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ABSTRACT. We consider a system of N hard spheres sitting on the nodes of either the FCC
or HCP lattice and interacting via a sticky-disk potential. As N tends to infinity (continuum
limit), assuming the interaction energy does not exceed that of the ground-state by more than
N2/3 (surface scaling), we obtain the variational coarse grained model by I'-convergence. More
precisely, we prove that the continuum limit energies are of perimeter type and we compute
explicitly their Wulff shapes. Our analysis shows that crystallization on FCC is preferred
to that on HCP for N large enough. The method is based on integral representation and
concentration-compactness results that we prove for general periodic lattices in any dimension.

1. INTRODUCTION

A fundamental problem in crystallography is to understand why ensembles of large number
of atoms arrange themselves into crystals at low temperatures. From the mathematical point of
view, proving that equilibrium configurations of certain phenomenological interaction energies
exhibit these structures is referred to as the crystallization problem [g].

At zero temperature the internal energy of a configuration of atoms is expected to be solely
governed by its geometric arrangement. Within the framework of molecular mechanics [11, 24} 31],
one identifies each ensemble of atoms with its atomic positions X = {z1,...,zxy} C R? and
associates to it a configurational energy of the form

E(X) 1= 5 SVl — ),
i#£]
where V: R — R U {400} is an empirical pair interaction potential (the factor % accounts for
double counting). Such potentials are typically repulsive at short distances and attractive at
large distances. While clustering is favored by long range attraction, the density of a cluster
cannot get too large due to short-range repulsion.

Notably, even under simplifying assumptions on the interaction potentials, the mathematical
literature on rigorous crystallization results is scarce. In fact, for finite IV, only results in one and
two space dimensions are available. For example, if V' is of Lennard—Jones type, crystallization
has been proved only in one space dimension [26]. In higher space dimensions only partial results
are available. Most notably, in [I8] 20} [39] it has been proven that crystalline structures have
optimal bulk energy scaling. In two dimensions, only results for (some variants of) the sticky
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V(r)
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F1GURE 1. The sticky disc interaction potential V.

disc potential (see Fig. (1

+oo ifr<1,
V(ir)==¢-1 ifr=1, (1)
0 otherwise

are available [16] 28] [30, 36]. More recently, crystallization results have been proved for ionic
compounds [21], 22] and carbon structures in [35]. The potential given in (1)) models the atoms
as hard spheres that interact exactly when two of them are tangent. In R™ the kissing number
k(n) is the highest number of n-dimensional spheres of radius % which are tangent to a given
sphere of the same size. It is well known that k(2) = 6 and k(3) = 12, see [37]. For a given
configuration of non-overlapping equal balls centered at X = {z1,...,2x} CR", N € NU{+4oc0}
the coordination number of € X is the number of spheres centered at y € X \ {z} and tangent
to the one centered at z. In two dimensions there is a unique (up to a rigid motion) configuration
made of infinitely many particles such that all atoms have as coordination number the kissing
number. Such a set X is the triangular lattice with lattice spacing one. In three dimensions
the problem is much more intricate. In fact, there exist infinitely many configurations with
constant coordination number equal to k£(3). An infinite class of configurations can be obtained
by stacking in an appropriate way layers of triangular lattices. A remarkable result by Hales
[27] shows that all such structures solve Kepler’s conjecture which is to say that they have the
maximal packing density in R3. Two notable cases of the aforementioned structures are the
face-centered cubic lattice Lrcc and the hexagonal closed-packed lattice Lycp (see @7@ for
their precise definition) which are the most prevalent among the crystalline arrangements in the
periodic table of elements.

In this paper we want to investigate already crystallized configurations, i.e. configurations
X C L where £ = Lycc or L = Lycp. For such X = {z1,...,2y} C L, fixing the lattice
spacing to be 1, we have

N

1
£(X) =3 quxi —ajl) = = D #N (@) N X), where N(z) = {y € £: |o —y| = 1}
i#£] i=1
As described above the minimal energy per atom is —k(3) = —12. Further information on £ as

N grows can be obtained by referring it to the minimal energy per atom and calculating the
excess energy En(X) defined below. More precisely, in Theorem we carry out a rigorous
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variational asymptotic expansion (see [10]) of £(X), by considering

N
En(X) = N3 (E(X) +12N) = N2> (12 = #(N(2) N X)) (2)

i=1
and calculating its T-limit [9, [I3] as N tends to infinity. This analysis has been done in two
dimensions for configurations confined to the triangular lattice [7] as well as without any con-
finement assumption [23]. Note that, the scaling factor N~2/3 is used in order to keep the energy
bounded as the number of atoms grows. In fact, given a low energy configuration of N atoms,
the number of those contributing to the energy scales like N2/3 for N large. By associating to

each configuration its rescaled emprical measure

1 N
/,LN(X) = N ZlaN—l/Smi B

we show in Theorem i) that the sequence of rescaled energies is equi-coercive with respect
to the weak™-convergence of the associated empirical measures. In Theoremii), iii) we exploit
integral representation theorems [2, [3, [5] to show that the limit energy is finite on the set of
measures 1 = v/2L3LV, where V' C R3 is a set of finite perimeter, on which the energy takes
the form

Be) = [ ect)ar?. )

Here, 0*V denotes the reduced boundary of the set V, v(z) denotes its unit outer normal at
the point = € 9*V and ¢, is an anisotropic surface energy density depending on the underlying
lattice £. In the case of multi-lattices, like the HCP-lattice, this integral representation result
has not yet been proven in the literature. We defer to Section [p| for a proof of this result whose
main ingredient is the integral representation theorem in [3]. Furthermore, in the same section
we prove general compactness and concentration lemmata that ensure the convergence of the
rescaled empircal measures of minimizers of the discrete problem to the Wulff shape (up to a
constant density factor) of the associated limiting anisotropic perimeter energy . Such kind
of result was previously known only in two dimensions [7]. Its extension to higher dimensions,
see Lemma |5.16] requires more refined tools from geometric measure theory that, to the best of
our knowledge, are exploited in this setting here for the first time. The main body of this work
lies in the calculation of the surface energy density o, : R® — [0, +00) both for the FCC and
the HCP lattices. Here, we take advantage of a recently proved finite cell formula [T1]. Finally,
for both lattices, we solve the associated isoperimetric problem [19)]

my := min oc(v)dH?: |V =1 (4)
U |

by calculating the (up to translation unique) set realizing the minimum in ({4, also known as
the Wulff shape [40]. We show that mpcc < mpcp which also implies (since I'-convergence
and coercivity implies the convergence of minimum values) that, for large number of atoms,
crystallization on the face-centered cubic lattice is preferred to that on the hexagonal-closed
packed lattice. We finally mention [6] for some preliminary computations on the Wulff shape of
the FCC and HCP.

In contrast to the uniqueness of the Wulff crystal in the continuum setting, minimizers to
the discrete isoperimetric problem [29] are non-unique [I7]. Over the last years there has been
a remarkable interest in establishing fluctuation estimates between different minimizers, i.e.,
estimating (several notions of) distances between different minimizers. Maximal fluctuation
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estimates between two minimizers have been first conjectured in [7] in the case of the crystal-
lization on the triangular lattice and have been later proved in [38] and [I5]. The same estimates
have been proved in [33, 21] and [T4} 22] for the square and the honeycomb lattices, respectively.
A general approach linking the quantitative anistropic isoperimetric inequality to such fluctu-
ation estimates has been set up in [I2] by two of the authors. In dimensions larger than two
these fluctuation estimates have been only established for the cubic lattice in [32] and for Z¢ in
[34]. In order to establish the aforementioned fluctuation estimates, however, an understanding
of the limiting macroscopic Wulff shape is essential. Since the present work yields these shapes
for the FCC and HCP lattices, it is our opinion that it may be considered an indispensable first
step to prove fluctuation estimates also for such lattices.

The article is structured as follows. In Section [2] we introduce the necessary mathematical
preliminaries, the model, and the main results. In Section [3] we prove Proposition and
by calculating the surface energy density as well as the Wulff crystal associated to both the FCC
and the HCP lattices. In Section [4] we prove the main I'-convergence Theorem [2.3] The latter
is a consequence of a more general theory for discrete perimeter energies on general periodic
lattices developed in Section

2. SETTING AND NOTATION

Given a set of vectors V' C R™ we denote by span,V the set of finite linear combinations of
elements of V' with coefficients in Z. We denote by 91 the collection of all Lebesgue measurable
subsets of R". Given A € 9 we denote by |V| its n-dimensional Lebesgue measure, i.e.,
|[V| = L"(V), and H" its n-dimensional Hausdorff measure. Given a countable set X, we denote
by #X the cardinality of X. Given a,b € R™ we denote by (a,b) their scalar product. We
denote by S"~! the set of unitary vectors in R”. For any v € S~ ! let {v1,...,v, = v} be an
orthonormal basis of R” , and let Q¥ := {z € R": [{z,1;)| < 1/2,%=1,...,n} be a unit cube
centered at the origin with faces parallel and orthogonal to v. For T > 0 and = € R™ we set
Q% (z) = 2 + TQV and we write Q4 = Q4(0). For r > 0 and z € R™ we denote by B,(x) the
n-dimensional Euclidean ball of radius r centered at z (for x = 0 we write B, in place of B,.(0))
and we set w,, = |By(z)|. For r > 0 and A C R™ we set (A), = B, + A. Given A C R" open, we
define the set of positive Radon measures by M (A). We say that {ug}r C M4 (A) converges
to u € M, (A) with respect to the weak star topology and we write pj, — p if

lim | pdug = / pdp for all p € C.(A).
A A

k—o0

we denote by BV(A) the space of functions of bounded variation in A and we denote by
BVigc(A) = {u: u € BV(K) for all K CC A, K open}. Given a function u € BV (A) we use the
notation of [4] for the jump set J(u) and the measure theoretic normal v, : J(u) — S"~!. For
V C AV €M we denote the relative perimeter of V' in A by

Per(V, A) = sup {/ divodz: v € CP(A;R™), ||[v]loo < 1} .
v

For v € S"! we set

(i) = {1 if {a,v) 2 0; (5)

0 otherwise.

In Section Pl-Section E] we set n = 3.
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FI1GURE 2. On the left: The FCC-lattice. On the right: The HCP-lattice. Pairs
of points at distance one are connected via the dashed lines.

Definition of HCP and FCC lattices. In the following we define the face-centered cubic lattice
(short FCC-lattice) and the hexagonal closed-packed lattice (short HCP-lattice). To this end,
we introduce the verctors

1 (1 1 (L 1 (Y
b1 = —F 1 5 bg = —— 0 5 bg = — 1 (6)
v\ v\ VA
and
1 11! 2 (Y 1
eri=(0], e==[vV3], ea:==vV6[0], vi=<(e1+ed)+ zes (7)
2 3 3
0 0 1
We define the FCC-lattice as
Lrce := spany {b1, ba, by} (8)
and the HCP-lattice by
Lucp := spany {e1, e2,e3} U (spany {e1, ez, e3} +v1) . (9)

The two lattices are illustrated in Figure [2l We shall write £ to generically denote one of the
two lattices defined above. We define the neighborhood of a point x € Lrcc as the set

NFCC(,T) = {ibl, ibg, ib3, i(bl — bg), i(bl — bg)7 i(bg — bg)} +x. (10)
Similarly, for a point @ € Lycp we define its neighborhood as follows: if x € spanj{e1, e, e3}
then

Nucp () := {£e1, tes, £(e1 — €2),v1,v1 — €1,v1 — €2,V1 —€3,v1 — €1 —e3,v1 — ez — ez} + T,
(11)
while if z € spany{e1,es,e3} + vy then

Nucp(z) := {+e1, +es, +(e1 — e3), —v1,e1 — V1,62 — V1,63 — V1,61 + €3 — V1,62 + €3 — V1) +T.
(12)

Note that Npcc(z) = Nrcec(0)+z for all z € Lrcc, while this is no more the case for z € Lycp.
Also for N we omit the subscript if we do not need to distinguish between FCC and HCP. It is
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straightforward to check that for all z,y € L,
rEeEN(y) < |z—y|=1.
Given L we define the Voronoi cell of x € £ (with respect to £) by
Ve(z) ={yeR®: [y —z| < |y —z| forall z € L}. (13)

Accordingly, given € > 0 we write Ve (z) for the Voronoi cell centered at x € e£ with respect
to the scaled lattice e£. Given X C e£ we say that y € N-(z) if and only if ety € (e~ 1z).

Definition of the Energy. Given X C £ and A C R? we define the configurational energy of
X localized to the set A as

Er(X,A) = > (12— #WN(x)NX)).
reXNA
In the formula above we can interpret the set X as the occupancy of the crystal L, i.e., the set
of those nodes of £ occupied by atoms. The quantity 12 — #(N(x) N X) is also known as the
valence of the point x with respect to X, i.e., the number of neighbours missing in X in order
to have a neighbourhood of maximal cardinality (the number 12 in the formula). Note that we
can also rewrite the energy as

Er(X,A) = ZZ (z,9)xx(y) — xx ()],

zEEﬂA yeLl
where
1 ifyeN(z),
) = 14
c(@:y) {0 otherwise. (14)

Periodicity of the interaction coeflicients. By definition
Lrce = Lrce + b1 = Lrcc + b2 = Lrcc + bs.
As a consequence of that, for any =,y € Lrcc it holds that
c(x+b1,y+b1) =c(z+ba,y+b2) =c(x+bs,y+bs) =c(z,y).

According to the last two equalities, we say that the lattice Lrcc as well as the interaction
coefficients of its configurational energy are periodic with periodicity cell

Trce = {A1b1 + Xoba + A3bs: A, € [0,1)}, (15)

or simply that they are Trcc-periodic. Similarly, we observe that Lycp and its interaction
coefficients are Tycp-periodic, where the periodicity cell is defined as

Tacp = {)\161 + Ageg + Azez: A; € [0, 1)} . (16)

Surface scaling of the configurational energy. For ¢ > 0 such that e3#X — 1 ase — 0
we consider the following family of scaled energies

Gre(X) = (12— #Ne(z) N X)).
reX

Note that, modeling the points in X C £ as hard-spheres of ¢ diameter, the quantity e3#X is
of order one (according to the scaling assumption above) and proportional to the volume of the
union of the spheres in X. Hence, the scaling factor £2 in the energy functional turns out to be
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a surface scaling. We also define the rescaled empirical measures associated to the configuration
X as

e 1= €3 Z Oy - (17)

zeX

Upon identifying X C £ with its empirical measure p., we can regard these energies to be
defined on M (R3) by setting

Feo() = {GL,E(X) if 1 = p. given in for some X C L, (18)

+00 otherwise.

The coarse grained continuum energy. For £ we define the homogenized surface energy
density ¢r: R3 — [0,400] as the convex positively homogeneous function of degree one such
that for all v € S? we have

or(v) = TETOO % inf {EE(X, Q7)) X CLyxx(i) =u,(i) fori e L\ Q%_3} , (19)

where u, is given by (F).

In order to be able to apply [I1, Proposition 2.6] and eventually obtain an alternative rep-
resentation of ¢ (up to a coordinate transformation and reparametrization of the interaction
coefficients), we define for u: £ — R, A C R? the energy

Fe(uA)i=3 3 3 cley)luly) — u(a).

zeELNAYEL
We are now in position to state [T, Proposition 2.6].

Proposition 2.1. Let c(x,y) be as in .Then

or(v) = ﬁinf {Fe(u,Tz) s u: L — Ryu() — (v,-) is Tg-periodic} . (20)

With the definition of surface energy density at hand we can define the coarse-grained con-
tinuum energy Egz: M4 (R?) — [0, +00] as

Joey () dH? if p=V2L3V, xv € BVioe(R?),

. (21)
400 otherwise.

Er(p) == {
with ¢, given by . Here, 0*V denotes the reduced boundary of the set V', v its outer normal

and H?2, as noted at the beginning of this section, stands for the 2-dimensional Hausdorff measure
in R? (cf. [], Chapters 2.8 and 3.5).

In what follows we say that F. I'-converges to F' if for all sequences {¢,}, converging to 0 we
have I-lim; F;, = F.

The Wulff Crystal. In this section we calculate the Wulff crystals of the coarse grained FCC
and HCP lattices. To the best of our knowledge, this is the first time that such a calculation
has been carried out in a rigorous analytical way. In what follows we introduce the notion of
Waulff shape in the general case of R™. While in the rest of this section we limit ourselves to the
case n = 3, in Section [5] we consider general n.
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Given ¢: R"® — [0,+00) convex, non-degenerate, (i.e. there exist 0 < ¢ < C such that
c < p(v) < C for all v € S"71) positively homogeneous of degree one, we define the Wulff set of
¢ by

W, :={¢ € R™: ((,v) < p(v) for all v € S"7'}. (22)
Thanks to the anistropic isoperimetric inequality (cf. [I9]), we have that W, is the unique (up
to rigid motions) minimizer of

min{/*Aap(V) AH" 1 [A] = |W¢} .

Given/\>0wesetW,\:(’\

1/n

W) WW so that |W)\|
minimum problem above among all sets A C R" with |A]
©°: R™ — [0, +00) by

A and, by scaling, it solves the
A. We recall here that, defining

—~

0 v, &)
(€ sup ;
©= 22 50
it holds that W, = {¢° < 1}.

Definition 2.2. Let (X, 7) be a topological space and let Fj: X — [0,40c]. For z € X we set

I-limsup Fy(z) = inf {limsuka(xk): Tp > x}
k—+o0 k—4o00
and
I'-liminf F, = inf { lim inf F) : T )
jmindF() = n { i i) 21 5 2}
If there exists F': X — [0, +o0] such that

F(z) = I-limsup Fy.(z) = T-lim inf F(z)
k—4o00 k—+o00
we say that Fj, I'-converges with respect to 7 to F' and we write

F =I- 1l Fi(x).

(z) S Fi(z)

If we have (F.)cs>0: X — [0,+00] we say that F. I'-converges with respect to 7 to F if F.,
I'-converges with respect to 7 to F for all e, — 0.

The following variational coarse-graining result is proved in Section

Theorem 2.3. Let € — 0, and let E; . and E. be the energy functionals defined in and
, respectively.

i) (Compactness) Let {pe}e C M (R3) be such that
sup Er o(1e) < 400.
e>0

Then there exists V. C R3 such that xv € BVic(R?), p = V2L3.V, and a subsequence
(not relabeled) such that e = p. Furthermore, if j. is such that

E = inf E
2e(pe) VEM (BP): || (B =ePn. 2,
with €3n. — V/2v, then p = V2L WY
A > 0 such that Wy, | =v.

er’

where W, . = AW, (defined in @2)) for
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it) (Liminf inequality) Let i € M, (R3) be such that p. = p. Then
Er(p) <liminf Bz (pe) -
e—=0

iti) (Limsup inequality) Let u € M, (R3). Then there exists {ue}e C My (R3) such that
fe = p and

> limi .
Er(p) 2 liminf Bz (pe)

F1GURE 3. The Wulff Crystal of the FCC-lattice on the left and HCP-lattice
on the right.

FIGURE 4. The sublevel set {¢pcc < 1} on the left and the sublevel set
{¢ncp < 1} on the right.
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Explicit formula of the surface energy densities. Taking advantage of the representation
formula stated in Proposition , we provide the explicit formulas of the surface energy
density ¢ .o and @r,op- Their sublevel sets are depicted in Figure 4 With the two explicit
formulas at hand we can calculate the polar functions of both densities, the associated Wulff
shapes and the surface energy per unit volume of both the FCC and HCP crystals. In order
not to overburden the reader with notation, we write ¢rcc and ¢ucp for .o and @ryop as
well as Wrce and Wycp instead of W, £pco and W, Wrcco and Wyep are depicted in

PLuce”
Figure [3]

Proposition 2.4. The following formulas hold true.

wrcc(v) = |v1 + vl + 1 +v3| + [v2 + 3| + V1 — va| + |v1 — v3| + 1o — 3], (23)
and
o 1 1
vrcc(C) = max § Clle, glclh ¢ (24)
In particular, Wgcc is a truncated octahedron and its surface energy per unit volume is
Wicel ™ [ proc(v) ai? = 3:22 225 (25)
0*Wrcc

Proposition 2.5. The following formulas hold true.

pucp(v) = V2 ([{er, v)| + [{e2,v)] + [(e1 — e2,v)]) + %Keswl

(26)
+Vamax{[{er. ). ez )l [ea )l fer — e )]}
and
SR S ORTE SUNE SN S
hon(©) =max{ 2= (Il + =l + Sozlal) =l -

2 4 3 1 1
ﬁ'CQI’%‘C2| + mK-SL 33 <|C1| + \/§C2|) }

In particular, Wycp is a truncated elongated hexagonal bipyramid and its surface energy per
unit volume is

|Wacp| /3 /a . oncp (V) dH? = 3-2%/3 . 65%/3 (28)
*Wucp

3. PROOF OF PROPOSITION [2.4] AND PROPOSITION [2.5]

In this section we prove Proposition [2:4] and Proposition 2.5 To this end, we use Proposition
to note that ¢ is given by (20).

Proof of Proposition[2.]} We divide the proof into several steps. First, we calculate ¢rcc. Then,
we calculate pp . Lastly, we calculate . Recall @

Step 1.(Calculation of ¢rpcc)We make use of Proposition in order to calculate ppcc. First
of all, owing to , we note that

1 1 1
|TFCC|:§\/6'§‘/§:§\/§- (29)
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Given u: Lrcc — R such that u(-) — (v, -) is Trocc-periodic we have that u(x+b;) = u(z)+ (b;, v)
for all ¢ = 1,2,3. Therefore, u is an affine function of the form u(z) = (z,v) + ¢,z € Lpcc for
some ¢ € R. Lastly, note that Lrcc N Trec = {0}. Using and , we obtain

procr) = 5v3 3 u(©) ~u0)] = 5v3 Y e w)l.
&ENFce &eNFco
Employing now , we obtain .
Step 2.(Calculation of ¢§o) Let G be the isometry group on R whose elements g € G are
the linear isometries g: R® — R3 defined by g(v1,ve,v3) = (b1Vn,,baVn,, b3Vx,) Where 7 is a
permutation on {1,2,3} and b; € {—1,1}. Since prcc(g9(v)) = proc(v) for all g € G, v € R?,
we infer that

prec(C) == max ((v) = max (g7 '(v)) = max (9(¢), ) = pRec(9(C)
veER3 vER3 vER3
proc(v)<1 prcc(g—t(v))<1 prcc(v)<1

also relying on the property g7 = g~—!. Therefore, we can assume that 0 < ¢; < (s < (3. Thus,
if we want to maximize (¢,v) under the condition prcc(r) < 1, we can as well assume that
0 <1y < vy < s, so that condition prec(v) < 1 becomes equivalent to

4uvg + 215 < 1.
Therefore, noting that any linear function attains its maximum at the extreme points of a convex

set and consulting Figure |5, we obtain

max (1 + Qv+ Grs= max (G + G)ve + (uz = maX{iC& é(ﬁl +G+ Cs)}

0<v1<v2<vs 0<v2<vs
4v342v5<1 4vs+2v5<1

1 1
= mac{ {1l 61 | -
This is the desired formula and concludes Step 2.

1%

w

N

1)

N[—=

FIGURE 5. The set {0 < vy < w3} N {4vs + 21 < 1} depicted in gray.

Step 3.(Calculation of (25)) Note that the set Wy, is the intersection of a cube [|([o < 4
with an octahedron ||{||; < 6, see Fig. [3l Its boundary has 6 square faces, where v = +(1,0,0)
(resp. £(0,1,0) or £(0,0,1)) and 8 hexagonal faces, where v = %(:ﬁ:l +1+1). First, we

consider the set where v = (1,0,0), the other cases where ¢ (¢) = 1[|(|lcc = 1 contributing
with the same value. The square is given by

Sf = {(4.Gas ) 6al + fl =2 = { {16l = g6 =1} n { gl <1}
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Therefore, H?(S;) = 8 and ¢rcc((1,0,0)) = 4. Similarly, we obtain the same measure and
value of ppcc for the other squares Sy, ,S‘Qj[,Sgi7 where v is (up to sign) one of the coordinate
unit vectors. Hence,

3 3
Z/yFCC(V)dH?JFZ/ orcc(v)dH? =6-8-4=3-2°. (30)
i=1"5 i=1"5;

Next, we consider the contribution of a hexagon. We consider the hexagon contained in the
set ¢; > 0 for all i. Here, we have v = %(1,1,1) and ppcc(v) = 2v/3. The 6 sides of the

hexagon have all side-length 21/2. To see this, there are sides of the form (4,2 —t,t),t € [0,2]
or (4—t,0,241),t € [0, 2] and their permutations (up to identifying ¢ with 2 —¢ in the first case
and 4 —t and 2 + ¢ in the second case). An equilateral hexagon H of side-length 21/2 satisfies
H?(H) = 124/3. Labeling the hexagons by H;, i = 0,...,7, we obtain

7
Z/H oroc(v)dH? =8 - H*(H;) - prcc (\}g(il, iLil)) =8-12v3-2v3=3%.25. (31)
=0 i

Using and , we obtain
/ proc(v)dH? =320 +37.2° =3 2°. (32)
OWrcc

Let C :={¢ € R%: ¢ > 0foralli =1,2,3 and §[|¢[lc > #[I¢[1} and C¢ := {{ € R®: ¢ >

0foralli = 1,2,3 and 1|[([lc < glI¢[l1}. We split the calculation of the volume W N {(¢ €
R3: ¢; > 0 for all i} into the set CNWroe and C°NWree. Noting that on this set |[Vpgoo(C)| =

i L3-a.e. on C, due to the coarea-formula, we have

1
{C N Wiec} = 4 /C kel ¢ =4 / HA(C N {phoo(¢) = s}) ds

1
:/ 4.5%.6ds=8.
0

Here we used that, CN{pgcc(C) = s} = s(S;7USFUST)N{¢ > 0} and the scaling properties of
the 2-dimensional Hausdorff-measure. On the other hand, using that [Vegoa(Q)] = % L3-a.e.
on C¢ we have

1
07 0 Wicc}] = 2V3 Viekeel0)1dC = 2V3 [ H3(C n{bac(O) = ) ds
CeNWecc 0

1
:2\/5/ s%-12v/3ds = 3-2%.
0
Taking into account also the sets {£(; > 0}, we obtain
[Weoc| = 8(8 +3-2%) =28,
Now, this together with yields . O

Proof of Proposition[2.5. We divide the proof into several steps. First, we calculate ucp.
Then, we calculate ¢ -p. Lastly, we calculate (28).
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Step 1.(Calculation of ¢icp) We make use of Proposition [2.1]in order to calculate ppcp. First
of all, due to , note that

|Thcp| = %\/6 %\/5 =V2. (33)

Given u: Lrcc — R such that u(-) — (v, -) is Tucp-periodic we have that u(z+e;) = u(x)+{(e;, v)
for all i =,1,2,3 and Lucp N Thucp = {0,v1}. Hence, there exist ¢, c2 € R such that

w(z) = (x,v) + 1« € spang {e1,ea,es} ;
(xo,V) + 2 x=2x0+v1, With zg € spany {e1,e2,e3} .
Setting co — ¢; = t, recalling and , we therefore obtain
Fruce (w, Taer) = 2 ([(ex, )| + [{e2, v)| + [{e1 — €2, v)|) + [t] + [t = (€1, )| + [t — (e2, V)]
+ |t — (es, )|+ |t — (es + e1,v)| + |t — (e3 +ea,V)].
Employing Proposition and , we have

puce(v) = V2 ([{er,v)| + [{e2,v)] + [(e1 — e2,v)]) + % min g, (), (34)

where
gv(t) == [t] + [t = (e, )| + [t = (ea, )| + [t — (e3, v)| + [t — (es + €1, ¥)[ + [t — (es + €2, )]
Next, we show that

min g, (1) = |(es, v)] + 2maxc{{e1, )], [{e2,0)], ler = e2,0)], [(es, 1)} (35)

Note that if is shown, is proven and Step 1 is concluded. In order to prove , we
first note that g, (t) is a piecewise affine function such that g, (t) — 400 as |¢| = +o00. Hence,
it attains its minimum at a point of non-differentiability. The function g, is not differentiable
for t € {0, (e1,v), (ea, V), (es,v), (€3 + e1,V), (e3 + e2,v)} and therefore

rtréiﬂlggu(t) = |{e3, V)| + min{fx(v): k € {0,...,5}},

where
fo(v) = [{er, )| + [{e2, V)| + [{e3 + e1, V)| + [{e3 + €2, )],
fi(v) =[er, )|+ [{e1 —e2,v)| + [(es — e1, V) + [{e3 + e2 — €1, V)],
f2(v) = [ea, v)| + [(e1 — e2, V)| + [(e3 — €2, V)| + [{e3 + €1 — €2, V)],
f3(v) = [{er, )| + [(e2, V)| + [{es — e1, V)| + [{e3 — e2, 1),
fa(v) = [{er,v)| + [(e1 — e2, )| + [(es + e1, V)| + [{es + e1 — €2, V)],
fs(v) = [{e2,v)| + [(e1 — e2, V)| + [(es + e2, V)| + [{e3 + e2 — €1, V)]

It is easy to see that
%ingg”(t) = |(es,v)| + min {|(e1, Rpv)| + |(e2, Rev)| + |(e3 + €1, Ryv)]
+ |(e3 + €2, Rpv)|: k € {0,...,5}},

where Ry, is the rotation of angle k7/3 around the zs-axis. Noting also that minecg g, (t) =
mingeg g—, (1), it is not restrictive to assume that (e1,v) > 0, (e2,v) > 0, {(ez,v) > 0. We only
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consider the case, where (e1,v) > (es,v) > (es,v) > 0, the other being dealt with in a similar
fashion. In this case we have fo(v) > f3(v), fa(v) > f5(v), and

fi(v) = (e1,v) 4 (e1 — e2,v) + (e1 — e3,v) + |(es + €2 — ey, V)|
=2(e1,v) + (e1 — ea —e3,v) + |{e3 + ea — e1, V)| > 2{e1,v);
fa(v) = (ea,v) + (e1 — €2, V) + (€2 —e3,v) + (e3 + €1 — ea, V) = 2{e1, V);
fa(v) = (e1,v) + (ea,v) + {e1 — €3, V) + (ea — e3,v) = 2(e1,v) + 2(ea,v) — 2(e3, V) > 2(e1,V);
f5(v) = (ea,v) + (e1 — €2, v) + (e3 + €2, V) + |(e3 + ex — €1, V)]
2(e1,v) + {eg + €2 —e1,v) + |{es + ea — e1,v)| > 2(e1,v).

Hence, we see that holds true. This together with establishes and concludes
Step 1.

Step 2.(Calculation of ¢fcp) In order to calculate ¢fcp, we exploit the symmetries of ¢p.
Note that

V1 1551 - 1551
wucp | — | 2 = YHuCP 2 = YHCP ) = YHucp 2 . (36)
V3 —v3 V3 V3

Given ¢ € R3 we can find R =T o T5? o T5*®, a; € {0,1} such that (R(¢); > 0 for all 4. Thus,

SD?ICP (C) = max <V7 C> = max <RV3 RC>

puop (V)1 puop (1)<1 (37)
= max v, R = max v, R — A° R )
@HCP(R*1V)§1< C> ‘PHCP(V)S1< <> QDHCP( ()

It therefore suffices to calculate ¢fcp for ¢ € R? such that ¢; > 0. This together with
implies that if v = (11, va,v3) is such that pgcep(v) < 1 and

(v, ()= max (v,(),

puce(v)<1

then v; > 0 for all . Additionally, a maximizer v can be chosen such that ppcp is not differen-
tiable at v. Therefore, there are the following cases to consider:

e1 — ez, v) = 0;
e1 —es,v) =0,(e; —eq,v)

) (

) ( >0;
) (ea —e3,v) =0, (e3 —eq,v) > 0;
) =0;

)

Here, we point out that the points on the boundary v, = 0 are excluded as possible maximum
points by arguing in the following way: If there were a point v such that v5 = 0, then yucp(v)
would either be differentiable and thus v would not be a maximum point or v would satisfy one
of the cases (a)-(e).

Mazimum of case (a). Since (e; — ez, v) = 0, we have v; = /3vy. Hence, v = (1, %t,s) for
some t,s > 0. Now, using , we have

1 2
encp (V) = V2 (21/1 + g\/él/g + max{ry, 3\/6V3}) .
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(a.1) t > 21/6s: Since the maximum is attained for @Hcp( ) =1, we have t = ﬁ — $6s.

Now, t > 0 together with t > Q\fs implies 0 < s < f Noting that

(r,()=t (Cl + \/§C2> +5(3 = (3\1/5 - El)\/65> <C1 + \/§C2> + sC3,
we obtain

, Jmax | (1C) = {7\f (Q + \}3@ + 2\3/6<3> ‘378 (Ci + \}§<2>} L (38)

(a.2) t < 2/6s: Using wucp (v ) = 1, we obtain t = 8s. Now, t > 0 together with
t < %\/és implies <s< Noting that

=

1
2v2
7

w,¢) =t (Cl + \}§<2> +5(3 = (3\[ - gxfs) <§1 + \%@) + 5C3,

f

we obtain

3 1
, saIiItl.a()fz.2)<V7 Q)= max{7\[ (Cl + 7@ + 2\/(§§3> ,2\/3(3} : (39)

Magzimum of case (b). Since (e; — ez, v) = 0, we have v; = 2v/6v3. Hence, v = (t, 5, %t) for
some t,s > 0. Now using , we have

7
pucp(v) = 5\/51/1 .

Hence, since the maximum is attained for pucp(v) =1, we have vy = 72 Additionally, since
(e1 — ea,v) > 0, we have vy < 7\/6’ and due to the form of v, we have v3 = f This implies
max (v, + + — . 40

, me (b)< ¢) = ) (Ci \/ng 2\/EC3> (40)

Magzimum of case (c). Since (ez — e3,v) = 0, we have 111 + £v/3vy = 21/6r3. Now using (26)),

we have

7 14
encp(v) = 5\@(63,”) = 3\/51/3-

Hence, since the maximum is attained for ¢pcp(v) = 1, we have vg = T?i/? Additionally, since
2 4 1
(es—e1,v) > 0, we have 1] < 75 Due to the form of {e; —e3,v) = 0, we have vy = v ARRvILE

Note that o >0 for all 0 < vy < Therefore

4 3
(v, Q) = 1C1+<7\f f >C2+14\/§C3~

_2
2"

This implies

4 1 3
max (v, ma , + + —=(: . 41
ysat_X(C)< ¢) = X{7\/6C2 14\[@ NG (Ci \/§C2 2\/6<3)} (41)
Mazimum of case (d). We have v3 = 0 and therefore
prcr (V) = V2 ((e1,v) + {e2,v) + |(e1 = e2,v)| + max{{e1, v), (e2,1)})
We distinguish to cases

(d.1) (e1 —e2,v) > 0;
(d.2) (e; —eq,v) <0.
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Mazimum of case (d.1). In the case (e; — ez, v) > 0 we have pucp(v) = 3v/2v; and therefore

since pucp(v) =1, 11 = ﬁ The inequality (e; —eq,v) > 0 implies that 0 <
Hence,

1
Vsz?tl.a(}é‘l)<y, C> 3\[ <<1 + \[C ) .

Mazimum of case (d.2). In the case (e; — e2,v) <0 we have
3 3
pucp(v) = 3\/§<eg,l/> =2 <2V1 + 2\/§V2> .

This, together with gpcp(v) =1, implies v =3 f — V/3vy and therefore vy <
ally, since (e; — e3) < 0, we have 3\/ < vy. Therefore,

(v, () =1L + 1 = (2\[ - \[1/2> 1+ 1202

This implies

B P max{gf e (41 * %@} |

Mazimum of case (e). In the case v1 = 0 we have

1
I/2<\/»l/1 3\/»

(42)

. Addition-

wrcp(v) = V2 (\/31/2 + é\/él/g + max {?1/2, ?))\/61/3}> .

We distinguish between two cases:

(e.1) (e2,v) > (es,v);
(e.2) (e2,v) < (e3,v).

Mazimum of case (e.1). In this case, we have
3 1
ercp(v) = V2 (2\/§V2 + \/61/3) :

Therefore, since pucp(v) = 1, we have vy = v 2\[1/3 Hence, v3 < <35
(ea — es,v) > 0, we have v3 < ﬁ. Therefore,

(1, () = (e + 1303 = <3\[ 9[;;3) Co+v3(3.

Hence,

3
Usgcl.afcc.l)<y7c> = Imax { C?v \/* 14\/563} .

Mazimum of case (e.2). In this case, we have
oncp(v) = V2 (\/31/2 + \/61/3> )

Therefore, since pucp(v) = 1, we have vy = % — V2v3. Hence, v3 < 3

(ea — e3,v) <0, we have v > ﬁ. Therefore,

(1,Q) = 1ole + 1303 = (3\[ \fVS) Co + v3(3.

Addltlonally, since

(44)

L_. Additionally, since
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Hence,

1 4 3
ngaél)(y,Q :max{Q\/3 7\/6(:2_'— 14\/§C3} .

Exploiting 77 and 7 we obtain . This concludes Step 2.
Step 3.(Calculation of ) In order to calculate 7 we split the calculation of 9*Wycp =

{¢ficp(€) = 1} into different sets, where the maximum of ¢fcp is attained. We consider the
following cases

(a) Ag :={C€R3: ©fcp(C
(b) Ap:={C € R®: fcp(C
(c) Ac:={C € R®: pfcp(
( (

(

(35 (45)

) = sheldel = 1};
)= el =1
)= %\/E\Cﬂ + %\/5|C3| =1}
d) Ag:={CeR3: p{cep(C)
() Ac:={C € R*: ¢Rp()

In each of the cases, one can determine the area, shape and normal of the set, by invoking the
condition that the maximum is attained ¢fcp for the respective function and therefore all the
other functions f in the definition of ¢pp satisfy f < 1. In the following, we only collect the
results, since the calculations are elementary (but very long).

= ﬁ(Kl\ + %\CQD =1}
= 5G]+ il + 535160 = 1)

Calculations for case (a). In this case, we see that v = (0,0,41) H2-a.e., since this set is
contained in the level set of the function |(3| = ¢ for some ¢ > 0. Additionally, we see that the
set is a union of two hexagons of side length 2v/2. Therefore, for each of the two hexagons H;
we have H2(H;) = 12+/3. Furthermore, ppcp(v) = 2v/3. Hence

/A prce(v) dH? = 2-12v3-2v3 = 2*. 3% (46)

Calculations for case (b). In this case, we see that v = (0,£1,0) H2-a.c., since this set is
contained in the level set of the function |(2| = ¢ for some ¢ > 0. Additionally, we see that the
set is a union of two rectangles with side lengths 3v/2 and %\/g Therefore, for each of the two
rectangles S; we have H?(S;) = 4v/6. Furthermore, pycp(v) = %\/6 Hence

3 .
/A SDHCP(V)dHQ:2'4\/6'5\/6:25~32. (47)

Calculations for case (c). In this case, we see that v = (3/41)1/2(0,4£8//6, +1/3) H>?-a.e., since
this set is contained in the level set of the function 7;\4/6|C2| + ﬁk},‘ = ¢ for some ¢ > 0.

Additionally, we see that the set is a union of four trapezoids with height (41/6)'/? and two
parallel sides o lengths 3v/2 and 2v/2. Therefore, for each of the four trapezoids T; we have
H2(T;) = 3(4)Y/2. Furthermore, pucp(v) = 14(2)Y2. Hence

2\ 3
5 /41\ Y2 3\ 2
/A*"HCP”)d”Z—‘l'z(s) '”‘(m) SreeT (48)

Calculations for case (d). In this case, we see that v = %(:I:\/g, +1,0) H2-a.e., since this set is
contained in the level set of the function |(1| + %|(g| = ¢ for some ¢ > 0. Additionally, we see

that the set is a union of four rectangles with side length 3v/2 and %\/ﬁ Therefore, for each of
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the four rectangles R; we have H%(R;) = 4v/6. Furthermore, pucp(v) = 2v/6. Hence

/ LPHCP(V)d?'-LZ:4-4\/6.2\/6:24_32_ (49)
Ad

Calculations for case (e). In this case, we see that v = 2(6/41)"/2(+1, j:\lf 2\f) H2-a.e., since
this set is contained in the level set of the function |(1| + %|C2| + ﬁ|§3| = ¢ for some ¢ > 0.

Additionally, we see that the set is a union of eight trapezoids with height (41/6)*/2 and two
parallel sides o lengths 3v/2 and 2v/2. Therefore, for each of the eight trapezoids Z; we have
H%(Z;) = 2(4)Y/2. Furthermore, pucp(v) = 14(2)'/2. Hence

5 41 1/2 3 1/2
dH? =8 = — 14 = =23.5.7. 50
[ oo s 3(5)" 4 (3) o
Taking into account (46)—(50]), we obtain
/ oacp(V)dH? =25.32 +2%.32 422.5.74+2*.32+2%.5.7=780.  (51)
0*Wucp

Next, we need to calculate [Wycp/|, since Whcp = {¢fcp < 11N (C,UC,UC.UC;UC,), where

Co={CeR®: ehcp(C) = \[Ks\}
Cy:={¢ € R*: oRicp(() = 3\[|C2|}
Cc = {CeRg:QDIC:ICP( ) 7\/>K2| 14\/>|C3|}
Cas={C € B iep(€) = 551G+ =)}

2 3
Cet= (€ € R gien(0) = (1l + 16l + 5=l

Note that H%(Co N {¢5cp () = s}) = s?H?(A,) for all o € {a,b,c,d,e}. In the set C, we have
that |Vefiep (O] = ﬁ L3-a.e.. Due to the coarea formula, we have

|Ca N Whcp| =2V3 IVerep(OldC
CoNWhcp

1 (52)
=2v5 [ HACL 0 {eicp(Q) = o)) ds = VAR, =25,

In the set Cy, we have that |Voep(Q)] = % L3-a.e.. Due to the coarea formula, we have

3 o
|Co N Wiicp| = 5V6 Veher (€)1 ¢
CyNWacp (53)

3 ! 2 o 1 2 3
- 5%/ H2(Cy 1 (e (€) = s)) ds = LVEH?(A) = 2° 3.
0
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In the set C., we have that |[Vefcp ()| = £(41/3)Y/2 L3-a.e.. Due to the coarea formula, we
have

3\ 1/2
C O Wiiop| = 14 () / Vetiep(O)] d¢
41 C.NWucp

—14 (jl) - / H(Co {gen(O) = ) ds (54)

1. 3\, 22.5.7
14<41) H2(A) = =5

In the set Cy, we have that |Vopcp(Q)| = ﬁ L3-a.e.. Due to the coarea formula, we have

3 o
|Ca N Wacp| = 5V6 Veher ()¢
CaNWucp

3 1
= 5V [ #Can (Ghor(©) = shds (55)
0
= %\/EHQ(Ad) =2*.3.

In the set C., we have that |V¢§op(¢)| = £5(41/3)1/2 L£3-a.e.. Due to the coarea formula, we
have

3\ 1/2
Conucel =14 (%) [ [Fgher(©lag
CeNWhcp
3 1/2 p1
—1 () [ RN fehorlc) = s ds (56)
0
1. 3\, 23.5.7
== — Ae) = .
() ="
Using 7, we obtain |Wycp| = 260. This together with yields . O

4. T-CONVERGENCE ANALYSIS ON THE FCC AND HCP LATTICES

In this section we prove Theorem In order to prove the compactness statement, we
provide some preliminary lemmata about the shape of the Voronoi cells of the FCC-lattice as
well as the HCP-lattice (see Figure [6). In what follows we use the notation Nrcc = Nz (0)
and NHCP = NCHCP (0)

Lemma 4.1. (Voronoi cell in the FCC-lattice) Let us take x € Lycc. Then

1
Vipeo (@) =2+ Vice,  where Ve = {y €eR?: max (by) < } . (57)
beENFcC 2
Given by € Nrcc the face
1
= R3: = (b =_ 58
Sbo {ye yZuax (by) = (bo, y) 2} (58)

18 a rhombus with 7—[2(51,0) = %\/ﬁ Moreover, for each by € Npcc the face Sy, of Vrcc(0) is
shared with the Voronoi cell Vrcc(bg). Lastly, we have |Vrcc(x)| = %\/5 for all x € Lrcc.
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FIGURE 6. Left: the Voronoi cell Vrcc of the FCC lattice. Right: the Voronoi
cell Vicp of the HCP lattice.

Lemma 4.2. (Voronoi cell in the HCP-lattice) Let us take x € Lycp. Then

v (2) = x+ Vacp if x € spang{e;,es,e3}, (59)
fucr x—Viacp if x € (v1 + spang{e1,ea,e3}),
where
1
Vucp := {y e R®: ben1:?l>ép<b,y> < 2} )
For by € Ngcp we set
1
.f 3. _ _
Sho = {y €R%: max (by) = (b, y) = 2} : (60)

If by € {£ey,*eq, +(e1 — ea)} the face Sy, is a trapezoid of area i\/ﬁ If by € {v1,v1 —
€1,V1 — €3,V] —€3,V1 — €1 — €3,V1 — ez — ez} the face Sy, is a Thombus of area é\@ Moreover,
for each by € Nucp the face Sy, is shared with the Voronoi cell Viyop(bo). Lastly, we have
Vewes (2)] = %\/5 for all x € Lycp.

Proof of Lemma[{.1 We split the proof of the lemma into four steps. First, we prove . In
the second step, we show that each face is a rhombus and calculate its area. Lastly, we show
that each neighboring Voronoi cell Vrcc(b), b € Nrce shares one face with the Voronoi cell
Vrcc(0).

Step 1.(Proof of (57)) To check (57)), since Lrcc is a Bravais-lattice (see (8)), it suffices to
consider the case ©+ = 0. Let V;...(0) denote the Voronoi cell of Lrcc at © = 0 defined
according to .

Step 1.1.(Vzpee (0) € Vree) Let y € Vipoo(0). By the very definition of Voronoi cell we have
that for all b € Mpcc it holds |y| < |y — b|. Noting that |b| = 1 for all b € Npcc C Lrcc, we
have

1
I <ly=bl <= lyI* <ly = = [yI* = 20, 9) + bI* = (by) <3,

that is the inclusion Vg, (0) C Vrcc.
Step 1.2.(Vrce C Vipee (0)) We show that for y € Vece we have |y| < |y — 2| for all z € Lpcc.
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This is equivalent to
y € Vrce = (y,2) < %|Z‘2 for all z € Lrcc - (61)

We first observe that if 2 € Nrcc, is trivial since |z| = 1. Next, we prove for all
z € Lrcc \ Nrcc. We distinguish two cases:

(a) z=Aibj + Xabp M, A2 €Z, j,ke€{1,2,3},j #k;
(b) zZ = Ab1 4+ Aobo + A3b3 A, Ao, A3 €EZ.

Proof in case (a). We only show the statement for z = A1b; + Aabs for A1, Ao € Z, the cases with
any other combination of two vectors being analogous. If A\j Ay > 0, since (b1, bs) > 0, we have

1 1
(y,z> = <ya )‘lbl + )\2b2> < il)‘lbl‘g + §|)\2b2|2
1 1 1
= SIAb1 4 Aabaf* = M da(br,b2) < S [Aabr + dabsf* = S 2.

On the other hand, if A\j Ay < 0 and without loss of generality |A;| < |A2], noting that by — by €
Nrcc, we have
1 1
(Y, 2) = (y, AMb1 + Aaba) = (y, (A2 + A1)b2 + A1 (b1 — b2)) < §|(/\2 + A)ba|* + §|>\1(b1 —by)[?
1 1
— 5|A1b1 + Aaba)? = A (Ao + A1) (b — ba), by) < §|A1b1 + Aabo|?.

Here, the last inequality follows, since |bi| = |ba| and therefore Aj(A2 + A1){(b1 — b2),b2) > 0.
This concludes case (a).

Proof in case (b). We now show that holds true in the case of b = A\1b1 + Aoby + A3bs with
Ai € Z. We restrict to the case Ay > 0, A2 > 0 and A3 < 0, since if all \; are of the same sign,
(57) can be deduced from the fact that it holds true for b € Npcc and the fact that (b;, by) > 0.
Without loss of generality, we assume |Aa| < |A3]. Hence, observing that by — b3 € Nrcc, we
have

(Y, 2) = (Y, \ibr + Xaba 4 A3b3) = (y, A1b1 4 (A3 + A2)b3 + Aa(ba — b3))

1 1
5|A1b1 + (A3 4+ A2)bs|? + §|A2(b2 — b3)?

IN

1
= 5 A+ Aobs + Asbs|? = (Aabr + (A5 + A2)bs), Aa (b2 — by))
1 1
= 5 1A+ Aoby + Asbs|* = (As + A2)Aa(ba — b3, bs) < S [Aaby + Aaba + Asbs|*

Here, the last inequality follows from |ba| = |b3| and Ag 4+ A2 < 0 whereas the equality in the last
line is due to (b1, ba) = (b1, b3) = (b2, b3). This concludes case (b) and with that Step 1.2.
Step 2.(The faces of the Voronoi cell) To show that each face of the Voronoi cell Vicc is a

rhombus with area %\/5 we first exploit its symmetries. Let i € {1,2,3} and let T;: R® — R3
be the linear mapping that flips the i-th entry, i.e.

—x; ifi=7j,
(Tiz); = { g
Z; otherwise.
We observe that
TiNrce = {T;b: b € Nrcc} = Nrce, for all i € {1,2,3}.



22 M. CICALESE, L. KREUTZ, AND G.P. LEONARDI

Moreover, given a permutation m € S3 we have that
7Nrcc = {mb: b € Nrcc} = Nrce -

It therefore suffices to restrict only to the case in which the vector by agrees with the vector
by € Nrcc. We claim that this face has corners given by

o = (;@O,o) o = (o,;ﬁo) =1 (VEVEVE) o= (VEVE VD) . (62)

Note that, if this were true then it is easy to see that Sy, is a rhombus and H?(Sy,) = $v/2. It
remains to prove . Let us denote by y a corner of S;,. We can assume that y;,ys > 0. Were
this not the case, then there could be ' € Npcc such that (b, y) > (b,y), thus contradicting
the definition of Sy, in (58). If y1 = 0 (or y2 = 0), then yo = %\/ﬁ (resp. y1 = %\/ﬁ) and since,
(t/,y) < L for all i/ € Npcc we have y3 = 0. Hence, we find the two corners with coordinates
(%\@,0, 0) and (0, %\/5, 0). Now, if y; > 0 and yo > 0, then assuming that y3 > 0 we have that
the corner is equal to (b1, y) = (b2,y) = (bs,y) = 3v/2. Thus, necessarily y; = yo = y3 = 1v/2.
If instead y3 < 0, then the corner is equal to (b1, y) = (ba,y) = (b1 —bs,y) = 2+/2 which implies
Y1 =Yz = —Y3 = i\/i Hence holds true and this concludes Step 2.

Step 3.(Neighbors share faces) We want to show that for each by € Nrcc we have that the face
Sb, of Vecc(0) is shared with the Voronoi cell Vecc(bo). By the symmetries shown in Step 2 it
suffices to prove this statement only for by = b;. Using we see that the corners of the face
St of the Voronoi cell Vrec(0) coincide with the corners of the face S_p, + by of the Voronoi
cell VFCC (bo)

Step 4.(Volume of the Voronoi cell) In order to calculate the volume of the Voronoi cell we note
that Lpcc is a Bravais-lattice with spanning vectors by, by, b3. Since, the Voronoi cells of all the
points are the same, it suffices to calculate the fraction of points per unit volume. This, then
gives also the volume per point. Since, the Voronoi cells are space filling the volume per point
is equal to the volume of each Voronoi cell. Due to we have that

1
|Trcc| = 5\/5.

Furthermore, we have that

U (@ +Trce) =R®, and Lrce N Trce = {0}

zELrcC

Hence, each points of the lattice occupies a volume |Trcc| = %\/5 and the volume of the Voronoi
cell must be the same. This concludes Step 3 and thus the proof of the lemma. O

Proof of Lemma[{.2 We split the proof of the lemma into four steps. First, we prove . In
the second step, we show that 6 of the faces are rhombi, the 6 other faces are trapezoids, and we
calculate the area of each face. Lastly, given x € Lycp, we show that each neighboring Voronoi
cell Ve (y),y € Nucp(z) shares a face with the Voronoi cell Vicp ().

Step 1.(Shape of the Voronoi cell) The purpose of this step is to prove (59). Here, we only
show this equality in the case that x = 0, the case x # 0 being treated in a similar fashion.
Step 1.1.(Veyep (0) € Viacp) Given y € Ve,op (0) we have that |y| < |y — b|. Now, noting that
|b| =1 for all b € Ngcp C Lucp, we have

1
[l < ly = b* = [yl” = 2(y, b) + b = (by) < 5.
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This concludes Step 1.1.
Step 1.2.(Vizep C Veyep (0)) We show that for y € Vigep we have |y| < |y — z|, for all z € Lycp.
This is equivalent to

y € Viucr = (y,2) < i|z]*> forall z € Lycp. (63)

Since, |b] = 1 for all b € Nucp is true for all b € Ngcp. Next, we prove for all
2z € Lucp \ Nucp. We distinguish several cases:

(a) Z:)\1€1+>\262,>\1,)\2 GZ;

(b) Z:)\161+)\2€2+)\363,)\1,)\2,>\3 €7,

(C) z=v1 + Ae1 + doea, A\, A2 €EZ;

(d) z =111+ A1e1 + Aaea + Aze3, A1, Ao, A3 € Z;

Proof in case (a). If A1, A2 > 0, using that (e, e3) > 0, we have
(y,2) = (y, A1e1 + Agea) < *|>\161\ + *|>\2€2\2

1
*|)\1€1 + )\262| — )\1)\2<61, 62> *|>\161 + )\262|2 = §|Z|2 .

On the other hand, if \A2 < 0 and without loss of generality Ay > |A2| > 0, noting that
e — e1 € Nucp, we have

(y,2) = (y, Are1 + Agea) = (y, Aa(ea —e1) + (A1 + Az)er) < *|)\2( ez —e1)]? + *|(>\2 + Ar)er]?

1 1
= §|)\161 +)\2€2|2 - )\2()\1 —+ /\2)<€2 — 61,61> < 5‘)\161 —+ )\262|2 = §|Z|2 .

Here, the last inequality follows, since Aa < 0 < A; + Ay and (e3 — e1,e1) < 0. This concludes

case (a).

Proof in case (b). We first show that (y,e3) < %|€3|2. Using that vy,v; — e1,v1 — es € Nucp,
1 1

that 3v; —e] —ea = %63 we have
2
< - ||z(ex +e2) + 1e
=3l|zle 2 563
Here, the last inequality follows by calculating the norms of e; + es, e; — 2e4, €5 — 2e; and e by
using @ Note that now, the case of z = Aje; + Aaea + Azes follows from case (a) using that

(e3,e1) = (e3,e2) = 0.
Proof of case (c). Let z = v + Areg + Agea. If Ay, Ay > 0 we have

(y,e3) = g(y»vl +v1 —e1 +v1 —e)
2

2 2

1
< —les|?.
_2|€3|

4 ’;(62 9e)

1
+ ‘3(61 - 262)

1 1 1 1
(y,2) = (y,v1 + Ae1 + Aaeg,) < §|Ul\2 + §|>\1€1|2 *|>\2€2| 5\”1|2 + *|)\1€1 + Aoea|?

1
= §|v1 + Arer + Aaea|® — (v1, Adrer + Aoea) < |Ul + Arer + Aoea|?.

The second inequality uses that (e, e3) > 0 and the last 1nequahty uses that (v, e1), (v1,ea) > 0.
Now assume that Ay > 0, A2 < 0. Then, since ((v; — e3),e1) = 0 and (v; — ea,e2) < 0, again
exploiting that vy — ea € Mycp it holds that

(Y, 2) = (y, (v1 — e2) + Arer + (A2 + 1)eg) < |U1 —es?+ = \)\161 + (A2 + D)eof?

(y,
1
5‘1}1 + A\e1 + )\262| <Ul — e2, e + (/\2 + 1)62> |’l)1 + Ae1 + )\2€2|2 ‘Z|2
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The case where A\; < 0, Ay > 0 (resp. A1, Aa < 0) is being treated in a similar fashion by replacing
v1 — eg with v; — ey (resp. v1 —e; — e3).

Proof of case (d). Here, we only treat the case of z = v1 + A\e1 + Asea + Azes, Az > 0. Since
(v1 + A1e1 + Aaea, e3) > 0, we have

1 1
(y,2) = (y,v1 + Ae1 + Aaea + Azez) < §|v1 + Aer + Agea)® + §|)\3€3|2

1 1 1
= §|U1 + A1e1 + Aoes + )\363|2 — <’U1 + \e1 + )\262,€3> < §|’U1 + Ae1 + Aqgeq + )\3€3|2 = §|Z|2 .

The case of A3 < 0 follows by replacing v; with v; — ez in the last two cases (c¢) and (d). This
concludes Step 1.2 and, together with Step 1.1, shows .

Step 2.(The faces of the Voronoi cell) In order to calculate the faces of Vigcp we use (59) and
exploit its symmetries. We note that if R € SO(3) is any rotation of integer multiples of 27/3
around the z3-axis we have that

RNucp = {Rb: b € Nucp} = Nuce - (64)
Moreover, if T3: R® — R3? is the reflection with respect to the (x1,z2)-plane, i.e.
(Tye); = {ff’xs b (65)
we have that
T3Nucp = {T3b: b € Nucp} = Nucp - (66)

Exploiting and , it suffices to find the corners of Sy, in for
(a) bo =e1, (b) bo = —e€1, (C) bo =71.

Corners in case (a). We claim that in the case of by = e; that the corners of Sy, are given by
the points

11 1 11 1

“a= (2’6\/?:’ 12\/6> 2= (2’6\/3’_12\/6) ’
1 1 1 1 1 1

C3 — (2,—6\/376\/6) ,Cq4 = (2,—6\/37—6\/6) .

In particular, the face Sp, is a trapezoid with two bases of length %\/6, % 6 and height %\/?:
Hence, H?(Sh,) = i\/i It remains to prove (67)). Let y € Sy, be a corner. Due to (66), we can
assume that y3 > 0, since the other corners are just found by applying the mapping T3 (see )
to the corners with positive coordinates. By the definition of Sy, we have that (y,e1) > (y, e1—ea)
which is equivalent to (y,e2) > 0. Now, if (y,es) > 0, then y is given by (y,e1) = (y,eq) =
(y,v1) = % This linear system has a unique solution given by ¢; = (%, %\/g, ﬁ\/ﬁ) On the
other hand, if (y,ea) = 0, then y is given by (y,e2) = 0,(y,e1) = (y,v1) = % The unique
solution of this linear system is given by c3 = (%, ,%\/i % 6). This shows and concludes
case (a).

Corners in case (b). We claim that in the case of by = —e; that the corners of Sy, are given by
the points

(67)

11 1 11 1
1 = <_2a6\/§712\/6> ,C2 = <_2a6\/§7_12\/6> )

1 1 1 1 1 1
C3 = <_2a_6\/§76\/6) , C4 = (_27_6\/3,_6\/6> .

(68)
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In particular, the face Sp, is a trapezoid with two bases of length % 6, %\/6 and height %\/5
Hence, H2(Sy,) = i\/i It remains to prove . Let y € Sp, be a corner. Due to ,
as in case (a), we can assume that y3 > 0. By the definition of Sy, we have that (y,—e;) >
(y,e2 — e1) which is equivalent to (y,ez) < 0. Now, if (y,es) = 0, then y is given by (y,e2) =
0,{(y,v1 —e1) = (y,—ey) = % We see that the unique solution of this linear system is given
by ¢; = (—%,%\/?;,1—12\/6). On the other hand, if (y,e2) < 0, then y is given by (y,v1) =
0, (y, —e1) = (y, —e2) = 3. The unique solution is now given by c3 = (—1,—%v/3,1v/6). This
shows and concludes case (b).

Corners in case (c). We claim that in the case of by = vy that the corners of Sy, are given by

the points
11 1 1
C1 (2’6f7 12\/7> y C2 < ) 54\/7) )
1 1 1 1 1
—(0,2v3, =6 = (=, -=Vv3,2v6) .

Cc3 ( 53f76f) , C4 (27 6f76f>
In particular, the face S, is a thombus. Hence, H2(S;,) = %x/é It remains to prove . Let
y € Sp, be a corner. By the definition of Sy, we have that (y,v1) > (y,v1 —ex1), (y,v1 —e2) which
is equivalent to (y,e1), (y,e2) > 0. Now if, (y,es) > 0 then the corner solves the linear system
(y,e1) = (y,e2) = (y,v1) = &. Its unique solution is ¢; = (3, £v/3, 75V6). On the other hand
if (y,e2) = 0, then the corners are given by those y such that (y,e2) =0, (y,e1) = (y,v1) = 3

(69)

or (y,e1) = (y,e2) = 0,(y,v1) = 3. These points have coordinates co = (1,—3/3,11/6)
and ¢z = (0,0,1v6). Finally, if (y,e;) = 0 and (y,ez) > 0, then y is obtained by solving
(y,e1) = 0,{y,ea) = (y,v1) = % Hence it has coordinates ¢4 = (0, @, %). This proves
and concludes Step 2.

Step 3.(Neighbors share faces) We want to show that for each by € Mgcp we have that the face
Sy of Veyeop (0) is shared with the Voronoi cell Vi, o, (bo). By Step 1 we have that Ve, (0) =
Virep and Vi yep (bo) = bg — Viicp. Hence, they share the side (y, by) = % = (by — y, bo).

Step 4.(Volume of the Voronoi cell) In order to calculate the volume of the Voronoi cell we note
that Lycp is periodic with respect to the vectors ey, es, e3. Since the Voronoi cells of all the
points occupy the same volume, it suffices to calculate the fraction of points per unit volume.
The inverse of this number is the volume per point. Since the Voronoi cells are space filling the
volume per point is equal to the volume of each Voronoi cell. Due to we have that

|Thce| = V2.

Furthermore, we have that
U (z + Tuce) = R, and Luce N Tuce = {0,v1} .
z€spang{ey,ez,e3}

Hence, the volume per point is %|THCP| = %\@ and it agrees with the volume of the Voronoi
cell. This concludes Step 4 and thus the proof of the lemma. O

We are now in the position to prove Theorem [2.3]

Proof of Theorem[2.3 All the statements are consequences of Proposition Lemma [5.11
Theorem and Lemma once we show that Lrcc and Lycp are periodic admissible sets
(according to Definition and Definition and we observe that, due to Lemma and
Lemma Nrece(z) = NN (z) (in the sense of Definition as well as Ngcp(x) = NN (z)
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in the respective cases. We first show that both lattices are admissible sets. Let us first observe
that

(TFCC + 33) N Lrco # ¢ and (THCP + 1‘) N Lucp # 0 for all z € R3.
Therefore, (L1) is satisfied for both Lrcce and Lycp with

3 3
R := max{diam(Trcc), diam(Trcc)} < max {Z lex|, Z |bk|} < 400,
k=1 k=1
where we recalled Definition (15| and Definition On the other hand, (L2) is satisfied with
r =1, see the discussion at the definition of the FCC and HCP lattice in Section |2} Concerning
periodicity: We observe that for all z = (21, 22, 23) € Z3 we have

3 3
Lrco = Lrce + Y, zkbi, and Luce = Luce + »_ 2kek
k=1 k=1
and thus both Lrpcc and Lycp are periodic according to Definition The statement follows
by Theorem with ¢ () = 1. O

5. GENERAL PERIODIC LATTICES

This section deals with integral representation and concentrated-compactness properties of
energies defined on general periodic lattices.

Definition 5.1. Let ¥ C R™ be a countable set of points in R™. We call ¥ an admissible set of
points if the following two conditions hold:

(L1) There exists R > 0 such that inf,egn #(X N Br(z)) > 1;
(L2) There exists r > 0 such that dist(x, X\ {z}) > r for all z € X.

Definition 5.2. We define the Voronoi cell of z € ¥ as
V():={zeR": |Jz—z2|<|y—=z|forally € X}. (70)
The set of nearest neighbors of ¥ is defined by
NN(E) = {(z,y) €L x 8: H 1 (V(z) N V(y)) > 0},

We set NN (z) = {y € &: (z,y) € NN(2)}. Given ¢ > 0 we denote by e¥ := {ez: z € X}
and for z € ¥ we set V.(z) = eV(e~'x) the Voronoi cell of z € X, and NN (z) = {y €
eX: e (x,y) € NN(X)} the set of nearest neighbors of x in eX.

We now define for u: ¥ — {0,1} the two energy functionals given by

Fo(u,A) = ) " enn (@ — y)|ulex) — uley)| (71)
(z,y) ENN (D)
ex€A

and
Fo(u,A):= > " ennla — y)luler) — uley)] (72)

(@,y) ENN(Z)
ex,ey€eA

where ¢, : R® — [0, +00] satisfies
C™' <epn(z) <C, forallz e R™. (73)

When A = R” we omit the dependence on it and write F,(u) = F.(u, R") and F.(u) = F.(u, R™).
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Remark 5.3. (Difference between F. and FE) We want to point out the difference between F;
and F.: In the formula defining F. the sum is taken over all (z,y) € NN(Z) such that ez € A.
Instead in the case of F. the sum takes only those (z,y) € NN(X) such that both ez € A and
ey € A. The functional F_(u,-) is an additive set function on disjoint sets, i.e., given A, B C R"
such that AN B = 0, we have

F.(u,AUB) = F.(u,A) + F.(u, B),

whereas F(u,-) is only super-additive on disjoint sets. Our I'-convergence result will be stated
for the functional F.. The reason for us to introduce F. is that our proof will use the integral
representation result proven in [3], see Theorem However, we will show later on that the
I'-convergence of F. is equivalent to that of EL..

Given X C &Y we write with a slight abuse of notation
F.(X,A) = F.(xx,4).
Note that, due to , we have
CTHY e THWN(2) \ X) S F(X,A) < C Y e " #NVN(2)\ X).

reX zeX

Hypothesis corresponds to [3, Hypothesis 1] in the case that, according to the notation in
I3, Equation (5.23)], ¢&,,(z,y) = con(z —y) and ¢,.(x,y) = 0. It is worth observing that in [3] a
more general class of functionals was investigated, namely those for which also certain long-range
interactions between points in ¥ contribute to the energy, i.e., ¢;-(z,y) # 0. For the sake of
exposition and simplicity, here we consider the case ¢j,- = 0, that is the energy accounts only for
the nearest neighbor interactions. However, with some more involved multi-scale constructions,
all the statements below extend to the more general case where also long-range interactions are
considered.

Definition 5.4. Given X C £ we define the rescaled empirical measures associated to X as
e =€ Z Og . (74)
zeX
Furthermore, recalling , we define
Va(X) = | Vela). (75)
zeX

Henceforth, we drop the dependence on X and simply write V.. Given A C R™ open with 0A €
Lip, with slight abuse of notation we define F,: M (A) — [0, +o0] (similarly F,: M, (A) —
[0, +00]) by

F.(X,A) pis given by for some X C eL;
+00 otherwise.

Fo(p,A) = {

Additionally, we define F.: L (A) — [0, 4+00] (similarly F.. L} (A) = [0,400]) by

loc loc
F.(X,A) u=yxy, and V; is given by for some X C eL;

F, (uv A) = .
400 otherwise.
It is necessary for us to introduce two different domains of definition for the extended func-
tional F;, since we want to make use of [3 Theorem 5.5]. As it will turn out the two types of
extension are equivalent, cf. Lemma and Corollary
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Let (Q,P, F) be a probability space. Hereafter we recall some definitions from [3] (Defini-
tion 5.1 and Definition 5.4):
Definition 5.5. We say that a family (7,).ezn, 7.: Q — Q, is an additive group action on § if
Taydzg = Tzy OTy, forall 29,20 € Z™.
Such an additive group action is called measure preserving if
P(r.,B) =P(B) forall Be F,z€Z".
If in addition, for all B € F we have
(r.(B)=B forall ze€Z") = P(B) €{0,1},
then (7,),ezn is called ergodic.

Definition 5.6. A random variable £: @ — (R™)%", w — L(w) = {L(w)(i)}ieznis called a
stochastic lattice. We say that £ is admissible if £(w) is admissible in the sense of Definition [5.1]
and the constants r, R can be chosen independent of w P-almost surely. The stochastic lattice
L is said to be stationary if there exists a measure preserving group action (7),ez» on € such
that, for P-almost every w € Q, L(T,w) = L(w) + 2. If in addition (7,),ezn is ergodic, then L is
called ergodic, too.

We now state a simplified version of [3] Theorem 5.5] which is enough for our purposes.

Theorem 5.7. (Stochastic homogenization of spin systems) Let L be a stationary and ergodic

stochastic lattice and let F. be defined by . Let A C R™ be open and bounded with OA € Lip.
For P-almost every w the functionals F.(w) T'-converge with respect to the strong L'(A)-topology
to the functional Fhom: L'(A) — [0, +o0] defined by

fj(u)ﬂA Phom (Vu) dH" 1 if u € BV(4;{0,1}),
+00 otherwise.

From(u, A) := {
The function hom: R™ — [0,400] is given by
. 1 . y
©hom (V) = Tl_1}1g_1OQ F/ﬂlnf {F(u7 Q7):u: L(w) — {0,1},
u(i) = uy (i) fori€ Lw)\ Q7_y, } dP(w),

where lp — +o0o and lp /T — 0 as T — +oc0.

Definition 5.8. Let £ C R™ be an admissible set of points. We say that £ is periodic if there
exists a basis {eg,...,e,} C R™ such that

LAe,=Lforallk=1,...,n.
We denote by

Q:= {Zx\kek: 0< A\ < 1}
k=1

the periodicity cell of £. We set

_#(LnQ)
PR



EMERGENCE OF WULFF-CRYSTALS FROM ATOMISTIC SYSTEMS ON THE FCC AND HCP LATTICES9

In the following we assume, up to a change of coordinates that {ej,...,e,} is the standard
orthonormal basis of R™.

We collect the following general properties of periodic admissible set of points.

Lemma 5.9. (Properties of periodic admissible sets) Let L be a periodic admissible set of points.
The following holds true:

(i) Brj2(w) C V(x) C Br(x) for allx € L;
(ii) NN (z) C Bag(x) for allxz € L;

(i) There exists C = C(n,r,R) € (0,+00) such that sup #NN(z) < C. In particular,
zeL
OV(x) is made out of finitely many (n — 1)-dimensional polyhedral faces;

(iv) There exists C = Cp > 0 such that for all X C eL and A C R™ there holds
F.(X,A) < CPer(V.,(A)re) and Per(V., A) < CF.(X,(A)Re) -

Proof. Apart from (iv) all of these facts are classical. We collect their proof here for complete-
ness.

proof of (i), (ii): Let x € L. The inclusion B, 3(z) C V(x) follows from (L2) since for all
y € Byjo(x) and z € L\ {z}
2=yl = -zl =z —ylZr—r/2=r/2>|z—y|.
As for the inclusion V(z) C Bg(z) assume that there exists y € V(z) \ Br(z). We have for all
z€ L\ {zx}
ly—z[ >y -zl = R.

This implies that Bgr(y) N £L = ( contradicting (L1). Finally NN (z) C Bsgr(z) since for
y € NN (z) we have that V(z) N V(y) # 0 which implies Br(z) N Bgr(y) # 0.

proof of (ii1): Due to (i) and (ii) we have that B, /2(y) N B,/2(2) = 0 y, 2 € NN (z), y # z and
B, /2(y) C Bapr(x) for all y € NN (z). Therefore

wn (5) #NN@ = U 1Br2)| < |Bonsr(@)] < wal2R+1)"
yENN (z)

and thus the claim follows with C' = (2 +4R/r)™.
proof of (iv): The desired inequalities follow from the following observation: Given = € X, we
have that

H L (Vo(2) NOVL) >0 <= NN (2)\ X #0. (77)
Additionally, we note that, for z € X such that NN (z) \ X # 0, there exists C' > 0 such that
Clem b <H" T (V.(x)noVL) < O™t (78)

Now, summing over all x € X N A and noting that each Voronoi cell intersects only a finite
number of other Voronoi cells, using (77),(78),(i), and (iii), we obtain

FAX,A)= > e HNN(2)\X)<C DY H (Ve(z) NV
zeXNA rzeXNA

< CH" (Ve N (A)re) = CPer(Vz, (A)re) -
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This yields the first inequality in (iv). On the other hand, owing to (i) we have OV. N A C
UxeXﬂ(A)RE (V-(z) N dV%), and thus, by and ,

Per(Vo, A) =H""'(0V.nA) < Y H"'(Vo(z) NOVE)
2EXN(A)Re
<Ce" 'Y #HNN(2)\ X) = CF(X, (A)R:).

IEXQ(A)RE

This shows the second inequality in (iv) and concludes the proof. O

Proposition 5.10. (Compactness of the piecewise-constant interpolants) Let £ be an admissible
periodic set of points and F. defined in with L in place of ¥.. Let A C R™ be open and let
{X.}c CeL be such that

sup Fr(X.,A) < +o00.

e>0
Then there exists a set of finite perimeter V. C A and a subsequence (not relabeled) such that
Xv. — Xv with respect to the strong Li (A)-topology.

loc

Proof. Let X, be as above and let A’ CC A such that (A")g. C A, and OA’ € Lip. We observe,
due to the second inequality of Lemma iv),

Per(V., A") < CF.(X.,(A"ge) < CF.(X.,A) < C.
Therefore
Ixv.llzrcany + [Dxv. [(A") < C(|A"| + Per(Ve, A')) < C.

We use [4, Theorem 3.39] to deduce that there exists a subsequence (depending on A’) and a
set of finite perimeter V' such that yy. — xv in L!'(A’). By a diagonal argument on a sequence
Al T A as k — 400, we obtain the claim. O

Lemma 5.11. (Equivalence of convergences) Let L be an admissible periodic set of points and
F. defined in with L in place of X.. Let A C R™ be open and let V. C A be a set of finite
perimeter and let {X:}. C eL for each € > 0 be such that

sup F. (X, A) < +0. (79)
e>0

Then, setting pe and Ve as in and , the following are equivalent:

(i) pe = p with respect to the weak star topology of measures and p = pL™ V.
(ii) xv. — xv with respect to the strong Li .(A)-topology.

Proof. We proceed in two steps. First, we construct a sequence of auxiliary measure v. and show
that its weak*-convergence is equivalent to the weak*-convergence of the sequence of measures
te. Then, for this sequence of measures we show that its weak*-convergence is equivalent to (ii).
Step 1.(Construction of the auxiliary measure) Let { X }. be as in the assumptions of the lemma
and let v € C.(A) such that suppv CC A. We assume that € > 0 is small enough such that for
all k € eZ™ there holds

Qs+r)e(k) Nsuppv # 0 = Q1p)(k) CC A. (80)

Fix Ry > 0 such that suppv C Bpg,. Since v is uniformly continuous, it admits a modulus of
continuity w = w,: [0,4+00) — [0, +00), i.e., an increasing function such that w(0) = 0 and

lv(x) —v(y)| <w(Jxz —y|) for all z,y € R™. (81)
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We set
I = {k € eZ%: Qz1r)c(k) N X = Qyrye (k) NeLll,
Igmpty = {k - €Zd. Q(3+R)€(k) n X - @}7

and I := {k € eZ": Q(31r)-(k) Nsuppv # 0} \ (Z U ZE™PY). We now set

ver= Y e"#(LNQ)d.

keZfull
Our goal is to show that
fle — p in the sense of measures <= v, — p in the sense of measures. (82)
First of all we claim that
#1702 < Ol (83)

In fact, due to its definition and (80), we have that for all k € ZP* there exists z € X N
Q3+r)=(k) C A such that #(NN(z) \ X) # 0. Therefore, since for k € eZ™ fixed Q34 g (k) N
Q3+ r)e(j) # 0 for only finitely many j independent of €, we have

el < N > e"TIH(NN(2) \ X) < OF.(X., A).

keIS"d $€Q(3+R)E(k)ﬂx

Using yields (83). Let now k € Zf"". Then

v(z)dre(z) = v(k)e"#(L = "u(k
/w)” (1) = o) #LNQ = 3 emulk)

z€Q. (k)Nel
= Z e"v(x) + e™(v(k) —v(z))
z€Q.(k)NX z€Q. (k)Nel
_ / v(@) dpe () + e (v(k) — () .
Qe (k) z€Q. (k)Nel

Thus,

< Y k) - (@) < wlevi)|Q(R)]

z€Q:(k)Nel

/ o(@) d(v. — p2) (@)
Qc(k)

and, recalling that suppv C Bg, and , we have for € > 0 small enough

[ @ @)
ket Qe (k)

Noting that both |u.|(Q:(k)) and |v.|(Qc(k)) are bounded above by e"#(L N Q) < Ce™ for all
k € €Z™, using , we observe

>

keZbad

Therefore, noting that p.|q_ k)= velo. k) for k € ZemPY | using and , we obtain

[ o) = n)(@)

< w(ev/n)|Bary| - (84)

/Q o v(z) d(ve — pe) ()| < 2|0l #IPE"#(L N Q) < Celfv] o - (85)

< w(ev/n)|Bag| + Cél[v|o -




32 M. CICALESE, L. KREUTZ, AND G.P. LEONARDI

This shows .

Step 2.(Equivalence of convergence) We now prove that

xv. = xv inLL.(A) <= v. > pu in the sense of measures.

First of all, recalling p defined in , we note

L
[ vae= 3 erenanm =0 S j.mp
" keZful |Q| ket
: (86)
= y)dy + dy .
pkezzg:uu/Qs(k) Y pkezzgm/s(k) v(y)) dy

Now, due to , we have for € > 0 small enough

3 /Q (k)w(k)—v(y))dy <

keztul

Note that, by Lemma i), we have

/ Z/ y)dy = p 2/ (33)

kel'full a(k) keIfull E(k)nv

) /Q ) )] < Cule Bar (8

kezful

and also V. N Q. (k) = 0 for k € Z¢™P%. Note that by (83 we have

/Q o [v(v)| dy < e"#I2|v]|o0 < Cefjv]loo - (89)
keZbad ¥ We

Due to 7, we obtain that
* . * .
pxv. — p in the sense of measures <= v, — p in the sense of measures.

Now clearly (ii) implies (i), since the L] (A) convergence of the characteristic functions implies
their weak* convergence as measures. As for the implication (i) to (ii) we proceed as follows.
Let V C A be a set of finite perimeter and assume that p. — g and p = pL".V. By Step 1
this is equivalent to v, — u, hence to PXV. X pxv in the sense of measures (which is to say
that xv. — xv) Take now an arbitrary subsequence (not relabeled) of {X.}.. We show that
there exists a further subsequence (again not relabeled) such that xy. — xy with respect to
the strong L] _(A)-topology. Since L} (A)-topology satisfies the Urysohn property this implies
the claim. By the compactness statement in Proposition [5.10| we have that there exists a set of
finite perimeter V' C R™ and a further subsequence { X, }x C {X.}. such that xy. — xy with
respect to the strong L{ (A)-topology. Since this implies their weak* convergence as measures
and we already know that the whole sequence converges to xy we deduce V = V'’ which implies
the claim and concludes the proof of the lemma. O

Corollary 5.12. (Equivalence of T'-convergence) Let L be an admissible periodic set of points
and let F. be defined in with £ in place of ¥. Let A C R™ be a bounded open set such that
0A € Lip. Then the following statements are equivalent:

(i) F.: M4 (A) = [0,+00] I'-converges with respect to the weak* convergence of measures
to the functional Fhom: My (A) — [0, 4+00] defined as

Fhom (i, A) 1= {fa*vm Phom (V) AH" 1 if = pL"V

+00 otherwise.
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(i) F.: L{ . (A) — [0, 400] T'-converges with respect to strong Li .(A)-topology to the func-

loc loc

tional Fhom: L, .(A) — [0, +00] defined as

Jo-vaa Phom(V)AH 1 if u = xv and xv € BV(A);
400 otherwise.

Fhom(u, A) = {

Proof. The statement follows directly from Lemma [5.11 O

Remark 5.13. The analogous statements are true for F. as well.

Theorem 5.14. (T'-convergence for periodic admissible lattices) Let L be an admissible periodic
set of points and let F. be defined by with £ in place of ¥. Let A C R™ be bounded open
set with OA € Lip or A = R". The functionals F. T'-converge with respect to weak* convergence
of measures to the functional Fyhop : M1 (A) — [0,4+00] defined by

Joevn Prom(W) dH ™ if p = pLm V;
+00 otherwise.

Fhom(uvA) = {
The function @pom: R™ — [0, 4+00] is given by
: L. v . . . v
(phorn(’/) = TETOO ﬁ inf {F(Xa QT): X C ‘Ca XX(Z) = ’LLV(Z) fOT i€ L \ QT—lT} ’
where lp — +o0o and lp /T — 0 as T — +oc0.

Proof. Step 1.(Probabilistic setup) We exploit the integral representation result (Theorem [5.7)
to obtain the specific form of the I'-limit. We fix (Q, F,P) = ({0}, {{0},0}, dp) to be a probability
space and a trivial additive and ergodic group action (see Definition 5.1 in [3]) 7,: {0} — {0},z €
73 given by 7.(0) = 0. With respect to this group action £(0) = £ is an admissible stationary
and ergodic stochastic lattice according to Definition In fact, since L is periodic according
to Definition for all z = (21, 29, 23) € Z* we have

LOV= £, Ln(0) = £0) = £0)+ Y er
k=1

Therefore, all conditions of Theorem [5.7|are satisfied. This shows that for F.: LL _(A) — [0, +o0]
we have

- gg% FA‘E(XV7 A) = Elom(XV7 A)
for all A C R™,0A € Lip, xv € BV(A4,{0,1}). Note that, by Corollary this is equivalent
to saying that for F.: M4 (A) — [0, +o0] we have
D-lim F. (1, A) = Fhom(p, A) .
e—0
This concludes Step 1. A
Step 2.(T-convergence of F.) We use the I'-convergence of F. obtained in Step 1 in order to

prove the I'-convergence of F.. Let us first prove the result for A C R™ open and bounded with
0A € Lip. We note that

F.(X,A) < F(X, A)
and therefore for all 1 — p, we have

lim inf F.(jue, A) > liminf F.(jue, A) > Fhom (1, A) .
e—0 e—0
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Therefore T-liminf, o Fr (g, A) > Fhom(w, A) . Next, we show the Limsup-inequality. Let V' C
A be such that

Fhom(pxv, 4) < 400 (90)

since otherwise there is nothing to prove. Using Lemmal5.9(iv), we obtain that Per(V, A) < 400,
i.e.,, V is a set of finite perimeter. In particular, by [25] Theorem 1.3] (noting that dA € Lip
implies that A is an extension domain), there exists an extension V, C R™ such that

(i) VeN A=V N A up to a set of zero L™-measure;
(ii) Per(Ve,R™) < CPer(V, A);
(iii) HIL(0*V.NOA) = 0.
Now (ii) together with implies, again by Lemma iv), that

Fhom(pxv,,R") = / Phom (V) dH" ! < +00.
O* Ve

Fix § > 0 and let 8 — pxy, weakly* in M ((A)s) be such that
fian sup FL (12, (A)5) < From(pxve, (A)s) -
e—

Note that, due to Lemma [5.9ii), for every e < §/(2R) we have that
F.(X,A) < FL(X,(A)s).
Therefore, recalling Definition we obtain,
I-limsup F.(pxv, A) < limsup F.(u2, A) < limsup F2 (12, (4)5) < From(pxve, (A)5) -
e—0 e—0 e—0

Sending § — 0 we obtain

I'-lim sup FE(PXVa A) < Fhom(pXVeaA) = Fhom(pXVeaA) = Fhom(ﬂXVv A) )

e—0

where the last equality follows by properties (i) and (iii) of V,. This shows the desired integral
representation for all A C R™ such that 0A € Lip.

Step 3.(Integral representation on unbounded sets) It remains to prove the integral representa-
tion of the I'-limit for R™. The Liminf-inequality follows by monotonicity since for all R > 0
and X C L we have

F.(X,Bgr) < F.(X)
and therefore, given . — pyy weakly™ in M, (R™), we have
hgn_éélf Fo(pe) > hgn_}élf F.(pe, BR) > Fhom(pXv, BRr) .

The claim follows by taking the supremum over R > 0. We now turn our attention to the
Limsup inequality. We can assume without loss of generality that V' C R™ is a set of finite
perimeter and

CPer(V,R") < / o) dH" ! = Fuom(pxv, R") < +00 (91)
o*V

since otherwise there is nothing to prove. By the isoperimetric inequality there exists C' > 0

such that

n

}5 < CPer(V,R™).

min{|V[,|R"\ V
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Without loss of generality we assume that |V| < +o00. By the Fleming-Rishel formula we can
find {Ry}x such that R — 400 and

(i) H" Y (VNOBgr,)< - and (i) |VOB%k|§%. (92)

x| =

We define Vi, = V N Bg,. Then, thanks to (02))(ii), xv, — xv in L*(R") and thus also
pXv, — pxv weakly* in M (R™). Furthermore, (92)(i) implies that

lim Fhom(pXVk) = Fhom(pXV) :
k—4o00

It therefore suffices to construct the recovery sequence for pxv,. Let Sy = R + 2R and let
pe = pyv, in L'(Bg) such that

lim Sélp Fg (,usa BSk) < Fhom (pXV7 BSk) . (93)
E—
We modify p. such that
FE(,UE) SFE(HE7BSk)+O(1)? (94)

and this, by , proves the statement. By Lemma [5.11} there exists 7. — 0 such that |V, N
Ag,.s| < n. with V. defined in (75). Now, let us take k € {[£ + R],...,[£ — 3R[} =: K..
Noting that #K. ~ e~!, Lemma i) implies that there exists k. € K. such that

r\" _ T\" n
W, <5> e H(Xe N Ajc (ho43R)e) < Wn (5) 3 Z F#(Xe N Ape (k+3R)e)
ke,

< CIVeNAp,,s| < Cne.
Here, we have used that for k € K. fixed
Ape (k+3R)e N Aje (j+3R)e # 0

for finitely many indices j independent of ¢ (clearly for j > k+3R or j < k— 3R the intersection
is empty). We can therefore define X, = £ N By, and employ Lemma ii) to obtain

F.(X.) = F.(X.,By.) < Fo(X., By.) + cmax H#NN (2)e" (X N Apc (b +3R))
x
< Fe(Xav BS) +Ce,
which proves and with it the claim. O
In the following we show that for minimizing sequences we can improve Proposition to

obtain strong L'(R™) compactness. This implies that the rescaled empirical measures of such
sequences converge to a suitably normalized Wulff shape for the limiting perimeter energy.

Lemma 5.15. (Nucleation Lemma) For every (po,vo) € (0,+00)? there exists m = m(pg,vo) >
0 such that if V.C R™, Per(V) < po, |V| > vo, then there exists x € R™ such that

[V N Bi(z)] >m.

Proof. Assume that [V N Bi(z)] < § < w,/2 for all = € R™. Then, noting that Yz, (y) =
X B, (y)(x) for all z,y € R™, we obtain

wn|V| Z/ / Xv (Z)XB, (x)(y) dy dz =/ / XvnB (y) () dy dz. (95)
z€R™ JyeRn z€R™ JyeRn
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Due to the assumption we have |V N B;(x)| < § and therefore due to the relative isoperimetric
inequality and Fubini’s Theorem, we obtain

/ / XV”Bﬂw(@dydﬁf:/ |V0B1(y)|dy§51/"/ VA By () dy
z€R” JyeR? yER™ yERn

61/n
<
=Ch

/ HL@°V 1 By(y)) dy,
yeRm
(96)

where C'p > 0 denotes the relative isoperimetric constant of B;. Now, again due to Fubini’s
Theorem, we obtain

/ HHO*'V N Bi(y))dy = / / XBy (y) (@) AR ooy (z) dy
yER™ yeR? JzeRrn

— [ ] xme@ad @) w1 @)
zER" JycRn
This together with (95 and leads to
1/n

o
<
Vi< %

Then, we conclude that § > (C|V|/Per(V))" and thus for any m < min{w, /2, (Cpv/po)"} the
thesis holds. 0

Lemma 5.16. (Concentration Lemma) Let {X.}. and {nc}. C N be such that for all € > 0
X, Cel, #X. =ne, ne™ — pv as € — 0, and

F(X)= min F.(X).

Per(V).

Then, there exists {T.}. C R™ such that 7. € espang{e1,...,en}, and p(- —7.) =* pxw, where
W is the Wulff shape of nom defined in Theorem and such that |[W| = wv.

Proof. Let {X.}: be as in the assumptions of the Lemma.
Step 1.(Energy bound) We first show that

sup Fr (X.) < +00. (97)

e>0

To this aim, for each € > 0 we construct a competitor Yz such that F.(Y:) < C for some constant
C > 0 independent of €. To this end let . > 0 be the maximal s > 0 such that

#(BsNel) < ng.

Due to Lemma, i), we have that r. < rg < 400 and
r

Wn (5) 8”# (A7-5,7'E+25R N E‘C) < |AT57€T/2,7‘5+35R| < 057‘?71 < Ce. (98)

By the maximality in the choice of r. we have #(B,_1.» NeL) > n. and thus
n. —Ce'™" < #(B,.NeLl) <n..
We set Yz = (B, NeL)UYY, where Y C e£\ B,_ such that #Y. = n.. Due to Lemma 5.9 (i),
(iii), the minimality of X, and , we have
Fe(Xe) < Fe(Ye)
< Y ETHNN@)\ X) + CeTIHYL < C# (Arrs2er ML) <O

xeﬁgﬁBrE
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This shows and concludes Step 1.
Step 2.(Nucleation) We show that if holds, then there exist v1 > 0 and {7}}. C R"™ such

that 71 € espang{es,...,e,} and, up to subsequences,

pe(- — 1) = pxv, in the sense of measures, (99)

where |V1] := vy € (m,v], with m = m(po,vo) > 0 given by Lemma In fact, due to
and Lemma iv) there exists pg > 0 such that Per(V.) < pg for all ¢ > 0. Additionally, due
to Lemma [5.9(() and the fact that n.e™ — v > 0, we have that |V;| > v; > 0 for all £ > 0 small
enough. Thus, by Lemma there exists m = m(pg,v1) and {71} C R¢ such that

V.n By(rH)| > m. (100)

Actually, by lowering m a bit we can assume without loss of generality that 7} € espang{e1,...,e,}.

By (100)), 7 Proposition and Lemma we get up to passing to a subsequence.
Step 3.(Splitting of the energy) We show that for any 0 < § < |V4] there exists Ss = S5(V1) > 0

big enough and S. € (Ss, S5 + 1) such that, for € > 0 small enough, there holds
#(X:NBs,) > w, ' R™™(|V1] — 8)e™™ and  #(X. N As_ 5. 43er) < de' ™. (101)
First of all, we find Ss such that for € > 0 small enough
Vi N Bss—Rre| > Vi N Bs,—1| > [Vi] = /2 and [Vi N Ag; 5,41] < [Vi\ Bs;—re| <0/2.

Note that, due to Step 1 and Step 2, xv.(.—r1) = X, in L'(Bg,+1). Due to Lemma i), we
have for € > 0 small enough

wne"R"#(X: N Bg;) > |V N Bg;—ge| > |V1| — d; (102)
r\ "
wns" (5) #(Xe N Asiressyri—re) < Ve N syl <0 (103)

Next, we find S. by averaging: We choose k. € {(g +R],..., L% —4R]} =: K. (note that
K. # () and actually #K. ~ g for e > 0 small enough) such that for some C' > 1

" (X N Ape (kot3Rr)e) < C Z e"#(Xe N Age (k+3R)e)
o (104)

S Ce"#(XeNAs_Re,s+1-re) < C6.
In the latter estimate, we have used (103)) and that, for k € K. fixed, we have

Ape (h+3r)e N Aje (j3r)e # 0

for at most a finite number of indices j independent of ¢ (clearly for j > k+3R or j < k — 3R
the intersection is empty). Up to replacing § by C~14, and give and this
concludes Step 3.

In the next steps we use the following notation. For any A > 0 let Xg\ C (Wx)1 be such that,
setting V2 = V.(X2), we have Xv> = Xw, in L'(R"), and

hm F.(X}) = hmsupF (X)) = hmsupF (X2, (Wa)1) = Fhom(pxw, ) - (105)

E—r
Step 4.(Identification of V;) We claim that V3 = W,, up to null sets, where W,, is the Wulff
Shape of Fyom such that |W,,| = v1. Assume by contradiction that this were not the case. By
the anisotropic isoperimetric inequality we have that

0<5 9 (Fhom(pXVI) - Fhom(pXWvl)) =:n.
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Up to translating, we may assume that 7} = 0. Then, there exists Sy > 0 big enough such that
for all S > Sy we have W,,, CC Bg and
Fhom(pxvis Bs) 2 From(pXvi) — 1
By Theorem we have that
lim inf Fe (Xe, Bs) = Fhom (pXw,,» Bs) 2 From(PXvi, Bs) = Fhom(pXw,, , Bs)

(106)
Z Fhom(pXV1) - n—- Fhom(pXWvl) 2 n > 0.
We now construct a competitor X, for € > 0 small enough such that #X. = n. and
F.(X.) < F.(X.). (107)

This contradicts the assumptions of the Lemma on the minimality of X, and therefore V4 = W,
up to null sets. Let us take § := 6, = (2C maxze #NN (z)) "'y with C as in and let Sy,
Se € (S5,S5 + 1) be as in Step 3 with S5 > diam W,,, + 1. We define

X.:= X" U(X.\Bs.)UZ, (108)

where #X. = #X.. In what follows we assume for simplicity that Z. = (). Otherwise, one
choose Z. such that its contributions to both energy and volume are negligible as ¢ — 0.First
of all note

FE(XE) = Fa(XEa BSE) + FE(XEa ASE+3ER) + FE(X&‘? B§E+3£R) . (109)

Then, by noting first that X, = X, on (BS. 4 3:r)eR, We have

Fo(Xe, BS, 1 3.r) = Fe(st BS, y3:r) - (110)
Furthermore,
Fo(Xe, Bs.) = Fo(X!', Bs.) = F.(X). (111)
Lastly, due to Lemma iii) and the choice of §, and , we have
Fo(Xe, As. s, 5er) < Cmax NN (@) " (X, N As. s paer) S0/2. (112)

Comparing this to the energy of X., also noting that Ss > diam W,, +1 and, using (109)—(112]),
we obtain

Fo(Xe) = Fo(Xe, Bs,) + Fo(Xe, As.3er) + Fe(Xe, BS L 30r)
> Fo(Xe, Bs,) + Fo(Xe, BE (5ep) = Fo(Xe) = n/2 + Fo(Xe, Bs,) — Fo(X2)
Therefore, using and , we obtain
liminf(Fe(Xe) — Fo(X2) 2 0/2 > 0.

This yields (107)) for £ > 0 small enough.
Step 5.(v; = v) Assume by contradiction that v; < v. We repeat Step 2 and Step 3 for
X\ (Wy, (72))1 to find 72 such that

pe(- — 72) = pxv, in the sense of measures, (113)

where |Va] = vy > 0. Note that we can assume |7} — 72| — +o0 since this would otherwise

contradict p.(- — 71) = pxy. By Step 4, we observe that Vo = W,,. Note that v — Fom (W)
is strictly concave in v. In fact there holds

n—1

Fhom(Wv) =v n Fhom(Wl) . (114)
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Therefore, given vy, vy > 0, for v = = Mg + (1 — XN)vg for A € (0,1), using (114) and the strict
concavity of the function v — v+, we have

Fhom (W) = From(Waus +(1-20) = (01 + (1= X)02) = Fiom (1)
> (Avf% TN ) From(W1) = AFhom (W, ) + (1 — A) Fhom (Wi, ) -
Since Fyom(Wp) = 0, this in particular implies that v — Fyom(W,,) is strictly subbaditive, i.e.,
From(Woy40s) < Fhom(Wa, ) + Fhom(Wa,)
for all v1,v9 > 0. Set
0= Fhom(Wo,) + From (Wa,) — Fhom(Wa, 4v,) > 0.
Due to Step 3 applied with § = &, := (3C maxzez #NN (z))~'n and Step 4 we have that
pe(-=72) = pxvi and (- —72) = pxvs
and

#(X ﬂAS S+3€R( ))<5€ " and #(X ﬂAS S+35R( ))<5€ -,

where S. is associated with 72 by following the same procedure to X. \ Bg, (7}) as in Step 3.
We can therefore define

Xo = X212 U (X \ (Bs, (t2) U Bg (72)))

and without loss of generality (see Step 4) we can directly assume #X. = #X.. Now the
argument follows very much in the spirit of Step 4. We first observe that

FE(XE> F(X67BS( ))+F(X57B ( ))"’F(XaaAS +3€R( ))
JFF(XsaAS +35R( ) ( sa(BS +35R( )UBS +35R( 2))6)'

)+
Then, by noting first that X, = X, on ((Bs, 13:r(7}) U B2 13:1(72))¢)er, We have
)

Fo(X., ((Bs.43er(7}) U Bs243-r(72)))er) = Fo(Xo, (Bs.43:r(7}) U Bs2 43 (72 2))C)ER()- :
116

(115)

Furthermore,
F.(Xe, Bs. (1)) = Fo(X2') and  F.(X.,Bg (72)) = Fo(X2*). (117)

Lastly, due to Lemma iii) and the choice of §, we have

F.(X, As. s5.13:r(1))) < CmaX#NN( )" (Xe N As, s 43er(72)) < 1/3 (118)
and

Fe(Xe, A, 5. 13:r(70) < C’max#/\/]\/( )e" (X N A 5 43.5(12)) < 11/3.
Comparing this to the energy of X. we obtain, using 7, as in Step 5,
lim inf(F2(Xe) — Fo(X.) 2 n/3 > 0.

This is a contradiction and therefore v; = v. Setting 7. := 7! this concludes the proof. O
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Remark 5.17. We want to observe that Lemma can be extended to the setting of [3] in
which the functional F. also accounts for long-range interactions. In order to adapt the proof
to the general case, the annulus A,_ ,_43r. must be replaced by A,_ r 4s. where s, = k.e (here
k. is such that k. — +oo and ke — 0). This choice ensures that X. N B,, and X. \ By ts.
(resp. X. N B, and X\ B;_4s.) are sufficiently distant such that the energy contribution that
accounts for the interactions crossing the annulus are negligible as € — 0.
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