1)
j

4R2
, (5.49)

with

lim
j→∞

∥hj∥C1((∂F )∩AM
4R2

) = 0 , ∀M <∞ ; (5.50)

moreover, we show that if xj is defined by |Ej∆B(vj)(xj)| = infx |Ej∆B(vj)(x)|, then

lim
j→∞

∣∣∣ xj|xj |
− ν

∣∣∣ = 0 ; (5.51)

finally, we prove that

(∂Ej) \BR2 is diffeomorphic to an n-dimensional disk . (5.52)

We start by noticing that, by step three, there is (F, ν) a maximizer of R(W ) such that,
up to extracting subsequences, (5.18) holds. By (5.18) and (5.44), and with sW (σ) defined
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as in step four (see (5.46)) starting from F , we can apply improved convergence (Remark
3.2) to find smooth functions fj : ν

⊥ → R such that

(∂Ej) ∩AsW (σ)
2R2

=
{
x+ fj(x) ν : x ∈ ν⊥

}
∩AsW (σ)

2R2
, (5.53)

for j large enough (in terms of σ, n, W , and F ), and such that

lim
j→∞

∥fj − f∥C1(Dν
sW (σ)\D

ν
2R2

) = 0 . (5.54)

With R3 as in step four and with the goal of applying Theorem 2.3 to the varifolds

Vj = var
(
(∂Ej) \BR3 , 1

)
,

we start noticing that Vj ∈ Vn(Λj , R3,∞), for some Λj satisfying (thanks to (3.1))

Λj ≤
Λ0

v
1/(n+1)
j

. (5.55)

By (5.46) and (5.55), sW (σ) satisfies the “mesoscale bounds” (compare with (2.5))

ε0
4Λj

> sW (σ) > max{M0, 64}R3 (5.56)

provided j is large enough. Moreover, thanks to R3 > 2R2 and to sW (σ)/8 > 2R2, by
(5.44), (5.53) and (5.54) we can exploit (5.45), (5.47), and (5.48) to deduce that

∥bdVj∥(∂BR3) ≤ (2 Γ)Rn−1
3 , (5.57)

|δVj ,R3,0(sW (σ)/8)| ≤ 2

3
ε0 , (5.58)

1

sW (σ)n

ˆ
A

sW (σ)/2

sW (σ)/8

ω2
ν⊥ d∥Vj∥ ≤ ε0 , (5.59)

∥Vj∥
(
A
sW (σ)/4
sW (σ)/6

)
≥ c(n)

2
, for j large enough . (5.60)

We claim that, up to increasing the value of Γ (depending on n and W ), we can entail

sup
ρ>R3

∥Vj∥(Bρ \BR3)

ρn
≤ Γ . (5.61)

To prove this, we resort to Theorem 3.1-(i), which asserts that, for some positive constants

Λ0 and s0 depending on W only, Ej is a (Λ0 v
−1/(n+1)
j , s0 v

1/(n+1)
j )-perimeter minimizer

with free boundary in Ω. In particular, we can use (3.1) to compare Ej to Ej \ Br, and
find that for every r < s0 v

1/(n+1)
j one has

P (Ej ; Ω ∩Br) ≤ C(n)
(
rn +

Λ0

v
1/(n+1)
j

rn+1
)
≤ C(n,W ) rn ; (5.62)

since, at the same time, if r > s0 v
1/(n+1)
j , then

P (Ej ; Ω ∩Br) ≤ P (Ej ; Ω) = ψW (vj) ≤ P (B(vj)) ≤ C(n)

sn0
rn , (5.63)

by combining (5.62) and (5.63) we find (5.61). With (5.57) and (5.61) at hand, we can
also show that

|δVj ,R3,Λj (sW (σ)/8)| ≤ ε0 . (5.64)
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Indeed, by sW (σ) = 2LR3 and by (5.55),∣∣∣δVj ,R3,Λj

(sW (σ)

8

)
− δVj ,R3,0

(sW (σ)

8

)∣∣∣ ≤ Λ0

v
1/(n+1)
j

ˆ sW (σ)/8

R3

∥Vj∥(Bρ \BR3)

ρn
dρ

≤ Λ0

v
1/(n+1)
j

(L
4
− 1

)
R3 Γ ≤ ε0

3
,

provided j is large enough. To complete checking that Theorem 2.3 can be applied to
every Vj with j large enough, we now consider the quantities

R∗j = sup
{
ρ >

sW (σ)

8
: δVj ,R3,Λj (ρ) ≥ −ε0

}
,

and prove that, for a constant τ0 depending on n and W only, we have

R∗j ≥ τ0 v
1/(n+1)
j ; (5.65)

in particular, provided j is large enough, (5.65) implies immediately

R∗j ≥ 4 sW (σ) , (5.66)

which was the last assumption in Theorem 2.3 that needed to be checked. To prove (5.65),
we pick τ0 such that∣∣∣Hn

(
Bτ0(z) ∩ ∂B(1)

)
τn0

− ωn

∣∣∣ ≤ ε0
2
, ∀z ∈ ∂B(1) . (5.67)

(Of course this condition only requires τ0 to depend on n.) By definition of xj and by

(3.4), and up to extracting a subsequence, we have xj → z0 as j → ∞ for some z0 ∈ ∂B(1).

In particular, setting ρj = τ0 v
1/(n+1)
j , we find

∥Vj∥(Bρj \BR3)

ρnj
=

1

τn0
P
( Ej − xj

v
1/(n+1)
j

; Bτ0(−xj) \BR3/ρj (−xj)
)

→
Hn

(
Bτ0(−z0) ∩ ∂B(1)

)
τn0

≤ ωn +
ε0
2
,

as j → ∞, thus proving that, for j large enough,

δVj ,R3,Λj (ρj) ≥ −ε0
2

+
1

nρnj

ˆ
x · νcoVj d bdVj − Λj

ˆ ρj

R3

∥Vj∥(Bρ \BR3)

ρn
dρ

≥ −ε0
2

− 2ΓRn3
n τn0

1

v
1/(n+1)
j

− Λ0 Γ
(ρj −R3)

v
1/(n+1)
j

≥ −ε0
2

− C∗(n,W )

τn0 v
1/(n+1)
j

− C∗∗(n,W ) τ0 ,

where we have used (5.57), spt bdVj ⊂ ∂BR3 , and (5.61). Therefore, provided we pick τ0
depending on n and W so that C∗∗ τ0 ≤ ε0/4, and then we pick j large enough to entail

(C∗(n,W )/τn0 )v
−1/(n+1)
j ≤ ε0/4, we conclude that if r ∈ (R3, ρj ], then

δVj ,R3,Λj (r) ≥ δVj ,R3,Λj (ρj) ≥ −ε0 ,

where in the first inequality we have used Theorem 2.10-(i) and the fact that Vj ∈
Vn(Λj , R3,∞).

In summary, by (5.57) and (5.61) (which give (2.4)), by (5.56) (which gives (2.5) with
s = sW (σ)/8), and by (5.64), (5.66), (5.59) and (5.60) (which imply, respectively, (2.6),
(2.7), (2.8), and (2.9)), we see that Theorem 2.3-(i) can be applied with V = Vj and
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s = sW (σ)/8 provided j is large enough with respect to σ, n, W and the limit F of the
Ej ’s. As a consequence, setting

S∗j = min
{
R∗j ,

ε0
Λj

}
, (5.68)

we conclude that, for j large enough, there exist hyperplanes Kj ⊂ Rn+1 with 0 ∈ Kj , and
functions uj ∈ C1(ΣKj × (sW (σ)/32, S∗j/16)), such that

(sptVj) ∩A
S∗j/16
sW (σ)/32 =

{
r
ω + uj(r, ω) νKj√

1 + uj(r, ω)2
: ω ∈ ΣKj , r ∈

(sW (σ)

32
,
S∗j
16

)}
sup

{
|uj |+ |∇Kj∩Snuj |+ |r ∂ruj | : (ω, r) ∈ ΣKj ×

(sW (σ)

32
,
S∗j
16

)}
≤ σ ,

(5.69)

where, thanks to (5.65) and (5.55) we can assume to have

S∗j ≥ 16R1 v
1/(n+1)
j , (5.70)

for a constant R1 depending on n and W only. Using the more compact notation for
spherical graphs introduced in section 2, we can rewrite (5.69) as

(∂Ej) ∩A
R1 v

1/(n+1)
j

sW (σ)/32 = ΣKj

(
uj ,

sW (σ)

32
, R1 v

1/(n+1)
j

)
, (5.71)

for uj ∈ Xσ(ΣKj , σW (σ)/32, R1 v
1/(n+1)
j ). Similarly, by (5.45), (5.47), and (5.48), thanks

to Theorem 2.3-(ii) we have that

(∂F ) ∩
(
Rn+1 \BsW (σ)/32

)
= Σν⊥

(
u,
sW (σ)

32
,∞

)
, (5.72)

for u ∈ Xσ′(Σν⊥ , sW (σ)/32,∞) for every σ′ > σ. Now, by Ej → F in L1
loc(Rn+1), (5.71)

and (5.72) can hold only if

|νKj − ν| ≤ ζ(σ)

for a function ζ, depending on n and W only, such that ζ(σ) → 0 as σ → 0+. In
particular, if we denote for the sake of clarity by σ∗0, ε

∗
0 and C∗

0 the dimension dependent
constants that we originally introduced in Lemma 2.8 as σ0, ε0 and C0, then we can find
σ1 = σ1(n,W ) ≤ σ∗0 such that if σ < σ1, then ε

∗
0 ≥ ζ(σ) ≥ |νKj − ν|, and correspondingly,

Lemma 2.8-(i) can be used to infer the existence of

u∗j ∈ XC0 (σ+ζ(σ))(Σν⊥ , sW (σ)/32, 2R1 v
1/(n+1)
j ) such that

Σν⊥
(
u∗j ,

sW (σ)

32
, 2R1 v

1/(n+1)
j

)
= ΣKj

(
uj ,

sW (σ)

32
, 2R1 v

1/(n+1)
j

)
= (∂Ej) ∩A

2R1 v
1/(n+1)
j

sW (σ)/32 , (5.73)

for every j large enough. We can now use Lemma D.1 in the appendix to translate (5.73)
in terms of cylindrical graphs: more precisely, if σ1 is sufficiently small, then, by using
Lemma D.1 and keeping in mind (5.53), we can find functions gj ∈ C1(ν⊥) such that

sup
x∈ν⊥

{ |gj(x)|
|x|

, |∇gj(x)|
}
≤ C

(
σ + ζ(σ)

)
, (5.74)

(∂Ej) ∩A
R1 v

1/(n+1)
j

2R2
=

{
x+ gj(x) ν : x ∈ ν⊥

}
∩A

R1 v
1/(n+1)
j

2R2
. (5.75)

At the same time, by (5.44) and the decay properties in (1.16), we see that, up to further
increase the value of R2, and up to further decrease the value of σ1, we can exploit Lemma
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D.2 in the appendix to find functions hj ∈ C1(G(f)), G(f) = {x+ f(x) ν : x ∈ ν⊥}, such
that {

x+ gj(x) ν : x ∈ ν⊥
}
\B4R2 =

{
z + hj(z) νF (z) : z ∈ G(f)

}
\B4R2

which, combined with (5.44) and (5.75) shows that

(∂Ej) ∩A
R1 v

1/(n+1)
j

4R2
=

{
z + hj(z) νF (z) : z ∈ ∂F

}
∩A

R1 v
1/(n+1)
j

4R2

that is (5.49). By Ej → F in L1
loc(Rn+1), we find hj → 0 in L1((∂F ) ∩ AM4R2

) for every
M < ∞, so that, by elliptic regularity, (5.50) follows. We now recall that by Theorem
3.1-(ii) we have

(∂Ej) \BR0(vj) v
1/(n+1)
j

(5.76)

=
{
y + v

1/(n+1)
j wj

( y − xj

v
1/(n+1)
j

)
ν
B(vj)(xj)

(y) : y ∈ ∂B(vj)(xj)
}
\B

R0(vj) v
1/(n+1)
j

,

for functions wj : ∂B
(1) → R such that ∥wj∥C1(∂B(1)) → 0 and for R0(vj) → 0 as j → ∞.

The overlapping of (5.75) and (5.76) (i.e., the fact that R0(vj) < R1 if j is large enough)
imply (5.52). Finally, combining (5.74) and (5.75) with (5.76) and ∥wj∥C1(∂B(1)) → 0 we

deduce the validity of (5.51). More precisely, rescaling by λj = v
1/(n+1)
j in (5.74) and

(5.75) and setting E∗
j = Ej/λj , we find that there are functions g∗j ∈ C1(ν⊥) with

sup
x∈ν⊥

{ |g∗j (x)|
|x|

, |∇g∗j (x)|
}
≤ C

(
σ + ζ(σ)

)
, (5.77)

(∂E∗
j ) ∩A

R1

2R2/λj
=

{
x+ g∗j (x) ν : x ∈ ν⊥

}
∩AR1

2R2/λj
, (5.78)

for every j ≥ j0(σ) and for every σ < σ1, while rescaling by λj in (5.76) and setting
zj = xj/λj we find

(∂E∗
j ) \BR0(vj) (5.79)

=
{
zj + z + wj(z) νB(1)(z) :: y ∈ ∂B(1)(zj)

}
\BR0(vj) ,

where ||zj |−ω1/(n+1)
n+1 | → 0 thanks to (3.4). Up to extracting a further subsequence, zj → z0

as j → ∞, where |z0| = ω
1/(n+1)
n+1 . Should z0 ̸= |z0| ν, then picking σ small enough in terms

of |ν − (z0/|z0|)| > 0 and picking j large enough, we would then be able to exploit (5.77)
to get a contradiction with ∥wj∥C1(∂B(1)) → 0.

Conclusion: Theorem 3.1 implies Theorem 1.7-(i), and (1.21) was proved in step three.
Should Theorem 1.7-(ii), (iii), or (iv) fail, then we could find a sequence {(Ej , vj)}j con-
tradicting the conclusions of either step five or Theorem 3.1. We have thus completed the
proof of Theorem 1.7. �

Appendix A. Proof of Lemma 2.6

The two dimension dependent constants ε0 and σ0 involved in the statement will be
taken in the relation

σ0 =
ε0
C∗

for a sufficiently large dimension dependent constant C∗, to be determined in the course
of the proof.

50



Step one: We prove statement (i): we show that if H,K ∈ H, |νH − νK | ≤ ε < ε0 and
u ∈ Xσ(ΣH) with σ < σ0, then the map TKu : ΣH → ΣK defined by

TKu (ω) =
pK(fu(ω))

|pK(fu(ω))|
=

pKω + u(ω)pKνH
|pKω + u(ω)pKνH |

, ω ∈ ΣH ,

is a diffeomorphism between ΣH and ΣK ; and that the function vKu : ΣK → R defined by

vKu (TKu (ω)) =
qK(fu(ω))

|pK(fu(ω))|
=

νK · (ω + u(ω) νH)

|pKω + u(ω)pKνH |
, ω ∈ ΣH , (A.1)

is such that

vKu ∈ XC(n) (σ+ε)(ΣK) , ΣH(u) = ΣK(vKu ) , (A.2)

and ∣∣∣ˆ
ΣK

(vKu )2 −
ˆ
ΣH

u2
∣∣∣ ≤ C(n)

{
|νH − νK |2 +

ˆ
ΣH

u2
}
. (A.3)

Indeed, let us set, for ω ∈ ΣH and x ∈ Rn+1 \ {0},

gKu (ω) = pKω + u(ω)pKνH , Φ(x) =
x

|x|
,

so that TKu = Φ ◦ gKu , and let us notice that, when u is identically 0, we have

gK0 (ω) = pKω , TK0 (ω) =
pKω

|pKω|
, ∀ω ∈ ΣH .

By |pKνH |2 = 1− (νH · νK)2 ≤ 2 (1− (νH · νK)) = |νH − νK |2, we easily see that

|gKu − gK0 | = |u| |pKνH | ≤ |u| |νH − νK | ,
|∇ΣHgKu −∇ΣHgK0 | ≤ |∇ΣHu| |νH − νK | .

In particular, |gKu | ≥ 1 − σ0 ε0 ≥ 1/2, and since Φ and ∇Φ are Lipschitz continuous on
{|x| ≥ 1/2}, we find

max
{
∥gKu − gK0 ∥C1(ΣH), ∥TKu − TK0 ∥C1(ΣH)

}
≤ C(n) ∥u∥C1(ΣH) |νH − νK | . (A.4)

Similarly, since ω · νK = ω · (νK − νH) for ω ∈ ΣH , we find that

∥gK0 − id∥C1(ΣH) ≤ C(n) |νH − νK | , ∥TK0 − id∥C1(ΣH) ≤ C(n) |νH − νK | , (A.5)

and we thus conclude that TKu is a diffeomorphism between ΣH and ΣK . As a consequence,
the definition (A.1) of vKu makes sense, and (A.2) immediately follows (in particular,
ΣH(u) = ΣK(vKu ) is deduced easily from (A.1) and the definition of spherical graph (2.14)).
Finally, if we set

FKu (ω) = vKu (TKu (ω))2 JΣH TKu (ω) , ω ∈ ΣH ,

then ˆ
ΣK

(vKu )2 −
ˆ
ΣH

u2 =

ˆ
ΣH

(νK · (ω + u νH)

|gKu (ω)|

)2
JΣH TKu (ω)− u2 ,

where, using again |ω · νK | ≤ |νH − νK | for every ω ∈ ΣH , we find

|JΣHTKu (ω)− 1| ≤ C(n) ∥TKu − id∥C1(ΣH) ≤ C(n) |νH − νK | ,∣∣1− |gKu (ω)|2
∣∣ ≤

∣∣1− |pKω|2
∣∣+ |pKνH |u2 + 2 |u| |pKνH | |pKω|

≤ C
(
|νH − νK |2 + u2

)
,∣∣(νK · (ω + u νH))

2 − u2
∣∣ ≤ |νK · ω|2 + u2 (1− (ν·νK)2) + 2 |u| |νH · νK | |ω · νK |

≤ |νK − νK |2 + 2u2 |νH − νK |+ 2 |u| |νH − νK |
≤ C

(
|νH − νK |2 + u2

)
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therefore∣∣∣ˆ
ΣK

(vKu )2 −
ˆ
ΣH

u2
∣∣∣ ≤

ˆ
ΣH

|JΣH TKu − 1|u2 + 2

ˆ
ΣH

|(νK · (ω + u νH))
2 − u2|

|gKu |2

+2

ˆ
ΣH

∣∣∣1− 1

|gKu |2
∣∣∣u2 ≤ C(n)

(
|νH − νK |2 +

ˆ
ΣH

u2
)
,

that is (A.3).

Step two: We prove statement (ii): if H ∈ H and u ∈ Xσ0(ΣH), then there exist K ∈ H
and v ∈ XC0 σ0(ΣK) such that

ΣH(u) = ΣK(v) , (A.6)

E0
ΣK

[v] = 0 , (A.7)

|νK − νH |2 ≤ C(n)

ˆ
ΣH

(
E0

ΣH
[u]

)2
, (A.8)∣∣∣ˆ

ΣK

v2 −
ˆ
ΣH

u2
∣∣∣ ≤ C(n)

ˆ
ΣH

u2 , (A.9)

We first notice that, if E0
ΣH

[u] = 0, then we can just set K = H, v = u. Therefore, we can
assume that

γ2 =

ˆ
ΣH

(
E0

ΣH
[u]

)2
> 0 ,

and pick an L2(ΣH)-orthonormal basis {ϕiH}ni=1 of L2(ΣH) ∩ {E0
ΣH

= 0} so that

E0
ΣH

[u] = γ ϕ1H , γ =

ˆ
ΣH

uϕ1H ̸= 0 .

Notice that the choice of {ϕiH}ni=1 actually corresponds to the choice of an orthonormal
basis {τ iH}ni=1 of H with the property that

ϕiH(ω) = c0(n)ω · τ iH , ω ∈ ΣH , (A.10)

for c0(n) as in (2.16). For each K ∈ H with distSn(νH , νK) < ε0 we define an orthonormal
basis {τ iK}ni=1 of K by parallel transport of {τ iH}ni=1 ⊂ H ≡ TνHSn to K ≡ TνKSn. The
maps ν 7→ τ i(ν) := τ iK(ν) define an orthonormal frame {τ i}ni=1 of Sn on the open set A

given by

A = BSn
ε0 (νH) =

{
ν ∈ Sn : distSn(ν, νH) < ε0

}
.

We denote by ρKH the rotation of Rn+1 which takes H into K by setting

ρKH(τ iH) = τ iK , ρKH(νH) = νK .

By the properties of parallel transport we have that

∥ρKH − Id∥C0(ΣK) ≤ C(n) distSn(νH , νK) ≤ C(n) ε0 . (A.11)

Finally, we define an L2(ΣK)-orthonormal basis {ϕiK}ni=1 of L
2(ΣK)∩{E0

ΣK
= 0} by setting

ϕiK(ω) = c0(n)ω · τ iK , ω ∈ ΣK ,

and correspondingly we consider the map Ψu : A→ Rn defined by setting

Ψu(ν) =
( ˆ

ΣK(ν)

vK(ν)
u ϕ1K(ν), . . . ,

ˆ
ΣK(ν)

vK(ν)
u ϕnK(ν)

)
, ν ∈ A ,

where v
K(ν)
u is well-defined for every ν ∈ A thanks to step one.

We now claim the existence of ν∗ ∈ A such that

Ψu(ν∗) = 0 . (A.12)
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By the area formula, (A.1), and qK(ν)[e] = ν · e, we find

(ej ·Ψu)(ν) :=

ˆ
ΣK(ν)

vK(ν)
u ϕjK(ν)

=

ˆ
ΣH

vK(ν)
u (TK(ν)

u )ϕjK(ν)(T
K(ν)
u ) JΣHTK(ν)

u

= c0(n)

ˆ
ΣH

ν · (ω + u νH)
(
ρ
K(ν)
H [τ jH ] ·

pK(ω + u νH)

|pK(ω + u νH)|2
)
JΣHTK(ν)

u dHn−1
ω ,

so that (A.4) gives

∥Ψu −Ψ0∥C1(A) ≤ C(n)σ0 , (A.13)

where

ej ·Ψ0(ν) = c0(n)

ˆ
ΣH

(ν · ω)
(
ρ
K(ν)
H [τ jH ] ·

pKω

|pKω|2
)
JΣH

[ pKω

|pKω|

]
dHn−1

ω .

By definition of A and by (A.5) and (A.11),

sup
ν∈A

sup
ω∈ΣH

∣∣∣τ jH · ω −
(
ρ
K(ν)
H [τ jH ] ·

pKω

|pKω|2
)
JΣH

[ pKω

|pKω|

]∣∣∣ ≤ C(n) ε0 ,

so that

∥Ψ0 −Ψ∗∥C1(A) ≤ C(n) (σ0 + ε0) , (A.14)

where Ψ∗ : A→ Rn is defined by

ej ·Ψ∗(ν) = c0(n)

ˆ
ΣH

(ν · ω) (τ jH · ω) dHn−1
ω , ν ∈ A .

Recalling that {τ i}ni=1 is an orthonormal frame of Sn on A, with ∇τ iν = τ i(ν) = τ iK(ν) =

ρ
K(ν)
H [τ iH ], we find

ej · ∇τ iΨ∗(ν) = c0(n)

ˆ
ΣH

(ρ
K(ν)
H [τ iH ] · ω) (τ

j
H · ω) dHn−1

ω ,

so that, at ν = νH ,

ej · ∇τ iΨ∗(νH) = c0(n)

ˆ
ΣH

(τ iH · ω) (τ jH · ω) dHn−1
ω =

δij
c0(n)

.

By (A.11), (A.13) and (A.14) we conclude that

∥Ψu −Ψ∗∥C1(A) ≤ C(n) (σ0 + ε0) , (A.15)∥∥∥∇SnΨu −
1

c0(n)

n∑
j=1

ej ⊗ τ j
∥∥∥
C0(A)

≤ C(n) (σ0 + ε0) . (A.16)

Let us finally consider the map h : A× [0, 1] → Rn,

h(ν, t) = ht(ν) = tΨ∗(ν) + (1− t)Ψu(ν) , (ν, t) ∈ A× [0, 1] ,

which defines an homotopy between Ψ∗ and Ψu. By (A.15) and (A.16) we see that if
ν ∈ ∂A, that is, if distSn(ν, νH) = ε0, then, denoting by [νH , ν]s the unit-speed length
minimizing geodesic from νH to ν, considering that [νH , ν]s ∈ A for every s ∈ (0, ε0), and
that Sn is close to be flat in A, we find

|ht(ν)| ≥
∣∣∣ˆ ε0

0

d

ds
ht([νH , ν]s) ds

∣∣∣− |ht(νH)|

≥
( 1

c0(n)
− C(n) (ε0 + σ0)

)
ε0 − C(n)σ0 ≥

ε0
2 c0(n)

,
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provided σ0 = ε0/C∗ is small enough with respect to ε0 (which can always be arranged by
the choice of C∗), ε0 is small in terms of c0, and where we have used Ψ∗(νH) = 0 and

|Ψu(νH)| = |γ| =
∣∣∣ˆ

ΣH

uϕ1H

∣∣∣ ≤ C(n)σ0 , (A.17)

to deduce |ht(νH)| ≤ C(n)σ0. This proves that

0 ̸∈ ∂ ht(∂A) ∀t ∈ [0, 1] ,

so that deg(ht, A, 0) is independent of t ∈ [0, 1]. In particular, since h0 = Ψu and h1 = Ψ∗,
we find

deg(Ψu, A, 0) = deg(Ψ∗, A, 0) = 1 ,

where in the last identity we have used Ψ∗(νH) = 0 as well as the fact that, up to decreasing
the value of ε0, Ψ∗ is injective on A. The fact that deg(Ψu, A, 0) = 1 implies the existence
of ν∗ ∈ A such that Ψu(ν∗) = 0, as claimed in (A.12).

Setting K = K(ν∗) and v = vKu we deduce (A.6) from (A.2) and (A.7) from Ψu(ν∗) = 0.
Again by (A.16) and (A.17) we find that(ˆ

ΣH

(
E0

ΣH
[u]

)2)1/2
= |γ| = |Ψu(νH)| = |Ψu(νH)−Ψu(ν∗)|

=
∣∣∣ ˆ distSn (ν∗,νH)

0

d

ds
Ψu([νH , ν∗]s) ds

∣∣∣
≥

( 1

c0(n)
− C(n) (ε0 + σ0)

)
distSn(ν∗, νH)

≥ 1

2 c0(n)
|ν∗ − νH | ,

that is (A.8). Finally, (A.9) follows from (A.8) and (A.3). This completes the proof of
Lemma 2.6-(ii).

Appendix B. Proof of Theorem 2.9

Throughout this appendix, H ∈ H, Λ ≥ 0, η0 > η > 0, (r1, r2) and (r3, r4) are (η, η0)-
related as in (2.34), and u ∈ Xσ(ΣH , r1, r2) is such that

ΣH(u, r1, r2) has mean curvature bounded by Λ in Ar2r1 . (B.1)

We want to prove the existence of σ0 and C0, depending on n, η0, and η only, such that if
max{1,Λ r2}σ ≤ σ0, then∣∣∣Hn(ΣH(u, r3, r4))−Hn(ΣH(0, r3, r4))

∣∣∣ ≤ C0

ˆ
ΣH×(r1,r2)

rn−1
(
u2 + Λ r |u|

)
; (B.2)

and such that, if, in addition to (B.1), we also assume

∃ r ∈ (r1, r2) s.t. E
0
ΣH

[ur] = 0 on ΣH , (B.3)

then ˆ
ΣH×(r3,r4)

rn−1 u2 ≤ C(n) Λ r2 (r
n
2 − rn1 ) + C0

ˆ
ΣH×(r1,r2)

rn−1 (r ∂ru)
2 . (B.4)

We make three preliminary considerations:

(i): For the sake of brevity, it will be convenient to set

Qζ(u, v) =

ˆ
ΣH×(r1,r2)

rn−1 ζ(r)2 u v , Qζ(u) = Qζ(u, u) .

Qζ(X,Y ) =

ˆ
ΣH×(r1,r2)

rn−1 ζ(r)2X · Y , Qζ(X) = Qζ(X,X) ,
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whenever ζ : (r1, r2) → R is a radial function, u, v : ΣH × (r1, r2) → R, and X,Y :
ΣH × (r1, r2) → Rm.

(ii): The second order expansion of the area functional at ΣH(u, r1, r2) takes the form∣∣∣Hn(ΣH(u, r1, r2))−Hn(ΣH(0, r1, r2)) (B.5)

−1

2

ˆ
ΣH×(r1,r2)

rn−1
(
|∇ΣHu|2 + (r ∂ru)

2 − (n− 1)u2
)∣∣∣

≤ C(n)σ

ˆ
ΣH×(r1,r2)

rn−1
(
u2 + |∇ΣHu|2 + (r ∂ru)

2
)
,

see [AA81, 4.5(8)]. Similarly, by combining the last displayed formula on [AA81, Page
236] with [AA81, Lemma 4.9(1)], we find that if φ = ψ2w for w ∈ C1(ΣH × (r1, r2)) and
ψ ∈ C1(r1, r2), then∣∣∣ d

dt

∣∣∣
t=0

Hn(ΣH(u+ t φ, r1, r2)) (B.6)

−
ˆ
ΣH×(r1,r2)

rn−1
{
∇ΣHu · ∇ΣHφ+ (r ∂ru) (r ∂rφ)− (n− 1)uφ

}∣∣∣
≤ C(n)σ

ˆ
ΣH×(r1,r2)

rn−1 ψ2
(
|∇ΣHu|2 + |∇ΣHw|2 + (r ∂ru)

2 + (r ∂rw)
2 + u2 + w2

)
+C(n)σ

ˆ
ΣH×(r1,r2)

rn−1 (r ψ′)2w2 ,

which is the second order expansion of the first variation of the area at ΣH(u, r1, r2) along
outer variations in spherical coordinates of the form φ = ψ2w, ψ = ψ(r).

(iii): The following two estimates (whose elementary proof is contained in [AA81, Lemma
7.13]) hold: whenever v ∈ C1(ΣH × (r1, r2)), we haveˆ

ΣH×(r1,r2)
rn−1 v2 ≤ C(n, η, η0)

{ˆ
ΣH×(r1,r2)

rn−1 (r ∂rv)
2 +

ˆ
ΣH×(r3,r4)

rn−1 v2
}
, (B.7)

and, provided there exists r ∈ [r1, r2] such that vr = 0 on ΣH , we haveˆ
ΣH×(r1,r2)

rn−1 v2 ≤ C(n, η0)

ˆ
ΣH×(r1,r2)

rn−1 (r ∂rv)
2 . (B.8)

We are now ready for the proof. Compared to the series of lemmas in [AA81, Chapter
4], the main difference is that we need to replace [AA81, Lemma 4.10] with (B.9) (which
indeed boils down to [AA81, Lemma 4.10] when Λ = 0).

Step one: We prove that for every w ∈ C1(ΣH × (r1, r2)) and ψ ∈ C1(r1, r2) we have∣∣∣Tψ(u,w)− ˆ
ΣH×(r1,r2)

rn ψ2wh
∣∣∣ (B.9)

≤ C(n)σ0

(
Qψ(u) +Qψ(w) +Qψ(∇ΣHu) +Qψ(∇ΣHw)

+Qr ψ(∂ru) +Qr ψ(∂rw) +Qr ψ′(w)
)
.

where h : ΣH × (r1, r2) → [−Λ,Λ] and where

Tψ(u,w) = Qψ(∇ΣHu,∇ΣHw) +Qr
(
∂ru, ∂r[ψ

2w]
)
− (n− 1)Qψ(u,w) (B.10)

= Qψ(∇ΣHu,∇ΣHw) +Qr ψ(∂ru, ∂rw)− (n− 1)Qψ(u,w) + 2Qr(ψ ∂ru, ψ
′w) .
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We start rewriting (B.6) as∣∣∣Tψ(u,w)− d

dt

∣∣∣
t=0

Hn(Σ(u+ t ψ2w, r1, r2))
∣∣∣ (B.11)

≤ C(n)σ
(
Qψ(u) +Qψ(w) +Qψ(∇ΣHu) +Qψ(∇ΣHw)

+Qr ψ(∂ru) +Qr ψ(∂rw) +Qr ψ′(w)
)
.

Next we define diffeomorphisms Fu+t φ : ΣH × (r1, r2) → ΣH(u+ t φ, r1, r2), φ = ψ2w, by
setting

Fu+t φ(ω, r) = r
ω + (u(ω, r) + tφ(ω, r)) νH√

1 + (u(ω, r) + tφ(ω, r))2
,

In particular, {Φt = Fu+t φ ◦ (Fu)
−1}t∈[0,1] defines a one-parameter family of diffeomor-

phisms on ΣH(u, r1, r2), with Φt(ΣH(u, r1, r2)) = ΣH(u+ t φ, r1, r2), and initial velocity

Φ̇0 =
d

dt

∣∣∣
t=0

Φt .

Then, by (B.1), for some bounded function h : ΣH × (r1, r2) → [−Λ,Λ] we have

d

dt

∣∣∣
t=0

Hn(Σ(u+ tφ, r1, r2)) = Λ

ˆ
ΣH(u,r1,r2)

h(F−1
u ) Φ̇0 · νΣH(u,r1,r2)

= Λ

ˆ
ΣH×(r1,r2)

h Φ̇0

(
Fu

)
· ⋆

(
∂rFu ∧

n−1∧
i=1

∂iFu

)
,

where ∂i = ∇τi for a local orthonormal frame {τi}n−1
i=1 in ΣH , and where ⋆ is the Hodge

star-operator (so that ⋆ (v1 ∧ v2... ∧ vn) is a normal vector to the hyperplane spanned by
the vis, with length equal to the n-dimensional volume of the parallelogram defined by
the vis, and whose orientation depends on the ordering of the vis themselves). We can
compute the initial velocity of {Φt}t∈[0,1] by noticing that

Φt
(
Fu(ω, r)

)
= r

ω + (u+ t φ) νH√
1 + (u+ t φ)2

,

so that,

Φ̇0(Fu) =
d

dt

∣∣∣
t=0

r
ω + (u+ t φ) νH√

1 + (u+ t φ)2
= r

(
− uφ

(1 + u2)3/2
ω +

φ

(1 + u2)3/2
νH

)
= r

(
− uφω + φνH) + r σO

(
ψ2 (u2 + w2)

)
.

At the same time

∂rFu =
ω + u νH√
1 + u2

+ r ∂r

(ω + u νH√
1 + u2

)
=
ω + u νH√
1 + u2

− r u ∂ru

(1 + u2)3/2
ω +

r ∂ru

(1 + u2)3/2
νH

=
(
1− u2

2
− u r ∂ru

)
ω +

(
u+ r ∂ru

)
νH + σO(u2 + (r∂ru)

2)

= Aω +B νH + σO(u2 + (r∂ru)
2) ,

while

∂iFu
r

= ∂i

(ω + u νH√
1 + u2

)
=

τi√
1 + u2

− u ∂iu

(1 + u2)3/2
ω +

∂iu

(1 + u2)3/2
νH

=
(
1− u2

2

)
τi − u ∂iuω + ∂iu νH + σO(u2 + (∂iu)

2)

= C τi + Ei ω + Fi νH + σO(u2 + (∂iu)
2)
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so that, setting τ̂i =
∧
j ̸=i τj , we find

∂rFu ∧
∧n−1
i=1 ∂iFu

rn−1
=

(
Aω +B νH

)
∧
n−1∧
i=1

(
C τi + Ei ω + Fi νH

)
+σO

(
u2 + |∇ΣHu|2 + (r∂ru)

2
)

= ACn−1
(
ω ∧

n−1∧
i=1

τi

)
+BCn−1

(
νH ∧

n−1∧
i=1

τi

)
+Gi

(
ω ∧ νH ∧ τ̂i

)
+ σO

(
u2 + |∇ΣHu|2 + (r∂ru)

2
)
,

for some coefficient Gi which we shall not need to compute. Indeed, since ⋆(ω ∧ νH ∧ τ̂i)
is parallel to τi, and thus perpendicular to both ω and νH , we conclude that

r−n Φ̇0

(
Fu(r, ω)

)
· ⋆
(
∂rFu ∧

n−1∧
i=1

∂iFu

)
=

[(
− uφω + φνH) + σO

(
ψ2(u2 + v2)

)]
·

·
[
ACn−1 νH −BCn−1 ω + σO

(
u2 + |∇ΣHu|2 + (r∂ru)

2
)]

= Cn−1
[(

1− u2

2
− u r ∂ru

)
φ+

(
u+ r ∂ru

)
uφ

]
+σO

(
ψ2

(
u2 + w2 + |∇ΣHu|2 + (r∂ru)

2
))

= φ+ σO
(
ψ2

(
u2 + w2 + |∇ΣHu|2 + (r∂ru)

2
))

In particular, since |h| ≤ Λ,

d

dt

∣∣∣
t=0

Hn(Σ(u+ tφ, r1, r2)) =

ˆ
Σ×(r1,r2)

h Φ̇0

(
Fu

)
· ⋆

(
∂rFu ∧

n−1∧
i=1

∂iFu

)
=

ˆ
ΣH×(r1,r2)

rn ψ2wh+ σΛ r2O
(
Qψ(u) +Qψ(w) +Qψ(∇ΣHu) +Qr ψ(∂ru)

)
.

Plugging this estimate into (B.11), and taking into account max{1,Λ r2}σ ≤ σ0, we find
(B.9).

Step two: We prove that

Qψ(∇ΣHu) +Qr ψ(∂ru) ≤ Qψ(|u|,Λ r) + C(n)
(
Qψ(u) +Qr ψ′(u)

)
. (B.12)

Indeed, by

Qr(ψ ∂ru, ψ
′u) ≤

Qr ψ(∂ru)

4
+ C Qr ψ′(u)

and by (B.9) with w = u we find

Qψ(∇ΣHu) +Qr ψ(∂ru) ≤ Qψ(|u|,Λ r) + C(n)
(
Qψ(u) +Qr ψ′(u)

)
+C(n)σ0

(
Qψ(u) +Qr ψ′(u) +Qψ(∇ΣHu) +Qr ψ(∂ru)

)
.

which implies (B.12) provided σ0 is small enough.

Step three: We prove that, if w : ΣH × (r1, r2) → R is such that, for every r ∈ (r1, r2),ˆ
ΣH

wr (ur−wr) =
ˆ
ΣH

∂rwr (∂rur−∂rwr) =
ˆ
ΣH

∇ΣHwr ·(∇ΣHur−∇ΣHwr) = 0 , (B.13)
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then

|Tψ(u,w)| ≤ Qψ(|w|,Λ r) + C(n)σ0

(
Qψ(u) +Qr ψ′(u) +Qψ(|u|,Λ r)

)
. (B.14)

Indeed, by (B.13), we find that

Qζ(w) ≤ Qζ(u) , Qζ(∂rw) ≤ Qζ(∂ru) , Qζ(∇ΣHw) ≤ Qζ(∇ΣHu) ,

whenever ζ : (r1, r2) → R is radial. Therefore (B.9) gives

|Tψ(u,w)| ≤ Qψ(|w|,Λ r) + C(n)σ0

(
Qψ(u) +Qψ(∇ΣHu) +Qr ψ(∂ru) +Qr ψ′(u)

)
,

which we combine with (B.12) to get (B.14).

Step four: We prove (B.2). Let now ψ be a cut-off function between (r3, r4) and (r1, r2),
so that∣∣∣ˆ

ΣH×(r3,r4)
rn−1

{
|∇ΣHu|2 − (n− 1)u2 + (r ∂ru)

2
}∣∣∣ ≤ Qψ(∇ΣHu) +Qψ(u) +Qr ψ(∂ru) .

Then, by (B.5) with (r3, r4) in place of (r1, r2), we find∣∣∣Hn(ΣH(u, r3, r4))−Hn(ΣH(0, r3, r4))
∣∣∣

≤ Qψ(∇ΣHu) +Qψ(u) +Qr ψ(∂ru) + C(n)σ
{
Qψ(u) +Qψ(∇ΣHu) +Qr ψ(∂ru)

}
≤ Qψ(|u|,Λ r) + C(n)

(
Qψ(u) +Qr ψ′(u)

)
+C(n)σ

{
Qψ(u) +Qψ(|u|,Λ r) + C(n)

(
Qψ(u) +Qr ψ′(u)

)}
,

where in the last inequality we have used (B.12). We deduce∣∣∣Hn(ΣH(u, r3, r4))−Hn(ΣH(0, r3, r4))
∣∣∣ ≤ C(n)

(
Qψ(|u|,Λ r)+Qψ(u)+Qr ψ′(u)

)
, (B.15)

and then (B.2) follows (with C0 dependent on n, η0 and η by the properties of ψ).

Step five: We prove that, if E0
ΣH

[ur∗ ] = 0 for some r∗ ∈ (r1, r2), see (B.3), then (B.4)
holds, that isˆ

ΣH×(r3,r4)
rn−1 u2 ≤ C(n) Λ r2 (r

n
2 − rn1 ) + C(n, η0, η)

ˆ
Σ×(r1,r2)

rn−1 (r ∂ru)
2 . (B.16)

To this end, we define u+, u−, u0 : ΣH × (r1, r2) → R by setting, for each r ∈ (r1, r2),

(u+)r = E+
ΣH

[ur] , (u−)r = E−
ΣH

[ur] , (u0)r = E0
ΣH

[ur] ,

where E±
ΣH

denote the L2(ΣH)-orthogonal projections on the spaces of positive/negative

eigenvectors of the Jacobi operator of ΣH , and where E0
ΣH

is the L2(ΣH)-orthogonal

projection onto the space of the Jacobi fields of ΣH . Since (u0)r∗ = 0, we can directly
apply (B.8) with v = u0 and deduce thatˆ

ΣH×(r1,r2)
rn−1 (u0)2 ≤ C(n, η0)

ˆ
ΣH×(r1,r2)

rn−1 (r ∂ru
0)2 . (B.17)

By the orthogonality relations between u0r, u
+
r and u−r we have thatˆ

ΣH×(r3,r4)
rn−1 u2 =

ˆ
ΣH×(a,b)

rn−1
(
(u0)2 + (u+)2 + (u−)2

)
(B.18)

ˆ
ΣH×(r1,r2)

rn+1 (∂ru)
2 =

ˆ
ΣH×(r1,r2)

rn+1
(
(∂ru

0)2 + (∂ru
+)2 + (∂ru

−)2
)
. (B.19)

By the spectral decomposition theorem we have that

1

C1(n)

ˆ
ΣH

(u−)2r ≤
ˆ
ΣH

(n− 1) (u−)2r − |∇ΣH (u−)r|2 ∀r ∈ (r1, r2) ,
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which, multiplied by rn−1 ψ2, gives

Qψ(u
−)

C1(n)
≤ (n− 1)Qψ(u

−)−Qψ(∇ΣHu−)

= (n− 1)Qψ(u
−, u)−Qψ(∇ΣHu−,∇ΣHu)

= −Tψ(u−, u) +Qr(∂ru, ∂r(ψ
2 u−)) ,

where in the second to last identity we have used the validity of the orthogonality relations
(B.13) for w = u−; in particular, by (B.14) with w = u−, we find

Qψ(u
−)

C1(n)
≤ Qψ(|u−|,Λ r) + C(n)σ0

(
Qψ(u) +Qr ψ′(u) +Qψ(|u|,Λ r)

)
+Qr(∂ru, ∂r(ψ

2 u−)) . (B.20)

Again by (B.13) with w = u− we have

Qr(∂ru, ∂r(ψ
2 u−)) = Qr(∂ru

−, ∂r(ψ
2 u−)) = Qr ψ(∂ru

−) + 2Qr(ψ
′ ∂ru

−, ψ u−)

≤ Qr ψ(∂ru
−) +

Qψ(u
−)

2C1(n)
+ C(n)Qr ψ′(∂ru

−) ,

which combined into (B.20) gives

Qψ(u
−)

2C1(n)
≤ Qψ(|u−|,Λ r) + C(n)σ0

(
Qψ(u) +Qr ψ′(u) +Qψ(|u|,Λ, r)

)
+Qr ψ(∂ru

−) + C(n)Qr ψ′(∂ru
−) .

Using Hölder inequality again we have

Qψ(|u−|,Λ r) ≤
Qψ(u

−)

4C1(n)
+ C(n) Λ r2 (r

n
2 − rn1 ) ,

Qψ(|u|,Λ r) ≤ 2Qψ(u) + C(n) Λ r2 (r
n
2 − rn1 ) ,

so that

Qψ(u
−)

4C1(n)
≤ C(n)σ0

(
Qψ(u) +Qr ψ′(u) + Λ r2 (r

n
2 − rn1 )

)
+Qr ψ(∂ru

−) + C(n)Qr ψ′(∂ru
−) + C(n) Λ r2 (r

n
2 − rn1 ) .

By taking ψ to be a cut-off function between (r3, r4) and (r1, r2), we thus find
ˆ
Σ×(r3,r4)

rn−1 (u−)2 ≤ C(n) Λ r2 (r
n
2 − rn1 ) + C(n, η0, η)

ˆ
Σ×(r1,r2)

rn−1 (r ∂ru
−)2

+C(n, η0, η)σ0

ˆ
Σ×(r1,r2)

rn−1 u2 . (B.21)

By combining (B.17), (B.21), and the analogous estimate to (B.21) for u+ with (B.18) and
(B.19) we find

ˆ
Σ×(r3,r4)

rn−1 u2 ≤ C(n) Λ r2 (r
n
2 − rn1 ) + C(n, η0, η)

ˆ
Σ×(r1,r2)

rn−1 (r ∂ru)
2

+C(n, η0, η)σ0

ˆ
Σ×(r1,r2)

rn−1 u2 ,

which, thanks to (B.7), finally gives (B.16). This completes the proof of Theorem 2.9.
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Appendix C. Proof of the monotonicity formula

We want to prove (see the proof of Theorem 2.10-(i), that, if V ∈ Vn(Λ, R, S), that is,
if V is an n-dimensional integral varifolds in Rn+1 such that

sptV ⊂ Rn+1 \BR ,ˆ
div TX dV =

ˆ
X · H⃗ d∥V ∥+

ˆ
X · νcoV d bdV , ∀X ∈ C1

c (BS ;Rn+1) ,(C.1)

hold with H⃗ : Rn+1 → Rn+1 a Borel vector field such that |H⃗| ≤ Λ, bdV a Radon measure
in Rn+1, and νcoV : ∂BR → Rn+1 a Borel vector field with

spt bdV ⊂ ∂BR , |νcoV | = 1 bdV -a.e. ;

then

ΘV,R,Λ(r) =
∥V ∥(Br \BR)

rn
− 1

n rn

ˆ
x · νcoV dbdV + Λ

ˆ r

R

∥V ∥(Bρ \BR)
ρn

dρ ,

is increasing on (R,S), with

dΘV,R,Λ

dρ
≥ d

dρ

ˆ
Bρ\BR

|x⊥|2

|x|n+2
d∥V ∥ ,

for a.e. ρ ∈ (R,S) (compare to (2.45)). Denoting by M a locally Hn-rectifiable set such
that V = var (M, θ) for some multiplicity function θ, we take ζ ∈ C1

c ([0, 1)) and s ∈ (R,S),
set r(x) = |x| and X(x) = ζ(r(x)/s)x, so that X ∈ C1

c (BS ;Rn+1), and test (C.1) with X.
If νM :M → Sn is such that TxM = νM (x)⊥ at Hn-a.e. x ∈M , then

divM X =
r

s
ζ ′
(r
s

) (
1− (x̂ · νM )2

)
+ n ζ

(r
s

)
, x̂ =

x

|x|
,

and (C.1) givesˆ
BS\BR

{r
s
ζ ′
(r
s

)
+ n ζ

(r
s

)}
d∥V ∥ −

ˆ
BS\BR

r

s
ζ ′
(r
s

)
(x̂ · νM )2 d∥V ∥

=

ˆ
BS\BR

(x · H⃗) ζ
(r
s

)
d∥V ∥+

ˆ
∂BR

(x · νcoV ) ζ
(R
s

)
dbdV .

We multiply by s−n−1 and integrate in s over (σ, ρ) ⊂⊂ (R,S) to obtainˆ
BS\BR

d∥V ∥
ˆ ρ

σ

{r
s
ζ ′
(r
s

)
+ n ζ

(r
s

)} ds

sn+1
−
ˆ
BS\BR

(x̂ · νM )2 d∥V ∥
ˆ ρ

σ

r

s
ζ ′
(r
s

) ds

sn+1

=

ˆ
BS\BR

(x · H⃗) d∥V ∥
ˆ ρ

σ
ζ
(r
s

) ds

sn+1
+

ˆ
∂BR

(x · νcoV ) d bdV

ˆ ρ

σ
ζ
(R
s

) ds

sn+1
.

We notice that
d

ds

1

sn
ζ
(r
s

)
= − n

sn+1
ζ
(r
s

)
− r

sn+2
ζ ′
(r
s

)
impliesˆ

BS\BR

d∥V ∥
ˆ ρ

σ

{r
s
ζ ′
(r
s

)
+ n ζ

(r
s

)} ds

sn+1
=

ˆ
BS\BR

{ 1

σn
ζ
( r
σ

)
− 1

ρn
ζ
(r
ρ

)}
d∥V ∥

and

−
ˆ
BS\BR

(x̂ · νM )2 d∥V ∥
ˆ ρ

σ

r

s
ζ ′
(r
s

) ds

sn+1

=

ˆ
BS\BR

{ 1

ρn
ζ
(r
ρ

)
− 1

σn
ζ
( r
σ

)
+ n

ˆ ρ

σ
ζ
(r
s

) ds

sn+1

}
(x̂ · νM )2 d∥V ∥
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Therefore, letting ζ → 1[0,1) inˆ
BS\BR

{ 1

σn
ζ
( r
σ

)
− 1

ρn
ζ
(r
ρ

)}
d∥V ∥

+

ˆ
BS\BR

{ 1

ρn
ζ
(r
ρ

)
− 1

σn
ζ
( r
σ

)
+ n

ˆ ρ

σ
ζ
(r
s

) ds

sn+1

}
(x̂ · νM )2 d∥V ∥

=

ˆ
BS\BR

(x · H⃗) d∥V ∥
ˆ ρ

σ
ζ
(r
s

) ds

sn+1
+

ˆ
∂BR

(x · νcoV ) d bdV

ˆ ρ

σ
ζ
(R
s

) ds

sn+1
,

one obtainsˆ
BS\BR

{1Bσ

σn
−

1Bρ

ρn

}
d∥V ∥

+

ˆ
BS\BR

{1Bρ

ρn
− 1Bσ

σn
+ n

ˆ ρ

σ
1[0,1)

(r
s

) ds

sn+1

}
(x̂ · νM )2 d∥V ∥

=

ˆ
BS\BR

(x · H⃗) d∥V ∥
ˆ ρ

σ
1[0,1)

(r
s

) ds

sn+1
+

ˆ
∂BR

(x · νcoV ) d bdV

ˆ ρ

σ
1[0,1)

(R
s

) ds

sn+1
.

We compute thatˆ ρ

σ
1[0,1)

(r
s

) ds

sn+1
= 1Bρ

ˆ ρ

max{r,σ}

ds

sn+1
=

( 1

max{r, σ}n
− 1

ρn

) 1Bρ

n
,

so that ˆ
BS\BR

{1Bρ

ρn
− 1Bσ

σn
+ n

ˆ ρ

σ
1[0,1)

(r
s

) ds

sn+1

}
(x̂ · νM )2 d∥V ∥

=

ˆ
BS\BR

{ 1Bρ

max{r, σ}n
− 1Bσ

σn

}
(x̂ · νM )2 d∥V ∥ =

ˆ
Bρ\Bσ

(x̂ · νM )2

rn
d∥V ∥ ,

and ˆ
Bρ\Bσ

(x̂ · νM )2

rn
d∥V ∥ =

∥V ∥(Bρ \BR)
ρn

− ∥V ∥(Bσ \BR)
σn

+

ˆ
BS\BR

(x · H⃗) d∥V ∥
ˆ ρ

σ
1[0,1)

(r
s

) ds

sn+1
+

1

n

( 1

σn
− 1

ρn

) ˆ
∂BR

(x · νcoV ) d bdV ,

where we have used 1[0,1)(R/s) = 1 for s ∈ (σ, ρ). Finally, by∣∣∣ˆ
BS\BR

(x · H⃗) d∥V ∥
ˆ ρ

σ
1[0,1)

(r
s

) ds

sn+1

∣∣∣ ≤ Λ

ˆ ρ

σ

1

sn+1

ˆ
Bs\BR

r d∥V ∥

≤ Λ

ˆ ρ

σ

∥V ∥(Bs \BR)
sn

ds ,

we conclude as claimed that

ΘV,Λ,R(ρ)−ΘV,Λ,R(σ) ≥
ˆ
Bρ\Bσ

(x̂ · νM )2

rn
d∥V ∥ =

ˆ
Bρ\Bσ

|x⊥|2

|x|n+2
d∥V ∥ ,

whenever (σ, ρ) ⊂ (R,S).

Appendix D. Auxiliary facts on spherical and cylindrical graphs

In this appendix we prove for the sake of completeness two technical lemmas concerning
spherical and cylindrical graphs. They are both used in the last step of the proof of
Theorem 1.7.
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Lemma D.1 (Spherical graphs as cylindrical graphs). There exists dimension independent
positive constants C and η0 with the following property. If n ≥ 1, H ∈ H and u ∈
Xη(ΣH , r1, r2) with η < η0, then we have

DνH
(1−C η2) r2 \D

νH
r1 ⊂ pH

(
ΣH(u, r1, r2)

)
⊂ DνH

r2 \DνH
(1−C η2) r1 , (D.1)

and there exists g ∈ C1(H) such that

ΣH(u, r1, r2) =
{
x+ g(x) νH : x ∈ pH

(
ΣH(u, r1, r2)

)}
, (D.2)

sup
{ |g(x)|

|x|
+ |∇g(x)| : x ∈ H

}
≤ C η . (D.3)

Moreover, if (ρ1, ρ2) ⊂ ((1 + C η) r1, (1− C η2) r2), then we have

ΣH(u, ρ1, ρ2) =
{
x+ g(x) νH : x ∈ H

}
∩Aρ2ρ1 . (D.4)

Proof. For brevity, let us set S = ΣH(u, r1, r2). The maps ℓu, fu : ΣH × (r1, r2) → R and
Pu : ΣH × (r1, r2) → H defined by setting

ℓu(ω, r) =
r√

1 + u(ω, r)2
, Pu =

r ω√
1 + u(ω, r)2

, fu =
r u(ω, r)√
1 + u(ω, r)2

,

are such that S = {Pu(ω, r) + fu(ω, r) νH : (ω, r) ∈ ΣH × (r1, r2)}. By elementary compu-
tations,

|ℓu − r| ≤ C η2 r , |∂rℓu − 1| ≤ C η2 , ∀(ω, r) ∈ ΣH × (r1, r2) , (D.5)

from which (D.1) follows, as well as the fact that Pu = ℓu ω is a C1-diffeomorphism
between ΣH × (r1, r2) and pH(S). In particular, pH(S) is an open subset of H, and
gu = ((pH)|S)−1 : pH(S) → R defines C1-function with S = {x + gu(x) νH : x ∈ pH(S)}
and

gu
(
Pu(ω, r)

)
= fu(ω, r) , ∀(ω, r) ∈ ΣH × (r1, r2) . (D.6)

From (D.6) we find

gu(x)

|x|
=

fu(ω, r)

|Pu(ω, r)|
= u(ω, r) , ∀x ∈ pH(S) = Pu

(
ΣH × (r1, r2)

)
,

which gives |gu(x)| ≤ η|x| for x ∈ pH(S). Similarly, by

∂rPu
|∂rPu|

= ω ,
∣∣|∂rPu| − 1

∣∣ ≤ C η2 , |∂rfu| ≤ C η , (D.7)∣∣∇τPu − r τ
∣∣ ≤ C r η2 , |∇τfu| ≤ C r η , (D.8)

differentiating in (D.6) along r we find ∂rfu = (∇gu(Pu))·∂rPu, and thus |∇gu(x)·ω| ≤ C η,
while differentiating in (D.6) along τ ∈ ΣH ∩ ω⊥, we find ∇τfu = (∇gu(Pu)) · ∇τPu, and
thus |∇gu(x) · τ | ≤ C η, so that |∇gu(x)| ≤ C η for every x ∈ pH(S). Hence, if we
define g by suitably extending gu from pH(S) to H in a way that preserves the C1-
bound on gu, we prove (D.2) and (D.3). Intersecting in (D.2) with Aρ2ρ1 for (ρ1, ρ2) ⊂
((1 + C η) r1, (1− C η2) r2), we see that (D.4) follows by the inclusion{

x+ g(x) νH : x ∈ H
}
∩Aρ2ρ1 ⊂

{
x+ g(x) νH : x ∈ pH

(
ΣH(u, r1, r2)

)}
.

To prove this inclusion, we first notice that |x+ g(x) νH | < ρ2 implies (1− C η2) r2 > |x|,
while ρ1 ≤ |x + g(x) νH | ≤ (1 + C η) |x| gives |x| ≥ r1; therefore ρ1 < |x + g(x) νH | <
ρ2 implies r1 < |x| < (1 − C η2) r2, which, by (D.1) implies x ∈ pH(ΣH(u, r1, r2)), as
desired. �
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The mesoscale flatness criterion produces graphicality with respect to hyperplanes with
C1-bounds of the form (D.3). Given two such graphs, corresponding to functions f and
g, if one of the two functions, say f , satisfies a mild polynomial C2-decay at infinity, like
(D.9) below, then it is possible to parameterize the graph of g as a normal graph over the
graph of f . This idea is precisely formulated in the following lemma, where for H ∈ H
and a C1-function f : H → R we set

GH(f) =
{
x+ f(x) νH : x ∈ H

}
,

νf (z) =
−∇f(x) + νH√
1 + |∇f(x)|2

, if z = x+ f(x) νH ,

stand for the cylindrical graph of f over H and the unit normal to GH(f) (pointing in the
positive νH direction).

Lemma D.2 (Cylindrical graphs as normal graphs over cylindrical graphs). There exist
η ∈ (0, 1) with the following property. If H ∈ H, R > 1, f ∈ C2(H), and g ∈ C1(H) are
such that

max
{
|f(x)| , |x| |∇f(x)| , |x| |∇2f(x)| : x ∈ H , |x| > R

}
< η , (D.9)

max
{ |g(x)|

|x|
, |∇g(x)| : x ∈ H

}
< η , (D.10)

then there exists h ∈ C1(GH(f)) such that

GH(g) \B4R =
{
z + h(z) νf (z) : z ∈ GH(f)

}
\B4R . (D.11)

Proof. Step one: We show that if z ∈ GH(f) \CνH
R , then there exists a unique y ∈ GH(g)

such that y = z + t νf (z) for some t ∈ R. To prove this, let

YS =
{
y ∈ Rn+1 : |pH(y)| > S , |y · νH | < η |pH(y)|

}
,

so that, by (D.9) and (D.10), we have(
GH(f) ∪GH(g)

)
\CνH

R ⊂ YR . (D.12)

Given z ∈ GH(f) \CνH
R , let L(z) = cl (YR)∩ {z+ t νf (z) : t ∈ R}. Since cl (YR) is a closed

convex set and |νf (z) − νH | ≤ C η/|pH(z)| by (D.9), if η is small enough, then L(z) is
a compact segment in Rn+1, with end-points on W = (∂YR) \ ∂CνH

R . Correspondingly,
ℓ(z) = pH(L(z)) is a compact segment in H ∩ {|x| > 2R}, and there is [a, b] ⊂ R such
that pH(z + t νf (z)) is a parametrization of ℓ(z). If we set φ(t) = νH · (z + t νf (z)) and
ψ(t) = g(pH(z + t νf (z))), then by the above considerations we have φ(a) < φ(b) and
{ψ(t) : t ∈ [a, b]} ⊂⊂ (φ(a), φ(b)). By the mean value theorem, there exists t ∈ R such
that ψ(t) = φ(t), which means y = z + t νf (z) ∈ GH(g).

We now want to prove that if z ∈ GH(f) \CνH
R and z + ti νf (z) ∈ GH(g) for i = 1, 2,

then t1 = t2. Indeed, let x,wi ∈ H be such that |x| > R, z = x+ f(x) νH , and

wi + g(wi) νH = z + ti νf (z) = x− ti
∇f(x)√

1 + |∇f(x)|2
+

(
f(x) +

ti√
1 + |∇f(x)|2

)
νH ;

then, by (D.9) we have

|w1 − w2| ≤ C η |t1 − t2| , |g(w1)− g(w2)| ≥ (1− C η2) |t1 − t2| .
so that Lip(g;H) < η implies (1− C η2) |t1 − t2| ≤ C η2 |t1 − t2|, and thus t1 = t2 as soon
as η is small enough. This proves the claim.

Step two: By step one there is a function h : GH(f) \CνH
R → R such that{

z + h(z) νf (z) : z ∈ GH(f) \CνH
R

}
⊂ G(g) . (D.13)
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Let us now set, for x ∈ H with |x| > R and t ∈ R,

Φ(x, t) =
(
x− t

∇f(x)√
1 + |∇f(x)|2

)
+

(
f(x) +

t√
1 + |∇f(x)|2

)
νH ,

and notice that by (D.9) we have∣∣Φ− (x+ t νH)
∣∣ ≤ C

(
|f |+ |t| |∇f |

)
, (D.14)∣∣∂tΦ− νH

∣∣ ≤ C |∇f | , |∇HΦ− IdH | ≤ C
(
|∇f |+ |t| |∇2f |

)
. (D.15)

We claim that, if we pick C0 large enough (independent of R), then Y2R ⊂ Φ(U) where

U =
{
(x, t) : |x| > R , |t| |∇f(x)| < C0 η

2 , |t| |∇2f(x)| < C0 η
2
}
.

Thanks to (D.14) and (D.15) we can then choose η in terms of C0 so to entail that Φ
is a C1-diffeomorphism between U and Φ(U). To prove Y2R ⊂ Φ(U), we notice that if
y ∈ Y2R, then by |pH(y)| > 2R and (D.9) we have

dist
(
y,GH(f) \CνH

R

)
≤

∣∣y − (
pH(y) + f(pH(y)) νH

)∣∣ (D.16)

≤ |y − pH(y)|+ |f(pH(y))| ≤ 2 η |pH(y)| .

In particular, if x ∈ H, |x| ≥ R is such that dist(y,GH(f) \CνH
R ) = |y − (x + f(x) νH)|,

then we have |x| > R thanks to |pH(y)| > 2R and to

|x− pH(y)| ≤ |y − (x+ f(x) νH)| ≤ 2 η |pH(y)| , (D.17)

provided η is small enough. Since |x| > R, we can differentiate x′ 7→ |y − (x′ + f(x′) νH)|
at x′ = x and deduce from the minimality of x that

y = z + t νf (z) = Φ(x, t) ,
where z = x+ f(x) νH

and |t| = dist
(
y,GH(f) \CνH

R

)
.

(D.18)

Since, by (D.17), |pH(y)|/|x| ≤ C, we can use (D.16) and (D.9) to infer

|t| |∇f(x)| ≤ 2 η |pH(y)|
η

|x|
≤ C0 η

2 ,

and, analogously, that |t| |∇2f(x)| ≤ C0 η
2, for a suitable constant C0.

Having proved that Y2R ⊂ Φ(U) and that Φ is a C1-diffeomorphism between U and
Φ(U), we then notice that by (D.10) we have GH(g) \CνH

2R ⊂ Y2R, and thus conclude that
for every y ∈ GH(g)\CνH

2R there exists a unique (x, t) ∈ U such that y = Φ(x, t) = z+t νf (z)
for z = x+ f(x) νH . Since (x, t) ∈ U implies |x| > R, we have z ∈ GH(f) \CνH

R , and thus
it must be, by step one, that t = h(z). We have thus proved that

GH(g) \CνH
2R ⊂

{
z + h(z) νf (z) : z ∈ GH(f) \CνH

R

}
, (D.19)

and, taking into account (D.16) and (D.18), that |h(z)| ≤ 2 η |pH(z + h(z) νf (z))|, and
thus that

|h(z)| ≤ C η |pH(z)|, ∀z ∈ G(f) \CνH
R . (D.20)

Combining (D.13) and (D.19) we thus find that

GH(g) \CνH
2R =

{
z + h(z) νf (z) : z ∈ GH(f) \CνH

R

}
\CνH

2R . (D.21)

By (D.9), (D.10), and (D.20) we see that, if η is small enough, then

GH(g) ∩CνH
2R ∩

{
y : |y · νH | > 2R

}
= ∅ ,{

z + h(z) νf (z) : z ∈ GH(f) \CνH
R

}
∩CνH

2R ∩
{
y : |y · νH | > 2R

}
= ∅ ,

which, combined with (D.21) gives

GH(g) \CνH
2R,2R =

{
z + h(z) νf (z) : z ∈ GH(f) \CνH

R

}
\CνH

2R,2R . (D.22)
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Since CνH
2R,2R ⊂ B4R, upon extending h from GH(f) \ CνH

R to the whole GH(f) so that

|h(z)| ≤ 2R on G(f) ∩CνH
R , we deduce (D.11) from (D.22). �

Appendix E. Obstacles with zero isoperimetric residue

We conclude with some remarks on the case R(W ) = 0, which can be largely addressed
through a synoptical reading of the main arguments of the paper. To exemplify this point,
let us explain why (1.21) holds even when R(W ) = 0. On the one hand, by comparison
with balls of volume v we trivially have

lim sup
v→∞

ψW (v)− P (B(v)) ≤ 0 = R(W ) .

To prove the matching lower bound one argues by contradiction, and assumes that, for
some sequence {(Ej , vj)}j with vj → ∞ and Ej minimizer of ψW (vj), it holds that

lim inf
v→∞

ψW (v)− P (B(v)) = lim
j→∞

P (Ej ; Ω)− P (B(vj)) < 0 . (E.1)

With (E.1) replacing R(W ) > 0, one can repeat verbatim the proof of property (a) in step
two of the proof of Theorem 1.1; said property can then be used to derive the asymptotic
expansion for F as in the proof of property (c), which is then the key fact used in step
three to derive that

lim
j→∞

P (Ej ; Ω)− P (B(vj)) ≥ −resW (F ∪W, ν) ≥ −R(W ) ;

the latter inequality is of course in contradiction with (E.1) if R(W ) = 0.

This said, the class of obstacles such that R(W ) = 0 seems of rather limited interest
from a physical/geometric viewpoint, because of the following proposition.

Proposition E.1. If W is compact and R(W ) = 0, then W is purely Hn-unrectifiable, in
the sense that W cannot contain an Hn-rectifiable set of Hn-positive measure. In a partial
converse, if W is purely Hn-unrectifiable and Hn(W ) <∞, then R(W ) = 0.

Proof. Step one: We prove the first statement. We argue by contradiction, and assume
the existence of an Hn-rectifiable set S with Hn(W ∩ S) > 0. By [Sim83a, Lemma
11.1], we can assume without loss of generality that S is a C1-embedded hypersurface in
Rn+1. Let x be a point of tangential differentiability for W ∩ S so that, in particular,
Hn(W ∩ S ∩Bρ(x)) = ωn ρ

n+ox(ρ
n) as ρ→ 0+. Since S is a C1-embedded hypersurface,

there is ν ∈ Sn such that for every ε > 0 there is ρ∗ = ρ∗(x, ε) > 0 with

S ∩Cν
ρ∗,ρ∗(x) = {y + g(y) ν : y ∈ Dν

ρ∗(x)} ,

where g : (x + ν⊥) → R a C1-function with g(x) = 0 and Lip(g) ≤ ε. Denoting G(g) =
{y + g(y) ν : y ∈ (x+ ν⊥)}, and up to decrease the value of ρ∗, we can entail

Hn
(
G(g) ∩W ∩Cν

ρ∗(x)
)
≥ Hn(W ∩ S ∩Bρ∗(x)) ≥ (1− ε)ωn ρ

n
∗ . (E.2)

Since |g| ≤ ε ρ∗ on ∂Dν
ρ∗(x), we can define f : (x + ν⊥) → R so that f = g on Dν

ρ∗(x),

f = 0 on (x+ ν⊥) \Dν
2 ρ∗(x), and Lip(f) ≤ ε. Denoting by F the epigraph of f , we have

that (F, ν) ∈ F and we compute, for R large enough to entail Cν
2 ρ∗(x) ∪W ⊂⊂ Cν

R,

ωnR
n − P (F ;Cν

R \W ) ≥ ωn (2ρ∗)
n − P (F ;Cν

2 ρ∗(x) \W )

=

ˆ
Dν

2 ρ∗ (x)
1−

√
1 + |∇f |2 + P (F ;Cν

2 ρ∗(x) ∩W )

≥ −ωn (2 ρ∗)n ε2 + (1− ε)ωn ρ∗
n

where in the first identity we have used f = 0 on ν⊥\Dν
2 ρ∗(x) and in the last inequality we

have used (E.2) and
√
1 + ε2 ≤ 1+ε2. Up to taking ε < ε(n), we thus find resW (F, ν) > 0,

and thus deduce R(W ) > 0.
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Step two: We now assume that W is purely Hn-unrectifiable and such that Hn(W ) <∞.
Let (F, ν) be a maximizer for R(W ). Since F is a local perimeter minimizer in Ω, we
can assume that F is open in Ω with Ω ∩ ∂F = cl (∂∗F ) (∂∗F = the reduced boundary
of F as a set of locally finite perimeter in Ω). Now, ωnR

n − P (F ;Cν
R \W ) is decreasing

towards R(W ) ≥ S(W ) ≥ 0, therefore P (F ;Cν
R \W ) < ∞ for every R. In particular,

Hnx(Ω∩∂F ) is a Radon measure on Rn+1. Now, ∂F ⊂ (Ω∩∂F )∪W , so that Hn(W ) <∞
implies that Hnx∂F is a Radon measure on Rn+1 and, since F is open, that F is a set
of finite perimeter in Rn+1 thanks to [Fed69, Theorem 4.5.11]. Therefore we can use
the purely Hn-unrectifiability of W to conclude that P (F ;Cν

R \W ) = P (F ;Cν
R), where

P (F ;Cν
R) ≥ ωnR

n by (1.8) and (1.9), and thus R(W ) = resW (F, ν) ≤ 0. This proves
R(W ) = 0. �
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outside convex domains in Rn. Calc. Var. Partial Differential Equations, 29(4):421–429, 2007.
[Cha01] Isaac Chavel. Isoperimetric inequalities, volume 145 of Cambridge Tracts in Mathematics.

Cambridge University Press, Cambridge, 2001. Differential geometric and analytic perspec-
tives.

[CL12] M. Cicalese and G. P. Leonardi. A selection principle for the sharp quantitative isoperimetric
inequality. Arch. Rat. Mech. Anal., 206(2):617–643, 2012.

[CLM16] Marco Cicalese, Gian Paolo Leonardi, and Francesco Maggi. Improved convergence theorems
for bubble clusters I. The planar case. Indiana Univ. Math. J., 65(6):1979–2050, 2016.

[CM17] G. Ciraolo and F. Maggi. On the shape of compact hypersurfaces with almost-constant mean
curvature. Comm. Pure Appl. Math., 70(4):665–716, 2017.
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